WO2023245486A1 - 邻小区测量方法、装置、设备、存储介质及程序产品 - Google Patents

邻小区测量方法、装置、设备、存储介质及程序产品 Download PDF

Info

Publication number
WO2023245486A1
WO2023245486A1 PCT/CN2022/100381 CN2022100381W WO2023245486A1 WO 2023245486 A1 WO2023245486 A1 WO 2023245486A1 CN 2022100381 W CN2022100381 W CN 2022100381W WO 2023245486 A1 WO2023245486 A1 WO 2023245486A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
satellite
terminal device
neighboring cell
information
Prior art date
Application number
PCT/CN2022/100381
Other languages
English (en)
French (fr)
Inventor
李海涛
胡奕
于新磊
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/100381 priority Critical patent/WO2023245486A1/zh
Publication of WO2023245486A1 publication Critical patent/WO2023245486A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements

Definitions

  • the embodiments of the present application relate to the field of communication technology, and in particular to a neighbor cell measurement method, device, equipment, storage medium and program product.
  • the terminal equipment When the terminal equipment performs cell reselection or cell handover, it needs to perform neighbor cell measurements to find a suitable neighbor cell for selection. At present, further research is needed for neighborhood measurement.
  • Embodiments of the present application provide a neighboring cell measurement method, device, equipment, storage medium and program product.
  • the technical solutions are as follows:
  • a neighbor cell measurement method is provided.
  • the method is executed by a terminal device.
  • the method includes:
  • the terminal equipment If the terminal equipment meets the neighboring cell measurement startup conditions, it starts or performs measurement on the neighboring cell;
  • the neighboring cell measurement start condition is related to first information and/or second information
  • the first information includes information related to the distance and/or delay between the terminal equipment and the satellite
  • the third information includes information related to the measurement start time
  • a neighboring cell measurement device includes:
  • a measurement module configured to start or perform measurement on neighboring cells if the terminal equipment meets the neighboring cell measurement startup conditions
  • the neighboring cell measurement start condition is related to first information and/or second information
  • the first information includes information related to the distance and/or delay between the terminal equipment and the satellite
  • the third information includes information related to the measurement start time
  • a terminal device includes a processor and a memory.
  • a computer program is stored in the memory.
  • the processor executes the computer program to implement the above neighbor cell measurement. method.
  • a computer-readable storage medium is provided, and a computer program is stored in the storage medium, and the computer program is configured to be executed by a processor to implement the above neighbor cell measurement method.
  • a chip is provided.
  • the chip includes programmable logic circuits and/or program instructions, and is used to implement the above neighbor cell measurement method when the chip is running.
  • a computer program product includes computer instructions.
  • the computer instructions are stored in a computer-readable storage medium.
  • a processor reads the computer-readable storage medium from the computer-readable storage medium. Obtain and execute the computer instructions to implement the above neighbor cell measurement method.
  • This application provides a method for controlling terminal equipment to perform neighbor cell measurement in NTN, and introduces neighbor cell measurement start conditions based on the distance and/or delay and/or measurement start time between the terminal equipment and the satellite, so that the terminal equipment Neighbor cell measurement is turned on when the current serving cell is about to leave and when a neighboring cell is about to arrive, thereby allowing the terminal device to discover the target cell for cell reselection or handover as soon as possible, improving communication reliability.
  • Figure 1 is a schematic diagram of a satellite network architecture provided by an embodiment of the present application.
  • Figure 2 is a schematic diagram of a satellite network architecture provided by another embodiment of the present application.
  • Figure 3 is a flow chart of a neighboring cell measurement method provided by an embodiment of the present application.
  • Figure 4 is a schematic diagram of the positional relationship between a terminal device and a satellite provided by an embodiment of the present application
  • Figure 5 is a schematic diagram of initiating neighbor cell measurement based on time information according to an embodiment of the present application
  • Figure 6 is a block diagram of a neighboring cell measurement device provided by an embodiment of the present application.
  • Figure 7 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • Satellite communications have many unique advantages.
  • satellite communication is not restricted by the user's geographical area.
  • general land communication cannot cover areas such as oceans, mountains, deserts, etc. where communication equipment cannot be installed or where communication coverage is not available due to sparse population.
  • satellite Satellites due to a satellite Satellites can cover a large area of the ground, and satellites can orbit the earth, so theoretically every corner of the earth can be covered by satellite communications.
  • satellite communications have great social value.
  • Satellite communications can cover remote mountainous areas and poor and backward countries or regions at a lower cost, allowing people in these areas to enjoy advanced voice communications and mobile Internet technologies, which is conducive to narrowing the digital divide with developed regions and promoting development in these areas.
  • satellite communication has a long distance, and the cost of communication does not increase significantly as the communication distance increases; finally, satellite communication has high stability and is not restricted by natural disasters.
  • LEO Low-Earth Orbit, low Earth orbit
  • MEO Medium-Earth Orbit, medium Earth orbit
  • GEO Geographicstationary Earth Orbit, geosynchronous orbit
  • HEO High Earth Orbit
  • the altitude range of low-orbit satellites is 500km to 1500km, and the corresponding orbital period is about 1.5 hours to 2 hours.
  • the signal propagation delay of single-hop communication between users is generally less than 20ms.
  • the maximum satellite visibility time is 20 minutes.
  • the signal propagation distance is short, the link loss is small, and the transmission power requirements of the user terminal equipment are not high.
  • the signal propagation delay for single-hop communication between users is generally 250ms.
  • satellites use multiple beams to cover the ground.
  • One satellite can form dozens or even hundreds of beams to cover the ground; one satellite beam can cover dozens to hundreds of kilometers in diameter.
  • Ground area In order to ensure satellite coverage and improve the system capacity of the entire satellite communication system, satellites use multiple beams to cover the ground.
  • One satellite can form dozens or even hundreds of beams to cover the ground; one satellite beam can cover dozens to hundreds of kilometers in diameter. Ground area.
  • Figure 1 shows a schematic diagram of a satellite network architecture.
  • the communication satellites in the satellite network architecture are transparent payload satellites.
  • the satellite network architecture includes: terminal equipment 10, satellite 20, NTN gateway 30, access network equipment 40 and core network equipment 50.
  • the terminal device 10 and the access network device 40 can communicate through an air interface (such as a Uu interface).
  • the access network device 40 can be deployed on the ground, and the uplink and downlink communications between the terminal device 10 and the access network device 40 can be relayed and transmitted through the satellite 20 and the NTN gateway 30 (usually located on the ground) .
  • the terminal device 10 sends the uplink signal to the satellite 20.
  • the satellite 20 forwards the above-mentioned uplink signal to the NTN gateway 30, and then the NTN gateway 30 forwards the above-mentioned uplink signal to the access network device 40.
  • the access network device 40 transmits the uplink signal to the access network device 40.
  • the network device 40 sends the above uplink signal to the core network device 50 .
  • the downlink signal from the core network device 50 is sent to the access network device 40.
  • the access network device 40 sends the downlink signal to the NTN gateway 30.
  • the NTN gateway 30 forwards the above downlink signal to the satellite 20, and then the The satellite 20 forwards the above downlink signal to the terminal device 10 .
  • FIG 2 shows a schematic diagram of another satellite network architecture.
  • the communication satellites in this satellite network architecture are regenerative payload satellites.
  • the satellite network architecture includes: terminal equipment 10, satellite 20, NTN gateway 30 and core network equipment 50.
  • the functions of the access network equipment 40 are integrated on the satellite 20 , that is, the satellite 20 has the functions of the access network equipment 40 .
  • the terminal device 10 and the satellite 20 can communicate through an air interface (such as a Uu interface).
  • the satellite 20 and the NTN gateway 30 (usually located on the ground) can communicate through SRI (Satellite Radio Interface, satellite wireless interface).
  • the terminal device 10 sends the uplink signal to the satellite 20, the satellite 20 forwards the above-mentioned uplink signal to the NTN gateway 30, and then the NTN gateway 30 sends the above-mentioned uplink signal to the core network Equipment 50.
  • the downlink signal from the core network device 50 is sent to the NTN gateway 30.
  • the NTN gateway 30 forwards the downlink signal to the satellite 20, and the satellite 20 forwards the downlink signal to the terminal device 10.
  • the access network device 40 is a device used to provide wireless communication services for the terminal device 10 .
  • a connection can be established between the access network device 40 and the terminal device 10 so that communication, including signaling and data interaction, can be performed through the connection.
  • the number of access network devices 40 may be multiple, and communication between two adjacent access network devices 40 may also be carried out in a wired or wireless manner.
  • the terminal device 10 can switch between different access network devices 40, that is, establish connections with different access network devices 40.
  • the access network device 40 in the cellular communication network may be a base station.
  • a base station is a device deployed in an access network to provide wireless communication functions for terminal equipment 10 .
  • Base stations can include various forms of macro base stations, micro base stations, relay stations, access points, etc.
  • the names of devices with base station functions may be different. For example, in 5G NR systems, they are called gNodeB or gNB. As communications technology evolves, the name "base station" may change.
  • the above-mentioned devices that provide wireless communication functions for the terminal equipment 10 are collectively referred to as base stations or access network equipment.
  • the terminal device 10 involved in the embodiment of the present application may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to wireless modems, as well as various forms of users.
  • Equipment User Equipment, UE
  • mobile station Mobile Station, MS
  • terminal device terminal device
  • the above-mentioned devices are collectively referred to as terminal devices.
  • UE is used in some places to represent “terminal equipment”.
  • network device may be an access network device (such as a base station) or a satellite.
  • the NTN network can include multiple satellites20.
  • a satellite 20 can cover a certain ground area and provide wireless communication services to the terminal equipment 10 in the ground area.
  • the satellite 20 can orbit the earth, and by deploying multiple satellites 20 , communication coverage of different areas on the earth's surface can be achieved.
  • the nouns "network” and “system” are often used interchangeably, but those skilled in the art can understand their meanings.
  • the technical solutions described in the embodiments of this application can be applied to LTE (Long Term Evolution, Long Term Evolution) systems, and can also be applied to 5G NR systems, and can also be applied to subsequent evolution systems of 5G NR systems or other communication systems. This application is Not limited.
  • RRC Radio Resource Control, Radio Resource Control
  • 5G 3rd Generation Partner Project
  • eMBB Enhanced Mobile Broadband, enhanced mobile ultra-broadband
  • URLLC Ultra-reliable and Low Latency Communications, low-latency and high-reliability communications
  • mMTC Massive Machine Type of Communication, large-scale machine type communications
  • RRC_INACTIVE RRC inactive state
  • RRC_IDLE RRC idle state
  • RRC_CONNECTED RRC connected state
  • RRC_IDLE (abbreviated as "IDLE state” or “idle state”): Mobility is UE-based cell selection and reselection. Paging is initiated by CN (Core Network), and the paging area is configured by CN. There is no UE AS (Access Stratum, access layer) context on the base station side. There is no RRC connection.
  • CN Core Network
  • UE AS Access Stratum, access layer
  • RRC_CONNECTED (referred to as “CONNECTED state” or “connected state”): There is an RRC connection, and the base station and the UE have a UE AS context. The network side knows the location of the UE at the specific cell level. Mobility is network-side controlled mobility. Unicast data can be transmitted between the UE and the base station.
  • RRC_INACTIVE (abbreviated as "INACTIVE state” or “inactive state”): Mobility is UE-based cell selection and reselection. There is a connection between the core network and the RAN. The UE AS context exists on the anchor base station, and paging is performed by the RAN. Triggered, the RAN-based paging area is managed by the RAN, and the network side knows that the location of the UE is based on the RAN paging area level.
  • RRM Radio Resource Management, Radio Resource Management
  • NB-IoT Near Band Internet of Things
  • a UE in a non-connected state needs to perform RRM measurements on the serving cell and other neighboring cells based on network configuration to support mobility operations, such as cell reselection.
  • Non-connected UEs perform continuous measurements on the serving cell.
  • NB-IoT a neighbor cell measurement relaxation mechanism for stationary UEs is introduced to further meet the UE's power saving needs.
  • Measurement relaxation criteria are introduced for neighboring cell measurement relaxation.
  • the network will configure the evaluation duration TSearchDeltaP of NRSRP (Narrowband Reference Signal Received Quality, narrowband reference signal received power) changes and the RSRP (Reference Signal Received Quality, reference signal received power) change value threshold SSearchDeltaP .
  • TSearchDeltaP NRSRP (Narrowband Reference Signal Received Quality, narrowband reference signal received power) changes and the RSRP (Reference Signal Received Quality, reference signal received power) change value threshold SSearchDeltaP .
  • Srxlev is the current Srxlev measurement value of the serving cell
  • SrxlevRef is the reference Srxlev value of the serving cell
  • the UE sets SrxlevRef to the current Srxlev measurement value of the serving cell
  • the UE After completing cell selection or reselection, the UE needs to perform normal RRM measurement for at least a period of time TSearchDeltaP.
  • the UE's measurement interval for neighboring cells can be increased to 24 hours.
  • NB-IoT UE does not support RRM measurement in the connected state.
  • RLF Radio Link Failure
  • RRC reconstruction processes After the UE triggers RLF, it needs to first select a suitable cell through search and measurement, and then initiate RRC connection reestablishment on the cell.
  • a neighbor cell measurement mechanism for connected UEs for NB-IoT UEs.
  • the network will configure the s-measure criterion through system messages.
  • the network can also configure the UE mobility state evaluation criterion. The UE determines whether neighbor cell measurement needs to be performed based on the s-measure criterion and the UE mobility state assessment criterion.
  • the network configures the UE mobility state evaluation criteria, then:
  • the UE If the UE does not meet the neighboring cell measurement relaxation criteria before entering the RRC connected state, the UE starts the T326 timer.
  • neighbor cell measurement startup based on location information and time information is introduced.
  • the neighbor cell measurement startup mechanism based on location information introduces the distanceThresh parameter.
  • the UE can stop neighbor cell measurement. Otherwise, the UE must perform Neighborhood measurement.
  • the neighbor cell measurement startup mechanism based on time information introduces t-Service, which represents the time when the serving cell stops serving. If the network configures this parameter, the UE needs to start executing the same-frequency or different-frequency or different-system neighbor cells before t-Service. Measurement, regardless of location or whether RSRP/RSRQ (Reference Signal Receiving Quality, Reference Signal Receiving Quality) meets the corresponding startup conditions.
  • RSRP/RSRQ Reference Signal Receiving Quality, Reference Signal Receiving Quality
  • the network can configure a relatively fixed cell in the system message.
  • a reference point such as a cell coverage center point
  • a fixed cell service end time for the earth-moving cell scenario, the coverage of the NTN cell has been moving relative to the ground as the satellite moves, and its ground reference point (i.e., the center point of the cell) also moves with the movement of the satellite, which increases
  • the complexity of system message configuration of cell center point needs to consider its time-varying characteristics.
  • the out-of-service time of the earth-moving cell is no longer a unified time, but different for different geographical locations.
  • System messages are broadcast to all UEs in the cell, so it cannot be simply configured for different locations.
  • This application aims to study the startup mechanism of neighbor cell measurement for earth-moving cell scenarios. This problem is applicable to NR NTN and IoT NTN, and is applicable to UEs in connected, idle and inactive states.
  • Figure 3 shows a flow chart of a neighbor cell measurement method provided by an embodiment of the present application.
  • This method can be applied to any satellite network architecture shown in Figure 1 or Figure 2.
  • this method can be executed by a terminal device. The method may include the following steps:
  • Step 310 If the terminal device meets the neighbor cell measurement startup condition, the terminal device starts or performs measurement on the neighbor cell; wherein the neighbor cell measurement startup condition is related to the first information and/or the second information, and the first information includes information related to the terminal device. and information related to distance and/or time delay between satellites, and the second information includes information related to measurement start time.
  • the information related to the distance between the terminal device and the satellite can be understood as the information related to the position, that is, the information related to the position of the terminal device and the position of the satellite.
  • Neighbor cell measurement start conditions refer to conditions used to trigger the start or execution of neighbor cell measurement. If the terminal equipment meets the neighboring cell measurement start conditions, the terminal equipment starts or performs measurement on the neighboring cell. Wherein, starting measurement can be understood as starting to perform the measurement process for neighboring cells.
  • the satellite network architecture in which the terminal device is located may be a transparent forwarding architecture as shown in Figure 1, or a regenerative forwarding architecture as shown in Figure 2, which is not limited in this application.
  • the neighboring cell measurement startup control scheme provided by the embodiment of the present application can It is understood as a location-based or delay-based neighbor cell measurement startup mechanism.
  • the neighbor cell measurement start control scheme provided by the embodiment of the present application can be understood as neighbor cell measurement based on time information. Activation mechanism.
  • the first information includes at least one of the following:
  • the elevation angle from the terminal equipment to the satellite refers to the angle between the connection between the terminal equipment and the satellite and the horizontal plane.
  • the elevation angle from the terminal device 41 to the satellite 45 is ⁇
  • the elevation angle from the terminal device 42 to the satellite 45 is ⁇ .
  • the elevation angle from the terminal equipment to the satellite can reflect the distance between the terminal equipment and the satellite.
  • the smaller the elevation angle from the terminal equipment to the satellite the greater the distance between the terminal equipment and the satellite; conversely, the greater the elevation angle from the terminal equipment to the satellite, the smaller the distance between the terminal equipment and the satellite.
  • the distance from the terminal equipment to the satellite refers to the length of the connection between the terminal equipment and the satellite.
  • L1 represents the distance between the terminal device 41 and the satellite 45
  • L2 represents the distance between the terminal device 42 and the satellite 45. It can be seen from the figure that L1 ⁇ L2.
  • the propagation delay from the terminal equipment to the satellite can be one-way propagation delay or two-way propagation delay.
  • the one-way propagation delay can be the time it takes for the information to be sent from the terminal device until the satellite receives the information; or the one-way propagation delay can also be the time it takes for the information to be sent from the satellite to the terminal device to receive the information. of duration.
  • the two-way propagation delay is the sum of the time it takes for the information to be sent from the terminal device to the satellite to receive the information, and the time it takes for the information to be sent from the satellite to the terminal device to receive the information.
  • the propagation delay from the terminal equipment to the satellite can reflect the distance between the terminal equipment and the satellite. Generally speaking, the larger the propagation delay from the terminal equipment to the satellite, the greater the distance between the terminal equipment and the satellite; conversely, the smaller the propagation delay from the terminal equipment to the satellite, the shorter the distance between the terminal equipment and the satellite. Small.
  • the TA of the terminal device can also reflect the distance and/or delay between the terminal device and the satellite. Generally speaking, the larger the TA of the terminal equipment, the greater the distance and/or time delay between the terminal equipment and the satellite; conversely, the smaller the TA of the terminal equipment, the greater the distance and/or time delay between the terminal equipment and the satellite. The delay will be smaller.
  • the TA of the terminal device may be the current actual TA of the terminal device, and the terminal device in the connected state can obtain the current actual TA through open-loop and/or closed-loop control. It should be noted that for the transparent forwarding architecture shown in Figure 1, the TA of the terminal device actually reflects the transmission delay between the terminal device and the access network device.
  • the TA of the terminal device can also reflect the delay and/or distance between the terminal device and the satellite to a certain extent.
  • the TA of the terminal equipment since there is no access network equipment, the TA of the terminal equipment actually reflects the transmission delay between the terminal equipment and the satellite, that is, it can reflect the transmission delay between the terminal equipment and the satellite. delay and/or distance.
  • the neighbor cell measurement start condition includes at least one of the following:
  • the elevation angle is less than or equal to the first threshold; for example, the first threshold can be recorded as alpha-threshold;
  • the distance is greater than or equal to the second threshold; for example, the second threshold can be recorded as d-threshold;
  • the propagation delay is greater than or equal to the third threshold; for example, the third threshold can be recorded as t-threshold;
  • TA is greater than or equal to the fourth threshold; for example, the fourth threshold can be recorded as TA-threshold.
  • the elevation angle between the terminal equipment and the satellite is less than or equal to the first threshold value, it indicates that the distance between the terminal equipment and the satellite of the current serving cell is relatively large, thus triggering the terminal equipment to start or perform measurements on the neighboring cell.
  • the distance between the terminal device and the satellite is greater than or equal to the second threshold value, it means that the distance between the terminal device and the satellite of the current serving cell is relatively large, thus triggering the terminal device to start or perform measurements on the neighboring cell.
  • the propagation delay from the terminal equipment to the satellite is greater than or equal to the third threshold value, it can also mean that the distance between the terminal equipment and the satellite of the current serving cell is large, thus triggering the terminal equipment to start or perform measurements on neighboring cells.
  • the TA of the terminal device is greater than or equal to the fourth threshold value, it may also indicate that the distance between the terminal device and the satellite of the current serving cell is relatively large, thus triggering the terminal device to start or perform measurements on the neighboring cell.
  • the first information corresponds to the neighboring cell measurement start condition.
  • the neighboring cell measurement starting condition includes that the elevation angle is less than or equal to the first threshold value;
  • the neighboring cell measurement starting condition includes the The distance is greater than or equal to the second threshold;
  • the neighboring cell measurement start condition includes that the propagation delay is greater than or equal to the third threshold;
  • the neighboring cell measurement start conditions include that the TA is greater than or equal to the fourth threshold.
  • the first information may include any one or a combination of any of the above elevation angle, distance, propagation delay and TA; accordingly, the neighboring cell measurement start conditions also include any one of the above a) to d) Or any combination of multiple items.
  • the terminal device determines the position of the terminal device according to the position information, determines the position of the satellite according to the ephemeris information broadcast by the serving cell, and determines at least one of the following according to the position of the terminal device and the position of the satellite: elevation angle, distance, propagation delay.
  • the above location information may be GNSS (Global Navigation Satellite System, Global Navigation Satellite System) location information, or other types of positioning information, which is not limited in this application.
  • the distance from the terminal device to the satellite can be calculated.
  • the above elevation angle can also be determined based on the angle between the connection between the terminal device and the satellite and the horizontal plane, or the distance can be obtained by dividing the distance by the speed of light.
  • One-way propagation delay from terminal equipment to satellite is a predefined range of the terminal device.
  • the second information includes at least one of the following:
  • the measurement start time refers to the starting time when the terminal device starts or performs measurement on the neighboring cell
  • the measurement end time refers to the time when the terminal device stops or ends the measurement on the neighboring cell.
  • the second information may only include the start time of the measurement, or may only include the end time of the measurement, or may also include the start time and the end time of the measurement.
  • the second information includes the start moment and the end moment of the measurement
  • the time window of the measurement includes the start moment and the end moment of the measurement, such as the time of the measurement.
  • the window is the time interval from the start time of measurement to the end time of measurement.
  • the time window of the measurement can be expressed as [T1, T2], where T1 represents the start time of the measurement, and T2 represents the end time of the measurement.
  • the neighbor cell measurement start condition includes at least one of the following:
  • the neighboring cell measurement start conditions are met, and the terminal device starts or performs measurement on the neighboring cell.
  • the neighboring cell measurement start conditions are met, and the terminal device starts or performs measurement on the neighboring cell.
  • the neighboring cell measurement start conditions are met, and the terminal device starts or performs measurement on the neighboring cell.
  • the second information corresponds to the neighboring cell measurement start condition.
  • the neighbor cell measurement start condition includes that the current time is greater than or equal to the measurement start time; when the second information includes the measurement end time, the neighbor cell measurement start condition includes that the current time is less than or equal to the measurement the end moment.
  • the terminal device if the second information includes the measured start time T0, and the neighbor cell measurement start condition includes that the current time is greater than or equal to the measured start time T0, then before time T0 , the terminal device does not perform neighbor cell measurement. Starting from time T0, the terminal device performs neighbor cell measurement.
  • the terminal device if the second information includes the measurement time window [T1, T2], and the neighboring cell measurement start condition includes that the current moment is within the above time window, then at T1 Before time, the terminal device does not perform neighbor cell measurement. From time T1 to time T2, the terminal device performs neighbor cell measurement, and then the terminal device ends neighbor cell measurement at time T2.
  • the measurement start time is: the moment when the serving cell and the neighboring cell closest to the terminal device begin to have overlapping coverage; or the serving cell and the neighboring cell closest to the terminal device on the target frequency point begin to have overlapping coverage. time; or, the time when the serving cell and the target neighboring cell begin to have overlapping coverage.
  • the measurement start time may be the time when the serving cell and the neighbor cell closest to the terminal device begin to have overlapping coverage. If the configuration information related to the above-mentioned neighbor cell measurement start conditions is configured for each frequency point, the measurement start time can be the time when the serving cell and the neighbor cell closest to the terminal device on the target frequency point begin to have overlapping coverage; where , the target frequency point can be any frequency point. If the configuration information related to the above neighboring cell measurement startup conditions is configured for each neighboring cell, the measurement startup time can be the moment when the serving cell and the target neighboring cell begin to have overlapping coverage; where the target neighboring cell can be any Neighboring neighborhood.
  • the terminal device obtains the current time.
  • the terminal device can obtain the current time through GNSS or by reading SIB (System Information Block, System Information Block) 9 messages.
  • SIB System Information Block, System Information Block
  • the terminal device receives configuration information sent by the serving cell, where the configuration information is used to indicate parameters related to neighbor cell measurement startup conditions.
  • the neighboring cell measurement start condition includes at least one of the following: a) the elevation angle is less than or equal to the first threshold; b) the distance is greater than or equal to the second threshold; c) the propagation delay is greater than or equal to the third threshold value; d) TA is greater than or equal to the fourth threshold value; accordingly, the configuration information includes at least one of the following: a) first threshold value; b) second threshold value; c) third threshold value ;d) The fourth threshold value.
  • the configuration information includes at least one of the following : 1) The start time of measurement; 2) The end time of measurement.
  • the above configuration information is configured for each terminal device, or configured for each frequency point, or configured for each neighboring cell. That is to say, the configuration information can be configured as needed based on actual needs, thereby improving the flexibility of neighbor cell measurement startup condition configuration.
  • the configuration information is sent through system messages or through RRC dedicated signaling.
  • the above-mentioned system messages may be SIB 1 messages, SIB 2 messages, SIB 19 messages, etc.
  • the above-mentioned RRC dedicated signaling may be an RRC reconfiguration message.
  • neighboring cells of different types correspond to the same neighboring cell measurement starting conditions.
  • the different types of neighboring cells include at least two of the following: same-frequency neighboring cells, inter-frequency neighboring cells, and inter-system neighboring cells.
  • same-frequency neighboring cells, inter-frequency neighboring cells and inter-system neighboring cells correspond to the same neighboring cell measurement start conditions.
  • the terminal equipment meets the neighboring cell measurement start conditions, the terminal equipment starts or performs measurements on the same-frequency neighboring cells, inter-frequency neighboring cells and inter-system neighboring cells.
  • different types of neighbor cells correspond to different neighbor cell measurement start conditions.
  • the different types of neighboring cells include at least two of the following: same-frequency neighboring cells, inter-frequency neighboring cells, and inter-system neighboring cells.
  • same-frequency neighboring cells, inter-frequency neighboring cells and inter-system neighboring cells respectively correspond to different neighboring cell measurement start conditions.
  • the terminal equipment meets the neighboring cell measurement start conditions corresponding to the same-frequency neighboring cells, the terminal equipment starts or performs measurement on the same-frequency neighboring cells.
  • the terminal equipment meets the neighboring cell measurement start conditions corresponding to the inter-frequency neighboring cells, the terminal equipment starts or performs measurement on the inter-frequency neighboring cells.
  • the terminal equipment When the terminal equipment meets the neighboring cell measurement start conditions corresponding to the neighboring cells of different systems, the terminal equipment starts or performs measurements on the neighboring cells of different systems.
  • different neighbor cell measurement startup conditions can be configured for different types of neighboring cells.
  • different neighbor cell measurement startup conditions can be set according to the deployment conditions of different types of neighboring cells, thereby being more flexible and effective. This helps prevent terminal equipment from performing unnecessary neighbor cell measurements and saves power consumption.
  • the terminal equipment if the terminal equipment does not meet the neighboring cell measurement startup conditions, the terminal equipment does not perform the step of starting or performing measurements on the neighboring cells, that is, the terminal equipment does not start or perform measurements on the neighboring cells.
  • the neighbor cell measurement method provided by the embodiments of the present application is suitable for scenarios where terminal equipment and satellites are in earth-moving cells.
  • the neighbor cell measurement method provided by the embodiments of the present application is applicable to situations where the terminal equipment is in an idle state, an inactive state, or a connected state.
  • the terminal device if the signal quality of the serving cell is greater than or equal to the fifth threshold and the terminal device meets the neighboring cell measurement start condition, the terminal device starts or performs measurement on the neighboring cell; or, if the signal quality of the serving cell is greater than or equal to the fifth threshold value, and the terminal equipment does not meet the neighboring cell measurement startup conditions, the terminal equipment does not perform the steps of starting or performing measurements on the neighboring cells, that is, the terminal equipment does not start or perform measurements on the neighboring cells.
  • the above signal quality may include RSRP and/or RSRQ.
  • the RSRP and RSRQ measurement results of the serving cell are both greater than or equal to the RSRP threshold and RSRQ threshold configured by the network;
  • the location information includes the information used to determine the terminal device.
  • Position information (such as GNSS information), optionally also includes information used to determine the position of the satellite (such as ephemeris information provided by the serving cell);
  • the terminal device may not start or perform measurements on neighboring cells;
  • the terminal device starts or performs measurement on the neighboring cell.
  • the technical solution provided by the embodiments of the present application provides a method for controlling terminal equipment to perform neighbor cell measurement in NTN, and introduces the method based on the distance and/or delay and/or measurement between the terminal equipment and the satellite.
  • the neighboring cell measurement startup condition of the startup time enables the terminal device to start neighbor cell measurement when it is about to leave the current serving cell and when the neighboring cell is about to arrive, thereby allowing the terminal device to discover the target cell for cell reselection or handover as soon as possible, improving communication reliability sex.
  • Figure 6 shows a block diagram of a neighboring cell measurement device provided by an embodiment of the present application.
  • the device has the function of implementing the above method example, and the function can be implemented by hardware, or can also be implemented by hardware executing corresponding software.
  • the device can be the terminal equipment introduced above, or can be set in the terminal equipment.
  • the device 600 may include: a measurement module 610 .
  • the measurement module 610 is configured to start or perform measurement on neighboring cells if the terminal equipment meets the neighboring cell measurement startup conditions; wherein the neighboring cell measurement startup conditions are related to the first information and/or the second information, and the The first information includes information related to the distance and/or time delay between the terminal device and the satellite, and the second information includes information related to the measurement start time.
  • the first information includes at least one of the following: an elevation angle from the terminal device to the satellite; a distance from the terminal device to the satellite; a propagation time from the terminal device to the satellite. extension; the TA of the terminal device.
  • the neighbor cell measurement start condition includes at least one of the following: the elevation angle is less than or equal to a first threshold; the distance is greater than or equal to a second threshold; the propagation delay is greater than or equal to is equal to the third threshold value; the TA is greater than or equal to the fourth threshold value.
  • the apparatus 600 further includes a determination module 620, configured to: determine the location of the terminal device according to location information; determine the location of the satellite according to the ephemeris information broadcast by the serving cell. ; According to the position of the terminal device and the position of the satellite, determine at least one of the following: the elevation angle, the distance, and the propagation delay.
  • the second information includes at least one of the following: a start time of the measurement; an end time of the measurement.
  • the neighbor cell measurement start condition includes at least one of the following: the current time is greater than or equal to the start time of the measurement; the current time is less than or equal to the end time of the measurement.
  • the measurement start time is: the time when the serving cell and the neighbor cell closest to the terminal device begin to have overlapping coverage; or, the serving cell and the neighbor cell closest to the terminal device on the target frequency point The moment when the cell starts to have overlapping coverage; or the moment when the serving cell and the target neighboring cell start to have overlapping coverage.
  • the device 600 further includes: a receiving module 630, configured to receive configuration information sent by the serving cell, where the configuration information is used to indicate the neighboring cell measurement startup conditions. parameter.
  • the configuration information is configured for each terminal device, or configured for each frequency point, or configured for each neighboring cell.
  • the configuration information is sent through system messages or through RRC dedicated signaling.
  • neighboring cells of different types correspond to the same neighboring cell measurement startup conditions; or different types of neighboring cells correspond to different neighboring cell measurement startup conditions; wherein the different types of neighboring cells include At least two of the following: same-frequency neighboring cells, inter-frequency neighboring cells, and inter-system neighboring cells.
  • the measurement module 610 is also configured to not start or perform measurement on the neighboring cell if the terminal device does not meet the neighboring cell measurement startup condition.
  • the measurement module 610 is also configured to: if the signal quality of the serving cell is greater than or equal to the fifth threshold and the terminal equipment meets the neighboring cell measurement startup condition, measure the neighboring cell. Start or perform measurement; or, if the signal quality of the serving cell is greater than or equal to the fifth threshold and the terminal device does not meet the neighboring cell measurement startup condition, then do not start or perform measurement on the neighboring cell.
  • the terminal device and the satellite are in an earth mobile cell scenario.
  • the terminal device is in an idle state, an inactive state, or a connected state.
  • This application provides a method for controlling terminal equipment to perform neighbor cell measurement in NTN, and introduces neighbor cell measurement start conditions based on the distance and/or delay and/or measurement start time between the terminal equipment and the satellite, so that the terminal equipment Neighbor cell measurement is turned on when the current serving cell is about to leave and when a neighboring cell is about to arrive, thereby allowing the terminal device to discover the target cell for cell reselection or handover as soon as possible, improving communication reliability.
  • the device provided in the above embodiment implements its functions, only the division of the above functional modules is used as an example. In practical applications, the above functions can be allocated to different functional modules according to actual needs. That is, the content structure of the device is divided into different functional modules to complete all or part of the functions described above.
  • FIG. 7 shows a schematic structural diagram of a terminal device 700 provided by an embodiment of the present application.
  • the terminal device 700 can be used to perform the method steps in the above embodiments.
  • the terminal device 700 may include: a processor 701, a transceiver 702, and a memory 703.
  • the processor 701 includes one or more processing cores.
  • the processor 701 executes various functional applications and information processing by running software programs and modules.
  • the transceiver 702 may include a receiver and a transmitter.
  • the receiver and the transmitter may be implemented as the same wireless communication component, and the wireless communication component may include a wireless communication chip and a radio frequency antenna.
  • Memory 703 may be connected to processor 701 and transceiver 702.
  • the memory 703 can be used to store a computer program executed by the processor, and the processor 701 is used to execute the computer program to implement various steps executed by the terminal device in the above method embodiment.
  • memory 703 may be implemented by any type of volatile or non-volatile storage device, or combination thereof, including but not limited to: magnetic or optical disks, electrically erasable programmable Read-only memory, erasable programmable read-only memory, static ready-access memory, read-only memory, magnetic memory, flash memory, programmable read-only memory.
  • the processor 701 is configured to start or perform measurement on neighboring cells if the terminal equipment meets the neighboring cell measurement startup condition; wherein the neighboring cell measurement startup condition is the same as the first information and/or Or related to second information, the first information includes information related to the distance and/or time delay between the terminal device and the satellite, and the second information includes information related to the measurement start time.
  • Embodiments of the present application also provide a computer-readable storage medium.
  • a computer program is stored in the storage medium.
  • the computer program is used to be executed by a processor of a terminal device to implement the above-mentioned neighbor cell measurement method on the terminal device side. .
  • the computer-readable storage medium may include: ROM (Read-Only Memory), RAM (Random-Access Memory), SSD (Solid State Drives, solid state drive) or optical disk, etc.
  • random access memory can include ReRAM (Resistance Random Access Memory, resistive random access memory) and DRAM (Dynamic Random Access Memory, dynamic random access memory).
  • Embodiments of the present application also provide a chip, which includes programmable logic circuits and/or program instructions, and is used to implement the above neighbor cell measurement method when the chip is run on a terminal device.
  • Embodiments of the present application also provide a computer program product.
  • the computer program product includes computer instructions.
  • the computer instructions are stored in a computer-readable storage medium.
  • the processor of the terminal device reads from the computer-readable storage medium. and execute the computer instructions to implement the above neighbor cell measurement method.
  • the "instruction” mentioned in the embodiments of this application may be a direct instruction, an indirect instruction, or an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association between A and B. relation.
  • correlate can mean that there is a direct correspondence or indirect correspondence between the two, it can also mean that there is an associated relationship between the two, or it can mean indicating and being instructed, configuration and being. Configuration and other relationships.
  • predefined can be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in devices (for example, including terminal devices and network devices).
  • devices for example, including terminal devices and network devices.
  • predefined can refer to what is defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, which may include, for example, LTE protocol, NR protocol, and related protocols applied in future communication systems. This application is not limited to this.
  • the "plurality” mentioned in this article means two or more than two.
  • “And/or” describes the relationship between related objects, indicating that there can be three relationships.
  • a and/or B can mean: A exists alone, A and B exist simultaneously, and B exists alone.
  • the character “/” generally indicates that the related objects are in an "or” relationship.
  • step numbers described in this article only illustrate a possible execution sequence between the steps.
  • the above steps may not be executed in the numbering sequence, such as two different numbers.
  • the steps are executed simultaneously, or two steps with different numbers are executed in the reverse order as shown in the figure, which is not limited in the embodiments of the present application.
  • Computer-readable media includes computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • Storage media can be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种邻小区测量方法、装置、设备、存储介质及程序产品,涉及通信技术领域。该方法包括:若终端设备满足邻区测量启动条件,则终端设备对邻小区启动或执行测量;其中,邻区测量启动条件与第一信息和/或第二信息有关,第一信息包括与终端设备和卫星之间的距离和/或时延相关的信息,第二信息包括与测量启动时间相关的信息(310)。提供了一种NTN中控制终端设备执行邻区测量的方法,引入了基于终端设备和卫星之间的距离和/或时延和/或测量启动时间的邻区测量启动条件,使得终端设备在即将离开当前服务小区,以及邻小区即将到达时开启邻区测量,进而使得终端设备尽快发现用于小区重选或者切换的目标小区,提升通信可靠性。

Description

邻小区测量方法、装置、设备、存储介质及程序产品 技术领域
本申请实施例涉及通信技术领域,特别涉及一种邻小区测量方法、装置、设备、存储介质及程序产品。
背景技术
终端设备在进行小区重选或者小区切换时,需要进行邻区测量,从而找到合适的邻小区进行选择。目前,针对邻区测量,还需进一步研究。
发明内容
本申请实施例提供了一种邻小区测量方法、装置、设备、存储介质及程序产品。所述技术方案如下:
根据本申请实施例的一个方面,提供了一种邻小区测量方法,所述方法由终端设备执行,所述方法包括:
若所述终端设备满足邻区测量启动条件,则对邻小区启动或执行测量;
其中,所述邻区测量启动条件与第一信息和/或第二信息有关,所述第一信息包括与所述终端设备和卫星之间的距离和/或时延相关的信息,所述第二信息包括与测量启动时间相关的信息。
根据本申请实施例的一个方面,提供了一种邻小区测量装置,所述装置包括:
测量模块,用于若所述终端设备满足邻区测量启动条件,则对邻小区启动或执行测量;
其中,所述邻区测量启动条件与第一信息和/或第二信息有关,所述第一信息包括与所述终端设备和卫星之间的距离和/或时延相关的信息,所述第二信息包括与测量启动时间相关的信息。
根据本申请实施例的一个方面,提供了一种终端设备,所述终端设备包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述计算机程序以实现上述邻小区测量方法。
根据本申请实施例的一个方面,提供了一种计算机可读存储介质,所述存储介质中存储有计算机程序,所述计算机程序用于被处理器执行,以实现上述邻小区测量方法。
根据本申请实施例的一个方面,提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片运行时,用于实现上述邻小区测量方法。
根据本申请实施例的一个方面,提供了一种计算机程序产品,所述计算机程序产品包括计算机指令,所述计算机指令存储在计算机可读存储介质中,处理器从所述计算机可读存储介质读取并执行所述计算机指令,以实现上述邻小区测量方法。
本申请实施例提供的技术方案可以包括如下有益效果:
本申请提供了一种NTN中控制终端设备执行邻区测量的方法,引入了基于终端设备和卫星之间的距离和/或时延和/或测量启动时间的邻区测量启动条件,使得终端设备在即将离开当前服务小区,以及邻小区即将到达时开启邻区测量,进而使得终端设备尽快发现用于小区重选或者切换的目标小区,提升通信可靠性。
附图说明
图1是本申请一个实施例提供的卫星网络架构的示意图;
图2是本申请另一个实施例提供的卫星网络架构的示意图;
图3是本申请一个实施例提供的邻小区测量方法的流程图;
图4是本申请一个实施例提供的终端设备与卫星之间的位置关系的示意图;
图5是本申请一个实施例提供的基于时间信息启动邻区测量的示意图;
图6是本申请一个实施例提供的邻小区测量装置的框图;
图7是本申请一个实施例提供的终端设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
本申请实施例描述的网络架构以及业务场景是为了更加清楚地说明本申请实施例的技术方案,并不构成对本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
目前,相关标准组织正在研究NTN技术,NTN技术一般采用卫星通信的方式向地面用户提供通信服务。相比于地面的蜂窝通信网络,卫星通信具有很多独特的优点。首先,卫星通信不受用户地域的限制,例如一般的陆地通信不能覆盖海洋、高山、沙漠等无法搭设通信设备或由于人口稀少而不做通信覆盖的区域,而对于卫星通信来说,由于一颗卫星即可以覆盖较大的地面,加之卫星可以围绕地球做轨道运动,因此理论上地球上每一个角落都可以被卫星通信覆盖。其次,卫星通信有较大的社会价值。卫星通信在边远山区、贫穷落后的国家或地区都可以以较低的成本覆盖到,从而使这些地区的人们享受到先进的语音通信和移动互联网技术,有利于缩小与发达地区的数字鸿沟,促进这些地区的发展。再次,卫星通信距离远,且通信距离增大通讯的成本没有明显增加;最后,卫星通信的稳定性高,不受自然灾害的限制。
通信卫星按照轨道高度的不同分为LEO(Low-Earth Orbit,低地球轨道)卫星、MEO(Medium-Earth Orbit,中地球轨道)卫星、GEO(Geostationary Earth Orbit,地球同步轨道)卫星、HEO(High Elliptical Orbit,高椭圆轨道)卫星等等。目前阶段主要研究的是LEO和GEO。
1、LEO
低轨道卫星高度范围为500km~1500km,相应轨道周期约为1.5小时~2小时。用户间单跳通信的信号传播延迟一般小于20ms。最大卫星可视时间20分钟。信号传播距离短,链路损耗少,对用户终端设备的发射功率要求不高。
2、GEO
地球同步轨道卫星,轨道高度为35786km,围绕地球旋转周期为24小时。用户间单跳通信的信号传播延迟一般为250ms。
为了保证卫星的覆盖以及提升整个卫星通信系统的系统容量,卫星采用多波束覆盖地面,一颗卫星可以形成几十甚至数百个波束来覆盖地面;一个卫星波束可以覆盖直径几十至上百公里的地面区域。
请参考图1,其示出了一种卫星网络架构的示意图,该卫星网络架构中的通信卫星是透明转发(transparent payload)的卫星。如图1所示,该卫星网络架构包括:终端设备10、卫星20、NTN网关30、接入网设备40和核心网设备50。
终端设备10和接入网设备40之间可通过空口(如Uu接口)进行通信。在图1所示架构中,接入网设备40可以部署在地面,终端设备10和接入网设备40之间的上下行通信,可以通过卫星20和NTN网关30(通常位于地面)进行中转传输。以上行传输为例,终端设备10将上行信号发送给卫星20,卫星20将上述上行信号转发给NTN网关30,再由NTN网关30将上述上行信号转发给接入网设备40,后续由接入网设备40将上述上行信号发送给核心网设备50。以下行传输为例,来自核心网设备50的下行信号发送给接入网设备40,接入网 设备40将下行信号发送给NTN网关30,NTN网关30将上述下行信号转发给卫星20,再由卫星20将上述下行信号转发给终端设备10。
请参考图2,其示出了另一种卫星网络架构的示意图,该卫星网络架构中的通信卫星是再生转发(regenerative payload)的卫星。如图2所示,该卫星网络架构包括:终端设备10、卫星20、NTN网关30和核心网设备50。
在图2所示架构中,接入网设备40的功能集成在卫星20上,也即卫星20具备接入网设备40的功能。终端设备10和卫星20之间可通过空口(如Uu接口)进行通信。卫星20和NTN网关30(通常位于地面)之间可通过SRI(Satellite Radio Interface,卫星无线接口)进行通信。
在图2所示架构中,以上行传输为例,终端设备10将上行信号发送给卫星20,卫星20将上述上行信号转发给NTN网关30,再由NTN网关30将上述上行信号发送给核心网设备50。以下行传输为例,来自核心网设备50的下行信号发送给NTN网关30,NTN网关30将上述下行信号转发给卫星20,再由卫星20将上述下行信号转发给终端设备10。
在上述图1和图2所示的网络架构中,接入网设备40是用于为终端设备10提供无线通信服务的设备。接入网设备40与终端设备10之间可以建立连接,从而通过该连接进行通信,包括信令和数据的交互。接入网设备40的数量可以有多个,两个邻近的接入网设备40之间也可以通过有线或者无线的方式进行通信。终端设备10可以在不同的接入网设备40之间进行切换,也即与不同的接入网设备40建立连接。
以蜂窝通信网络为例,蜂窝通信网络中的接入网设备40可以是基站。基站是一种部署在接入网中用以为终端设备10提供无线通信功能的装置。基站可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如在5G NR系统中,称为gNodeB或者gNB。随着通信技术的演进,“基站”这一名称可能会变化。为方便描述,本申请实施例中,上述为终端设备10提供无线通信功能的装置统称为基站或接入网设备。
另外,本申请实施例中涉及的终端设备10,可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(User Equipment,UE),移动台(Mobile Station,MS),终端设备(terminal device)等等。为方便描述,本申请实施例中,上面提到的设备统称为终端设备。在本申请实施例中,有些地方使用“UE”代表“终端设备”。在本申请实施例中,“网络设备”可以是接入网设备(如基站)或者卫星。
另外,以5G NTN网络为例,NTN网络中可以包括多颗卫星20。一颗卫星20可以覆盖一定范围的地面区域,为该地面区域上的终端设备10提供无线通信服务。另外,卫星20可以围绕地球做轨道运动,通过布设多个卫星20,可以实现对地球表面的不同区域的通信覆盖。
另外,在本申请实施例中,名词“网络”和“系统”通常混用,但本领域技术人员可以理解其含义。本申请实施例描述的技术方案可以适用于LTE(Long Term Evolution,长期演进)系统,也可以适用于5G NR系统,也可以适用于5G NR系统后续的演进系统或者其他通信系统,本申请对此不作限定。
在介绍本申请技术方案之前,先对本申请涉及的一些背景技术知识进行介绍说明。以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
1.NR系统中的RRC(Radio Resource Control,无线资源控制)状态
随着人们对速率、延迟、高速移动性、能效的追求以及未来生活中业务的多样性、复杂性,为此3GPP(3rd Generation Partner Project,第三代合作伙伴计划)国际标准组织开始研发5G。5G的主要应用场景为:eMBB(Enhanced Mobile Broadband,增强移动超宽带)、URLLC (Ultra-reliable and Low Latency Communications,低时延高可靠通信)、mMTC(Massive Machine Type of Communication,大规模机器类通信)。
5G网络环境中为了降低空口信令和快速恢复无线连接,快速恢复数据业务的目的,定义了一个新的RRC状态,即RRC_INACTIVE(RRC非激活态)状态。这种状态有别于RRC_IDLE(RRC空闲态)和RRC_CONNECTED(RRC连接态)状态。
RRC_IDLE(简称为“IDLE状态”或“空闲态”):移动性为基于UE的小区选择重选,寻呼由CN(Core Network,核心网)发起,寻呼区域由CN配置。基站侧不存在UE AS(Access Stratum,接入层)上下文。不存在RRC连接。
RRC_CONNECTED(简称为“CONNECTED状态”或“连接态”):存在RRC连接,基站和UE存在UE AS上下文。网络侧知道UE的位置是具体小区级别的。移动性是网络侧控制的移动性。UE和基站之间可以传输单播数据。
RRC_INACTIVE(简称为“INACTIVE状态”或“非激活态”):移动性为基于UE的小区选择重选,存在核心网与RAN之间的连接,UE AS上下文存在锚点基站上,寻呼由RAN触发,基于RAN的寻呼区域由RAN管理,网络侧知道UE的位置是基于RAN的寻呼区域级别的。
2.NB-IoT(Narrow Band Internet of Things,窄带物联网)非连接态UE的RRM(Radio Resource Management,无线资源管理)测量
处于非连接态的UE需要基于网络的配置,对服务小区以及其他邻小区进行RRM测量以支持移动性操作,例如小区重选等。
非连接态的UE针对服务小区测量是持续进行的。在相关技术的NB-IoT中,引入了针对静止UE的邻小区测量放松机制,以进一步满足UE省电的需求。针对邻小区测量放松引入了测量放松准则,网络会配置NRSRP(Narrowband Reference Signal Received Quality,窄带参考信号接收功率)变化的评估时长TSearchDeltaP和RSRP(Reference Signal Received Quality,参考信号接收功率)变化值门限SSearchDeltaP。当一段时间TSearchDeltaP内UE在服务小区上的RSRP变化量小于SSearchDeltaP时,则认为该UE满足测量放松准则。即:在一段时间TSearchDeltaP内,满足:
(SrxlevRef–Srxlev)<SSearchDeltaP<1>
其中,Srxlev是服务小区的当前Srxlev测量值,SrxlevRef是服务小区的参考Srxlev值。
当UE选择或重选到一个新的小区,或者,
如果(Srxlev-SrxlevRef)>0,或者,
如果UE没有在持续TSearchDeltaP时间内满足公式<1>:
UE将SrxlevRef设为服务小区的当前Srxlev测量值;
UE在完成小区选择或重选之后,需要在至少一段时间TSearchDeltaP内执行正常的RRM测量。
当UE满足测量放松准则时,UE针对邻小区的测量间隔可以增大到24小时。
3.NB-IoT连接态UE的RRM测量
在一些相关技术中,NB-IoT UE不支持连接态的RRM测量。当连接态的NB-IoT UE在服务小区上的信道质量变差后,通过RLF(Radio Link Failure,无线链路失败)和RRC重建过程来进行移动性管理。由于UE触发RLF之后,需要先通过搜索、测量来选择一个合适的小区,然后在该小区上发起RRC连接重建。
为了节省UE触发RLF之后选择重建小区的时间,相关技术针对NB-IoT UE引入了连接态UE的邻区测量机制。针对连接态UE的邻区测量,网络会通过系统消息配置s-measure准则,同时网络还可以配置UE移动状态评估准则。UE基于s-measure准则和UE移动状态评估准则,确定是否需要执行邻小区测量。方法如下:
当UE进入到RRC连接态之后,如果网络配置了UE移动状态评估准则,则:
将NRSRP Ref设置为最近一次测得的用于小区选择或重选的服务小区上的NRSRP;
如果UE在进入RRC连接态之前没有满足邻小区测量放松准则,则UE启动T326定时器。
对于处于连接态的UE,假设UE在被测载波上的测量结果为NRSRP,如果网络配置了UE移动状态评估准则,则:
如果(NRSRP Ref-NRSRP-PowerOffsetNonAnchor))>s-MeasureDeltaP,则UE设置NRSRP Ref=NRSRP-PowerOffsetNonAnchor,同时UE启动或重启T326定时器。
如果网络没有配置UE移动状态评估准则,或者T326定时器正在运行:
如果(NRSRP-PowerOffsetNonAnchor)<s-MeasureIntra,则UE执行对同频邻小区的测量;
如果(NRSRP-PowerOffsetNonAnchor)<s-MeasureInter,则UE执行对异频邻小区的测量。
4.NR NTN针对earth-fixed cell(地球固定小区)引入的非连接态测量控制
NR NTN中,当服务小区属于Quasi-Earth-fixed cell(准地球固定小区)场景时,引入了基于位置信息和时间信息的邻区测量启动。具体的,基于位置信息的邻区测量启动机制引入了distanceThresh参数,当UE和服务小区参考点(例如小区中心)之间的距离小于distanceThresh时,UE可以停止邻区测量,否则,UE就要执行邻区测量。基于时间信息的邻区测量启动机制引入了t-Service,代表服务小区停止服务的时刻,如果网络配置了该参数,UE需要在t-Service前开始执行同频或异频或异系统的邻区测量,无论位置或RSRP/RSRQ(Reference Signal Receiving Quality,参考信号接收质量)是否满足对应的启动条件。
NR NTN中,对于准地面静止小区场景(也即Quasi-Earth-fixed cell场景),由于NTN小区的覆盖在一段时间内相对地面是静止的,因此网络可以在系统消息中配置一个相对固定的小区参考点(例如小区覆盖中心点)以及一个固定的小区服务结束时刻。然而,对于earth-moving cell(地球移动小区)场景,NTN小区的覆盖随着卫星移动相对地面一直在移动,其地面参考点(即小区中心点)也随着卫星移动而移动,这样就增加了系统消息配置小区中心点的复杂度,需要考虑其时变的特性。其次,earth-moving cell的停止服务时刻不再是一个统一的时刻,而是针对不同的地理位置而不同,系统消息是面向小区内的所有UE来广播的,因而无法简单的实现针对不同位置配置不同的停止服务时刻。本申请旨在针对earth-moving cell场景研究邻区测量的启动机制,该问题适用于NR NTN和IoT NTN,适用于连接态、空闲态和非激活态的UE。
下面,将通过几个实施例对本申请技术方案进行介绍说明。
请参考图3,其示出了本申请一个实施例提供的邻小区测量方法的流程图。该方法可应用于图1或图2所示的任一卫星网络架构中,例如该方法可以由终端设备执行。该方法可以包括如下步骤:
步骤310,若终端设备满足邻区测量启动条件,则终端设备对邻小区启动或执行测量;其中,邻区测量启动条件与第一信息和/或第二信息有关,第一信息包括与终端设备和卫星之间的距离和/或时延相关的信息,第二信息包括与测量启动时间相关的信息。其中,与终端设备和卫星之间的距离相关的信息,可以理解为与位置相关的信息,即与终端设备的位置和卫星的位置相关的信息。
邻区测量启动条件是指用于触发启动或执行邻区测量的条件。若终端设备满足邻区测量启动条件,则终端设备对邻小区启动或执行测量。其中,启动测量可以理解为开始执行针对邻小区的测量流程。
终端设备所处的卫星网络架构,可以是如图1所示的透明转发的架构,也可以是如图2所示的再生转发的架构,本申请对此不作限定。
在邻区测量启动条件与第一信息有关,且第一信息包括与终端设备和卫星之间的距离和/或时延相关的信息时,本申请实施例提供的邻区测量启动控制方案,可以理解为是基于位置(location-based)或时延的邻区测量启动机制。在邻区测量启动条件与第二信息有关,且第二信息包括与测量启动时间相关的信息时,本申请实施例提供的邻区测量启动控制方案,可以理解为是基于时间信息的邻区测量启动机制。
在一些实施例中,第一信息包括以下至少之一:
a)终端设备到卫星的仰角;
b)终端设备到卫星的距离;
c)终端设备到卫星的传播时延;
d)终端设备的TA(Timing Advance,定时提前量)。
终端设备到卫星的仰角,是指该终端设备与卫星之间的连线与水平面的夹角。示例性地,如图4所示,终端设备41到卫星45的仰角为α,终端设备42到卫星45的仰角为β。终端设备到卫星的仰角能够反映出终端设备和卫星之间的距离。一般来说,终端设备到卫星的仰角越小,说明终端设备和卫星之间的距离越大;反之,终端设备到卫星的仰角越大,说明终端设备和卫星之间的距离越小。示例性地,如图4所示,α>β,L1<L2,其中,L1表示终端设备41与卫星45之间的距离,L2表示终端设备42与卫星45之间的距离。
终端设备到卫星的距离,是指该终端设备与卫星之间的连线的长度。示例性地,如图4所示,L1表示终端设备41与卫星45之间的距离,L2表示终端设备42与卫星45之间的距离,从图中可以看出,L1<L2。
终端设备到卫星的传播时延,可以是单向传播时延,也可以是双向传播时延。其中,单向传播时延可以是信息从终端设备发出,到卫星接收到该信息所经历的时长;或者,单向传播时延也可以是信息从卫星发出,到终端设备接收到该信息所经历的时长。双向传播时延则是信息从终端设备发出到卫星接收到该信息所经历的时长,以及信息从卫星发出到终端设备接收到该信息所经历的时长之和。终端设备到卫星的传播时延能够反映出终端设备和卫星之间的距离。一般来说,终端设备到卫星的传播时延越大,说明终端设备和卫星之间的距离越大;反之,终端设备到卫星的传播时延越小,说明终端设备和卫星之间的距离越小。
终端设备的TA也能够反映出终端设备和卫星之间的距离和/或时延。一般来说,终端设备的TA越大,终端设备和卫星之间的距离和/或时延也就越大;反之,终端设备的TA越小,终端设备和卫星之间的距离和/或时延也就越小。终端设备的TA可以是终端设备当前的实际TA,处于连接态的终端设备可以通过开环和/或闭环控制,获取当前的实际TA。需要说明的是,对于图1所示的透明转发的架构,终端设备的TA实际反映的是终端设备与接入网设备之间的传输时延,但是由于终端设备和接入网设备之间的通信是由卫星进行中转的,因此终端设备的TA也能够从一定程度上反映出终端设备和卫星之间的时延和/或距离。对于图2所示的再生转发的架构,由于没有接入网设备的存在,终端设备的TA实际反映的就是终端设备与卫星之间的传输时延,也即能够反映出终端设备和卫星之间的时延和/或距离。
在一些实施例中,邻区测量启动条件包括以下至少之一:
a)仰角小于或等于第一门限值;示例性地,第一门限值可记为alpha-threshold;
b)距离大于或等于第二门限值;示例性地,第二门限值可记为d-threshold;
c)传播时延大于或等于第三门限值;示例性地,第三门限值可记为t-threshold;
d)TA大于或等于第四门限值;示例性地,第四门限值可记为TA-threshold。
如果终端设备到卫星的仰角小于或等于第一门限值,则说明终端设备与当前的服务小区的卫星之间的距离较大,因此触发终端设备对邻小区启动或执行测量。
如果终端设备到卫星的距离大于或等于第二门限值,则说明终端设备与当前的服务小区的卫星之间的距离较大,因此触发终端设备对邻小区启动或执行测量。
如果终端设备到卫星的传播时延大于或等于第三门限值,则也可以说明终端设备与当前 的服务小区的卫星之间的距离较大,因此触发终端设备对邻小区启动或执行测量。
如果终端设备的TA大于或等于第四门限值,则也可以说明终端设备与当前的服务小区的卫星之间的距离较大,因此触发终端设备对邻小区启动或执行测量。
需要说明的是,第一信息和邻区测量启动条件是相对应的。当第一信息包括终端设备到卫星的仰角时,邻区测量启动条件包括该仰角小于或等于第一门限值;当第一信息包括终端设备到卫星的距离时,邻区测量启动条件包括该距离大于或等于第二门限值;当第一信息包括终端设备到卫星的传播时延时,邻区测量启动条件包括该传播时延大于或等于第三门限值;当第一信息包括终端设备的TA时,邻区测量启动条件包括该TA大于或等于第四门限值。另外,第一信息可以包括上述仰角、距离、传播时延和TA中的任意一项或者任意多项的组合;相应地,邻区测量启动条件也包括上述a)至d)中的任意一项或者任意多项的组合。
在一些实施例中,终端设备根据位置信息确定终端设备的位置,根据服务小区广播的星历信息确定卫星的位置,根据终端设备的位置和卫星的位置,确定以下至少之一:仰角、距离、传播时延。其中,上述位置信息可以是GNSS(Global Navigation Satellite System,全球导航卫星系统)位置信息,或者其他类型的定位信息,本申请对此不作限定。在确定出终端设备的位置和卫星的位置之后,即可计算出终端设备到卫星的距离,也可以根据终端设备到卫星的连线与水平面的夹角确定上述仰角,或者将距离除以光速得到终端设备到卫星的单向传播时延。
在一些实施例中,第二信息包括以下至少之一:
1)测量的启动时刻;
2)测量的结束时刻。
测量的启动时刻是指终端设备对邻小区启动或执行测量的起始时刻,测量的结束时刻是指终端设备对邻小区停止或结束测量的时刻。第二信息可以仅包括测量的启动时刻,也可以仅包括测量的结束时刻,还可以包括测量的启动时刻和结束时刻。
在一些实施例中,如果第二信息包括测量的启动时刻和结束时刻,那么相当于第二信息包括测量的时间窗,该测量的时间窗包括测量的启动时刻和结束时刻,例如该测量的时间窗是从测量的启动时刻开始,到测量的结束时刻为之的时间区间。例如,该测量的时间窗可以表示为[T1,T2],T1表示测量的启动时刻,T2表示测量的结束时刻。
在一些实施例中,邻区测量启动条件包括以下至少之一:
1)当前时刻大于或等于测量的启动时刻;
2)当前时刻小于或等于测量的结束时刻。
如果当前时刻大于或等于测量的启动时刻,则满足邻区测量启动条件,终端设备对邻小区启动或执行测量。
如果当前时刻小于或等于测量的结束时刻,则满足邻区测量启动条件,终端设备对邻小区启动或执行测量。
如果当前时刻大于或等于测量的启动时刻,且当前时刻小于或等于测量的结束时刻,则满足邻区测量启动条件,终端设备对邻小区启动或执行测量。
需要说明的是,第二信息和邻区测量启动条件是相对应的。当第二信息包括测量的启动时刻时,邻区测量启动条件包括当前时刻大于或等于测量的启动时刻;当第二信息包括测量的结束时刻时,邻区测量启动条件包括当前时刻小于或等于测量的结束时刻。
示例性地,如图5中的子图(a)所示,如果第二信息包括测量的启动时刻T0,邻区测量启动条件包括当前时刻大于或等于测量的启动时刻T0,那么在T0时刻之前,终端设备不执行邻区测量,从T0时刻开始,终端设备执行邻区测量。
示例性地,如图5中的子图(b)所示,如果第二信息包括测量的时间窗[T1,T2],邻区测量启动条件包括当前时刻位于上述时间窗之内,那么在T1时刻之前,终端设备不执行邻区测量,从T1时刻开始到T2时刻,终端设备执行邻区测量,然后在T2时刻终端设备结束邻 区测量。
在一些实施例中,测量的启动时刻为:服务小区和距离终端设备最近的邻小区开始有重叠覆盖的时刻;或者,服务小区和目标频点上距离终端设备最近的邻小区开始有重叠覆盖的时刻;或者,服务小区和目标邻小区开始有重叠覆盖的时刻。
如果上述邻区测量启动条件有关的配置信息,是针对每个终端设备配置的,则测量的启动时刻可以是服务小区和距离终端设备最近的邻小区开始有重叠覆盖的时刻。如果上述邻区测量启动条件有关的配置信息,是针对每个频点配置的,则测量的启动时刻可以是服务小区和目标频点上距离终端设备最近的邻小区开始有重叠覆盖的时刻;其中,目标频点可以是任意一个频点。如果上述邻区测量启动条件有关的配置信息,是针对每个邻小区配置的,则测量的启动时刻可以是服务小区和目标邻小区开始有重叠覆盖的时刻;其中,目标邻小区可以是任意一个邻小区。
另外,在本申请实施例中,对终端设备获取当前时刻的方式不作限定,例如终端设备可以通过GNSS或者通过读取SIB(System Information Block,系统信息块)9消息获取当前时刻。
在一些实施例中,终端设备接收服务小区发送的配置信息,该配置信息用于指示与邻区测量启动条件有关的参数。
示例性地,当邻区测量启动条件包括以下至少之一时:a)仰角小于或等于第一门限值;b)距离大于或等于第二门限值;c)传播时延大于或等于第三门限值;d)TA大于或等于第四门限值;相应地,配置信息包括以下至少之一:a)第一门限值;b)第二门限值;c)第三门限值;d)第四门限值。
示例性地,当邻区测量启动条件包括以下至少之一时:1)当前时刻大于或等于测量的启动时刻;2)当前时刻小于或等于测量的结束时刻;相应地,配置信息包括以下至少之一:1)测量的启动时刻;2)测量的结束时刻。
在一些实施例中,上述配置信息是针对每个终端设备配置的,或者针对每个频点配置的,或者针对每个邻小区配置的。也即,配置信息可以结合实际需求,按需进行配置,从而提升邻区测量启动条件配置的灵活性。
在一些实施例中,配置信息通过系统消息发送,或者通过RRC专用信令发送。示例性地,上述系统消息可以是SIB 1消息、SIB 2消息、SIB 19消息等。示例性地,上述RRC专用信令可以是RRC重配置消息。
在一些实施例中,不同类型的邻小区对应相同的邻区测量启动条件。其中,不同类型的邻小区包括以下至少两种:同频邻小区、异频邻小区、异系统邻小区。例如,同频邻小区、异频邻小区和异系统邻小区,对应于同样的邻区测量启动条件。当终端设备满足该邻区测量启动条件时,终端设备对同频邻小区、异频邻小区和异系统邻小区均启动或执行测量。
在一些实施例中,不同类型的邻小区对应不同的邻区测量启动条件。其中,不同类型的邻小区包括以下至少两种:同频邻小区、异频邻小区、异系统邻小区。例如,同频邻小区、异频邻小区和异系统邻小区,分别对应于不同的邻区测量启动条件。当终端设备满足同频邻小区对应的邻区测量启动条件时,终端设备对同频邻小区启动或执行测量。当终端设备满足异频邻小区对应的邻区测量启动条件时,终端设备对异频邻小区启动或执行测量。当终端设备满足异系统邻小区对应的邻区测量启动条件时,终端设备对异系统邻小区启动或执行测量。在这种方式下,可以针对不同类型的邻小区配置不同的邻区测量启动条件,例如根据不同类型邻小区的部署情况,分别设置不同的邻区测量启动条件,从而更具灵活性,且有助于避免终端设备执行一些不必要的邻区测量,节省功耗。
在一些实施例中,若终端设备不满足邻区测量启动条件,则终端设备不执行对邻小区启动或执行测量的步骤,也即终端设备不对邻小区启动或执行测量。
在一些实施例中,本申请实施例提供的邻小区测量方法,适用于终端设备和卫星处于地 球移动小区(earth-moving cell)的场景。
在一些实施例中,本申请实施例提供的邻小区测量方法,适用于终端设备处于空闲态(idle态),或非激活态(inactive态),或连接态(connected态)的情形。
在一些实施例中,如果服务小区的信号质量大于或等于第五门限值,且终端设备满足邻区测量启动条件,则终端设备对邻小区启动或执行测量;或者,如果服务小区的信号质量大于或等于第五门限值,且终端设备不满足邻区测量启动条件,则终端设备不执行对邻小区启动或执行测量的步骤,也即终端设备不对邻小区启动或执行测量。示例性地,上述信号质量可以包括RSRP和/或RSRQ。
示例性地,如果服务小区的RSRP和RSRQ测量结果均大于或等于网络配置的RSRP门限和RSRQ门限;
(1)如果网络配置了上述与邻区测量启动条件有关的参数,并且终端设备支持上述邻区测量启动机制,且终端设备有可用的或有效的位置信息,该位置信息包括用于确定终端设备的位置的信息(如GNSS信息),可选地还包括用于确定卫星的位置的信息(如服务小区提供的星历信息);
(1-1)如果终端设备满足上述邻区测量启动条件,则终端设备对邻小区启动或执行测量;
(1-2)否则(也即,如果终端设备不满足上述邻区测量启动条件),则终端设备不对邻小区启动或执行测量;
(2)否则(也即,网络未配置上述与邻区测量启动条件有关的参数,和/或,终端设备不支持上述邻区测量启动机制,和/或,终端设备没有可用的或有效的位置信息),终端设备可以不对邻小区启动或执行测量;
否则(也即,服务小区的RSRP测量结果小于RSRP门限,和/或,服务小区的RSRQ测量结果小于RSRQ门限),终端设备对邻小区启动或执行测量。
综上所述,本申请实施例提供的技术方案,提供了一种NTN中控制终端设备执行邻区测量的方法,引入了基于终端设备和卫星之间的距离和/或时延和/或测量启动时间的邻区测量启动条件,使得终端设备在即将离开当前服务小区,以及邻小区即将到达时开启邻区测量,进而使得终端设备尽快发现用于小区重选或者切换的目标小区,提升通信可靠性。
下述为本申请装置实施例,可以用于执行本申请方法实施例。对于本申请装置实施例中未披露的细节,请参照本申请方法实施例。
请参考图6,其示出了本申请一个实施例提供的邻小区测量装置的框图。该装置具有实现上述方法示例的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该装置可以是上文介绍的终端设备,也可以设置在终端设备中。如图6所示,该装置600可以包括:测量模块610。
测量模块610,用于若所述终端设备满足邻区测量启动条件,则对邻小区启动或执行测量;其中,所述邻区测量启动条件与第一信息和/或第二信息有关,所述第一信息包括与所述终端设备和卫星之间的距离和/或时延相关的信息,所述第二信息包括与测量启动时间相关的信息。
在一些实施例中,所述第一信息包括以下至少之一:所述终端设备到所述卫星的仰角;所述终端设备到所述卫星的距离;所述终端设备到所述卫星的传播时延;所述终端设备的TA。
在一些实施例中,所述邻区测量启动条件包括以下至少之一:所述仰角小于或等于第一门限值;所述距离大于或等于第二门限值;所述传播时延大于或等于第三门限值;所述TA大于或等于第四门限值。
在一些实施例中,如图6所示,所述装置600还包括确定模块620,用于:根据位置信息确定所述终端设备的位置;根据服务小区广播的星历信息确定所述卫星的位置;根据所述终 端设备的位置和所述卫星的位置,确定以下至少之一:所述仰角、所述距离、所述传播时延。
在一些实施例中,所述第二信息包括以下至少之一:所述测量的启动时刻;所述测量的结束时刻。
在一些实施例中,所述邻区测量启动条件包括以下至少之一:当前时刻大于或等于所述测量的启动时刻;当前时刻小于或等于所述测量的结束时刻。
在一些实施例中,所述测量的启动时刻为:服务小区和距离所述终端设备最近的邻小区开始有重叠覆盖的时刻;或者,服务小区和目标频点上距离所述终端设备最近的邻小区开始有重叠覆盖的时刻;或者,服务小区和目标邻小区开始有重叠覆盖的时刻。
在一些实施例中,如图6所示,所述装置600还包括:接收模块630,用于接收服务小区发送的配置信息,所述配置信息用于指示与所述邻区测量启动条件有关的参数。
在一些实施例中,所述配置信息是针对每个终端设备配置的,或者针对每个频点配置的,或者针对每个邻小区配置的。
在一些实施例中,所述配置信息通过系统消息发送,或者通过RRC专用信令发送。
在一些实施例中,不同类型的邻小区对应相同的所述邻区测量启动条件;或者,不同类型的邻小区对应不同的所述邻区测量启动条件;其中,所述不同类型的邻小区包括以下至少两种:同频邻小区、异频邻小区、异系统邻小区。
在一些实施例中,所述测量模块610,还用于若所述终端设备不满足所述邻区测量启动条件,则不对所述邻小区启动或执行测量。
在一些实施例中,所述测量模块610还用于:如果服务小区的信号质量大于或等于第五门限值,且所述终端设备满足所述邻区测量启动条件,则对所述邻小区启动或执行测量;或者,如果服务小区的信号质量大于或等于第五门限值,且所述终端设备不满足所述邻区测量启动条件,则不对所述邻小区启动或执行测量。
在一些实施例中,所述终端设备和所述卫星处于地球移动小区的场景。
在一些实施例中,所述终端设备处于空闲态,或非激活态,或连接态。
本申请提供了一种NTN中控制终端设备执行邻区测量的方法,引入了基于终端设备和卫星之间的距离和/或时延和/或测量启动时间的邻区测量启动条件,使得终端设备在即将离开当前服务小区,以及邻小区即将到达时开启邻区测量,进而使得终端设备尽快发现用于小区重选或者切换的目标小区,提升通信可靠性。
需要说明的一点是,上述实施例提供的装置在实现其功能时,仅以上述各个功能模块的划分进行举例说明,实际应用中,可以根据实际需要而将上述功能分配由不同的功能模块完成,即将设备的内容结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
请参考图7,其示出了本申请一个实施例提供的终端设备700的结构示意图。该终端设备700可用于执行上述实施例中的方法步骤。该终端设备700可以包括:处理器701、收发器702以及存储器703。
处理器701包括一个或者一个以上处理核心,处理器701通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
收发器702可以包括接收器和发射器,比如,该接收器和发射器可以实现为同一个无线通信组件,该无线通信组件可以包括一块无线通信芯片以及射频天线。
存储器703可以与处理器701以及收发器702相连。
存储器703可用于存储处理器执行的计算机程序,处理器701用于执行该计算机程序,以实现上述方法实施例中的终端设备执行的各个步骤。
此外,存储器703可以由任何类型的易失性或非易失性存储设备或者它们的组合实现, 易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器,可擦除可编程只读存储器,静态随时存取存储器,只读存储器,磁存储器,快闪存储器,可编程只读存储器。
在一些实施例中,所述处理器701,用于若所述终端设备满足邻区测量启动条件,则对邻小区启动或执行测量;其中,所述邻区测量启动条件与第一信息和/或第二信息有关,所述第一信息包括与所述终端设备和卫星之间的距离和/或时延相关的信息,所述第二信息包括与测量启动时间相关的信息。
对于上述实施例中未详细说明的细节,可参见上文方法实施例中的介绍说明,此处不再赘述。
本申请实施例还提供了一种计算机可读存储介质,所述存储介质中存储有计算机程序,所述计算机程序用于被终端设备的处理器执行,以实现上述终端设备侧的邻小区测量方法。
可选地,该计算机可读存储介质可以包括:ROM(Read-Only Memory,只读存储器)、RAM(Random-Access Memory,随机存储器)、SSD(Solid State Drives,固态硬盘)或光盘等。其中,随机存取记忆体可以包括ReRAM(Resistance Random Access Memory,电阻式随机存取记忆体)和DRAM(Dynamic Random Access Memory,动态随机存取存储器)。
本申请实施例还提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片在终端设备上运行时,用于实现上述邻小区测量方法。
本申请实施例还提供了一种计算机程序产品,所述计算机程序产品包括计算机指令,所述计算机指令存储在计算机可读存储介质中,终端设备的处理器从所述计算机可读存储介质读取并执行所述计算机指令,以实现上述邻小区测量方法。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
在本申请一些实施例中,“预定义的”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不作限定。比如预定义的可以是指协议中定义的。
在本申请一些实施例中,所述“协议”可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不作限定。
在本文中提及的“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
另外,本文中描述的步骤编号,仅示例性示出了步骤间的一种可能的执行先后顺序,在一些其它实施例中,上述步骤也可以不按照编号顺序来执行,如两个不同编号的步骤同时执行,或者两个不同编号的步骤按照与图示相反的顺序执行,本申请实施例对此不作限定。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述仅为本申请的示例性实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (34)

  1. 一种邻小区测量方法,其特征在于,所述方法由终端设备执行,所述方法包括:
    若所述终端设备满足邻区测量启动条件,则对邻小区启动或执行测量;
    其中,所述邻区测量启动条件与第一信息和/或第二信息有关,所述第一信息包括与所述终端设备和卫星之间的距离和/或时延相关的信息,所述第二信息包括与测量启动时间相关的信息。
  2. 根据权利要求1所述的方法,其特征在于,所述第一信息包括以下至少之一:
    所述终端设备到所述卫星的仰角;
    所述终端设备到所述卫星的距离;
    所述终端设备到所述卫星的传播时延;
    所述终端设备的定时提前量TA。
  3. 根据权利要求2所述的方法,其特征在于,所述邻区测量启动条件包括以下至少之一:
    所述仰角小于或等于第一门限值;
    所述距离大于或等于第二门限值;
    所述传播时延大于或等于第三门限值;
    所述TA大于或等于第四门限值。
  4. 根据权利要求2或3所述的方法,其特征在于,所述方法还包括:
    根据位置信息确定所述终端设备的位置;
    根据服务小区广播的星历信息确定所述卫星的位置;
    根据所述终端设备的位置和所述卫星的位置,确定以下至少之一:所述仰角、所述距离、所述传播时延。
  5. 根据权利要求1所述的方法,其特征在于,所述第二信息包括以下至少之一:
    所述测量的启动时刻;
    所述测量的结束时刻。
  6. 根据权利要求5所述的方法,其特征在于,所述邻区测量启动条件包括以下至少之一:
    当前时刻大于或等于所述测量的启动时刻;
    当前时刻小于或等于所述测量的结束时刻。
  7. 根据权利要求5或6所述的方法,其特征在于,所述测量的启动时刻为:
    服务小区和距离所述终端设备最近的邻小区开始有重叠覆盖的时刻;或者,
    服务小区和目标频点上距离所述终端设备最近的邻小区开始有重叠覆盖的时刻;或者,
    服务小区和目标邻小区开始有重叠覆盖的时刻。
  8. 根据权利要求1至7任一项所述的方法,其特征在于,所述方法还包括:
    接收服务小区发送的配置信息,所述配置信息用于指示与所述邻区测量启动条件有关的参数。
  9. 根据权利要求8所述的方法,其特征在于,所述配置信息是针对每个终端设备配置的,或者针对每个频点配置的,或者针对每个邻小区配置的。
  10. 根据权利要求8或9所述的方法,其特征在于,所述配置信息通过系统消息发送,或者通过无线资源控制RRC专用信令发送。
  11. 根据权利要求1至10任一项所述的方法,其特征在于,
    不同类型的邻小区对应相同的所述邻区测量启动条件;
    或者,
    不同类型的邻小区对应不同的所述邻区测量启动条件;
    其中,所述不同类型的邻小区包括以下至少两种:同频邻小区、异频邻小区、异系统邻小区。
  12. 根据权利要求1至11任一项所述的方法,其特征在于,所述方法还包括:
    若所述终端设备不满足所述邻区测量启动条件,则不执行所述对邻小区启动或执行测量的步骤。
  13. 根据权利要求1至12任一项所述的方法,其特征在于,所述方法还包括:
    如果服务小区的信号质量大于或等于第五门限值,且所述终端设备满足所述邻区测量启动条件,则执行所述对邻小区启动或执行测量的步骤;
    或者,
    如果服务小区的信号质量大于或等于第五门限值,且所述终端设备不满足所述邻区测量启动条件,则不执行所述对邻小区启动或执行测量的步骤。
  14. 根据权利要求1至13任一项所述的方法,其特征在于,所述终端设备和所述卫星处于地球移动小区的场景。
  15. 根据权利要求1至14任一项所述的方法,其特征在于,所述终端设备处于空闲态,或非激活态,或连接态。
  16. 一种邻小区测量装置,其特征在于,所述装置包括:
    测量模块,用于若所述终端设备满足邻区测量启动条件,则对邻小区启动或执行测量;
    其中,所述邻区测量启动条件与第一信息和/或第二信息有关,所述第一信息包括与所述终端设备和卫星之间的距离和/或时延相关的信息,所述第二信息包括与测量启动时间相关的信息。
  17. 根据权利要求16所述的装置,其特征在于,所述第一信息包括以下至少之一:
    所述终端设备到所述卫星的仰角;
    所述终端设备到所述卫星的距离;
    所述终端设备到所述卫星的传播时延;
    所述终端设备的定时提前量TA。
  18. 根据权利要求17所述的装置,其特征在于,所述邻区测量启动条件包括以下至少之一:
    所述仰角小于或等于第一门限值;
    所述距离大于或等于第二门限值;
    所述传播时延大于或等于第三门限值;
    所述TA大于或等于第四门限值。
  19. 根据权利要求17或18所述的装置,其特征在于,所述装置还包括确定模块,用于:
    根据位置信息确定所述终端设备的位置;
    根据服务小区广播的星历信息确定所述卫星的位置;
    根据所述终端设备的位置和所述卫星的位置,确定以下至少之一:所述仰角、所述距离、所述传播时延。
  20. 根据权利要求16所述的装置,其特征在于,所述第二信息包括以下至少之一:
    所述测量的启动时刻;
    所述测量的结束时刻。
  21. 根据权利要求20所述的装置,其特征在于,所述邻区测量启动条件包括以下至少之一:
    当前时刻大于或等于所述测量的启动时刻;
    当前时刻小于或等于所述测量的结束时刻。
  22. 根据权利要求20或21所述的装置,其特征在于,所述测量的启动时刻为:
    服务小区和距离所述终端设备最近的邻小区开始有重叠覆盖的时刻;或者,
    服务小区和目标频点上距离所述终端设备最近的邻小区开始有重叠覆盖的时刻;或者,
    服务小区和目标邻小区开始有重叠覆盖的时刻。
  23. 根据权利要求16至22任一项所述的装置,其特征在于,所述装置还包括:
    接收模块,用于接收服务小区发送的配置信息,所述配置信息用于指示与所述邻区测量启动条件有关的参数。
  24. 根据权利要求23所述的装置,其特征在于,所述配置信息是针对每个终端设备配置的,或者针对每个频点配置的,或者针对每个邻小区配置的。
  25. 根据权利要求23或24所述的装置,其特征在于,所述配置信息通过系统消息发送,或者通过无线资源控制RRC专用信令发送。
  26. 根据权利要求16至25任一项所述的装置,其特征在于,
    不同类型的邻小区对应相同的所述邻区测量启动条件;
    或者,
    不同类型的邻小区对应不同的所述邻区测量启动条件;
    其中,所述不同类型的邻小区包括以下至少两种:同频邻小区、异频邻小区、异系统邻小区。
  27. 根据权利要求16至26任一项所述的装置,其特征在于,
    所述测量模块,还用于若所述终端设备不满足所述邻区测量启动条件,则不对所述邻小区启动或执行测量。
  28. 根据权利要求16至27任一项所述的装置,其特征在于,所述测量模块还用于:
    如果服务小区的信号质量大于或等于第五门限值,且所述终端设备满足所述邻区测量启动条件,则对所述邻小区启动或执行测量;
    或者,
    如果服务小区的信号质量大于或等于第五门限值,且所述终端设备不满足所述邻区测量启动条件,则不对所述邻小区启动或执行测量。
  29. 根据权利要求16至28任一项所述的装置,其特征在于,所述终端设备和所述卫星处于地球移动小区的场景。
  30. 根据权利要求16至29任一项所述的装置,其特征在于,所述终端设备处于空闲态,或非激活态,或连接态。
  31. 一种终端设备,其特征在于,所述终端设备包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述计算机程序以实现如权利要求1至15任一项所述的方法。
  32. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序,所述计算机程序用于被处理器执行,以实现如权利要求1至15任一项所述的方法。
  33. 一种芯片,其特征在于,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片运行时,用于实现如权利要求1至15任一项所述的方法。
  34. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机指令,所述计算机指令存储在计算机可读存储介质中,处理器从所述计算机可读存储介质读取并执行所述计算机指令,以实现如权利要求1至15任一项所述的方法。
PCT/CN2022/100381 2022-06-22 2022-06-22 邻小区测量方法、装置、设备、存储介质及程序产品 WO2023245486A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/100381 WO2023245486A1 (zh) 2022-06-22 2022-06-22 邻小区测量方法、装置、设备、存储介质及程序产品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/100381 WO2023245486A1 (zh) 2022-06-22 2022-06-22 邻小区测量方法、装置、设备、存储介质及程序产品

Publications (1)

Publication Number Publication Date
WO2023245486A1 true WO2023245486A1 (zh) 2023-12-28

Family

ID=89378752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100381 WO2023245486A1 (zh) 2022-06-22 2022-06-22 邻小区测量方法、装置、设备、存储介质及程序产品

Country Status (1)

Country Link
WO (1) WO2023245486A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117545037A (zh) * 2024-01-08 2024-02-09 广东世炬网络科技有限公司 终端设备运动信息的ntn小区选择方法、装置、设备及介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111866928A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 一种邻区信息配置的方法和装置
WO2022031133A1 (en) * 2020-08-06 2022-02-10 Samsung Electronics Co., Ltd. Signaling and trigger mechanisms for handover
WO2022084960A1 (en) * 2020-10-22 2022-04-28 Telefonaktiebolaget Lm Ericsson (Publ) Enhancements for measurement triggering in non-terrestrial networks
WO2022087792A1 (zh) * 2020-10-26 2022-05-05 Oppo广东移动通信有限公司 Ntn中的测量上报方法、接收方法、装置、设备及介质
US20220150806A1 (en) * 2020-11-12 2022-05-12 Samsung Electronics Co., Ltd. Method and apparatus for efficient neighboring cell search in a wireless communication network

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111866928A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 一种邻区信息配置的方法和装置
WO2022031133A1 (en) * 2020-08-06 2022-02-10 Samsung Electronics Co., Ltd. Signaling and trigger mechanisms for handover
WO2022084960A1 (en) * 2020-10-22 2022-04-28 Telefonaktiebolaget Lm Ericsson (Publ) Enhancements for measurement triggering in non-terrestrial networks
WO2022087792A1 (zh) * 2020-10-26 2022-05-05 Oppo广东移动通信有限公司 Ntn中的测量上报方法、接收方法、装置、设备及介质
US20220150806A1 (en) * 2020-11-12 2022-05-12 Samsung Electronics Co., Ltd. Method and apparatus for efficient neighboring cell search in a wireless communication network

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIAOMI: "Cell selection and reselection enhancements for NTN", 3GPP TSG RAN WG2 #113BIS R2-2103135, 2 April 2021 (2021-04-02), XP052174748 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117545037A (zh) * 2024-01-08 2024-02-09 广东世炬网络科技有限公司 终端设备运动信息的ntn小区选择方法、装置、设备及介质
CN117545037B (zh) * 2024-01-08 2024-05-03 广东世炬网络科技股份有限公司 终端设备运动信息的ntn小区选择方法、装置、设备及介质

Similar Documents

Publication Publication Date Title
US20220110028A1 (en) Method for Cell Handover, Communication Device, and Satellite
US20230345338A1 (en) Cell selection method and apparatus
WO2021147004A1 (zh) 一种小区搜索方法及终端
WO2021159535A1 (zh) 小区重选方法及装置
WO2021027423A1 (zh) 一种通信方法及装置
US20230269617A1 (en) Cell measurement method, electronic device, and storage medium
WO2021022489A1 (zh) 切换控制方法、装置、设备及存储介质
US20230125129A1 (en) Method and apparatus for cell selection, terminal, network device and storage medium
US20240031886A1 (en) Information reporting method and apparatus, equipment and storage medium
WO2023245486A1 (zh) 邻小区测量方法、装置、设备、存储介质及程序产品
WO2021056468A1 (zh) 小区重选的方法及装置
WO2022027232A1 (zh) 无线通信方法和设备
WO2023206517A1 (zh) Ntn中的邻小区测量方法、装置、设备及存储介质
WO2024092639A1 (zh) 用于邻区测量的方法、终端设备和网络设备
WO2023193184A1 (zh) 小区测量方法、装置、设备、存储介质及程序产品
WO2022227079A1 (zh) 无线通信方法、终端设备、网络设备及存储介质
WO2022198544A1 (zh) 无线通信方法、终端设备和网络设备
WO2024016238A1 (zh) 无线通信的方法及装置
WO2023092455A1 (zh) 无线通信方法、第一终端设备和网络设备
WO2024008022A1 (zh) 一种非地面网络的通信方法、装置及系统
WO2023130221A1 (zh) 通信方法、终端设备以及网络设备
WO2023102728A1 (zh) Ntn中调整门限的方法、装置、设备及存储介质
WO2022206557A1 (zh) 一种通信方法及装置
WO2024055316A1 (zh) 参数确定方法及装置
WO2024060072A1 (zh) 通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22947265

Country of ref document: EP

Kind code of ref document: A1