WO2022001764A1 - 一种小区选择方法及装置 - Google Patents

一种小区选择方法及装置 Download PDF

Info

Publication number
WO2022001764A1
WO2022001764A1 PCT/CN2021/101659 CN2021101659W WO2022001764A1 WO 2022001764 A1 WO2022001764 A1 WO 2022001764A1 CN 2021101659 W CN2021101659 W CN 2021101659W WO 2022001764 A1 WO2022001764 A1 WO 2022001764A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
polarization
priority information
cells
measurement
Prior art date
Application number
PCT/CN2021/101659
Other languages
English (en)
French (fr)
Inventor
乔云飞
王晓鲁
李榕
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112022027050A priority Critical patent/BR112022027050A2/pt
Priority to KR1020237003314A priority patent/KR20230029950A/ko
Priority to EP21832348.3A priority patent/EP4171126A4/en
Priority to JP2022581479A priority patent/JP2023531807A/ja
Publication of WO2022001764A1 publication Critical patent/WO2022001764A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0072Transmission or use of information for re-establishing the radio link of resource information of target access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • H04W36/083Reselecting an access point wherein at least one of the access points is a moving node
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/302Reselection being triggered by specific parameters by measured or perceived connection quality data due to low signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a cell selection method and device.
  • Satellite communications and other non-terrestrial networks have significant advantages such as global coverage, long-distance transmission, flexible networking, convenient deployment, and freedom from geographical conditions.
  • a mobile terminal provides services. Since traditional terrestrial networks cannot provide seamless coverage, especially in places where base stations cannot be deployed such as seas, deserts, and air, non-terrestrial networks are introduced into communication networks such as the fifth generation (5G) system.
  • Base stations or some base station functions are deployed on high-altitude platforms or satellites to provide seamless coverage for terminal equipment, and high-altitude platforms or satellites are less affected by natural disasters, which can improve the reliability of the 5G system.
  • satellites cover the ground through different beams to form satellite cells.
  • a terminal device can be covered by multiple satellite cells.
  • the terminal device needs to reside in a certain cell through cell selection or cell reselection. in a neighborhood.
  • the traditional satellite inter-cell reselection mechanism is basically the same as the cell selection or cell reselection mechanism of the 5G network
  • the embodiments of the present application provide a method and apparatus for cell selection, so as to ensure that a terminal device determines a more suitable camping cell, realizes load balancing, and thus ensures better communication effect.
  • the present application provides a cell selection method, which may include: a communication device acquiring polarization priority information of one or more cells; Multiple cells perform cell measurement; the camped cell is determined according to the measurement results of one or more cells.
  • the communication device performs cell measurement according to the acquired polarization priority information of the cell to determine the camping cell, that is, the polarization priority is considered in the cell selection or reselection decision.
  • the dimension of polarization direction is added, and the existing cell selection strategy is optimized, which can ensure that the communication device determines a more suitable camping cell.
  • the cell measurement conditions include one or more of the following: the communication device is in an initial access state or a connected state; or, there is a neighboring cell whose cell priority is higher than the serving cell of the communication device ; the serving cell of the communication device satisfies the cell measurement start threshold.
  • the initial access state refers to the state in which the communication device has just turned on and has not yet camped on the cell; when the communication device is in an idle state or an inactive state, the cell measurement condition is related to the cell priority of the neighboring cell and the signal quality of the current serving cell ; When the communication device is in the connected state, the terminal continues to measure.
  • the cell measurement is performed according to the polarization priority information, including: the polarization priority information is used to indicate priorities of two polarization directions corresponding to the cell; information, select the polarization direction with high priority for cell measurement.
  • the communication device After acquiring the polarization priority information, the communication device obtains the measurement result by performing cell measurement in the polarization direction with high priority. It should be pointed out that the polarization priority information of a cell is determined by the load and power consumption in different polarization directions in the cell. Different polarizations can be achieved by selecting the polarization direction with high priority and selecting the camping cell. Load balancing in the direction.
  • determining a cell to camp on according to measurement results of one or more cells includes: the communication apparatus acquires a set of cell measurement parameters of the one or more cells; and according to the one or more cells The measurement result of the cell and the set of cell measurement parameters of one or more cells determine the cell to camp on.
  • the cell measurement parameter set includes parameters such as the R criterion calculation parameter, the threshold of high cell priority, and the threshold of low cell priority.
  • the cell measurement parameter set is determined by the cell according to the cell load, consumption, throughput rate, and the like.
  • the measurement result of the cell is related to the polarization priority, and the polarization priority is determined according to the load and consumption of different polarization directions in the cell. Combining the cell measurement result and the cell measurement parameter set to determine the camping cell, a more suitable camping cell and polarization direction can be selected from different neighboring cells to achieve load balancing.
  • determining the camping cell according to the measurement results of one or more cells and the set of cell measurement parameters of the one or more cells includes: according to the measurement results of each of the one or more cells , and the cell measurement parameter set corresponding to each cell to obtain the R value of each cell; and determining the camping cell according to the size of the R value of the one or more cells.
  • the R criterion is used to determine the camping cell.
  • the neighboring cell with better communication quality than the current serving cell can be selected as the camping cell.
  • the R value of the camping cell is greater than or equal to the R value of the serving cell.
  • the terminal can camp on the cell with higher signal reception power and/or signal quality, thereby providing communication quality.
  • selecting the camping cell according to the R value of the one or more cells includes: selecting the cell with the highest R value as the camping cell.
  • the cell with the highest R value is selected as the camping cell, which enables the terminal to camp in a more suitable cell and ensures load balance in different polarization directions.
  • the communication device obtains the polarization priority information of one or more cells from a broadcast message; or the communication device obtains the polarization priority information of one or more cells from a unicast message. Specifically, when the communication device is in an idle state or an inactive state, the polarization priority information is obtained from a broadcast message; when the communication device is in a connected state, the polarization priority information is obtained from a unicast message, that is, a UE-specific message. priority information.
  • the polarization priority information is carried in the system message block SIB.
  • parameters such as cell priority information and cell measurement parameter set are carried in the SIB and sent to the communication device by broadcasting. Therefore, carrying the polarization priority information in the SIB is easy to be compatible with existing protocols.
  • the existing signaling can be simply modified.
  • the polarization priority information is used to indicate a polarization direction with a high priority.
  • the polarization priority information includes an identifier corresponding to left-handed polarization or an identifier corresponding to right-handed polarization.
  • the system message carries cellReselectionRHCPPriority or other identifiers corresponding to RHCP.
  • cellReselectionRHCPPriority For example, network equipment and communication devices can pre-agreed to use "1" to represent RHCP and carry "1". Through the above method, only one bit can be used to represent the polarization priority, which can save bit overhead.
  • the present application provides a cell selection method, including: a network device sending a first message to a communication device, where the first message includes polarization priority information, where the polarization priority information is used to satisfy cell measurement conditions When , the cell is measured to obtain a cell measurement result, and the cell measurement result is used to select a camping cell of the communication device.
  • the network device sends a broadcast message carrying polarization priority information to the communication apparatus.
  • the communication device is made to perform a small measurement according to the polarization priority information to determine the camping cell, that is, the dimension of the polarization direction is added to the cell selection or reselection strategy, the existing cell selection strategy is optimized, and the communication can be guaranteed.
  • the device determines a more suitable cell to camp on.
  • the polarization priority information is used for cell measurement to obtain a cell measurement result, specifically including: the polarization priority information is used to indicate the priorities of two polarization directions corresponding to the cell, wherein the higher priority is The polarization direction is used for cell measurement.
  • the polarization priority information of a cell is determined by the load, power consumption, etc. in different polarization directions in the cell. Different polarization directions can be selected according to the selection of the polarization direction with high priority for cell measurement and the selection of the camping cell. Load balancing in the polarization direction.
  • the first message further includes a cell measurement parameter set; the cell measurement parameter set is used to determine the camping cell of the terminal device together with the cell measurement result.
  • the cell measurement parameter set includes parameters such as the R criterion calculation parameter, the threshold of high cell priority, and the threshold of low cell priority.
  • the cell measurement parameter set is determined by the cell according to the cell load, consumption, throughput rate, and the like.
  • the measurement result of the cell is related to the polarization priority, and the polarization priority is determined according to the load and consumption of different polarization directions in the cell. Combining the cell measurement result and the cell measurement parameter set to determine the camping cell, a more suitable camping cell and polarization direction can be selected from different neighboring cells to achieve load balancing.
  • the cell measurement parameter set is used to determine the camping cell of the terminal device together with the cell measurement result, including: the cell measurement parameter set and the cell measurement result are specifically used to obtain an R value, the R value Used to select a camping cell for a communication device.
  • the R criterion is used to determine the camping cell, and the larger the R value is, the higher the signal quality in the cell is.
  • the first message is a broadcast message; or the first message is a unicast message.
  • the first message sent by the network device is a broadcast message; when the terminal is in a connected state, the first message sent by the network device is a unicast message, that is, user-specific (UE-specific) information.
  • UE-specific user-specific
  • the polarization priority information is carried in the system message block SIB.
  • parameters such as cell priority information and cell measurement parameter set are carried in the SIB and sent to the communication device by broadcasting. Therefore, carrying the polarization priority information in the SIB is easy to be compatible with existing protocols.
  • the existing signaling can be simply modified.
  • the polarization priority information is used to indicate a polarization direction with a high priority.
  • the polarization priority information includes an identifier corresponding to left-handed polarization or an identifier corresponding to right-handed polarization.
  • the system message carries cellReselectionLHCPPriority or other identifiers corresponding to LHCP.
  • cellReselectionLHCPPriority For example, network equipment and communication devices can pre-agreed to use "0" to represent LHCP, and carry "0". Through the above method, only one bit can be used to represent the polarization priority, which can save bit overhead.
  • an embodiment of the present application further provides a communication device, which can be used for the communication device described in the first aspect, and the communication device can be a terminal device, or a device in a terminal device (for example, a chip , or a chip system, or a circuit), or a device that can be used with the terminal equipment.
  • the communication device may include modules or units corresponding to one-to-one execution of the methods/operations/steps/actions described in the first aspect, and the modules or units may be hardware circuits, software, or It can be implemented by hardware circuit combined with software.
  • the communication device may include a processing unit and a transceiver unit. The processing unit may be used to call the transceiver unit to perform the function of receiving and/or sending. Exemplarily:
  • a transceiver unit configured to acquire polarization priority information of one or more cells
  • a processing unit configured to perform cell measurement on the one or more cells according to the polarization priority information when a cell measurement condition is met, and determining the camping cell according to the measurement results of the one or more cells.
  • the cell measurement conditions include one or more of the following: the communication device is in an initial access state or a connected state; or, there is a neighboring cell whose cell priority is higher than the serving cell of the communication device ; or the serving cell of the communication device satisfies the cell measurement start threshold;.
  • the processing unit is configured to perform cell measurement according to the polarization priority information, including: the polarization priority information is used to indicate priorities of two polarization directions corresponding to the cell, and the processing unit specifically uses Then, according to the polarization priority information, a polarization direction with a high priority is selected to perform cell measurement.
  • the processing unit is configured to determine the cell to camp on according to the measurement results of the one or more cells, including: the processing unit is further configured to acquire cell measurement parameters of the one or more cells and determining a cell to camp on according to measurement results of the one or more cells and a set of cell measurement parameters of the one or more cells.
  • the processing unit is configured to determine the camping cell according to the measurement results of the one or more cells and the set of cell measurement parameters of the one or more cells, including: the processing unit is specifically configured to: Obtain the R value of each cell according to the measurement result of each cell in one or more cells and the cell measurement parameter set corresponding to each cell; and according to the size of the R value of the one or more cells Determine the camping cell.
  • the R value of the camping cell is greater than or equal to the R value of the serving cell.
  • the processing unit is configured to select the camping cell according to the size of the R value of the one or more cells, including: the processing unit is specifically configured to select the cell with the highest R value as the camping cell.
  • the processing unit acquires polarization priority information of one or more cells from a broadcast message; or the processing unit acquires polarization priority information of one or more cells from a unicast message.
  • the polarization priority information is carried in the system message block SIB.
  • the polarization priority information is used to indicate a polarization direction with a high priority.
  • the polarization priority information includes an identifier corresponding to left-handed polarization or an identifier corresponding to right-handed polarization.
  • an embodiment of the present application further provides a communication device, which can be used for the network device described in the second aspect, and the communication device can be a network device or a device in a network device (for example, a chip , or a chip system, or a circuit), or a device that can be used with network equipment.
  • the communication device may include modules or units corresponding to one-to-one execution of the methods/operations/steps/actions described in the second aspect, and the modules or units may be hardware circuits, software, or It can be implemented by hardware circuit combined with software.
  • the communication device may include a processing unit and a transceiver unit. The processing unit is used for calling the transceiver unit to perform the function of receiving and/or sending. Exemplarily:
  • a processing unit configured to determine polarization priority information
  • a transceiver unit configured to send a first message to the communication device, where the first message includes polarization priority information; the polarization priority information is used to meet cell measurement conditions when When , the cell is measured to obtain a cell measurement result; the cell measurement result is used to select a camping cell of the communication device.
  • the polarization priority information is used for cell measurement to obtain a cell measurement result, which specifically includes: the polarization priority information is used to indicate priorities of two polarization directions corresponding to the cell; High polarization directions are used for cell measurements.
  • the first message further includes a set of cell measurement parameters; the set of cell measurement parameters is used to determine the cell where the terminal device resides together with the cell measurement result.
  • the cell measurement parameter set is used to determine the camping cell of the terminal device together with the cell measurement result, including: the cell measurement parameter set and the cell measurement result are specifically used to obtain the R value; The R value is used to select a camping cell of the terminal device.
  • the first message is a broadcast message; or the first message is a unicast message.
  • the polarization priority information is carried in the system message block SIB.
  • the polarization priority information is used to indicate a polarization direction with a high priority.
  • the polarization priority information includes an identifier corresponding to left-handed polarization or an identifier corresponding to right-handed polarization. logo.
  • an embodiment of the present application also provides a communication device, including a processor, configured to execute a computer program or executable instruction stored in a memory, when the computer program or executable instruction is executed, the device is made to perform as described in Section 1.
  • a communication device including a processor, configured to execute a computer program or executable instruction stored in a memory, when the computer program or executable instruction is executed, the device is made to perform as described in Section 1.
  • processor and the memory are integrated;
  • the memory is located outside the communication device.
  • the communication device also includes a communication interface for the communication device to communicate with other devices, such as the transmission or reception of data and/or signals.
  • the communication interface may be a transceiver, circuit, bus, module, or other type of communication interface.
  • an embodiment of the present application further provides a communication device, comprising a processor for executing a computer program or executable instruction stored in a memory, and when the computer program or executable instruction is executed, the device is made to The second aspect and the method in each possible implementation of the second aspect.
  • processor and the memory are integrated;
  • the memory is located outside the communication device.
  • the communication device also includes a communication interface for the communication device to communicate with other devices, such as the transmission or reception of data and/or signals.
  • the communication interface may be a transceiver, circuit, bus, module, or other type of communication interface.
  • an embodiment of the present application further provides a communication device, including an input and output interface and a logic circuit.
  • Input and output interfaces are used for input or output of signals or data.
  • the input-output interface is specifically used for acquiring polarization priority information of one or more cells; the input-output interface is also used for outputting measurement results of the one or more cells.
  • a logic circuit is configured to perform the method of the above-described first aspect and any of its possible implementations to determine a camping cell.
  • an embodiment of the present application further provides a communication device, including an input and output interface and a logic circuit.
  • the logic circuit is configured to perform the method in the second aspect and any possible implementation thereof to determine a first message, where the first message carries polarization priority information.
  • the input and output interface is used for outputting a first message, where the first message includes polarization priority information.
  • the input and output interfaces are also used to obtain cell measurement results.
  • an embodiment of the present application further provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, wherein the computer program is executed by a processor, so that the first aspect and any one of the above-mentioned first aspect and Some or all of the steps of the methods described in this possible implementation, the second aspect, and any possible implementation thereof are performed.
  • the embodiments of the present application further provide a computer program product including executable instructions, when the computer program product is run on a user equipment, the above-mentioned first aspect and any possible implementation thereof, the third Some or all of the steps of the method described in the second aspect and any possible implementation thereof are performed.
  • an embodiment of the present application further provides a chip system, where the chip system includes a processor, and may also include a memory, for implementing the first aspect and any possible implementation thereof, the second aspect and any possible implementation thereof.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • FIG. 1 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a diagram of an application scenario provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a cell selection method provided by an embodiment of the present application.
  • FIG. 4A is a schematic diagram of signaling including polarization priorities in a system message SIB2 provided by an embodiment of the present application.
  • FIG. 4B is a schematic diagram of signaling including polarization priorities in a system message SIB3 provided by an embodiment of the present application.
  • FIG. 4C is a schematic diagram of signaling including polarization priorities in a system message SIB4 provided by an embodiment of the present application.
  • FIG. 5 is an interactive schematic diagram of a cell selection method provided by an embodiment of the present application.
  • FIG. 6 is an interactive schematic diagram of a cell handover method provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a communication apparatus provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another communication apparatus provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another communication apparatus provided by an embodiment of the present application.
  • the embodiments of the present application provide a method and apparatus for cell selection, so as to optimize an existing cell selection/cell reselection strategy and determine a more suitable camping cell.
  • the method and the device are conceived according to the same application. Since the principles of the method and the device for solving problems are similar, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • any embodiments or designs described in the embodiments of the present application as “exemplary” or “such as” should not be construed as preferred or advantageous over other embodiments or designs. Rather, the use of words such as “exemplary” or “such as” is intended to present the related concepts in a specific manner.
  • the meaning of "plurality" refers to two or more. For example, multiple processing units refers to two or more processing units; multiple systems refers to two or more systems.
  • non-terrestrial network non-terrestrial network
  • HAPS high altitude platform station
  • Satellite communication systems can be integrated with traditional mobile communication systems.
  • the mobile communication system may be a fourth generation (4th generation, 4G) communication system, such as a long term evolution (LTE) system, a worldwide interoperability for microwave access (WiMAX) communication system , 5th generation (5th generation, 5G) communication systems, for example, new radio (new radio, NR) systems, and future mobile communication systems.
  • 4G fourth generation
  • LTE long term evolution
  • WiMAX worldwide interoperability for microwave access
  • 5th generation, 5G 5th generation
  • new radio new radio
  • FIG. 1 is an example of a communication system applicable to this embodiment of the present application.
  • the access point uses multiple beams to cover the service area, and different beams can communicate through one or more of time division, frequency division, and space division.
  • the access point is not limited to a satellite base station or a terrestrial base station. Access points can be deployed on high-altitude platforms or satellites.
  • the satellite may be a non-geostationary earth orbit (NGEO) satellite or a geostationary earth orbit (GEO) satellite.
  • NGEO non-geostationary earth orbit
  • GEO geostationary earth orbit
  • the satellite mentioned in the embodiments of this application may also be a satellite base station, or a network side device mounted on the satellite.
  • the access point can be an evolved base station (evolutional Node B, eNB or eNodeB) in LTE; or a base station in a 5G network or a future evolved public land mobile network (public land mobile network, PLMN), a broadband network service gateway (broadband network service gateway). network gateway, BNG), an aggregation switch, or a non-3rd generation partnership project (3GPP) access device, etc., which are not specifically limited in this embodiment of the present application.
  • eNB evolved Node B
  • eNodeB evolved public land mobile network
  • PLMN public land mobile network
  • BNG broadband network service gateway
  • 3GPP non-3rd generation partnership project
  • the base station in this embodiment of the present application may include various forms of base station, for example: a macro base station, a micro base station (also referred to as a small cell), a relay station, an access point, a next-generation base station (gNodeB, gNB), a transmission point (transmitting and receiving point, TRP), transmitting point (transmitting point, TP), mobile switching center and device-to-device (Device-to-Device, D2D), vehicle outreach (vehicle-to-everything, V2X), machine A device that undertakes the function of a base station in machine-to-machine (M2M) communication, etc., is not specifically limited in this embodiment of the present application.
  • M2M machine-to-machine
  • the access point can communicate and interact with core network equipment to provide communication services to terminal equipment.
  • the core network device is, for example, a device in a 5G network core network (core network, CN).
  • core network CN
  • the core network provides an interface to the data network, and provides communication connection, authentication, management, policy control, and bearer of data services for user equipment (UE).
  • CN may further include: access and mobility management network element (Access and Mobility Management Function, AMF), session management network element (Session Management Function, SMF), authentication server network element (Authentication Server Function, AUSF), policy Control node (Policy control Function, PCF), user plane function network element (User Plane Function, UPF) and other network elements.
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • SMF authentication server network element
  • Policy control Function Policy control Function
  • PCF user plane function network element
  • UPF User Plane Function
  • the communication devices mentioned in the embodiments of the present application may be terminal devices, including various handheld devices, vehicle-mounted devices, wearable devices, computing devices, or other processing devices connected to wireless modems with wireless communication functions, and may specifically refer to the user equipment (user equipment, UE), access terminal, subscriber unit (subscriber unit), subscriber station, mobile station, mobile station (mobile station), remote station, remote terminal, mobile equipment, user terminal (terminal equipment), terminal, A wireless communication device, user agent or user equipment.
  • user equipment user equipment
  • UE access terminal
  • subscriber unit subscriber unit
  • subscriber station mobile station
  • mobile station mobile station
  • remote station remote terminal
  • mobile equipment user terminal
  • terminal devices including various handheld devices, vehicle-mounted devices, wearable devices, computing devices, or other processing devices connected to wireless modems with wireless communication functions, and may specifically refer to the user equipment (user equipment, UE), access terminal, subscriber unit (subscriber unit), subscriber station, mobile station, mobile station (mobile station), remote station, remote terminal, mobile equipment, user terminal (terminal equipment
  • the terminal device may also be a satellite phone, cellular phone, smartphone, wireless data card, wireless modem, machine type communication device, may be a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop loop, WLL) station, personal digital assistant (PDA), handheld device with wireless communication capabilities, computing device or other processing device connected to a wireless modem, in-vehicle device or wearable device, virtual reality (virtual reality, VR) terminal equipment, augmented reality (AR) terminal equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, Wireless terminal in smart grid, wireless terminal in transportation safety, wireless terminal in smart city, wireless terminal in smart home, 5G network or future communication network
  • the terminal equipment etc. in this application are not limited.
  • FIG. 2 shows an application scenario applicable to the embodiment of the present application, specifically a network application architecture in which each member of 3GPP integrates satellite communication and 5G technology.
  • the application architecture is not intended to limit the present application.
  • the communication methods provided in the embodiments of the present application can also be applied to scenarios in which other terrestrial communication systems are integrated with satellite communication.
  • the ground mobile terminal is connected to the network through the 5G new air interface, and the satellite acts as a 5G base station and is connected to the ground core network through a wireless link. At the same time, there is a wireless link between satellites to complete signaling interaction and user data transmission between base stations.
  • the various network elements in Figure 2 and their interfaces are described as follows:
  • Terminal device A mobile device that supports 5G new air interface, which can access the satellite network through the air interface and initiate calls, Internet access and other services. For example, it may be various terminal devices as described above, which will not be repeated here.
  • 5G base station It mainly provides wireless access services, dispatches wireless resources to access terminals, and provides reliable wireless transmission protocols and data encryption protocols.
  • 5G core network user access control, mobility management, session management, user security authentication, billing and other services. It consists of multiple functional units, which can be divided into functional entities of the control plane and the data plane.
  • the Access and Mobility Management Unit AMF is responsible for user access management, security authentication, and mobility management.
  • the User Plane Unit UPF is responsible for the management of user plane data transmission, traffic statistics, security eavesdropping and other functions.
  • Ground station responsible for forwarding signaling and business data between the satellite base station and the 5G core network.
  • 5G New Air Interface The wireless link between the terminal and the base station.
  • Xn interface The interface between the 5G base station and the base station is mainly used for signaling interaction such as handover.
  • NG interface The interface between the 5G base station and the 5G core network, which mainly exchanges signaling such as non-access stratum (NAS) signaling of the core network, as well as user service data.
  • NAS non-access stratum
  • the cell selection and cell reselection mechanisms of the traditional terrestrial network are first introduced.
  • the terminal device After the terminal device is powered on, it first selects a suitable PLMN, and performs cell selection on the PLMN.
  • Cell selection is divided into two types: initial cell selection and selection based on stored cell information.
  • Cell selection is divided into four steps: frequency sweep, cell search, system message solution and camping.
  • the frequency sweep is performed first and then the cell search is performed, that is, the terminal scans all radio frequency wireless channels according to the NR frequency band supported by itself, and searches for the strongest cell on each frequency point.
  • the selection based on the stored cell information is to perform cell search directly according to the stored frequency point information.
  • the terminal device obtains the cell with the best coverage through the cell search, and synchronizes the cell to obtain the physical cell identifier; after the cell search is completed, the terminal device reads the cell system message, measures the signal strength and signal quality of the cell, and determines whether the cell is Satisfy the residency conditions.
  • the cell camping condition is judged by the S criterion.
  • S value of cell selection is Srxlev>0 and Squal>0, camping is allowed.
  • Qrxlevmeas is the reference signal received power (reference signal received power, RSRP) value of the measurement cell;
  • Qrxlevmin is the minimum RSRP reception strength requirement in the cell, which is obtained from the broadcast message
  • Qrxlevminoffset is the offset value of the minimum access level value to prevent ping-pong reselection
  • Qoffsettemp is a temporary offset value, which is notified in system broadcast.
  • the terminal device performs cell reselection in an idle state or an inactive state.
  • the cell reselection is divided into the following steps: (1) according to the measurement start condition, measure the current serving cell and the neighboring cell; (2) judge whether the neighboring cell conforms to the reselection criterion; (3) start the reselection and receive the system of the new cell If there is no reception restriction, it will stay in the new cell; if not, it will stay in the current serving cell.
  • the cell measurement start condition is related to the cell priority and the signal quality of the current serving cell. As shown in Table 1, cell reselection scenarios can be divided into intra-frequency cell reselection and inter-frequency/inter-system cell reselection.
  • intra-frequency cell reselection when the S value of the serving cell is less than or equal to a given threshold S_intrasearch (intra-frequency measurement threshold), intra-frequency measurement needs to be enabled, otherwise the UE can choose to disable measurement.
  • S_intrasearch intra-frequency measurement threshold
  • intra-frequency measurement needs to be enabled, otherwise the UE can choose to disable measurement.
  • the UE in an actual network, in order to save energy, the UE usually turns off measurement when S>S_intrasearch.
  • the terminal sorts the candidate cells based on the R criterion, and selects the optimal cell to camp on.
  • the R criterion is to calculate an R (Rank) value for each neighboring cell and the current serving cell according to the signal quality of the cell, and then sort according to the size of the R value. If the R value is greater than the current serving cell, it satisfies the reselection criteria. If so, choose the best one. If the TreselectionRAT is continuously exceeded, the R criterion is always met, and the terminal camps on the current serving cell for more than 1 s, the reselection to the cell is started. Wherein TreselectionRAT represents the time interval of cell reselection.
  • the R value of the current serving cell can be calculated by the following formula:
  • the R value of the neighborhood can be calculated by the following formula:
  • Qmeas,s is the signal quality of the current serving cell, obtained through cell measurement, and may be the RSRP value of the serving cell
  • Qmeas,n is the signal quality of the neighboring cell, obtained through cell measurement, and may be the RSRP value of the neighboring cell.
  • Q hyst is the reselection hysteresis value of the current serving cell, obtained from the system, the larger the value, the larger the boundary of the serving cell, the more difficult it is to re-selection to the neighboring cell
  • Qoffset is the R criterion calculation parameter, obtained from the system message , the value is Qoffset cell during intra-frequency reselection, and Qoffset Cell + Qoffset Freq during inter-frequency reselection
  • Qoffsettemp is also a calculation parameter for the R criterion, obtained from system messages.
  • Q hyst, Qoffset, Qoffsettemp other calculation parameters R criterion values are greater than or equal to zero.
  • the inter-frequency/inter-system cell reselection needs to be differentiated according to the priority.
  • the terminal needs to continuously measure and reselect to the cell when the S value of the high-priority cell is greater than the corresponding threshold; for the same or low-priority cell, when the S value of the serving cell is greater than the given value
  • the threshold is S_nonintrasearch (inter-frequency/inter-system measurement threshold)
  • the intra-frequency measurement needs to be enabled, otherwise the UE can choose to disable the measurement.
  • the terminal selects the optimal cell for camping on the basis of cell reselection criteria corresponding to different priority relationships.
  • the S value of the serving cell in the TreselectionRAT is less than the preset threshold (Thresh Serving, LowQ or Thresh Serving, LowP ), and the S value of the low-priority cell is greater than the preset threshold (Thresh X, LowQ or Thresh X, LowP ) ), and the terminal resides in the current serving cell for more than 1 s, it starts reselection to this cell.
  • satellite communication often uses polarization multiplexing, such as Left Hand Circularly Polarized (LHCP) or Right Hand Circularly Polarized (RHCP), or horizontal polarization.
  • LHCP Left Hand Circularly Polarized
  • RHCP Right Hand Circularly Polarized
  • Polarization or vertical polarization, or other orthogonal polarizations different satellite cells use different polarization methods for signal transmission, so as to achieve the purpose of improving spectral efficiency.
  • the loading may be different for different polarization directions of the same satellite.
  • the present application introduces the polarization multiplexing method in the cell in the NTN, which increases the physical dimension of cell selection, and realizes an optimized cell selection strategy by indicating the polarization direction.
  • the cell selection and cell reselection strategies provided in the embodiments of the present application also consider the dimension of polarization direction, which can comprehensively determine a more suitable camping cell, and ensure that different polarization directions load balancing.
  • FIG. 3 is a schematic flowchart of a cell selection and cell reselection strategy provided by an embodiment of the present application.
  • the network device broadcasts the polarization priority information for the user to refer to the polarization direction when making a decision on cell selection or cell reselection, so as to comprehensively determine a more suitable camping cell.
  • the communication device described in this application may be the aforementioned various types of terminals, and the following description takes the terminal as an example.
  • the terminal obtains polarization priority information.
  • the polarization priority information is used to indicate priorities of two or more polarization directions corresponding to the cell.
  • the network device sends a first message to the terminal, where the first message carries polarization priority information, and correspondingly, the terminal receives the first message sent by the network device.
  • the first message is a broadcast message; or the first message is a unicast message.
  • the first message when the terminal is in an idle state (idle) and an inactive state (inactive), the first message may be a broadcast message; when the terminal is in a connected state (connected), the first message may be a unicast message.
  • the network device sends the polarization priority information of one or more cells through the first message, and the terminal receives the first message sent by the network device, and obtains the polarization priority information from the first message.
  • the polarization priority information of one or more cells delivered by the network device may include polarization priority information of the current cell and polarization priority information of neighboring cells. Possibly, the polarization priority information is bound with the cell identity.
  • the polarization priority information can be carried in the system message block SIB.
  • SIB2 contains cell reselection information related to the serving cell
  • SIB3 contains information about the serving frequency and co-frequency adjacent cells related to cell reselection
  • SIB4 Contains information about other NR frequencies and inter-frequency neighbor cells related to cell reselection.
  • the cellReselectionServingFreqInfo sub-item of the cell reselection serving frequency information in SIB2 can also carry priorities of two polarization directions.
  • the priorities corresponding to left-hand circular polarization and right-hand circular polarization use the cellReselectionLHCPPriority field respectively.
  • cellReselectionRHCPPriority field indication (the part marked by the dotted box in the figure).
  • the IntraFreqCellReselectionInfo sub-item of the intra-frequency cell reselection information in SIB3 can carry the priorities of two polarization directions.
  • the priorities corresponding to the left-hand circular polarization and the right-hand circular polarization use the cellReselectionLHCPPriority field and cellReselectionRHCPPriority respectively.
  • Field indication (the part marked by the dotted box in the figure).
  • the sub-item of the inter-frequency carrier frequency information InterFreqCarrierFreqInfo in SIB4 can carry priorities of two polarization directions.
  • the priorities corresponding to the left-hand circular polarization and the right-hand circular polarization use the cellReselectionLHCPPriority field and cellReselectionRHCPPriority respectively.
  • Field indication (the part marked by the dotted box in the figure).
  • the system message carries the polarization priority information corresponding to the LHCP and the RHCP at the same time, and the polarization direction with a higher value is the polarization direction with a higher priority.
  • cellReselectionLHCPPriority 0
  • cellReselectionRHCPPriority 1
  • RHCP is a polarization direction with a higher priority.
  • the polarization priority information is used to indicate a polarization direction with a high priority.
  • the polarization priority information includes an identifier corresponding to left-handed polarization or an identifier corresponding to right-handed polarization.
  • the system message carries cellReselectionRHCPPriority or other identifiers corresponding to RHCPs, but does not carry identifiers corresponding to other polarization directions.
  • the network device and the terminal may pre-agreed to use "1" to represent RHCP and "0" to represent LHCP. If the priority corresponding to RHCP is higher, the value of the bit corresponding to the polarization priority is 1.
  • the value of the bit corresponding to the polarization priority is 0; "1" may also be used to represent LHCP, and "0" may be used to represent LHCP, which is not limited in this application. In this possible implementation, only one bit can be used to represent the polarization priority, which can reduce bit overhead.
  • the polarization priority information of a cell is determined by the load and power consumption in different polarization directions in the cell, and different manufacturers can use different algorithms to determine the cell priority. For example, if the load in the LHCP direction of a cell is large and the load in the RHCP direction is small, the RHCP with the smaller load is used as the polarization direction of high priority, so as to achieve load balance.
  • the terminal selects a polarization direction with a high polarization priority on the measurement port to perform cell measurement according to the polarization priority information obtained from the first message.
  • the terminal selects a polarization direction with a higher polarization priority of each cell in the one or more cells to perform cell measurement according to the polarization priority information of one or more cells obtained from the first message. , to obtain cell measurement results of one or more cells.
  • the cell measurement conditions include one or more of the following: the terminal is in an initial access state or a connected state; or there is a neighboring cell whose cell priority is higher than the current serving cell of the terminal; or the serving cell of the terminal satisfies the cell measurement start threshold.
  • the initial access state refers to the state in which the terminal has just powered on and has not yet camped on the cell.
  • the terminal performs a cell search by frequency sweeping or based on the stored cell information, obtains the cell with the best coverage, and synchronizes the cell to obtain the physical cell identifier; after the cell search is completed, the terminal device decodes the cell system information and obtains the cell's polar code.
  • the polarization priority information and other parameters related to cell selection are obtained, and cell measurement is performed according to the polarization priority information.
  • the cell measurement is continuously performed, and the measurement result is reported to the network device periodically or the measurement result is reported to the network device under the condition of event triggering.
  • the cell priority information can be obtained from the system message SIB delivered by the current serving cell.
  • the cell priority information may be represented by cellReselectionPriority carried in the SIB message, and the value ranges from an integer of 0 to 7. The larger the parameter value, the higher the cell priority.
  • Cell priority may be determined by cell load, power consumption, and the like. Possibly, different manufacturers may use different algorithms to determine the cell priority, which is not limited in this application.
  • the terminal When the terminal is in an idle state and the cell priority of the neighboring cell is equal to or lower than the current serving cell, and if the current serving cell satisfies the cell measurement start threshold, cell measurement is performed. For example, for an intra-frequency cell, when the S value of the current serving cell is less than or equal to the intra-frequency measurement threshold (S_IntraSearch), the terminal performs cell measurement according to the polarization priority information; for an inter-frequency or inter-system cell, the current serving cell When the value of S is less than or equal to the inter-frequency measurement threshold (S_nonIntraSearch), the terminal performs cell measurement according to the polarization priority information.
  • S_IntraSearch intra-frequency measurement threshold
  • S_nonIntraSearch the terminal performs cell measurement according to the polarization priority information.
  • the terminal for an intra-frequency cell, when the S value of the current serving cell is less than the intra-frequency measurement threshold (S_IntraSearch), the terminal performs cell measurement according to the polarization priority information, and when the S value of the current serving cell is equal to S_IntraSearch, The terminal does not perform cell measurement according to; for inter-frequency or inter-system cells, when the S value of the current serving cell is less than the inter-frequency measurement threshold (S_nonIntraSearch), the terminal performs cell measurement according to the polarization priority information, and the current serving cell The S value is equal to No cell measurement is performed during S_nonIntraSearch.
  • S_IntraSearch intra-frequency measurement threshold
  • the first message sent by the network device also carries the cell measurement parameter set.
  • the cell measurement parameter set includes parameters such as R criterion calculation parameters, a preset S value threshold for high-priority cells, and a preset S-value threshold for low-priority cells.
  • the R criterion calculation parameters include: the current serving cell reselection hysteresis value Q Hyst , the offset value Q offset , the temporary offset value Q offsettemp , etc.; the preset thresholds for the S value of the high-priority cell include: Thresh X, HighQ and/or Thresh X, HighP ; the preset threshold for the S value of the low-priority cell includes: Thresh X, LowQ and/or ThreshX, LowP.
  • the terminal determines the camping cell according to the cell measurement result and the cell measurement parameter set.
  • the terminal acquires the cell measurement parameter set of one or more cells, and determines the camping cell according to the cell measurement result of the one or more cells and the cell measurement parameter set.
  • the terminal obtains the R value of each cell according to the measurement result of each cell in one or more cells and the set of cell measurement parameters corresponding to each cell; and
  • the camping cell is determined according to the size of the R value of one or more cells.
  • the signal quality of the current serving cell of the current R value of the serving cell may be obtained according to the measuring cell Q meas, s current serving cell and cell reselection parameters contained in the set values of the hysteresis Q hyst R criterion and parameters calculated to give Qoffsettemp ;
  • the R value of the neighboring cell can be obtained by calculating the parameters Qoffset and Qoffsettemp according to the signal quality Qmeas,n of the neighboring cell obtained through cell measurement and the R criterion included in the cell parameter set.
  • the terminal determines the camping cell according to the size of the R value of one or more cells, wherein the R value of the camping cell is greater than or equal to the R value of the current serving cell, which specifically includes: the terminal selects the first R value greater than or equal to the current serving cell.
  • the neighboring cell with the R value is used as the camping cell; or the terminal selects the cell with the largest R value as the camping cell; or the terminal selects the cell with the largest RSRP as the camping cell from the neighboring cells whose R value is greater than the R value of the current serving cell.
  • the neighboring cell when the R value of the neighboring cell is equal to the R value of the current serving cell, the neighboring cell is determined as the camping cell.
  • the terminal can camp in a neighboring cell in advance to reduce subsequent cell handovers caused by satellite movement.
  • the terminal when the R value of the neighboring cell is equal to the R value of the current serving cell, the terminal continues to camp on the current serving cell. In this possible implementation, the terminal does not change the current camping cell, which can reduce the number of handovers of the camping cell and avoid frequent cell reselection.
  • the terminal obtains the S value of each cell according to the measurement results of one or more cells and the cell measurement parameter set corresponding to each cell; and compares the S value with the cell measurement parameter set
  • the high cell priority cell in the high cell is compared with a preset threshold to determine the camping cell.
  • the S value of the camped cell should be greater than the preset threshold. Specifically, when there are multiple cells with the S value greater than the preset threshold, the cell with the largest S value is selected as the camping cell. Possibly, the S value of the camping cell may be equal to the preset threshold of the high cell priority cell.
  • the S value may be Srxlev and/or Squal.
  • Comparing the S value with the preset threshold of the high-priority cell in the cell measurement parameter set specifically includes: comparing Srxlev with the thresholds Thresh X, HighQ included in the cell measurement parameter set, and/or comparing Squal with the cell The threshold values Thresh X, HighP contained in the measurement parameter set are compared.
  • the terminal obtains the S value of each cell according to the measurement results of one or more cells and the cell measurement parameter set corresponding to each cell; and compares the S value with the cell measurement parameter set
  • the low cell priority in the preset threshold is compared to determine the camping cell. Specifically, when the S value of the serving cell is less than the preset threshold, and the S value of the neighboring cell is greater than the preset threshold of the low cell priority cell, the neighboring cell is used as the camping cell. When there are multiple cells whose S value is greater than the preset threshold, the cell with the largest S value is selected as the camping cell. Possibly, the S value of the camping cell may be equal to the preset threshold of the low cell priority cell.
  • the S value may be Srxlev and/or Squal.
  • Srxlev and Squal For the specific calculation method of Srxlev and Squal, please refer to the foregoing description, which will not be repeated here.
  • Comparing the S value with the preset threshold of the low cell priority cell in the cell measurement parameter set specifically includes: comparing Srxlev with the threshold values Thresh X, LowQ included in the cell measurement parameter set, and/or, comparing Squal with The threshold values Thresh X, LowP included in the cell measurement parameter set are compared.
  • the terminal obtains the polarization priority information delivered by the network, and selects the polarization direction with high priority to perform cell measurement according to the polarization priority information to determine the cell to camp on.
  • the network ensures that the terminal comprehensively selects a more suitable camping cell in combination with different polarization directions, so as to achieve load balancing in different polarization directions.
  • FIG. 5 is an interaction diagram of a cell selection and cell reselection strategy provided by an embodiment of the present application.
  • the network device delivers different cell measurement parameter sets, and the terminal calculates corresponding thresholds according to the cell measurement parameter sets corresponding to each polarization direction, and makes a comprehensive decision based on the cell measurement results. More suitable camping cell and its polarization direction.
  • a network device broadcasts a system message, and correspondingly, a terminal receives the system message broadcast by the network device.
  • the system message includes cell measurement parameter sets corresponding to different polarization directions.
  • the cell measurement parameter sets corresponding to different polarization directions include parameters such as R criterion calculation parameters corresponding to different polarization directions, preset S value thresholds for high-priority cells, and preset S-value thresholds for low-priority cells.
  • the cell measurement parameter sets corresponding to different polarization directions may also include other parameters, which are not limited in this application.
  • the R criterion is used to determine the camping cell. For details, please refer to the above, which will not be repeated here.
  • the S value may be Srxlev and/or Squal. Please refer to the above for the specific calculation method of Srxlev and Squal, and will not be repeated here.
  • the R criterion calculation parameters include: a current serving cell reselection hysteresis value Q Hyst , an offset value Qoffset, a temporary offset value Qoffsettemp, and the like.
  • the R-criteria calculation parameters corresponding to LHCP may be respectively expressed as: Q Hyst_LHCP , Qoffset_LHCP and Qoffsettemp_LHCP ; the R-criteria calculation parameters corresponding to RHCP may be expressed as: Q Hyst_RHCP , Qoffset_RHCP and Qoffsettemp_RHCP , respectively .
  • the preset threshold of the high cell priority S value includes: Thresh X,HighQ and/or Thresh X,HighP .
  • the preset threshold of the high cell priority cell S value corresponding to LHCP can be expressed as: Thresh X_LHCP,HighQ and/or Thresh X_LHCP,HighP ;
  • the preset high cell priority S value threshold corresponding to RHCP can be expressed as: Thresh X_RHCP, HighQ and/or Thresh X_RHCP, HighP .
  • the preset threshold of the low cell priority S value includes: Thresh X, LowQ and/or Thresh X, LowP .
  • the preset threshold of the low cell priority S value corresponding to LHCP may be expressed as: Thresh X_LHCP,LowQ and/or Thresh X_LHCP,LowP ;
  • the preset threshold of the low cell priority S value corresponding to RHCP may be expressed as: Thresh X_RHCP ,LowQ and/or Thresh X_RHCP,LowP .
  • various parameters corresponding to different polarization directions may also be expressed in other manners, which are not limited in this application.
  • the cell priority information can be obtained from the system message SIB delivered by the current serving cell.
  • the cell priority information may be represented by cellReselectionPriority carried in the SIB message, and the value ranges from an integer of 0 to 7. The larger the parameter value, the higher the cell priority.
  • Cell priority may be determined by cell load, power consumption, and the like. Possibly, different manufacturers may use different algorithms to determine the cell priority, which is not limited in this application.
  • the network device broadcasts a set of measurement parameters corresponding to different polarization directions of each cell in one or more cells, and correspondingly, the terminal receives the one or more cells broadcast by the network device. set of measurement parameters.
  • the cell measurement parameters corresponding to different polarization directions of the cell are determined by the load and power consumption in the different polarization directions in the cell, and different manufacturers can use different algorithms to determine the cell priority. For example, if the load in the LHCP direction of a cell is large and the load in the RHCP direction is small, the offset value corresponding to the LHCP direction can be increased, such as: Qoffset _LHCP , Qoffsettemp _LHCP , and the corresponding offset value of the RHCP direction can be decreased. , such as Qoffset _RHCP , Qoffsettemp _RHCP , so as to achieve load balancing in different polarization directions.
  • the cell measurement conditions include one or more of the following: the terminal is in an initial access state or a connected state; or there is a neighboring cell whose cell priority is higher than the current serving cell of the terminal; or the serving cell of the communication device satisfies the cell measurement start threshold .
  • the terminal is in an initial access state or a connected state; or there is a neighboring cell whose cell priority is higher than the current serving cell of the terminal; or the serving cell of the communication device satisfies the cell measurement start threshold .
  • the terminal When the cell measurement conditions are met, the terminal performs cell measurement and obtains a cell measurement result.
  • the terminal measures one or more cells, and obtains measurement results corresponding to the one or more cells.
  • the terminal After obtaining the cell measurement result, the terminal determines the camping cell according to the measurement result and the set of cell measurement parameters corresponding to different polarization directions obtained from the broadcast message. Specifically, the terminal calculates thresholds corresponding to different polarization directions according to the cell measurement results and the cell measurement parameter sets corresponding to each polarization direction, and determines the camped cell and the polarization direction according to the thresholds.
  • the terminal acquires a set of measurement parameters corresponding to different polarization directions of each cell in one or more cells, and obtains a set of measurement parameters corresponding to different polarization directions of each cell in one or more cells and the one or more Based on the measurement results of each cell in the multiple cells, the camped cell and the corresponding polarization direction are determined.
  • the terminal obtains each cell according to the measurement result of each cell in one or more cells and the cell measurement parameter sets corresponding to the different polarization directions of each cell.
  • R value of the cell and determining the camping cell and the corresponding polarization direction according to the magnitudes of the R values in different polarization directions of one or more cells.
  • two R values corresponding to LHCP and RHCP are obtained for each cell, and the R value of the serving cell is compared with the R value of the neighboring cell with the higher R value in the polarization direction when the R criterion is used to determine the camping cell. Determine the camping cell.
  • the R value in the LHCP direction of the current serving cell can be calculated according to the signal quality Q meas,s of the current serving cell obtained by cell measurement and the reselection hysteresis value Q Hyst_LHCP and R criteria corresponding to the LHCP direction of the current serving cell contained in the cell parameter set
  • the parameter Qoffsettemp _LHCP is obtained;
  • the R value corresponding to LHCP of neighboring cells can be obtained according to the signal quality Q meas,n of neighboring cells obtained through cell measurement and the R criterion calculation parameters Qoffset _LH
  • the R value of the camping cell should be greater than or equal to the R value of the current serving cell.
  • the terminal selects the cell with the largest R value as the camping cell, and uses the polarization direction corresponding to the cell measurement parameter used to obtain the R value as the polarization direction of the camping cell; or the terminal starts from the R value greater than or equal to the current Select the cell with the largest RSRP in the neighboring cells of the R value of the serving cell as the camping cell, and use the polarization direction corresponding to the cell measurement parameters used to obtain the R value as the polarization direction of the camping cell; or the terminal selects the first cell.
  • the neighboring cell whose R value is greater than the R value of the current serving cell is regarded as the camping cell, and the polarization direction corresponding to the cell measurement parameters used to obtain the R value is taken as the polarization direction of the camping cell. If the two R values corresponding to the neighboring cell whose value is greater than the R value of the current serving cell are both greater than the R value of the serving cell, the polarization direction corresponding to the higher R value is used as the polarization direction of the camping cell.
  • the neighboring cell when the R value of the neighboring cell is equal to the R value of the current serving cell, the neighboring cell is determined as the camping cell, and the polarization direction corresponding to the R value is used as the polarization direction of the camping cell; In another possible implementation, when the R value of the neighboring cell is equal to the R value of the current serving cell, the terminal continues to camp on the current serving cell.
  • the terminal obtains the S value corresponding to the different polarization direction of each cell according to the measurement results of one or more cells and the cell measurement parameter set corresponding to the different polarization direction of each cell; and The S value is compared with preset thresholds corresponding to different polarization directions of high-priority cells in the cell measurement parameter set to determine the camping cell.
  • the S value of the camped cell should be greater than the preset threshold. Specifically, when there are multiple cells with the S value greater than the preset threshold, the cell with the largest S value is selected as the camping cell. Possibly, the S value of the camping cell may be equal to the preset threshold.
  • Srxlev and Squal For the specific calculation methods of Srxlev and Squal, please refer to the foregoing description, which will not be repeated here.
  • Comparing the S value with the high-priority cell preset threshold in the cell measurement parameter set specifically includes: comparing the Srxlev corresponding to the LHCP with the threshold values Thresh X_LHCP, HighQ corresponding to the LHCP included in the cell measurement parameter set, and/ Or, compare Squal with the threshold values Thresh X_LHCP, HighP included in the cell measurement parameter set; compare the Srxlev corresponding to the RHCP with the threshold value Thresh X_RHCP, HighQ corresponding to the RHCP included in the cell measurement parameter set, and/ Or, compare Squal with the threshold value Thresh X_RHCP, HighP included in the cell measurement parameter set.
  • the terminal obtains the S value corresponding to the different polarization direction of each cell according to the measurement results of one or more cells and the cell measurement parameter set corresponding to the different polarization direction of each cell; and The S value is compared with preset thresholds corresponding to different polarization directions in the cell measurement parameter set to determine the camping cell. Specifically, when the S value of the serving cell is less than the preset threshold, and the S value of the neighboring cell is greater than the preset threshold of the low cell priority cell, the neighboring cell is used as the camping cell. When there are multiple cells whose S value is greater than the preset threshold, the cell with the largest S value is selected as the camping cell. When the S value of the neighbor cell is equal to the preset threshold of the low cell priority cell, the neighbor cell can be used as the camping cell, or the cell can continue to camp on the current serving cell.
  • the S value is compared with the preset thresholds of low-cell priority cells corresponding to different polarization directions to determine the camping cell.
  • the S value may be Srxlev and/or Squal. For the specific calculation methods of Srxlev and Squal, please refer to the foregoing, and will not be repeated here.
  • Comparing the S value with the preset threshold of the low cell priority cell in the cell measurement parameter set specifically includes: comparing the Srxlev corresponding to the LHCP with the thresholds Thresh X_LHCP, LowQ included in the cell measurement parameter set, and/or, Compare the Squal corresponding to the LHCP with the low cell priority preset thresholds Thresh X_LHCP, LowP included in the cell measurement parameter set; compare the Srxlev corresponding to the RHCP with the thresholds Thresh X_RHCP, LowQ included in the cell measurement parameter set Compare and/or compare the Squal corresponding to the RHCP with the low cell priority preset threshold Thresh X_RHCP, LowP included in the cell measurement parameter set.
  • the network device delivers different cell measurement parameter values for different polarization directions, which affects the determination of a more suitable camping cell and polarization direction when the terminal performs cell selection or reselection , to achieve load balancing in different polarization directions.
  • FIG. 6 is an interactive schematic diagram of a cell handover method provided by an embodiment of the present application.
  • the source network device sends the indication information of the polarization direction of the target cell to the terminal, so that the terminal decides to access and camp on the designated polarization direction of the target cell according to the instruction, so as to realize different polarization directions load balancing on.
  • the first network device (such as the source gNB in FIG. 6 ) sends measurement control information to the terminal, and correspondingly, the terminal receives the measurement control information delivered by the first network device.
  • the measurement control information is used to indicate the related configuration of measurement control.
  • the measurement control information is a unicast message, that is, a user-specific (UE-specific) message.
  • the measurement control information includes polarization priority information.
  • the polarization priority information includes polarization priority information corresponding to LHCP and RHCP, and the values of the priority information corresponding to different polarization directions are different. It is possible that a higher value indicates a higher priority. , or if the value is low, the priority is low;
  • the polarization priority information is used to indicate a polarization direction with a high priority.
  • the polarization priority information includes an identifier corresponding to LHCP or an identifier corresponding to RHCP; or, network devices and terminals It can be pre-agreed to use "1" to represent RHCP, and "0" to represent LHCP. If the priority corresponding to RHCP is higher, the value of the bit corresponding to the polarization priority is 1. If the priority corresponding to LHCP is higher, it is extremely high. The value on the bit corresponding to the priority is 0; "1" may also be used to represent LHCP, and "0" may be used to represent LHCP, which is not limited in this application.
  • the network device sends the measurement control information through RRC signaling, for example, sends the measurement control information through an RRC connection reconfiguration (RRC Connection Reconfiguration) message.
  • RRC connection reconfiguration RRC Connection Reconfiguration
  • the terminal After acquiring the measurement control information, the terminal performs cell measurement according to the relevant configuration indicated by the measurement control information. Including, the terminal performs cell measurement in the polarization direction with high polarization priority.
  • the terminal performs cell measurement, specifically, the terminal measures the RSRP, reference signal received quality (RSRQ) or signal to interference plus noise ratio (SINR) of the cell and neighboring cells.
  • RSRP reference signal received quality
  • SINR signal to interference plus noise ratio
  • the terminal When the measurement reporting condition is satisfied, the terminal reports the measurement result to the first network device through the event, and correspondingly, the first network device receives the measurement result.
  • the measurement report conditions are the same as those in the prior art, and are not repeated here.
  • the first network device performs evaluation according to the measurement result reported by the terminal, and decides whether to trigger the handover.
  • a handover request is sent to the second network device (such as the target gNB in FIG. 6 ), and correspondingly, the second network device receives the handover request sent by the first network device.
  • the second network device performs admission control and radio resource configuration after receiving the handover request.
  • the second network device After completing the admission and wireless resource configuration, the second network device feeds back a handover request confirmation message to the first network device, and correspondingly, the first network device receives the handover request confirmation message sent by the second network device.
  • the first network device triggers the handover after receiving the handover request confirmation message sent by the second network device.
  • the first network device sends a handover instruction to the terminal, and correspondingly, the terminal receives the handover instruction sent by the first network device.
  • the handover instruction includes information related to the terminal accessing the second network device.
  • the handover instruction includes indication information of the polarization direction of the terminal accessing the target cell.
  • the terminal determines that it should access and camp on the specified polarization direction of the target cell during cell handover. For example, if the indication information indicates LHCP, the terminal accesses and camps on the left-handed circular polarization direction of the target cell; if the indication information indicates RHCP, the terminal accesses and camps on the left-handed circularly polarized direction of the target cell. in the direction of change.
  • the polarization direction indicated in the handover instruction is determined by the load and power consumption of the target cell in different polarization directions.
  • the indication information is carried in the RRC message.
  • the indication information may also be carried in other user-specific (UE-Specific) messages, which is not limited in this application.
  • the handover instruction also includes the identity of the target cell, the cell wireless network temporary identifier (Cell Access Radio Network Temporary Identifier, C-RNTI) of the terminal, random access resources, etc.
  • the handover instruction may also include other information, which is not described in this application. limit.
  • the cell handover is performed, and the specific process is similar to the existing cell handover process.
  • the terminal is separated from the source cell and establishes synchronization with the target cell;
  • the first network device delivers user data to the second network device, and the user data includes both cached user data and user data in transmission;
  • the second network device caches user data;
  • the terminal establishes synchronization with the target cell and completes the handover process.
  • the measurement control information delivered by the network device carries polarization priority information, and/or indicates the polarization direction of the target cell to the terminal during the cell handover process, achieving the effect of different load balancing.
  • the dimension of polarization direction is added to the cell selection strategy, the physical dimension of cell selection is increased, the existing cell selection and re-strategies are optimized, and the It is ensured that the terminal determines a more suitable camping cell.
  • the terminal equipment and the network equipment may include hardware structures and/or software modules, and the above-mentioned various functions are implemented in the form of hardware structures, software modules, or hardware structures plus software modules.
  • the terminal equipment and the network equipment may include hardware structures and/or software modules, and the above-mentioned various functions are implemented in the form of hardware structures, software modules, or hardware structures plus software modules.
  • Features. Whether one of the above functions is performed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • an embodiment of the present application further provides a communication apparatus 700 .
  • the communication apparatus 700 may be a terminal device or a network device, or a device in a terminal device or a network device, or a device that can be matched and used with the terminal device or the network device.
  • the communication device 700 may include modules or units that perform one-to-one correspondence with the methods/operations/steps/actions performed by the terminal in the above method embodiments, and the units may be hardware circuits, software, or It can be implemented by hardware circuit combined with software.
  • the communication apparatus 700 may include a processing unit 710 and a transceiver unit 720 .
  • the processing unit 710 may be configured to call the transceiver unit 720 to perform functions of receiving and/or sending.
  • the transceiver unit 720 is used to acquire polarization priority information of one or more cells, and the processing unit 710 is used to, when the cell measurement condition is satisfied, according to the polarization priority information
  • the cell measurement is performed on the one or more cells according to the priority information, and a camping cell is determined according to the measurement results of the one or more cells.
  • the processing unit 710 is used to determine the polarization priority information; the transceiver unit 720 is used to send a first message to the terminal, where the first message includes the polarization priority information, the polarization priority information is used to measure a cell to obtain a cell measurement result when the cell measurement condition is met; the cell measurement result is used to select a camping cell of the communication device.
  • the transceiver unit 720 is further configured to perform other receiving or sending steps or operations performed by the terminal and the network device in the foregoing method embodiments.
  • the processing unit 710 may also be configured to perform other corresponding steps or operations other than sending and receiving performed by the terminal and the network device in the foregoing method embodiments, which will not be repeated here.
  • each functional module or unit in each embodiment of the present application may be integrated in the A processor may also exist physically alone, or two or more modules or units may be integrated into one module or unit.
  • the above-mentioned integrated modules or units may be implemented in the form of hardware, or may be implemented in the form of software function modules.
  • an embodiment of the present application further provides a communication apparatus 800 for implementing the functions of a terminal device and a network device in the above method.
  • the communication device may be a terminal device, a network device, or a device in a terminal device or a network device, or a device that can be matched and used with the terminal device or the network device.
  • the communication apparatus 800 may be a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the communication apparatus 800 includes at least one processor 810, configured to implement the functions of the terminal device and the network device in the methods provided in the embodiments of the present application.
  • the communication apparatus 800 may also include a communication interface 820 .
  • the communication interface may be a transceiver, a circuit, a bus, a module or other types of communication interfaces, which are used to communicate with other devices through a transmission medium.
  • the communication interface 820 is used for the apparatus in the communication apparatus 800 to communicate with other devices.
  • the processor 810 may perform the functions performed by the processing unit 710 in the communication apparatus 700 ; the communication interface 820 may be used for performing the functions performed by the transceiver unit 720 in the communication apparatus 700 .
  • the communication interface 820 is used to obtain the polarization priority information of one or more cells; the processor 810 is used to, when the cell measurement condition is satisfied, according to the polarization
  • the priority information performs cell measurement on the one or more cells, and determines a camping cell according to the measurement results of the one or more cells.
  • the processor 810 is used to determine the polarization priority information; the communication interface 820 is used to send a first message to the terminal, where the first message includes the polarization priority level information, and the polarization priority information is used to measure a cell to obtain a cell measurement result when the cell measurement condition is satisfied; the cell measurement result is used to select a camping cell of the communication device.
  • the communication interface 820 is further configured to perform other receiving or sending steps or operations performed by the terminal and the network device in the above method embodiments.
  • the processor 810 may also be configured to perform other corresponding steps or operations other than sending and receiving performed by the terminal and network device in the foregoing method embodiments, which will not be repeated here.
  • Communication apparatus 800 may also include at least one memory 830 for storing program instructions and/or data.
  • Memory 830 is coupled to processor 810 .
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • Processor 820 may cooperate with memory 830 .
  • Processor 810 may execute program instructions stored in memory 830 .
  • at least one of the at least one memory may be integrated with the processor.
  • the memory 830 is located outside the communication device 800 .
  • the specific connection medium between the communication interface 820 , the processor 810 , and the memory 830 is not limited in the embodiments of the present application.
  • the memory 830, the processor 810, and the communication interface 820 are connected through a bus 840 in FIG. 8.
  • the bus is represented by a thick line in FIG. 8, and the connection between other components is only for schematic illustration. , is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of presentation, only one thick line is used in FIG. 8, but it does not mean that there is only one bus or one type of bus.
  • the processor 810 may be one or more central processing units (Central Processing Unit, CPU).
  • CPU Central Processing Unit
  • the processor 810 may be a single-core CPU or a multi-core CPU .
  • the processor 810 may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, and may implement or execute the embodiments of the present application.
  • a general purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the memory 830 may include, but is not limited to, a non-volatile memory such as a hard disk drive (HDD) or a solid-state drive (SSD), a random access memory (Random Access Memory, RAM) , Erasable Programmable Read-Only Memory (Erasable Programmable ROM, EPROM), Read-Only Memory (Read-Only Memory, ROM) or Portable Read-Only Memory (Compact Disc Read-Only Memory, CD-ROM) and so on.
  • Memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in this embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, for storing program instructions and/or data.
  • the memory 820 is used for related instructions and data.
  • an embodiment of the present application further provides an apparatus 900 that can be used to implement the functions of terminal equipment and network equipment in the above method, and the apparatus 900 may be a communication apparatus or a chip in the communication apparatus.
  • the communication device includes:
  • the input-output interface 910 may be an input-output circuit.
  • the logic circuit 920 can be a signal processor, a chip, or other integrated circuits that can implement the method of the present application.
  • At least one input and output interface 910 is used for input or output of signals or data.
  • the input/output interface 910 is used to obtain a first message, where the first message carries polarization priority information and/or a cell measurement parameter set.
  • the input/output interface 910 may also be used to output the cell measurement result to report the measurement result to the first network device.
  • the input/output interface 910 is configured to send a first message to the terminal, where the message carries polarization priority information and/or a cell measurement parameter set.
  • the input/output interface 910 may also be used to obtain the cell measurement result reported by the terminal.
  • the logic circuit 920 is configured to execute part or all of the steps of any one of the methods provided in the embodiments of the present application.
  • the logic circuit may implement the functions implemented by the processing unit 710 in the above apparatus 700 and the processor 810 in the apparatus 800 .
  • the terminal device chip When the above communication device is a chip applied to a terminal device, the terminal device chip implements the functions of the terminal device in the above method embodiments.
  • the terminal device chip receives information from other modules (such as a radio frequency module or an antenna) in the terminal device, and the information is sent by the network device to the terminal device; or, the terminal device chip sends information to other modules (such as a radio frequency module or an antenna) in the terminal device antenna) to send information, the information is sent by the terminal equipment to the network equipment.
  • modules such as a radio frequency module or an antenna
  • the network device chip When the above communication device is a chip applied to a network device, the network device chip implements the functions of the network device in the above method embodiments.
  • the network device chip receives information from other modules (such as a radio frequency module or an antenna) in the network device, and the information is sent by the terminal device to the network device; or, the network device chip sends information to other modules in the network device (such as a radio frequency module or an antenna). antenna) to send information, the information is sent by the network equipment to the terminal equipment.
  • modules such as a radio frequency module or an antenna
  • the embodiments of the present application further provide a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and the computer program is executed by hardware (for example, a processor, etc.) to Part or all of the steps of any method executed by any device in the embodiments of the present application are implemented.
  • hardware for example, a processor, etc.
  • the embodiments of the present application also provide a computer program product including instructions, when the computer program product runs on a computer, the computer is made to perform any one of the above aspects. some or all of the steps of the method.
  • the present application further provides a chip or a chip system, where the chip may include a processor.
  • the chip may also include a memory (or a storage module) and/or a transceiver (or a communication module), or the chip may be coupled with a memory (or a storage module) and/or a transceiver (or a communication module), wherein the transceiver (or or communication module) can be used to support the chip to perform wired and/or wireless communication, the memory (or storage module) can be used to store a program, and the processor can call the program to implement any one of the above method embodiments and method embodiments.
  • the chip system may include the above chips, or may include the above chips and other discrete devices, such as memories (or storage modules) and/or transceivers (or communication modules).
  • the present application further provides a communication system, which may include the above terminals and/or network devices.
  • the communication system can be used to implement the operations performed by the terminal or the network device in the foregoing method embodiments and any possible implementation manners of the method embodiments.
  • the communication system may have the structure shown in FIG. 1 or FIG. 2 .
  • the above-described embodiments may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented in software, it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes an integration of one or more available media.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, optical disks), or semiconductor media (eg, solid state drives), and the like.
  • magnetic media eg, floppy disks, hard disks, magnetic tapes
  • optical media eg, optical disks
  • semiconductor media eg, solid state drives
  • the disclosed apparatus may also be implemented in other manners.
  • the device embodiments described above are only illustrative, for example, the division of the units is only a logical function division, and there may be other division methods in actual implementation, for example, multiple units or components may be combined or integrated to another system, or some features can be ignored or not implemented.
  • the indirect coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical or other forms.
  • the unit described as a separate component may or may not be physically separated, and the component displayed as a unit may or may not be a physical unit, that is, it may be located in one place, or may be distributed to multiple network units. . Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art, or all or part of the technical solution, and the computer software product is stored in a storage medium.
  • a computer device which may be a personal computer, a server, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

本申请实施例提供小区选择的方法及装置。该方法包括:通信装置获取一个或多个小区的极化优先级信息,在满足小区测量条件时,根据获取的极化优先级信息对所述一个或多个小区进行小区测量,并根据所述一个或多个小区的测量结果确定驻留小区。本申请提供的技术方案,通过在小区选择中加入极化方向的维度,优化了现有的小区选择策略,能保证终端确定更合适的驻留小区。

Description

一种小区选择方法及装置
本申请要求于2020年7月3日提交中国国家知识产权局,申请号为202010631577.8,发明名称为“一种小区选择方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种小区选择方法及装置。
背景技术
卫星通信等非地面通信网络(non-terrestrial networks,NTN)具有全球覆盖、远距离传输、组网灵活、部署方便和不受地理条件限制等显著优点,其既可为固定终端,也可为各种移动终端提供服务。由于传统地面网络不能提供无缝覆盖,特别是在大海、沙漠、空中等无法部署基站的地方,非陆地网络被引入第五代移动通信(fifth generation,5G)系统等通信网络中,它通过将基站或者部分基站功能部署在高空平台或者卫星上为终端设备提供无缝覆盖,并且高空平台或者卫星受自然灾害影响较小,能提升5G系统的可靠性。
基于卫星部署的非陆地网络中,卫星通过不同波束覆盖地面,形成卫星小区,同一时刻某一终端设备可以被多个卫星小区覆盖,此时终端设备需要通过小区选择或小区重选驻留到某个小区中。
但是大量测试和实践发现,基于传统卫星小区选择或重选机制(其中,传统卫星小区间重选机制与5G网络的小区选择或小区重选机制基本相同),终端设备很多时候难以驻留到合适的小区。
发明内容
本申请实施例提供一种小区选择的方法及装置,以保障终端设备确定更合适的驻留小区,实现负载均衡,从而保证更好的通信效果。
第一方面,本申请提供一种小区选择方法,可包括:通信装置获取一个或多个小区的极化优先级信息;在满足小区测量条件时,根据该极化优先级信息对所述一个或多个小区进行小区测量;根据一个或多个小区的测量结果确定驻留小区。
本申请第一方面提供的小区选择方法中,通信装置根据获取的小区的极化优先级信息进行小区测量,以确定驻留小区,即在小区选择或重选决策时考虑了极化优先级,加入了极化方向的维度,优化了现有的小区选择策略,能保证通信设备确定更合适的驻留小区。
在一种可能的实现中,小区测量条件包括以下一种或多种:该通信装置处于初始接入状态或连接态;或者,存在小区优先级高于所述通信装置的服务小区的相邻小区;该通信装置的服务小区满足小区测量启动门限。
其中,初始接入状态是指通信装置刚开机尚未驻留到小区的状态;当通信装置处于空闲态或者非活动态时,小区测量条件与邻小区的小区优先级以及当前服务小区的信号质量相关;当通信装置处于连接态时,终端持续进行测量。
在一种可能的实现中,根据所述极化优先级信息进行小区测量,包括:极化优先级信息用于指示小区对应的两种极化方向的优先级;通信装置根据该极化优先级信息,选择优先级高的极化方向进行小区测量。
通信装置获取极化优先级信息后,通过在优先级高的极化方向进行小区测量,以得到测量结果。需要指出的是,小区的极化优先级信息由该小区内不同极化方向上的负载、功耗等确定,根据选择优先级高的极化方向进行测量并选择驻留小区可实现不同极化方向上的负载均衡。
在一种可能的实现中,根据一个或多个小区的测量结果确定驻留的小区,包括:通信装置获取所述一个或多个小区的小区测量参数集合;以及根据所述一个或多个小区的测量结果以及一个或多个小区的小区测量参数集合确定驻留的小区。
小区测量参数集合中包含R准则计算参数、高小区优先级的门限以及低小区优先级的门限等参数。小区测量参数集合是该小区根据小区负载、消耗、吞吐率等确定的。小区的测量结果与极化优先级相关,极化优先级是根据小区中不同极化方向的负载、消耗等确定的。结合小区测量结果和小区测量参数集合确定驻留小区能够从不同的邻区中选择更合适的的驻留小区以及极化方向,实现负载均衡。
在一种可能的实现中,根据一个或多个小区的测量结果以及所述一个或多个小区的小区测量参数集合确定驻留小区,包括:根据一个或多个小区中每个小区的测量结果,以及所述每个小区对应的小区测量参数集合获得所述每个小区的R值;以及根据所述一个或多个小区的R值的大小确定驻留小区。
针对同小区优先级小区,采用R准则确定驻留小区,R值越大表示小区内的信号质量越高,通过上述准则,可选择通信质量优于当前服务小区的邻区作为驻留小区。
在一种可能的实现中,驻留小区的R值大于或等于所述服务小区的R值。
R值越大表示小区内的信号质量越高,通过确保驻留小区的R值大于或等于服务小区,能够使终端驻留到信号接受功率和/或信号质量更高的小区中,从而提供通信质量。
在一种可能的实现中,根据所述一个或多个小区的R值的大小选择驻留小区,包括:选择R值最高的小区作为驻留小区。
小区测量时考虑了极化方向的优先级之后,选择R值最高的小区作为驻留小区,能够使终端驻留在更合适的小区,同时保证了不同极化方向的负载均衡。
一种可能的实现中,通信装置从广播消息中获取一个或多个小区的极化优先级信息;或者该通信装置从单播消息中获取一个或多个小区的极化优先级信息。具体地,当通信装置处于空闲态或非活动态时从广播消息获取极化优先级信息;当通信装置处于连接态时从单播消息,即用户特有的(UE-specific)消息中获取极化优先级信息。
在一种可能的实现中,极化优先级信息携带在系统消息块SIB中。
现有协议中小区优先级信息,小区测量参数集合等参数均携带在SIB中通过广播下发给 通信装置,因此将极化优先级信息也携带在SIB中易于与现有协议兼容,只需对已有信令进行简单修改即可。
在一种可能的实现中,极化优先级信息用于指示优先级高的极化方向,具体地,该极化优先级信息包含左旋极化对应的标识或者右旋极化对应的标识。
举例来说,若RHCP对应的优先级较高,则系统消息中携带cellReselectionRHCPPriority或者其它RHCP对应的标识,例如网络设备和通信装置可以预先约定用“1”代表RHCP,则携带“1”。通过上述方法,只需通过1比特就可以表示极化优先级,能够节省比特开销。
第二方面,本申请提供一种小区选择方法,包括:网络设备向通信装置发送第一消息,该第一消息包含极化优先级信息,其中极化优先级信息用于,在满足小区测量条件时,测量小区以得到小区测量结果,小区测量结果用于选择所述通信装置的驻留小区。
本申请第二方面提供的小区选择方法中,网络设备向通信装置发送携带极化优先级信息的广播消息。使得通信装置根据该极化优先级信息进行小测量以确定驻留小区,也就是,在小区选择或重选策略中加入了极化方向的维度,优化了现有的小区选择策略,能保证通信设备确定更合适的驻留小区。
一种可能的实现中,极化优先级信息用于小区测量以得到小区测量结果,具体包括:该极化优先级信息用于指示小区对应的两种极化方向的优先级,其中优先级高的极化方向用于小区测量。
需要指出的是,小区的极化优先级信息由该小区内不同极化方向上的负载、功耗等确定,根据选择优先级高的极化方向用于小区测量并选择驻留小区可实现不同极化方向上的负载均衡。
一种可能的实现中,第一消息还包括小区测量参数集合;该小区测量参数集合用于与所述小区测量结果一同确定所述终端设备的驻留小区。
小区测量参数集合中包含R准则计算参数、高小区优先级的门限以及低小区优先级的门限等参数。小区测量参数集合是该小区根据小区负载、消耗、吞吐率等确定的。小区的测量结果与极化优先级相关,极化优先级是根据小区中不同极化方向的负载、消耗等确定的。结合小区测量结果和小区测量参数集合确定驻留小区能够从不同的邻区中选择更合适的的驻留小区以及极化方向,实现负载均衡。
一种可能的实现中,小区测量参数集合用于与所述小区测量结果一同确定所述终端设备的驻留小区,包括:小区测量参数集合与小区测量结果具体用于获取R值,该R值用于选择通信装置的驻留小区。
针对同小区优先级小区,采用R准则确定驻留小区,R值越大表示小区内的信号质量越高。通过根据小区测量参数集合中包含的R准则计算参数和小区测量结果获取R值并寻找驻留小区,可选择通信质量优于当前服务小区的邻区作为驻留小区。
一种可能的实现中,所述第一消息为广播消息;或者所述第一消息为单播消息。当终端处于空闲态或非活动态时,网络设备发送的第一消息为广播消息;当终端处于连接态时,网络设备发送的第一消息为单播消息,即用户特有的(UE-specific)消息。
一种可能的实现中,极化优先级信息携带在系统消息块SIB中。
现有协议中小区优先级信息,小区测量参数集合等参数均携带在SIB中通过广播下发给通信装置,因此将极化优先级信息也携带在SIB中易于与现有协议兼容,只需对已有信令进行简单修改即可。
一种可能的实现中,极化优先级信息用于指示优先级高的极化方向,具体地,该极化优先级信息包含左旋极化对应的标识或者右旋极化对应的标识。
举例来说,若LHCP对应的优先级较高,则系统消息中携带cellReselectionLHCPPriority或者其它LHCP对应的标识,例如网络设备和通信装置可以预先约定用“0”代表LHCP,则携带“0”。通过上述方法,只需通过1比特就可以表示极化优先级,能够节省比特开销。
第三方面,本申请实施例还提供一种通信装置,该通信装置可以用于第一方面所述的通信装置,该通信装置可以是终端设备,也可以是终端设备中的装置(例如,芯片,或者芯片系统,或者电路),或者是能够和终端设备匹配使用的装置。一种可能的实现中,该通信装置可以包括执行第一方面中所描述的方法/操作/步骤/动作所一一对应的模块或单元,该模块或单元可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种可能的实现中,该通信装置可以包括处理单元和收发单元。处理单元可以用于调用收发单元执行接收和/或发送的功能。示例性地:
收发单元,用于获取一个或多个小区的极化优先级信息,处理单元,用于在满足小区测量条件时,根据所述极化优先级信息对所述一个或多个小区进行小区测量,并根据所述一个或多个小区的测量结果确定驻留小区。
在一种可能的实现中小区测量条件包括以下一种或多种:所述通信装置处于初始接入状态或者连接态;或者,存在小区优先级高于所述通信装置的服务小区的相邻小区;或者所述通信装置的服务小区满足小区测量启动门限;。
在一种可能的实现中,处理单元用于根据所述极化优先级信息进行小区测量,包括:极化优先级信息用于指示小区对应的两种极化方向的优先级,处理单元具体用于,根据所述极化优先级信息,选择优先级高的极化方向进行小区测量。
在一种可能的实现中,处理单元用于根据所述一个或多个小区的测量结果确定驻留的小区,包括:该处理单元还用于,获取所述一个或多个小区的小区测量参数集合;以及根据所述一个或多个小区的测量结果以及一个或多个小区的小区测量参数集合确定驻留的小区。
在一种可能的实现中,处理单元用于根据所述一个或多个小区的测量结果以及所述一个或多个小区的小区测量参数集合确定驻留小区,包括:该处理单元具体用于,根据一个或多个小区中每个小区的测量结果,以及所述每个小区对应的小区测量参数集合获得所述每个小区的R值;以及根据所述一个或多个小区的R值的大小确定驻留小区。
在一种可能的实现中,驻留小区的R值大于或等于所述服务小区的R值。
在一种可能的实现中,处理单元用于根据所述一个或多个小区的R值的大小选择驻留小区,包括:该处理单元具体用于,选择R值最高的小区作为驻留小区。
一种可能的实现中,处理单元从广播消息中获取一个或多个小区的极化优先级信息;或者处理单元从单播消息中获取一个或多个小区的极化优先级信息。
在一种可能的实现中,极化优先级信息携带在系统消息块SIB中。
在一种可能的实现中,极化优先级信息用于指示优先级高的极化方向,具体地,该极化优先级信息包含左旋极化对应的标识或者右旋极化对应的标识。
需要说明的是,本申请实施例第三方面提供的通信装置的各个实现方式的有益效果请参考第一方面所述的小区选择方法的有益效果,此处不再赘述。
第四方面,本申请实施例还提供一种通信装置,该通信装置可以用于第二方面所述的网络设备,该通信装置可以是网络设备,也可以是网络设备中的装置(例如,芯片,或者芯片系统,或者电路),或者是能够和网络设备匹配使用的装置。一种可能的实现中,该通信装置可以包括执行第二方面中所描述的方法/操作/步骤/动作所一一对应的模块或单元,该模块或单元可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种可能的实现中,该通信装置可以包括处理单元和收发单元。处理单元用于调用收发单元执行接收和/或发送的功能。示例性地:
处理单元,用于确定极化优先级信息;收发单元,用于向通信装置发送第一消息,其中第一消息包含极化优先级信息;该极化优先级信息用于,在满足小区测量条件时,测量小区以得到小区测量结果;所述小区测量结果用于选择所述通信装置的驻留小区。
在一种可能的实现中,极化优先级信息用于小区测量以得到小区测量结果,具体包括:该极化优先级信息用于指示小区对应的两种极化方向的优先级;其中优先级高的极化方向用于小区测量。
在一种可能的实现中,第一消息还包括小区测量参数集合;该小区测量参数集合用于与所述小区测量结果一同确定终端设备的驻留小区。
在一种可能的实现中,小区测量参数集合用于与所述小区测量结果一同确定终端设备的驻留小区,包括:所述小区测量参数集合与所述小区测量结果具体用于获取R值;所述R值用于选择所述终端设备的驻留小区。
一种可能的实现中,第一消息为广播消息;或者第一消息为单播消息。
在一种可能的实现中,极化优先级信息携带在系统消息块SIB中。
在一种可能的实现中,所述极化优先级信息用于指示优先级高的极化方向,具体地,所述极化优先级信息包含左旋极化对应的标识或者右旋极化对应的标识。
需要说明的是,本申请实施例第四方面提供的通信装置的各个实现方式的有益效果请参考第四方面所述的小区选择方法的有益效果,此处不再赘述。
第五方面,本申请实施例还提供一种通信装置,包括处理器,用于执行存储器中存储的计算机程序或可执行指令,当计算机程序或可执行指令被执行时,使得该装置执行如第一方面及第一方面各个可能的实现中的方法。
在一种可能的实现中,所述处理器和所述存储器集成在一起;
在另一种可能的实现中,所述存储器位于该通信装置之外。
该通信装置还包括通信接口,所述通信接口用于该通信装置与其他设备进行通信,例如数据和/或信号的发送或接收。示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口。
第六方面,本申请实施例还提供一种通信装置,包括处理器,用于执行存储器中存储的 计算机程序或可执行指令,当计算机程序或可执行指令被执行时,使得该装置执行如第二方面及第二方面各个可能的实现中的方法。
在一种可能的实现中,所述处理器和所述存储器集成在一起;
在另一种可能的实现中,存储器位于该通信装置之外。
该通信装置还包括通信接口,所述通信接口用于该通信装置与其他设备进行通信,例如数据和/或信号的发送或接收。示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口。
第七方面,本申请实施例还提供一种通信装置,包括输入输出接口和逻辑电路。输入输出接口用于信号或数据的输入或输出。输入输出接口具体用于获取一个或多个小区的极化优先级信息;输入输出接口还用于输出所述一个或多个小区的测量结果。逻辑电路用于执行上述第一方面及其任意一种可能的实现中的方法以确定驻留小区。
第八方面,本申请实施例还提供一种通信装置,包括输入输出接口和逻辑电路。逻辑电路用于执行上述第二方面及其任意一种可能的实现中的方法以确定第一消息,该第一消息中携带极化优先级信息。输入输出接口用于输出第一消息,该第一消息包含极化优先级信息。输入输出接口还用于获取小区测量结果。
第九方面,本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其中,所述计算机程序被处理器执行,使得上述第一方面及其任一种可能的实现、第二方面及其任一种可能的实现中所述的方法的部分或全部步骤被执行。
第十方面,本申请实施例还提供了一种包括可执行指令的计算机程序产品,当所述计算机程序产品在用户设备上运行时,使得上述第一方面及其任一种可能的实现、第二方面及其任一种可能的实现中所述的方法的部分或全部步骤被执行。
第十一方面,本申请实施例还提供一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述第一方面及其任一种可能的实现、第二方面及其任一种可能的实现中所述的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
附图说明
下面将对本申请实施例涉及的一些附图进行说明。
图1是本申请实施例提供的一种通信系统的示意图。
图2是本申请实施例提供的一种应用场景图。
图3是本申请实施例提供的一种小区选择方法的流程示意图。
图4A是本申请实施例提供的一种系统消息SIB2中包含极化优先级的信令示意图。
图4B是本申请实施例提供的一种系统消息SIB3中包含极化优先级的信令示意图。
图4C是本申请实施例提供的一种系统消息SIB4中包含极化优先级的信令示意图。
图5是本申请实施例提供的一种小区选择方法的交互示意图。
图6是本申请实施例提供的一种小区切换方法的交互示意图。
图7是本申请实施例提供的一种通信装置的结构示意图。
图8是本申请实施例提供的另一种通信装置的结构示意图。
图9是本申请实施例提供的又一种通信装置的结构示意图。
具体实施方式
本申请实施例提供一种小区选择的方法及装置,以优化现有的小区选择/小区重选策略,确定更合适的驻留小区。其中,方法和装置是根据同一申请构思的,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
下面结合本申请实施例中的附图对本申请实施例进行描述。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。本申请实施例的说明书和权利要求书中的术语“第一”和“第二”等是用于区别不同的对象,而不是用于描述对象的特定顺序。例如,第一网络设备和第二网络设备等是用于区别不同的网络设备,而不是用于描述目标对象的特定顺序。在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。在本申请实施例的描述中,除非另有说明,“多个”的含义是指两个或两个以上。例如,多个处理单元是指两个或两个以上的处理单元;多个系统是指两个或两个以上的系统。
本申请的技术方案可以应用于卫星通信系统、高空平台(high altitude platform station,HAPS)通信等非地面网络(non-terrestrial network,NTN)系统。卫星通信系统可以与传统的移动通信系统相融合。例如:所述移动通信系统可以为第四代(4th generation,4G)通信系统,例如,长期演进(long term evolution,LTE)系统,全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统,第五代(5th generation,5G)通信系统,例如,新无线(new radio,NR)系统,以及未来的移动通信系统等。
参见图1,图1为适用于本申请实施例的通信系统的示例。如图1,接入点采用多个波束覆盖服务区域,不同的波束可通过时分、频分和空分中的一种或多种进行通信。其中,接入点不限于卫星基站或地面基站。接入点可以部署于高空平台或者卫星。卫星可以是为非静止轨道(non-geostationary earth orbit,NGEO)卫星或静止轨道(geostationary earth orbit,GEO)卫星。本申请实施例中提及的卫星,也可以为卫星基站,或者为搭载在卫星上的网络侧设备。
接入点可以是LTE中的演进型基站(evolutional Node B,eNB或eNodeB);或者5G网络或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的基站,宽带网络业务网关(broadband network gateway,BNG),汇聚交换机或非第三代合作伙伴项目(3rd generation partnership project,3GPP)接入设备等,本申请实施例对此不作具体限定。可选的,本申请实施例中的基站可以包括各种形式的基站,例如:宏基站、微基站(也称为小站)、中继站、接入点、下一代基站(gNodeB,gNB)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心以及设备到设备(Device-to-Device,D2D)、 车辆外联(vehicle-to-everything,V2X)、机器到机器(machine-to-machine,M2M)通信中承担基站功能的设备等,本申请实施例对此不作具体限定。
接入点可以和核心网设备进行通信交互,向终端设备提供通信服务。核心网设备例如为5G网络核心网(core network,CN)中的设备。核心网作为承载网络提供到数据网络的接口,为用户设备(user equipment,UE)提供通信连接、认证、管理、策略控制以及对数据业务完成承载等。其中,CN又进一步可包括:接入和移动管理网元(Access and Mobility Management Function,AMF)、会话管理网元(Session Management Function,SMF),认证服务器网元(Authentication Server Function,AUSF)、策略控制节点(Policy control Function,PCF)、用户面功能网元(User Plane Function,UPF)等网元。
本申请实施例中提及的通信装置,可以为终端设备,包括各种具有无限通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,具体可以指用户设备(user equipment,UE)、接入终端、用户单元(subscriber unit)、用户站、移动站、移动台(mobile station)、远方站、远程终端、移动设备、用户终端(terminal equipment)、终端、无线通信设备、用户代理或用户装置。终端设备还可以是卫星电话、蜂窝电话、智能手机、无线数据卡、无线调制解调器、机器类型通信设备、可以是无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备或可穿戴设备,虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、5G网络或者未来通信网络中的终端设备等,本申请不作限制。
参见图2,图2示出了适用于本申请实施例的一种应用场景,具体为3GPP各成员融合卫星通信和5G技术的网络应用架构。需要说明的是该应用架构不作为对本申请的限制。本申请实施例所提供的通信方法还可以应用于其他地面通信系统与卫星通信融合的场景。地面移动终端通过5G新空口接入网络,卫星作为5G基站,并通过无线链路与地面的核心网相连。同时,在卫星之间存在无线链路,完成基站与基站之间的信令交互和用户数据传输。图2中的各个网元以及它们的接口说明如下:
终端设备:支持5G新空口的移动设备,可以通过空口接入卫星网络并发起呼叫,上网等业务。例如,可以为如上文所述的各种终端设备,此处不再赘述。
5G基站:主要是提供无线接入服务,调度无线资源给接入终端,提供可靠的无线传输协议和数据加密协议等。
5G核心网:用户接入控制,移动性管理,会话管理,用户安全认证,计费等业务。它有多个功能单元组成,可以分为控制面和数据面的功能实体。接入与移动管理单元(AMF),负责用户接入管理,安全认证,还有移动性管理。用户面单元(UPF)负责管理用户面数据的传输,流量统计,安全窃听等功能。
地面站:负责转发卫星基站和5G核心网之间的信令和业务数据。
5G新空口:终端和基站之间的无线链路。
Xn接口:5G基站和基站之间的接口,主要用于切换等信令交互。
NG接口:5G基站和5G核心网之间接口,主要交互核心网的非接入层(non-access stratum,NAS)信令等信令,以及用户的业务数据。
为便于理解本申请实施例,首先对传统地面网络的小区选择和小区重选机制进行介绍。
1)小区选择(cell selection)
终端设备开机后,首先选择一个合适的PLMN,并在该PLMN上进行小区选择。小区选择分为初始小区选择和基于存储小区信息的选择两种类型。小区选择分为扫频、小区搜索、解系统消息和驻留四个步骤。
初始小区选择时首先进行扫频再进行小区搜索,即终端根据自身支持的NR频段扫描所有的射频无线信道,在每个频点上,搜索最强的小区。基于存储小区信息的选择则是直接根据存储的频点信息进行小区搜索。终端设备通过小区搜索获取覆盖最好的小区,对该小区进行同步获取物理小区标识;小区搜索完成后,终端设备读取小区系统消息,测量该小区的信号强度以及信号质量,并判断该小区是否满足驻留条件。
小区驻留条件通过S准则进行判断。小区选择的S值Srxlev>0且Squal>0时允许驻留。
Srxlev=Qrxlevmeas–(Qrxlevmin+Qrxlevminoffset)-Pcompensation-Qoffsettemp
Squal=Qqualmeas–(Qqualmin+Qqualminoffset)–Qoffsettemp
其中Qrxlevmeas为测量小区的参考信号接收功率(reference signal received power,RSRP)值;
Qrxlevmin为小区中最小RSRP接收强度要求,该值从广播消息获取;
Qrxlevminoffset为对最小接入电平值的偏移值,防止乒乓重选;
Pcompensation为补偿值=MAX(Pemax-Pumax,0),即配置值,与终端实际上行发射功率的差值与0取大。
Qqualmin=q-QualMin(SIB2),其中q-QualMin(SIB2)携带在系统消息块(system information block,SIB)2中,如果SIB3配置了q-QualMinOffsetCell,则Qqualmin=q-QualMin(SIB2)+q-QualMinOffsetCell(SIB3)。
Qoffsettemp为临时偏移值,该值在系统广播中通知。
2)小区重选(cell reselection)
为了获得更好的网络服务,终端设备在空闲(idle)态或者非活动(inactive)态时进行小区重选。小区重选分为以下步骤:(1)根据测量启动条件,测量当前服务小区和邻小区;(2)判断邻小区是否符合重选准则;(3)符合则启动重选,接收新小区的系统消息,若无接收受限则驻留新小区;若不符合则停留在当前服务小区。
小区测量启动条件与小区优先级和当前服务小区的信号质量相关。如表格1所示,小区重选场景可分为同频小区重选和异频/异系统小区重选。
表格1
Figure PCTCN2021101659-appb-000001
Figure PCTCN2021101659-appb-000002
在同频小区重选时,当服务小区的S值小于或等于给定门限S_intrasearch(同频测量门限)时,需开启同频测量,否则UE可以选择关闭测量。在实际网络中,为了节约能耗,通常当S>S_intrasearch之时,UE通常关闭测量。在获取到测量结果后,终端基于R准则对候选小区进行排序,并选择最优小区进行驻留。
R准则,就是根据小区信号质量,给每一个邻小区和当前服务小区算出一个R(Rank)值,然后根据R值大小排序,R值大于当前服务小区的,满足重选标准,有多个满足的话,就选最好的。如果持续超过TreselectionRAT,一直满足R准则,且终端在当前服务小区驻留超过1s,则启动向该小区的重选。其中TreselectionRAT表示小区重选的时间间隔。
当前服务小区的R值可通过以下公式计算:
Rs=Qmeas,s+Q hyst–Qoffsettemp
邻区的R值可以通过以下公式计算:
Rn=Qmeas,n-Qoffset-Qoffsettemp
其中,Qmeas,s为当前服务小区的信号质量,通过小区测量获得,具体可以为服务小区的RSRP值;Qmeas,n为邻小区的信号质量,通过小区测量获得,具体可以为邻小区的RSRP值;Q hyst为当前服务小区的重选迟滞值,从系统中获取,该值越大表示,服务小区的边界越大,越难重选到邻区;Qoffset为R准则计算参数,从系统消息获取,同频重选时该值取Qoffset cell,异频重选时该值取Qoffset Cell+Qoffset Freq;Qoffsettemp也为R准则计算参数,从系统消息获取。Q hyst、Qoffset、Qoffsettemp等R准则计算参数取值均为大于或等于零。
异频/异系统小区重选需按照优先级进行区分。其中,对于高优先级小区,终端需要持续进行测量,且当高优先级小区的S值大于相应门限时重选到该小区;对于同等或者低优先级小区,当服务小区的S值大于给定门限S_nonintrasearch(异频/异系统测量门限)时,需开启同频测量,否则UE可以选择关闭测量。在获取到测量结果后,终端基于不同优先级关系对应的小区重选准则选择最优小区进行驻留。针对高优先级小区,在TreselectionRAT内高优先级小区的S值大于预设门限(Thresh X,HighQ或者Thresh X,HighP),且终端在当前服务小区驻留超 过1s,则启动向该小区的重选。针对低优先级小区,在TreselectionRAT内服务小区S值小于预设门限(Thresh Serving,LowQ或者Thresh Serving,LowP),且低优先级小区S值大于预设门限(Thresh X,LowQ或者Thresh X,LowP),且终端在当前服务小区驻留超过1s,则启动向该小区的重选。
与地面通信系统不同,卫星通信通信常采用极化复用的方式,如左旋圆极化(Left Hand Circularly Polarized,LHCP)或右旋圆极化(Right Hand Circularly Polarized,RHCP),也可以采用水平极化或垂直极化,或者其他正交的极化,不同卫星小区采用不同的极化方式进行信号传输,从而达到提升频谱效率的目的。同一卫星的不同极化方向上的负载可能会不同。
若卫星通信采用与上述传统地面网络的小区选择或小区重选机制相同的机制,终端很多时候可能难以驻留到更合适的的小区。为解决上述问题,本申请在NTN中小区引入极化复用的方式,增加了小区选择的物理维度,通过对极化方向的指示,实现优化的小区选择策略。本申请实施例提供的小区选择和小区重选策略中除了小区优先级、小区信号质量以外还考虑了极化方向的维度,能够综合确定更合适的的驻留小区,并保证不同极化方向的负载均衡。
参见图3,图3为本申请实施例提供的小区选择和小区重选策略的一种流程示意图。本实施例中网络设备广播极化优先级信息,供用户进行小区选择或小区重选的决策时参考极化方向,以综合确定更合适的驻留小区。
首先需要说明的是,本申请所述的通信装置可以为前述各种类型的终端,下文中以终端为例进行描述。
S301、获取极化优先级信息。
终端获取极化优先级信息。该极化优先级信息用于指示小区对应的两种或更多种极化方向的优先级。
网络设备向终端发送第一消息,该第一消息中携带极化优先级信息,相应的,终端接收网络设备发送的第一消息。
可能的,该第一消息为广播消息;或者该第一消息为单播消息。具体地,当终端处于空闲态(idle)、非活动态(inactive)时第一消息可以为广播消息;当终端处于连接态(connected)时,第一消息可以为单播消息。
一种可能的实现中,网络设备通过第一消息下发一个或多个小区的极化优先级信息,终端接收网络设备发送的第一消息,并从该第一消息中获取极化优先级信息。
网络设备下发的一个或多个小区的极化优先级信息可以包括本小区的极化优先级信息,也包括相邻小区的极化优先级信息。可能的,极化优先级信息与小区标识进行绑定。
可能的,极化优先级信息可以携带在系统消息块SIB中。出于兼容现有协议的考虑,可以对已有信令进行简单修改。以NR中的系统消息SIB2、SIB3、SIB4为例:SIB2中包含与服务小区有关的小区重选信息;SIB3中包含关于与小区重选相关的服务频率和同频相邻小区的信息;SIB4中包含关于与小区重选相关的其他NR频率和频率间相邻小区的信息。
如图4A所示,SIB2中的小区重选服务频点信息cellReselectionServingFreqInfo子项中还可以携带两种极化方向的优先级,左旋圆极化和右旋圆极化对应的优先级分别用cellReselectionLHCPPriority字段和cellReselectionRHCPPriority字段指示(图中虚框标出的部分)。
如图4B所示,SIB3中的同频小区重选信息IntraFreqCellReselectionInfo子项中可以携带两种极化方向的优先级,左旋圆极化和右旋圆极化对应的优先级分别用cellReselectionLHCPPriority字段和cellReselectionRHCPPriority字段指示(图中虚框标出的部分)。
如图4C所示,SIB4中的异频载波频点信息InterFreqCarrierFreqInfo子项中可以携带两种极化方向的优先级,左旋圆极化和右旋圆极化对应的优先级分别用cellReselectionLHCPPriority字段和cellReselectionRHCPPriority字段指示(图中虚框标出的部分)。
在一种可能的实现中,系统消息中同时携带LHCP和RHCP对应的极化优先级信息,取值较高的极化方向为优先级较高的极化方向。举例来说,cellReselectionLHCPPriority=0,cellReselectionRHCPPriority=1,则表示RHCP为优先级较高的极化方向。
在另一种可能的实现中,极化优先级信息用于指示优先级高的极化方向,具体地,极化优先级信息包含左旋极化对应的标识或者右旋极化对应的标识。举例来说,若RHCP对应的优先级较高,则系统消息中携带cellReselectionRHCPPriority或者其它RHCP对应的标识,不携带其它极化方向对应的标识。再例如,网络设备和终端可以预先约定用“1”代表RHCP,用“0”代表LHCP,若RHCP对应的优先级较高则极化优先级对应的比特位上的值为1,若LHCP对应的优先级较高则极化优先级对应的比特位上的值为0;也可以用“1”代表LHCP,用“0”代表LHCP,本申请不做限制。该种可能的实现中,只需通过1比特就可以表示极化优先级,能够降低比特开销。
需要指出的是,小区的极化优先级信息由该小区内不同极化方向上的负载、功耗确定的,不同厂商可以采用不同的算法确定小区优先级。举例来说,若某个小区的LHCP方向上的负载较大,RHCP方向上的负载较小,则将负载较小的RHCP作为高优先级的极化方向,从而达到负载均衡。
S302、满足小区测量条件时,根据极化优先级信息进行小区测量。
具体地,满足小区测量条件时,终端根据从第一消息中获取的极化优先级信息,在测量端口上选择极化优先级高的极化方向进行小区测量。
一种可能的实现中,终端根据从第一消息中获取的一个或多个小区的极化优先级信息,选择一个或多个小区中各个小区的极化优先级高的极化方向进行小区测量,以获得一个或多个小区的小区测量结果。
小区测量条件包括以下一种或多种:终端处于初始接入状态或连接态;或者存在小区优先级高于终端当前服务小区的相邻小区;或者所述终端的服务小区满足小区测量启动门限。需要说明的是初始接入状态,是指终端刚开机尚未驻留到小区的状态。此时终端通过扫频或者基于存储的小区信息进行小区搜索,获取覆盖最好的小区,对该小区进行同步获取物理小区标识;小区搜索完成后,终端设备解小区系统消息,获取该小区的极化优先级信息以及其他小区选择相关参数,并根据极化优先级信息进行小区测量。
当终端处于连接态时,持续进行小区测量,并周期性向网络设备上报测量结果或者事件触发条件下向网络设备上报测量结果。
当终端处于空闲态或者非活动态时,若存在小区优先级高于当前服务小区的相邻小区时, 无条件启动测量。小区优先级信息可以从当前服务小区下发的系统消息SIB中获取。举例来说,小区优先级信息可以由SIB消息中携带的cellReselectionPriority表示,取值范围为0-7的整数,该参数值越大说明小区优先级越高。小区优先级可以由小区负载、功耗等确定。可能的,不同厂商可以采用不同算法确定小区优先级,本申请不做限制。
当终端处于空闲态,且邻小区的小区优先级等于或低于当前服务小区时,若当前服务小区满足小区测量启动门限时,进行小区测量。举例来说,针对同频小区,当前服务小区的S值小于或等于同频测量门限(S_IntraSearch)时,终端根据极化优先级信息进行小区测量;针对异频或异系统小区,当前服务小区的S值小于或等于异频测量门限(S_nonIntraSearch)时,终端根据极化优先级信息进行小区测量。具体地,邻区为同优先级同频小区,当前服务小区的Srxlev=<SIntraSearchP且Squal=<SIntraSearchQ时,终端根据极化优先级信息进行小区测量;邻区为同优先级异频/异系统小区或者低优先级异频/异系统小区,当前服务小区的Srxlev=<SnonIntraSearchP且Squal=<SnonIntraSearchQ时,终端根据极化优先级信息进行小区测量。
一种可能的实现中,针对同频小区,当前服务小区的S值小于同频测量门限(S_IntraSearch)时,终端根据极化优先级信息进行小区测量,而当前服务小区的S值等于S_IntraSearch时,终端根据不进行小区测量;针对异频或异系统小区,当前服务小区的S值小于异频测量门限(S_nonIntraSearch)时,终端根据极化优先级信息进行小区测量,而当前服务小区的S值等于S_nonIntraSearch时不进行小区测量。
需要说明的是本申请实施例中涉及的所有边界情况(例如,S值等于测量门限的情况)均可以采用以上方式处理。例如,当S值处于边界情况时可能进行小区测量,也有可能不进行小区测量。S值的计算方式请参见前文,此处不再赘述。
S303、根据测量结果确定驻留小区。
网络设备发送的第一消息中还携带小区测量参数集合。可能的,该小区测量参数集合包含R准则计算参数,高优先级小区S值预设门限,低优先级小区S值预设门限等参数。其中R准则计算参数包含:当前服务小区重选迟滞值Q Hyst,偏差值Q offset,临时偏差值Q offsettemp等;高优先级小区S值预设门限包含:Thresh X,HighQ和/或Thresh X,HighP;低优先级小区S值预设门限包含:Thresh X,LowQ和/或ThreshX,LowP。
终端根据小区测量结果以及小区测量参数集合确定驻留小区。
一种可能的实现中,终端获取一个或多个小区的小区测量参数集合,并根据一个或多个小区的小区测量结果以及小区测量参数集合确定驻留小区。
邻区为同频小区或异频同优先级小区时,终端根据一个或多个小区中每个小区的测量结果以及每个小区对应的小区测量参数集合获得所述每个小区的R值;以及根据一个或多个小区的R值的大小确定驻留小区。
举例来说,当前服务小区的R值可以根据小区测量获得的当前服务小区的信号质量Q meas,s以及小区参数集合中包含的当前服务小区的重选迟滞值Q hyst和R准则计算参数Qoffsettemp得到;邻小区的R值可以根据通过小区测量获得的邻小区的信号质量Qmeas,n以及小区参数集合中包含的R准则计算参数Qoffset和Qoffsettemp得到。具体可参见前文,此处不再赘述。
终端根据一个或多个小区的R值的大小确定驻留小区,其中驻留小区的R值大于或等于 当前服务小区的R值,具体包括:终端选择第一个R值大于或等于当前服务小区R值的邻区作为驻留小区;或者终端选择R值最大的小区作为驻留小区;或者终端从R值大于当前服务小区R值的邻区中选择RSRP最大的小区作为驻留小区。
一种可能的实现中,当邻区的R值等于当前服务小区的R值时,将邻区确定为驻留小区。该种可能的实现中,终端可以提前驻留到邻小区中,减少后续因卫星移动而造成的小区切换。
在另一种可能的实现中,当邻区的R值等于当前服务小区的R值时,终端继续驻留在当前服务小区。该种可能的实现中,终端不改变当前的驻留小区,可以减少驻留小区的切换次数,避免频繁的小区重选。
邻区为高小区优先级小区时,终端根据一个或多个小区的测量结果,以及每个小区对应的小区测量参数集合获得每个小区的S值;并将所述S值与小区测量参数集合中的高小区优先级小区预设门限进行比较,以确定驻留小区。驻留小区的S值应大于该预设门限。具体地,当存在多个S值大于预设门限的小区时,选择S值最大的小区作为驻留小区。可能的,驻留小区的S值可以等于该高小区优先级小区预设门限。
举例来说,S值可以是Srxlev和/或Squal,Srxlev和Squal的具体计算方式请参考前文,此处不再赘述。将S值与小区测量参数集合中的高优先级小区预设门限进行比较具体包括:将Srxlev与小区测量参数集合中包含的门限值Thresh X,HighQ进行比较,和/或,将Squal与小区测量参数集合中包含的门限值Thresh X,HighP进行比较。
邻区为低小区优先级小区时,终端根据一个或多个小区的测量结果,以及每个小区对应的小区测量参数集合获得每个小区的S值;并将所述S值与小区测量参数集合中的低小区优先级预设门限进行比较,以确定驻留小区。具体地,当服务小区的S值小于预设门限,且邻区的S值大于低小区优先级小区预设门限时,将所述邻区作为驻留小区。当存在多个S值大于预设门限的小区时,选择S值最大的小区作为驻留小区。可能的,驻留小区的S值可以等于低小区优先级小区预设门限。
举例来说,S值可以是Srxlev和/或Squal,Srxlev和Squal的具体计算方式请参考前文,此处不再赘述。将S值与小区测量参数集合中的低小区优先级小区预设门限进行比较具体包括:将Srxlev与小区测量参数集合中包含的门限值Thresh X,LowQ进行比较,和/或,将Squal与小区测量参数集合中包含的门限值Thresh X,LowP进行比较。
图3所示的小区选择策略中,终端获取网络下发的极化优先级信息,并根据该极化优先级信息,选择优先级高的极化方向进行小区测量,以确定驻留的小区。网络通过对极化方向优先级的指示,保障终端结合不同极化方向综合选择更合适的的驻留小区,实现不同极化方向上的负载均衡。
参见图5,图5为本申请实施例提供的小区选择和小区重选策略的一种交互图。本实施例中,针对同一小区的不同极化方向,网络设备下发不同的小区测量参数集合,终端按照各个极化方向对应的小区测量参数集合分别计算相应的阈值,并结合小区测量结果综合决策更合适的驻留小区及其极化方向。
S501、网络设备广播系统消息,相应的,终端接收网络设备广播的系统消息。该系统消息中包含不同极化方向对应的小区测量参数集合。
该不同极化方向对应的小区测量参数集合包含不同极化方向对应的R准则计算参数,高 优先级小区S值预设门限,低优先级小区S值预设门限等参数。不同极化方向对应的小区测量参数集合还可以包含其他参数,本申请不作限制。
R准则用于确定驻留小区,具体内容请参见上文,此处不再赘述。
举例来说,S值可以是Srxlev和/或Squal,Srxlev和Squal的具体计算方式请参考上文,此处不再赘述。
其中R准则计算参数包含:当前服务小区重选迟滞值Q Hyst,偏差值Qoffset,临时偏差值Qoffsettemp等。举例来说,LHCP对应的R准则计算参数可以分别表示为:Q Hyst_LHCP、Qoffset _LHCP和Qoffsettemp _LHCP;RHCP对应的R准则计算参数可以分别表示为:Q Hyst_RHCP、Qoffset _RHCP和Qoffsettemp _RHCP
高小区优先级S值预设门限包含:Thresh X,HighQ和/或Thresh X,HighP。举例来说,LHCP对应的高小区优先级小区S值预设门限可以表示为:Thresh X_LHCP,HighQ和/或Thresh X_LHCP,HighP;RHCP对应的高小区优先级S值预设门限可以表示为:Thresh X_RHCP,HighQ和/或Thresh X_RHCP, HighP
低小区优先级S值预设门限包含:Thresh X,LowQ和/或Thresh X,LowP。举例来说,LHCP对应的低小区优先级S值预设门限可以表示为:Thresh X_LHCP,LowQ和/或Thresh X_LHCP,LowP;RHCP对应的低小区优先级S值预设门限可以表示为:Thresh X_RHCP,LowQ和/或Thresh X_RHCP,LowP。需要指出的是还可以采用其他方式表示不同极化方向对应的各个参数,本申请不做限制。
需要指出的是小区优先级信息可以从当前服务小区下发的系统消息SIB中获取。举例来说,小区优先级信息可以由SIB消息中携带的cellReselectionPriority表示,取值范围为0-7的整数,该参数值越大说明小区优先级越高。小区优先级可以由小区负载、功耗等确定。可能的,不同厂商可以采用不同算法确定小区优先级,本申请不做限制。
一种可能的实现中,网络设备广播一个或多个小区中各个小区不同极化方向对应的测量参数集合,相应的,终端接收网络设备广播的一个或多个小区中各个小区不同极化方向对应的测量参数集合。
需要指出的是,小区的不同极化方向对应的小区测量参数,由该小区内不同极化方向上的负载、功耗确定的,不同厂商可以采用不同的算法确定小区优先级。举例来说,若某个小区的LHCP方向上的负载较大,RHCP方向上的负载较小,则可以增大LHCP方向对应的偏差值,如:Qoffset _LHCP、Qoffsettemp _LHCP,并减小RHCP方向对应的偏差值,如Qoffset _RHCP、Qoffsettemp _RHCP,从而实现不同极化方向的负载均衡。
S502、满足小区测量条件时,进行小区测量。
小区测量条件包括以下一种或多种,终端处于初始接入状态或者连接态;或者存在小区优先级高于终端当前服务小区的相邻小区;或者所述通信装置的服务小区满足小区测量启动门限。具体请参考S302所述内容,此处不再赘述。
当满足小区测量条件时,终端进行小区测量,并获得小区测量结果。
一种可能的实现中,终端对一个或多个小区进行测量,并获取一个或多个小区对应的测量结果。
S503、根据小区测量结果以及小区测量参数集合确定驻留小区。
终端得到小区测量结果后,根据该测量结果以及从广播消息中获取的不同极化方向对应的小区测量参数集合确定驻留小区。具体地,终端根据小区测量结果以及各个极化方向对应的小区测量参数集合分别计算不同极化方向对应的阈值,并根据该阈值确定驻留小区以及极化方向。
一种可能的实现中,终端获取一个或多个小区中各个小区不同极化方向对应的测量参数集合,并根据一个或多个小区中各个小区不同极化方向对应的测量参数集合以及该一个或多个小区的中各个小区的测量结果,确定驻留小区以及对应的极化方向。
邻区为同频小区或异频同优先级小区时,终端根据一个或多个小区中每个小区的测量结果,以及每个小区的不同极化方向对应的小区测量参数集合获得所述每个小区的R值;以及根据一个或多个小区不同极化方向的R值的大小确定驻留小区以及对应的极化方向。
举例来说,针对每个小区获取分别对应LHCP和RHCP的两个R值,进行R准则确定驻留小区时,将服务小区的R值与邻区极化方向R值较高者进行对比,以确定驻留小区。
当前服务小区LHCP方向的的R值可以根据小区测量获得的当前服务小区的信号质量Q meas,s以及小区参数集合中包含的当前服务小区的LHCP方向对应的重选迟滞值Q Hyst_LHCP和R准则计算参数Qoffsettemp _LHCP得到;当前服务小区RHCP方向的的R值可以根据小区测量获得的当前服务小区的信号质量Q meas,s以及小区参数集合中包含的当前服务小区的RHCP方向对应的重选迟滞值Q Hyst_RHCP和R准则计算参数Qoffsettemp _RHCP得到;邻小区LHCP对应的R值可以根据通过小区测量获得的邻小区的信号质量Q meas,n以及小区参数集合中包含的R准则计算参数Qoffset _LHCP和Qoffsettemp _LHCP得到;邻小区RHCP对应的R值可以根据通过小区测量获得的邻小区的信号质量Q meas,n以及小区参数集合中包含的R准则计算参数Qoffset _RHCP和Qoffsettemp _RHCP得到。具体计算方式可参见前文,此处不再赘述。
驻留小区的R值应大于或等于当前服务小区的R值。具体地,终端选择R值最大的小区作为驻留小区,并将获取该R值时采用的小区测量参数对应的极化方向作为驻留小区的极化方向;或者终端从R值大于或等于当前服务小区R值的邻区中选择RSRP最大的小区作为驻留小区,并将获取该R值时采用的小区测量参数对应的极化方向作为驻留小区的极化方向;或者终端选择第一个R值大于当前服务小区R值的邻区作为驻留小区,并将获取该R值时采用的小区测量参数对应的极化方向作为驻留小区的极化方向,可能的,若第一个R值大于当前服务小区R值的邻区对应的两个R值均大于服务小区的R值,则将较高R对应的极化方向作为驻留小区的极化方向。
一种可能的实现中,当邻区的R值等于当前服务小区的R值时,将邻区确定为驻留小区,并将该R值对应的极化方向作为驻留小区的极化方向;在另一种可能的实现中,当邻区的R值等于当前服务小区的R值时,终端继续驻留在当前服务小区。邻区为高小区优先级小区时,终端根据一个或多个小区的测量结果,以及每个小区不同极化方向对应的小区测量参数集合获得每个小区不同极化方向对应的S值;并将所述S值与小区测量参数集合中的高优先级小区不同极化方向对应的预设门限进行比较,以确定驻留小区。驻留小区的S值应大于预设门限。具体地,当存在多个S值大于预设门限的小区时,选择S值最大的小区作为驻留小区。可能的,驻留小区的S值可以等于预设门限。
举例来说,针对每个小区获取分别对应LHCP和RHCP的两个S值,将其与不同极化方向对应的高小区优先级小区预设门限进行比较,以确定驻留小区。举例来说,S值可以是Srxlev 和/或Squal,Srxlev和Squal的具体计算方式请参考前文,此处不再赘述。将S值与小区测量参数集合中的高优先级小区预设门限进行比较具体包括:将LHCP对应的Srxlev与小区测量参数集合中包含的LHCP对应的门限值Thresh X_LHCP,HighQ进行比较,和/或,将Squal与小区测量参数集合中包含的门限值Thresh X_LHCP,HighP进行比较;将RHCP对应的Srxlev与小区测量参数集合中包含的RHCP对应的门限值Thresh X_RHCP,HighQ进行比较,和/或,将Squal与小区测量参数集合中包含的门限值Thresh X_RHCP,HighP进行比较。
邻区为低小区优先级小区时,终端根据一个或多个小区的测量结果,以及每个小区不同极化方向对应的小区测量参数集合获得每个小区不同极化方向对应的S值;并将所述S值与小区测量参数集合中不同极化方向对应的预设门限进行比较,以确定驻留小区。具体地,当服务小区的S值小于预设门限,且邻区的S值大于低小区优先级小区预设门限时,将所述邻区作为驻留小区。当存在多个S值大于预设门限的小区时,选择S值最大的小区作为驻留小区。当邻区的S值等于低小区优先级小区预设门限时,可以将该邻区作为驻留小区,或者继续驻留在当前服务小区。
举例来说,获取服务小区LHCP和RHCP对应的两个S值,将其与预设门限进行比较,当两个极化方向对应的S值均小于预设门限时,获取邻小区LHCP和RHCP对应的S值,将其与不同极化方向对应的低小区优先级小区预设门限进行比较,以确定驻留小区。S值可以是Srxlev和/或Squal,Srxlev和Squal的具体计算方式请参考前文,此处不再赘述。将S值与小区测量参数集合中的低小区优先级小区预设门限进行比较具体包括:将LHCP对应的Srxlev与小区测量参数集合中包含的门限值Thresh X_LHCP,LowQ进行比较,和/或,将LHCP对应的Squal与小区测量参数集合中包含的低小区优先级预设门限值Thresh X_LHCP,LowP进行比较;将RHCP对应的Srxlev与小区测量参数集合中包含的门限值Thresh X_RHCP,LowQ进行比较,和/或,将RHCP对应的Squal与小区测量参数集合中包含的低小区优先级预设门限值Thresh X_RHCP,LowP进行比较。
图5所示的小区选择策略中,网络设备针对不同极化方向下发不同的小区测量参数取值,从而影响终端进行小区选择或重选时的更合适的驻留小区以及极化方向的确定,实现不同极化方向的负载均衡。
参见图6,图6为本申请实施例提供的小区切换方法的一种交互示意图。本实施例中,触发切换时,源网络设备向终端发送目标小区极化方向的指示信息,使得终端根据该指示决定接入、驻留在目标小区的指定极化方向上,实现不同极化方向上的负载均衡。
S601、测量控制与上报
终端处于连接状态时,第一网络设备(如图6中的源gNB)向终端发送测量控制信息,相应的,终端接收第一网络设备下发的测量控制信息。该测量控制信息用于指示测量控制的相关配置。
该测量控制信息为单播消息,即用户特定的(UE-specific)消息。
一种可能的实现中,测量控制信息中包括极化优先级信息。
一种可能的实现中,极化优先级信息包括LHCP和RHCP对应的极化优先级信息,且不同极化方向对应的优先级信息的取值不同,可能的,取值高则说明优先级高,或者取值低则说明优先级低;
在另一种可能的实现中,极化优先级信息用于指示优先级高的极化方向,具体地,极化优先级信息包含LHCP对应的标识或者RHCP对应的标识;或者,网络设备和终端可以预先约定用“1”代表RHCP,用“0”代表LHCP,若RHCP对应的优先级较高则极化优先级对应的比特位上的值为1,若LHCP对应的优先级较高则极化优先级对应的比特位上的值为0;也可以用“1”代表LHCP,用“0”代表LHCP,本申请不做限制。
一种可能的实现中,网络设备通过RRC信令下发测量控制信息,举例来说,通过RRC连接重配置(RRC Connection Reconfiguration)消息下发测量控制信息。
终端获取测量控制信息后,根据该测量控制信息指示的相关配置进行小区测量。包括,终端在极化优先级高的极化方向上进行小区测量。
终端进行小区测量,具体地终端测量本小区和邻区的RSRP、参考信号接收质量(reference signal received quality,RSRQ)或信号干扰噪声比(signal to interference plus noise ratio,SINR)。
在满足测量报告条件时,终端通过事件向第一网络设备上报测量结果,相应的,第一网络设备接收测量结果。其中测量报告条件与现有技术相同,此处不再赘述。
S602、切换判决。
第一网络设备根据终端上报的测量结果进行评估,决定是否触发切换。
S603、切换请求。
若切换判决的结果为进行小区切换,则向第二网络设备(如图6中的目标gNB)发送切换请求,相应的,第二网络设备接收第一网络设备发送的切换请求。
S604、准入控制。
第二网络设备接收切换请求后进行准入控制和无线资源配置。
S605、切换请求确认。
第二网络设备完成准入和无线资源配置后,向第一网络设备反馈切换请求确认消息,相应的,第一网络设备接收第二网络设备发送的切换请求确认消息。
S606、触发切换。
第一网络设备接收第二网络设备发送的切换请求确认消息后,触发切换。
触发切换过程中,第一网络设备向终端发送切换指令,相应的,终端接收第一网络设备发送的切换指令。该切换指令中包含终端接入第二网络设备相关的信息。
一种可能的实现中,在极化复用场景下,切换指令中包含终端接入目标小区极化方向的指示信息。终端根据该指示信息,确定小区切换时应接入并驻留在目标小区的指定极化方向上。举例来说,若该指示信息指示LHCP,则终端接入并驻留在目标小区的左旋圆极化方向上,若该指示信息指示RHCP,则终端接入并驻留在目标小区的左旋圆极化方向上。
需要指出的是,切换指令中指示的极化方向与目标小区的不同极化方向的负载、功耗等决定。
一种可能的实现中,该指示信息携带在RRC消息中。该指示信息还可以携带在其他用户特定(UE-Specific)的消息中,本申请不做限制。
该切换指令,还包含目标小区的标识,终端的小区无线网络临时标识(Cell Access Radio  Network Temporary Identifier,C-RNTI),随机接入资源等,该切换指令还可以包含其他信息,本申请不做限制。
S607、执行小区切换。
第一网络设备触发小区切换后,执行小区切换,具体流程与现有小区切换流程类似。举例来说:终端从源小区分离,并与目标小区建立同步;第一网络设备向第二网络设备下发用户数据,该用户数据既包括缓存的用户数据,又包括正在传输中的用户数据;第二网络设备缓存用户数据;终端与目标小区建立同步并完成切换流程。
上述实施例中,网络设备下发的测量控制信息中携带极化优先级信息,和/或,在小区切换过程中向终端指示目标小区的极化方向,达到了不同负载均衡的效果。
以上描述了本申请提供的方法实施例,本申请实施例中在小区选择的策略中加入了极化方向的维度,增加了小区选择的物理维度,优化了现有的小区选择、重新策略,能保证终端确定更合适的的驻留小区。
为了实现上述本申请实施例提供的方法中的各功能,终端设备、网络设备均可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
如图7所示,基于同一技术构思,本申请实施例还提供了一种通信装置700。该通信装置700可以是终端设备或网络设备,也可以是终端设备或网络设备中的装置,或者是能够和终端设备、网络设备匹配使用的装置。一种可能的实现中,该通信装置700可以包括执行上述方法实施例中终端执行的方法/操作/步骤/动作所一一对应的模块或单元,该单元可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种可能的实现中,该通信装置700可以包括处理单元710和收发单元720。处理单元710可以用于调用收发单元720执行接收和/或发送的功能。
当通信装置700用于执行终端所执行的操作时,收发单元720,用于获取一个或多个小区的极化优先级信息,处理单元710,用于在满足小区测量条件时,根据所述极化优先级信息对所述一个或多个小区进行小区测量,并根据所述一个或多个小区的测量结果确定驻留小区。
当通信装置700用于执行网络设备所执行的操作时,处理单元710,用于确定极化优先级信息;收发单元720,用于向终端发送第一消息,该第一消息包含极化优先级信息,该极化优先级信息用于,在满足小区测量条件时,测量小区以得到小区测量结果;所述小区测量结果用于选择所述通信装置的驻留小区。
收发单元720还用于执行上述方法实施例中终端、网络设备执行的其它接收或发送的步骤或操作。处理单元710还可以用于执行上述方法实施例终端、网络设备执行的除收发之外的其它对应的步骤或操作,在此不再一一赘述。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块或单元可以集成在一个处理 器中,也可以是单独物理存在,也可以两个或两个以上模块或单元集成在一个模块或单元中。上述集成的模块或单元既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
参加图8,本申请实施例还提供了一种通信装置800,用于实现上述方法中终端设备、网络设备的功能。该通信装置可以是终端设备、网络设备,也可以是终端设备、网络设备中的装置,或者是能够和终端设备、网络设备匹配使用的装置。其中,该通信装置800可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。通信装置800包括至少一个处理器810,用于实现本申请实施例提供的方法中终端设备、网络设备的功能。通信装置800还可以包括通信接口820。在本申请实施例中,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,用于通过传输介质和其它设备进行通信。例如,通信接口820用于通信装置800中的装置可以和其它设备进行通信。
处理器810可以执行通信装置700中处理单元710所执行的功能;通信接口820可以用于执行通信装置700中收发单元720所执行的功能。
当通信装置800用于执行终端所执行的操作时,通信接口820,用于获取一个或多个小区的极化优先级信息;处理器810用于在满足小区测量条件时,根据所述极化优先级信息对所述一个或多个小区进行小区测量,并根据所述一个或多个小区的测量结果确定驻留小区。
当通信装置800用于执行网络设备所执行的操作时,处理器810,用于确定极化优先级信息;通信接口820,用于向终端发送第一消息,所述第一消息包含极化优先级信息,该极化优先级信息用于,在满足小区测量条件时,测量小区以得到小区测量结果;所述小区测量结果用于选择所述通信装置的驻留小区。
通信接口820还用于执行上述方法实施例中终端、网络设备执行的其它接收或发送的步骤或操作。处理器810还可以用于执行上述方法实施例终端、网络设备执行的除收发之外的其它对应的步骤或操作,在此不再一一赘述。
通信装置800还可以包括至少一个存储器830,用于存储程序指令和/或数据。存储器830和处理器810耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器820可能和存储器830协同操作。处理器810可能执行存储器830中存储的程序指令。在一种可能的实现中,所述至少一个存储器中的至少一个可以与处理器集成在一起。在另一种可能的实现中,存储器830位于所述通信装置800之外。
本申请实施例中不限定上述通信接口820、处理器810以及存储器830之间的具体连接介质。本申请实施例在图8中以存储器830、处理器810以及通信接口820之间通过总线840连接,总线在图8中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图8中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本申请实施例中,处理器810可以是一个或多个中央处理器(Central Processing Unit,CPU),在处理器810是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。处理器810可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编 程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
本申请实施例中,存储器830可包括但不限于硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等非易失性存储器,随机存储记忆体(Random Access Memory,RAM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、只读存储器(Read-Only Memory,ROM)或便携式只读存储器(Compact Disc Read-Only Memory,CD-ROM)等等。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。该存储器820用于相关指令及数据。
参加图9,本申请实施例还提供了一种装置900,可用于实现上述方法中终端设备、网络设备的功能,该装置900可以是通信装置或者通信装置中的芯片。该通信装置包括:
至少一个输入输出接口910和逻辑电路920。输入输出接口910可以是输入输出电路。逻辑电路920可以是信号处理器、芯片,或其他可以实现本申请方法的集成电路。
其中,至少一个输入输出接口910用于信号或数据的输入或输出。举例来说,当该装置为终端或者用于终端时,输入输出接口910用于获取第一消息,该第一消息中携带极化优先级信息和/或小区测量参数集合。又以图6所示的方法为例,输入输出接口910还可以用于输出小区测量结果以向第一网络设备上报测量结果。举例来说,当该装置为网络设备或者用于网络设备时,输入输出接口910用于向终端发送第一消息,该消息中携带极化优先级信息和/或小区测量参数集合。又以图6所示的方法为例,输入输出接口910还可以用于获取终端上报的小区测量结果。
其中,逻辑电路920用于执行本申请实施例提供的任意一种方法的部分或全部步骤。逻辑电路可以实现上述装置700中的处理单元710、装置800中的处理器810所实现的功能。
当上述通信装置为应用于终端设备的芯片时,该终端设备芯片实现上述方法实施例中终端设备的功能。该终端设备芯片从终端设备中的其它模块(如射频模块或天线)接收信息,该信息是网络设备发送给终端设备的;或者,该终端设备芯片向终端设备中的其它模块(如射频模块或天线)发送信息,该信息是终端设备发送给网络设备的。
当上述通信装置为应用于网络设备的芯片时,该网络设备芯片实现上述方法实施例中网络设备的功能。该网络设备芯片从网络设备中的其它模块(如射频模块或天线)接收信息,该信息是终端设备发送给网络设备的;或者,该网络设备芯片向网络设备中的其它模块(如射频模块或天线)发送信息,该信息是网络设备发送给终端设备的。
基于与上述方法实施例相同构思,本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被硬件(例如处理器等)执行,以实现本申请实施例中由任意装置执行的任意一种方法的部分或全部步骤。
基于与上述方法实施例相同构思,本申请实施例还提供了一种包括指令的计算机程序产 品,当所述计算机程序产品在计算机上运行时,使得所述这个计算机执行以上各方面的任意一种方法的部分或者全部步骤。
基于与上述方法实施例相同构思,本申请还提供一种芯片或芯片系统,该芯片可包括处理器。该芯片还可包括存储器(或存储模块)和/或收发器(或通信模块),或者,该芯片与存储器(或存储模块)和/或收发器(或通信模块)耦合,其中,收发器(或通信模块)可用于支持该芯片进行有线和/或无线通信,存储器(或存储模块)可用于存储程序,该处理器调用该程序可用于实现上述方法实施例、方法实施例的任意一种可能的实现方式中由终端或者网络设备执行的操作。该芯片系统可包括以上芯片,也可以包含上述芯片和其他分立器件,如存储器(或存储模块)和/或收发器(或通信模块)。
基于与上述方法实施例相同构思,本申请还提供一种通信系统,该通信系统可包括以上终端和/或网络设备。该通信系统可用于实现上述方法实施例、方法实施例的任意一种可能的实现方式中由终端或者网络设备执行的操作。示例性的,该通信系统可具有如图1或图2所示结构。
在上述实施例中,可全部或部分地通过软件、硬件、固件、或其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如软盘、硬盘、磁带)、光介质(例如光盘)、或者半导体介质(例如固态硬盘)等。在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,也可以通过其它的方式实现。例如以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可结合或者可以集成到另一个系统,或一些特征可以忽略或不执行。另一点,所显示或讨论的相互之间的间接耦合或者直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者,也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例的方案的目的。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。
以上所述,仅为本申请的一些具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可对这些实施例做出另外的变更和修改。因此,所附权利要求意欲解释为包括上述实施例以及落入本申请范围的说是有变更和修改。因此,本申请保护范围应以所述权利要求的保护范围为准。

Claims (41)

  1. 一种小区选择方法,其特征在于,包括:
    通信装置获取一个或多个小区的极化优先级信息;
    在满足小区测量条件时,根据所述极化优先级信息对所述一个或多个小区进行小区测量;
    根据所述一个或多个小区的测量结果确定驻留小区。
  2. 根据权利要求1所述的方法,其特征在于,所述小区测量条件包括以下一种或多种:
    所述通信装置处于初始接入状态或连接态;或者,
    存在小区优先级高于所述通信装置的服务小区的相邻小区;或者
    所述通信装置的服务小区满足小区测量启动门限。
  3. 根据权利要求1或2所述的方法,其特征在于,
    所述极化优先级信息用于指示小区对应的两种极化方向的优先级;
    根据所述极化优先级信息,选择优先级高的极化方向进行小区测量。
  4. 根据权利要求1至3任意一项所述的方法,其特征在于,所述根据所述一个或多个小区的测量结果确定驻留的小区,包括:
    所述通信装置获取所述一个或多个小区的小区测量参数集合;以及
    根据所述一个或多个小区的测量结果以及一个或多个小区的小区测量参数集合确定驻留的小区。
  5. 根据权利要求4所述的方法,其特征在于,
    根据一个或多个小区中每个小区的测量结果以及所述每个小区对应的小区测量参数集合获得所述每个小区的R值;以及
    根据所述一个或多个小区的R值的大小确定驻留小区。
  6. 根据权利要求5所述的方法,其特征在于,所述驻留小区的R值大于或等于所述服务小区的R值。
  7. 根据权利要求5所述的方法,其特征在于,所述根据所述一个或多个小区的R值的大小选择驻留小区,包括:
    选择R值最高的小区作为驻留小区。
  8. 根据权利要求1至7任一项所述的方法,其特征在于,所述通信装置获取一个或多个小区的极化优先级信息,包括:
    所述通信装置从广播消息中获取一个或多个小区的极化优先级信息;或者
    所述通信装置从单播消息中获取一个或多个小区的极化优先级信息。
  9. 根据权利要求1至7任意一项所述的方法,其特征在于,
    所述极化优先级信息携带在系统消息块SIB中。
  10. 根据权利要求1至9任意一项所述的方法,其特征在于,
    所述极化优先级信息用于指示优先级高的极化方向,具体为,
    所述极化优先级信息包含左旋极化对应的标识或者右旋极化对应的标识。
  11. 一种小区选择方法,其特征在于,包括:
    网络设备确定极化优先级信息;
    所述网络设备向通信装置发送第一消息,所述第一消息包含所述极化优先级信息;
    所述极化优先级信息用于,在满足小区测量条件时,测量小区以得到小区测量结果;
    所述小区测量结果用于选择所述通信装置的驻留小区。
  12. 根据权利要求11所述的方法,其特征在于,所述极化优先级信息用于小区测量以得到小区测量结果,具体包括:
    所述极化优先级信息用于指示小区对应的两种极化方向的优先级;
    其中优先级高的极化方向用于小区测量。
  13. 根据权利要求11或12所述的方法,其特征在于,所述方法还包括:
    所述第一消息还包括小区测量参数集合;
    所述小区测量参数集合用于与所述小区测量结果一同确定所述终端设备的驻留小区。
  14. 根据权利要求11至13任意一项所述的方法,其特征在于,
    所述第一消息为广播消息;或者所述第一消息为单播消息。
  15. 根据权利要求11至13任意一项所述的方法,其特征在于,
    所述极化优先级信息携带在系统消息块SIB中。
  16. 根据权利要求11至15任意一项所述的方法,其特征在于,
    所述极化优先级信息用于指示优先级高的极化方向,具体地,
    所述极化优先级信息包含左旋极化对应的标识或者右旋极化对应的标识。
  17. 一种通信装置,其特征在于,包括:
    收发单元,用于获取一个或多个小区的极化优先级信息;
    处理单元,用于在满足小区测量条件时,根据所述极化优先级信息对所述一个或多个小区进行小区测量;
    根据所述一个或多个小区的测量结果确定驻留小区。
  18. 根据权利要求17所述的装置,其特征在于,所述小区测量条件包括以下一种或多种:
    所述通信装置处于初始接入状态或连接态;或者,
    存在小区优先级高于所述通信装置的服务小区的相邻小区;或者
    所述通信装置的服务小区满足小区测量启动门限。
  19. 根据权利要求17或18所述的装置,其特征在于,所述处理单元用于根据所述极化优先级信息进行小区测量,包括:
    所述极化优先级信息用于指示小区对应的两种极化方向的优先级;
    所述处理单元具体用于,根据所述极化优先级信息,选择优先级高的极化方向进行小区测量。
  20. 根据权利要求17至19任意一项所述的装置,其特征在于,所述处理单元用于根据所述一个或多个小区的测量结果确定驻留的小区,包括:
    所述处理单元还用于,获取所述一个或多个小区的小区测量参数集合;以及
    根据所述一个或多个小区的测量结果以及一个或多个小区的小区测量参数集合确定驻留的小区。
  21. 根据权利要求20所述的装置,其特征在于,所述处理单元用于根据所述一个或多个小区的测量结果以及所述一个或多个小区的小区测量参数集合确定驻留小区,包括:
    所述处理单元具体用于,根据一个或多个小区中每个小区的测量结果,以及所述每个小区对应的小区测量参数集合获得所述每个小区的R值;以及
    根据所述一个或多个小区的R值的大小确定驻留小区。
  22. 根据权利要求21所述的装置,其特征在于,所述驻留小区的R值大于或等于所述服 务小区的R值。
  23. 根据权利要求21所述的装置,其特征在于,所述处理单元用于根据所述一个或多个小区的R值的大小选择驻留小区,包括:
    所述处理单元具体用于,选择R值最高的小区作为驻留小区。
  24. 根据权利要求18至23任意一项所述的装置,其特征在于,所述收发单元用于获取一个或多个小区的极化优先级信息,包括:
    所述收发单元从广播消息中获取一个或多个小区的极化优先级信息;或者
    所述收发单元从单播消息中获取一个或多个小区的极化优先级信息。
  25. 根据权利要求18至23任意一项所述的装置,其特征在于,
    所述极化优先级信息携带在系统消息块SIB中。
  26. 根据权利要求18至25任意一项所述的装置,其特征在于,
    所述极化优先级信息用于指示优先级高的极化方向,具体地,
    所述极化优先级信息包含左旋极化对应的标识或者右旋极化对应的标识。
  27. 一种通信装置,其特征在于,包括:
    处理单元,用于确定极化优先级信息;
    所述收发单元,用于向通信装置发送第一消息,所述第一消息包含所述极化优先级信息;
    所述极化优先级信息用于,在满足小区测量条件时,测量小区以得到小区测量结果;
    所述小区测量结果用于选择所述通信装置的驻留小区。
  28. 根据权利要求27所述的装置,其特征在于,所述极化优先级信息用于小区测量以得到小区测量结果,具体包括:
    所述极化优先级信息用于指示小区对应的两种极化方向的优先级;
    其中优先级高的极化方向用于小区测量。
  29. 根据权利要求27或28所述的装置,其特征在于,
    所述第一消息还包括小区测量参数集合;
    所述小区测量参数集合用于与所述小区测量结果一同确定所述终端设备的驻留小区。
  30. 根据权利要求27至29任意一项所述的装置,其特征在于,
    所述第一消息为广播消息;或者所述第一消息为单播消息。
  31. 根据权利要求27至29任意一项所述的装置,其特征在于,
    所述极化优先级信息携带在系统消息块SIB中。
  32. 根据权利要求27至31任意一项所述的装置,其特征在于,
    所述极化优先级信息用于指示优先级高的极化方向,具体地,
    所述极化优先级信息包含左旋极化对应的标识或者右旋极化对应的标识。
  33. 一种通信装置,其特征在于,包括处理器,用于执行计算机程序,当所述计算机程序被执行时,使得所述装置
    执行如权利要求1至10任一项所述的方法;或者
    执行如权利要求11至16任一项所述的方法。
  34. 根据权利要求35所述的通信装置,其特征在于,还包括存储器,用于存储所述计算机程序。
  35. 一种计算机可读存储介质,其特征在于,包括计算机程序,当其在计算机上执行时,使得
    权利要求1至10任一项所述的方法被执行;或者
    权利要求11至16任一项所述的方法被执行。
  36. 一种通信装置,其特征在于,包括输入输出接口和逻辑电路,
    所述输入输出接口用于获取一个或多个小区的极化优先级信息;
    所述逻辑电路用于采用权利要求1至10任一项所述的方法确定驻留小区。
  37. 根据权利要求36所述的装置,其特征在于,
    所述输入输出接口还用于输出所述一个或多个小区的测量结果。
  38. 一种通信装置,其特征在于,包括输入输出接口和逻辑电路,
    所述逻辑电路用于采用权利要求11至16任一项所述的方法确定第一消息;
    所述输入输出接口用于输出第一消息,所述第一消息包含极化优先级信息。
  39. 根据权利要求38所述的装置,其特征在于,
    所述输入输出接口还用于获取所述小区测量结果。
  40. 一种包含指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得权利要求权利要求1至10任一项所述的方法被执行;或者权利要求11至16任一项所述的方法被执行。
  41. 一种通信系统,其特征在于,包括权利要求17至26任一项所述的通信装置和权利要求27至32任一项所述的通信装置。
PCT/CN2021/101659 2020-07-03 2021-06-22 一种小区选择方法及装置 WO2022001764A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BR112022027050A BR112022027050A2 (pt) 2020-07-03 2021-06-22 Método e aparelho de seleção de célula
KR1020237003314A KR20230029950A (ko) 2020-07-03 2021-06-22 셀 선택을 위한 방법 및 디바이스
EP21832348.3A EP4171126A4 (en) 2020-07-03 2021-06-22 METHOD AND DEVICE FOR CELL SELECTION
JP2022581479A JP2023531807A (ja) 2020-07-03 2021-06-22 セル選択方法及び装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010631577.8A CN113891405A (zh) 2020-07-03 2020-07-03 一种小区选择方法及装置
CN202010631577.8 2020-07-03

Publications (1)

Publication Number Publication Date
WO2022001764A1 true WO2022001764A1 (zh) 2022-01-06

Family

ID=79013128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/101659 WO2022001764A1 (zh) 2020-07-03 2021-06-22 一种小区选择方法及装置

Country Status (6)

Country Link
EP (1) EP4171126A4 (zh)
JP (1) JP2023531807A (zh)
KR (1) KR20230029950A (zh)
CN (1) CN113891405A (zh)
BR (1) BR112022027050A2 (zh)
WO (1) WO2022001764A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115002742A (zh) * 2022-05-25 2022-09-02 Oppo广东移动通信有限公司 驻网方法及相关装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101841875A (zh) * 2009-03-16 2010-09-22 中兴通讯股份有限公司 小区重选的实现方法和装置
CN108419277A (zh) * 2017-02-09 2018-08-17 宏碁股份有限公司 供用户设备使用的小区重选方法及使用其的用户设备
CN112566195A (zh) * 2019-09-25 2021-03-26 华为技术有限公司 一种信息传输方法、装置及系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3025439B1 (en) * 2013-07-21 2021-10-27 Hughes Network Systems, LLC Space-based and mobile-terrestrial sensor vehicles and network
WO2018044693A1 (en) * 2016-08-31 2018-03-08 Intel Corporation MAINTAINING A SOURCE eNB CONNECTION DURING HANDOVER
EP4088497A4 (en) * 2020-02-14 2023-10-11 ZTE Corporation SYSTEM AND METHOD FOR RESOURCE INDICATOR SIGNALING

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101841875A (zh) * 2009-03-16 2010-09-22 中兴通讯股份有限公司 小区重选的实现方法和装置
CN108419277A (zh) * 2017-02-09 2018-08-17 宏碁股份有限公司 供用户设备使用的小区重选方法及使用其的用户设备
CN112566195A (zh) * 2019-09-25 2021-03-26 华为技术有限公司 一种信息传输方法、装置及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Discussion on physical layer control procedures for NTN", 3GPP DRAFT; R1-1911859, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20191118 - 20191122, 9 November 2019 (2019-11-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051823041 *
See also references of EP4171126A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115002742A (zh) * 2022-05-25 2022-09-02 Oppo广东移动通信有限公司 驻网方法及相关装置

Also Published As

Publication number Publication date
JP2023531807A (ja) 2023-07-25
EP4171126A4 (en) 2024-01-03
EP4171126A1 (en) 2023-04-26
KR20230029950A (ko) 2023-03-03
BR112022027050A2 (pt) 2023-01-31
CN113891405A (zh) 2022-01-04

Similar Documents

Publication Publication Date Title
EP3528543B1 (en) Cell reselection method and apparatus
US20220116844A1 (en) Method for selecting cell in ntn and apparatus
US10104566B2 (en) Reporting WiFi channel measurements to a cellular radio network
RU2770652C2 (ru) Способ связи, устройство связи и система
WO2022143564A1 (zh) 一种小区选择方法及装置
WO2022000310A1 (zh) 无线通信的方法、终端设备和网络设备
EP4250817A1 (en) Cell selection method and apparatus
US20230209426A1 (en) Cell reselection method, terminal device, and network device
US20240073808A1 (en) Cell selection method and apparatus
WO2023011424A1 (zh) 中继通信方法、通信装置和通信系统
CN114342469B (zh) 小区选择的方法与通信装置
US20230139924A1 (en) Cell Selection Method and Apparatus
WO2022001764A1 (zh) 一种小区选择方法及装置
WO2022021131A1 (zh) 重选初始带宽部分bwp的方法、终端设备和网络设备
WO2013034029A1 (zh) 多模用户设备接入的方法和基站以及多模用户设备
WO2023272490A1 (zh) 小区重选方法、终端设备、ntn设备、芯片和存储介质
WO2015032036A1 (zh) 实现蜂窝网络和无线局域网络互操作的方法和设备
WO2024187383A1 (zh) 测量方法、第一终端和服务设备
US20230337083A1 (en) Cell selection priority
CN117641519A (zh) 一种用于非地面网络的通信的方法及装置
CN116033500A (zh) 搜索网络的方法以及终端设备
CN117376844A (zh) 通信方法和装置
CN117177315A (zh) 小区重选方法及装置、存储介质、终端设备
CN118400777A (zh) 测量预测方法与装置、终端设备、网络设备和芯片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21832348

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022581479

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022027050

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112022027050

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20221229

ENP Entry into the national phase

Ref document number: 2021832348

Country of ref document: EP

Effective date: 20230123

NENP Non-entry into the national phase

Ref country code: DE