WO2020259241A1 - 一种ntn中小区选择的方法及装置 - Google Patents

一种ntn中小区选择的方法及装置 Download PDF

Info

Publication number
WO2020259241A1
WO2020259241A1 PCT/CN2020/094215 CN2020094215W WO2020259241A1 WO 2020259241 A1 WO2020259241 A1 WO 2020259241A1 CN 2020094215 W CN2020094215 W CN 2020094215W WO 2020259241 A1 WO2020259241 A1 WO 2020259241A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
decision
value
decision factor
criterion
Prior art date
Application number
PCT/CN2020/094215
Other languages
English (en)
French (fr)
Inventor
乔云飞
林美新
孟贤
汪宇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20833497.9A priority Critical patent/EP3982668A4/en
Publication of WO2020259241A1 publication Critical patent/WO2020259241A1/zh
Priority to US17/559,264 priority patent/US20220116844A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18539Arrangements for managing radio, resources, i.e. for establishing or releasing a connection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00838Resource reservation for handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/304Reselection being triggered by specific parameters by measured or perceived connection quality data due to measured or perceived resources with higher communication quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0064Transmission or use of information for re-establishing the radio link of control information between different access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • Satellite communication has the characteristics of long communication distance, large coverage area, and flexible networking. It can provide services for both fixed terminals and various mobile terminals.
  • non-terrestrial networks are introduced to the fifth generation In the mobile communication (The 5th Generation, 5G) system, it provides seamless coverage for user equipment UE by deploying base stations or part of base station functions on high-altitude platforms or satellites.
  • high-altitude platforms or satellites are less affected by natural disasters, which can improve the reliability of 5G systems.
  • NTN non-terrestrial network
  • satellites cover the ground through different beams to form satellite cells.
  • a user equipment UE can be covered by multiple satellite cells. At this time, the user equipment UE needs to select a cell or re-station. Stay in a cell.
  • NTN non-terrestrial network
  • a certain area may be covered by beams from multiple satellites at the same time, and the beam coverage duration of each satellite may also be different.
  • NTN satellite-based non-terrestrial network
  • the conventional cell selection or reselection plan only the signal power conditions are considered, and the overhead time of the satellite is not taken into consideration. It may happen that a cell with the best signal quality but short coverage time may be selected to camp on, and the terminal will quickly and again In the case of cell reselection, this increases the signaling overhead.
  • NTN due to the high-speed movement of cells in non-terrestrial networks (NTN), cell selection based on the measurement of signal power of a single parameter cannot meet the needs of different scenarios and different users.
  • This application provides a cell selection method and device in a non-terrestrial network (NTN) scenario.
  • NTN non-terrestrial network
  • a new cell selection or reselection strategy is designed.
  • a comprehensive selection method is determined. The best residential area.
  • a method for cell selection in a non-terrestrial network includes: a user equipment inquires whether there is first pre-stored information, and according to the first pre-stored information, a priority search frequency is determined; the user equipment determines The values of the first decision factor and the second decision factor in the first decision criterion; the user equipment determines the values of the first weighting coefficient and the second weighting factor in the first decision criterion; the user equipment determines the value of the first decision criterion according to the first decision criterion Search for a cell: if the value of the first decision criterion of the candidate cell meets the requirement of the camping threshold of the cell, the user equipment selects the cell with the highest value of the first decision criterion to camp on; if there is no candidate cell, the value of the first decision criterion meets When the camping threshold of the cell is required, the user equipment selects the cell with the highest value of the first decision criterion to camp on.
  • the cell in the NTN is moving at a high speed. It may happen that a cell with the best signal quality but short continuous coverage time is selected to camp, and the terminal will soon reselect the cell again. The signaling overhead is reduced.
  • the time of continuous satellite cell coverage is used as a basis for cell selection, and different weighting factors are configured, which can alleviate frequent cell switching that may occur solely relying on signal quality selection.
  • the expression of the first judgment criterion is:
  • X lex A*(Signal_Quality/Signal_Quality_reference)+B*(DurationTime beam /DurationTime beam _reference)
  • Signal_Quality/Signal_Quality_reference (signal quality ratio) is the first decision factor
  • DurationTime beam /DurationTime beam _reference (beam coverage time ratio) is the second decision factor
  • A is the first weighting coefficient, used to characterize the first decision factor based on The weight in the cell selection decision of the first decision criterion
  • B is the second weighting coefficient, which is used to characterize the weight of the second decision factor in the cell selection decision based on the first decision criterion
  • the functional relationship of the first decision criterion X lex is The values of the first decision factor and the second decision factor are respectively weighted by the first weighting coefficient and the second weighting coefficient and then added.
  • the types of parameters that need to be evaluated during cell selection are increased, and the corresponding criteria are modified.
  • the corresponding criteria are modified.
  • the value of Signal_Quality (signal quality) in the first decision factor is the value of the S criterion in the existing standard.
  • the cell selection criterion S criterion in the cellular network is used for reference to increase the reliability of the cell selection decision criterion in the NTN proposed in this application.
  • the value method of DurationTime beam (beam coverage time) in the second decision factor includes: The network-side system divides the ground into several geographic grids; the network-side system obtains the beam coverage information in a certain period of time in each grid based on the ephemeris; the network-side system dispatches satellite network equipment to the beam coverage information It is issued to the user equipment in each grid; it also includes that the user equipment in each grid queries the current time, compares it with the received beam coverage information, and obtains the DurationTime beam (beam) in the second decision factor. Coverage time) value.
  • the continuous coverage time of the satellite cell in a specific area can be notified to the user equipment in the area by broadcasting, and the user equipment can obtain the DurationTime beam (beam coverage time) in the second decision factor after processing.
  • the value of the DurationTime beam (beam coverage time) can subsequently be used as the basis for determining cell selection in the first decision criterion.
  • the beam coverage information includes: beam identification code (ID), start time of beam coverage of the current grid, beam coverage The end time of the current grid.
  • ID beam identification code
  • start time of beam coverage of the current grid beam coverage The end time of the current grid.
  • the user equipment can calculate the value of the DurationTime beam (beam coverage time) in the first decision factor based on the above parameters and in combination with the current time queried.
  • the beam coverage information further includes: a beam identification code (ID), a beam coverage of the current grid Start time, the duration of the beam covering the current grid.
  • ID a beam identification code
  • the user equipment can also calculate the value of the DurationTime beam (beam coverage time) in the first decision factor based on the above parameters and combined with the current time that is queried.
  • Signal_Quality_reference reference signal quality
  • DurationTime beam _reference reference beam coverage time
  • a user equipment or query obtained by calculation Signal_Quality_reference (reference signal quality) and DurationTime beam _reference (reference beam coverage time) value, and thus obtain a first decision criterion in the decision to take a first factor and a second factor decision
  • the value of the first decision criterion is finally obtained, which is used for the user equipment to perform cell selection.
  • the values of Signal_Quality_reference (reference signal quality) and DurationTime beam _reference (reference beam coverage time) are used to normalize Signal_Quality (signal quality) and DurationTime beam (beam coverage time) to unify the dimensions.
  • the value of the first weighting coefficient and the second weighting coefficient in the first decision criterion is determined
  • the method includes: configuring the values of the first weighting coefficient and the second weighting coefficient based on the service type.
  • the user equipment can configure different values of the first weighting coefficient and the second weighting coefficient according to different service types.
  • This value configuration mode meets the requirements of different scenarios and different user equipment, and is used for the user equipment to obtain more Reasonable weighting coefficient value.
  • the service type includes at least one of the following: IOT device, fixed access point, and mobile device.
  • a weighting coefficient configuration method for different application scenarios and different user equipment types is provided, which meets the requirements of different scenarios and different user equipment, and can realize an optimized cell selection strategy.
  • the value of the first weighting coefficient and the second weighting coefficient in the first decision criterion is determined
  • the method further includes: configuring the values of the first weighting coefficient and the second weighting coefficient based on the service duration.
  • the first pre-stored information includes: a carrier frequency.
  • the user equipment UE in cell selection based on stored information, for example, if the pre-stored information is a carrier frequency, the user equipment UE will preferentially select a cell with pre-stored carrier frequency information to camp on. If the cell where the carrier frequency is stored is not suitable, the user equipment UE initiates the initial cell selection.
  • a method for cell reselection in a non-terrestrial network includes: a user equipment inquires whether there is second pre-stored information, and according to the second pre-stored information, a priority search frequency is determined; Determine the values of the third decision factor and the fourth decision factor in the second decision criterion; the user equipment determines the camping cell according to the priority order determined in the second decision criterion; when the priority of the third decision factor is higher than the fourth decision factor Decision factor: If the value of the third decision factor of the current cell is lower than the preset threshold, and there is at least one neighboring cell whose value of the third decision factor is higher than the preset threshold, select the cell with the largest value of the third decision factor camping; if the value of the third decision factor of the current cell is lower than the preset threshold, and there is no neighboring cell whose value of the third decision factor is higher than the preset threshold, the cell with the largest value of the fourth decision factor is selected to camp on ;
  • the continuous coverage time of the satellite cell is used as a basis for cell selection, and according to the principle of priority and considering different parameters, the implementation method is simpler than that of the cell selection method in the first aspect.
  • the expression of the second judgment criterion is:
  • X lex Priority(Signal_Quality,DurationTime beam )
  • the functional relationship of the second decision criterion X lex is to determine the priority order of the third decision factor Signal_Quality (signal quality) and the fourth decision factor DurationTime beam (beam coverage time) in the cell selection decision according to the agreed Priority (priority).
  • the types of parameters that need to be evaluated during cell selection are increased, priority functions are configured, and new cell selection criteria are generated.
  • the implementation process of the cell selection method in the first aspect is simpler.
  • the value of the third decision factor Signal_Quality is the value of the S criterion in the existing standard.
  • the cell selection criterion S criterion in the cellular network is used for reference to increase the reliability of the cell selection decision criterion in the NTN proposed in this application.
  • the value method of the fourth decision factor DurationTime beam includes: network The side system divides the ground into several geographic grids; the network side system obtains the beam coverage information in a certain period of time in each grid based on the ephemeris; the network side system schedules satellite network equipment to download the beam coverage information It is sent to the user equipment in each grid; it also includes that the user equipment in each grid queries the current time, compares it with the received beam coverage information, and obtains the fourth decision factor DurationTime beam (beam coverage time ) Value.
  • the continuous coverage time of the satellite cell in a specific area can be notified to the user equipment in the area by broadcasting, and the user equipment can obtain the fourth decision factor DurationTime beam (beam coverage time) after processing.
  • the DurationTime beam (beam coverage time) can be subsequently used as a basis for determining cell selection.
  • the beam coverage information includes: beam identification code (ID), start time of beam coverage of the current grid, beam coverage The end time of the current grid.
  • ID beam identification code
  • start time of beam coverage of the current grid beam coverage The end time of the current grid.
  • the user equipment can calculate the value of the fourth decision factor DurationTime beam (beam coverage time) based on the above parameters and combined with the current time queried.
  • the beam coverage information further includes: a beam identification code (ID), a beam coverage of the current grid Start time, the duration of the beam covering the current grid.
  • ID a beam identification code
  • the user equipment may also calculate the value of the fourth decision factor DurationTime beam (beam coverage time) based on the above parameters and combined with the current time that is queried.
  • the second pre-stored information includes: a carrier frequency.
  • the user equipment UE in cell selection based on stored information, for example, if the pre-stored information is a carrier frequency, the user equipment UE will preferentially select a cell with pre-stored carrier frequency information to camp on. If the cell where the carrier frequency is stored is not suitable, the user equipment UE initiates the initial cell selection.
  • a terminal device including: a transceiver unit, configured to receive beam coverage information issued by a satellite network device; a processing unit, configured to query whether there is first pre-stored information, and determine according to the first pre-stored information The frequency of priority search; also used to determine the values of the first decision factor and the second decision factor in the first decision criterion; also used to determine the values of the first weighting coefficient and the second weighting factor in the first decision criterion; It is used to search for the cell according to the determined first decision criterion: if the value of the first decision criterion of the candidate cell meets the requirement of the camping threshold of the cell, the processing unit selects the cell with the highest value of the first decision criterion to camp on; if there is no candidate When the value of the first decision criterion of the cell meets the requirement of the camping threshold of the cell, the processing unit selects the cell with the highest value of the first decision criterion to camp on.
  • the terminal equipment is used to perform operations
  • the processing unit is further configured to: query whether there is second pre-stored information, determine the frequency of priority search based on the second pre-stored information, and determine the second The value of the third decision factor and the fourth decision factor in the decision criterion; determine the camping cell according to the priority order determined in the second decision criterion; when the priority of the third decision factor is higher than the fourth decision factor: if When the value of the third decision factor of the current cell is lower than the preset threshold, and the value of the third decision factor of at least one neighboring cell is higher than the preset threshold, the cell with the largest value of the third decision factor is selected to camp on; When the value of the third decision factor of the cell is lower than the preset threshold, and the value of the third decision factor of no neighboring cell is higher than the preset threshold, the cell with the largest value of the fourth decision factor is selected to camp on; When the priority of the factor is higher than the third decision factor: If the value of the fourth decision factor of
  • a satellite network device including: a transceiver unit, configured to receive scheduling information related to beam coverage information issued by a network-side system; and also configured to send beam coverage information to user equipment in each grid
  • the processing unit is used to process the scheduling information related to the beam coverage information sent by the network side system, and to control the sending process of the beam coverage information.
  • the satellite network device is used to perform operations performed by the satellite network device in the cell selection or reselection method in the NTN provided in the first aspect and the second aspect.
  • a communication device configured to perform the cell selection or reselection method in the NTN provided in the first and second aspects above.
  • the communication device also includes a module for executing the cell selection or reselection method in the NTN provided in the first aspect and the second aspect.
  • a communication device in a sixth aspect, includes a memory and a processor, the memory is used to store instructions, the processor is used to execute the instructions stored in the memory, and the execution of the instructions stored in the memory causes the processor to execute the first
  • the second aspect provides a method for cell selection or reselection in NTN.
  • a chip in a seventh aspect, includes a processing module and a communication interface.
  • the processing module is used to control the communication interface to communicate with the outside.
  • the processing module is also used to implement the NTN cell selection provided in the first and second aspects. Or re-selection method.
  • An eighth aspect provides a computer-readable storage medium on which a computer program is stored.
  • the computer program When the computer program is executed by a computer, the computer realizes the method for cell selection or reselection in the NTN provided in the first and second aspects.
  • a computer program product containing instructions which when executed by a computer causes the computer to implement the cell selection or reselection methods in the NTN provided in the first and second aspects.
  • a communication system including the communication device provided in the fifth aspect for executing the method provided in the first aspect, and the communication device provided in the fifth aspect for executing the method provided in the second aspect.
  • the communication device provided in the fifth aspect for executing the method provided in the first aspect is a terminal device or a satellite network device.
  • the communication device provided in the fifth aspect for executing the method provided in the second aspect is a terminal device or a satellite network device.
  • the method for user equipment cell selection or reselection in NTN increases the types of parameters that need to be evaluated during cell selection. By configuring different weighting factors or configuring priority functions, multiple factors are considered comprehensively. As a result, more reasonable cell selection criteria are obtained, and an optimized cell selection strategy is realized.
  • Figure 1 is a typical network application architecture applied to this application
  • Figure 2 is a simulation diagram of a situation where a certain area is simultaneously covered by beams from multiple satellites;
  • FIG. 3 is a schematic flowchart of a method 300 for user cell selection in NTN proposed by this application;
  • FIG. 4 is a schematic diagram of a method 500 for obtaining beam coverage time proposed in this application.
  • FIG. 5 is a method flowchart of the method 500 for obtaining beam coverage time proposed by this application.
  • FIG. 6 is a schematic flowchart of a method 600 for user cell reselection in NTN proposed in this application;
  • FIG. 7 is a schematic block diagram of a communication device 700 according to an embodiment of the application.
  • FIG. 8 is a schematic block diagram of a communication device 800 according to an embodiment of the application.
  • FIG. 9 is a schematic structural diagram of a simplified terminal device 900 according to an embodiment of the application.
  • This application belongs to the category of satellite communications.
  • Each member of 3GPP integrates satellite communications and 5G technologies, and proposes a typical network application architecture as shown in FIG. 1 that can be applied to this application.
  • the ground mobile user equipment UE accesses the network through the 5G new air interface, and the 5G base station is deployed on the satellite and connected to the ground core network through a wireless link.
  • the wireless link there is a wireless link between the satellites to complete the signaling interaction and user data transmission between the base station and the base station.
  • the network elements in Figure 1 and their interfaces are described as follows:
  • User equipment mobile equipment that supports 5G new air interface, typically mobile equipment such as user terminals and wearable devices. You can access the satellite network through the air interface and initiate calls, Internet access and other services.
  • 5G base station It mainly provides wireless access services, dispatches wireless resources to access terminals, and provides reliable wireless transmission protocols and data encryption protocols.
  • 5G core network user access control, mobility management, session management, user security authentication, billing and other services. It is composed of multiple functional units, which can be divided into functional entities of the control plane and the data plane. Access and mobility management unit (AMF), responsible for user access management, security authentication, and mobility management.
  • AMF Access and mobility management unit
  • the user plane unit (UPF) is responsible for the management of user plane data transmission, traffic statistics, security eavesdropping and other functions.
  • Ground station responsible for forwarding signaling and service data between the satellite base station and the 5G core network.
  • 5G New Air Interface The wireless link between user equipment and base station.
  • Xn interface The interface between the 5G base station and the base station, which is mainly used for signaling interaction such as handover.
  • NG interface The interface between the 5G base station and the 5G core network, which mainly interacts with the core network's NAS and other signaling, as well as user service data.
  • this application proposes a cell selection method in NTN scenarios, designs a new cell selection or reselection strategy, and comprehensively determines an optimal cell selection or reselection strategy by introducing multiple parameters including the beam duration coverage time Resident cell.
  • Satellite communication systems can include various non-terrestrial network systems, which will not be listed here.
  • the user equipment involved in the embodiments of this application may refer to terminal equipment, access terminals, user units, user stations, mobile stations, mobile stations, remote stations, remote terminals, mobile equipment, user terminals, terminals, wireless communication equipment, user agents Or user device.
  • the user equipment can also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), with wireless communication Functional handheld devices, computing devices, or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in 5G networks, or terminals in the future evolution of public land mobile network (PLMN) Equipment etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the satellite network equipment involved in the embodiments of this application can be used to communicate with one or more user equipment, and can also be used to communicate with one or more base stations with partial terminal functions (such as macro base stations and micro base stations, such as Entry point, communication between).
  • the base station may be an evolved base station (evolved Node B, eNB) in the LTE system, or a base station (gNB) in a 5G system, an NR system, and other satellite base stations and satellite relay nodes.
  • the base station can also be an access point (AP), a transport point (TRP), a central unit (CU) or other network entities, and can include some or all of the above network entity functions Features.
  • the two descriptions of "cell” and “base station in the cell” are equivalent. That is, the cell mentioned in this application refers to the base station in the cell.
  • the two descriptions of "satellite” and “satellite network equipment” are also equivalent. That is, the satellite mentioned in this application means a collection of satellites and other network equipment related to satellite communications.
  • Cell Selection When the user equipment UE is powered on or enters the coverage area from the blind area, the user equipment UE will search for all frequencies allowed by the public land mobile network (PLMN) and select the appropriate cell to camp on. This process is called "Cell Selection”.
  • Cell selection types include initial cell selection and cell selection based on stored information. Regardless of the type of cell selection, it is necessary to measure the cell to be selected in order to evaluate the channel quality and determine whether it meets the camping conditions.
  • the cell selection criterion in the cellular network is called the S criterion, and the cell selection S value Srxlev>0 allows camping.
  • the user equipment UE has stored carrier frequency related information, and may also include some cell parameter information, for example, obtained from previously received measurement control information or from previously camped or detected cells.
  • the user equipment UE will preferentially select a cell with relevant information. Once a suitable cell appears, the user equipment UE will select the cell and camp on it. If none of the cells where the related information is stored is not suitable, the user equipment UE will initiate initial cell selection.
  • the cell selection criterion in the cellular network the expression of the S criterion is:
  • Qrxlevmeas the value of Reference Signal Receiving Power (RSRP) measured by the user equipment in the cell, in dBm;
  • Qrxlevmin The minimum received strength requirement of the reference signal received power RSRP in the cell, obtained from the broadcast message, in dBm;
  • Qrxlevminoffset For the offset value of Qrxlevmin, when the user equipment UE residing on the VPLMN searches for a high-priority PLMN, in order to prevent ping-pong reselection, a certain offset value can be set. This value is mainly used for different Between user equipment operators;
  • Pcompensation equal to MAX(Pemax-Pumax, 0), that is, the difference between the maximum uplink transmit power allowed by the user equipment UE in the cell and the actual maximum uplink transmit power of the user equipment UE is compared with the value 0. The larger value in dBm;
  • Pemax the maximum uplink transmit power allowed by the user equipment UE in the cell, obtained from the broadcast message, in dBm;
  • Pumax The maximum uplink transmit power determined by the user equipment UE capability, defined by the standard, in dBm;
  • the user equipment UE When the user equipment UE performs cell selection, it obtains the Qrxlevmeas value of the cell through measurement, obtains other parameters in the S criterion formula through the system information of the cell and its own capability level, calculates the Srxlev, and then compares it with 0. If Srxlev>0, the user equipment UE considers that the cell meets the channel quality requirements for cell selection and can select it as the camping cell. If the system information of the cell indicates that it is allowed to camp on, the user equipment UE will choose to camp on this cell and enter the idle mode.
  • the mobility measurement in the cellular system is the measurement in the connected state only.
  • the network sends the measurement configuration to the user equipment UE
  • the UE detects the signal status of nearby cells according to the measurement object indicated in the measurement configuration, report configuration and other parameters, fills in the measurement report and feeds it back to the network for the network to make handover decisions or improve neighbors. District list relations, etc.
  • Cell reselection refers to a process in which the user equipment UE selects a best cell to provide a service signal by measuring the signal quality of the neighboring cell and the current cell in the idle mode. When the signal quality and level of the neighboring cell meet the S criterion and a certain reselection decision criterion, the UE will access the cell and camp.
  • Cell reselection can be divided into intra-frequency cell reselection and inter-frequency cell reselection. Same frequency cell reselection can solve the wireless coverage problem, and different frequency cell reselection can not only solve the wireless coverage problem, but also achieve load balancing by setting the priority of different frequency points.
  • the radio resource control layer calculates the S value Srxlev according to the reference signal receiving power (RSRP) measurement result, and compares it with the same frequency measurement start threshold (Sintrasearch) and inter-frequency and inter-system measurement
  • the start threshold (Snonintrasearch) is compared as a judgment condition for whether to start neighboring cell measurement.
  • the user equipment UE performs intra-frequency or inter-frequency measurements on nearby cells, obtains candidate cells according to the measurement results, and then ranks the candidate cells according to certain criteria to obtain reselection target cells.
  • NTN non-terrestrial networks
  • X Lex, Lex X when the value of a cell X criterion> X allows the resident time threshold, represented by the following general guidelines:
  • X lex Function(Signal_Quality_Related_Parameter,DurationTime beam _Related_Parameter,Parameter1,Parameter2%)
  • X threshold the decision threshold for cell selection under the X criterion
  • DurationTime beam _Related_Parameter related parameters of beam coverage time
  • this application provides a method 300 for a user in a non-terrestrial network (NTN) for cell selection.
  • NTN non-terrestrial network
  • X lex A*(Signal_Quality/Signal_Quality_reference)+B*(DurationTime beam /DurationTime beam _reference)
  • the first decision factor signal quality ratio (Signal_Quality/Signal_Quality_reference)
  • the second decision factor beam coverage time ratio DurationTime beam /DurationTime beam _reference) are the normalized reference values respectively.
  • the function relationship of the X criterion X lex is that the values of the above two decision factors are respectively weighted by the first weighting coefficient A and the second weighting coefficient B and then added.
  • weighting coefficients A, B signals are used to characterize the mass ratio (Signal_Quality / Signal_Quality_reference) beam coverage and the time ratio (DurationTime beam / DurationTime beam _reference) selection judgment based on cell weight in the X criterion.
  • the value of the signal quality (Signal_Quality) in the signal quality ratio (Signal_Quality/Signal_Quality_reference) of the first decision factor can be reused with the S criterion in the existing standard, that is, the value of the S criterion Srxlev.
  • Second decision beam coverage beam time factor ratio (DurationTime beam / DurationTime beam _reference) beam coverage in time (DurationTime beam) values can be made in accordance with the present application time obtaining method of obtaining cover 500, as will be described in detail here No longer.
  • the value is a known preset value of the user equipment.
  • the value can be changed according to different application scenarios, different user equipment manufacturers, different user equipment operators, and other factors.
  • the preset value can be calculated or inquired by the user equipment.
  • the values of the weighting coefficients A and B can have multiple configurations.
  • the user equipment can look up the table based on the current service, such as service type, service duration, etc., to determine the value configuration of A and B in the current X criterion.
  • the values of weighting coefficients A and B include, but are not limited to, the configuration types in the following table.
  • the values of A and B can also be configured according to any combination of different configuration types in the following table, or they can be in Table 1.
  • the combination of the configuration types in Table 2 and other configuration types is not limited in this application. For example, based on the service types in Table 1, configure the values of A and B.
  • the device type of the user equipment is an IOT device
  • the value of the first weighting factor A can be 1, and the value of the second weighting factor B
  • the main focus is on communication throughput.
  • the device type of the user equipment is a fixed access point
  • the value of the first weighting coefficient A can be 0.1
  • the second The value of the weighting coefficient B is 0.9
  • the value of the first weighting coefficient A can be 0.5
  • the second weighting coefficient The value of B is 0.5.
  • the values of A and B can be configured according to other service types, such as other application scenarios, other user equipment manufacturers, or other user equipment operators. Table 1 is only an example and is not limited. Repeat it again.
  • the values of the weighting coefficients A and B can also be configured based on the service duration.
  • the service duration is the beam coverage time of the satellite, and the values of A and B are configured.
  • the value of the specific weighting coefficient A is 0, and the value of B is 1.
  • the value of the specific weighting coefficient A is 0.1
  • B The value of is 0.9.
  • the values of A and B can also be configured according to the duration of other services.
  • the values of A and B can be configured according to the service duration of other application scenarios, other user equipment manufacturers, or other user equipment operators. 2 is only an example and not a limitation, and will not be repeated here.
  • Table 1 Configure the values of A and B based on the service type
  • this application proposes a method 300 for user cell selection in NTN, and the method flow is shown in FIG. 3.
  • the user cell selection method 300 may be executed by a terminal device, or may also be executed by a device such as a chip or a circuit configured in the terminal device.
  • the method 300 mainly includes the following steps:
  • the user equipment queries whether there is pre-stored information, and determines the frequency of preferential search according to the pre-stored information.
  • the pre-stored information includes carrier frequency, etc., and may also include parameter information of some cells, for example, measurement control information previously received or related information in a previously camped or detected cell.
  • the user equipment UE will preferentially select a cell with pre-stored information to camp on. If none of the cells where the pre-stored information is stored is inappropriate or there is no cell containing the pre-stored information, the user equipment UE will initiate an initial cell selection.
  • the user equipment determines the values of the two decision factors.
  • the value of the signal quality (Signal_Quality) in the signal quality ratio (Signal_Quality/Signal_Quality_reference) of the first decision factor can be reused with the S criterion in the existing standard, which is equal to the value of Srxlev.
  • the S criterion in existing standards is:
  • Qrxlevmeas the value of Reference Signal Receiving Power (RSRP) measured by the user equipment in the cell, in dBm;
  • Qrxlevmin The minimum received strength requirement of the reference signal received power RSRP in the cell, obtained from the broadcast message, in dBm;
  • Qrxlevminoffset The offset value of Qrxlevmin.
  • a certain offset value can be set. This value is mainly applied to different user equipment Between operators;
  • Pcompensation equal to MAX(Pemax-Pumax, 0), that is, the difference between the maximum uplink transmit power allowed by the user equipment UE in the cell and the actual maximum uplink transmit power of the user equipment UE is compared with the value 0. The larger value in dBm;
  • Pemax the maximum uplink transmit power allowed by the user equipment UE in the cell, obtained from the broadcast message, in dBm;
  • Pumax The maximum uplink transmit power determined by the user equipment UE capability, defined by the standard, in dBm;
  • the user equipment UE When the user equipment UE performs cell selection, it obtains the Qrxlevmeas value of the cell through measurement, and obtains the Qrxlevmin, Qrxlevminoffset, Pemax, and Qoffsettem values of the cell through satellite network equipment or system broadcast messages issued by the cell, and obtains it through its own capability level and standard definitions
  • the value of Pumax in the S criterion formula is finally calculated to obtain the value of Srxlev, which is the value of signal quality (Signal_Quality).
  • the value of the reference signal quality (Signal_Quality_reference) in the signal quality ratio (Signal_Quality/Signal_Quality_reference) of the first decision factor defaults to a known preset value, which can be operated according to different application scenarios, different user equipment manufacturers, and different user equipment
  • the quotient and other related factors change, and the preset value can be calculated or inquired by the user equipment.
  • the value of the reference beam coverage time (DurationTime beam _reference) in the second decision factor beam coverage time ratio (DurationTime beam /DurationTime beam _reference) defaults to a known preset value, which can be based on different application scenarios and different users When equipment manufacturers, different user equipment operators, and other related factors change, the preset value can be calculated or inquired by the user equipment.
  • the user equipment determines the value configuration of A and B in the X criterion.
  • the user equipment can look up the table according to its own equipment type and other parameters to determine the values of A and B in the X criterion.
  • the weighting coefficient can have multiple configurations, and the user can determine the value configuration of A and B in the current X criterion by looking up the table based on the current business.
  • the business type as shown in Table 1 above, check the table to determine the value configuration of A and B in the current X criterion; optionally, it can also be based on the business duration, as shown in Table 2 above.
  • the value configuration of A and B in the X criterion is based on the business type, as shown in Table 1 above.
  • the value configurations of A and B include, but are not limited to, the configurations in Table 1 and Table 2 above, and can also be any combination of the configuration types in Table 1 and Table 2, and can also be the configuration types in Table 1 and Table 2.
  • the combination of other configuration types is not limited in this application.
  • the user equipment searches for a cell according to the determined X criterion.
  • the user equipment calculates the value of the X criterion X lex according to the values of the two decision factors obtained in step 320 and the values of the two weighting coefficients obtained in step 330, and then based on the aforementioned X criterion formula in this embodiment.
  • the cell with the highest value of X criterion X lex is selected to camp on;
  • the cell with the highest value of X criterion X lex is selected to camp on.
  • the cell in the NTN is moving at a high speed. It may happen that a cell with the best signal quality but short continuous coverage time is selected to camp, and the terminal will soon reselect the cell again. Increased signaling overhead.
  • the solution provided by this application uses the continuous coverage time of the satellite cell as a basis for cell selection, increases the types of parameters that need to be evaluated during cell selection, and comprehensively considers multiple factors by configuring different weighting factors The influence of the signal quality is alleviated, and frequent cell handovers that may occur solely relying on signal quality as the basis for cell selection are alleviated, signaling overhead is reduced, and more reasonable cell selection criteria are obtained.
  • FIG. 4 is a schematic diagram of a method 500 for obtaining a beam coverage time proposed by this application
  • FIG. 5 is a flowchart of the method.
  • the method 500 for obtaining a beam coverage time will be used to determine the method 300 for the user to perform cell selection and the following user to perform cell selection.
  • the network-side system obtains beam coverage information in a certain period of time in each grid based on the ephemeris.
  • the network side system schedules the satellite to deliver the beam coverage information to the user equipment in each grid.
  • the issued beam coverage information includes a beam identification code (ID), the start time of the beam coverage of the current grid, and the end time of the beam coverage of the current grid.
  • the beam coverage information may also include beam identification code (ID), the start time of the beam coverage of the current grid, the duration of the beam coverage of the current grid, and other forms, which are not limited in this application.
  • the satellites in this operation can be understood as satellites related to satellite communication and related network equipment, which can be referred to as satellite network equipment.
  • Satellite A SatA
  • satellite B SatB
  • Grid3 Grid3
  • the first column of Grid ID represents the geographical grid after the ground is divided, for example, Grid3;
  • the second column of Beam ID represents the different beams emitted by the satellite, for example, SatB_Beam1, SatB_Beam2;
  • the third column represents a certain satellite launched The start time of the beam coverage of the beam in a certain area, for example, T 2 , T 4 ;
  • the fourth column represents the end time of the beam coverage of a certain beam transmitted by a satellite in a certain area, for example, T 1 , T 5 .
  • Satellite ASatA covers two grids, grid 1 (Gridl) and grid 2 (Grid2), and its broadcast information is:
  • the first column of Grid ID represents the geographical grid after the ground is divided, for example, Grid1, Grid2;
  • the second column of Beam ID represents the different beams launched by the satellite, for example, SatA_Beam1, SatA_Beam2;
  • the third column represents the satellite launched The start time of the beam coverage of a certain beam in a certain area, for example, T 2 , T 4 ;
  • the fourth column represents the end time of the beam coverage of a certain beam transmitted by a satellite in a certain area, for example, T 1 , T 5 .
  • the user equipment in each grid queries the current time, compares it with the received beam coverage information, and obtains the value of the beam coverage time (DurationTime beam ).
  • the current time queried by the user equipment, the start time of beam coverage in a certain area of a beam transmitted by the satellite, and the end time of beam coverage are all absolute times.
  • the user equipment can perform subtraction based on the end time of beam coverage, and the current time or start time of beam coverage, or subtract based on the start time of beam coverage, the duration of beam coverage, and the current time that is queried , Calculate the remaining beam coverage time of a certain beam of a certain satellite.
  • the beam coverage time of a satellite cell to a specific area can be notified to user equipments in the area by broadcasting as a basis for determining cell selection.
  • this application also provides another method 600 for user cell reselection in NTN.
  • NTN non-terrestrial network
  • X lex Priority(Signal_Quality,DurationTime beam )
  • the function relationship of the X criterion X lex is to determine the decision factor according to the agreed priority (Priority) order: the priority order of the signal quality (Signal_Quality) and the beam coverage time (DurationTime beam ) in the cell selection decision.
  • FIG. 6 is a schematic flowchart of a method 600 for a user to perform cell selection in the NTN proposed in this application. As shown in Figure 6, the method includes the following steps:
  • the user equipment queries whether there is pre-stored information, and determines a priority search frequency according to the pre-stored information.
  • the pre-stored information includes carrier frequency, etc., and may also include parameter information of some cells, for example, previously received measurement control information or related information in a previously camped or detected cell.
  • the user equipment UE will preferentially select a cell with pre-stored information to camp on. If none of the cells where the pre-stored information is stored is inappropriate or there is no cell containing the pre-stored information, the user equipment UE will initiate an initial cell selection.
  • the user equipment determines the values of the two decision factors.
  • the value of the third decision factor signal quality can reuse the S criterion in the existing standard, which is equal to the value of Srxlev.
  • the S criterion in existing standards is:
  • Qrxlevmeas the value of Reference Signal Receiving Power (RSRP) measured by the user equipment in the cell, in dBm;
  • Qrxlevmin The minimum received strength requirement of the reference signal received power RSRP in the cell, obtained from the broadcast message, in dBm;
  • Qrxlevminoffset The offset value of Qrxlevmin.
  • a certain offset value can be set. This value is mainly used for different user equipment Between operators;
  • Pcompensation equal to MAX(Pemax-Pumax, 0), that is, the difference between the maximum uplink transmit power allowed by the user equipment UE in the cell and the actual maximum uplink transmit power of the user equipment UE is compared with the value 0. The larger value in dBm;
  • Pemax the maximum uplink transmit power allowed by the user equipment UE in the cell, obtained from the broadcast message, in dBm;
  • Pumax The maximum uplink transmit power determined by the user equipment UE capability, defined by the standard, in dBm;
  • the value of the fourth decision factor beam coverage time (DurationTime beam ) can also be obtained according to the above-mentioned beam coverage time acquisition method 500.
  • the user equipment determines the cell to camp on according to the priority order agreed in the X criterion.
  • the signal quality (Signal_Quality) of the current cell is lower than the preset threshold, and the signal quality (Signal_Quality) of at least one neighboring cell is higher than the preset threshold, select the cell with the highest signal quality (Signal_Quality) to camp on;
  • the cell with the longest beam coverage time (DurationTime beam ) is selected to camp on.
  • DurationTime beam If the current cell beam coverage time (DurationTime beam ) is lower than the preset threshold, and there is at least one neighboring cell's beam coverage time (DurationTime beam ) greater than the preset threshold, select the cell with the longest beam coverage time (DurationTime beam ) to camp on ;
  • the cell with the highest signal quality (Signal_Quality) is selected to camp on.
  • NTN non-terrestrial network
  • the duration of satellite cell coverage is used as a basis for cell selection.
  • different parameters are considered to generate new cell selection criteria.
  • the implementation method is relative to the first This embodiment is simpler.
  • the cell in the NTN is moving at a high speed. It may happen that a cell with the best signal quality but short continuous coverage time is selected to camp, and the terminal will soon reselect the cell again. Increased signaling overhead.
  • Cell selection can be optimized by configuring different parameter combinations for different users and different scenarios. Cell selection strategy.
  • the types of parameters that need to be evaluated during cell selection are increased. By configuring different weighting factors and comprehensively considering the influence of multiple factors, more reasonable cell selection criteria can be obtained.
  • the methods and operations implemented by user equipment can also be implemented by components (such as chips or circuits) that can be used in user equipment
  • the methods and operations implemented by satellite network equipment can also be implemented It is implemented by components (such as chips or circuits) that can be used in satellite network equipment.
  • each device such as a user equipment or a satellite network device
  • each device includes hardware structures and/or software modules corresponding to each function in order to implement the above-mentioned functions.
  • this application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiments of the present application can divide user equipment or satellite network equipment into functional modules based on the foregoing method examples.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation. The following is an example of dividing each function module corresponding to each function.
  • FIG. 7 is a schematic block diagram of a communication device 700 according to an embodiment of the application.
  • the communication device 700 includes a transceiver unit 710 and a processing unit 720.
  • the transceiver unit 710 can communicate with the outside, and the processing unit 720 is used for data processing.
  • the transceiving unit 710 may also be referred to as a communication interface or a communication unit.
  • the terminal device 700 can be used to perform the actions performed by the user equipment in the above method embodiment, or perform the actions performed by the satellite in the above method embodiment.
  • the communication device 700 may be used to perform the actions performed by the user equipment in the above method embodiments.
  • the communication device 700 may be referred to as a terminal device.
  • the transceiving unit 710 is configured to perform transceiving-related operations on the user equipment side in the above method embodiment
  • the processing unit 720 is configured to perform processing related operations on the user equipment in the above method embodiment.
  • the transceiver unit 710 is used to receive beam coverage information issued by a satellite; it is also used to receive system broadcast messages and reference signals related to calculating the value of the S criterion issued by a satellite or a cell.
  • the processing unit 720 is used to query whether there is pre-stored information, and to determine the frequency of priority search according to the pre-stored information; it is also used to determine two decision factors: signal quality ratio (Signal_Quality/Signal_Quality_reference) and beam coverage time ratio (DurationTime beam / DurationTime beam _reference); also used to determine the value configuration of A and B in the X criterion; also used to search for cells according to the determined X criterion: if the value of the X criterion X lex of the candidate cell meets the requirements of the camping threshold , Select the cell with the highest value of X criterion X lex to camp on; if there is no candidate cell and the value of X criterion X lex meets the requirement of camping threshold, select the cell with the highest value of X criterion X lex to camp on.
  • the processing unit 720 determines two decision factors: the signal quality ratio (Signal_Quality/Signal_Quality_reference) and the beam coverage time ratio (DurationTime beam /DurationTime beam _reference).
  • the value method includes: receiving satellite or cell issued and calculating System broadcast messages and reference signals related to S criterion, calculate the value of S criterion Srxlev, which is the value of signal quality (Signal_Quality) in the first decision factor; query the current time, compare with the received beam coverage information, and obtain the second decision The value of the beam coverage time (DurationTime beam ) in the factor.
  • the reference signal quality (Signal_Quality_reference) in the first decision factor signal quality ratio (Signal_Quality/Signal_Quality_reference) and the reference beam coverage time (DurationTime) in the second decision factor beam coverage time ratio (DurationTime beam /DurationTime beam _reference) defaults to a known preset value, which can be changed according to different application scenarios, different user equipment manufacturers, different user equipment operators, and other related factors.
  • the preset value It can be calculated or inquired by the processing unit 720, which is not limited in this application.
  • the transceiver unit 710 is used to receive beam coverage information issued by a satellite; and is also used to receive system broadcast messages and system broadcast messages related to calculating the value of the S criterion issued by the satellite. Reference signal.
  • the processing unit 720 is used to query whether there is pre-stored information, and to determine the frequency of priority search based on the pre-stored information; it is also used to determine the decision factor: the value of the signal quality (Signal_Quality) and the beam coverage time (DurationTime beam ); Determine the camping cell according to the priority order agreed in the X criterion; when the priority of the third decision factor signal quality (Signal_Quality) is higher than the fourth decision factor beam coverage time (DurationTime beam ): if the current cell signal quality ( Signal_Quality) is lower than the preset threshold and the signal quality (Signal_Quality) of at least one neighboring cell is higher than the preset threshold, select the cell with the highest signal quality (Signal_Quality) to camp on; if the current cell signal quality (Signal_Quality) is lower than the preset threshold Set a threshold, and when there is no signal quality (Signal_Quality) of the neighboring cell higher than the preset threshold, the cell with the longest beam
  • the priority of the fourth decision factor beam coverage time (DurationTime beam ) is higher than the third decision factor signal quality (Signal_Quality): if the current cell beam coverage time (DurationTime beam ) is lower than the preset threshold, and there is at least one neighboring cell When the beam coverage time (DurationTime beam ) is greater than the preset threshold, select the cell with the longest beam coverage time (DurationTime beam ) to camp on; if the current cell beam coverage time (DurationTime beam ) is lower than the preset threshold and there is no neighbor cell When the beam coverage time (DurationTime beam ) is greater than the preset threshold, the cell with the highest signal quality (Signal_Quality) is selected to camp on.
  • the processing unit 720 determines two decision factors: signal quality (Signal_Quality) and beam coverage time (DurationTime beam ).
  • the value method includes: receiving system broadcast messages and reference signals related to the calculation of the S criterion issued by the satellite Calculate the value of S criterion Srxlev, which is the value of the third decision factor signal quality (Signal_Quality); query the current time, compare with the received beam coverage information, and obtain the fourth decision factor beam coverage time (DurationTime beam ) value.
  • the communication device 700 may be used to perform the actions performed by the satellite in the above method embodiment.
  • the communication device 700 may be referred to as a satellite network device.
  • the transceiving unit 710 is configured to perform the satellite transceiver related operations in the above method embodiment
  • the processing unit 720 is configured to perform the satellite processing related operations in the above method embodiment.
  • the transceiver unit 710 is used to receive scheduling information related to beam coverage information sent by the network side system; it is also used to send beam coverage information to user equipment in each grid; To send system broadcast messages and reference signals related to calculating the S criterion to the user equipment for cell selection.
  • the processing unit 720 is configured to process scheduling information related to beam coverage information sent by the network-side system, and to control the issuance of beam coverage information; and also to control the sending process of system broadcast messages and reference signals related to the calculation of the S criterion.
  • transceiving unit 710 may be implemented by a transceiver or a transceiver-related circuit
  • processing unit 720 may be implemented by a processor or a processor-related circuit.
  • the present application also provides a communication device 800.
  • the communication device 800 includes a processor 810, a memory 820, and a transceiver 830.
  • the memory 820 stores a program.
  • the processor 810 is used to execute the program stored in the memory 820, and executes the program stored in the memory 820, so that the processor 810 uses In executing the relevant processing steps in the above method embodiment, the execution of the program stored in the memory 820 enables the processor 810 to control the transceiver 830 to perform the transceiving-related steps in the above method embodiment.
  • the communication device 800 is used to execute the actions performed by the user equipment in the above method embodiments.
  • the execution of the program stored in the memory 820 enables the processor 810 to execute the above method embodiments.
  • the transceiver 830 is configured to perform the receiving and sending steps on the user equipment side in the above method embodiments.
  • execution of the program stored in the memory 820 enables the processor 810 to control the transceiver 830 to execute the receiving and sending steps on the user equipment side in the above method embodiment.
  • the communication device 800 is used to perform the actions performed by the satellite in the foregoing method embodiment.
  • the program stored in the memory 820 is executed so that the processor 810 is used to execute the satellite in the foregoing method embodiment.
  • the transceiver 830 is used to perform the receiving and sending steps on the satellite side in the foregoing method embodiment.
  • the execution of the program stored in the memory 820 enables the processor 810 to control the transceiver 830 to perform the satellite-side receiving and sending steps in the foregoing method embodiment.
  • the present application also provides a communication device 900, which may be a terminal device or a chip.
  • the communication device 900 may be used to perform actions performed by the user equipment in the foregoing method embodiments.
  • FIG. 9 shows a simplified schematic diagram of the structure of the terminal device. It is easy to understand and easy to illustrate.
  • the terminal device uses the user equipment as an example.
  • the terminal equipment includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the terminal device, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 9 only one memory and processor are shown in FIG. 9. In an actual terminal device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory can be set independently of the processor, or can be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiving function can be regarded as the transceiving unit of the terminal device, and the processor with the processing function can be regarded as the processing unit of the terminal device.
  • the terminal device includes the transceiver unit 910 and the processing unit 920.
  • the transceiver unit 910 may also be referred to as a transceiver, a transceiver, a transceiver, and so on.
  • the processing unit 920 may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiver unit 910 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 910 can be regarded as the sending unit, that is, the transceiver unit 910 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be called a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, receiver, or receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • the transceiving unit 910 is used to perform step S320 shown in FIG. 3 and the receiving operation on the terminal device side in step S530 shown in FIG. 5, and/or the transceiving unit 910 is also used to perform Other receiving and sending steps on the terminal device side.
  • the processing unit 920 is configured to execute steps S310, S320, S330, and S340 shown in FIG. 3, and the processing operations on the terminal device side in step S540 shown in FIG. 5, and/or the processing unit 920 is also configured to execute terminal devices Other processing steps on the side.
  • the transceiver unit 910 is configured to perform the receiving operation on the terminal device side in step S620 shown in FIG. 6 and step S530 shown in FIG. 5.
  • the processing unit 920 is configured to perform steps S610, S620 and S630 shown in FIG. 6 and the processing operations on the terminal device side in step S540 shown in FIG. 5, and/or the processing unit 920 is also configured to perform other processing on the terminal device side step.
  • FIG. 9 is only an example and not a limitation, and the foregoing terminal device including a transceiver unit and a processing unit may not rely on the structure shown in FIG. 9.
  • the chip When the communication device 900 is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit may be a processor, microprocessor, or integrated circuit integrated on the chip.
  • the embodiment of the present application also provides a communication system, which includes the above terminal equipment, candidate cells and satellite network equipment.
  • the embodiment of the present application also provides a computer-readable storage medium on which a computer program is stored.
  • the computer program When the computer program is executed by a computer, the computer realizes the method on the terminal device side or the method on the satellite network device side in the above method embodiment. .
  • the embodiments of the present application also provide a computer program product containing instructions that, when executed by a computer, enable the computer to implement the method on the terminal device side or the method on the satellite network device side in the foregoing method embodiments.
  • the terminal device or the satellite network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, for example, Linux operating systems, Unix operating systems, Android operating systems, iOS operating systems, or windows operating systems.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • this application does not specifically limit the specific structure of the execution subject of the method provided in this application, as long as it can communicate according to the method provided in this application by running a program that records the code of the method provided in the embodiment of this application.
  • the execution subject of the method provided in this application may be a terminal device or a satellite network device, or a functional module in the terminal device or satellite network device that can call and execute the program.
  • computer-readable media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks, or tapes, etc.), optical disks (for example, compact discs (CDs), digital versatile discs (digital versatile discs, DVDs), etc.) ), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • magnetic storage devices for example, hard disks, floppy disks, or tapes, etc.
  • optical disks for example, compact discs (CDs), digital versatile discs (digital versatile discs, DVDs), etc.
  • smart cards and flash memory devices for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.
  • various storage media described in this application may represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • processors mentioned in the embodiments of this application may be a central processing unit (CPU), or may be other general-purpose processors, digital signal processors (DSP), or application specific integrated circuits ( application specific integrated circuit (ASIC), ready-made programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electronic Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct Rambus RAM direct Rambus RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • memory described herein includes but is not limited to the above-mentioned memory, and also includes any other suitable type of memory.
  • the provided system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the technical effects of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, a terminal device or a satellite network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种非陆地网络(non terrestrial networks,NTN)中小区选择的方法与装置,该方法包括:用户设备查询是否存在第一预存储信息,根据第一预存储信息,确定优先搜索的频率;用户设备确定第一判决准则中第一判决因子和第二判决因子的取值;用户设备确定第一判决准则中第一加权系数和第二加权系数的取值;用户设备根据确定的第一判决准则搜索小区:不论候选小区的第一判决准则的值是否满足小区的驻留阈值要求,均选择第一判决准则的值最高的小区驻留。本申请提供的方法可以增加小区选择时需要评估的参数种类,通过配置不同的加权因子,综合考虑多种因素的影响,可以得到更合理的小区选择准则。

Description

一种NTN中小区选择的方法及装置
相关申请的交叉引用
本申请要求在2019年06月28日提交中国专利局、申请号为201910574204.9、申请名称为“一种NTN中小区选择的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
背景技术
随着信息技术发展,现代通信系统对通信的高效、机动、多样性等提出更迫切的要求,目前,在一些重要应用场景,如空间通信、航空通信、海事通信、军事通信等领域,卫星发挥着无可替代的作用。卫星通信具备通信距离远、覆盖面积大、组网灵活等特点,其既可为固定终端,也可为各种移动终端提供服务。
由于传统地面网络不能为用户设备(user equipment,UE)提供无缝覆盖,特别是在大海、沙漠、空中等无法部署基站的地方,非陆地网络(non terrestrial networks,NTN)被引入到第五代移动通信(The 5th Generation,5G)系统中,它通过将基站或者部分基站功能部署在高空平台或者卫星上,为用户设备UE提供无缝覆盖。并且高空平台或者卫星受自然灾害影响较小,能提升5G系统的可靠性。基于卫星部署的非陆地网络(NTN)中,卫星通过不同波束覆盖地面,形成卫星小区,同一时刻某一用户设备UE可以被多个卫星小区覆盖,此时用户设备UE需要进行小区选择或者重新驻留到某个小区中。
如上所述,基于卫星系统的非陆地网络(NTN),存在某一区域同时被来自多颗卫星的波束覆盖的情况,每颗卫星的波束持续覆盖时间也可能不同。按照常规的小区选择或者重选方案,仅考虑信号功率条件,未将卫星的过顶时间考虑在内,可能会出现选择一个信号质量最好但持续覆盖时间短的小区驻留,终端很快又要进行小区重选的情况,这样增加了信令开销。并且,由于非陆地网络(NTN)中小区高速移动的特点,依靠单一参数信号功率的测量进行小区选择不能满足不同场景、不同用户的需求。
发明内容
本申请提供一种非陆地网络(NTN)场景下的小区选择方法及装置,设计一种新的小区选择或重选策略,通过引入包括波束持续覆盖时间在内的多种参量,综合确定一个最佳的驻留小区。
第一方面,提供一种非陆地网络(NTN)中小区选择的方法,该方法包括:用户设备查 询是否存在第一预存储信息,根据第一预存储信息,确定优先搜索的频率;用户设备确定第一判决准则中第一判决因子和第二判决因子的取值;用户设备确定第一判决准则中第一加权系数和第二加权系数的取值;用户设备根据确定的所述第一判决准则搜索小区:若候选小区的第一判决准则的值满足小区的驻留阈值要求时,用户设备选择第一判决准则的值最高的小区驻留;若不存在候选小区的第一判决准则的值满足小区的驻留阈值要求时,用户设备选择第一判决准则的值最高的小区驻留。
不同于蜂窝网络中小区静止的特点,NTN中小区处于高速移动的状态,可能出现选择一个信号质量最好但持续覆盖时间短的小区驻留,终端很快又要进行小区重选的情况,增加了信令开销。根据上述技术方案,将卫星小区持续覆盖的时间作为一个小区选择的依据,并配置不同的加权因子,可以缓解单纯依靠信号质量选择而可能出现的频繁小区切换。
结合第一方面,在第一方面的第一种可能的实现方式中,第一判决准则的表达式为:
X lex=A*(Signal_Quality/Signal_Quality_reference)+B*(DurationTime beam/DurationTime beam_reference)
其中,Signal_Quality/Signal_Quality_reference(信号质量比率)为第一判决因子,DurationTime beam/DurationTime beam_reference(波束覆盖时间比率)为第二判决因子;A为第一加权系数,用于表征第一判决因子在基于第一判决准则的小区选择判决中的权重;B为第二加权系数,用于表征第二判决因子在基于第一判决准则的小区选择判决中的权重;第一判决准则X lex的函数关系为将第一判决因子、第二判决因子的取值分别使用第一加权系数、第二加权系数加权后再相加。
根据上述技术方案,增加小区选择时所需要评估的参数种类,并修改相应的准则,通过配置不同的加权因子,综合考虑多种因素的影响,可以得到更合理的小区选择准则。
结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,第一判决因子中Signal_Quality(信号质量)的取值为已有标准中S准则的值。
根据上述技术方案,借鉴蜂窝网络中的小区选择准则S准则,增加了本申请提出的NTN中小区选择判决准则的可靠度。
结合第一方面的第一种或第二种可能的实现方式,在第一方面的第三种可能的实现方式中,第二判决因子中DurationTime beam(波束覆盖时间)的取值方法,包括:网络侧系统将地面划分为若干地理网格;网络侧系统基于星历获取每个网格中在某一时间段内的波束覆盖信息;所述网络侧系统调度卫星网络设备将所述波束覆盖信息下发给每个网格中的用户设备;还包括,各网格内的所述用户设备查询当前时间,与接收到的所述波束覆盖信息作比较,获取第二判决因子中DurationTime beam(波束覆盖时间)的取值。
根据上述技术方案,在NTN中,卫星小区对特定区域的持续覆盖时间可以通过广播的方 式告知区域内的用户设备,用户设备经处理后可以得到第二判决因子中的DurationTime beam(波束覆盖时间)的取值,该DurationTime beam(波束覆盖时间)可以后续作为第一判决准则中小区选择的判定依据。
结合第一方面的第三种可能的实现方式,在第一方面的第四种可能的实现方式中,波束覆盖信息包括:波束标识码(ID)、波束覆盖当前网格的开始时间、波束覆盖当前网格的结束时间。
根据上述技术方案,用户设备可以基于上述参数,并结合查询到的当前时间,计算得到第一判决因子中DurationTime beam(波束覆盖时间)的取值。
结合第一方面的第三种或第四种可能的实现方式,在第一方面的第五种可能的实现方式中,波束覆盖信息还包括:波束标识码(ID)、波束覆盖当前网格的开始时间、波束覆盖当前网格的持续时间。
根据上述技术方案,用户设备也可以基于上述参数,并结合查询到的当前时间,计算得到第一判决因子中DurationTime beam(波束覆盖时间)的取值。
结合第一方面的所有可能的实现方式,在第一方面的第六种可能的实现方式中,第一判决因子中Signal_Quality_reference(参考信号质量)和第二判决因子中DurationTime beam_reference(参考波束覆盖时间)的取值为已知的预设定值,该预设定值可以由用户设备计算或查询得到。
根据上述技术方案,用户设备通过计算或查询得到Signal_Quality_reference(参考信号质量)和DurationTime beam_reference(参考波束覆盖时间)的取值,进而得到第一判决准则中第一判决因子和第二判决因子的取值,最终得到第一判决准则的值,用于用户设备进行小区选择。该Signal_Quality_reference(参考信号质量)和DurationTime beam_reference(参考波束覆盖时间)的取值用于Signal_Quality(信号质量)和DurationTime beam(波束覆盖时间)的归一化,统一量纲。
结合第一方面及第一方面的第一种可能的实现方式,在第一方面的第七种可能的实现方式中,确定第一判决准则中第一加权系数和第二加权系数的取值的方法,包括:基于业务类型配置第一加权系数和第二加权系数的取值。
根据上述技术方案,用户设备可以根据不同业务类型配置不同的第一加权系数和第二加权系数的取值,该取值配置方式满足了不同场景、不同用户设备的需求,用于用户设备得到更合理的加权系数取值。
结合第一方面的第七种可能的实现方式,在第一方面的第八种可能的实现方式中,业务类型包括以下至少一种:IOT设备、固定接入点、移动设备。
根据上述技术方案,提供了针对不同应用场景、不同用户设备类型下的加权系数配置方法,满足了不同场景、不同用户设备的需求,可以实现优化的小区选择策略。
结合第一方面及第一方面的第一种可能的实现方式,在第一方面的第九种可能的实现方式中,确定第一判决准则中第一加权系数和第二加权系数的取值的方法,还包括:基于业务持续时间配置第一加权系数和第二加权系数的取值。
根据上述技术方案,提供了另一种其他维度的加权系数取值配置方法,可以应用于NTN中某些特定的应用场景。
结合第一方面,在第一方面的第十种可能的实现方式中,第一预存储信息包括:载波频率。
根据上述技术方案,在基于存储信息的小区选择中,例如该预存储信息为载波频率,用户设备UE会优先选择预存储载波频率信息的小区驻留。如果存储了载波频率的小区都不合适,用户设备UE才发起初始的小区选择。
第二方面,提供一种非陆地网络(NTN)中小区重选的方法,该方法包括:用户设备查询是否存在第二预存储信息,根据第二预存储信息,确定优先搜索的频率;用户设备确定第二判决准则中第三判决因子和第四判决因子的取值;用户设备根据第二判决准则中确定的优先级顺序,确定驻留小区;当第三判决因子的优先级高于第四判决因子时:若当前小区的第三判决因子的值低于预设门限,并且存在至少一个邻小区的第三判决因子的值高于预设门限时,选择第三判决因子的值最大的小区驻留;若当前小区的第三判决因子的值低于预设门限,并且不存在邻小区的第三判决因子的值高于预设门限时,选择第四判决因子的值最大的小区驻留;当第四判决因子的优先级高于第三判决因子时:若当前小区的第四判决因子的值低于预设门限,并且存在至少一个邻小区的第四判决因子的值高于预设门限时,选择第四判决因子的值最大的小区驻留;若当前小区的第四判决因子的值低于预设门限,并且不存在邻小区的第四判决因子的值高于预设门限时,选择第三判决因子的值最大的小区驻留。其中,第三判决因子为Signal_Quality(信号质量),第四判决因子为DurationTime beam(波束覆盖时间)。
根据上述技术方案,将卫星小区持续覆盖的时间作为一个小区选择的依据,按照优先级的原则,考虑不同参数,实现方式相对于第一方面的小区选择方法的实现过程更为简单。
结合第二方面,在第二方面的第一种可能的实现方式中,第二判决准则的表达式为:
X lex=Priority(Signal_Quality,DurationTime beam)
第二判决准则X lex的函数关系为按照约定的Priority(优先级)确定第三判决因子Signal_Quality(信号质量)和第四判决因子DurationTime beam(波束覆盖时间)在小区选择判决中的优先级顺序。
根据上述技术方案,在NTN中,增加小区选择时所需要评估的参数种类,配置优先级函数,生成新的小区选择准则,相校于第一方面的小区选择方法的实现过程更为简单。
结合第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,第三判决因子Signal_Quality的取值为已有标准中S准则的值。
根据上述技术方案,借鉴蜂窝网络中的小区选择准则S准则,增加了本申请提出的NTN中小区选择判决准则的可靠度。
结合第二方面的第一种或第二种可能的实现方式,在第二方面的第三种可能的实现方式中,第四判决因子DurationTime beam(波束覆盖时间)的取值方法,包括:网络侧系统将地面划分为若干地理网格;网络侧系统基于星历获取每个网格中在某一时间段内的波束覆盖信息;所述网络侧系统调度卫星网络设备将所述波束覆盖信息下发给每个网格中的用户设备;还包括,各网格内的所述用户设备查询当前时间,与接收到的所述波束覆盖信息作比较,获取第四判决因子DurationTime beam(波束覆盖时间)的取值。
根据上述技术方案,在NTN中,卫星小区对特定区域的持续覆盖时间可以通过广播的方式告知区域内的用户设备,用户设备经处理后可以得到第四判决因子DurationTime beam(波束覆盖时间)的取值,该DurationTime beam(波束覆盖时间)可以后续作为小区选择的判定依据。
结合第二方面的第三种可能的实现方式,在第二方面的第四种可能的实现方式中,波束覆盖信息包括:波束标识码(ID)、波束覆盖当前网格的开始时间、波束覆盖当前网格的结束时间。
根据上述技术方案,用户设备可以基于上述参数,并结合查询到的当前时间,计算得到第四判决因子DurationTime beam(波束覆盖时间)的取值。
结合第二方面的第三种或第四种可能的实现方式,在第二方面的第五种可能的实现方式中,波束覆盖信息还包括:波束标识码(ID)、波束覆盖当前网格的开始时间、波束覆盖当前网格的持续时间。
根据上述技术方案,用户设备也可以基于上述参数,并结合查询到的当前时间,计算得到第四判决因子DurationTime beam(波束覆盖时间)的取值。
结合第二方面的第一种可能的实现方式,在第二方面的第六种可能的实现方式中,第二预存储信息包括:载波频率。
根据上述技术方案,在基于存储信息的小区选择中,例如该预存储信息为载波频率,用户设备UE会优先选择预存储载波频率信息的小区驻留。如果存储了载波频率的小区都不合适,用户设备UE才发起初始的小区选择。
第三方面,提供一种终端设备,包括:收发单元,用于接收卫星网络设备下发的波束覆 盖信息;处理单元,用于查询是否存在第一预存储信息,根据第一预存储信息,确定优先搜索的频率;还用于确定第一判决准则中第一判决因子和第二判决因子的取值;还用于确定第一判决准则中第一加权系数和第二加权系数的取值;还用于根据确定的第一判决准则搜索小区:若候选小区的第一判决准则的值满足小区的驻留阈值要求时,处理单元选择第一判决准则的值最高的小区驻留;若不存在候选小区的第一判决准则的值满足小区的驻留阈值要求时,处理单元选择第一判决准则的值最高的小区驻留。该终端设备用于执行上述第一方面提供的NTN中小区选择方法中用户设备执行的操作。
结合第三方面,在第三方面的第一种可能的实现方式中,处理单元还用于:查询是否存在第二预存储信息,根据第二预存储信息,确定优先搜索的频率;确定第二判决准则中第三判决因子和第四判决因子的取值;根据第二判决准则中确定的优先级顺序,确定驻留小区;当第三判决因子的优先级高于第四判决因子时:若当前小区的第三判决因子的值低于预设门限,并且存在至少一个邻小区的第三判决因子的值高于预设门限时,选择第三判决因子的值最大的小区驻留;若当前小区的第三判决因子的值低于预设门限,并且不存在邻小区的第三判决因子的值高于预设门限时,选择第四判决因子的值最大的小区驻留;当第四判决因子的优先级高于第三判决因子时:若当前小区的第四判决因子的值低于预设门限,并且存在至少一个邻小区的第四判决因子的值高于预设门限时,选择第四判决因子的值最大的小区驻留;若当前小区的第四判决因子的值低于预设门限,并且不存在邻小区的第四判决因子的值高于预设门限时,选择第三判决因子的值最大的小区驻留。该终端设备用于执行上述第二方面提供的NTN中小区重选方法中用户设备执行的操作。
第四方面,提供一种卫星网络设备,包括:收发单元,用于接收网络侧系统下发的与波束覆盖信息相关的调度信息;还用于向每个网格中的用户设备发送波束覆盖信息;处理单元,用于处理网络侧系统发送的与波束覆盖信息相关的调度信息,控制波束覆盖信息的发送过程。该卫星网络设备用于执行上述第一方面、第二方面提供的NTN中小区选择或重选方法中卫星网络设备执行的操作。
第五方面,提供一种通信装置,该通信装置用于执行上述第一方面、第二方面提供的NTN中小区选择或重选的方法。该通信装置还包括用于执行上述第一方面、第二方面提供的NTN中小区选择或重选的方法的模块。
第六方面,提供一种通信装置,该通信装置包括存储器和处理器,存储器用于存储指令,处理器用于执行存储器存储的指令,并且对存储器中存储的指令的执行使得处理器执行上述第一方面、第二方面提供的NTN中小区选择或重选的方法。
第七方面,提供一种芯片,该芯片包括处理模块与通信接口,处理模块用于控制通信接口与外部进行通信,处理模块还用于实现上述第一方面、第二方面提供的NTN中小区选择或 重选的方法。
第八方面,提供一种计算机可读存储介质,其上存储有计算机程序,计算机程序被计算机执行时使得计算机实现上述第一方面、第二方面提供的NTN中小区选择或重选的方法。
第九方面,提供一种包含指令的计算机程序产品,该指令被计算机执行时使得计算机实现上述第一方面、第二方面提供的NTN中小区选择或重选的方法。
第十方面,提供一种通信系统,包括第五方面提供的用于执行第一方面提供的方法的通信装置、第五方面提供的用于执行第二方面提供的方法的通信装置。第五方面提供的用于执行第一方面提供的方法的通信装置为终端设备或卫星网络设备。第五方面提供的用于执行第二方面提供的方法的通信装置为终端设备或卫星网络设备。
基于上述描述,本申请提供的NTN中用户设备小区选择或重选的方法,增加了小区选择时所需要评估的参数种类,通过配置不同的加权因子或配置优先级函数,综合考虑多种因素的影响,得到了更合理的小区选择准则,实现了优化的小区选择策略。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中需要使用的附图作简单地介绍。
图1为应用于本申请的典型的网络应用架构;
图2为某一区域同时被来自多颗卫星的波束覆盖的情况仿真图;
图3为本申请提出的一种NTN中用户小区选择的方法300的流程示意图;
图4为本申请提出的波束覆盖时间获取方法500的示意图;
图5为本申请提出的波束覆盖时间获取方法500的方法流程图;
图6为本申请提出的一种NTN中用户小区重选的方法600的流程示意图;
图7为本申请实施例提供的通信装置700的示意性框图;
图8为本申请实施例提供的一种通信设备800的示意性框图;
图9为本申请实施例提供的一种简化的终端设备900的结构示意图;
具体实施方式
下面将结合附图,对本申请中的技术方案进行清楚、详细地描述。
除非另有定义,本申请使用的所有技术和科学术语与属于本申请技术领域的技术人员通常理解的含义相同。本申请说明书中使用的术语只是为了描述具体的实施例,不在于限制本申请。
本申请属于卫星通信范畴。3GPP各成员融合卫星通信和5G技术,提出可应用于本申请的如图1所示的典型的网络应用架构。地面移动用户设备UE通过5G新空口接入网络,5G基站部署在卫星上,并通过无线链路与地面的核心网相连。同时,在卫星之间存在无线链路,完成基站与基站之间的信令交互和用户数据传输。图1中的各个网元以及它们的接口说明如下:
用户设备:支持5G新空口的移动设备,典型的比如用户终端,可穿戴设备等移动设备。可以通过空口接入卫星网络并发起呼叫,上网等业务。
5G基站:主要是提供无线接入服务,调度无线资源给接入终端,提供可靠的无线传输协议和数据加密协议等。
5G核心网:用户接入控制,移动性管理,会话管理,用户安全认证,计费等业务。它由多个功能单元组成,可以分为控制面和数据面的功能实体。接入与移动管理单元(AMF),负责用户接入管理,安全认证,还有移动性管理。用户面单元(UPF)负责管理用户面数据的传输,流量统计,安全窃听等功能。
地面站:负责转发卫星基站和5G核心网之间的信令和业务数据。
5G新空口:用户设备和基站之间的无线链路。
Xn接口:5G基站和基站之间的接口,主要用于切换等信令交互。
NG接口:5G基站和5G核心网之间的接口,主要交互核心网的NAS等信令,以及用户的业务数据。
当前技术的卫星通信应用系统中,存在某一区域同时被来自多颗卫星的波束覆盖的情况。如图2仿真图所示,可以看到,在椭圆圈标记出的时刻7:30到7:45之间,对于接收机Receiver1而言,可以同时接收到编号为49,40,30,36,35这五颗卫星的波束,每颗卫星的波束持续覆盖时间不同。按照常规的小区选择或重选方案,仅考虑信号功率的条件,未将卫星的过顶时间考虑在内,可能会出现选择一个信号质量最好但持续覆盖时间短的小区驻留,终端很快又要进行小区重选的情况,增加了信令开销。并且,由于非陆地网络(NTN)中小区高速移动的特点,依靠单一参数信号功率的测量进行小区选择,不能满足不同场景、不同用户的需求。
针对上述技术问题,本申请提出一种NTN场景下的小区选择方法,设计一种新的小区选择或重选策略,通过引入包括波束持续覆盖时间在内的多种参量,综合确定一个最佳的驻留小区。
本申请实施例提供的技术方案可以应用于各种通信系统,例如,卫星通信系统,卫星通信与蜂窝网络融合的系统,其中,蜂窝网络系统可以包括:长期演进(long term evolution,LTE)系统、第五代移动通信(the 5th generation,5G)系统、新空口(new radio,NR)系统、 机器与机器通信(machine to machine,M2M)系统、或者未来演进的其它通信系统等。卫星通信系统可以包括各种非陆地网络系统,此处不再一一列举。
本申请实施例中涉及的用户设备可以指终端设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。用户设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等。
本申请实施例中涉及的卫星网络设备可以用于与一个或多个用户设备进行通信,也可以用于与一个或多个具有部分终端功能的基站进行通信(比如宏基站与微基站,如接入点,之间的通信)。基站可以是LTE系统中的演进型基站(evolved Node B,eNB),或者5G系统、NR系统中的基站(gNB),以及其他卫星基站和卫星中继节点。另外,基站也可以为接入点(access point,AP)、传输节点(transport point,TRP)、中心单元(central unit,CU)或其它网络实体,并且可以包括以上网络实体功能中的部分或所有功能。
还需要说明的是,在本申请中,“小区”与“小区中的基站”这两种描述是等效的。即,本申请中提及的小区表示该小区中的基站。并且,“卫星”与“卫星网络设备”这两种描述也是等效的。即,本申请中提及的卫星表示与卫星通信相关的卫星及其他网络设备的集合。
为了更好地理解本申请提供的方案,首先介绍本申请涉及到的一些术语。
1、小区选择
当用户设备UE开机或从盲区进入覆盖区时,用户设备UE将寻找公共陆地移动网络(public land mobile network,简称:PLMN)允许的所有频点,并选择合适的小区驻留,这个过程称为“小区选择”。小区选择类型包括初始小区选择和基于存储信息的小区选择。无论哪种类型的小区选择,均需要对将要选择的小区进行测量,以便进行信道质量评估,判断是否符合驻留条件。蜂窝网络中的小区选择准则被称为S准则,小区选择的S值Srxlev>0时允许驻留。
2、基于存储信息的小区选择
用户设备UE已经存储了载波频率的相关信息,同时也可能包括一些小区的参数信息,例如,从先前收到的测量控制信息或者是先前驻留或检测到的小区中得到的。用户设备UE会优先选择有相关信息的小区,一旦一个合适的小区出现,用户设备UE会选择该小区并进行驻留。如果存储了相关信息的小区都不合适,用户设备UE将发起初始的小区选择。
3、S准则
蜂窝网络中的小区选择准则,S准则的表达式为:
Srxlev=Qrxlevmeas-(Qrxlevmin+Qrxlevminoffset)-Pcompensation-Qoffsettem
公式中各参数含义如下:
1)Srxlev:小区选择的S值,单位dB;
2)Qrxlevmeas:用户设备测量小区得到的参考信号接收功率(Reference Signal Receiving Power,简称:RSRP)的值,单位dBm;
3)Qrxlevmin:小区中参考信号接收功率RSRP的最小接收强度要求,从广播消息中获取,单位dBm;
4)Qrxlevminoffset:对Qrxlevmin的偏移值,当驻留在VPLMN上的用户设备UE搜索高优先级的PLMN时,为了防止乒乓重选,可以设定一定的偏移值,该值主要应用于不同用户设备运营商之间;
5)Pcompensation:等于MAX(Pemax-Pumax,0),即用户设备UE在小区中允许的最大上行发送功率与用户设备UE实际的最大上行发送功率的差值和数值0进行比较后得到的两者中的较大值,单位dBm;
6)Pemax:用户设备UE在小区中允许的最大上行发送功率,从广播消息中获取,单位dBm;
7)Pumax:由用户设备UE能力决定的最大上行发送功率,由标准定义,单位dBm;
8)Qoffsettem:临时偏移值,在系统广播中通知。
用户设备UE在进行小区选择时,通过测量得到小区的Qrxlevmeas值,通过小区的系统信息及自身能力等级获取S准则公式中的其他参数,计算得到Srxlev,然后与0进行比较。如果Srxlev>0,则用户设备UE认为该小区满足小区选择的信道质量要求,可以选择其作为驻留小区。如果该小区的系统信息中指示其允许驻留,那么用户设备UE将选择在此小区上驻留,进入空闲模式。
4、移动性测量
蜂窝系统中的移动性测量是只连接状态下的测量。网络给用户设备UE下发测量配置后,UE根据测量配置中指示的测量对象、上报配置等参数侦测附近小区的信号状态,填写测量报告并反馈给网络,用于网络进行切换判决或者完善邻区列表关系等。
5、小区重选
蜂窝小区重选(cell reselection)是指用户设备UE在空闲模式下通过测量邻区和当前小区的信号质量以选择一个最好的小区提供服务信号的过程。当邻区的信号质量及电平满足S准则且满足一定重选判决准则时,UE将接入该小区驻留。
小区重选可以分为同频小区重选和异频小区重选。同频小区重选,可以解决无线覆盖问题,异频小区重选,不仅可以解决无线覆盖问题,还可以通过设定不同频点的优先级来实现负载均衡。
用户设备UE成功驻留后,将持续进行本小区测量。无线资源控制层(radio resource control,RRC)根据参考信号接收功率(reference signal receiving power,RSRP)测量结果计算S值Srxlev,并将其与同频测量启动门限(Sintrasearch)和异频、异系统测量启动门限(Snonintrasearch)进行比较,作为是否启动邻区测量的判决条件。在满足测量条件后,用户设备UE对附近小区进行同频或异频测量,根据测量结果得到待选小区,然后根据一定准则对待选小区进行排序,获得重选目标小区。
在非陆地网络(NTN)中,增加小区选择时所需要评估的参数种类,并修改相应的准则,通过配置不同的加权因子,综合考虑多种因素的影响,可以得到更合理的小区选择准则。本申请按照自定义的规则,由多个参量共同确定当前小区的X准则的值X lex,当小区的X准则的值X lex>X threshold时允许驻留,通用准则如下表示:
X lex=Function(Signal_Quality_Related_Parameter,DurationTime beam_Related_Parameter,Parameter1,Parameter2...)
公式中各参数含义如下:
1)X threshold:X准则下,小区选择的判决阈值;
2)Signal_Quality_Related_Parameter:信号质量相关参数;
3)DurationTime beam_Related_Parameter:波束覆盖时间相关参数;
4)Parameter1,Parameter2:其它参数;
根据上述通用准则,本申请提供一种非陆地网络中(NTN)中用户进行小区选择的方法300,该方法具体的X准则如下:
X lex=A*(Signal_Quality/Signal_Quality_reference)+B*(DurationTime beam/DurationTime beam_reference)需要说明的是,第一判决因子信号质量比率(Signal_Quality/Signal_Quality_reference)和第二判决因子波束覆盖时间比率(DurationTime beam/DurationTime beam_reference)分别为归一化的参考值。X准则X lex的函数关系为将上述两个判决因子的取值分别使用第一加权系数A、第二加权系数B加权后再相加。其中,加权系数A、B分别用于表征信号质量比率(Signal_Quality/Signal_Quality_reference)和波束覆盖时间比率(DurationTime beam/DurationTime beam_reference)在基于X准则的小区选择判决中的权重。
其中,第一判决因子信号质量比率(Signal_Quality/Signal_Quality_reference)中的信 号质量(Signal_Quality)的取值可以复用已有标准中的S准则,即S准则Srxlev的值。第二判决因子波束覆盖时间比率(DurationTime beam/DurationTime beam_reference)中的波束覆盖时间(DurationTime beam)的取值可以按照本申请提出的波束覆盖时间获取方法500得到,下文将进行详细描述,此处不再赘述。而第一判决因子信号质量比率(Signal_Quality/Signal_Quality_reference)中的参考信号质量(Signal_Quality_reference)和第二判决因子波束覆盖时间比率(DurationTime beam/DurationTime beam_reference)中的参考波束覆盖时间(DurationTime beam_reference)的取值为已知的用户设备的预设定值。该值可以依据不同应用场景、不同用户设备厂商、不同用户设备运营商及其他因素发生变化,该预设定值可以由用户设备计算或查询得到。
进一步地,加权系数A、B的取值可以有多种配置。用户设备可以基于当前的业务,如业务类型,业务持续时间等,查表确定当前X准则中A、B的取值配置。示例性的,加权系数A、B的取值包括但不限于下述表格中的配置类型,也可以依据下述表格中不同配置类型的任意组合配置A、B的取值,还可以为表1、表2中的配置类型与其他配置类型的组合,本申请对此不做限定。例如,基于表1中的业务类型,配置A、B的取值。当用户设备应用于物联网通信中的小区选择时,主要注重通信覆盖,用户设备的设备类型举例为IOT设备,则第一加权系数A的取值可以为1,第二加权系数B的取值为0;当用户设备应用于固定接入通信中的小区选择时,主要注重通信吞吐,用户设备的设备类型举例为固定接入点,则第一加权系数A的取值可以为0.1,第二加权系数B的取值为0.9;当用户设备应用于移动宽带通信中的小区选择时,用户设备的设备类型举例为移动设备,则第一加权系数A的取值可以为0.5,第二加权系数B的取值为0.5。可选的,还可以根据其他业务类型,例如其他应用场景、其他用户设备厂商、或其他用户设备运营商,配置A、B的取值,表1仅作为示例,并不做限定,此处不再赘述。
除依据上述业务类型配置A、B的取值外,还可以基于业务持续时间配置加权系数A、B的取值。例如,基于表2中的不同业务持续时间,例如该业务持续时间为卫星的波束覆盖时间,配置A、B的取值。表2中,当业务持续时间为T 1时,特定加权系数A的取值为0,B的取值为1;当业务持续时间为T 2时,特定加权系数A的取值为0.1,B的取值为0.9。可选的,还可以根据其他业务持续时间配置A、B的取值,例如依据其他应用场景、其他用户设备厂商、或其他用户设备运营商的业务持续时间,配置A、B的取值,表2仅作为示例,并不做限定,此处不再赘述。
表1 基于业务类型配置A、B的取值
业务类型 A B
IOT设备 1 0
固定接入点 0.1 0.9
移动设备 0.5 0.5
表2 基于业务持续时间配置A、B取值
业务持续时间 A B
T 1 0 1
T 2 0.1 0.9
基于上述X准则,本申请提出一种NTN中用户小区选择的方法300,其方法流程如图3所示。该用户小区选择方法300可以由终端设备执行,或者,也可以由配置于终端设备中的芯片或电路等器件执行。该方法300主要包括如下步骤:
310、用户设备查询是否存在预存储信息,根据预存储信息,确定优先搜索的频率。
该预存储信息包括载波频率等,也可能包括一些小区的参数信息,例如,从先前收到的测量控制信息或者是先前驻留或检测到的小区中的相关信息。用户设备UE会优先选择有预存储信息的小区驻留。如果存储了预存储信息的小区都不合适或不存在包含预存储信息的小区,用户设备UE将发起初始的小区选择。
320、用户设备确定两个判决因子的取值。
其中,第一判决因子信号质量比率(Signal_Quality/Signal_Quality_reference)中的信号质量(Signal_Quality)的取值可以复用已有标准中的S准则,即等于Srxlev的值。已有标准中的S准则为:
Srxlev=Qrxlevmeas-(Qrxlevmin+Qrxlevminoffset)-Pcompensation-Qoffsettem;
公式中各参数含义如下:
1)Srxlev:小区选择的S值,单位dB;
2)Qrxlevmeas:用户设备测量小区得到的参考信号接收功率(Reference Signal Receiving Power,简称:RSRP)的值,单位dBm;
3)Qrxlevmin:小区中参考信号接收功率RSRP的最小接收强度要求,从广播消息中获取,单位dBm;
4)Qrxlevminoffset:对Qrxlevmin的偏移值,当驻留在VPLMN上的UE搜索高优先级的PLMN时,为了防止乒乓重选,可以设定一定的偏移值,该值主要应用于不同用户设备运营商之间;
5)Pcompensation:等于MAX(Pemax-Pumax,0),即用户设备UE在小区中允许的最大上行发送功率与用户设备UE实际的最大上行发送功率的差值和数值0进行比较后得到的两者中的较大值,单位dBm;
6)Pemax:用户设备UE在小区中允许的最大上行发送功率,从广播消息中获取,单位dBm;
7)Pumax:由用户设备UE能力决定的最大上行发送功率,由标准定义,单位dBm;
8)Qoffsettem:临时偏移值,在系统广播中通知。
用户设备UE在进行小区选择时,通过测量得到小区的Qrxlevmeas值,通过卫星网络设备或小区下发的系统广播消息得到小区的Qrxlevmin、Qrxlevminoffset、Pemax、Qoffsettem的值,通过自身能力等级以及标准定义获取S准则公式中的Pumax的值,最后计算得到Srxlev的值,即信号质量(Signal_Quality)的值。
第一判决因子信号质量比率(Signal_Quality/Signal_Quality_reference)中的参考信号质量(Signal_Quality_reference)的取值默认为已知的预设定值,该值可以依据不同应用场景、不同用户设备厂商、不同用户设备运营商以及其他相关因素发生变化,该预设定值可以由用户设备计算或查询得到。
第二判决因子波束覆盖时间比率(DurationTime beam/DurationTime beam_reference)中的波束覆盖时间(DurationTime beam)的取值按照本申请提出的波束覆盖时间获取方法500得到,下文将进行详细描述,此处不再赘述。
第二判决因子波束覆盖时间比率(DurationTime beam/DurationTime beam_reference)中的参考波束覆盖时间(DurationTime beam_reference)的取值默认为已知的预设定值,该值可以依据不同应用场景、不同用户设备厂商、不同用户设备运营商以及其他相关因素发生变化,该预设定值可以由用户设备计算或查询得到。
330、用户设备确定X准则中A、B的取值配置。
用户设备可以根据自身设备类型等参数,查表确定X准则中A、B的取值。其中,加权系数可以有多种配置,用户可以基于当前的业务,查表确定当前X准则中A、B的取值配置。可选的,基于业务类型,如上表1所示,查表确定当前X准则中A、B的取值配置;可选的,还可以基于业务持续时间,如上表2所示,查表确定当前X准则中A、B的取值配置。A、B的取值配置包括但不限于上述表1、表2中的配置,也可以是表1、表2中各配置类型的任意 组合,还可以为表1、表2中的配置类型与其他配置类型的组合,本申请对此不做限定。
340、用户设备根据确定的X准则搜索小区。
用户设备根据步骤320得到的两个判决因子的值和步骤330得到的两个加权系数的值,再基于该实施例前述的X准则公式,计算得到X准则X lex的值。
若候选小区的X准则X lex的值满足驻留阈值要求时,选择X准则X lex的值最高的小区驻留;
若不存在候选小区X准则X lex的值满足驻留阈值要求时,选择X准则X lex的值最高的小区驻留。
不同于蜂窝网络中小区静止的特点,NTN中小区处于高速移动的状态,可能出现选择一个信号质量最好但持续覆盖时间短的小区驻留,则终端很快又要进行小区重选的情况,增加了信令开销。基于上述实施例,本申请提供的方案,将卫星小区持续覆盖的时间作为小区选择的一个依据,增加了小区选择时所需要评估的参数种类,并通过配置不同的加权因子,综合考虑多种因素的影响,缓解了单纯依靠信号质量作为小区选择的判决依据而可能出现的频繁小区切换,减小了信令开销,得到了更合理的小区选择准则。
图4为本申请提出的波束覆盖时间获取方法500的示意图,图5为该方法的流程图,该波束覆盖时间获取方法500将用于确定上述用户进行小区选择的方法300和下述用户进行小区重选的方法600中的波束覆盖时间(DurationTime beam)的取值。
510、将地面划分为若干地理网格。
以图4为例,将地面划分为Grid1/2/3/4/5/6。
520、网络侧系统基于星历获取每个网格中在某一时间段内的波束覆盖信息。
530、网络侧系统调度卫星将波束覆盖信息下发给每个网格中的用户设备。
其中,该下发的波束覆盖信息包含波束标识码(ID)、波束覆盖当前网格的开始时间、波束覆盖当前网格的结束时间等。可选的,该波束覆盖信息还可以包括波束标识码(ID)、波束覆盖当前网格的开始时间、波束覆盖当前网格的持续时间等其他形式,本申请对此不做限定。
该操作中的卫星可以理解为与卫星通信相关的卫星及其相关的网络设备,可简称卫星网络设备。
[根据细则26改正28.08.2020] 
如图4所示,系统调度卫星A(SatA)和卫星B(SatB)下发相关波束覆盖信息。卫星B(SatB)只覆盖了网格3(Grid3)网格,其广播信息为:
表3 卫星Sat B广播信息
Grid ID Beam ID T_start T_over
Grid3 SatB_Beam1 T 0 T 1
Grid3 SatB_Beam2 T 2 T 3
…… …… …… ……
表3中,第一列Grid ID代表将地面划分后的地理网格,例如,Grid3;第二列Beam ID代表卫星发射的不同波束,例如,SatB_Beam1,SatB_Beam2;第三列代表卫星发射的某一波束在某一区域的波束覆盖的开始时间,例如,T 2,T 4;第四列代表卫星发射的某一波束在某一区域的波束覆盖的结束时间,例如,T 1,T 5
[根据细则26改正28.08.2020] 
卫星ASatA此时覆盖了网格1(Gridl)和网格2(Grid2)两个网格,其广播信息为:
表4 卫星Sat A广播信息
Grid ID Beam ID T_start T_over
Grid1 SatA_Beam1 T 0 T 1
Grid1 SatA_Beam2 T 2 T 3
Grid2 SatA_Beam1 T 4 T 5
Grid2 SatA_Beam2 T 5 T 6
…… …… …… ……
表4中,第一列Grid ID代表将地面划分后的地理网格,例如,Grid1,Grid2;第二列Beam ID代表卫星发射的不同波束,例如,SatA_Beam1,SatA_Beam2;第三列代表卫星发射的某一波束在某一区域的波束覆盖的开始时间,例如,T 2,T 4;第四列代表卫星发射的某一波束在某一区域的波束覆盖的结束时间,例如,T 1,T 5
540、各网格内的用户设备查询当前时间,与接收到的波束覆盖信息作比较,获取波束覆盖时间(DurationTime beam)的取值。
需要说明的是,用户设备查询的当前时间和卫星发射的某一波束在某一区域的波束覆盖的开始时间、波束覆盖的结束时间均为绝对时间。例如,用户设备可以根据波束覆盖的结束时间,和查询到的当前时间或波束覆盖的开始时间做减法,或者,根据波束覆盖的开始时间、波束覆盖的持续时间,和查询到的当前时间做减法,计算出某一卫星某一波束剩余的波束覆盖时间。
根据图5所示的波束覆盖时间获取方法500,在NTN场景中,卫星小区对特定区域的波束覆盖时间可以通过广播的方式告知区域内的用户设备,作为小区选择的判定依据。
除上述提出的非陆地网络(NTN)中用户进行小区选择的方法300外,本申请还提供另一种NTN中用户进行小区重选的方法600,与上述实施例不同的是,本实施例具体的X准则 如下:
X lex=Priority(Signal_Quality,DurationTime beam)
该X准则X lex的函数关系为按照约定的优先级(Priority)顺序确定判决因子:信号质量(Signal_Quality)和波束覆盖时间(DurationTime beam)在小区选择判决中的优先级顺序。
图6是本申请提出的NTN中用户进行小区选择的方法600的流程示意图。如图6所示,该方法包括如下步骤:
610、用户设备(UE)查询是否存在预存储信息,根据预存储信息,确定优先搜索的频率。
该预存储信息包括载波频率等,也可能包括一些小区的参数信息,例如,先前收到的测量控制信息或者是先前驻留或检测到的小区中的相关信息。用户设备UE会优先选择有预存储信息的小区驻留。如果存储了预存储信息的小区都不合适或不存在包含预存储信息的小区,用户设备UE将发起初始的小区选择。
620、用户设备(UE)确定两个判决因子的取值。
其中,第三判决因子信号质量(Signal_Quality)的取值可以复用已有标准中的S准则,即等于Srxlev的值。已有标准中的S准则为:
Srxlev=Qrxlevmeas-(Qrxlevmin+Qrxlevminoffset)-Pcompensation-Qoffsettem该准则公式中各参数含义如下:
1)Srxlev:小区选择的S值,单位dB;
2)Qrxlevmeas:用户设备测量小区得到的参考信号接收功率(Reference Signal Receiving Power,简称:RSRP)的值,单位dBm;
3)Qrxlevmin:小区中参考信号接收功率RSRP的最小接收强度要求,从广播消息中获取,单位dBm;
4)Qrxlevminoffset:Qrxlevmin的偏移值,当驻留在VPLMN上的UE搜索高优先级的PLMN时,为了防止乒乓重选,可以设定一定的偏移值,,该值主要应用于不同用户设备运营商之间;
5)Pcompensation:等于MAX(Pemax-Pumax,0),即用户设备UE在小区中允许的最大上行发送功率与用户设备UE实际的最大上行发送功率的差值和数值0进行比较后得到的两者中的较大值,单位dBm;
6)Pemax:用户设备UE在小区中允许的最大上行发送功率,从广播消息中获取,单位dBm;
7)Pumax:由用户设备UE能力决定的最大上行发送功率,由标准定义,单位dBm;
8)Qoffsettem:临时偏移值,在系统广播中通知。
第四判决因子波束覆盖时间(DurationTime beam)的取值也可以按照上述波束覆盖时间获取方法500得到。
630、用户设备根据X准则中约定的优先级顺序,确定驻留小区。
当第三判决因子信号质量(Signal_Quality)的优先级高于第四判决因子波束覆盖时间(DurationTime beam)时:
若当前小区信号质量(Signal_Quality)低于预设门限,并且存在至少一个邻小区的信号质量(Signal_Quality)高于预设门限时,选择信号质量(Signal_Quality)最高的小区驻留;
若当前小区信号质量(Signal_Quality)低于预设门限,并且不存在邻小区的信号质量(Signal_Quality)高于预设门限时,选择波束覆盖时间(DurationTime beam)最长的小区驻留。
当第四判决因子波束覆盖时间(DurationTime beam)的优先级高于第三判决因子信号质量(Signal_Quality)时:
若当前小区波束覆盖时间(DurationTime beam)低于预设门限,并且存在至少一个邻小区的波束覆盖时间(DurationTime beam)大于预设门限时,选择波束覆盖时间(DurationTime beam)最长的小区驻留;
若当前小区波束覆盖时间(DurationTime beam)低于预设门限,并且不存在邻小区的波束覆盖时间(DurationTime beam)大于预设门限时,选择信号质量(Signal_Quality)最高的小区驻留。
本实施例在非陆地网络(NTN)场景中,将卫星小区持续覆盖的时间作为小区选择的一个依据,按照优先级的原则,考虑不同参数,生成新的小区选择准则,实现方式相对于第一个实施例更为简单。
不同于蜂窝网络中小区静止的特点,NTN中小区处于高速移动的状态,可能会出现选择一个信号质量最好但持续覆盖时间短的小区驻留,终端很快又要进行小区重选的情况,增加了信令开销。并且,由于NTN中小区高速移动的特点,依靠单一参数的测量进行小区选择,不能满足不同场景、不同用户的需求,通过针对不同用户、不同场景配置不同的参数组合进行小区选择,可以实现优化的小区选择策略。本申请在NTN中,增加小区选择时所需要评估的参数种类,通过配置不同的加权因子,综合考虑多种因素的影响,可以得到更合理的小区选择准则。并且,也可以增加小区选择时所需要评估的参数种类,配置优先级函数,生成新 的小区选择准则,作为小区选择的判定依据。
还应理解,本申请提供的NTN中用户进行小区选择或重选的方法,除了可以应用于如图1所示的非陆地网络NTN场景中,还可以应用于其它需要进行小区选择的场景。
还应理解,本申请中涉及的第一、第二等各种数字编号,仅为描述方便进行的区分,不用来限制本申请实施例的范围
本申请中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。
可以理解的是,上述各个方法实施例中,由用户设备实现的方法和操作,也可以由可用于用户设备的部件(例如芯片或者电路)实现,由卫星网络设备实现的方法和操作,也可以由可用于卫星网络设备的部件(例如芯片或者电路)实现。
上面描述了本申请提供的方法实施例,下面将描述本申请提供的装置实施例。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
上面主要从各个设备之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个设备,例如用户设备或者卫星网络设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该可以意识到,结合本申请中公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对用户设备或者卫星网络设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
图7为本申请实施例提供的通信装置700的示意性框图。该通信装置700包括收发单元710和处理单元720。收发单元710可以与外部进行通信,处理单元720用于进行数据处理。收发单元710还可以称为通信接口或通信单元。
该终端设备700可以用于执行上文方法实施例中用户设备所执行的动作,或者,执行上文方法实施例中卫星所执行的动作。
作为一种实现方式,通信设备700可以用于执行上文方法实施例中用户设备所执行的动 作。在本实现方式中,该通信设备700可以称为终端设备。收发单元710用于执行上文方法实施例中用户设备侧的收发相关操作,处理单元720用于执行上文方法实施例中用户设备的处理相关操作。
作为本实现方式中的一种设计,收发单元710,用于接收卫星下发的波束覆盖信息;还用于接收卫星或小区下发的与计算S准则的值相关的系统广播消息和参考信号。处理单元720,用于查询是否存在预存储信息,根据预存储信息,确定优先搜索的频率;还用于确定两个判决因子:信号质量比率(Signal_Quality/Signal_Quality_reference)和波束覆盖时间比率(DurationTime beam/DurationTime beam_reference)的取值;还用于确定X准则中A、B的取值配置;还用于根据确定的X准则搜索小区:若候选小区的X准则X lex的值满足驻留阈值要求时,选择X准则X lex的值最高的小区驻留;若不存在候选小区X准则X lex的值满足驻留阈值要求时,选择X准则X lex的值最高的小区驻留。
需要说明的是,处理单元720确定两个判决因子:信号质量比率(Signal_Quality/Signal_Quality_reference)和波束覆盖时间比率(DurationTime beam/DurationTime beam_reference)的取值方法包括:接收卫星或小区下发的与计算S准则相关的系统广播消息和参考信号,计算S准则Srxlev的值,即第一判决因子中信号质量(Signal_Quality)的值;查询当前时间,与接收到的波束覆盖信息作比较,获取第二判决因子中波束覆盖时间(DurationTime beam)的取值。需要说明的是,第一判决因子信号质量比率(Signal_Quality/Signal_Quality_reference)中的参考信号质量(Signal_Quality_reference)和第二判决因子波束覆盖时间比率(DurationTime beam/DurationTime beam_reference)中的参考波束覆盖时间(DurationTime beam_reference)的取值默认为已知的预设定值,该值可以依据不同的应用场景、不同的用户设备厂商、不同的用户设备运营商,以及其他相关因素发生变化,该预设定值可以由处理单元720计算或查询得到,本申请对此不做限定。
可选的,作为本实现方式中的另一种设计,收发单元710,用于接收卫星下发的波束覆盖信息;还用于接收卫星下发的与计算S准则的值相关的系统广播消息和参考信号。处理单元720,用于查询是否存在预存储信息,根据预存储信息,确定优先搜索的频率;还用于确定判决因子:信号质量(Signal_Quality)和波束覆盖时间(DurationTime beam)的取值;还用于根据X准则中约定的优先级顺序,确定驻留小区;当第三判决因子信号质量(Signal_Quality)的优先级高于第四判决因子波束覆盖时间(DurationTime beam)时:若当前小区信号质量(Signal_Quality)低于预设门限,并且存在至少一个邻小区的信号质量 (Signal_Quality)高于预设门限时,选择信号质量(Signal_Quality)最高的小区驻留;若当前小区信号质量(Signal_Quality)低于预设门限,并且不存在邻小区的信号质量(Signal_Quality)高于预设门限时,选择波束覆盖时间(DurationTime beam)最长的小区驻留。当第四判决因子波束覆盖时间(DurationTime beam)的优先级高于第三判决因子信号质量(Signal_Quality)时:若当前小区波束覆盖时间(DurationTime beam)低于预设门限,并且存在至少一个邻小区的波束覆盖时间(DurationTime beam)大于预设门限时,选择波束覆盖时间(DurationTime beam)最长的小区驻留;若当前小区波束覆盖时间(DurationTime beam)低于预设门限,并且不存在邻小区的波束覆盖时间(DurationTime beam)大于预设门限时,选择信号质量(Signal_Quality)最高的小区驻留。
需要说明的是,处理单元720确定两个判决因子:信号质量(Signal_Quality)和波束覆盖时间(DurationTime beam)的取值方法包括:接收卫星下发的与计算S准则相关的系统广播消息和参考信号,计算S准则Srxlev的值,即第三判决因子信号质量(Signal_Quality)的取值;查询当前时间,与接收到的波束覆盖信息作比较,获取第四判决因子波束覆盖时间(DurationTime beam)的取值。
作为另一种实现方式,通信设备700可以用于执行上文方法实施例中卫星所执行的动作。在本实现方式中,该通信设备700可以称为卫星网络设备。收发单元710用于执行上文方法实施例中卫星的收发相关操作,处理单元720用于执行上文方法实施例中卫星的处理相关操作。
作为本实现方式中的一种设计,收发单元710,用于接收网络侧系统发送的与波束覆盖信息相关的调度信息;还用于向每个网格中的用户设备发送波束覆盖信息;还用于向进行小区选择的用户设备发送与计算S准则相关的系统广播消息和参考信号。处理单元720,用于处理网络侧系统发送的与波束覆盖信息相关的调度信息,控制波束覆盖信息的下发;还用于控制与计算S准则相关的系统广播消息和参考信号的发送过程。
应理解,上文中的收发单元710可以由收发器或收发器相关电路实现,处理单元720可以由处理器或处理器相关电路实现。
如图8所示,本申请还提供一种通信设备800。通信设备800包括处理器810、存储器820和收发器830,存储器820中存储有程序,处理器810用于执行存储器820中存储的程序,对存储器820中存储的程序的执行,使得处理器810用于执行上文方法实施例中的相关处理步骤,对存储器820中存储的程序的执行,使得处理器810控制收发器830执行上文方法实施例中的收发相关步骤。
作为一种实现,该通信设备800用于执行上文方法实施例中用户设备所执行的动作,这时,对存储器820中存储的程序的执行,使得处理器810用于执行上文方法实施例中用户设备侧的处理步骤,收发器830用于执行上文方法实施例中用户设备侧的接收和发送步骤。可选地,对存储器820中存储的程序的执行,使得处理器810控制收发器830执行上文方法实施例中用户设备侧的接收和发送步骤。
作为另一种实现,该通信设备800用于执行上述方法实施例中卫星所执行的动作,这时,对存储器820中存储的程序的执行,使得处理器810用于执行上述方法实施例中卫星侧的处理步骤,收发器830用于执行上述方法实施例中卫星侧的接收和发送步骤。可选地,对存储器820中存储的程序的执行,使得处理器810控制收发器830执行上述方法实施例中卫星侧的接收和发送步骤。
本申请还提供一种通信装置900,该通信装置900可以是终端设备也可以是芯片。该通信设备900可以用于执行上述方法实施例中由用户设备所执行的动作。
当该通信设备900为终端设备时,图9示出了一种简化的终端设备的结构示意图。便于理解和图示方便,图9中,终端设备以用户设备作为例子。如图9所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图9中仅示出了一个存储器和处理器,在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以独立于处理器设置,也可以与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。
如图9所示,将天线和射频电路视为收发单元视为收发单元,并将处理器视为处理单元后,终端设备包括收发单元910和处理单元920。收发单元910也可以称为收发器、收发机、收发装置等。处理单元920也可以称为处理器,处理单板,处理模块、处理装置等。可选地, 可以将收发单元910中用于实现接收功能的器件视为接收单元,将收发单元910中用于实现发送功能的器件视为发送单元,即收发单元910包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
例如,在一种实现方式中,收发单元910用于执行图3中所示的步骤S320以及图5中所示的步骤S530中终端设备侧的接收操作,和/或收发单元910还用于执行终端设备侧的其他收发步骤。处理单元920用于执行图3中所示的步骤S310、S320、S330、S340,以及图5中所示的步骤S540中终端设备侧的处理操作,和/或处理单元920还用于执行终端设备侧的其他处理步骤。
又例如,在另一种实现方式中,收发单元910用于执行图6中所示的步骤S620以及图5中所示的步骤S530中终端设备侧的接收操作。处理单元920用于执行图6中所示的步骤S610S620、S630,以及图5中所示的步骤S540中终端设备侧的处理操作,和/或处理单元920还用于执行终端设备侧的其他处理步骤。
应理解,图9仅为示例而非限定,上述包括收发单元和处理单元的终端设备可以不依赖于图9所示的结构。
当该通信设备900为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路或通信接口;处理单元可以为该芯片上集成的处理器或者微处理器或者集成电路。
本申请实施例还提供一种通信系统,该通信系统包括上文中的终端设备、候选小区和卫星网络设备。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被计算机执行时使得该计算机实现上述方法实施例中终端设备侧的方法,或卫星网络设备侧的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被计算机执行时使得该计算机实现上述方法实施例中终端设备侧的方法,或卫星网络设备侧的方法。
上述提供的任一种通信装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
在本申请实施例中,终端设备或卫星网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management Unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统 等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请并未对本申请提供的方法的执行主体的具体结构进行特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请提供的方法进行通信即可,例如,本申请提供的方法的执行主体可以是终端设备或卫星网络设备,或者,是终端设备或卫星网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本申请描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct Rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器包括但不限于上述存储器,还包括其它任意适合类型的存储 器。
本领域普通技术人员可以意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本申请所提供的几个实施例中,应该理解到,所提供的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,所述单元的划分,仅仅是一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的技术效果。
另外,本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,终端设备或者卫星网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请公开的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (24)

  1. 一种非陆地网络(NTN)中小区选择的方法,所述方法包括:
    用户设备查询是否存在第一预存储信息,根据所述第一预存储信息,确定优先搜索的频率;
    所述用户设备确定第一判决准则中第一判决因子和第二判决因子的取值;
    所述用户设备确定所述第一判决准则中第一加权系数和第二加权系数的取值;
    所述用户设备根据确定的所述第一判决准则搜索小区:
    若候选小区的第一判决准则的值满足小区的驻留阈值要求时,所述用户设备选择所述第一判决准则的值最高的小区驻留;
    若不存在候选小区的所述第一判决准则的值满足小区的驻留阈值要求时,所述用户设备选择所述第一判决准则的值最高的小区驻留。
  2. 根据权利要求1所述的方法,其特征在于,所述第一判决准则的表达式为:
    X lex=A*(Signal_Quality/Signal_Quality_reference)+B*(DurationTime beam/DurationTime beam_reference)
    所述Signal_Quality/Signal_Quality_reference(信号质量比率)为第一判决因子,所述DurationTime beam/DurationTime beam_reference(波束覆盖时间比率)为第二判决因子;
    所述A为第一加权系数,用于表征所述第一判决因子在基于所述第一判决准则的小区选择判决中的权重;所述B为第二加权系数,用于表征所述第二判决因子在基于所述第一判决准则的小区选择判决中的权重;
    所述第一判决准则X lex的函数关系为将所述第一判决因子、第二判决因子的取值分别使用所述第一加权系数、第二加权系数加权后再相加。
  3. 根据权利要求2所述的方法,其特征在于,所述第一判决因子中Signal_Quality(信号质量)的取值为已有标准中S准则的值。
  4. 根据权利要求2或3所述的方法,其特征在于,所述第二判决因子中DurationTime beam(波束覆盖时间)的取值方法,包括:
    网络侧系统将地面划分为若干地理网格;
    所述网络侧系统基于星历获取每个网格中在某一时间段内的波束覆盖信息;
    所述网络侧系统调度卫星网络设备将所述波束覆盖信息下发给每个网格中的用户设备;
    还包括,各网格内的所述用户设备查询当前时间,与接收到的所述波束覆盖信息作比较,获取第二判决因子中DurationTime beam(波束覆盖时间)的取值。
  5. 根据权利要求4所述的方法,其特征在于,所述波束覆盖信息包括:
    波束标识码(ID)、波束覆盖当前网格的开始时间、波束覆盖当前网格的结束时间。
  6. 根据权利要求4或5所述的方法,其特征在于,所述波束覆盖信息还包括:波束标识码(ID)、波束覆盖当前网格的开始时间、波束覆盖当前网格的持续时间。
  7. 根据权利要求2-6任一项所述的方法,其特征在于,所述第一判决因子中Signal_Quality_reference(参考信号质量)和第二判决因子中DurationTime beam_reference(参考波束覆盖时间)的取值为已知的预设定值,所述预设定值可以由所述用户设备计算或查询获得。
  8. 根据权利要求1或2所述的方法,其特征在于,所述确定所述第一判决准则中第一加权系数和第二加权系数的取值的方法,包括:基于业务类型配置第一加权系数和第二加权系数的取值。
  9. 根据权利要求8所述的方法,其特征在于,所述业务类型包括以下至少一种:IOT设备、固定接入点、移动设备。
  10. 根据权利要求1或2所述的方法,其特征在于,所述确定所述第一判决准则中第一加权系数和第二加权系数的取值的方法,还包括:基于业务持续时间配置第一加权系数和第二加权系数的取值。
  11. 根据权利要求1所述的方法,其特征在于,所述第一预存储信息包括:载波频率。
  12. 一种非陆地网络(NTN)中小区重选的方法,所述方法包括:
    用户设备查询是否存在第二预存储信息,根据所述第二预存储信息,确定优先搜索的频率;
    所述用户设备确定第二判决准则中第三判决因子和第四判决因子的取值;
    所述用户设备根据所述第二判决准则中确定的优先级顺序,确定驻留小区;
    当所述第三判决因子的优先级高于所述第四判决因子时:
    若当前小区的第三判决因子的值低于预设门限,并且存在至少一个邻小区的所述第三判决因子的值高于预设门限时,选择所述第三判决因子的值最大的小区驻留;
    若当前小区的所述第三判决因子的值低于预设门限,并且不存在邻小区的所述第三判决因子的值高于预设门限时,选择第四判决因子的值最大的小区驻留;
    当所述第四判决因子的优先级高于所述第三判决因子时:
    若当前小区的所述第四判决因子的值低于预设门限,并且存在至少一个邻小区的所述第四判决因子的值高于预设门限时,选择所述第四判决因子的值最大的小区驻留;
    若当前小区的所述第四判决因子的值低于预设门限,并且不存在邻小区的所述第四判决因子的值高于预设门限时,选择所述第三判决因子的值最大的小区驻留。
    其中,所述第三判决因子为Signal_Quality(信号质量),所述第四判决因子为 DurationTime beam(波束覆盖时间)。
  13. 根据权利要求12所述的方法,其特征在于,所述第二判决准则的表达式为:
    X lex=Priority(Signal_Quality,DurationTime beam)
    所述第二判决准则X lex的函数关系为按照约定的Priority(优先级)确定所述第三判决因子Signal_Quality(信号质量)和所述第四判决因子DurationTime beam(波束覆盖时间)在小区选择判决中的优先级顺序。
  14. 根据权利要求13所述的方法,其特征在于,所述第三判决因子Signal_Quality的取值为已有标准中S准则的值。
  15. 根据权利要求13或14所述的方法,其特征在于,所述第四判决因子DurationTime beam(波束覆盖时间)的取值方法包括:
    网络侧系统将地面划分为若干地理网格;
    所述网络侧系统基于星历获取每个网格中在某一时间段内的波束覆盖信息;
    所述网络侧系统调度卫星网络设备将所述波束覆盖信息下发给每个网格中的用户设备;
    还包括,各网格内的所述用户设备查询当前时间,与接收到的所述波束覆盖信息作比较,获取第四判决因子DurationTime beam(波束覆盖时间)的取值。
  16. 根据权利要求15所述的方法,其特征在于,所述波束覆盖信息包括:
    波束标识码(ID)、波束覆盖当前网格的开始时间、波束覆盖当前网格的结束时间;
  17. 根据权利要求15或16所述的方法,其特征在于,所述波束覆盖信息还包括:波束标识码(ID)、波束覆盖当前网格的开始时间、波束覆盖当前网格的持续时间。
  18. 根据权利要求12所述的方法,其特征在于,所述第二预存储信息包括:载波频率。
  19. 一种终端设备,其特征在于,包括:
    收发单元,用于接收卫星网络设备下发的波束覆盖信息;
    处理单元,用于查询是否存在第一预存储信息,根据所述第一预存储信息,确定优先搜索的频率;还用于确定第一判决准则中第一判决因子和第二判决因子的取值;还用于确定所述第一判决准则中第一加权系数和第二加权系数的取值;还用于根据确定的所述第一判决准则搜索小区:若候选小区的第一判决准则的值满足小区的驻留阈值要求时,所述处理单元选择所述第一判决准则的值最高的小区驻留;若不存在候选小区的所述第一判决准则的值满足小区的驻留阈值要求时,所述处理单元选择所述第一判决准则的值最高的小区驻留。
  20. 根据权利要求19所述的方法,其特征在于,所述处理单元还用于:查询是否存在第二预存储信息,根据所述第二预存储信息,确定优先搜索的频率;确定第二判决准则中第三判决因子和第四判决因子的取值;根据所述第二判决准则中确定的优先级顺序,确定驻留小 区;当所述第三判决因子的优先级高于所述第四判决因子时:若当前小区的第三判决因子的值低于预设门限,并且存在至少一个邻小区的所述第三判决因子的值高于预设门限时,选择所述第三判决因子的值最大的小区驻留;当所述第四判决因子的优先级高于所述第三判决因子时:若当前小区的所述第四判决因子的值低于预设门限,并且存在至少一个邻小区的所述第四判决因子的值高于预设门限时,选择所述第四判决因子的值最大的小区驻留;若当前小区的所述第四判决因子的值低于预设门限,并且不存在邻小区的所述第四判决因子的值高于预设门限时,选择所述第三判决因子的值最大的小区驻留。
  21. 一种卫星网络设备,其特征在于,包括:
    收发单元,用于接收网络侧系统下发的与波束覆盖信息相关的调度信息;还用于向每个网格中的用户设备发送波束覆盖信息;
    处理单元,用于处理网络侧系统发送的与波束覆盖信息相关的调度信息,控制波束覆盖信息的发送过程。
  22. 一种通信装置,其特征在于,所述通信装置包括存储器和处理器,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,并且对所述存储器中存储的指令的执行使得所述处理器执行权利要求1至11中任一项所述的方法,或者,权利要求12至18中任一项所述的方法。
  23. 一种计算机可读存储介质,其特征在于,其上存储有计算机程序,所述计算机程序被计算机执行时使得所述计算机实现权利要求1至11中任一项所述的方法,或者,权利要求12至18中任一项所述的方法。
  24. 一种通信系统,其特征在于,包括候选小区、权利要求19或20中所述的终端设备,以及权利要求21所述的卫星网络设备。
PCT/CN2020/094215 2019-06-28 2020-06-03 一种ntn中小区选择的方法及装置 WO2020259241A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20833497.9A EP3982668A4 (en) 2019-06-28 2020-06-03 METHOD AND DEVICE FOR NTN CELL SELECTION
US17/559,264 US20220116844A1 (en) 2019-06-28 2021-12-22 Method for selecting cell in ntn and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910574204.9 2019-06-28
CN201910574204.9A CN112153706B (zh) 2019-06-28 2019-06-28 一种ntn中小区选择的方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/559,264 Continuation US20220116844A1 (en) 2019-06-28 2021-12-22 Method for selecting cell in ntn and apparatus

Publications (1)

Publication Number Publication Date
WO2020259241A1 true WO2020259241A1 (zh) 2020-12-30

Family

ID=73869189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094215 WO2020259241A1 (zh) 2019-06-28 2020-06-03 一种ntn中小区选择的方法及装置

Country Status (4)

Country Link
US (1) US20220116844A1 (zh)
EP (1) EP3982668A4 (zh)
CN (2) CN115765829A (zh)
WO (1) WO2020259241A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022038510A1 (en) * 2020-08-17 2022-02-24 Telefonaktiebolaget Lm Ericsson (Publ) Using the expected time to be served as cell selection and reselection criterion in a non-terrestrial network
CN115039445A (zh) * 2021-01-04 2022-09-09 北京小米移动软件有限公司 小区重选的方法、装置、通信设备及存储介质
WO2023010415A1 (zh) * 2021-08-05 2023-02-09 北京小米移动软件有限公司 信息传输方法、装置、通信设备和存储介质
WO2023169398A1 (zh) * 2022-03-11 2023-09-14 维沃移动通信有限公司 网络确定方法、网络接入方法、数据传输方法及相关设备

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114698039A (zh) * 2020-12-30 2022-07-01 华为技术有限公司 一种小区选择方法及装置
CN114765821A (zh) * 2021-01-15 2022-07-19 展讯通信(上海)有限公司 数据传输方法及小区驻留方法、装置、介质
CN115134747A (zh) * 2021-03-29 2022-09-30 华为技术有限公司 一种通信方法及装置
CN115189747A (zh) * 2021-04-01 2022-10-14 华为技术有限公司 一种卫星通信方法、装置及系统
CN114828113B (zh) * 2021-05-17 2023-10-20 银河航天(北京)网络技术有限公司 星座通信系统用户移动性管理的方法
CN115484645A (zh) * 2021-05-31 2022-12-16 中国移动通信集团重庆有限公司 一种语音回落频点的确定方法、装置、设备及计算机存储介质
CN117178593A (zh) * 2021-06-29 2023-12-05 Oppo广东移动通信有限公司 小区重选方法、终端设备、ntn设备、芯片和存储介质
CN117751617A (zh) * 2021-11-12 2024-03-22 Oppo广东移动通信有限公司 一种无线通信方法、装置、通信设备及存储介质
CN116996947A (zh) * 2022-04-26 2023-11-03 中国电信股份有限公司 空天地一体化网络小区重选方法、通信系统和相关设备
CN117796032A (zh) * 2022-07-29 2024-03-29 北京小米移动软件有限公司 目标小区的确定方法、装置、用户设备、存储介质及芯片
GB2621549A (en) * 2022-08-08 2024-02-21 Nokia Technologies Oy Method and apparatus related to cell searching in non-terrestrial networks
CN115913323A (zh) * 2022-10-14 2023-04-04 西安空间无线电技术研究所 一种基于时空网格的低轨接入选择方法、存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104320831A (zh) * 2014-10-24 2015-01-28 成都天奥信息科技有限公司 卫星终端网络选择和快速入网方法及装置
WO2018052744A2 (en) * 2016-09-13 2018-03-22 Qualcomm Incorporated Neighbor cell list
CN109075853A (zh) * 2016-04-28 2018-12-21 高通股份有限公司 针对卫星通信的切换

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016115710A1 (zh) * 2015-01-22 2016-07-28 华为技术有限公司 测量的装置和方法
US9900856B2 (en) * 2015-03-20 2018-02-20 Qualcomm Incorporated Method and apparatus for time or frequency synchronization in non-geosynchronous satellite communication systems
US10244453B2 (en) * 2015-10-13 2019-03-26 Qualcomm Incorporated Method and apparatus for inter-satellite handovers in low-earth orbit (LEO) satellite systems
CN106102099B (zh) * 2016-06-08 2020-11-24 华南理工大学 一种基于驻留时间的异构车联网切换方法
CN109474326B (zh) * 2018-11-16 2019-08-30 清华大学 波束切换方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104320831A (zh) * 2014-10-24 2015-01-28 成都天奥信息科技有限公司 卫星终端网络选择和快速入网方法及装置
CN109075853A (zh) * 2016-04-28 2018-12-21 高通股份有限公司 针对卫星通信的切换
WO2018052744A2 (en) * 2016-09-13 2018-03-22 Qualcomm Incorporated Neighbor cell list

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
See also references of EP3982668A4 *
SONY: "Service continuity in NTN", 3GPP TSG RAN WG2 MEETING #106 R2-1907051, 17 May 2019 (2019-05-17), XP051730501, DOI: 20200821160232A *
ZTE CORPORATION ET AL.: "Consideration on the cell definition and NTN mobility", 3GPP TSG-RAN WG2 MEETING#104 R2-1817062, 16 November 2018 (2018-11-16), XP051480986, DOI: 20200821160130A *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022038510A1 (en) * 2020-08-17 2022-02-24 Telefonaktiebolaget Lm Ericsson (Publ) Using the expected time to be served as cell selection and reselection criterion in a non-terrestrial network
CN115039445A (zh) * 2021-01-04 2022-09-09 北京小米移动软件有限公司 小区重选的方法、装置、通信设备及存储介质
CN115039445B (zh) * 2021-01-04 2023-11-14 北京小米移动软件有限公司 小区重选的方法、装置、通信设备及存储介质
WO2023010415A1 (zh) * 2021-08-05 2023-02-09 北京小米移动软件有限公司 信息传输方法、装置、通信设备和存储介质
WO2023169398A1 (zh) * 2022-03-11 2023-09-14 维沃移动通信有限公司 网络确定方法、网络接入方法、数据传输方法及相关设备

Also Published As

Publication number Publication date
CN112153706A (zh) 2020-12-29
CN112153706B (zh) 2022-10-28
EP3982668A1 (en) 2022-04-13
US20220116844A1 (en) 2022-04-14
CN115765829A (zh) 2023-03-07
EP3982668A4 (en) 2022-11-09

Similar Documents

Publication Publication Date Title
WO2020259241A1 (zh) 一种ntn中小区选择的方法及装置
US11510215B2 (en) Electronic device and method for radio resource management (RRM) measurement relaxation
Xu et al. WCDMA data based LTE site selection scheme in LTE deployment
WO2021082009A1 (zh) 小区测量的方法、终端设备和网络设备
US20160095008A1 (en) Wireless communications method, user equipment, and network node
US20220124581A1 (en) Satellite cell reselection control method and related device
WO2022143564A1 (zh) 一种小区选择方法及装置
US20120269095A1 (en) Method and apparatus for providing a network search function
US11251857B2 (en) Systems and methods for selecting radio beams
RU2523688C2 (ru) Способ и устройство в беспроводной сети для определения целевого значения принимаемой мощности восходящей линии связи
WO2021062599A1 (zh) 通信方法、小区测量的方法与通信装置
US20220225150A1 (en) Cell Measurement Method and Communications Apparatus
US20230209426A1 (en) Cell reselection method, terminal device, and network device
US20220217602A1 (en) Cell reselection method and apparatus
WO2022082539A1 (zh) 一种无线通信方法及装置
US20230138812A1 (en) Wireless communication method, terminal device, and network device
CN114342469B (zh) 小区选择的方法与通信装置
WO2015169364A1 (en) A method and apparatus
TWI555414B (zh) 通訊裝置、細胞測量以及細胞重新選擇之決定方法
US11490321B2 (en) Method and apparatus for backhaul link selection
WO2021174427A1 (zh) 测量方法和终端设备
US20230106995A1 (en) Wireless communication method and terminal device
Prasad et al. Mobility state based flexible inter-frequency small cell discovery for heterogeneous networks
WO2023000273A1 (zh) 网络接入方法、参数配置方法、装置、设备及存储介质
US20110189989A1 (en) Method and Apparatus for Cross Mode Mobility Optimization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20833497

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020833497

Country of ref document: EP

Effective date: 20220110