WO2021044710A1 - Stage position control device and stage position control method - Google Patents

Stage position control device and stage position control method Download PDF

Info

Publication number
WO2021044710A1
WO2021044710A1 PCT/JP2020/024531 JP2020024531W WO2021044710A1 WO 2021044710 A1 WO2021044710 A1 WO 2021044710A1 JP 2020024531 W JP2020024531 W JP 2020024531W WO 2021044710 A1 WO2021044710 A1 WO 2021044710A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
drive system
thrust
stage
command
Prior art date
Application number
PCT/JP2020/024531
Other languages
French (fr)
Japanese (ja)
Inventor
隼太 境
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to KR1020227004731A priority Critical patent/KR20220054588A/en
Priority to CN202080058134.2A priority patent/CN114270286B/en
Priority to JP2021543967A priority patent/JP7507355B2/en
Publication of WO2021044710A1 publication Critical patent/WO2021044710A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction

Definitions

  • the present invention relates to a stage position control device for controlling the position of a stage and a stage position control method.
  • Patent Document 1 discloses a method of controlling the stage position in the gantry mechanism, which suppresses the movement of the stage in the yawing direction.
  • the stage position control method disclosed in Patent Document 1 is a control method that detects the stage position and feeds back the detected stage position information to a command for moving the stage. Therefore, in this control method, the position of the stage can be controlled so as to suppress the generated movement of the stage in the yawing direction. However, it is difficult to suppress the occurrence of the yawing direction motion of the stage itself when the yawing direction motion of the stage is not generated.
  • an object of the present disclosure is to provide a stage position control device and a stage position control method capable of suppressing the movement of the stage in the yawing direction in the gantry mechanism, as compared with the conventional case.
  • the stage position control device includes a Y1 axis and a Y2 axis parallel to each other, an X axis perpendicular to the Y1 axis and the Y2 axis, and a Y1 axis which is a drive position in the Y1 axis drive system on the Y1 axis.
  • a stage in a gantry mechanism having a position and a stage whose position is determined by the Y2 axis position which is the drive position in the Y2 axis drive system on the Y2 axis and the X axis position which is the drive position in the X axis drive system on the X axis.
  • a stage position control device that controls the position of the Y-axis center of gravity thrust command output unit and a Y-axis center of gravity thrust command output unit that outputs a first Y-axis center of gravity thrust command that commands the center of gravity thrust of the Y1 axis drive system and the Y2 axis drive system.
  • the Y-axis differential thrust command output unit that outputs the first Y-axis differential thrust command that commands the differential thrust between the axis drive system and the Y2-axis drive system, the X-axis position command that commands the X-axis position, and the Y1 axis position.
  • the Y-axis center of gravity position command that commands the position of the center of gravity of the Y2 axis position is fed forward to the first Y-axis differential thrust command, and the second Y-axis differential thrust command is output.
  • a thrust conversion unit that controls the position of the stage by using the Y-axis center of gravity thrust command and the second Y-axis differential thrust command is provided.
  • the stage position control method includes a Y1 axis and a Y2 axis parallel to each other, an X axis perpendicular to the Y1 axis and the Y2 axis, and a Y1 axis which is a drive position in the Y1 axis drive system on the Y1 axis.
  • a stage in a gantry mechanism having a position and a stage whose position is determined by the Y2 axis position which is the drive position in the Y2 axis drive system on the Y2 axis and the X axis position which is the drive position in the X axis X axis drive system.
  • a stage position control method for controlling the position in which a first Y-axis center of gravity thrust command for commanding the center of gravity thrust of the Y1-axis drive system and the Y2-axis drive system is calculated, and the Y1-axis drive system and the Y2-axis drive system are used.
  • the first Y-axis differential thrust command for commanding the differential thrust is calculated, and the X-axis position command for commanding the X-axis position and the Y-axis center of gravity position command for commanding the center of gravity positions of the Y1 axis position and the Y2 axis position are obtained.
  • Feed forward to the first Y-axis differential thrust command calculate the second Y-axis differential thrust command, and use the first Y-axis center of gravity thrust command and the second Y-axis differential thrust command. Control the position of the stage.
  • stage position control device and the stage position control method it is possible to suppress the movement of the stage in the yawing direction in the gantry mechanism as compared with the conventional case.
  • FIG. 1 is a schematic view showing the configuration of the gantry mechanism according to the first embodiment.
  • FIG. 2 is a block diagram showing a configuration of the stage position control device according to the first embodiment.
  • FIG. 3 is a schematic diagram showing an example of an inertia function calculated by the inertia function calculation unit according to the first embodiment.
  • FIG. 4 is a flowchart of the inertia function calculation process according to the first embodiment.
  • FIG. 5 is a flowchart of the stage position control process according to the first embodiment.
  • FIG. 6 is a block diagram showing a configuration of the stage position control device according to the second embodiment.
  • the gantry mechanism suppresses the occurrence of the yawing direction motion of the stage itself at the time when the yawing direction motion of the stage is not generated. It is difficult.
  • the inventor conducted a diligent study and experiment in order to suppress the occurrence of the yawing direction motion of the stage itself at the time when the yawing direction motion of the stage was not generated in the gantry mechanism.
  • the inventor feeds forward the position command that commands the position of the stage to the thrust command that moves the stage, and reduces the component that causes the motion in the yawing direction of the stage from the thrust command in advance. It was found that the occurrence of the stage yawing direction motion itself can be suppressed when the stage yawing direction motion does not occur.
  • the inventor further conducted diligent studies and experiments, and came up with the stage position detection device and the stage position detection method according to one aspect of the present disclosure below.
  • the stage position control device includes a Y1 axis and a Y2 axis parallel to each other, an X axis perpendicular to the Y1 axis and the Y2 axis, and a Y1 axis which is a drive position in the Y1 axis drive system on the Y1 axis.
  • a stage in a gantry mechanism having a position and a stage whose position is determined by the Y2 axis position which is the drive position in the Y2 axis drive system on the Y2 axis and the X axis position which is the drive position in the X axis drive system on the X axis.
  • a stage position control device that controls the position of the Y-axis center of gravity thrust command output unit and a Y-axis center of gravity thrust command output unit that outputs a first Y-axis center of gravity thrust command that commands the center of gravity thrust of the Y1 axis drive system and the Y2 axis drive system.
  • the Y-axis differential thrust command output unit that outputs the first Y-axis differential thrust command that commands the differential thrust between the axis drive system and the Y2-axis drive system, the X-axis position command that commands the X-axis position, and the Y1 axis position.
  • the Y-axis center of gravity position command that commands the position of the center of gravity of the Y2 axis position is fed forward to the first Y-axis differential thrust command, and the second Y-axis differential thrust command is output.
  • a thrust conversion unit that controls the position of the stage by using the Y-axis center of gravity thrust command and the second Y-axis differential thrust command is provided.
  • the first Y-axis differential thrust command that may include a component that causes movement in the yawing direction of the stage includes an X-axis position command and a Y-axis center of gravity position command that command the position of the stage. Can be fed forward to generate a second Y-axis differential thrust command with reduced components that cause the stage to move in the yawing direction.
  • the position of the stage is controlled by using the generated second Y-axis differential thrust command. Therefore, according to the stage position control device having the above configuration, it is possible to suppress the movement of the stage in the yawing direction in the gantry mechanism as compared with the conventional case.
  • the feed forward unit stores an inertia function indicating the relationship between the inertia difference of the Y1 axis drive system and the inertia of the Y2 axis drive system and the X-axis position, and is commanded by the X-axis position command.
  • the inertia difference may be calculated from the X-axis position and the inertia function, and the feed forward value to be fed forward to the first Y-axis difference thrust command may be calculated from the calculated inertia difference and the Y-axis center of gravity position command.
  • the Y-axis center-of-gravity thrust command output unit may output the first Y-axis center-of-gravity thrust command based on the Y-axis center-of-gravity position command.
  • a Y1 axis position detecting unit for detecting the Y1 axis position and a Y2 axis position detecting unit for detecting the Y2 axis position are further provided, and the Y axis center of gravity thrust command output unit is detected by the Y1 axis position detecting unit.
  • the first Y-axis center of gravity thrust command is output and the first The Y-axis differential thrust command output unit feeds back the Y-axis difference position indicating the difference position between the Y1 axis position detected by the Y1 axis position detection unit and the Y2 axis position detected by the Y2 axis position detection unit.
  • the first Y-axis differential thrust command may be output.
  • the thrust conversion unit has a Y1-axis drive system thrust command and a Y2-axis drive that command the thrust of the Y1-axis drive system based on the first Y-axis center of gravity thrust command and the second Y-axis differential thrust command.
  • the Y2-axis drive system thrust command that commands the thrust of the system is calculated, the Y1-axis drive system is driven using the Y1-axis drive system thrust command, and the Y2-axis drive system is driven using the Y2-axis drive system thrust command. By doing so, the position of the stage may be controlled.
  • the X-axis position detecting unit that detects the X-axis position, the X-axis position detected by the X-axis position detecting unit, and the difference position are fed back to the first Y-axis center of gravity thrust command
  • the second A feedback unit that outputs a Y-axis center-of-gravity thrust command may be further provided, and the thrust conversion unit may control the position of the stage by using the second Y-axis center-of-gravity thrust command.
  • the feedback unit stores the inertia function, calculates the inertia difference from the X-axis position and the inertia function detected by the X-axis position detection unit, and calculates the inertia difference from the calculated inertia difference and the difference position, and the first Y-axis center of gravity.
  • the feedback value to be fed back to the thrust command may be calculated.
  • the thrust conversion unit has a Y1-axis drive system thrust command and a Y2-axis drive that command the thrust of the Y1-axis drive system based on the second Y-axis center of gravity thrust command and the second Y-axis differential thrust command.
  • the Y2-axis drive system thrust command that commands the thrust of the system is calculated, the Y1-axis drive system is driven using the Y1-axis drive system thrust command, and the Y2-axis drive system is driven using the Y2-axis drive system thrust command. By doing so, the position of the stage may be controlled.
  • a Y1 axis position detection unit that detects the Y1 axis position
  • a Y2 axis position detection unit that detects the Y2 axis position
  • a Y1 axis drive system thrust command that commands the thrust of the Y1 axis drive system
  • a Y2 axis drive system that controls the thrust of the Y1 axis drive system
  • the Y2-axis drive system thrust command that commands the thrust is output, and (a) the Y1-axis drive system thrust command and the Y2-axis drive system thrust command that are output when the stage position is determined by the first X-axis position, (B) The Y1 axis position detected by the Y1 axis position detection unit and the Y2 axis position detected by the Y2 axis position detection unit when the stage position is determined by the first X-axis position, and (c) the stage.
  • An inertia function calculation unit that calculates an inertia function based on the Y1 axis position detected by the position detection unit and the Y2 axis position detected by the Y2 axis position detection unit may be further provided.
  • the stage position control method includes a Y1 axis and a Y2 axis parallel to each other, an X axis perpendicular to the Y1 axis and the Y2 axis, and a Y1 axis which is a drive position in the Y1 axis drive system on the Y1 axis.
  • a stage in a gantry mechanism having a position and a stage whose position is determined by the Y2 axis position which is the drive position in the Y2 axis drive system on the Y2 axis and the X axis position which is the drive position in the X axis X axis drive system.
  • a stage position control method for controlling the position in which a first Y-axis center of gravity thrust command for commanding the center of gravity thrust of the Y1-axis drive system and the Y2-axis drive system is calculated, and the Y1-axis drive system and the Y2-axis drive system are used.
  • the first Y-axis differential thrust command for commanding the differential thrust is calculated, and the X-axis position command for commanding the X-axis position and the Y-axis center of gravity position command for commanding the center of gravity positions of the Y1 axis position and the Y2 axis position are obtained.
  • Feed forward to the first Y-axis differential thrust command calculate the second Y-axis differential thrust command, and use the first Y-axis center of gravity thrust command and the second Y-axis differential thrust command. Control the position of the stage.
  • the X-axis position command and Y that command the position of the stage are added to the first Y-axis differential thrust command that may contain a component that causes movement in the yawing direction of the stage.
  • a second Y-axis differential thrust command can be generated by feeding forward the axial center of gravity position command and reducing the components that cause the stage to move in the yawing direction.
  • the position of the stage is controlled using the generated second Y-axis differential thrust command. Therefore, according to the stage position control method having the above configuration, it is possible to suppress the movement of the stage in the yawing direction in the gantry mechanism as compared with the conventional method.
  • stage position control device according to one aspect of the present disclosure will be described with reference to the drawings. It should be noted that all of the embodiments described below show comprehensive or specific examples.
  • the numerical values, shapes, materials, components, arrangement positions and connection forms of the components, etc. shown in the following embodiments are examples, and are not intended to limit the present disclosure. Further, among the components in the following embodiments, the components not described in the independent claims indicating the highest level concept are described as arbitrary components.
  • the coordinate system may be shown in the drawings used for explanation in the following embodiments.
  • the z direction in the coordinate system is the direction perpendicular to the paper surface.
  • the x-direction and the y-direction are directions orthogonal to each other in a plane perpendicular to the z-direction.
  • This stage position control device is a device that controls the position of the stage of the gantry mechanism.
  • FIG. 1 is a schematic view showing the configuration of the gantry mechanism 100 according to the first embodiment.
  • the gantry mechanism 100 has a stage whose position is controlled by the stage position control device.
  • the gantry mechanism 100 includes a Y1 axis 110, a Y2 axis 120, an X axis 130, a stage 140, a first X-axis support portion 135, and a second X-axis support portion 136. , Y1 axis drive system 111, Y2 axis drive system 121, and X-axis drive system 131.
  • the Y1 axis 110 and the Y2 axis 120 are axes extending in the y direction shown in FIG. 1, respectively. That is, the Y1 axis 110 and the Y2 axis 120 are axes parallel to each other.
  • the Y1 axis 110 and the Y2 axis 120 are realized by, for example, a metal quadrangular prism extending in the y direction shown in FIG.
  • the X-axis 130 is an axis extending in the x-direction shown in FIG. That is, the X-axis 130 is an axis perpendicular to the Y1 axis 110 and the Y2 axis 120.
  • the X-axis 130 is realized, for example, by a metal quadrangular prism extending in the x-direction shown in FIG.
  • the first X-axis support portion 135 is a support member that supports the X-axis 130 at one end of the X-axis 130.
  • the first X-axis support 135 is realized, for example, by metal.
  • the second X-axis support portion 136 is a support member that supports the X-axis 130 at the other end of the X-axis 130.
  • the second X-axis support 136 is realized, for example, by metal.
  • the Y1 axis drive system 111 is a drive system that is arranged on the Y1 axis 110 and drives the first X-axis support portion 135 so as to be able to travel straight in the y direction shown in FIG.
  • the Y1 axis drive system 111 is realized by, for example, a linear motor that can move along the y direction shown in FIG.
  • the Y1 axis drive system 111 is realized by, for example, a rotary motor and a pole screw extending along the y direction shown in FIG.
  • the Y2-axis drive system 121 is a drive system that is arranged on the Y2-axis 120 and drives the second X-axis support portion 136 so as to be able to travel straight in the y direction shown in FIG.
  • the Y2-axis drive system 121 is realized by, for example, a linear motor that can move along the y direction shown in FIG.
  • the Y2-axis drive system 121 is realized by, for example, a rotary motor and a pole screw extending along the y direction shown in FIG.
  • the stage 140 is a flat plate.
  • the stage 140 is realized by, for example, a metal plate.
  • the X-axis drive system 131 is a drive system that is arranged on the X-axis 130 and drives the stage 140 linearly in the x direction shown in FIG.
  • the X drive system 131 is realized by, for example, a linear motor that can move along the x direction shown in FIG.
  • the X-axis drive system 131 is realized by, for example, a rotary motor and a pole screw extending in the x direction shown in FIG.
  • the Y1 axis drive system 111 and the Y2 axis drive system 121 translate the first X-axis support portion 135 and the second X-axis support portion 136 to drive the X-axis 130 in the y direction shown in FIG. Drives to slide.
  • the X-axis drive system 131 drives the stage so as to be able to travel straight in the x direction shown in FIG.
  • the gantry mechanism 100 sets the stage 140 in the Y1 axis position, which is the drive position in the Y1 axis drive system 111, and in the Y2 axis drive system 121, in the plane defined by the x direction and the y direction shown in FIG. It can be moved to a position determined by the Y2 axis position, which is the drive position, and the X-axis position, which is the drive position in the X-axis drive system 131.
  • the inertia of the Y1-axis drive system 111 and the inertia of the Y2-axis drive system 121 change according to the position of the stage 140 on the X-axis 130. Therefore, even if the same thrust is applied to the Y1 axis drive system 111 depending on whether the position of the stage 140 on the X axis 130 is the first X axis position or the second X axis position, Y1 The drive speeds of the first X-axis support portion 135 by the shaft drive system 111 are different from each other.
  • the stage At 140 when the drive speed of the first X-axis support portion 135 by the Y1-axis drive system 111 and the drive speed of the second X-axis support portion 136 by the Y2-axis drive system 121 are different from each other, the stage At 140, a motion in the yawing direction, which is the rotation direction around the z direction shown in FIG. 1, occurs.
  • the drive speed of the first X-axis support portion 135 by the Y1-axis drive system 111 and the drive speed of the second X-axis support portion 136 by the Y2-axis drive system 121 are set. The difference needs to be suppressed.
  • FIG. 2 is a block diagram showing the configuration of the stage position control device 1 according to the first embodiment. However, FIG. 2 does not show all the components of the stage position control device 1.
  • the components for outputting the Y1 axis drive system thrust command for commanding the thrust for driving the Y1 axis drive system 111 and the Y2 axis drive system 121 are shown.
  • the components for outputting the Y2-axis drive system thrust command for commanding the thrust to be driven are illustrated.
  • FIG. 2 does not show the components of the stage position control device 1 for outputting the X-axis drive system thrust command for commanding the thrust for driving the X-axis drive system 131.
  • the stage position control device 1 includes components (not shown in FIG. 2) for outputting an X-axis drive system thrust command for commanding a thrust for driving the X-axis drive system 131.
  • the stage position control device 1 includes a feed forward unit 10, a Y-axis differential thrust command output unit 20, a Y-axis center of gravity thrust command output unit 30, a Y1 axis position detection unit 41, and a Y2 axis.
  • the phase lag compensation unit 83 is a feed forward unit 10, a Y-axis differential thrust command output unit 20, a Y-axis center of gravity thrust command output unit 30, a Y1 axis position detection unit 41, and a Y2 axis.
  • the Y1 axis position detection unit 41 detects the Y1 axis position, which is the drive position in the Y1 axis drive system 111.
  • the Y1 axis position detection unit 41 is realized by, for example, an encoder installed in a linear motor or a rotary motor of the Y1 axis drive system 111.
  • the Y1 axis position is referred to as y1.
  • the Y2 axis position detection unit 42 detects the Y2 axis position, which is the drive position in the Y2 axis drive system 121.
  • the Y2-axis position detection unit 42 is realized by, for example, an encoder installed in a linear motor or a rotary motor of the Y2-axis drive system 121.
  • the Y2 axis position is referred to as y2.
  • the X-axis position detection unit 43 detects the X-axis position, which is the drive position in the X-axis drive system 131.
  • the X-axis position detection unit 43 is realized by, for example, an encoder installed in a linear motor or a rotary motor of the X-axis drive system 131.
  • the X-axis position is referred to as x.
  • the X-axis position command acquisition unit 81 acquires the X-axis position command that commands the X-axis position.
  • the X-axis position command may be, for example, a function showing the relationship between the commanded X-axis position and time, or a correspondence table in which the commanded X-axis position and time are associated with each other.
  • the Y-axis center-of-gravity position command acquisition unit 82 acquires a Y-axis center-of-gravity position command that commands the center-of-gravity positions of the Y1 axis position and the Y2 axis position.
  • the sum of the Y1 axis position and the Y2 axis position is referred to as the Y axis center of gravity position.
  • the position of the center of gravity of the Y axis is referred to as Y1.
  • the Y-axis center-of-gravity position command may be, for example, a function indicating the relationship between the commanded Y-axis center-of-gravity position and time, or a correspondence table in which the commanded Y-axis center-of-gravity position and time are associated with each other. ..
  • the position conversion unit 70 indicates the sum of the Y1 axis position and the Y2 axis position from the Y1 axis position detected by the Y1 axis position detection unit 41 and the Y2 axis position detected by the Y2 axis position detection unit 42.
  • the position of the center of gravity of the axis and the Y-axis difference position indicating the difference between the Y1 axis position and the Y2 axis position are calculated.
  • the difference between the Y1 axis position and the Y2 axis position is referred to as a Y-axis difference position.
  • the Y-axis difference position is referred to as Y2.
  • the phase delay compensation unit 83 is commanded by the Y-axis center of gravity position command acquisition unit 82 when feeding back the Y-axis center of gravity position calculated by the position conversion unit 70 described later in the Y-axis center of gravity thrust command output unit 30 described later. Compensates for the phase difference between the Y-axis center of gravity position and the Y-axis center of gravity position calculated by the position conversion unit 70.
  • the Y-axis center of gravity thrust command output unit 30 calculates and outputs a first Y-axis center of gravity thrust command F1 that commands the center of gravity thrust of the Y1-axis drive system 111 and the Y2-axis drive system 121.
  • F1 the sum of the Y1-axis drive system thrust and the Y2-axis drive system thrust
  • F1 the Y-axis center of gravity thrust command
  • f1 The Y1-axis drive system thrust command that commands the thrust of the Y1-axis drive system 111
  • f2 The Y2-axis drive system thrust command that commands the thrust of the Y2-axis drive system 121 is referred to as f2.
  • the Y-axis center-of-gravity thrust command output unit 30 receives the Y-axis center-of-gravity position calculated by the position conversion unit 70 as a feedback value in response to the Y-axis center-of-gravity position command whose phase difference is compensated by the phase delay compensation unit 83.
  • the hood back process is performed, and the first Y-axis center of gravity thrust command F1 is output.
  • the Y-axis center of gravity thrust command output unit 30 includes a position feedback unit 31 and a speed feedback unit 32.
  • the position feedback unit 31 feeds back the Y-axis center-of-gravity position calculated by the position conversion unit to the Y-axis center-of-gravity position command whose phase difference is compensated by the phase delay compensation unit 83, and performs PID (Proportional Integral Differential) processing. Then, the Y-axis center-of-gravity velocity command for commanding the center-of-gravity velocity of the Y1-axis drive system 111 and the Y2-axis drive system 121 is output.
  • the sum of the Y1-axis drive system speed and the Y2-axis drive system speed is referred to as the Y-axis center of gravity speed.
  • the Y-axis center of gravity velocity command is referred to as V1.
  • the speed feedback unit 32 is the first derivative based on the time of the Y-axis center of gravity position calculated by the position conversion unit with respect to the Y-axis center-of-gravity velocity command V1 output by the position feedback unit 31.
  • the Y-axis differential thrust command output unit 20 calculates and outputs a first Y-axis differential thrust command that commands a differential thrust between the Y1-axis drive system 111 and the Y2-axis drive system 121.
  • a first Y-axis differential thrust command that commands a differential thrust between the Y1-axis drive system 111 and the Y2-axis drive system 121.
  • the difference between the Y1-axis drive system thrust f1 and the Y2-axis drive system thrust f2 is referred to as a Y-axis differential thrust.
  • the first Y-axis differential thrust command is referred to as F2.
  • the Y1 axis drive system 111 and the Y2 axis drive system 121 are X by translationally driving the first X-axis support portion 135 and the second X-axis support portion 136.
  • the shaft 130 is slidably driven in the y direction shown in FIG. Therefore, the Y-axis difference position command for commanding the difference position between the Y1 axis position and the Y2 axis position becomes 0 at any time. Therefore, the Y-axis difference thrust command output unit 20 receives the Y-axis difference position calculated by the position conversion unit 70 as a feedback value in response to the Y-axis difference position command that becomes 0 at any time, thereby hooding back. Processing is performed, and the second Y-axis differential thrust command F2 is output.
  • the Y-axis differential thrust command output unit 20 includes a position feedback unit 21 and a speed feedback unit 22.
  • the position feedback unit 21 feeds back the Y-axis difference position calculated by the position conversion unit to perform PID processing in response to the Y-axis difference position command that becomes 0 at any time, and performs PID processing on the Y1 axis drive system 111 and Outputs a Y-axis differential speed command that commands a differential speed with the Y2-axis drive system 121.
  • the difference between the Y1-axis drive system speed and the Y2-axis drive system speed is referred to as a Y-axis difference speed.
  • the Y-axis differential velocity command is referred to as V2.
  • the speed feedback unit 22 is the first derivative based on the time of the Y-axis difference position calculated by the position conversion unit with respect to the Y-axis difference velocity command V2 output by the position feedback unit 21.
  • the inertia function calculation unit 60 calculates an inertia function indicating the relationship between the inertia difference, which is the difference between the inertia of the Y1 axis drive system 111 and the inertia of the Y2 axis drive system 121, and the X-axis position.
  • the inertia of the Y1 axis drive system 111 is referred to as m1.
  • the inertia of the Y2-axis drive system 121 is referred to as m2.
  • FIG. 3 is a schematic diagram showing an example of the inertia function calculated by the inertia function calculation unit 60 according to the first embodiment.
  • the inertia function is a function showing the relationship between the inertia difference m1-m2 and the X-axis position x.
  • the inertia function is a function in which the inertia difference m1-m2 is expressed by a linear expression of the X-axis position x, as shown in FIG.
  • the inertia function is not necessarily limited to a function in which the inertia difference m1-m2 is represented by a linear expression of the X-axis position x, as long as it is a function showing the relationship between the inertia difference m1-m2 and the X-axis position x. No need.
  • the inertia difference m1-m2 may be a function expressed by an expression other than the linear expression of the X-axis position x.
  • the inertia function calculation unit 60 includes a Y1-axis drive system thrust command f1 that commands the thrust of the Y1-axis drive system 111, a Y2-axis drive system thrust command f2 that commands the thrust of the Y2-axis drive system 121, and an X-axis drive system 131.
  • the X-axis thrust command fx which commands the thrust of, is output.
  • the inertia function calculation unit 60 includes a Y1 axis position y1 detected by the Y1 axis position detection unit 41, a Y2 axis position y2 detected by the Y2 axis position detection unit 42, and an X detected by the X axis position detection unit 43.
  • the inertia function calculation unit 60 has the output Y1 axis drive system thrust command f1, the output Y2 axis drive system thrust command f2, the acquired Y1 axis position y1, the acquired Y2 axis position y2, and the acquired X axis position. Calculate the inertia function based on x.
  • FIG. 4 is a flowchart of the inertia function calculation process according to the first embodiment.
  • the inertia function calculation process is an example of a process performed by the inertia function calculation unit 60 to calculate the inertia function.
  • the inertia function calculation unit 60 When the inertia function calculation process is started, the inertia function calculation unit 60 outputs an X-axis thrust command fx to the gantry mechanism 100 and moves the stage 140 to the first X-axis position (step S100). At this time, the inertia function calculation unit 60 acquires the X-axis position x from the X-axis position detection unit 43, and moves the stage 140 to the first X-axis position while checking the X-axis position of the stage 140.
  • the inertia function calculation unit 60 When the stage 140 is moved to the first X-axis position, the inertia function calculation unit 60 outputs the Y1-axis drive system thrust command f1 and the Y2-axis drive system thrust command f2, which are synchronized with each other, to the gantry mechanism 100.
  • the Y1 axis drive system 111 and the Y2 axis drive system 121 are vibrated (step S110).
  • the inertia function calculation unit 60 receives the Y1 axis position detection unit 41 and the Y2 axis position detection unit 42 from the Y1 axis position detection unit 41 and the Y2 axis position detection unit 42, respectively. Acquire the position y2 (step S120).
  • the inertia function calculation unit 60 When the Y1 axis position y1 and the Y2 axis position y2 are acquired, the inertia function calculation unit 60 outputs the Y1 axis drive system thrust command f1 and the Y2 axis drive system thrust command f2, and the acquired Y1 axis positions y1 and Y2 axis positions. From y2, the thrust m1 of the Y1 axis drive system 111 and the thrust m2 of the Y2 axis drive system 121 are calculated.
  • the inertia function calculation unit 60 calculates the inertia m1 of the Y1-axis drive system 111 and the inertia m2 of the Y2-axis drive system 121 when the stage 140 is located at the first X-axis position (step S130).
  • the inertia function calculation unit 60 outputs the X-axis thrust command fx to the gantry mechanism 100 and moves the stage 140 to the second X-axis position (step S140). At this time, the inertia function calculation unit 60 acquires the X-axis position x from the X-axis position detection unit 43, and moves the stage 140 to the second X-axis position while checking the X-axis position of the stage 140.
  • the inertia function calculation unit 60 When the stage 140 is moved to the second X-axis position, the inertia function calculation unit 60 outputs the Y1-axis drive system thrust command f1 and the Y2-axis drive system thrust command f2, which are synchronized with each other, to the gantry mechanism 100.
  • the Y1 axis drive system 111 and the Y2 axis drive system 121 are vibrated (step S150).
  • the inertia function calculation unit 60 receives the Y1 axis position detection unit 41 and the Y2 axis position detection unit 42 from the Y1 axis position detection unit 41 and the Y2 axis position detection unit 42, respectively. Acquire the position y2 (step S160).
  • the inertia function calculation unit 60 When the Y1 axis position y1 and the Y2 axis position y2 are acquired, the inertia function calculation unit 60 outputs the Y1 axis drive system thrust command f1 and the Y2 axis drive system thrust command f2, and the acquired Y1 axis positions y1 and Y2 axis positions. From y2, the thrust m1 of the Y1 axis drive system 111 and the thrust m2 of the Y2 axis drive system 121 are calculated.
  • the inertia function calculation unit 60 calculates the inertia m1 of the Y1 axis drive system 111 and the inertia m2 of the Y2 axis drive system 121 when the stage 140 is located at the second X-axis position (step S170).
  • the inertia function calculation unit 60 together with the inertia m1 of the Y1-axis drive system 111 and the inertia m2 of the Y2-axis drive system 121 when the stage 140 is located at the first X-axis position calculated in the process of step S130.
  • the inertia function 180 is calculated based on the inertia m1 of the Y1 axis drive system 111 and the inertia m2 of the Y2 axis drive system 121 when the stage 140 is located at the second X-axis position calculated in the process of step S170. (Step S180).
  • step S180 the inertia function calculation unit 60 ends the inertia function calculation process.
  • the inertia function calculation unit 60 outputs a Y1-axis drive system thrust command that commands the thrust of the Y1-axis drive system 111 and a Y2-axis drive system thrust command that commands the thrust of the Y2-axis drive system 121.
  • the inertia function is calculated based on the following (a) to (d).
  • (B) The Y1 axis position detected by the Y1 axis position detection unit 41 and the Y2 axis position detected by the Y2 axis position detection unit 42 when the position of the stage 140 is determined by the first X-axis position.
  • (C) The Y1-axis drive system thrust command and the Y2-axis drive system thrust command output when the position of the stage 140 is determined by the second X-axis position.
  • (D) The Y1 axis position detected by the Y1 axis position detection unit 41 and the Y2 axis position detected by the Y2 axis position detection unit 42 when the position of the stage 140 is determined by the second X-axis position.
  • the feed forward unit 10 outputs a Y-axis differential thrust command output unit for the X-axis position command acquired by the X-axis position command acquisition unit 81 and the Y-axis center of gravity position command acquired by the Y-axis center of gravity position command acquisition unit 82. It feeds forward to the first Y-axis differential thrust command F2 output from 20 and outputs the second Y-axis differential thrust command.
  • F2' the second Y-axis differential thrust command
  • the feedforward unit 10 includes an inertia function storage unit 11 and a calculation unit 12.
  • the inertia function storage unit 11 stores the inertia function calculated by the inertia function calculation unit 60.
  • the calculation unit 12 calculates the inertia difference from the X-axis position commanded by the X-axis position command acquired by the X-axis position command acquisition unit 81 and the inertia function stored in the inertia function storage unit 11.
  • the calculation unit 12 is the first Y-axis difference thrust output by the Y-axis difference thrust command output unit 20 from the calculated inertia difference and the Y-axis center of gravity position command acquired by the Y-axis center of gravity position command acquisition unit 82. Calculate the feed forward value to feed forward to the command.
  • the calculation unit 12 calculates the inertia difference m1-m2 by substituting the X-axis position x commanded by the X-axis position command into the inertia function.
  • the calculation unit 12 divides the calculated inertia difference m1-m2 into the second derivative according to the time of the Y-axis center of gravity position command.
  • the feedforward unit 10 is a feedforward value calculated from the first Y-axis differential thrust command F2 output from the Y-axis differential thrust command output unit 20.
  • the thrust conversion unit 50 controls the position of the stage 140 by using the first Y-axis center of gravity thrust command F1 and the second Y-axis differential thrust command F2'. More specifically, the thrust conversion unit 50 has a second Y-axis differential thrust command F2'output by the feed forward unit 10 and a first Y-axis center of gravity thrust output by the Y-axis center of gravity thrust command output unit. Based on the command F1, the Y1-axis drive system thrust command f1 that commands the thrust of the Y1-axis drive system 111 and the Y2-axis drive system thrust command f2 that commands the thrust of the Y2-axis drive system 121 are calculated.
  • the thrust conversion unit 50 outputs the calculated Y1-axis drive system thrust command f1 and Y2-axis drive system thrust command f2 to the gantry mechanism 100.
  • the thrust conversion unit 50 drives the Y1-axis drive system 111 using the Y1-axis drive system thrust command f1, and drives the Y2-axis drive system 121 using the Y2-axis drive system thrust command f2, thereby driving the position of the stage 140. To control.
  • the stage position control device 1 having the above configuration controls the position of the stage 140 in the gantry mechanism 100.
  • FIG. 5 is a flowchart of the stage position control process according to the first embodiment.
  • the stage position control process is an example of a process performed by the stage position control device 1 to control the position of the stage 140.
  • the Y1 axis position detection unit 41 detects the Y1 axis position, which is the drive position in the Y1 axis drive system 111, and the Y2 axis position detection unit 42 drives the Y2 axis drive system 121.
  • the Y2 axis position, which is the position, is detected (step S200).
  • the position conversion unit 70 calculates the Y axis center of gravity position and the Y axis difference position from the Y1 axis position and the Y2 axis position (step S210).
  • the Y-axis center of gravity thrust command output unit 30 feeds back the Y-axis center of gravity position and outputs the first Y-axis center of gravity thrust command (step S220).
  • the Y-axis differential thrust command output unit 20 feeds back the Y-axis differential position and outputs the first Y-axis differential thrust command (step S230).
  • the feed forward unit 10 uses the X-axis position command acquired by the X-axis position command acquisition unit 81 and the Y-axis position command acquired by the Y-axis center of gravity position command acquisition unit 82.
  • the axis center of gravity position command is fed forward to the first Y-axis differential thrust command, and the second Y-axis differential thrust command is output (step S240).
  • the thrust conversion unit 50 calculates the thrust of the Y1-axis drive system 111 based on the second Y-axis differential thrust command and the first Y-axis center of gravity thrust command.
  • the Y1-axis drive system thrust command to be commanded and the Y2-axis drive system thrust command to command the thrust of the Y2-axis drive system 121 are calculated (step S250).
  • the calculated Y1-axis drive system thrust command and Y2-axis drive system thrust command are output to the gantry mechanism 100 (step S260) to control the position of the stage 140.
  • step S260 When the process of step S260 is completed, the stage position control device 1 proceeds to the process of step S200 again. In this way, the loop processing including the processing of step S200 to the processing of step S260 is repeated.
  • the Y-axis center of gravity velocity which is the first derivative based on the time of the Y-axis center position Y1
  • the Y-axis differential velocity which is the first derivative based on the time of the Y-axis difference position Y2
  • the first-order velocity based on the time of the Y1 axis position y1.
  • the conversion formula between the Y1 axis velocity, which is the derivative, and the Y2 axis velocity, which is the first derivative with time at the Y2 axis position y2, is expressed by the following (Equation 1).
  • Equation 3 The equation of motion of the Y1-axis drive system 111 and the Y2-axis drive system 121 is expressed by the following (Equation 3).
  • the interference term 1 is used, respectively.
  • the drive speed of the first X-axis support portion 135 by the Y1-axis drive system 111 and the Y2-axis drive It is not possible to suppress the difference between the drive speed of the second X-axis support portion 136 and the drive speed of the system 121. That is, movement in the yawing direction occurs on the stage 140.
  • the interference term 1 When the interference term 2 is removed from the expansion formula 2, the interference term 1 naturally converges to 0. Therefore, by removing the interference term 2 from the deployment formula 2, the movement of the stage 140 in the yawing direction can be suppressed.
  • the feed forward unit 10 is based on the X-axis position command acquired by the X-axis position command acquisition unit 81 and the Y-axis center-of-gravity position command acquired by the Y-axis center-of-gravity position command acquisition unit 82.
  • the feed forward unit 10 reduces the calculated feed forward value, the interference term 2, from the first Y-axis differential thrust command F2 output from the Y-axis differential thrust command output unit 20, thereby reducing the second Y-axis difference.
  • the thrust command F2' is calculated and output. Therefore, the component of the interference term 2 is removed from the second Y-axis differential thrust command F2'.
  • the thrust conversion unit 50 commands the thrust of the Y1 axis drive system 111 based on the second Y-axis differential thrust command F2'and the first Y-axis center of gravity thrust command F1 from which the component of the interference term 2 is removed.
  • the Y1-axis drive system thrust command f1 and the Y2-axis drive system thrust command f2 that commands the thrust of the Y2-axis drive system 121 are calculated and output to the gantry mechanism 100.
  • the stage position control device 1 can suppress the occurrence of the yawing direction motion of the stage 140 itself at the time when the yawing direction motion of the stage 140 is not generated.
  • the stage position control device In addition to removing the component of the interference term 2 from the first Y-axis differential thrust command F2, the stage position control device further positively removes the component of the interference term 1 from the first Y-axis center of gravity thrust command F1. Remove.
  • FIG. 6 is a block diagram showing the configuration of the stage position control device 1a according to the second embodiment. However, as in the case of FIG. 1, FIG. 6 does not show all the components of the stage position control device 1a.
  • the same components as those of the stage position control device 1 according to the first embodiment are designated by the same reference numerals and detailed description thereof will be omitted, and the differences from the stage position control device 1 will be omitted. The explanation will focus on the points.
  • the stage position control device 1a is configured by adding a feedback unit 90 from the stage position control device 1 according to the first embodiment and changing the thrust conversion unit 50 to the thrust conversion unit 50a. ..
  • the feedback unit 90 outputs the X-axis position detected by the X-axis position detection unit 43 and the Y-axis difference position calculated by the position conversion unit 70 from the Y-axis center of gravity thrust command output unit 30.
  • the second Y-axis center of gravity thrust command is output by feeding back to the Y-axis center of gravity thrust command.
  • the second Y-axis center of gravity thrust command is referred to as F1'.
  • the feedback unit 90 includes an inertia function storage unit 11 and a calculation unit 92.
  • the calculation unit 92 calculates the inertia difference from the X-axis position detected by the X-axis position detection unit 43 and the inertia function stored in the inertia function storage unit 11.
  • the calculation unit 92 feeds back the calculated inertia difference and the Y-axis difference position calculated by the position conversion unit 70 to the first Y-axis center-of-gravity thrust command output by the Y-axis center-of-gravity thrust command output unit 30. Calculate the value.
  • the calculation unit 92 calculates the inertia difference m1-m2 by substituting the X-axis position x detected by the X-axis position detection unit into the inertia function, and adds Y to the calculated inertia difference m1-m2. Second-order differential with time at the axis difference position
  • the feedback unit 90 is a feedback value calculated from the first Y-axis center-of-gravity thrust command F1 output from the Y-axis center-of-gravity thrust command output unit 30.
  • the thrust conversion unit 50a has a Y1 axis based on a second Y-axis differential thrust command F2'output by the feed forward unit 10 and a second Y-axis center of gravity thrust command F1' output by the feedback unit 90.
  • the Y1-axis drive system thrust command f1 that commands the thrust of the drive system 111 and the Y2-axis drive system thrust command f2 that commands the thrust of the Y2-axis drive system 121 are calculated.
  • the thrust conversion unit 50a outputs the calculated Y1 axis drive system thrust command f1 and Y2 axis drive system thrust command f2 to the gantry mechanism 100, and uses the Y1 axis drive system thrust command f1 to output the calculated Y1 axis drive system thrust command f1 to the Y1 axis drive system 111.
  • the position of the stage 140 is controlled by driving the Y2-axis drive system 121 by using the Y2-axis drive system thrust command f2.
  • the feedback unit 90 uses the interference term 1 as a feedback value from the X-axis position detected by the X-axis position detection unit 43 and the Y-axis difference position calculated by the position conversion unit 70.
  • the feedback unit 90 reduces the interference term 1 which is the calculated feedback value from the first Y-axis center of gravity thrust command F1 output from the Y-axis center of gravity thrust command output unit 30, and thereby reduces the second Y-axis center of gravity thrust command. Calculate and output F1'. Therefore, the component of the interference term 2 is removed from the second Y-axis center of gravity thrust command F1'.
  • the thrust conversion unit 50a is based on the second Y-axis differential thrust command F2'from which the component of the interference term 2 has been removed and the second Y-axis center of gravity thrust command F1' from which the component of the interference term 1 has been removed.
  • the Y1-axis drive system thrust command f1 that commands the thrust of the Y1-axis drive system 111 and the Y2-axis drive system thrust command f2 that commands the thrust of the Y2-axis drive system 121 are calculated and output to the gantry mechanism 100.
  • the stage position control device 1a can suppress the occurrence of the yawing direction motion of the stage 140 itself at the time when the yawing direction motion of the stage 140 is not generated.
  • the stage position control device 1 includes an inertia function calculation unit 60 for calculating an inertia function, and the inertia function storage unit 11 stores the inertia function calculated by the inertia function calculation unit.
  • the stage position control device 1 does not necessarily have to calculate the inertia function if the inertia function can be used.
  • the stage position control device 1 may be configured such that the inertia function storage unit 11 acquires and stores the inertia function calculated by the external device from the external device without including the inertia function calculation unit 60. ..
  • the photodetector according to the present disclosure can be widely used as a device for controlling the position of a stage.
  • Stage position control device 10 Feed forward unit 11 Initiator function storage unit 12, 92 Calculation unit 20 Y-axis differential thrust command output unit 21, 31 Position feedback unit 22, 32 Speed feedback unit 30 Y-axis center of gravity thrust command output unit 41 Y1 axis position detection unit 42 Y2 axis position detection unit 43 X-axis position detection unit 50, 50a Thrust conversion unit 60
  • Initial function calculation unit 70
  • Position conversion unit 81 X-axis position command acquisition unit
  • Y-axis center of gravity position command acquisition unit 83 Phase delay Compensation part 90 Feedback part 100
  • Gantry mechanism 110 Y1 axis 111 Y1 axis drive system 120 Y2 axis 121 Y2 axis drive system 130 X axis 131 X axis drive system 135 First X axis support part 136 Second X axis support part 140
  • Stage 1 100

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position Or Direction (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

The present invention suppresses movement of a stage in a yawing direction in a gantry mechanism. A stage position control device (1), which controls the position of a stage in a gantry mechanism (100), is provided with: a Y-axis center-of-gravity thrust command output unit (30) for outputting a first Y-axis center-of-gravity thrust command mandating a center-of-gravity thrust of a Y1-axis drive system and a Y2-axis drive system; a Y-axis differential thrust command output unit (20) for outputting a first Y-axis differential thrust command mandating a differential thrust of the Y1-axis drive system and the Y2-axis drive system; a feed forward unit (11) for feeding forward an X-axis position command (x) mandating an X-axis position, and a Y-axis center-of-gravity command (Y1) mandating center-of-gravity position of a Y1-axis position and a Y2-axis position, to the first Y-axis differential thrust command (F2), and outputting a second Y-axis differential thrust command (F2'); and a thrust conversion unit (50) for using the first Y-axis center-of-gravity thrust command and the second Y-axis differential thrust command to control the position of the stage.

Description

ステージ位置制御装置、及びステージ位置制御方法Stage position control device and stage position control method
 本発明は、ステージの位置を制御するステージ位置制御装置、及びステージ位置制御方法に関する。 The present invention relates to a stage position control device for controlling the position of a stage and a stage position control method.
 従来、互いに直交する2軸で規定される平面においてステージを移動させるガントリ機構が知られている。 Conventionally, a gantry mechanism for moving a stage in a plane defined by two axes orthogonal to each other is known.
 例えば、特許文献1には、ガントリ機構における、ステージのヨーイング方向の運動を抑制する、ステージ位置の制御方法が開示されている。 For example, Patent Document 1 discloses a method of controlling the stage position in the gantry mechanism, which suppresses the movement of the stage in the yawing direction.
 特許文献1に開示されたステージ位置の制御方法は、ステージの位置を検出し、検出したステージの位置の情報を、ステージを移動させる指令にフィードバックする制御方法である。このため、この制御方法では、発生したステージのヨーイング方向の運動を抑制するようにステージの位置を制御することができる。しかしながら、ステージのヨーイング方向の運動が発生していない時点で、ステージのヨーイング方向の運動の発生自体を抑制することは困難である。 The stage position control method disclosed in Patent Document 1 is a control method that detects the stage position and feeds back the detected stage position information to a command for moving the stage. Therefore, in this control method, the position of the stage can be controlled so as to suppress the generated movement of the stage in the yawing direction. However, it is difficult to suppress the occurrence of the yawing direction motion of the stage itself when the yawing direction motion of the stage is not generated.
特開2001-22448号公報Japanese Unexamined Patent Publication No. 2001-22448
 そこで、本開示は、従来よりも、ガントリ機構における、ステージのヨーイング方向の運動を抑制することができるステージ位置制御装置、及びステージ位置制御方法を提供することを目的とする。 Therefore, an object of the present disclosure is to provide a stage position control device and a stage position control method capable of suppressing the movement of the stage in the yawing direction in the gantry mechanism, as compared with the conventional case.
 本開示の一態様に係るステージ位置制御装置は、互いに平行なY1軸及びY2軸と、Y1軸及びY2軸に垂直なX軸と、Y1軸上のY1軸駆動系における駆動位置であるY1軸位置とY2軸上のY2軸駆動系における駆動位置であるY2軸位置とX軸上のX軸駆動系における駆動位置であるX軸位置によって位置が定められるステージと、を有するガントリ機構における、ステージの位置を制御するステージ位置制御装置であって、Y1軸駆動系とY2軸駆動系との重心推力を指令する第1のY軸重心推力指令を出力するY軸重心推力指令出力部と、Y1軸駆動系とY2軸駆動系との差分推力を指令する第1のY軸差分推力指令を出力するY軸差分推力指令出力部と、X軸位置を指令するX軸位置指令と、Y1軸位置及びY2軸位置の重心位置を指令するY軸重心位置指令とを、第1のY軸差分推力指令にフィードフォワードして、第2のY軸差分推力指令を出力するフィードフォワード部と、第1のY軸重心推力指令と、第2のY軸差分推力指令とを用いて、ステージの位置を制御する推力変換部と、を備える。 The stage position control device according to one aspect of the present disclosure includes a Y1 axis and a Y2 axis parallel to each other, an X axis perpendicular to the Y1 axis and the Y2 axis, and a Y1 axis which is a drive position in the Y1 axis drive system on the Y1 axis. A stage in a gantry mechanism having a position and a stage whose position is determined by the Y2 axis position which is the drive position in the Y2 axis drive system on the Y2 axis and the X axis position which is the drive position in the X axis drive system on the X axis. A stage position control device that controls the position of the Y-axis center of gravity thrust command output unit and a Y-axis center of gravity thrust command output unit that outputs a first Y-axis center of gravity thrust command that commands the center of gravity thrust of the Y1 axis drive system and the Y2 axis drive system. The Y-axis differential thrust command output unit that outputs the first Y-axis differential thrust command that commands the differential thrust between the axis drive system and the Y2-axis drive system, the X-axis position command that commands the X-axis position, and the Y1 axis position. And the Y-axis center of gravity position command that commands the position of the center of gravity of the Y2 axis position is fed forward to the first Y-axis differential thrust command, and the second Y-axis differential thrust command is output. A thrust conversion unit that controls the position of the stage by using the Y-axis center of gravity thrust command and the second Y-axis differential thrust command is provided.
 本開示の一態様に係るステージ位置制御方法は、互いに平行なY1軸及びY2軸と、Y1軸及びY2軸に垂直なX軸と、Y1軸上のY1軸駆動系における駆動位置であるY1軸位置とY2軸上のY2軸駆動系における駆動位置であるY2軸位置とX軸のX軸駆動系における駆動位置であるX軸位置によって位置が定められるステージと、を有するガントリ機構における、ステージの位置を制御するステージ位置制御方法であって、Y1軸駆動系とY2軸駆動系との重心推力を指令する第1のY軸重心推力指令を算出し、Y1軸駆動系とY2軸駆動系との差分推力を指令する第1のY軸差分推力指令を算出し、X軸位置を指令するX軸位置指令と、Y1軸位置及びY2軸位置の重心位置を指令するY軸重心位置指令とを、第1のY軸差分推力指令にフィードフォワードして、第2のY軸差分推力指令を算出し、第1のY軸重心推力指令と、第2のY軸差分推力指令とを用いて、ステージの位置を制御する。 The stage position control method according to one aspect of the present disclosure includes a Y1 axis and a Y2 axis parallel to each other, an X axis perpendicular to the Y1 axis and the Y2 axis, and a Y1 axis which is a drive position in the Y1 axis drive system on the Y1 axis. A stage in a gantry mechanism having a position and a stage whose position is determined by the Y2 axis position which is the drive position in the Y2 axis drive system on the Y2 axis and the X axis position which is the drive position in the X axis X axis drive system. A stage position control method for controlling the position, in which a first Y-axis center of gravity thrust command for commanding the center of gravity thrust of the Y1-axis drive system and the Y2-axis drive system is calculated, and the Y1-axis drive system and the Y2-axis drive system are used. The first Y-axis differential thrust command for commanding the differential thrust is calculated, and the X-axis position command for commanding the X-axis position and the Y-axis center of gravity position command for commanding the center of gravity positions of the Y1 axis position and the Y2 axis position are obtained. , Feed forward to the first Y-axis differential thrust command, calculate the second Y-axis differential thrust command, and use the first Y-axis center of gravity thrust command and the second Y-axis differential thrust command. Control the position of the stage.
 本開示の一態様に係るステージ位置制御装置、及びステージ位置制御方法によると、従来よりも、ガントリ機構における、ステージのヨーイング方向の運動を抑制することができる。 According to the stage position control device and the stage position control method according to one aspect of the present disclosure, it is possible to suppress the movement of the stage in the yawing direction in the gantry mechanism as compared with the conventional case.
図1は、実施の形態1に係るガントリ機構の構成を示す模式図である。FIG. 1 is a schematic view showing the configuration of the gantry mechanism according to the first embodiment. 図2は、実施の形態1に係るステージ位置制御装置の構成を示すブロック図である。FIG. 2 is a block diagram showing a configuration of the stage position control device according to the first embodiment. 図3は、実施の形態1に係るイナーシャ関数算出部によって算出されるイナーシャ関数の一例を示す模式図である。FIG. 3 is a schematic diagram showing an example of an inertia function calculated by the inertia function calculation unit according to the first embodiment. 図4は、実施の形態1に係るイナーシャ関数算出処理のフローチャートである。FIG. 4 is a flowchart of the inertia function calculation process according to the first embodiment. 図5は、実施の形態1に係るステージ位置制御処理のフローチャートである。FIG. 5 is a flowchart of the stage position control process according to the first embodiment. 図6は、実施の形態2に係るステージ位置制御装置の構成を示すブロック図である。FIG. 6 is a block diagram showing a configuration of the stage position control device according to the second embodiment.
 (本開示の一態様を得るに至った経緯)
 上述したように、特許文献1に開示されたステージ位置の制御方法では、ガントリ機構において、ステージのヨーイング方向の運動が発生していない時点で、ステージのヨーイング方向の運動の発生自体を抑制することは困難である。
(History of obtaining one aspect of the present disclosure)
As described above, in the stage position control method disclosed in Patent Document 1, the gantry mechanism suppresses the occurrence of the yawing direction motion of the stage itself at the time when the yawing direction motion of the stage is not generated. It is difficult.
 このため、発明者は、ガントリ機構において、ステージのヨーイング方向の運動が発生していない時点で、ステージのヨーイング方向の運動の発生自体を抑制すべく鋭意検討、実験を行った。発明者は、ステージの位置を指令する位置指令を、ステージを移動させる推力指令にフィードフォワードして、予め、推力指令から、ステージのヨーイング方向の運動を生じさせる成分を低減しておくことで、ステージのヨーイング方向の運動が発生していない時点で、ステージのヨーイング方向の運動の発生自体を抑制することができる知見を得た。 Therefore, the inventor conducted a diligent study and experiment in order to suppress the occurrence of the yawing direction motion of the stage itself at the time when the yawing direction motion of the stage was not generated in the gantry mechanism. The inventor feeds forward the position command that commands the position of the stage to the thrust command that moves the stage, and reduces the component that causes the motion in the yawing direction of the stage from the thrust command in advance. It was found that the occurrence of the stage yawing direction motion itself can be suppressed when the stage yawing direction motion does not occur.
 発明者は、この知見に基づき、さらに、鋭意検討、実験を行い、下記本開示の一態様に係るステージ位置検出装置、及びステージ位置検出方法に想到した。 Based on this finding, the inventor further conducted diligent studies and experiments, and came up with the stage position detection device and the stage position detection method according to one aspect of the present disclosure below.
 本開示の一態様に係るステージ位置制御装置は、互いに平行なY1軸及びY2軸と、Y1軸及びY2軸に垂直なX軸と、Y1軸上のY1軸駆動系における駆動位置であるY1軸位置とY2軸上のY2軸駆動系における駆動位置であるY2軸位置とX軸上のX軸駆動系における駆動位置であるX軸位置によって位置が定められるステージと、を有するガントリ機構における、ステージの位置を制御するステージ位置制御装置であって、Y1軸駆動系とY2軸駆動系との重心推力を指令する第1のY軸重心推力指令を出力するY軸重心推力指令出力部と、Y1軸駆動系とY2軸駆動系との差分推力を指令する第1のY軸差分推力指令を出力するY軸差分推力指令出力部と、X軸位置を指令するX軸位置指令と、Y1軸位置及びY2軸位置の重心位置を指令するY軸重心位置指令とを、第1のY軸差分推力指令にフィードフォワードして、第2のY軸差分推力指令を出力するフィードフォワード部と、第1のY軸重心推力指令と、第2のY軸差分推力指令とを用いて、ステージの位置を制御する推力変換部と、を備える。 The stage position control device according to one aspect of the present disclosure includes a Y1 axis and a Y2 axis parallel to each other, an X axis perpendicular to the Y1 axis and the Y2 axis, and a Y1 axis which is a drive position in the Y1 axis drive system on the Y1 axis. A stage in a gantry mechanism having a position and a stage whose position is determined by the Y2 axis position which is the drive position in the Y2 axis drive system on the Y2 axis and the X axis position which is the drive position in the X axis drive system on the X axis. A stage position control device that controls the position of the Y-axis center of gravity thrust command output unit and a Y-axis center of gravity thrust command output unit that outputs a first Y-axis center of gravity thrust command that commands the center of gravity thrust of the Y1 axis drive system and the Y2 axis drive system. The Y-axis differential thrust command output unit that outputs the first Y-axis differential thrust command that commands the differential thrust between the axis drive system and the Y2-axis drive system, the X-axis position command that commands the X-axis position, and the Y1 axis position. And the Y-axis center of gravity position command that commands the position of the center of gravity of the Y2 axis position is fed forward to the first Y-axis differential thrust command, and the second Y-axis differential thrust command is output. A thrust conversion unit that controls the position of the stage by using the Y-axis center of gravity thrust command and the second Y-axis differential thrust command is provided.
 上記構成のステージ位置制御装置によると、ステージのヨーイング方向の運動を生じさせる成分を含み得る第1のY軸差分推力指令に、ステージの位置を指令するX軸位置指令とY軸重心位置指令とをフィードフォワードして、ステージのヨーイング方向の運動を生じさせる成分が低減された第2のY軸差分推力指令を生成することができる。生成した第2のY軸差分推力指令を用いて、ステージの位置を制御する。従って、上記構成のステージ位置制御装置によると、従来よりも、ガントリ機構における、ステージのヨーイング方向の運動を抑制することができる。 According to the stage position control device having the above configuration, the first Y-axis differential thrust command that may include a component that causes movement in the yawing direction of the stage includes an X-axis position command and a Y-axis center of gravity position command that command the position of the stage. Can be fed forward to generate a second Y-axis differential thrust command with reduced components that cause the stage to move in the yawing direction. The position of the stage is controlled by using the generated second Y-axis differential thrust command. Therefore, according to the stage position control device having the above configuration, it is possible to suppress the movement of the stage in the yawing direction in the gantry mechanism as compared with the conventional case.
 また、フィードフォワード部は、Y1軸駆動系のイナーシャ及びY2軸駆動系のイナーシャの差分であるイナーシャ差分と、X軸位置との関係を示すイナーシャ関数を記憶し、X軸位置指令により指令されるX軸位置とイナーシャ関数とからイナーシャ差分を算出し、算出したイナーシャ差分とY軸重心位置指令とから、第1のY軸差分推力指令にフィードフォワードするフィードフォワード値を算出するとしてもよい。 Further, the feed forward unit stores an inertia function indicating the relationship between the inertia difference of the Y1 axis drive system and the inertia of the Y2 axis drive system and the X-axis position, and is commanded by the X-axis position command. The inertia difference may be calculated from the X-axis position and the inertia function, and the feed forward value to be fed forward to the first Y-axis difference thrust command may be calculated from the calculated inertia difference and the Y-axis center of gravity position command.
 また、Y軸重心推力指令出力部は、Y軸重心位置指令に基づいて第1のY軸重心推力指令を出力するとしてもよい。 Further, the Y-axis center-of-gravity thrust command output unit may output the first Y-axis center-of-gravity thrust command based on the Y-axis center-of-gravity position command.
 また、Y1軸位置を検出するY1軸位置検出部と、Y2軸位置を検出するY2軸位置検出部と、をさらに備え、Y軸重心推力指令出力部は、Y1軸位置検出部によって検出されたY1軸位置と、Y2軸位置検出部によって検出されたY2軸位置との重心位置を示すY軸重心位置をフィードバック値として受けることで、第1のY軸重心推力指令を出力し、第1のY軸差分推力指令出力部は、前記Y1軸位置検出部によって検出されたY1軸位置と、前記Y2軸位置検出部によって検出されたY2軸位置との差分位置を示すY軸差分位置をフィードバック値として受けることで、第1のY軸差分推力指令を出力するとしてもよい。 Further, a Y1 axis position detecting unit for detecting the Y1 axis position and a Y2 axis position detecting unit for detecting the Y2 axis position are further provided, and the Y axis center of gravity thrust command output unit is detected by the Y1 axis position detecting unit. By receiving the Y-axis center of gravity position indicating the center of gravity position between the Y1 axis position and the Y2 axis position detected by the Y2 axis position detection unit as a feedback value, the first Y-axis center of gravity thrust command is output and the first The Y-axis differential thrust command output unit feeds back the Y-axis difference position indicating the difference position between the Y1 axis position detected by the Y1 axis position detection unit and the Y2 axis position detected by the Y2 axis position detection unit. The first Y-axis differential thrust command may be output.
 また、推力変換部は、第1のY軸重心推力指令と、第2のY軸差分推力指令とに基づいて、Y1軸駆動系の推力を指令するY1軸駆動系推力指令と、Y2軸駆動系の推力を指令するY2軸駆動系推力指令とを算出し、Y1軸駆動系推力指令を用いてY1軸駆動系を駆動し、Y2軸駆動系推力指令を用いてY2軸駆動系を駆動することで、ステージの位置を制御するとしてもよい。 Further, the thrust conversion unit has a Y1-axis drive system thrust command and a Y2-axis drive that command the thrust of the Y1-axis drive system based on the first Y-axis center of gravity thrust command and the second Y-axis differential thrust command. The Y2-axis drive system thrust command that commands the thrust of the system is calculated, the Y1-axis drive system is driven using the Y1-axis drive system thrust command, and the Y2-axis drive system is driven using the Y2-axis drive system thrust command. By doing so, the position of the stage may be controlled.
 また、X軸位置を検出するX軸位置検出部と、X軸位置検出部によって検出されたX軸位置と、差分位置とを、第1のY軸重心推力指令にフィードバックして、第2のY軸重心推力指令を出力するフィードバック部とをさらに備え、推力変換部は、第2のY軸重心推力指令を用いることで、ステージの位置を制御するとしてもよい。 Further, the X-axis position detecting unit that detects the X-axis position, the X-axis position detected by the X-axis position detecting unit, and the difference position are fed back to the first Y-axis center of gravity thrust command, and the second A feedback unit that outputs a Y-axis center-of-gravity thrust command may be further provided, and the thrust conversion unit may control the position of the stage by using the second Y-axis center-of-gravity thrust command.
 また、フィードバック部は、イナーシャ関数を記憶し、X軸位置検出部によって検出されたX軸位置とイナーシャ関数とからイナーシャ差分を算出し、算出したイナーシャ差分と差分位置とから第1のY軸重心推力指令にフィードバックするフィードバック値を算出するとしてもよい。 Further, the feedback unit stores the inertia function, calculates the inertia difference from the X-axis position and the inertia function detected by the X-axis position detection unit, and calculates the inertia difference from the calculated inertia difference and the difference position, and the first Y-axis center of gravity. The feedback value to be fed back to the thrust command may be calculated.
 また、推力変換部は、第2のY軸重心推力指令と、第2のY軸差分推力指令とに基づいて、Y1軸駆動系の推力を指令するY1軸駆動系推力指令と、Y2軸駆動系の推力を指令するY2軸駆動系推力指令とを算出し、Y1軸駆動系推力指令を用いてY1軸駆動系を駆動し、Y2軸駆動系推力指令を用いてY2軸駆動系を駆動することで、ステージの位置を制御するとしてもよい。 Further, the thrust conversion unit has a Y1-axis drive system thrust command and a Y2-axis drive that command the thrust of the Y1-axis drive system based on the second Y-axis center of gravity thrust command and the second Y-axis differential thrust command. The Y2-axis drive system thrust command that commands the thrust of the system is calculated, the Y1-axis drive system is driven using the Y1-axis drive system thrust command, and the Y2-axis drive system is driven using the Y2-axis drive system thrust command. By doing so, the position of the stage may be controlled.
 また、Y1軸位置を検出するY1軸位置検出部と、Y2軸位置を検出するY2軸位置検出部と、Y1軸駆動系の推力を指令するY1軸駆動系推力指令と、Y2軸駆動系の推力を指令するY2軸駆動系推力指令とを出力し、(a)ステージの位置が第1のX軸位置によって定められる場合において出力したY1軸駆動系推力指令及びY2軸駆動系推力指令と、(b)ステージの位置が第1のX軸位置によって定められる場合においてY1軸位置検出部によって検出されたY1軸位置及びY2軸位置検出部によって検出されたY2軸位置と、(c)ステージの位置が第2のX軸位置によって定められる場合において出力したY1軸駆動系推力指令及びY2軸駆動系推力指令と、(d)ステージの位置が第2のX軸位置によって定められる場合においてY1軸位置検出部によって検出されたY1軸位置及びY2軸位置検出部によって検出されたY2軸位置と、に基づいて、イナーシャ関数を算出するイナーシャ関数算出部と、をさらに備えるとしてもよい。 Further, a Y1 axis position detection unit that detects the Y1 axis position, a Y2 axis position detection unit that detects the Y2 axis position, a Y1 axis drive system thrust command that commands the thrust of the Y1 axis drive system, and a Y2 axis drive system. The Y2-axis drive system thrust command that commands the thrust is output, and (a) the Y1-axis drive system thrust command and the Y2-axis drive system thrust command that are output when the stage position is determined by the first X-axis position, (B) The Y1 axis position detected by the Y1 axis position detection unit and the Y2 axis position detected by the Y2 axis position detection unit when the stage position is determined by the first X-axis position, and (c) the stage. The Y1 axis drive system thrust command and Y2 axis drive system thrust command output when the position is determined by the second X-axis position, and (d) the Y1 axis when the stage position is determined by the second X axis position. An inertia function calculation unit that calculates an inertia function based on the Y1 axis position detected by the position detection unit and the Y2 axis position detected by the Y2 axis position detection unit may be further provided.
 本開示の一態様に係るステージ位置制御方法は、互いに平行なY1軸及びY2軸と、Y1軸及びY2軸に垂直なX軸と、Y1軸上のY1軸駆動系における駆動位置であるY1軸位置とY2軸上のY2軸駆動系における駆動位置であるY2軸位置とX軸のX軸駆動系における駆動位置であるX軸位置によって位置が定められるステージと、を有するガントリ機構における、ステージの位置を制御するステージ位置制御方法であって、Y1軸駆動系とY2軸駆動系との重心推力を指令する第1のY軸重心推力指令を算出し、Y1軸駆動系とY2軸駆動系との差分推力を指令する第1のY軸差分推力指令を算出し、X軸位置を指令するX軸位置指令と、Y1軸位置及びY2軸位置の重心位置を指令するY軸重心位置指令とを、第1のY軸差分推力指令にフィードフォワードして、第2のY軸差分推力指令を算出し、第1のY軸重心推力指令と、第2のY軸差分推力指令とを用いて、ステージの位置を制御する。 The stage position control method according to one aspect of the present disclosure includes a Y1 axis and a Y2 axis parallel to each other, an X axis perpendicular to the Y1 axis and the Y2 axis, and a Y1 axis which is a drive position in the Y1 axis drive system on the Y1 axis. A stage in a gantry mechanism having a position and a stage whose position is determined by the Y2 axis position which is the drive position in the Y2 axis drive system on the Y2 axis and the X axis position which is the drive position in the X axis X axis drive system. A stage position control method for controlling the position, in which a first Y-axis center of gravity thrust command for commanding the center of gravity thrust of the Y1-axis drive system and the Y2-axis drive system is calculated, and the Y1-axis drive system and the Y2-axis drive system are used. The first Y-axis differential thrust command for commanding the differential thrust is calculated, and the X-axis position command for commanding the X-axis position and the Y-axis center of gravity position command for commanding the center of gravity positions of the Y1 axis position and the Y2 axis position are obtained. , Feed forward to the first Y-axis differential thrust command, calculate the second Y-axis differential thrust command, and use the first Y-axis center of gravity thrust command and the second Y-axis differential thrust command. Control the position of the stage.
 上記構成のステージ位置制御方法によると、ステージのヨーイング方向の運動を生じさせる成分を含んでいる可能性がある第1のY軸差分推力指令に、ステージの位置を指令するX軸位置指令とY軸重心位置指令とをフィードフォワードして、ステージのヨーイング方向の運動を生じさせる成分が低減された第2のY軸差分推力指令が生成することができる。生成された第2のY軸差分推力指令を用いて、ステージの位置が制御される。従って、上記構成のステージ位置制御方法によると、従来よりも、ガントリ機構における、ステージのヨーイング方向の運動を抑制することができる。 According to the stage position control method having the above configuration, the X-axis position command and Y that command the position of the stage are added to the first Y-axis differential thrust command that may contain a component that causes movement in the yawing direction of the stage. A second Y-axis differential thrust command can be generated by feeding forward the axial center of gravity position command and reducing the components that cause the stage to move in the yawing direction. The position of the stage is controlled using the generated second Y-axis differential thrust command. Therefore, according to the stage position control method having the above configuration, it is possible to suppress the movement of the stage in the yawing direction in the gantry mechanism as compared with the conventional method.
 以下、本開示の一態様に係るステージ位置制御装置の具体例について、図面を参照しながら説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, a specific example of the stage position control device according to one aspect of the present disclosure will be described with reference to the drawings. It should be noted that all of the embodiments described below show comprehensive or specific examples. The numerical values, shapes, materials, components, arrangement positions and connection forms of the components, etc. shown in the following embodiments are examples, and are not intended to limit the present disclosure. Further, among the components in the following embodiments, the components not described in the independent claims indicating the highest level concept are described as arbitrary components.
 なお、各図は模式図であり、必ずしも厳密に図示されたものではない。各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略または簡略化される場合がある。 Note that each figure is a schematic diagram and is not necessarily exactly illustrated. In each figure, substantially the same configuration is designated by the same reference numerals, and duplicate description may be omitted or simplified.
 以下の実施の形態で説明に用いられる図面においては座標系が示される場合がある。座標系におけるz方向は、紙面に垂直な方向である。x方向及びy方向は、z方向に垂直な平面において互いに直交する方向である。 The coordinate system may be shown in the drawings used for explanation in the following embodiments. The z direction in the coordinate system is the direction perpendicular to the paper surface. The x-direction and the y-direction are directions orthogonal to each other in a plane perpendicular to the z-direction.
 (実施の形態1)
 以下、実施の形態1に係るステージ位置制御装置について、図面を参照しながら説明する。このステージ位置制御装置は、ガントリ機構のステージの位置を制御する装置である。
(Embodiment 1)
Hereinafter, the stage position control device according to the first embodiment will be described with reference to the drawings. This stage position control device is a device that controls the position of the stage of the gantry mechanism.
 図1は、実施の形態1に係るガントリ機構100の構成を示す模式図である。ガントリ機構100は、ステージ位置制御装置が位置制御の対象とするステージを有する。 FIG. 1 is a schematic view showing the configuration of the gantry mechanism 100 according to the first embodiment. The gantry mechanism 100 has a stage whose position is controlled by the stage position control device.
 図1に示すように、ガントリ機構100は、Y1軸110と、Y2軸120と、X軸130と、ステージ140と、第1のX軸支持部135と、第2のX軸支持部136と、Y1軸駆動系111と、Y2軸駆動系121と、X軸駆動系131とを含んで構成される。 As shown in FIG. 1, the gantry mechanism 100 includes a Y1 axis 110, a Y2 axis 120, an X axis 130, a stage 140, a first X-axis support portion 135, and a second X-axis support portion 136. , Y1 axis drive system 111, Y2 axis drive system 121, and X-axis drive system 131.
 Y1軸110及びY2軸120は、それぞれ、図1に示すy方向に延びる軸である。すなわち、Y1軸110及びY2軸120は、互いに平行な軸である。Y1軸110及びY2軸120は、例えば、図1に示すy方向に延びる金属製の四角柱によって実現される。 The Y1 axis 110 and the Y2 axis 120 are axes extending in the y direction shown in FIG. 1, respectively. That is, the Y1 axis 110 and the Y2 axis 120 are axes parallel to each other. The Y1 axis 110 and the Y2 axis 120 are realized by, for example, a metal quadrangular prism extending in the y direction shown in FIG.
 X軸130は、図1に示すx方向に延びる軸である。すなわち、X軸130は、Y1軸110及びY2軸120に垂直な軸である。X軸130は、例えば、図1に示すx方向に延びる金属製の四角柱によって実現される。 The X-axis 130 is an axis extending in the x-direction shown in FIG. That is, the X-axis 130 is an axis perpendicular to the Y1 axis 110 and the Y2 axis 120. The X-axis 130 is realized, for example, by a metal quadrangular prism extending in the x-direction shown in FIG.
 第1のX軸支持部135は、X軸130の一方の端部においてX軸130を支持する支持部材である。第1のX軸支持部135は、例えば、金属によって実現される。 The first X-axis support portion 135 is a support member that supports the X-axis 130 at one end of the X-axis 130. The first X-axis support 135 is realized, for example, by metal.
 第2のX軸支持部136は、X軸130の他方の端部においてX軸130を支持する支持部材である。第2のX軸支持部136は、例えば、金属によって実現される。 The second X-axis support portion 136 is a support member that supports the X-axis 130 at the other end of the X-axis 130. The second X-axis support 136 is realized, for example, by metal.
 Y1軸駆動系111は、Y1軸110上に配置され、第1のX軸支持部135を、図1に示すy方向に直進可能に駆動する駆動系である。Y1軸駆動系111は、例えば、図1に示すy方向に沿って移動可能なリニアモータによって実現される。または、Y1軸駆動系111は、例えば、回転型モータと、図1に示すy方向に沿って伸びるポールねじとによって実現される。 The Y1 axis drive system 111 is a drive system that is arranged on the Y1 axis 110 and drives the first X-axis support portion 135 so as to be able to travel straight in the y direction shown in FIG. The Y1 axis drive system 111 is realized by, for example, a linear motor that can move along the y direction shown in FIG. Alternatively, the Y1 axis drive system 111 is realized by, for example, a rotary motor and a pole screw extending along the y direction shown in FIG.
 Y2軸駆動系121は、Y2軸120上に配置され、第2のX軸支持部136を、図1に示すy方向に直進可能に駆動する駆動系である。Y2軸駆動系121は、例えば、図1に示すy方向に沿って移動可能なリニアモータによって実現される。または、Y2軸駆動系121は、例えば、回転型モータと、図1に示すy方向に沿って伸びるポールねじとによって実現される。 The Y2-axis drive system 121 is a drive system that is arranged on the Y2-axis 120 and drives the second X-axis support portion 136 so as to be able to travel straight in the y direction shown in FIG. The Y2-axis drive system 121 is realized by, for example, a linear motor that can move along the y direction shown in FIG. Alternatively, the Y2-axis drive system 121 is realized by, for example, a rotary motor and a pole screw extending along the y direction shown in FIG.
 ステージ140は、平板である。ステージ140は、例えば、金属板によって実現される。 The stage 140 is a flat plate. The stage 140 is realized by, for example, a metal plate.
 X軸駆動系131は、X軸130上に配置され、ステージ140を、図1に示すx方向に直線可能に駆動する駆動系である。X駆動系131は、例えば、図1に示すx方向に沿って移動可能なリニアモータによって実現される。または、X軸駆動系131は、例えば、回転型モータと、図1に示すx方向に沿って伸びるポールねじとによって実現される。 The X-axis drive system 131 is a drive system that is arranged on the X-axis 130 and drives the stage 140 linearly in the x direction shown in FIG. The X drive system 131 is realized by, for example, a linear motor that can move along the x direction shown in FIG. Alternatively, the X-axis drive system 131 is realized by, for example, a rotary motor and a pole screw extending in the x direction shown in FIG.
 Y1軸駆動系111とY2軸駆動系121とは、第1のX軸支持部135と第2のX軸支持部136とを並進駆動することで、X軸130を、図1に示すy方向にスライド可能に駆動する。また、上述した通り、X軸駆動系131は、ステージを、図1に示すx方向に直進可能に駆動する。これらにより、ガントリ機構100は、図1に示すx方向とy方向とで規定される平面において、ステージ140を、Y1軸駆動系111における駆動位置であるY1軸位置と、Y2軸駆動系121における駆動位置であるY2軸位置と、X軸駆動系131における駆動位置であるX軸位置とによって定められる位置に移動させることができる。 The Y1 axis drive system 111 and the Y2 axis drive system 121 translate the first X-axis support portion 135 and the second X-axis support portion 136 to drive the X-axis 130 in the y direction shown in FIG. Drives to slide. Further, as described above, the X-axis drive system 131 drives the stage so as to be able to travel straight in the x direction shown in FIG. As a result, the gantry mechanism 100 sets the stage 140 in the Y1 axis position, which is the drive position in the Y1 axis drive system 111, and in the Y2 axis drive system 121, in the plane defined by the x direction and the y direction shown in FIG. It can be moved to a position determined by the Y2 axis position, which is the drive position, and the X-axis position, which is the drive position in the X-axis drive system 131.
 ガントリ機構100において、X軸130上におけるステージ140の位置に応じて、Y1軸駆動系111のイナーシャ及びY2軸駆動系121のイナーシャは変化する。このため、X軸130におけるステージ140の位置が、第1のX軸位置である場合と第2のX軸位置である場合とで、Y1軸駆動系111に同じ推力を与えたとしても、Y1軸駆動系111による第1のX軸支持部135の駆動速度は互いに異なることとなる。同様に、X軸130におけるステージ140の位置が、第1のX軸位置である場合と第2のX軸位置である場合とで、Y2軸駆動系121に同じ推力を与えたとしても、Y2軸駆動系121による第2のX軸支持部136の駆動速度は互いに異なることとなる。 In the gantry mechanism 100, the inertia of the Y1-axis drive system 111 and the inertia of the Y2-axis drive system 121 change according to the position of the stage 140 on the X-axis 130. Therefore, even if the same thrust is applied to the Y1 axis drive system 111 depending on whether the position of the stage 140 on the X axis 130 is the first X axis position or the second X axis position, Y1 The drive speeds of the first X-axis support portion 135 by the shaft drive system 111 are different from each other. Similarly, even if the same thrust is applied to the Y2-axis drive system 121 depending on whether the position of the stage 140 on the X-axis 130 is the first X-axis position or the second X-axis position, Y2 The drive speeds of the second X-axis support portion 136 by the shaft drive system 121 will be different from each other.
 ガントリ機構100において、Y1軸駆動系111による第1のX軸支持部135の駆動速度と、Y2軸駆動系121による第2のX軸支持部136の駆動速度とが互いに異なる場合には、ステージ140に、図1に示すz方向周りの回転方向であるヨーイング方向の運動が生じる。このヨーイング方向の運動を抑制するためには、Y1軸駆動系111による第1のX軸支持部135の駆動速度と、Y2軸駆動系121による第2のX軸支持部136の駆動速度との差を抑制する必要がある。 In the gantry mechanism 100, when the drive speed of the first X-axis support portion 135 by the Y1-axis drive system 111 and the drive speed of the second X-axis support portion 136 by the Y2-axis drive system 121 are different from each other, the stage At 140, a motion in the yawing direction, which is the rotation direction around the z direction shown in FIG. 1, occurs. In order to suppress this movement in the yawing direction, the drive speed of the first X-axis support portion 135 by the Y1-axis drive system 111 and the drive speed of the second X-axis support portion 136 by the Y2-axis drive system 121 are set. The difference needs to be suppressed.
 図2は、実施の形態1に係るステージ位置制御装置1の構成を示すブロック図である。ただし、図2には、ステージ位置制御装置1の構成要素の全てを図示しているわけではない。図2には、ステージ位置制御装置1の構成要素のうち、Y1軸駆動系111を駆動する推力を指令するY1軸駆動系推力指令を出力するための構成要素、及び、Y2軸駆動系121を駆動する推力を指令するY2軸駆動系推力指令を出力するための構成要素を図示している。一方で、図2には、ステージ位置制御装置1の構成要素のうち、X軸駆動系131を駆動する推力を指令するX軸駆動系推力指令を出力するための構成要素を図示していない。しかしながら、ステージ位置制御装置1は、図2に図示していない、X軸駆動系131を駆動する推力を指令するX軸駆動系推力指令を出力するための構成要素を含んで構成される。 FIG. 2 is a block diagram showing the configuration of the stage position control device 1 according to the first embodiment. However, FIG. 2 does not show all the components of the stage position control device 1. In FIG. 2, among the components of the stage position control device 1, the components for outputting the Y1 axis drive system thrust command for commanding the thrust for driving the Y1 axis drive system 111 and the Y2 axis drive system 121 are shown. The components for outputting the Y2-axis drive system thrust command for commanding the thrust to be driven are illustrated. On the other hand, FIG. 2 does not show the components of the stage position control device 1 for outputting the X-axis drive system thrust command for commanding the thrust for driving the X-axis drive system 131. However, the stage position control device 1 includes components (not shown in FIG. 2) for outputting an X-axis drive system thrust command for commanding a thrust for driving the X-axis drive system 131.
 図2に示すように、ステージ位置制御装置1は、フィードフォワード部10と、Y軸差分推力指令出力部20と、Y軸重心推力指令出力部30と、Y1軸位置検出部41と、Y2軸位置検出部42と、X軸位置検出部43と、推力変換部50と、イナーシャ関数算出部60と、位置変換部70と、X軸位置指令取得部81と、Y軸重心位置指令取得部82と、位相遅れ補償部83とを含んで構成される。 As shown in FIG. 2, the stage position control device 1 includes a feed forward unit 10, a Y-axis differential thrust command output unit 20, a Y-axis center of gravity thrust command output unit 30, a Y1 axis position detection unit 41, and a Y2 axis. Position detection unit 42, X-axis position detection unit 43, thrust conversion unit 50, inertia function calculation unit 60, position conversion unit 70, X-axis position command acquisition unit 81, and Y-axis center of gravity position command acquisition unit 82. And the phase lag compensation unit 83.
 Y1軸位置検出部41は、Y1軸駆動系111における駆動位置であるY1軸位置を検出する。Y1軸位置検出部41は、例えば、Y1軸駆動系111のリニアモータ又は回転型モータに設置されたエンコーダによって実現される。以下では、Y1軸位置をy1と称する。Y1軸位置の時間による1階微分を The Y1 axis position detection unit 41 detects the Y1 axis position, which is the drive position in the Y1 axis drive system 111. The Y1 axis position detection unit 41 is realized by, for example, an encoder installed in a linear motor or a rotary motor of the Y1 axis drive system 111. Hereinafter, the Y1 axis position is referred to as y1. First-order derivative of the Y1 axis position with time
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
と称する。Y1軸位置の時間による2階微分を It is called. The second derivative of the Y1 axis position with time
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
と称する。 It is called.
 Y2軸位置検出部42は、Y2軸駆動系121における駆動位置であるY2軸位置を検出する。Y2軸位置検出部42は、例えば、Y2軸駆動系121のリニアモータ又は回転型モータに設置されたエンコーダによって実現される。以下では、Y2軸位置をy2と称する。Y2軸位置の時間による1階微分を The Y2 axis position detection unit 42 detects the Y2 axis position, which is the drive position in the Y2 axis drive system 121. The Y2-axis position detection unit 42 is realized by, for example, an encoder installed in a linear motor or a rotary motor of the Y2-axis drive system 121. Hereinafter, the Y2 axis position is referred to as y2. First-order derivative of the Y2 axis position with time
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
と称する。Y2軸位置の時間による2階微分を It is called. The second derivative of the Y2 axis position with time
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
と称する。 It is called.
 X軸位置検出部43は、X軸駆動系131における駆動位置であるX軸位置を検出する。X軸位置検出部43は、例えば、X軸駆動系131のリニアモータ又は回転型モータに設置されたエンコーダによって実現される。以下では、X軸位置をxと称する。 The X-axis position detection unit 43 detects the X-axis position, which is the drive position in the X-axis drive system 131. The X-axis position detection unit 43 is realized by, for example, an encoder installed in a linear motor or a rotary motor of the X-axis drive system 131. Hereinafter, the X-axis position is referred to as x.
 X軸位置指令取得部81は、X軸位置を指令するX軸位置指令を取得する。X軸位置指令は、例えば、指令するX軸位置と時間との関係を示す関数であってもよいし、指令するX軸位置と時間とを対応付けた対応表であってもよい。 The X-axis position command acquisition unit 81 acquires the X-axis position command that commands the X-axis position. The X-axis position command may be, for example, a function showing the relationship between the commanded X-axis position and time, or a correspondence table in which the commanded X-axis position and time are associated with each other.
 Y軸重心位置指令取得部82は、Y1軸位置とY2軸位置との重心位置を指令するY軸重心位置指令を取得する。本明細書においては、Y1軸位置とY2軸位置との和のことをY軸重心位置という。以下では、Y軸重心位置をY1と称する。Y1とy1及びy2との関係は、Y1=y1+y2との式で表される。Y軸重心位置指令は、例えば、指令するY軸重心位置と時間との関係を示す関数であってもよいし、指令するY軸重心位置と時間とを対応付けた対応表であってもよい。 The Y-axis center-of-gravity position command acquisition unit 82 acquires a Y-axis center-of-gravity position command that commands the center-of-gravity positions of the Y1 axis position and the Y2 axis position. In the present specification, the sum of the Y1 axis position and the Y2 axis position is referred to as the Y axis center of gravity position. Hereinafter, the position of the center of gravity of the Y axis is referred to as Y1. The relationship between Y1 and y1 and y2 is expressed by the formula Y1 = y1 + y2. The Y-axis center-of-gravity position command may be, for example, a function indicating the relationship between the commanded Y-axis center-of-gravity position and time, or a correspondence table in which the commanded Y-axis center-of-gravity position and time are associated with each other. ..
 位置変換部70は、Y1軸位置検出部41によって検出されたY1軸位置と、Y2軸位置検出部42によって検出されたY2軸位置とから、Y1軸位置とY2軸位置との和を示すY軸重心位置と、Y1軸位置とY2軸位置との差分を示すY軸差分位置とを算出する。本明細書においては、Y1軸位置とY2軸位置との差分のことをY軸差分位置という。以下では、Y軸差分位置をY2と称する。Y2とy1及びy2との関係は、Y2=y1-y2との式で表される。 The position conversion unit 70 indicates the sum of the Y1 axis position and the Y2 axis position from the Y1 axis position detected by the Y1 axis position detection unit 41 and the Y2 axis position detected by the Y2 axis position detection unit 42. The position of the center of gravity of the axis and the Y-axis difference position indicating the difference between the Y1 axis position and the Y2 axis position are calculated. In the present specification, the difference between the Y1 axis position and the Y2 axis position is referred to as a Y-axis difference position. Hereinafter, the Y-axis difference position is referred to as Y2. The relationship between Y2 and y1 and y2 is expressed by the formula Y2 = y1-y2.
 位相遅れ補償部83は、後述のY軸重心推力指令出力部30において、後述の位置変換部70により算出されたY軸重心位置をフィードバックさせる際の、Y軸重心位置指令取得部82により指令されるY軸重心位置と、位置変換部70により算出されたY軸重心位置との位相差を補償する。 The phase delay compensation unit 83 is commanded by the Y-axis center of gravity position command acquisition unit 82 when feeding back the Y-axis center of gravity position calculated by the position conversion unit 70 described later in the Y-axis center of gravity thrust command output unit 30 described later. Compensates for the phase difference between the Y-axis center of gravity position and the Y-axis center of gravity position calculated by the position conversion unit 70.
 Y軸重心推力指令出力部30は、Y1軸駆動系111と、Y2軸駆動系121との重心推力を指令する第1のY軸重心推力指令F1を算出して出力する。本明細書においては、Y1軸駆動系推力とY2軸駆動系推力との和のことをY軸重心推力という。以下では、Y軸重心推力指令をF1と称する。Y1軸駆動系111の推力を指令するY1軸駆動系推力指令をf1と称する。Y2軸駆動系121の推力を指令するY2軸駆動系推力指令をf2と称する。 The Y-axis center of gravity thrust command output unit 30 calculates and outputs a first Y-axis center of gravity thrust command F1 that commands the center of gravity thrust of the Y1-axis drive system 111 and the Y2-axis drive system 121. In the present specification, the sum of the Y1-axis drive system thrust and the Y2-axis drive system thrust is referred to as the Y-axis center of gravity thrust. Hereinafter, the Y-axis center of gravity thrust command is referred to as F1. The Y1-axis drive system thrust command that commands the thrust of the Y1-axis drive system 111 is referred to as f1. The Y2-axis drive system thrust command that commands the thrust of the Y2-axis drive system 121 is referred to as f2.
 Y軸重心推力指令出力部30は、位相遅れ補償部83によって位相差が補償されたY軸重心位置指令に対して、位置変換部70によって算出されたY軸重心位置をフィードバック値として受けることでフードバック処理を行い、第1のY軸重心推力指令F1を出力する。 The Y-axis center-of-gravity thrust command output unit 30 receives the Y-axis center-of-gravity position calculated by the position conversion unit 70 as a feedback value in response to the Y-axis center-of-gravity position command whose phase difference is compensated by the phase delay compensation unit 83. The hood back process is performed, and the first Y-axis center of gravity thrust command F1 is output.
 以下、Y軸重心推力指令出力部30が行う第1のY軸重心推力指令F1の出力について、より詳細に説明する。 Hereinafter, the output of the first Y-axis center-of-gravity thrust command F1 performed by the Y-axis center-of-gravity thrust command output unit 30 will be described in more detail.
 図2に示すように、Y軸重心推力指令出力部30は、位置フィードバック部31と、速度フィードバック部32とを含んで構成される。 As shown in FIG. 2, the Y-axis center of gravity thrust command output unit 30 includes a position feedback unit 31 and a speed feedback unit 32.
 位置フィードバック部31は、位相遅れ補償部83によって位相差が補償されたY軸重心位置指令に対して、位置変換部によって算出されたY軸重心位置をフィードバックしてPID(Proportional Integral Differential)処理を行い、Y1軸駆動系111と、Y2軸駆動系121との重心速度を指令するY軸重心速度指令を出力する。本明細書においては、Y1軸駆動系速度とY2軸駆動系速度との和のことをY軸重心速度という。以下では、Y軸重心速度指令をV1と称する。 The position feedback unit 31 feeds back the Y-axis center-of-gravity position calculated by the position conversion unit to the Y-axis center-of-gravity position command whose phase difference is compensated by the phase delay compensation unit 83, and performs PID (Proportional Integral Differential) processing. Then, the Y-axis center-of-gravity velocity command for commanding the center-of-gravity velocity of the Y1-axis drive system 111 and the Y2-axis drive system 121 is output. In the present specification, the sum of the Y1-axis drive system speed and the Y2-axis drive system speed is referred to as the Y-axis center of gravity speed. Hereinafter, the Y-axis center of gravity velocity command is referred to as V1.
 速度フィードバック部32は、位置フィードバック部31によって出力されたY軸重心速度指令V1に対して、位置変換部によって算出されたY軸重心位置の時間による1階微分 The speed feedback unit 32 is the first derivative based on the time of the Y-axis center of gravity position calculated by the position conversion unit with respect to the Y-axis center-of-gravity velocity command V1 output by the position feedback unit 31.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
をフィードバックしてPID処理を行い、第1のY軸重心推力指令F1を出力する。 Is fed back to perform PID processing, and the first Y-axis center of gravity thrust command F1 is output.
 Y軸差分推力指令出力部20は、Y1軸駆動系111と、Y2軸駆動系121との差分推力を指令する第1のY軸差分推力指令を算出して出力する。本明細書においては、Y1軸駆動系推力f1とY2軸駆動系推力f2との差分のことをY軸差分推力という。以下では、第1のY軸差分推力指令をF2と称する。 The Y-axis differential thrust command output unit 20 calculates and outputs a first Y-axis differential thrust command that commands a differential thrust between the Y1-axis drive system 111 and the Y2-axis drive system 121. In the present specification, the difference between the Y1-axis drive system thrust f1 and the Y2-axis drive system thrust f2 is referred to as a Y-axis differential thrust. Hereinafter, the first Y-axis differential thrust command is referred to as F2.
 上述したように、ガントリ機構100において、Y1軸駆動系111とY2軸駆動系121とは、第1のX軸支持部135と第2のX軸支持部136とを並進駆動することで、X軸130を、図1に示すy方向にスライド可能に駆動する。このため、Y1軸位置とY2軸位置との差分位置を指令するY軸差分位置指令は、いずれの時間においても0となる。従って、Y軸差分推力指令出力部20は、いずれの時間においても0となるY軸差分位置指令に対して、位置変換部70によって算出されたY軸差分位置をフィードバック値として受けることでフードバック処理を行い、第2のY軸差分推力指令F2を出力する。 As described above, in the gantry mechanism 100, the Y1 axis drive system 111 and the Y2 axis drive system 121 are X by translationally driving the first X-axis support portion 135 and the second X-axis support portion 136. The shaft 130 is slidably driven in the y direction shown in FIG. Therefore, the Y-axis difference position command for commanding the difference position between the Y1 axis position and the Y2 axis position becomes 0 at any time. Therefore, the Y-axis difference thrust command output unit 20 receives the Y-axis difference position calculated by the position conversion unit 70 as a feedback value in response to the Y-axis difference position command that becomes 0 at any time, thereby hooding back. Processing is performed, and the second Y-axis differential thrust command F2 is output.
 以下、Y軸差分推力指令出力部20が行う第2のY軸差分推力指令F2の出力について、より詳細に説明する。 Hereinafter, the output of the second Y-axis differential thrust command F2 performed by the Y-axis differential thrust command output unit 20 will be described in more detail.
 図2に示すように、Y軸差分推力指令出力部20は、位置フィードバック部21と、速度フィードバック部22とを含んで構成される。 As shown in FIG. 2, the Y-axis differential thrust command output unit 20 includes a position feedback unit 21 and a speed feedback unit 22.
 位置フィードバック部21は、いずれの時間においても0となるY軸差分位置指令に対して、位置変換部によって算出されたY軸差分位置をフィードバックしてPID処理を行い、Y1軸駆動系111と、Y2軸駆動系121との差分速度を指令するY軸差分速度指令を出力する。本明細書においては、Y1軸駆動系速度とY2軸駆動系速度との差分のことをY軸差分速度という。以下では、Y軸差分速度指令をV2と称する。 The position feedback unit 21 feeds back the Y-axis difference position calculated by the position conversion unit to perform PID processing in response to the Y-axis difference position command that becomes 0 at any time, and performs PID processing on the Y1 axis drive system 111 and Outputs a Y-axis differential speed command that commands a differential speed with the Y2-axis drive system 121. In the present specification, the difference between the Y1-axis drive system speed and the Y2-axis drive system speed is referred to as a Y-axis difference speed. Hereinafter, the Y-axis differential velocity command is referred to as V2.
 速度フィードバック部22は、位置フィードバック部21によって出力されたY軸差分速度指令V2に対して、位置変換部によって算出されたY軸差分位置の時間による1階微分 The speed feedback unit 22 is the first derivative based on the time of the Y-axis difference position calculated by the position conversion unit with respect to the Y-axis difference velocity command V2 output by the position feedback unit 21.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
をフィードバックしてPID処理を行い、第1のY軸差分推力指令F2を出力する。 Is fed back to perform PID processing, and the first Y-axis differential thrust command F2 is output.
 イナーシャ関数算出部60は、Y1軸駆動系111のイナーシャ及びY2軸駆動系121のイナーシャの差分であるイナーシャ差分と、X軸位置との関係を示すイナーシャ関数を算出する。以下では、Y1軸駆動系111のイナーシャをm1と称する。Y2軸駆動系121のイナーシャをm2と称する。 The inertia function calculation unit 60 calculates an inertia function indicating the relationship between the inertia difference, which is the difference between the inertia of the Y1 axis drive system 111 and the inertia of the Y2 axis drive system 121, and the X-axis position. Hereinafter, the inertia of the Y1 axis drive system 111 is referred to as m1. The inertia of the Y2-axis drive system 121 is referred to as m2.
 図3は、実施の形態1に係るイナーシャ関数算出部60によって算出されるイナーシャ関数の一例を示す模式図である。 FIG. 3 is a schematic diagram showing an example of the inertia function calculated by the inertia function calculation unit 60 according to the first embodiment.
 図3に示すように、イナーシャ関数は、イナーシャ差分m1-m2とX軸位置xとの関係を示す関数である。ここでは、イナーシャ関数は、図3に示すように、イナーシャ差分m1-m2がX軸位置xの一次式で表される関数であるとする。しかしながら、イナーシャ関数は、イナーシャ差分m1-m2とX軸位置xとの関係を示す関数であれば、必ずしも、イナーシャ差分m1-m2がX軸位置xの一次式で表される関数に限定される必要はない。例えば、イナーシャ差分m1-m2がX軸位置xの一次式以外の式で表される関数であってもよい。 As shown in FIG. 3, the inertia function is a function showing the relationship between the inertia difference m1-m2 and the X-axis position x. Here, it is assumed that the inertia function is a function in which the inertia difference m1-m2 is expressed by a linear expression of the X-axis position x, as shown in FIG. However, the inertia function is not necessarily limited to a function in which the inertia difference m1-m2 is represented by a linear expression of the X-axis position x, as long as it is a function showing the relationship between the inertia difference m1-m2 and the X-axis position x. No need. For example, the inertia difference m1-m2 may be a function expressed by an expression other than the linear expression of the X-axis position x.
 イナーシャ関数算出部60は、Y1軸駆動系111の推力を指令するY1軸駆動系推力指令f1と、Y2軸駆動系121の推力を指令するY2軸駆動系推力指令f2と、X軸駆動系131の推力を指令するX軸推力指令fxとを出力する。イナーシャ関数算出部60は、Y1軸位置検出部41によって検出されたY1軸位置y1と、Y2軸位置検出部42によって検出されたY2軸位置y2と、X軸位置検出部43によって検出されたX軸位置xとを取得する。イナーシャ関数算出部60は、出力したY1軸駆動系推力指令f1と、出力したY2軸駆動系推力指令f2と、取得したY1軸位置y1と、取得したY2軸位置y2と、取得したX軸位置xとに基づいて、イナーシャ関数を算出する。 The inertia function calculation unit 60 includes a Y1-axis drive system thrust command f1 that commands the thrust of the Y1-axis drive system 111, a Y2-axis drive system thrust command f2 that commands the thrust of the Y2-axis drive system 121, and an X-axis drive system 131. The X-axis thrust command fx, which commands the thrust of, is output. The inertia function calculation unit 60 includes a Y1 axis position y1 detected by the Y1 axis position detection unit 41, a Y2 axis position y2 detected by the Y2 axis position detection unit 42, and an X detected by the X axis position detection unit 43. Acquires the axis position x. The inertia function calculation unit 60 has the output Y1 axis drive system thrust command f1, the output Y2 axis drive system thrust command f2, the acquired Y1 axis position y1, the acquired Y2 axis position y2, and the acquired X axis position. Calculate the inertia function based on x.
 以下、イナーシャ関数算出部60が行うイナーシャ関数の算出について、より詳細に説明する。 Hereinafter, the calculation of the inertia function performed by the inertia function calculation unit 60 will be described in more detail.
 図4は、実施の形態1に係るイナーシャ関数算出処理のフローチャートである。イナーシャ関数算出処理は、イナーシャ関数算出部60が、イナーシャ関数を算出するために行う処理の一例である。 FIG. 4 is a flowchart of the inertia function calculation process according to the first embodiment. The inertia function calculation process is an example of a process performed by the inertia function calculation unit 60 to calculate the inertia function.
 イナーシャ関数算出処理が開始されると、イナーシャ関数算出部60は、ガントリ機構100にX軸推力指令fxを出力して、第1のX軸位置にステージ140を移動させる(ステップS100)。この際、イナーシャ関数算出部60は、X軸位置検出部43からX軸位置xを取得して、ステージ140のX軸位置を確認しながら、第1のX軸位置にステージ140を移動させる。 When the inertia function calculation process is started, the inertia function calculation unit 60 outputs an X-axis thrust command fx to the gantry mechanism 100 and moves the stage 140 to the first X-axis position (step S100). At this time, the inertia function calculation unit 60 acquires the X-axis position x from the X-axis position detection unit 43, and moves the stage 140 to the first X-axis position while checking the X-axis position of the stage 140.
 第1のX軸位置にステージ140を移動させると、イナーシャ関数算出部60は、ガントリ機構100に、互いに同期した、Y1軸駆動系推力指令f1とY2軸駆動系推力指令f2とを出力し、Y1軸駆動系111とY2軸駆動系121とを加振させる(ステップS110)。 When the stage 140 is moved to the first X-axis position, the inertia function calculation unit 60 outputs the Y1-axis drive system thrust command f1 and the Y2-axis drive system thrust command f2, which are synchronized with each other, to the gantry mechanism 100. The Y1 axis drive system 111 and the Y2 axis drive system 121 are vibrated (step S110).
 Y1軸駆動系111とY2軸駆動系121とを加振させると、イナーシャ関数算出部60は、Y1軸位置検出部41とY2軸位置検出部42とから、それぞれ、Y軸位置y1とY軸位置y2とを取得する(ステップS120)。 When the Y1 axis drive system 111 and the Y2 axis drive system 121 are vibrated, the inertia function calculation unit 60 receives the Y1 axis position detection unit 41 and the Y2 axis position detection unit 42 from the Y1 axis position detection unit 41 and the Y2 axis position detection unit 42, respectively. Acquire the position y2 (step S120).
 Y1軸位置y1とY2軸位置y2とを取得すると、イナーシャ関数算出部60は、出力したY1軸駆動系推力指令f1及びY2軸駆動系推力指令f2と、取得したY1軸位置y1及びY2軸位置y2とから、Y1軸駆動系111のイナーシャm1とY2軸駆動系121のイナーシャm2とを算出する。すなわち、イナーシャ関数算出部60は、第1のX軸位置にステージ140がある場合における、Y1軸駆動系111のイナーシャm1とY2軸駆動系121のイナーシャm2とを算出する(ステップS130)。 When the Y1 axis position y1 and the Y2 axis position y2 are acquired, the inertia function calculation unit 60 outputs the Y1 axis drive system thrust command f1 and the Y2 axis drive system thrust command f2, and the acquired Y1 axis positions y1 and Y2 axis positions. From y2, the thrust m1 of the Y1 axis drive system 111 and the thrust m2 of the Y2 axis drive system 121 are calculated. That is, the inertia function calculation unit 60 calculates the inertia m1 of the Y1-axis drive system 111 and the inertia m2 of the Y2-axis drive system 121 when the stage 140 is located at the first X-axis position (step S130).
 次に、イナーシャ関数算出部60は、ガントリ機構100にX軸推力指令fxを出力して、第2のX軸位置にステージ140を移動させる(ステップS140)。この際、イナーシャ関数算出部60は、X軸位置検出部43からX軸位置xを取得して、ステージ140のX軸位置を確認しながら、第2のX軸位置にステージ140を移動させる。 Next, the inertia function calculation unit 60 outputs the X-axis thrust command fx to the gantry mechanism 100 and moves the stage 140 to the second X-axis position (step S140). At this time, the inertia function calculation unit 60 acquires the X-axis position x from the X-axis position detection unit 43, and moves the stage 140 to the second X-axis position while checking the X-axis position of the stage 140.
 第2のX軸位置にステージ140を移動させると、イナーシャ関数算出部60は、ガントリ機構100に、互いに同期した、Y1軸駆動系推力指令f1とY2軸駆動系推力指令f2とを出力し、Y1軸駆動系111とY2軸駆動系121とを加振させる(ステップS150)。 When the stage 140 is moved to the second X-axis position, the inertia function calculation unit 60 outputs the Y1-axis drive system thrust command f1 and the Y2-axis drive system thrust command f2, which are synchronized with each other, to the gantry mechanism 100. The Y1 axis drive system 111 and the Y2 axis drive system 121 are vibrated (step S150).
 Y1軸駆動系111とY2軸駆動系121とを加振させると、イナーシャ関数算出部60は、Y1軸位置検出部41とY2軸位置検出部42とから、それぞれ、Y軸位置y1とY軸位置y2とを取得する(ステップS160)。 When the Y1 axis drive system 111 and the Y2 axis drive system 121 are vibrated, the inertia function calculation unit 60 receives the Y1 axis position detection unit 41 and the Y2 axis position detection unit 42 from the Y1 axis position detection unit 41 and the Y2 axis position detection unit 42, respectively. Acquire the position y2 (step S160).
 Y1軸位置y1とY2軸位置y2とを取得すると、イナーシャ関数算出部60は、出力したY1軸駆動系推力指令f1及びY2軸駆動系推力指令f2と、取得したY1軸位置y1及びY2軸位置y2とから、Y1軸駆動系111のイナーシャm1とY2軸駆動系121のイナーシャm2とを算出する。すなわち、イナーシャ関数算出部60は、第2のX軸位置にステージ140がある場合における、Y1軸駆動系111のイナーシャm1とY2軸駆動系121のイナーシャm2とを算出する(ステップS170)。 When the Y1 axis position y1 and the Y2 axis position y2 are acquired, the inertia function calculation unit 60 outputs the Y1 axis drive system thrust command f1 and the Y2 axis drive system thrust command f2, and the acquired Y1 axis positions y1 and Y2 axis positions. From y2, the thrust m1 of the Y1 axis drive system 111 and the thrust m2 of the Y2 axis drive system 121 are calculated. That is, the inertia function calculation unit 60 calculates the inertia m1 of the Y1 axis drive system 111 and the inertia m2 of the Y2 axis drive system 121 when the stage 140 is located at the second X-axis position (step S170).
 次に、イナーシャ関数算出部60は、ステップS130の処理において算出した、第1のX軸位置にステージ140がある場合における、Y1軸駆動系111のイナーシャm1及びY2軸駆動系121のイナーシャm2と、ステップS170の処理において算出した、第2のX軸位置にステージ140がある場合における、Y1軸駆動系111のイナーシャm1及びY2軸駆動系121のイナーシャm2とに基づいて、イナーシャ関数180を算出する(ステップS180)。 Next, the inertia function calculation unit 60 together with the inertia m1 of the Y1-axis drive system 111 and the inertia m2 of the Y2-axis drive system 121 when the stage 140 is located at the first X-axis position calculated in the process of step S130. , The inertia function 180 is calculated based on the inertia m1 of the Y1 axis drive system 111 and the inertia m2 of the Y2 axis drive system 121 when the stage 140 is located at the second X-axis position calculated in the process of step S170. (Step S180).
 ステップS180の処理が終了すると、イナーシャ関数算出部60は、そのイナーシャ関数算出処理を終了する。 When the process of step S180 is completed, the inertia function calculation unit 60 ends the inertia function calculation process.
 上述したように、イナーシャ関数算出部60は、Y1軸駆動系111の推力を指令するY1軸駆動系推力指令と、Y2軸駆動系121の推力を指令するY2軸駆動系推力指令とを出力し、以下の(a)~(d)に基づいて、イナーシャ関数を算出する。(a)ステージ140の位置が第1のX軸位置によって定められる場合において出力したY1軸駆動系推力指令及びY2軸駆動系推力指令。(b)ステージ140の位置が第1のX軸位置によって定められる場合においてY1軸位置検出部41によって検出されたY1軸位置及びY2軸位置検出部42によって検出されたY2軸位置。(c)ステージ140の位置が第2のX軸位置によって定められる場合において出力したY1軸駆動系推力指令及びY2軸駆動系推力指令。(d)ステージ140の位置が第2のX軸位置によって定められる場合においてY1軸位置検出部41によって検出されたY1軸位置及びY2軸位置検出部42によって検出されたY2軸位置。 As described above, the inertia function calculation unit 60 outputs a Y1-axis drive system thrust command that commands the thrust of the Y1-axis drive system 111 and a Y2-axis drive system thrust command that commands the thrust of the Y2-axis drive system 121. , The inertia function is calculated based on the following (a) to (d). (A) The Y1-axis drive system thrust command and the Y2-axis drive system thrust command output when the position of the stage 140 is determined by the first X-axis position. (B) The Y1 axis position detected by the Y1 axis position detection unit 41 and the Y2 axis position detected by the Y2 axis position detection unit 42 when the position of the stage 140 is determined by the first X-axis position. (C) The Y1-axis drive system thrust command and the Y2-axis drive system thrust command output when the position of the stage 140 is determined by the second X-axis position. (D) The Y1 axis position detected by the Y1 axis position detection unit 41 and the Y2 axis position detected by the Y2 axis position detection unit 42 when the position of the stage 140 is determined by the second X-axis position.
 フィードフォワード部10は、X軸位置指令取得部81によって取得されたX軸位置指令と、Y軸重心位置指令取得部82によって取得されたY軸重心位置指令とを、Y軸差分推力指令出力部20から出力された第1のY軸差分推力指令F2にフィードフォワードして、第2のY軸差分推力指令を出力する。以下では、第2のY軸差分推力指令をF2´と称する。 The feed forward unit 10 outputs a Y-axis differential thrust command output unit for the X-axis position command acquired by the X-axis position command acquisition unit 81 and the Y-axis center of gravity position command acquired by the Y-axis center of gravity position command acquisition unit 82. It feeds forward to the first Y-axis differential thrust command F2 output from 20 and outputs the second Y-axis differential thrust command. Hereinafter, the second Y-axis differential thrust command is referred to as F2'.
 以下、フィードフォワード部10が行う第2のY軸差分推力指令F2´の出力について、より詳細に説明する。 Hereinafter, the output of the second Y-axis differential thrust command F2'performed by the feedforward unit 10 will be described in more detail.
 図2に示すように、フィードフォワード部10は、イナーシャ関数記憶部11と、算出部12とを含んで構成される。 As shown in FIG. 2, the feedforward unit 10 includes an inertia function storage unit 11 and a calculation unit 12.
 イナーシャ関数記憶部11は、イナーシャ関数算出部60によって算出されたイナーシャ関数を記憶する。 The inertia function storage unit 11 stores the inertia function calculated by the inertia function calculation unit 60.
 算出部12は、X軸位置指令取得部81によって取得されたX軸位置指令により指令されるX軸位置と、イナーシャ関数記憶部11に記憶されるイナーシャ関数とからイナーシャ差分を算出する。算出部12は、算出したイナーシャ差分と、Y軸重心位置指令取得部82によって取得されたY軸重心位置指令とから、Y軸差分推力指令出力部20によって出力された第1のY軸差分推力指令にフィードフォワードするフィードフォワード値を算出する。より具体的には、算出部12は、X軸位置指令により指令されるX軸位置xをイナーシャ関数に代入してイナーシャ差分m1-m2を算出する。算出部12は、算出したイナーシャ差分m1-m2に、Y軸重心位置指令の時間による2階微分 The calculation unit 12 calculates the inertia difference from the X-axis position commanded by the X-axis position command acquired by the X-axis position command acquisition unit 81 and the inertia function stored in the inertia function storage unit 11. The calculation unit 12 is the first Y-axis difference thrust output by the Y-axis difference thrust command output unit 20 from the calculated inertia difference and the Y-axis center of gravity position command acquired by the Y-axis center of gravity position command acquisition unit 82. Calculate the feed forward value to feed forward to the command. More specifically, the calculation unit 12 calculates the inertia difference m1-m2 by substituting the X-axis position x commanded by the X-axis position command into the inertia function. The calculation unit 12 divides the calculated inertia difference m1-m2 into the second derivative according to the time of the Y-axis center of gravity position command.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
を乗ずることで、フィードフォワード値 By multiplying by, the feedforward value
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
を算出する。 Is calculated.
 フィードフォワード部10は、Y軸差分推力指令出力部20から出力された第1のY軸差分推力指令F2から、算出したフィードフォワード値 The feedforward unit 10 is a feedforward value calculated from the first Y-axis differential thrust command F2 output from the Y-axis differential thrust command output unit 20.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
を減ずることで、第2のY軸差分推力指令F2´を算出して出力する。 Is reduced to calculate and output the second Y-axis differential thrust command F2'.
 推力変換部50は、第1のY軸重心推力指令F1と、第2のY軸差分推力指令F2´とを用いて、ステージ140の位置を制御する。より具体的には、推力変換部50は、フィードフォワード部10によって出力される第2のY軸差分推力指令F2´と、Y軸重心推力指令出力部によって出力される第1のY軸重心推力指令F1とに基づいて、Y1軸駆動系111の推力を指令するY1軸駆動系推力指令f1と、Y2軸駆動系121の推力を指令するY2軸駆動系推力指令f2とを算出する。推力変換部50は、算出した、Y1軸駆動系推力指令f1とY2軸駆動系推力指令f2とを、ガントリ機構100に出力する。推力変換部50は、Y1軸駆動系推力指令f1を用いてY1軸駆動系111を駆動し、Y2軸駆動系推力指令f2を用いてY2軸駆動系121を駆動することで、ステージ140の位置を制御する。 The thrust conversion unit 50 controls the position of the stage 140 by using the first Y-axis center of gravity thrust command F1 and the second Y-axis differential thrust command F2'. More specifically, the thrust conversion unit 50 has a second Y-axis differential thrust command F2'output by the feed forward unit 10 and a first Y-axis center of gravity thrust output by the Y-axis center of gravity thrust command output unit. Based on the command F1, the Y1-axis drive system thrust command f1 that commands the thrust of the Y1-axis drive system 111 and the Y2-axis drive system thrust command f2 that commands the thrust of the Y2-axis drive system 121 are calculated. The thrust conversion unit 50 outputs the calculated Y1-axis drive system thrust command f1 and Y2-axis drive system thrust command f2 to the gantry mechanism 100. The thrust conversion unit 50 drives the Y1-axis drive system 111 using the Y1-axis drive system thrust command f1, and drives the Y2-axis drive system 121 using the Y2-axis drive system thrust command f2, thereby driving the position of the stage 140. To control.
 上記構成のステージ位置制御装置1は、ガントリ機構100におけるステージ140の位置を制御する。 The stage position control device 1 having the above configuration controls the position of the stage 140 in the gantry mechanism 100.
 以下、ステージ位置制御装置1が行うステージ140の位置の制御について、図面を参照しながら説明する。 Hereinafter, the control of the position of the stage 140 performed by the stage position control device 1 will be described with reference to the drawings.
 図5は、実施の形態1に係るステージ位置制御処理のフローチャートである。ステージ位置制御処理は、ステージ位置制御装置1が、ステージ140の位置を制御するために行う処理の一例である。 FIG. 5 is a flowchart of the stage position control process according to the first embodiment. The stage position control process is an example of a process performed by the stage position control device 1 to control the position of the stage 140.
 ステージ位置制御処理が開始されると、Y1軸位置検出部41は、Y1軸駆動系111における駆動位置であるY1軸位置を検出し、Y2軸位置検出部42は、Y2軸駆動系121における駆動位置であるY2軸位置を検出する(ステップS200)。 When the stage position control process is started, the Y1 axis position detection unit 41 detects the Y1 axis position, which is the drive position in the Y1 axis drive system 111, and the Y2 axis position detection unit 42 drives the Y2 axis drive system 121. The Y2 axis position, which is the position, is detected (step S200).
 Y1軸位置とY2軸位置とが検出されると、位置変換部70は、Y1軸位置とY2軸位置とから、Y軸重心位置とY軸差分位置とを算出する(ステップS210)。 When the Y1 axis position and the Y2 axis position are detected, the position conversion unit 70 calculates the Y axis center of gravity position and the Y axis difference position from the Y1 axis position and the Y2 axis position (step S210).
 Y軸重心位置とY軸差分位置とが算出されると、Y軸重心推力指令出力部30は、Y軸重心位置をフィードバックして第1のY軸重心推力指令を出力する(ステップS220)。Y軸差分推力指令出力部20は、Y軸差分位置をフィードバックして、第1のY軸差分推力指令を出力する(ステップS230)。 When the Y-axis center of gravity position and the Y-axis difference position are calculated, the Y-axis center of gravity thrust command output unit 30 feeds back the Y-axis center of gravity position and outputs the first Y-axis center of gravity thrust command (step S220). The Y-axis differential thrust command output unit 20 feeds back the Y-axis differential position and outputs the first Y-axis differential thrust command (step S230).
 第1のY軸差分推力指令が出力されると、フィードフォワード部10は、X軸位置指令取得部81によって取得されたX軸位置指令と、Y軸重心位置指令取得部82によって取得されたY軸重心位置指令とを、第1のY軸差分推力指令にフィードフォワードして、第2のY軸差分推力指令を出力する(ステップS240)。 When the first Y-axis differential thrust command is output, the feed forward unit 10 uses the X-axis position command acquired by the X-axis position command acquisition unit 81 and the Y-axis position command acquired by the Y-axis center of gravity position command acquisition unit 82. The axis center of gravity position command is fed forward to the first Y-axis differential thrust command, and the second Y-axis differential thrust command is output (step S240).
 第2のY軸差分推力指令が出力されると、推力変換部50は、第2のY軸差分推力指令と第1のY軸重心推力指令とに基づいて、Y1軸駆動系111の推力を指令するY1軸駆動系推力指令と、Y2軸駆動系121の推力を指令するY2軸駆動系推力指令とを算出する(ステップS250)。算出された、Y1軸駆動系推力指令とY2軸駆動系推力指令とを、ガントリ機構100に出力して(ステップS260)、ステージ140の位置を制御する。 When the second Y-axis differential thrust command is output, the thrust conversion unit 50 calculates the thrust of the Y1-axis drive system 111 based on the second Y-axis differential thrust command and the first Y-axis center of gravity thrust command. The Y1-axis drive system thrust command to be commanded and the Y2-axis drive system thrust command to command the thrust of the Y2-axis drive system 121 are calculated (step S250). The calculated Y1-axis drive system thrust command and Y2-axis drive system thrust command are output to the gantry mechanism 100 (step S260) to control the position of the stage 140.
 ステップS260の処理が終了すると、ステージ位置制御装置1は、再びステップS200の処理に進む。こうして、ステップS200の処理~ステップS260の処理からなるループ処理を繰り返す。 When the process of step S260 is completed, the stage position control device 1 proceeds to the process of step S200 again. In this way, the loop processing including the processing of step S200 to the processing of step S260 is repeated.
 以下、ステージ位置制御装置1によるステージ140の位置制御について考察する。 Hereinafter, the position control of the stage 140 by the stage position control device 1 will be considered.
 変換行列Jを、 The transformation matrix J,
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
とすると、Y軸重心位置Y1の時間による1階微分であるY軸重心速度、及びY軸差分位置Y2の時間による1階微分であるY軸差分速度と、Y1軸位置y1の時間による1階微分であるY1軸速度、及びY2軸位置y2の時間による1階微分であるY2軸速度との変換式は、次の(式1)で表される。 Then, the Y-axis center of gravity velocity, which is the first derivative based on the time of the Y-axis center position Y1, the Y-axis differential velocity, which is the first derivative based on the time of the Y-axis difference position Y2, and the first-order velocity based on the time of the Y1 axis position y1. The conversion formula between the Y1 axis velocity, which is the derivative, and the Y2 axis velocity, which is the first derivative with time at the Y2 axis position y2, is expressed by the following (Equation 1).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 第1のY軸重心推力指令F1、及び第1のY軸差分推力指令F2と、Y1軸駆動系推力指令f1、及びY2軸駆動系推力指令f2との変換式は次の(式2)で表される。 The conversion formula between the first Y-axis center of gravity thrust command F1 and the first Y-axis differential thrust command F2 and the Y1-axis drive system thrust command f1 and the Y2-axis drive system thrust command f2 is as follows (Equation 2). expressed.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 Y1軸駆動系111とY2軸駆動系121との運動方程式は、次の(式3)で表される。 The equation of motion of the Y1-axis drive system 111 and the Y2-axis drive system 121 is expressed by the following (Equation 3).
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 この運動方程式に対して、変換行列Jを用いて座標変換すると、座標変換後の運動方程式は、次の(式4)で表される。 When the coordinates of this equation of motion are transformed using the transformation matrix J, the equation of motion after the coordinate transformation is expressed by the following (Equation 4).
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 この変換後の運動方程式を展開した展開式1、展開式2は、それぞれ、次の(式5)、(式6)で表される。 The expansion equation 1 and expansion equation 2 in which the equation of motion after conversion is expanded are represented by the following equations (Equation 5) and (Equation 6), respectively.
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 展開式1、展開式2において、m1とm2とが互いに異なる場合には、それぞれ、干渉項1 In the expansion formula 1 and the expansion formula 2, when m1 and m2 are different from each other, the interference term 1 is used, respectively.
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
、干渉項2 , Interference term 2
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
が除去されずに残る。 Remains unremoved.
 展開式1から干渉項1が除去されない場合、及び、展開式2から干渉項2が除去されない場合には、Y1軸駆動系111による第1のX軸支持部135の駆動速度と、Y2軸駆動系121による第2のX軸支持部136の駆動速度との差を抑制することができない。すなわち、ステージ140にヨーイング方向の運動が生じてしまう。 When the interference term 1 is not removed from the expansion formula 1 and when the interference term 2 is not removed from the expansion formula 2, the drive speed of the first X-axis support portion 135 by the Y1-axis drive system 111 and the Y2-axis drive It is not possible to suppress the difference between the drive speed of the second X-axis support portion 136 and the drive speed of the system 121. That is, movement in the yawing direction occurs on the stage 140.
 なお、展開式2から干渉項2を除去すると、干渉項1は、自ずと0に収束する。このため、展開式2から干渉項2を除去することで、ステージ140のヨーイング方向の運動を抑制することができる。 When the interference term 2 is removed from the expansion formula 2, the interference term 1 naturally converges to 0. Therefore, by removing the interference term 2 from the deployment formula 2, the movement of the stage 140 in the yawing direction can be suppressed.
 ステージ位置制御装置1において、フィードフォワード部10は、X軸位置指令取得部81によって取得されたX軸位置指令と、Y軸重心位置指令取得部82によって取得されたY軸重心位置指令とから、フィードフォワード値として干渉項2 In the stage position control device 1, the feed forward unit 10 is based on the X-axis position command acquired by the X-axis position command acquisition unit 81 and the Y-axis center-of-gravity position command acquired by the Y-axis center-of-gravity position command acquisition unit 82. Interference term 2 as feed forward value
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
を算出する。フィードフォワード部10は、Y軸差分推力指令出力部20から出力された第1のY軸差分推力指令F2から、算出したフィードフォワード値である干渉項2を減ずることで、第2のY軸差分推力指令F2´を算出して出力する。このため、第2のY軸差分推力指令F2´からは、干渉項2の成分が除去される。 Is calculated. The feed forward unit 10 reduces the calculated feed forward value, the interference term 2, from the first Y-axis differential thrust command F2 output from the Y-axis differential thrust command output unit 20, thereby reducing the second Y-axis difference. The thrust command F2'is calculated and output. Therefore, the component of the interference term 2 is removed from the second Y-axis differential thrust command F2'.
 推力変換部50は、干渉項2の成分が除去された第2のY軸差分推力指令F2´と第1のY軸重心推力指令F1とに基づいて、Y1軸駆動系111の推力を指令するY1軸駆動系推力指令f1と、Y2軸駆動系121の推力を指令するY2軸駆動系推力指令f2とを算出して、ガントリ機構100に出力する。 The thrust conversion unit 50 commands the thrust of the Y1 axis drive system 111 based on the second Y-axis differential thrust command F2'and the first Y-axis center of gravity thrust command F1 from which the component of the interference term 2 is removed. The Y1-axis drive system thrust command f1 and the Y2-axis drive system thrust command f2 that commands the thrust of the Y2-axis drive system 121 are calculated and output to the gantry mechanism 100.
 従って、ステージ位置制御装置1は、ステージ140のヨーイング方向の運動が発生していない時点で、ステージ140のヨーイング方向の運動の発生自体を抑制することができる。 Therefore, the stage position control device 1 can suppress the occurrence of the yawing direction motion of the stage 140 itself at the time when the yawing direction motion of the stage 140 is not generated.
 (実施の形態2)
 以下、実施の形態1に係るステージ位置制御装置1の一部が変更されて構成される実施の形態2に係るステージ位置制御装置について説明する。
(Embodiment 2)
Hereinafter, the stage position control device according to the second embodiment, which is configured by modifying a part of the stage position control device 1 according to the first embodiment, will be described.
 ステージ位置制御装置は、第1のY軸差分推力指令F2から干渉項2の成分を除去することに加えて、さらに、積極的に第1のY軸重心推力指令F1から干渉項1の成分を除去する。 In addition to removing the component of the interference term 2 from the first Y-axis differential thrust command F2, the stage position control device further positively removes the component of the interference term 1 from the first Y-axis center of gravity thrust command F1. Remove.
 図6は、実施の形態2に係るステージ位置制御装置1aの構成を示すブロック図である。ただし、図6には、図1の場合と同様に、ステージ位置制御装置1aの構成要素の全てを図示しているわけではない。以下では、ステージ位置制御装置1aについて、実施の形態1に係るステージ位置制御装置1と同様の構成要素については、同じ符号を振ってその詳細な説明を省略し、ステージ位置制御装置1との相違点を中心に説明する。 FIG. 6 is a block diagram showing the configuration of the stage position control device 1a according to the second embodiment. However, as in the case of FIG. 1, FIG. 6 does not show all the components of the stage position control device 1a. In the following, regarding the stage position control device 1a, the same components as those of the stage position control device 1 according to the first embodiment are designated by the same reference numerals and detailed description thereof will be omitted, and the differences from the stage position control device 1 will be omitted. The explanation will focus on the points.
 図6に示すように、ステージ位置制御装置1aは、実施の形態1に係るステージ位置制御装置1から、フィードバック部90が追加され、推力変換部50が推力変換部50aに変更されて構成される。 As shown in FIG. 6, the stage position control device 1a is configured by adding a feedback unit 90 from the stage position control device 1 according to the first embodiment and changing the thrust conversion unit 50 to the thrust conversion unit 50a. ..
 フィードバック部90は、X軸位置検出部43によって検出されたX軸位置と、位置変換部70によって算出されたY軸差分位置とを、Y軸重心推力指令出力部30から出力された第1のY軸重心推力指令にフィードバックして、第2のY軸重心推力指令を出力する。以下では、第2のY軸重心推力指令をF1´と称する。 The feedback unit 90 outputs the X-axis position detected by the X-axis position detection unit 43 and the Y-axis difference position calculated by the position conversion unit 70 from the Y-axis center of gravity thrust command output unit 30. The second Y-axis center of gravity thrust command is output by feeding back to the Y-axis center of gravity thrust command. Hereinafter, the second Y-axis center of gravity thrust command is referred to as F1'.
 以下、フィードバック部90が行う第2のY軸重心推力指令F1´の出力について、より詳細に説明する。 Hereinafter, the output of the second Y-axis center of gravity thrust command F1' performed by the feedback unit 90 will be described in more detail.
 図6に示すように、フィードバック部90は、イナーシャ関数記憶部11と、算出部92とを含んで構成される。 As shown in FIG. 6, the feedback unit 90 includes an inertia function storage unit 11 and a calculation unit 92.
 算出部92は、X軸位置検出部43によって検出されたX軸位置と、イナーシャ関数記憶部11に記憶されるイナーシャ関数とからイナーシャ差分を算出する。算出部92は、算出したイナーシャ差分と、位置変換部70によって算出されたY軸差分位置とから、Y軸重心推力指令出力部30によって出力された第1のY軸重心推力指令にフィードバックするフィードバック値を算出する。より具体的には、算出部92は、X軸位置検出部によって検出されたX軸位置xをイナーシャ関数に代入してイナーシャ差分m1-m2を算出し、算出したイナーシャ差分m1-m2に、Y軸差分位置の時間による2階微分 The calculation unit 92 calculates the inertia difference from the X-axis position detected by the X-axis position detection unit 43 and the inertia function stored in the inertia function storage unit 11. The calculation unit 92 feeds back the calculated inertia difference and the Y-axis difference position calculated by the position conversion unit 70 to the first Y-axis center-of-gravity thrust command output by the Y-axis center-of-gravity thrust command output unit 30. Calculate the value. More specifically, the calculation unit 92 calculates the inertia difference m1-m2 by substituting the X-axis position x detected by the X-axis position detection unit into the inertia function, and adds Y to the calculated inertia difference m1-m2. Second-order differential with time at the axis difference position
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
を乗ずることで、フィードバック値 By multiplying by, the feedback value
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
を算出する。 Is calculated.
 フィードバック部90は、Y軸重心推力指令出力部30から出力された第1のY軸重心推力指令F1から、算出したフィードバック値 The feedback unit 90 is a feedback value calculated from the first Y-axis center-of-gravity thrust command F1 output from the Y-axis center-of-gravity thrust command output unit 30.
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000021
を減ずることで、第2のY軸重心推力指令F1´を算出して出力する。 Is reduced to calculate and output the second Y-axis center of gravity thrust command F1'.
 推力変換部50aは、フィードフォワード部10によって出力される第2のY軸差分推力指令F2´と、フィードバック部90によって出力される第2のY軸重心推力指令F1´とに基づいて、Y1軸駆動系111の推力を指令するY1軸駆動系推力指令f1と、Y2軸駆動系121の推力を指令するY2軸駆動系推力指令f2とを算出する。推力変換部50aは、算出した、Y1軸駆動系推力指令f1とY2軸駆動系推力指令f2とを、ガントリ機構100に出力して、Y1軸駆動系推力指令f1を用いてY1軸駆動系111を駆動し、Y2軸駆動系推力指令f2を用いてY2軸駆動系121を駆動することで、ステージ140の位置を制御する。 The thrust conversion unit 50a has a Y1 axis based on a second Y-axis differential thrust command F2'output by the feed forward unit 10 and a second Y-axis center of gravity thrust command F1' output by the feedback unit 90. The Y1-axis drive system thrust command f1 that commands the thrust of the drive system 111 and the Y2-axis drive system thrust command f2 that commands the thrust of the Y2-axis drive system 121 are calculated. The thrust conversion unit 50a outputs the calculated Y1 axis drive system thrust command f1 and Y2 axis drive system thrust command f2 to the gantry mechanism 100, and uses the Y1 axis drive system thrust command f1 to output the calculated Y1 axis drive system thrust command f1 to the Y1 axis drive system 111. The position of the stage 140 is controlled by driving the Y2-axis drive system 121 by using the Y2-axis drive system thrust command f2.
 以下、上記構成のステージ位置制御装置1aによるステージ140の位置制御について考察する。 Hereinafter, the position control of the stage 140 by the stage position control device 1a having the above configuration will be considered.
 ステージ位置制御装置1aにおいて、フィードバック部90は、X軸位置検出部43によって検出されたX軸位置と、位置変換部70によって算出されたY軸差分位置とから、フィードバック値として干渉項1 In the stage position control device 1a, the feedback unit 90 uses the interference term 1 as a feedback value from the X-axis position detected by the X-axis position detection unit 43 and the Y-axis difference position calculated by the position conversion unit 70.
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000022
を算出する。フィードバック部90は、Y軸重心推力指令出力部30から出力された第1のY軸重心推力指令F1から、算出したフィードバック値である干渉項1を減ずることで、第2のY軸重心推力指令F1´を算出して出力する。このため、第2のY軸重心推力指令F1´からは、干渉項2の成分が除去される。 Is calculated. The feedback unit 90 reduces the interference term 1 which is the calculated feedback value from the first Y-axis center of gravity thrust command F1 output from the Y-axis center of gravity thrust command output unit 30, and thereby reduces the second Y-axis center of gravity thrust command. Calculate and output F1'. Therefore, the component of the interference term 2 is removed from the second Y-axis center of gravity thrust command F1'.
 推力変換部50aは、干渉項2の成分が除去された第2のY軸差分推力指令F2´と、干渉項1の成分が除去された第2のY軸重心推力指令F1´とに基づいて、Y1軸駆動系111の推力を指令するY1軸駆動系推力指令f1と、Y2軸駆動系121の推力を指令するY2軸駆動系推力指令f2とを算出して、ガントリ機構100に出力する。 The thrust conversion unit 50a is based on the second Y-axis differential thrust command F2'from which the component of the interference term 2 has been removed and the second Y-axis center of gravity thrust command F1' from which the component of the interference term 1 has been removed. , The Y1-axis drive system thrust command f1 that commands the thrust of the Y1-axis drive system 111 and the Y2-axis drive system thrust command f2 that commands the thrust of the Y2-axis drive system 121 are calculated and output to the gantry mechanism 100.
 従って、ステージ位置制御装置1aは、ステージ140のヨーイング方向の運動が発生していない時点で、ステージ140のヨーイング方向の運動の発生自体を抑制することができる。 Therefore, the stage position control device 1a can suppress the occurrence of the yawing direction motion of the stage 140 itself at the time when the yawing direction motion of the stage 140 is not generated.
 (補足)
 以上のように、本開示による技術の例示として、実施の形態1及び実施の形態2について説明した。しかしながら、本開示による技術は、これらに限定されず、本開示の趣旨を逸脱しない限り、適宜、変更、置き換え、付加、省略等を行った実施の形態又は変形例にも適用可能である。
(Supplement)
As described above, the first embodiment and the second embodiment have been described as examples of the techniques according to the present disclosure. However, the technique according to the present disclosure is not limited to these, and can be applied to embodiments or modifications in which modifications, replacements, additions, omissions, etc. are appropriately made as long as the gist of the present disclosure is not deviated.
 例えば、実施の形態1において、ステージ位置制御装置1は、イナーシャ関数を算出するイナーシャ関数算出部60を備え、イナーシャ関数記憶部11は、イナーシャ関数算出部によって算出されたイナーシャ関数を記憶する構成であるとして説明した。しかしながら、ステージ位置制御装置1は、イナーシャ関数を利用することができれば、必ずしも、イナーシャ関数を算出する必要はない。ステージ位置制御装置1は、例えば、イナーシャ関数算出部60を備えずに、イナーシャ関数記憶部11が、外部装置により算出されたイナーシャ関数を、外部装置から取得して記憶する構成であってもよい。 For example, in the first embodiment, the stage position control device 1 includes an inertia function calculation unit 60 for calculating an inertia function, and the inertia function storage unit 11 stores the inertia function calculated by the inertia function calculation unit. Explained as there is. However, the stage position control device 1 does not necessarily have to calculate the inertia function if the inertia function can be used. For example, the stage position control device 1 may be configured such that the inertia function storage unit 11 acquires and stores the inertia function calculated by the external device from the external device without including the inertia function calculation unit 60. ..
 本開示に係る光検出器は、ステージの位置を制御する装置等に広く利用可能である。 The photodetector according to the present disclosure can be widely used as a device for controlling the position of a stage.
 1、1a ステージ位置制御装置
 10 フィードフォワード部
 11 イナーシャ関数記憶部
 12、92 算出部
 20 Y軸差分推力指令出力部
 21、31 位置フィードバック部
 22、32 速度フィードバック部
 30 Y軸重心推力指令出力部
 41 Y1軸位置検出部
 42 Y2軸位置検出部
 43 X軸位置検出部
 50、50a 推力変換部
 60 イナーシャ関数算出部
 70 位置変換部
 81 X軸位置指令取得部
 82 Y軸重心位置指令取得部
 83 位相遅れ補償部
 90 フィードバック部
 100 ガントリ機構
 110 Y1軸
 111 Y1軸駆動系
 120 Y2軸
 121 Y2軸駆動系
 130 X軸
 131 X軸駆動系
 135 第1のX軸支持部
 136 第2のX軸支持部
 140 ステージ
1, 1a Stage position control device 10 Feed forward unit 11 Initiator function storage unit 12, 92 Calculation unit 20 Y-axis differential thrust command output unit 21, 31 Position feedback unit 22, 32 Speed feedback unit 30 Y-axis center of gravity thrust command output unit 41 Y1 axis position detection unit 42 Y2 axis position detection unit 43 X-axis position detection unit 50, 50a Thrust conversion unit 60 Initial function calculation unit 70 Position conversion unit 81 X-axis position command acquisition unit 82 Y-axis center of gravity position command acquisition unit 83 Phase delay Compensation part 90 Feedback part 100 Gantry mechanism 110 Y1 axis 111 Y1 axis drive system 120 Y2 axis 121 Y2 axis drive system 130 X axis 131 X axis drive system 135 First X axis support part 136 Second X axis support part 140 Stage

Claims (10)

  1. 互いに平行なY1軸及びY2軸と、
    前記Y1軸及び前記Y2軸に垂直なX軸と、
    前記Y1軸上のY1軸駆動系における駆動位置であるY1軸位置と前記Y2軸上のY2軸駆動系における駆動位置であるY2軸位置と前記X軸上のX軸駆動系における駆動位置であるX軸位置とによって位置が定められるステージと、
    を有するガントリ機構における、前記ステージの位置を制御するステージ位置制御装置であって、
    前記Y1軸駆動系と前記Y2軸駆動系との重心推力を指令する第1のY軸重心推力指令を出力するY軸重心推力指令出力部と、
    前記Y1軸駆動系と前記Y2軸駆動系との差分推力を指令する第1のY軸差分推力指令を出力するY軸差分推力指令出力部と、
    前記X軸位置を指令するX軸位置指令と、前記Y1軸位置及び前記Y2軸位置の重心位置を指令するY軸重心位置指令とを、前記第1のY軸差分推力指令にフィードフォワードして、第2のY軸差分推力指令を出力するフィードフォワード部と、
    前記第1のY軸重心推力指令と、前記第2のY軸差分推力指令とを用いて、前記ステージの位置を制御する推力変換部と、を備えるステージ位置制御装置。
    With the Y1 and Y2 axes parallel to each other,
    An X-axis perpendicular to the Y1 axis and the Y2 axis,
    The Y1 axis position which is the drive position in the Y1 axis drive system on the Y1 axis, the Y2 axis position which is the drive position in the Y2 axis drive system on the Y2 axis, and the drive position in the X axis drive system on the X axis. A stage whose position is determined by the X-axis position,
    A stage position control device for controlling the position of the stage in the gantry mechanism having the above.
    A Y-axis center of gravity thrust command output unit that outputs a first Y-axis center of gravity thrust command that commands the center of gravity thrust of the Y1 axis drive system and the Y2 axis drive system.
    A Y-axis differential thrust command output unit that outputs a first Y-axis differential thrust command that commands a differential thrust between the Y1-axis drive system and the Y2-axis drive system, and a Y-axis differential thrust command output unit.
    The X-axis position command for commanding the X-axis position and the Y-axis center of gravity position command for commanding the center of gravity positions of the Y1 axis position and the Y2 axis position are fed forward to the first Y-axis differential thrust command. , The feed forward unit that outputs the second Y-axis differential thrust command,
    A stage position control device including a thrust conversion unit that controls the position of the stage by using the first Y-axis center of gravity thrust command and the second Y-axis differential thrust command.
  2. 前記フィードフォワード部は、
    前記Y1軸駆動系のイナーシャ及び前記Y2軸駆動系のイナーシャの差分であるイナーシャ差分と、前記X軸位置との関係を示すイナーシャ関数を記憶し、
    前記X軸位置指令により指令されるX軸位置と前記イナーシャ関数とから前記イナーシャ差分を算出し、算出したイナーシャ差分と前記Y軸重心位置指令とから、前記第1のY軸差分推力指令にフィードフォワードするフィードフォワード値を算出する
    請求項1に記載のステージ位置制御装置。
    The feedforward section
    An inertia function indicating the relationship between the inertia difference of the Y1-axis drive system and the inertia of the Y2-axis drive system and the X-axis position is stored.
    The inertia difference is calculated from the X-axis position commanded by the X-axis position command and the inertia function, and the calculated inertia difference and the Y-axis center of gravity position command are fed to the first Y-axis difference thrust command. The stage position control device according to claim 1, wherein the feed forward value to be forwarded is calculated.
  3. 前記Y軸重心推力指令出力部は、前記Y軸重心位置指令に基づいて前記第1のY軸重心推力指令を出力する
    請求項2に記載のステージ位置制御装置。
    The stage position control device according to claim 2, wherein the Y-axis center-of-gravity thrust command output unit outputs the first Y-axis center-of-gravity thrust command based on the Y-axis center-of-gravity position command.
  4. 前記Y1軸位置を検出するY1軸位置検出部と、
    前記Y2軸位置を検出するY2軸位置検出部と、をさらに備え、
    前記Y軸重心推力指令出力部は、前記Y1軸位置検出部によって検出されたY1軸位置と、前記Y2軸位置検出部によって検出されたY2軸位置との重心位置を示すY軸重心位置をフィードバック値として受けることで、前記第1のY軸重心推力指令を出力し、
    前記第1のY軸差分推力指令出力部は、前記Y1軸位置検出部によって検出されたY1軸位置と、前記Y2軸位置検出部によって検出されたY2軸位置との差分位置を示すY軸差分位置をフィードバック値として受けることで、前記第1のY軸差分推力指令を出力する
    請求項3に記載のステージ位置制御装置。
    The Y1 axis position detection unit that detects the Y1 axis position and
    A Y2 axis position detecting unit for detecting the Y2 axis position is further provided.
    The Y-axis center of gravity thrust command output unit feeds back the Y-axis center-of-gravity position indicating the center-of-gravity position between the Y1-axis position detected by the Y1-axis position detection unit and the Y2-axis position detected by the Y2-axis position detection unit. By receiving it as a value, the first Y-axis center of gravity thrust command is output.
    The first Y-axis differential thrust command output unit is a Y-axis difference indicating a difference position between the Y1 axis position detected by the Y1 axis position detection unit and the Y2 axis position detected by the Y2 axis position detection unit. The stage position control device according to claim 3, wherein the first Y-axis differential thrust command is output by receiving the position as a feedback value.
  5. 前記推力変換部は、前記第1のY軸重心推力指令と、前記第2のY軸差分推力指令とに基づいて、前記Y1軸駆動系の推力を指令するY1軸駆動系推力指令と、前記Y2軸駆動系の推力を指令するY2軸駆動系推力指令とを算出し、前記Y1軸駆動系推力指令を用いて前記Y1軸駆動系を駆動し、前記Y2軸駆動系推力指令を用いて前記Y2軸駆動系を駆動することで、前記ステージの位置を制御する
    請求項1から請求項4のいずれか1項に記載のステージ位置制御装置。
    The thrust conversion unit includes a Y1-axis drive system thrust command that commands the thrust of the Y1-axis drive system based on the first Y-axis center of gravity thrust command and the second Y-axis differential thrust command. The Y2-axis drive system thrust command that commands the thrust of the Y2-axis drive system is calculated, the Y1-axis drive system is driven using the Y1-axis drive system thrust command, and the Y2-axis drive system thrust command is used to drive the Y1-axis drive system. The stage position control device according to any one of claims 1 to 4, wherein the position of the stage is controlled by driving the Y2-axis drive system.
  6. 前記X軸位置を検出するX軸位置検出部と、
    前記X軸位置検出部によって検出されたX軸位置と、前記差分位置とを、前記第1のY軸重心推力指令にフィードバックして、第2のY軸重心推力指令を出力するフィードバック部とをさらに備え、
    前記推力変換部は、前記第2のY軸重心推力指令を用いることで、前記ステージの位置を制御する
    請求項4に記載のステージ位置制御装置。
    The X-axis position detection unit that detects the X-axis position and
    A feedback unit that feeds back the X-axis position detected by the X-axis position detection unit and the difference position to the first Y-axis center-of-gravity thrust command and outputs a second Y-axis center-of-gravity thrust command. Further prepare
    The stage position control device according to claim 4, wherein the thrust conversion unit controls the position of the stage by using the second Y-axis center of gravity thrust command.
  7. 前記フィードバック部は、前記イナーシャ関数を記憶し、前記X軸位置検出部によって検出されたX軸位置と前記イナーシャ関数とから前記イナーシャ差分を算出し、算出したイナーシャ差分と前記差分位置とから前記第1のY軸重心推力指令にフィードバックするフィードバック値を算出する請求項6に記載のステージ位置制御装置。 The feedback unit stores the inertia function, calculates the inertia difference from the X-axis position detected by the X-axis position detection unit and the inertia function, and calculates the inertia difference from the calculated inertia difference and the difference position. The stage position control device according to claim 6, wherein a feedback value to be fed back to the Y-axis center of gravity thrust command of 1 is calculated.
  8. 前記推力変換部は、前記第2のY軸重心推力指令と、前記第2のY軸差分推力指令とに基づいて、前記Y1軸駆動系の推力を指令するY1軸駆動系推力指令と、前記Y2軸駆動系の推力を指令するY2軸駆動系推力指令とを算出し、前記Y1軸駆動系推力指令を用いて前記Y1軸駆動系を駆動し、前記Y2軸駆動系推力指令を用いて前記Y2軸駆動系を駆動することで、前記ステージの位置を制御する
    請求項7に記載のステージ位置制御装置。
    The thrust conversion unit includes a Y1-axis drive system thrust command that commands the thrust of the Y1-axis drive system based on the second Y-axis center of gravity thrust command and the second Y-axis differential thrust command. The Y2-axis drive system thrust command that commands the thrust of the Y2-axis drive system is calculated, the Y1-axis drive system is driven using the Y1-axis drive system thrust command, and the Y2-axis drive system thrust command is used to drive the Y1-axis drive system. The stage position control device according to claim 7, wherein the position of the stage is controlled by driving the Y2-axis drive system.
  9. 前記Y1軸位置を検出するY1軸位置検出部と、前記Y2軸位置を検出するY2軸位置検出部と、
    前記Y1軸駆動系の推力を指令するY1軸駆動系推力指令と、前記Y2軸駆動系の推力を指令するY2軸駆動系推力指令とを出力し、(a)前記ステージの位置が第1のX軸位置によって定められる場合において出力した前記Y1軸駆動系推力指令及び前記Y2軸駆動系推力指令と、(b)前記ステージの位置が前記第1のX軸位置によって定められる場合において前記Y1軸位置検出部によって検出されたY1軸位置及び前記Y2軸位置検出部によって検出されたY2軸位置と、(c)前記ステージの位置が第2のX軸位置によって定められる場合において出力した前記Y1軸駆動系推力指令及び前記Y2軸駆動系推力指令と、(d)前記ステージの位置が前記第2のX軸位置によって定められる場合において前記Y1軸位置検出部によって検出されたY1軸位置及び前記Y2軸位置検出部によって検出されたY2軸位置と、に基づいて、前記イナーシャ関数を算出するイナーシャ関数算出部と、をさらに備える
    請求項2に記載のステージ位置制御装置。
    A Y1 axis position detecting unit that detects the Y1 axis position, a Y2 axis position detecting unit that detects the Y2 axis position, and a Y2 axis position detecting unit.
    The Y1-axis drive system thrust command that commands the thrust of the Y1-axis drive system and the Y2-axis drive system thrust command that commands the thrust of the Y2-axis drive system are output, and (a) the position of the stage is the first. The Y1 axis drive system thrust command and the Y2 axis drive system thrust command output when determined by the X-axis position, and (b) the Y1 axis when the position of the stage is determined by the first X axis position. The Y1 axis position detected by the position detection unit, the Y2 axis position detected by the Y2 axis position detection unit, and (c) the Y1 axis output when the position of the stage is determined by the second X-axis position. The drive system thrust command, the Y2 axis drive system thrust command, and (d) the Y1 axis position and the Y2 detected by the Y1 axis position detection unit when the position of the stage is determined by the second X axis position. The stage position control device according to claim 2, further comprising an inertia function calculation unit that calculates the thrust function based on the Y2 axis position detected by the axis position detection unit.
  10. 互いに平行なY1軸及びY2軸と、前記Y1軸及び前記Y2軸に垂直なX軸と、前記Y1軸上のY1軸駆動系における駆動位置であるY1軸位置と前記Y2軸上のY2軸駆動系における駆動位置であるY2軸位置と前記X軸のX軸駆動系における駆動位置であるX軸位置によって位置が定められるステージと、を有するガントリ機構における、前記ステージの位置を制御するステージ位置制御方法であって、前記Y1軸駆動系と前記Y2軸駆動系との重心推力を指令する第1のY軸重心推力指令を算出し、前記Y1軸駆動系と前記Y2軸駆動系との差分推力を指令する第1のY軸差分推力指令を算出し、前記X軸位置を指令するX軸位置指令と、前記Y1軸位置及び前記Y2軸位置の重心位置を指令するY軸重心位置指令とを、前記第1のY軸差分推力指令にフィードフォワードして、第2のY軸差分推力指令を算出し、
    前記第1のY軸重心推力指令と、前記第2のY軸差分推力指令とを用いて、前記ステージの位置を制御するステージ位置制御方法。
    The Y1 and Y2 axes parallel to each other, the X axis perpendicular to the Y1 and Y2 axes, the Y1 axis position which is the drive position in the Y1 axis drive system on the Y1 axis, and the Y2 axis drive on the Y2 axis. Stage position control for controlling the position of the stage in a gantry mechanism having a Y2 axis position which is a drive position in the system and a stage whose position is determined by the X axis position which is a drive position in the X axis drive system of the X axis. In the method, a first Y-axis center of gravity thrust command for commanding the center of gravity thrust between the Y1 axis drive system and the Y2 axis drive system is calculated, and the difference thrust between the Y1 axis drive system and the Y2 axis drive system is calculated. The first Y-axis differential thrust command for commanding is calculated, and the X-axis position command for commanding the X-axis position and the Y-axis center of gravity position command for commanding the center of gravity positions of the Y1 axis position and the Y2 axis position are obtained. , Feed forward to the first Y-axis differential thrust command to calculate the second Y-axis differential thrust command.
    A stage position control method for controlling the position of the stage by using the first Y-axis center of gravity thrust command and the second Y-axis differential thrust command.
PCT/JP2020/024531 2019-09-02 2020-06-23 Stage position control device and stage position control method WO2021044710A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227004731A KR20220054588A (en) 2019-09-02 2020-06-23 Stage position control device, and stage position control method
CN202080058134.2A CN114270286B (en) 2019-09-02 2020-06-23 Stage position control device and stage position control method
JP2021543967A JP7507355B2 (en) 2019-09-02 2020-06-23 Stage position control device and stage position control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019159452 2019-09-02
JP2019-159452 2019-09-02

Publications (1)

Publication Number Publication Date
WO2021044710A1 true WO2021044710A1 (en) 2021-03-11

Family

ID=74853167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024531 WO2021044710A1 (en) 2019-09-02 2020-06-23 Stage position control device and stage position control method

Country Status (3)

Country Link
KR (1) KR20220054588A (en)
CN (1) CN114270286B (en)
WO (1) WO2021044710A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001238485A (en) * 2000-02-21 2001-08-31 Sharp Corp Stage equipment
WO2006006449A1 (en) * 2004-07-14 2006-01-19 Sumitomo Heavy Industries, Ltd. Stage control device and stage device using the control device
CN102059573A (en) * 2010-11-10 2011-05-18 西安交通大学 Modeling method for dual-driving synchronous electromechanical coupling characteristic of walking beam type gantry machine tool

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000077503A (en) * 1998-08-28 2000-03-14 Nikon Corp Stage device and aligner
JP3312297B2 (en) 1999-07-02 2002-08-05 住友重機械工業株式会社 Stage position control device
JP3940388B2 (en) * 2003-08-04 2007-07-04 住友重機械工業株式会社 Reaction force processing system for stage equipment
JP4591136B2 (en) * 2005-03-14 2010-12-01 株式会社安川電機 Two-dimensional positioning device
US8144310B2 (en) * 2008-04-14 2012-03-27 Asml Netherlands B.V. Positioning system, lithographic apparatus and device manufacturing method
KR102082846B1 (en) * 2011-01-28 2020-02-28 고쿠리츠다이가쿠호우진 도쿄다이가쿠 Driving system and driving method, light exposure device and light exposure method, and driving system designing method
JP5834121B1 (en) * 2014-08-25 2015-12-16 株式会社ソディック Processing equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001238485A (en) * 2000-02-21 2001-08-31 Sharp Corp Stage equipment
WO2006006449A1 (en) * 2004-07-14 2006-01-19 Sumitomo Heavy Industries, Ltd. Stage control device and stage device using the control device
CN102059573A (en) * 2010-11-10 2011-05-18 西安交通大学 Modeling method for dual-driving synchronous electromechanical coupling characteristic of walking beam type gantry machine tool

Also Published As

Publication number Publication date
KR20220054588A (en) 2022-05-03
CN114270286B (en) 2024-03-26
CN114270286A (en) 2022-04-01
JPWO2021044710A1 (en) 2021-03-11

Similar Documents

Publication Publication Date Title
EP1667001B1 (en) Controller
US20170008171A1 (en) Robot controller for robot which sets two objects in combined state
US20060186845A1 (en) Servo controller
JP4760912B2 (en) Servo control device
US10274939B2 (en) Feed shaft control method and numerical control work device
KR101653084B1 (en) Laser machining device
JP2009110492A (en) Position controller
JPWO2015104736A1 (en) Trajectory control device
US9501054B2 (en) Motor control system compensating interference between axes
WO2013132946A1 (en) Servo control device and servo control method
JP4867105B2 (en) Numerical controller
JP4226420B2 (en) Position control device
WO2021044710A1 (en) Stage position control device and stage position control method
JP2010282419A (en) Noncontact process machinery
JP2006190074A (en) Synchronization control apparatus
JP5084232B2 (en) Synchronous anti-vibration control device for positioning device
JP7507355B2 (en) Stage position control device and stage position control method
JPWO2021044710A5 (en)
JP3943061B2 (en) Servo control device
JP5388604B2 (en) Motor drive control device
JP2005118995A (en) Robot controlling method and device therefor
JPWO2009025132A1 (en) Motor control device and method of identifying moment of inertia
CN111566379B (en) Active vibration isolation device
JP4137321B2 (en) Mobile device
JP4936003B2 (en) Multi-axis controller with auto-tuning function

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20861148

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021543967

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20861148

Country of ref document: EP

Kind code of ref document: A1