WO2021042725A1 - 一种无人机 - Google Patents

一种无人机 Download PDF

Info

Publication number
WO2021042725A1
WO2021042725A1 PCT/CN2020/084539 CN2020084539W WO2021042725A1 WO 2021042725 A1 WO2021042725 A1 WO 2021042725A1 CN 2020084539 W CN2020084539 W CN 2020084539W WO 2021042725 A1 WO2021042725 A1 WO 2021042725A1
Authority
WO
WIPO (PCT)
Prior art keywords
receiver
airborne
digital control
control signal
action
Prior art date
Application number
PCT/CN2020/084539
Other languages
English (en)
French (fr)
Inventor
杨坤林
厉翔龙
Original Assignee
深圳市富斯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市富斯科技有限公司 filed Critical 深圳市富斯科技有限公司
Publication of WO2021042725A1 publication Critical patent/WO2021042725A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls

Definitions

  • the invention belongs to the field of wireless remote control control, and particularly relates to an unmanned aerial vehicle.
  • Unmanned aircraft, unmanned vehicles, unmanned ships, etc. in the model field are all controlled by wireless remote control.
  • the remote control sends the remote control commands collected by the transmitter to the receiver through wireless signals, and the receiver will
  • the received control instructions are converted into industry-standard PWM drive signals to drive airborne equipment such as ESCs and steering gears.
  • the traditional PWM drive signal frequency is 50HZ to 400HZ, the signal response delay will exceed 20ms at most, and it can only be controlled in one direction, and it cannot feedback the working condition of the device in a closed loop.
  • each output channel of the traditional receiver can only output one channel. The drive signal.
  • the present invention solves the problem of signal transmission delay; at the same time, the present invention also provides a multi-channel signal transmission mode to solve the problem that a single channel is used for signal transmission in the existing solution.
  • the present invention provides an unmanned aerial vehicle, which is characterized by comprising a receiver and airborne equipment; the receiver is used to receive the analog control signal sent by the transmitter to convert it into a digital control signal and send it to the airborne equipment; the airborne equipment Perform corresponding actions according to digital control signals.
  • the airborne device feeds back the result of its action to the receiver.
  • the receiver further includes a channel extension device; the channel extension device is used to connect the receiver and a plurality of the airborne devices, and is used to receive the digital control signal and send it to the multiple airborne devices.
  • the receiver, the airborne device and the channel expansion device are connected by a serial bus.
  • the expansion device includes at least two expansion devices, and the at least two expansion devices are cascaded.
  • the two expansion devices are connected through a serial bus.
  • the channel expansion device automatically allocates signal transmission channels.
  • the receiver feeds back the result of the action to the transmitter.
  • the airborne device is an action control device, which is used to receive digital control signals to perform specific actions.
  • the airborne device is a signal collection device, which is used to receive digital control signals to perform information collection actions.
  • the present invention provides an unmanned aerial vehicle including a receiver and airborne equipment; the receiver is used to receive the analog control signal sent by the transmitter to convert it into a digital control signal and send it to the airborne equipment, and the receiver sends it to the airborne equipment.
  • the digital control signal solves the problem of signal delay; the airborne equipment performs corresponding actions according to the digital control signal. It is beneficial that the airborne equipment will perform corresponding actions after receiving the digital control signal.
  • the present invention provides an unmanned aerial vehicle including a receiver and airborne equipment; the receiver is used to receive the analog control signal sent by the transmitter to convert it into a digital control signal and send it to the airborne equipment, and the receiver sends it to the airborne equipment.
  • the digital control signal solves the problem of signal delay; the airborne equipment performs corresponding actions according to the digital control signal. It is beneficial that the airborne equipment will perform corresponding actions after receiving the digital control signal.
  • Fig. 1 is a schematic diagram of a control signal transmission of a drone provided by an embodiment
  • FIG. 2 is a schematic diagram of a connection between a receiver and an airborne device provided by an embodiment
  • FIG. 3 is a schematic diagram of two-way communication between a receiver and an airborne device provided by an embodiment
  • Fig. 4 is a schematic diagram of the connection of a receiver, a channel expansion device, and an airborne device provided by an embodiment.
  • connection should be interpreted broadly, for example, it may be a fixed connection or a detachable connection, or Integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected, or indirectly connected through an intermediate medium, or it can be the internal connection of the two components, which can be a wireless connection or a wired connection.
  • connection should be interpreted broadly, for example, it may be a fixed connection or a detachable connection, or Integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected, or indirectly connected through an intermediate medium, or it can be the internal connection of the two components, which can be a wireless connection or a wired connection.
  • the present invention provides an unmanned aerial vehicle, which is characterized by comprising a receiver and airborne equipment; the receiver is used to receive analog control signals sent by the transmitter to be converted into digital control signals and sent to the airborne equipment; The digital control signal performs corresponding actions.
  • Figure 1 is a flow chart of the signal transmission of a drone provided by an embodiment
  • Figure 2 is a wireframe diagram of the connection between a receiver and an airborne device provided by an embodiment, where 1 is the transmitter, 2 is the receiver, and 20 is Receiver power, 3 is airborne equipment.
  • an analog-to-digital conversion module is provided in the receiver to convert the received analog control signal into a digital control signal.
  • the receiver further feeds back the digital control signal to the onboard equipment. After receiving the digital control signal, the airborne equipment performs corresponding actions.
  • Fig. 3 is a wire block diagram of the two-way communication between the receiver and the airborne device provided by an embodiment.
  • the airborne device feeds back the result of its action to the receiver.
  • the airborne equipment is an analog airborne equipment
  • an analog-to-digital conversion module is installed on the airborne equipment.
  • Fig. 4 is a wireframe diagram of the connection of the receiver, the channel expansion device and the airborne device provided by an embodiment, where 40 is the power supply of the channel expansion device.
  • the receiver further includes a channel extension device; the channel extension device is used to connect the receiver and a plurality of the airborne devices, and is used to receive the digital control signal and send it to the multiple airborne devices.
  • the channel expansion device realizes the purpose of connecting a single receiver to multiple airborne devices.
  • a single channel expansion device can connect multiple airborne devices.
  • the receiver sends out the digital control signal, it is sent to the airborne device through the channel expansion device; similarly, the airborne device feeds back the action result to the receiver through the channel expansion device.
  • the receiver, the airborne device and the channel expansion device are connected by a serial bus.
  • receiver and the airborne equipment are connected via a serial bus.
  • receiver and the channel expansion device, and the channel expansion device and the airborne device are also connected through a serial bus.
  • the total serial line is a single line.
  • the expansion device includes at least two expansion devices, and the at least two expansion devices are cascaded.
  • the two expansion devices are connected through a serial bus.
  • expansion devices can be cascaded, and two expansion devices are connected by a single serial bus.
  • the channel expansion device automatically allocates signal transmission channels.
  • the channel expansion device when the channel expansion device is connected to more than one airborne device, the signal transmission channel will be automatically allocated.
  • the receiver feeds back the result of the action to the transmitter.
  • a display interface is provided on the transmitter for displaying information fed back from the airborne device.
  • the airborne equipment feeds back the action result to the receiver, and the receiver further feeds back the action result to the transmitter.
  • the airborne device is an action control device, which is used to receive digital control signals to perform specific actions.
  • the onboard equipment is a steering gear, which is used to control and realize specific actions.
  • the onboard equipment is an electronic speed governor, which is used to control the rotation speed of a specific action motor.
  • the airborne device is a signal collection device, which is used to receive digital control signals to perform information collection actions.
  • the onboard device is a sensor.
  • the airborne device is a barometer, which is used to measure the ambient pressure and feed it back to the transmitter.
  • the onboard equipment is a thermometer, which is used to measure the ambient temperature and feed it back to the transmitter.
  • the airborne equipment is an altimeter, which is used to test the height of the drone and feed it back to the transmitter.
  • the airborne device is a tachometer, which is used to measure the speed and feed the measurement result back to the transmitter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Toys (AREA)
  • Selective Calling Equipment (AREA)

Abstract

本发明通过提供一种无人机,包括接收机和机载设备;接收机用于接收发射机发出的模拟控制信号,以转换成数字控制信号向机载设备发送,接收机向机载设备发出数字控制信号,解决了信号延迟的问题;机载设备根据数字控制信号进行相应动作,机载设备接收到数字控制信号后,会进行相应的动作。

Description

一种无人机 技术领域
本发明属于无线遥控控制领域,尤其涉及一种无人机。
背景技术
模型领域内的无人飞机、无人车、无人船等都采用无线遥控控制,在操控的过程中,遥控器将发射机的采集到的遥控指令通过无线信号发送给接收机,接收机将收到的控制指令转换为行业规范的PWM驱动信号来驱动电调、舵机等机载设备。但是,传统的PWM驱动信号频率在50HZ到400HZ,信号响应延迟最大会超过20ms,且只能是单向控制,不能闭环反馈设备工作情况,同时传统的接收机每一个输出通道只能输出一个通道的驱动信号。
技术问题
本发明解决的是信号传输延迟的问题;同时,本发明还提供了一种多通道的信号传输方式,以解决现有方案中单通道用于传输信号的问题。
技术解决方案
本发明通过提供一种无人机,其特征在于,包括接收机和机载设备;接收机用于接收发射机发出的模拟控制信号,以转换成数字控制信号向机载设备发送;机载设备根据数字控制信号进行相应动作。
具体的,机载设备将其动作结果反馈给接收机。
具体的,接收机还包括通道扩展设备;通道扩展设备用于连接所述接收机和多个所述机载设备,并用于接收所述数字控制信号后发送给多个所述机载设备。
具体的,接收机、所述机载设备和所述通道扩展设备之间用串行总线连接。
具体的,扩展设备包括至少两个,所述至少两个扩展设备级联。
具体的,两个扩展设备之间通过串行总线连接。
具体的,通道扩展设备自动分配信号传输通道。
具体的,接收机将所述动作结果反馈给所述发射机。
具体的,机载设备为动作控制设备,用于接收数字控制信号以执行具体动作。     具体的,机载设备为信号采集设备,用于接收数字控制信号以执行信息采集动作。
本发明通过提供一种无人机,包括接收机和机载设备;接收机用于接收发射机发出的模拟控制信号,以转换成数字控制信号向机载设备发送,接收机向机载设备发出数字控制信号,解决了信号延迟的问题;机载设备根据数字控制信号进行相应动作,有益的,机载设备接收到数字控制信号后,会进行相应的动作。
有益效果
本发明通过提供一种无人机,包括接收机和机载设备;接收机用于接收发射机发出的模拟控制信号,以转换成数字控制信号向机载设备发送,接收机向机载设备发出数字控制信号,解决了信号延迟的问题;机载设备根据数字控制信号进行相应动作,有益的,机载设备接收到数字控制信号后,会进行相应的动作。
附图说明
图1为一实施例提供的无人机的控制信号传输的示意图;
图2为一实施例提供的接收机与机载设备连接的示意图;
图3为一实施例提供的接收机与机载设备之间双向通信的示意图;
图4为一实施例提供的接收机、通道扩展设备和机载设备连接的示意图。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,在本发明的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,还可以是两个元件内部的连通,可以是无线连接,也可以是有线连接。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
此外,后续所描述的本发明不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
下面,本发明提出部分优选实施例以教导本领域技术人员实现。
本发明提供一种无人机,其特征在于,包括接收机和机载设备;接收机用于接收发射机发出的模拟控制信号,以转换成数字控制信号向机载设备发送;机载设备根据数字控制信号进行相应动作。
如图1为一实施例提供的无人机的信号传递流程图,图2为一实施例提供的接收机与机载设备连接的线框图,其中1为发射机,2为接收机,20为接收机电源,3为机载设备。
需要说明的是,在接收机中设置有模数转换模块,用于将其接收到的模拟控制信号,转换为数字控制信号。接收机进一步的将数字控制信号反馈给到机载设备。而机载设备接收到数字控制信号后,进行相应的动作。
如图3为一实施例提供的接收机与机载设备之间双向通信的线框图。
具体的,机载设备将其动作结果反馈给接收机。
需要说明的是,机载设备在进行完动作后,将动作结果再进行反馈,给到接收机。
提供一个实施例,机载设备为模拟机载设备,在该机载设备上安装有模数转换模块。
如图4为一实施例提供的接收机、通道扩展设备和机载设备连接的线框图,其中40为通道扩展设备的电源。
具体的,接收机还包括通道扩展设备;通道扩展设备用于连接所述接收机和多个所述机载设备,并用于接收所述数字控制信号后发送给多个所述机载设备。
需要说明的是,通道扩展设备实现了单个接收机连接多个机载设备的目的。单个通道扩展设备可以连接多个机载设备。
需要进一步说明的是,接收机在发出数字控制信号后,通过通道扩展设备给到机载设备;同样,机载设备通过通道扩展设备,将动作结果反馈给到接收机。
具体的,接收机、所述机载设备和所述通道扩展设备之间用串行总线连接。
需要说明的是,接收机和机载设备之间通过串行总线连接。
需要进一步说明的是,接收机与通道扩展设备、通道扩展设备与机载设备之间也是通过串行总线连接。
    提供一个实施例,串行总行为单条。
具体的,扩展设备包括至少两个,所述至少两个扩展设备级联。
具体的,两个扩展设备之间通过串行总线连接。
需要说明的是,扩展设备之间可以级联,且两个扩展设备之间通过单条串行总线连接。
具体的,通道扩展设备自动分配信号传输通道。
需要说明的是,当通道扩展设备连接超过一个机载设备时,会自动分配信号传输通道。
具体的,接收机将所述动作结果反馈给所述发射机。
提供一个实施例,发射机上设置有显示界面,用于显示机载设备反馈的信息。
需要说明的是,机载设备将动作结果反馈给接收机,接收机进的将动作结果反馈给到发射机。
具体的,机载设备为动作控制设备,用于接收数字控制信号以执行具体动作。
提供一个实施例,机载设备为舵机,用于控制实现具体动作。
提供另一个实施例,机载设备为电子调速器,用于控制具体动作电机的转速。     具体的,机载设备为信号采集设备,用于接收数字控制信号以执行信息采集动作。
提供一个实施例,机载设备为传感器。
提供一个实施例,机载设备为气压计,用于测量环境压强,并反馈给到发射机。
提供一个实施例,机载设备为温度计,用于测量环境温度,并反馈给到发射机。
提供一个实施例,机载设备为高度计,用于测试无人机的高度,并反馈给到发射机。
提供一个实施例,机载设备为转速计,用于测量速度,并将测量结果反馈给到发射机。

Claims (10)

  1. 一种无人机,其特征在于,包括接收机和机载设备;所述接收机用于接收发射机发出的模拟控制信号,以转换成数字控制信号向所述机载设备发送;所述机载设备根据所述数字控制信号进行相应动作。
  2. 如权利要求1所述的接收机,其特征在于,所述机载设备将其动作结果反馈给所述接收机。
  3. 如权利要求2所述的接收机,其特征在于,还包括通道扩展设备;所述通道扩展设备用于连接所述接收机和多个所述机载设备,并用于接收所述数字控制信号后发送给多个所述机载设备。
  4. 如权利要求3所述的接收机,其特征在于,所述接收机、所述机载设备和所述通道扩展设备之间用串行总线连接。
  5. 如权利要求3所述的接收机,其特征在于,所述扩展设备包括至少两个,所述至少两个扩展设备级联。
  6. 如权利要求5所述的接收机,其特征在于,所述至少两个扩展设备之间通过串行总线连接。
  7. 如权利要求6所述的接收机,其特征在于,所述通道扩展设备自动分配信号传输通道。
  8. 如权利要求2-7任一所述的接收机,其特征在于,所述接收机将所述动作结果反馈给所述发射机。
  9. 如权利要求2所述的接收机,其特征在于,所述机载设备为动作控制设备,用于接收所述数字控制信号以执行具体动作。
  10. 如权利要求2所述的接收机,其特征在于,所述机载设备为信号采集设备,用于接收所述数字控制信号以执行信息采集动作。
PCT/CN2020/084539 2019-09-04 2020-04-13 一种无人机 WO2021042725A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910834203.3A CN110550211A (zh) 2019-09-04 2019-09-04 一种无人机
CN201910834203.3 2019-09-04

Publications (1)

Publication Number Publication Date
WO2021042725A1 true WO2021042725A1 (zh) 2021-03-11

Family

ID=68738953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/084539 WO2021042725A1 (zh) 2019-09-04 2020-04-13 一种无人机

Country Status (2)

Country Link
CN (1) CN110550211A (zh)
WO (1) WO2021042725A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110550211A (zh) * 2019-09-04 2019-12-10 深圳市富斯科技有限公司 一种无人机

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10304475A (ja) * 1997-05-01 1998-11-13 Nippon Telegr & Teleph Corp <Ntt> 遠隔監視装置
JP2002354462A (ja) * 2001-05-23 2002-12-06 Mitsubishi Electric Corp 画像撮影・データ伝送システム
CN2691671Y (zh) * 2003-10-21 2005-04-13 方凯 数字比例遥控设备
CN101192064A (zh) * 2006-11-24 2008-06-04 中国科学院沈阳自动化研究所 小型无人直升机自主飞行控制系统
CN101561681A (zh) * 2008-04-16 2009-10-21 中国科学院自动化研究所 一种无人机的抗干扰实时数据采样系统
CN201449530U (zh) * 2008-11-26 2010-05-05 湖南航天近空间飞行器研发中心 一种新型数字舵机控制器
CN202783793U (zh) * 2012-09-10 2013-03-13 中国南方电网有限责任公司超高压输电公司天生桥局 一种无人飞机的空中调焦控制装置
CN106814743A (zh) * 2017-03-13 2017-06-09 合肥谷飞智能科技有限公司 基于dsp的多旋翼无人机驱动控制系统
CN109903540A (zh) * 2017-12-11 2019-06-18 西北农林科技大学 一种航模遥控系统
CN110550211A (zh) * 2019-09-04 2019-12-10 深圳市富斯科技有限公司 一种无人机

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8559420B1 (en) * 2011-09-07 2013-10-15 Unmanned Systems, Inc. Method and apparatus for reducing control communication delay in a remotely controlled apparatus
WO2014074046A1 (en) * 2012-11-06 2014-05-15 Kvaser Ab Remote control system and method and usage related to such a system
US9896202B2 (en) * 2014-12-03 2018-02-20 X Development Llc Systems and methods for reliable relative navigation and autonomous following between unmanned aerial vehicle and a target object
EP3329296B1 (en) * 2015-07-29 2021-09-15 QUALCOMM Incorporated Angular velocity sensing using arrays of antennas
EP3419202B1 (en) * 2016-03-28 2020-04-22 Mitsubishi Electric Corporation Receiver, radio communication system, and radio communication method
CN207995368U (zh) * 2018-03-15 2018-10-19 广州译宝科技有限公司 一种用于车载音响的dsp调音系统
CN109189101A (zh) * 2018-11-21 2019-01-11 武汉珈鹰智能科技有限公司 一种长续航航拍无人机控制系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10304475A (ja) * 1997-05-01 1998-11-13 Nippon Telegr & Teleph Corp <Ntt> 遠隔監視装置
JP2002354462A (ja) * 2001-05-23 2002-12-06 Mitsubishi Electric Corp 画像撮影・データ伝送システム
CN2691671Y (zh) * 2003-10-21 2005-04-13 方凯 数字比例遥控设备
CN101192064A (zh) * 2006-11-24 2008-06-04 中国科学院沈阳自动化研究所 小型无人直升机自主飞行控制系统
CN101561681A (zh) * 2008-04-16 2009-10-21 中国科学院自动化研究所 一种无人机的抗干扰实时数据采样系统
CN201449530U (zh) * 2008-11-26 2010-05-05 湖南航天近空间飞行器研发中心 一种新型数字舵机控制器
CN202783793U (zh) * 2012-09-10 2013-03-13 中国南方电网有限责任公司超高压输电公司天生桥局 一种无人飞机的空中调焦控制装置
CN106814743A (zh) * 2017-03-13 2017-06-09 合肥谷飞智能科技有限公司 基于dsp的多旋翼无人机驱动控制系统
CN109903540A (zh) * 2017-12-11 2019-06-18 西北农林科技大学 一种航模遥控系统
CN110550211A (zh) * 2019-09-04 2019-12-10 深圳市富斯科技有限公司 一种无人机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HU, JINHUI: "Design and Hardware-in-loop Simulation of Flight Control System for UAV Based on ATmega128 MCU", SYSTEM SIMULATION TECHNOLOGY & APPLICATION, vol. 8, 1 August 2006 (2006-08-01), pages 690 - 692, XP055788845 *

Also Published As

Publication number Publication date
CN110550211A (zh) 2019-12-10

Similar Documents

Publication Publication Date Title
AU2016245325B2 (en) A wireless sensor system for a vehicle
CN101561681B (zh) 一种无人机的抗干扰实时数据采样系统
WO2021042725A1 (zh) 一种无人机
CN110632936A (zh) 一种无人机飞控计算机系统
JP5784284B2 (ja) Hart通信機能を有する入出力装置
CN104020779A (zh) 一种分布式飞艇控制系统
CN115001217A (zh) 传感器集线器
CN204944567U (zh) 一种带压力检测的远传超声波水表
CN202464136U (zh) 光电吊舱
RU58233U1 (ru) Наземное информационно-диагностическое средство для обслуживания авиационного двигателя
CN203038096U (zh) 一种无线调试故障诊断的装置
CN109544888A (zh) 一种分布式数据采集系统
CN110848872A (zh) 一种基于物联网的车间管理智能机器人监控系统
CN211364377U (zh) 一种应用于重大公共突发事件指挥系统的现场视频采集车
CN206775220U (zh) 一种小型无人机太阳能供能系统
CN216083455U (zh) 毫伏信号数字式变送器
CN205103594U (zh) 一种基于光缆传输的电气现场防爆控制箱
CN202713612U (zh) 工程车辆的远程定位监控装置
CN201707376U (zh) 变送器的信号转换器
CN219181531U (zh) 一种数据同步装置及系统
CN103332603A (zh) 起重机数字控制系统
US11068320B2 (en) Interface combining multiple systems into one
CN201897724U (zh) 变压器绕组温度无线监控装置
CN216709628U (zh) 一种具有应急通讯基站的无人机
CN212256559U (zh) 一种电力少油设备监测数据采集箱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20859834

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20859834

Country of ref document: EP

Kind code of ref document: A1