WO2021042613A1 - 加热泵及具有其的清洁装置 - Google Patents

加热泵及具有其的清洁装置 Download PDF

Info

Publication number
WO2021042613A1
WO2021042613A1 PCT/CN2019/124080 CN2019124080W WO2021042613A1 WO 2021042613 A1 WO2021042613 A1 WO 2021042613A1 CN 2019124080 W CN2019124080 W CN 2019124080W WO 2021042613 A1 WO2021042613 A1 WO 2021042613A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
pump
cavity
heat pump
water
Prior art date
Application number
PCT/CN2019/124080
Other languages
English (en)
French (fr)
Inventor
胡小文
胡斯特
戴龙珍
谭发刚
刘日超
Original Assignee
广东美的白色家电技术创新中心有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910829519.3A external-priority patent/CN112443487A/zh
Priority claimed from CN201910827545.2A external-priority patent/CN110552893A/zh
Application filed by 广东美的白色家电技术创新中心有限公司, 美的集团股份有限公司 filed Critical 广东美的白色家电技术创新中心有限公司
Priority to EP19944628.7A priority Critical patent/EP4008907A4/en
Publication of WO2021042613A1 publication Critical patent/WO2021042613A1/zh
Priority to US17/680,227 priority patent/US20220178384A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/586Cooling; Heating; Diminishing heat transfer specially adapted for liquid pumps
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L15/00Washing or rinsing machines for crockery or tableware
    • A47L15/42Details
    • A47L15/4214Water supply, recirculation or discharge arrangements; Devices therefor
    • A47L15/4225Arrangements or adaption of recirculation or discharge pumps
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L15/00Washing or rinsing machines for crockery or tableware
    • A47L15/42Details
    • A47L15/4285Water-heater arrangements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F39/00Details of washing machines not specific to a single type of machines covered by groups D06F9/00 - D06F27/00 
    • D06F39/04Heating arrangements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F39/00Details of washing machines not specific to a single type of machines covered by groups D06F9/00 - D06F27/00 
    • D06F39/08Liquid supply or discharge arrangements
    • D06F39/083Liquid discharge or recirculation arrangements
    • D06F39/085Arrangements or adaptations of pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/043Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/426Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/586Cooling; Heating; Diminishing heat transfer specially adapted for liquid pumps
    • F04D29/588Cooling; Heating; Diminishing heat transfer specially adapted for liquid pumps cooling or heating the machine

Definitions

  • This application relates to the field of household appliances, and in particular to a heat pump and a cleaning device provided with the heat pump.
  • This application aims to solve at least one of the technical problems existing in the prior art. For this reason, one purpose of the present application is to provide a heat pump whose volume is reduced.
  • Another purpose of the present application is to provide a cleaning device that includes the above-mentioned heating pump to solve the technical problems of excessive pump volume and heat aging of the impeller.
  • a heat pump includes: a drive motor; a pump housing, the pump housing defines a pump cavity and a heating cavity communicating with the pump cavity, and the pump cavity and the heating cavity are approximately in shape Arranged side by side in the axial direction, the pump cavity and the heating cavity are adapted to communicate through a communication channel, and the pump housing is formed with a water inlet communicating with the pump cavity and a water outlet communicating with the heating cavity; an impeller, so The impeller is arranged in the pump cavity, and the impeller is connected with the motor shaft of the driving motor; a heating element is arranged in the heating cavity.
  • thermo pump according to the above-mentioned embodiments of the present application also has the following additional technical features:
  • the communication passage is configured to extend along the tangential direction of the inner wall surface of the pump housing.
  • the communication channel is configured as an expansion channel, and the expansion angle of the expansion channel is not greater than 20 degrees.
  • the pump housing is provided with an outlet nozzle communicating with the heating chamber, and the free end of the outlet nozzle forms the water outlet.
  • outlet nozzle is configured to extend along the tangential direction of the outer side wall of the heating chamber.
  • the heating element is a spirally extending heating tube, and the rotation direction of the heating tube is configured to be consistent with the flow direction of the water flow.
  • the heating element is a thick film provided on the inner wall surface of the heating cavity.
  • the inner wall surface of the heating cavity is provided with guide ribs, and the extension direction of the guide ribs is configured to be consistent with the flow direction of the water flow.
  • an external thread is formed on the motor shaft, an internal thread is formed on the impeller, and the external thread matches the internal thread so that the motor shaft and the impeller are threadedly connected ,
  • the rotation direction of the external thread/internal thread is opposite to the rotation direction of the drive motor.
  • the heat pump further includes an end cover, the water inlet is formed on the end cover, and the end cover is hermetically connected with the pump casing.
  • the inner side of the end cap defines a water inlet channel, a rectifying channel, and a matching channel, and the water inlet end of the water inlet channel forms the water inlet.
  • the impeller is arranged at the mating channel and spaced apart from the inner wall surface of the mating channel, so as to define a backflow channel suitable for backflow water flow between the impeller and the mating channel.
  • a sealing protrusion is formed on the outer wall surface of the water inlet channel to connect the water inlet hose.
  • the inner wall surface of the rectifying channel in the flow direction of the water flow, is configured in a shape whose radial size gradually shrinks.
  • the inner wall surface of the rectifying passage is configured in a conical shape or an arc shape.
  • the longitudinal section of the circulation channel is an axisymmetric shape.
  • the pump housing has an inner wall surface and an outer wall surface forming the communication channel, and the outer wall surface of the communication channel is tangent to the wall surface of the heating chamber.
  • the pump housing has an inner wall surface and an outer wall surface forming the communication channel, and the inner wall surface and/or the outer wall surface are flat.
  • the pump housing further includes a partition wall that separates the whole formed by the pump cavity, the impeller, and the water pump volute of the pump cavity from the heating cavity.
  • the communication channel communicates with a top opening of the heating cavity, and the top opening is disposed between the partition wall and the first end of the heating cavity.
  • the partition wall further includes a guide member that guides the liquid from the liquid outlet of the impeller to flow to the water pump volute of the pump cavity, and the guide member forms the inner wall surface of the communication channel.
  • the axis of the pump cavity is parallel to the axis of the heating cavity.
  • the heating element extends from a first end of the heating cavity to an opposite second end, and the water outlet is provided at the second end of the heating cavity.
  • the axis of the outlet nozzle on the pump housing is perpendicular to the extension direction of the heating element.
  • the cleaning device includes the aforementioned heat pump, the cleaning device has a cleaning space for cleaning items, and the water inlet of the cleaning space and the water outlet of the heat pump Connected.
  • the cleaning device is a washing machine or a dishwasher.
  • Figure 2 is a cross-sectional view taken along line A-A in Figure 1;
  • Figure 3 is a cross-sectional view taken along line B-B in Figure 1;
  • Figure 5 is a cross-sectional view taken along the line D-D in Figure 1;
  • Fig. 10 is still another schematic diagram of the heat pump in Fig. 1 according to the embodiment of the present application;
  • Fig. 12 is another perspective view of the pump housing in the heat pump according to the embodiment of the present application in Fig. 1;
  • Fig. 13 is a schematic diagram of the pump housing in the heat pump according to the embodiment of the present application in Fig. 1;
  • Fig. 14 is another schematic diagram of the pump housing in the heat pump in Fig. 1 according to the embodiment of the present application;
  • Figure 15 is a cross-sectional view taken along line G-G in Figure 14;
  • Figure 16 is a cross-sectional view taken along line H-H in Figure 14;
  • Fig. 17 is another schematic diagram of the pump housing in the heat pump according to the embodiment of the present application in Fig. 1;
  • Figure 18 is a cross-sectional view taken along the line I-I in Figure 17;
  • Figure 19 is a cross-sectional view taken along line J-J in Figure 17;
  • Fig. 20 is a perspective view of the end cover of the heat pump in Fig. 1 according to the embodiment of the present application;
  • Figure 22 is a schematic longitudinal cross-sectional view of a heat pump according to an embodiment of the present application.
  • Figure 23 is a schematic cross-sectional view of a heat pump according to an embodiment of the present application.
  • Fig. 24 is a schematic longitudinal cross-sectional view of the inlet nozzle and the end cover of the heat pump according to the embodiment of the present application.
  • Pump housing 2 pump cavity 21, inlet connection section 211, water pump volute 212, heating cavity 22, connection terminal 221, first installation groove 212, communication channel 23, water outlet 24, outlet connection tube 25, mating part 26, second Mounting slot 261,
  • the end cover 5 the water inlet 51, the water inlet end cover 52, the matching groove 521, the water outlet end cover 53, the third mounting groove 531, the water inlet channel 54, the sealing protrusion 541, the rectifying channel 55, the matching channel 56,
  • the solutions in the related art have the following shortcomings: First, the volume is large: Due to the requirements of thermal safety, the heating tube and the pump casing usually have a large distance, which causes the outer diameter of the pump casing to increase, and the dishwasher Usually considering the effective volume rate, the water pump is often required to be installed with a smaller height. This solution has a certain contradiction with the direction of the dishwasher towards a larger volume rate. Second, the existing heating solution in the pump casing, the heating tube is close to the plastic impeller and the volute without isolation, and the impeller and the volute of the water pump are likely to age under the action of heat radiation.
  • the heating tube of the existing scheme is often not at the back of the impeller, and the water flow tends to move radially to the wall of the pump casing, which easily causes the flow velocity on the surface of the heating tube to be low, resulting in too low Reynolds number on the surface of the heating tube, resulting in poor surface heat transfer. Full phenomenon.
  • the heat pump 100 is provided with an outlet heating device.
  • a heat pump 100 includes: a driving motor 1, a pump housing 2, an impeller 3 and a heating element 4.
  • the pump housing 2 defines a pump cavity 21 and a heating cavity 22 communicating with the pump cavity 21.
  • the pump cavity 21 and the heating cavity 22 are arranged substantially side by side in an axial direction. 21 and the heating cavity 22 are adapted to communicate with each other through a communication channel 23, and a water inlet 51 communicating with the pump cavity 21 and a water outlet 24 communicating with the heating cavity 22 are formed on the pump housing 2.
  • the pump housing 2 may define a pump chamber 21 and a heating chamber 22.
  • the heating chamber 22 may be connected to the pump chamber 21.
  • the pump chamber 21 and the heating chamber 22 are arranged side by side in an axial direction.
  • the axis of the pump chamber 21 and the heating chamber 22 are arranged side by side.
  • the axis of the pump chamber 21 is parallel to the axis of the heating chamber 22, and the axis of the pump chamber 21 and the axis of the heating chamber 22 may be spaced apart. This is equivalent to reducing the overall height of the heat pump 100, which is beneficial to reduce the volume of the heat pump 100.
  • the pump cavity 21 and the heating cavity 22 may be connected through a communication channel 23, a water outlet 24 may be formed on the pump housing 2, and the water outlet 24 may communicate with the heating cavity 22.
  • the impeller 3 is arranged in the pump cavity 21, and the impeller 3 is connected with the motor shaft 11 of the driving motor 1.
  • the impeller 3 may be, for example, a plastic part, the impeller 3 may be, for example, a centrifugal impeller, etc., the impeller 3 may be arranged in the pump chamber 21, and the impeller 3 may be connected to the motor shaft 11 of the driving motor 1.
  • the impeller 3 can be driven to rotate by driving the motor 1.
  • the heating element 4 may be arranged in the heating cavity 22. In this way, by arranging the heating element 4 in the heating cavity 22, the water flowing through the heating cavity 22 can be heated.
  • the heating pump 100 of the embodiment of the present application a design structure in which the heating cavity 22 is basically arranged side by side with the pump cavity 21 (the impeller 3 is provided in the pump cavity 21) is adopted, and the heating cavity 22 and the pump cavity 21 are communicated through The channels 23 are connected, which not only helps reduce the volume of the heat pump 100, but also avoids the high temperature radiation of the impeller 3 from the heating element 4. Therefore, there is no premature aging of the impeller 3 due to the heat radiation of the heating element 4 This phenomenon affects the performance of the heat pump 100.
  • the impeller 3 is arranged in the pump cavity 21, and the heating cavity 22 and the pump cavity 21 are communicated with each other through the communication channel 23 Therefore, it is not only beneficial to reduce the volume of the heat pump 100, but also avoids the high temperature radiation of the impeller 3 of the heating element 4, thereby preventing premature aging of the impeller 3, thereby improving the performance of the heat pump 100.
  • the communication channel 23 is configured to extend along the tangential direction of the inner wall surface of the pump housing 2.
  • the communication channel 23 may be configured to extend along the tangential direction of the inner wall surface of the pump housing 2. Therefore, on the one hand, it is convenient to smoothly introduce the bubbles sucked by the impeller 3 into the heating chamber 22 without being collected in the pump chamber 21, and avoid the noise of the bubbles.
  • the water flow can be introduced into the heating cavity 22 at a high speed, and the water flow can be swirled along the wall surface of the heating cavity 22 to facilitate the improvement of the heat exchange performance of the heating element 4.
  • the communication channel 23 is configured as an expansion channel, and the expansion angle of the expansion channel is not greater than 20 degrees.
  • the distance L between the two sections perpendicular to the direction of the water flow is taken, where the equivalent diameter of the section on the upstream side is D1, and the equivalent diameter of the section on the downstream side is D2.
  • the expansion angle ⁇ 2*arctan(D2-D1)/L, that is, the tangent value of half of the expansion angle is equal to (D2-D1)/L.
  • the pump housing 2 is provided with an outlet nozzle 25 communicating with the heating chamber 22, and the free end of the outlet nozzle 25 forms a water outlet 24.
  • the pump housing 2 may be provided with an outlet nozzle 25, the outlet nozzle 25 may be connected to the heating chamber 22, and the free end of the outlet nozzle 25 may form a water outlet 24. Therefore, the outlet pipe 25 facilitates the external connection of the pipeline, so that the water flow heated by the heating element 4 can further flow out from the water outlet 24 through the outlet pipe 25.
  • the outlet nozzle 25 is configured to extend along the tangential direction of the outer side wall of the heating chamber 22.
  • the outlet nozzle 25 may be configured to extend along the tangential direction of the outer side wall of the heating chamber 22. Therefore, by matching the tangential outlet nozzle 25 and the tangential expansion channel, a strong swirling flow at the entrance of the heating cavity can be formed, which is beneficial to achieve a better effect of removing air bubbles.
  • the present application is not limited to this.
  • the outlet nozzle 25 may not extend tangentially along the outer side wall of the heating chamber 22, so that a certain swirling flow may also be formed.
  • the heating cavity 22 is provided with a connection terminal 221 electrically connected to the heating element 4 to connect to an external power supply circuit.
  • the heating cavity 22 may be provided with a wiring terminal 221, the wiring terminal 221 may be electrically connected to the heating element 4, and the wiring terminal 221 may be provided on the outer side wall of the heating chamber 22.
  • the wiring terminal 221 is convenient to connect to an external power supply circuit for further convenience. Realize the heating of the water flow.
  • a first mounting groove 212 is formed at the bottom of the heating cavity 22, and a first sealing member 6 is provided in the first mounting groove 212.
  • the bottom of the heating chamber 22 may be formed with a first mounting groove 212, and a first sealing member 6 may be provided in the first mounting groove 212.
  • the first sealing member 6 may be, for example, a sealing ring or a gasket, etc.
  • the heating element 4 is a spirally extending heating tube, and the rotation direction of the heating tube is configured to be consistent with the flow direction of the water flow.
  • the heating element 4 may be a heating tube, the heating tube may extend spirally, and the rotation direction of the heating tube is configured to be consistent with the flow direction of the water flow.
  • the water flow entering the heating chamber 22 can move along the wall surface of the heating chamber 22, thereby forming a swirling flow, which can prevent the accumulation of bubbles in the heating chamber 22, and can also avoid the accumulation of bubbles in the heating chamber 22
  • the abnormal noise and dry burning phenomenon generated are beneficial to prolong the life of the heating tube.
  • the design of the heating tube matched in the heating cavity 22 may be consistent with the rotation direction of the water flow (for example, the flow direction of the water flow), for example, the heating tube is viewed from the side of the driving motor. It can be wound clockwise.
  • the pump cavity 21 for example, the water pump volute 212
  • the heating cavity 22 may be connected through a communication channel 23, such as an expansion channel, so that the water flow into the heating cavity 22 through the expansion channel Will move along the wall surface of the heating chamber 22 to form a swirling flow.
  • the swirling flow can prevent the accumulation of bubbles in the heating chamber 22, and can also avoid abnormal noise and dry burning caused by the accumulation of bubbles in the heating chamber 22, which is beneficial to Extend the life of the heating tube.
  • the heating element 4 may also adopt a structure different from the heating tube.
  • the heating element 4 may be a thick film (not shown in the figure) provided on the inner wall surface of the heating cavity 22.
  • the heating element 4 may be a thick film, and the thick film may be provided on the inner wall surface of the heating cavity 22. In this way, the thick film can also be used to heat the water flow flowing into the heating chamber 22.
  • the inner wall surface of the heating cavity 22 is provided with diversion ribs, and the extension direction of the diversion ribs is configured to be consistent with the flow direction of the water flow.
  • the inner wall surface of the heating cavity 22 may be provided with guide ribs, and the extension direction of the guide ribs may be configured to be consistent with the flow direction of the water flow. Therefore, providing the guide ribs on the inner wall surface of the heating cavity 22 is beneficial to enhance the swirling effect of the water flow.
  • the diversion ribs may be a spirally extending integrated structure, or the diversion ribs may include a plurality of separate settings, and the extension mode of the plurality of diversion ribs may be consistent with the flow direction of the water flow.
  • an external thread is formed on the motor shaft 11, an internal thread is formed on the impeller 3, and the external thread matches the internal thread so that the motor shaft 11 and the impeller 3 are threadedly connected.
  • the rotation direction of the external thread and the internal thread may be the same, and the rotation direction of the external thread/the internal thread is opposite to the rotation direction of the drive motor 1. Therefore, the assembly connection between the drive motor 1 and the impeller 3 can be realized through the cooperation of the external thread and the internal thread, and the rotation direction of the external thread/the internal thread is the same as the rotation direction of the drive motor 1. On the contrary, the reliability of the assembly between the drive motor 1 and the impeller 3 can be further ensured.
  • the heat pump 100 may further include an end cover 5 with the water inlet 51 formed on the end cover 5 and the end cover 5 and the pump housing 2 are connected in a sealed manner.
  • the water inlet 51 may be formed on the end cover 5, the water inlet 51 may be connected to the pump cavity 21, and the end cover 5 and the pump housing 2 are connected in a sealed manner.
  • the end cover 5 and the pump housing 2 are detachably connected. Therefore, by making the end cover 5 and the pump housing 2 detachably connected, the assembly and disassembly between the end cover 5 and the pump housing 2 are facilitated, and the maintenance of the heat pump 100 is facilitated.
  • the end cover 5 and the pump housing 2 may be connected by means such as screw connection; however, the present application is not limited to this.
  • the end cover 5 and the pump housing 2 It can also be connected by a snap connection.
  • the end cover 5 may include: a water inlet end cover 52 and a water outlet end cover 53.
  • a second sealing member 7 may be provided between the water inlet end cover 52 and the pump housing 2; a third sealing member 8 may be provided between the water outlet end cover 53 and the pump housing 2.
  • the second sealing element 7 and the third sealing element 8 may be, for example, O-rings or the like.
  • a matching groove 521 may be formed on the water inlet end cover 52, a matching portion 26 (refer to FIG. 15) is formed on the pump housing 2 and the matching portion 26 matches the matching groove 521, and the matching portion 26
  • a second installation groove 261 may be formed in the second installation groove 261, and the second sealing element 7 may be installed in the second installation groove 261.
  • a third installation groove 531 may be formed on the outlet cover 53. The third installation groove 531 is suitable for installing the third installation groove 531. Seal 8. Therefore, by installing the second sealing element 7 in the second installation groove 261, it is advantageous to realize the sealed connection between the water inlet end cover 52 and the pump casing 2. By installing the third sealing element 8 in the third installation groove 531, there is It is beneficial to realize a sealed connection between the water outlet end cover 53 and the pump casing 2, which can prevent water leakage and ensure the reliability of the heat pump 100 in use.
  • the inner side of the end cover 5 (for example, the water inlet end cover 52) defines a water inlet channel 54, a rectifying channel 55, and a matching channel 56, the water inlet 51 is formed at the water inlet end of the water inlet channel 54.
  • the impeller 3 is arranged at the mating channel 56 and is spaced apart from the inner wall of the mating channel 56 to define a suitable space between the impeller 3 and the mating channel 56 Return channel 9 for return water flow.
  • the main function of the matching channel 56 is to match the impeller 3 to form a narrow backflow channel 9, which can suppress the backflow. This is beneficial to improve the efficiency of the heat pump 100.
  • a sealing protrusion 541 is formed on the outer wall surface of the water inlet channel 54 to connect the water inlet hose.
  • the outer wall surface of the water inlet channel 54 may be formed with a sealing protrusion 541
  • the sealing protrusion 541 may have a ring shape
  • the sealing protrusion 541 may include a plurality of sealing protrusions 541. Open setting, through the sealing protrusion 541, it is convenient to connect the water inlet hose.
  • the outer wall surface of the water outlet pipe 25 may also be formed with corresponding sealing protrusions, which facilitates the connection of the water outlet hose through the sealing protrusions.
  • the inner wall surface of the rectifying passage 55 in the flow direction of the water flow, is configured in a shape with a gradually shrinking radial dimension.
  • the inner wall surface of the rectifying passage 55 in the flow direction of the water flow, is configured in a shape whose radial size gradually shrinks. Therefore, the rectification channel 55 facilitates rectification and stabilizes the water flow.
  • the end cap 5 is an integral structure or a split structure.
  • the end cap 5 may be an integral structure; of course, in some embodiments of the present application, the end cap 5 may also be a split structure.
  • This application does not limit the specific forming method of the end cap 5, and it can be set adaptively according to needs in actual applications.
  • FIG. 1 is a schematic diagram of the heat pump 100 according to the embodiment of the present application
  • Fig. 2 is a cross-sectional view along the line AA in Fig. 1
  • Figure 3 is a cross-sectional view taken along line BB in Figure 1
  • Figure 4 is a cross-sectional view taken along line CC in Figure 1
  • Figure 5 is a cross-sectional view taken along line DD in Figure 1
  • Figure 6 is a heat pump according to an embodiment of the application in Figure 1
  • Fig. 7 is another schematic diagram of the heat pump 100 according to the embodiment of the present application in Fig. 1
  • Fig. 7 is another schematic diagram of the heat pump 100 according to the embodiment of the present application in Fig. 1
  • Fig. 7 is another schematic diagram of the heat pump 100 according to the embodiment of the present application in Fig. 1
  • Fig. 7 is another schematic diagram of the heat pump 100 according to the embodiment of the present application in Fig. 1
  • Fig. 7 is another schematic diagram of the heat pump 100 according to the
  • FIG. 8 is a cross-sectional view taken along line EE in Fig. 7;
  • Fig. 9 is a cross-sectional view taken along line FF in Fig. 7;
  • FIG. 10 is still another schematic diagram of the heat pump 100 in FIG. 1 according to the embodiment of the present application.
  • the heat pump 100 includes: a drive motor 1, a pump casing 2, an impeller 3, a terminal 221, a heating element 4 (such as a heating tube or a thick film, etc.), a first sealing member 6, a second sealing member 7 (such as an O-ring, etc.) ), the third sealing element 8 (such as O-ring, etc.), and the end cover 5 and other components.
  • the drive motor 1 and the impeller 3 can be connected by the internal thread of the impeller 3 and the external thread of the motor shaft 11, wherein the rotation direction of the internal thread and the external thread can be the same, and the rotation direction of the internal thread/external thread The direction of rotation of the drive motor 1 is opposite to ensure that it will not fall off during operation.
  • the impeller 3 is driven by the drive motor 1.
  • the pump housing 2 has a two-cavity structure.
  • the pump housing 2 can define a pump chamber 21 and a heating chamber 22.
  • the water pump volute 212 and the heating cavity 22 are connected between the cavity 21 and the heating cavity 22 through a communication channel 23 (for example, an expansion channel).
  • the connection terminal 221 of the lower end of the pump casing 2 and the heating tube can be connected by bolts, and a first installation groove 212 (for example, a concave structure) is formed on the heating chamber 22 for installing the first seal 6 (for example, a sealing gasket) to prevent Water leaks.
  • a first installation groove 212 for example, a concave structure
  • the end cover 5 and the pump casing 2 can be connected by screws, and a second seal 7 and a third seal 8 can be arranged between the end cover 5 and the pump casing 2 to prevent water from leaking from the end cover 5, for example, A second sealing element 7 may be provided between the water end cover 52 and the pump housing 2, and a third sealing element 8 may be provided between the water outlet end cover 53 and the pump housing 2.
  • FIG. 11 is a perspective view of the pump housing 2 in the heat pump 100 according to the embodiment of the present application in Figure 1;
  • Figure 12 is a perspective view of the pump housing 2 in Figure 1 according to the present application.
  • FIG. 13 is a schematic diagram of the pump housing 2 in the heat pump 100 according to the embodiment of the present application in FIG. 1;
  • FIG. 15 is a cross-sectional view along the GG line in FIG. 14;
  • FIG. 16 is a cross-sectional view along the HH line in FIG. 14;
  • FIG. 18 is a cross-sectional view along the line II in FIG. 17;
  • FIG. 19 is a cross-sectional view along the line JJ in FIG.
  • the pump housing 2 mainly includes: an inlet connection section 211, a water pump volute 212, a communication channel 23 (such as an expansion channel), a heating chamber 22, an outlet connection pipe 25, a first installation groove 212, and the like.
  • the inlet connecting section 211 covers the inlet pipe, which is usually a straight pipe.
  • the communication channel 23, such as the expansion channel, is used to connect the water pump volute 212 and the heating chamber 22, and is structurally arranged at the tangential (near the top) position of the heat pump 100.
  • the main consideration of this design is to facilitate the suction of air bubbles in the impeller 3 It is smoothly introduced into the heating chamber 22 without gathering in the water pump volute 212, so as to avoid the noise of air bubbles.
  • the communication channel 23, such as the expansion channel, to enter the heating cavity 22 in a tangential manner is to introduce the water flow into the heating cavity 22 at a high speed, and make the water flow spiral along the wall surface of the heating cavity 22, which facilitates the improvement of the heat transfer performance of the heating tube.
  • the structure of the expansion channel is an expansion type. In the flow direction of the water flow, it gradually increases from the upstream side to the downstream side. Usually, the expansion degree is required to be no more than 20° to avoid losses caused by too much expansion.
  • the setting feature of the heating chamber 22 is that it is arranged axially side by side with the pump chamber 22 (the impeller 3 is provided in the pump chamber 22).
  • a first installation groove 212 is formed at the bottom of the heating chamber 22, and the first installation groove 212 is used to install the first seal.
  • the member 6 is, for example, a gasket, so that the heating member 4, such as a heating tube, and the connection terminal 221 can be sealed inside and outside.
  • a heating tube is arranged inside the heating chamber 22. Since the high temperature of the heating tube can only radiate the heating chamber 22 without affecting the impeller 3, the plastic impeller 3 will not appear prematurely due to the heat radiation of the heating tube. The aging phenomenon affects the performance of the heat pump 100.
  • the design of the heating tube is usually consistent with the rotation direction of the water flow, that is, the heating tube is rotated clockwise from the side of the driving motor.
  • the one-round water flow leads the water flow out of the heating pump 100 through the tangential outlet connecting pipe 25, and the outlet connecting pipe 25 is preferably set at the top of the heating chamber 22.
  • the main purpose is to smoothly discharge the air bubbles entering the heating cavity 22 out of the heating cavity 22 so as to avoid bubble noise.
  • the existence of air bubbles will also affect the heat exchange of the heating tube, and cause damage to the dry burning phenomenon in severe cases.
  • the end cover 5 mainly includes: a water inlet channel 54, a rectifying channel 55, a matching channel 56, a water inlet end cover 52 and a matching groove 521 provided on the water inlet end cover 52, a water outlet end cover 53 and a water outlet end cover 53
  • the third installation slot 531 mainly includes: a water inlet channel 54, a rectifying channel 55, a matching channel 56, a water inlet end cover 52 and a matching groove 521 provided on the water inlet end cover 52, a water outlet end cover 53 and a water outlet end cover 53
  • the third installation slot 531 The third installation slot 531.
  • the outer side of the water inlet channel 54 is provided with a sealing protrusion 541 structure for connecting the water inlet hose, and the rectifying channel 55 is a constricted section, which is mainly used for stabilizing the water flow setting and butting with the impeller 3.
  • the matching channel 56 mainly forms the backflow channel 9 with the outer side of the impeller 3. Because this small heat pump usually has a certain water flow backflow due to the processing technology, the main function of the matching channel 56 is to match the impeller 3 to form a narrow
  • the reflux channel 9 suppresses the reflux and improves the efficiency of the heat pump 100.
  • the water outlet end cover 53 mainly seals the water flow on one side of the heating tube, and a third installation groove 531 is machined inside the end cover, and the third sealing member 8 such as an O-ring is used to seal the heating cavity 22.
  • the heat pump 100 can be used in a variety of devices that need to heat liquids, such as dishwashers, washing machines, dryers, and washer-dryers.
  • the medium passing through the heat pump 100 can be water or Foamy liquid.
  • the application scenario of the heat pump 100 in the embodiment of the present application does not limit the structure of the heat pump 100 itself. According to actual application requirements, the outlet and inlet of the heat pump 100 can be connected with pipes outside the heat pump 100.
  • the longitudinal section of the object referred to in the embodiments of the present application refers to a cross section parallel to the symmetry axis of the object, and the cross section refers to a cross section perpendicular to the symmetry axis.
  • the heat pump 100 includes a pump casing 2, an impeller 3 and a heating element 4.
  • the pump housing 2 forms a pump cavity 21, a water pump volute 212 (such as a liquid collection cavity) and a heating cavity 22 in the pump cavity.
  • the liquid inlet of the impeller 3 is connected to the pump cavity 21, and the liquid outlet of the impeller 3 is connected to the water pump volute of the pump cavity.
  • the housing 212, the water pump volute 212 of the pump cavity and the heating cavity 22 are connected by a communication channel 23.
  • the heating element 4 is arranged in the heating cavity 22.
  • the heating cavity 22 is provided with an outlet nozzle 25.
  • the outlet nozzle 25 defines an outlet channel, and the outlet nozzle A water outlet 24 is formed at the free end of 25.
  • the impeller 3 is connected to a driving device, and the driving device is driven to rotate so as to centrifugal pressurize the fluid flowing through the impeller 3 to increase the speed of the fluid.
  • the driving device can be fixed to the pump casing 2.
  • the driving device can be, for example, the driving motor 1.
  • the driving motor 1 and the impeller 3 can be connected to one end of the output shaft (for example, the motor shaft 11) of the driving motor 1 through the internal thread of the impeller 3.
  • the impeller 3 The direction of rotation is opposite to the direction of rotation of the drive motor 1 to ensure that the impeller 3 does not fall off during operation.
  • the shape, number, spacing, etc. of the blades of the impeller 3 can be designed according to actual needs.
  • the axis of the communication channel 23 is perpendicular to the axis of the heating cavity 22, and the axis of the communication channel 23 and the axis of the heating cavity 22 are not in the same plane, and the heating cavity 22 is similar to a cylinder. shape.
  • the dynamic pressure of the fluid is converted into force in two directions. In the normal direction of the wall surface of the heating chamber 22, the dynamic pressure of the fluid is converted into a force against the wall surface of the heating chamber 22.
  • the dynamic pressure of the fluid is converted into a driving force, which drives the fluid to rotate and flow along the wall surface of the heating chamber 22, thereby forming a swirling flow around the heating element 4 to avoid
  • the phenomenon of uneven heating and dry burning is improved, and the heating efficiency and the service life of the heating element 4 are improved.
  • the cross-sectional area of the communication passage 23 increases along the direction from the water pump volute 212 of the pump cavity to the heating cavity 22.
  • the cross-sectional area is inversely proportional to the flow rate of the fluid.
  • the cross-sectional area of the communication channel 23 is continuously and uniformly increased along the direction from the pump volute 212 of the pump cavity to the heating cavity 22 to avoid the loss of the kinetic energy of the fluid due to a sudden change in the cross-section, and to further enhance the swirling effect of the water flow. So as to realize the uniform heating of the fluid and avoid dry burning.
  • the longitudinal section of the communication channel 23 is an axisymmetric shape to facilitate the processing of the communication channel 23.
  • the communication channel 23 is in the direction from the water pump volute 212 of the pump cavity to the heating cavity 22.
  • the increase in the cross-sectional area of 23 is less than a certain threshold.
  • the angle between the two sides of the longitudinal section of the communication channel 23 is less than a preset value.
  • the preset value may be, for example, 20°.
  • the increase in the cross-sectional area of the communication channel 23 is less than a certain threshold, so as to ensure that the flow rate of the fluid flowing into the heating chamber 22 is greater than a certain threshold, and to ensure that the fluid and the wall of the heating chamber 22 are not Separation occurs to further enhance the swirling effect of the fluid, thereby achieving uniform heating of the fluid and avoiding dry burning.
  • the outer wall surface 142 is tangent to the wall surface of the heating chamber 22. Under the action of centrifugal force, when the fluid flows from the water pump volute 212 of the pump chamber into the heating chamber 22, it will communicate along The outer wall surface 142 of the channel 23 flows and flows tangentially into the heating chamber 22. The dynamic pressure of the fluid is all converted into the driving force to drive the fluid to rotate and flow along the wall surface of the heating chamber 22, which further enhances the swirling effect of the water flow, thereby realizing the The uniform heating of the fluid avoids dry burning.
  • the pump housing 2 has an inner wall surface 141 and an outer wall surface 142 forming the communication channel 23, wherein the inner wall surface 141 and the outer wall surface 142 are both surfaces that are in contact with the fluid in the communication channel 23.
  • the surface that is not in contact with the external environment, the wall farther from the axis of the pump chamber 21 is the outer wall surface 142, and the wall closer to the axis of the pump chamber 21 is the inner wall surface 141.
  • the inner wall surface 141 and the outer wall surface 142 correspond to both sides of the cross section in the longitudinal section of the communication passage 23.
  • the wall surfaces of the inner wall surface 141 and/or the outer wall surface 142 are both flat, that is, the inner surface of the inner wall surface 141 and/or the outer wall surface 142 in contact with the fluid does not have any protrusions or grooves.
  • the inner surface of the outer wall surface 142 is perpendicular to the axis of the impeller 3.
  • the flow direction of the liquid flowing from the water pump volute 212 of the pump cavity to the communication channel 23 is consistent with the wall surface direction of the outer wall surface 142.
  • the kinetic energy of the fluid undergoes a loss along the way.
  • the loss along the way of the fluid means that due to the fluid
  • the frictional force between the inner wall surface 141 and the outer wall surface 142 the kinetic energy of the fluid is converted into the internal energy of the inner wall surface 141 and the outer wall surface 142, and the kinetic energy of the fluid is lost.
  • the inner wall surface 141 and the outer wall surface 142 are straight in cross section, so that the fluid flows from the water pump volute 212 of the pump cavity into the heating chamber 22 along a straight line, reducing the movement stroke of the fluid flowing along the inner wall surface 141 and the outer wall surface 142, The magnitude of the frictional work is reduced, thereby reducing the loss of kinetic energy of the fluid when the fluid flows into the heating chamber 22 through the communication channel 23.
  • the kinetic energy of the fluid is locally lost.
  • the communication channel 23 through which the liquid flows has a sudden cross-section, the kinetic energy of the fluid will be lost.
  • the inner surface of the side wall of the communication channel 23 By arranging the inner surface of the side wall of the communication channel 23 to be flat, the loss of the kinetic energy along the way and the local loss of the fluid when the fluid communication channel 23 flows into the heating chamber 22 is reduced, and the flow of the fluid around the heating element 4 in the heating chamber 22 is enhanced.
  • the swirling flow makes the fluid heat more evenly, and further avoids uneven heating and dry burning.
  • the pump housing 2 further includes a partition wall 16 that separates the pump cavity 21, the impeller 3, and the water pump volute 212 of the pump cavity from the heating cavity 22 as a whole.
  • the partition wall 16 is arranged to separate the pump cavity 21 containing the impeller 3 and the water pump volute 212 of the pump cavity from the heating cavity 22 containing the heating element 4, which can prevent the heat radiation of the heating element 4 in the heating chamber 22 from acting on the impeller 3, thereby Avoid heat aging of the impeller 3 and prolong the service life of the impeller 3.
  • the communication channel 23 communicates with the top opening of the heating chamber 22, and the top opening is provided between the partition wall 16 and the first end of the heating chamber 22. That is, the top opening is an opening close to the end of the heating chamber 22, and the inlet of the heating chamber 22 is opposite to the communication channel 23, which can introduce the air bubbles in the fluid generated when the impeller 3 rotates into the heating chamber 22 to prevent air bubbles from being in the pump chamber. Accumulation in the volute 212 causes noise, and the fluid enters from one end of the heating chamber 22 and moves along the wall of the heating chamber 22, and then rotates and flows, avoiding the accumulation of bubbles in the heating chamber 22, thereby avoiding abnormal noise and dry burning.
  • the partition wall 16 further includes a guide 161 that guides the liquid from the liquid outlet to flow to the water pump volute 212 of the pump cavity, and the guide 161 forms the inner wall surface 141 of the communication channel 23, that is,
  • the inner wall surface of the communication channel 23 is connected to the partition wall 16 as a whole, and the partition wall 16 and the inner wall surface 141 of the communication channel 23 are integrated as a whole, which simplifies the internal structure of the heat pump 100, reduces the manufacturing cost of the heat pump 100, and reduces The volume of the heat pump 100 is increased.
  • the liquid flowing out through the outlet of the impeller 3 is blocked and guided by the inner wall surface 141, flows into the water pump volute 212 of the pump cavity, and then flows into the heating chamber 12 through the communication channel 23 formed by the inner wall surface 141 and the outer wall surface 142.
  • the heating element 4 extends from the first end of the heating cavity 22 to the opposite second end, and the water outlet 24 is provided at the second end of the heating cavity 22.
  • the fluid enters the heating chamber 22 from the first end of the heating chamber 22 and generates a swirling flow in the heating chamber 22. After the swirling flow is heated around the heating element 4, it flows through the entire heating chamber 22 and flows from the second end of the heating chamber 22. It flows into the water outlet 24 and then flows out.
  • the water outlet 24 is arranged at the second end of the heating chamber 22, so that the fluid fully contacts the heating element 4 in the heating chamber 22, and cooperates with the tangential communication channel 23 to form a strong swirling flow at the inlet of the heating chamber 22, further avoiding the heating chamber The bubbles in 22 gather. It should be noted that the water outlet 24 can also be arranged at other positions of the heating cavity 22, at a certain distance from the first end that enters the heating cavity 22, and does not have to be arranged at the second end of the heating cavity 22.
  • the axis of the outlet nozzle 25 is perpendicular to the axis of the heating chamber 22, and the wall of the outlet nozzle 25 is tangent to the wall of the heating chamber 22.
  • the fluid flows into the water outlet 24 along the tangential direction of the wall of the heating chamber 22, and the fluid cuts from the heating chamber 22.
  • the directional outflow and the tangential inflow of the fluid from the heating chamber 22 form a strong swirling flow that enters the inlet of the heating chamber 22, which further avoids the accumulation of bubbles in the heating chamber 22 to generate abnormal noise and avoids dry burning.
  • the heating element 4 is a spiral heating tube, which extends from the first end of the heating cavity 22 to the opposite second end, from the heating cavity 30 Seeing from the first end to the second end, the spiral heating tube is wound in a clockwise direction. That is, the winding direction of the spiral heating tube is consistent with the rotation direction of the fluid in the heating chamber 22, which can enhance the swirling effect of the water flow, and make the fluid more fully contact the spiral heating tube, thereby achieving uniform heating of the fluid and avoiding dryness. burn.
  • the axis of the outlet nozzle 25 is perpendicular to the extending direction of the heating element 4, which is beneficial for the fluid to form a swirling flow in the heating chamber 22.
  • the fluid in the heating cavity 22 rotates and flows along the wall surface of the heating cavity 22 around the axis of the heating cavity 22, flows into the water outlet 24 along the wall surface of the heating cavity 22, and then flows out of the heat pump 100.
  • the wall surface of the heating cavity 22 from the first end to the second end is provided with guide ribs 131 along the circumferential direction.
  • the heating cavity 22 is similarly cylindrical, and the guide ribs 131 are arranged along the circumferential direction.
  • the provision of the guide ribs 131 can guide the fluid in the heating cavity 22 and increase the degree of fluid swirling in the heating cavity 22.
  • the diversion rib 131 may also be a continuous spiral.
  • the diversion rib 131 When viewed from the first end to the second end of the heating cavity 22, the diversion rib 131 rotates and extends in a clockwise direction, that is, the diversion rib 131
  • the direction of rotation of the fluid is consistent with the direction of rotation of the fluid in the heating chamber 22, which can further enhance the swirling effect of the water flow, thereby achieving uniform heating of the fluid and avoiding dry burning.
  • the heat pump 100 further includes an end cover 5, and the end cover 5 includes a water inlet end cover 52 and a water outlet end cover 53.
  • the water inlet end cover 52 is inserted into the pump cavity 21 and is attached to the pump housing 2, that is, there is no gap between the outer wall of the water inlet end cover 52 and the inner wall of the pump cavity 21 .
  • the water inlet end cover 52 can be fixed to the pump housing 2 by a variety of fixing methods, for example, bonding, welding, and so on.
  • the water inlet end cover 52 sequentially includes a water inlet channel 54 for introducing fluid, a rectifying channel 55 with a reduced cross-sectional area of the flow channel, and a clearance fit with the outer side of the impeller 3. Channel 56.
  • the water inlet end cover 52 is used to connect with an external pipe outside the heat pump 100, and the fluid flows from the external pipe into the water inlet channel 54 of the inlet connection section 211, and flows into the rectifying channel 55 along the water inlet channel 54.
  • the rectifying passage 55 the fluid is rectified, the turbulence is reduced, and flows into the matching passage 56.
  • the liquid enters the impeller 3 through the matching channel 56, flows out from the radial direction through the centrifugal impeller 3, and then flows into the water pump volute 212 of the pump cavity.
  • the matching channel 56 forms a gap with the outer side of the impeller 3, and matches the impeller 3 to form a narrow channel, which suppresses the return flow of the fluid after passing through the impeller 3, thereby improving the efficiency of the heat pump 100.
  • the water inlet end cover 52 may have an axisymmetric structure, and the water inlet end cover 52, the pump chamber 21 and the impeller 3 are arranged coaxially, so that the water flow can be uniformly and symmetrically distributed between the water inlet end cover 52 and the impeller 3. In the flow.
  • the end cover 5 is detachably fixed to the second end of the heating chamber 22, for example, the end cover 5 is connected to the second end of the heating chamber 22 by screws, and the end cover 5 and A sealing gasket is arranged between the second end of the heating chamber 22 to prevent the fluid in the heating chamber 22 from leaking from the joint between the end cover 5 and the second end of the heating chamber 22, and the end cover 5 is fixed in a detachable manner
  • the end cover 5 can be removed when the heating element 4 fails, and the heating element 4 can be replaced or repaired, without the need to scrap the entire heat pump 100 when the heating element 4 is damaged.
  • the water inlet end cover 52 and the water outlet end cover 53 are fixedly connected as a whole, and the water outlet end cover 53 can be fixed to the second heating chamber 22 while the water inlet end cover 52 is installed. End, the installation of the heat pump 100 is simplified. In other embodiments, the water inlet end cover 52 and the water outlet end cover 53 are two separate parts. During installation, there will be no interference between the water inlet end cover 52 and the water outlet end cover 53, which reduces the impact on the water inlet. The processing accuracy of the end cover 52 and the outlet end cover 53 is required.
  • the embodiment of the present application also provides a cleaning device.
  • the cleaning device includes the heat pump 100 as described in the foregoing embodiment.
  • the cleaning device has a cleaning space for cleaning objects, and the water inlet of the cleaning space is in communication with the water outlet 24 of the heat pump 100.
  • the cleaning device may be a dishwasher, for example, the bowl is placed in the clean space, and the heat pump 100 injects heated hot water with detergent into the clean space to wash the bowl. Then the heat pump 100 injects the heated clean water into the cleaning space to rinse the bowl and wash away the foam on the bowl to achieve the purpose of cleaning the bowl.

Abstract

一种加热泵及具有其的清洁装置,加热泵(100)包括驱动电机(1);泵壳(2),泵壳(2)内限定有泵腔(21)和加热腔(22),泵腔(21)与加热腔(22)大致呈轴向并排布置且通过连通通道(23)连通,泵壳(2)上形成有进水口(51)和出水口(24);叶轮(3),设在泵腔(21)内;加热件(4),设在加热腔(22)内。由此,不仅有利于缩小加热泵(100)的体积,还可以避免加热件(4)的高温辐射叶轮(3),从而能够防止叶轮(3)出现过早的老化现象,进而可以提高加热泵(100)的使用性能。

Description

加热泵及具有其的清洁装置
相关申请的交叉引用
本申请基于申请号为201910827545.2、201910829519.3,申请日为2019年09月03日的中国专利申请提出,并要求上述两件中国专利申请的优先权,上述中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及家用电器领域,尤其是涉及一种加热泵及设有上述加热泵的清洁装置。
背景技术
相关技术中,洗衣机和洗碗机的技术方案往往把加热管或者厚膜放置于水泵蜗壳内。首先,这种把加热管布置于泵壳内的洗碗机泵往往具有体积大的特点,由于考虑热安全性的要求,发热管和泵壳通常留有较大的距离,因此造成了泵壳的外径增加,而通常考虑有效容积率,往往要求水泵安装具有更小的高度,现有方案和洗碗机或洗衣机大容积率的设计需求存在一定矛盾。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。为此,本申请的一个目的在于提出一种加热泵,所述加热泵的体积减小。
本申请的另一个目的在于提出一种清洁装置,所述清洁装置包括上述所述的加热泵,以解决泵体积过大和叶轮易受热老化的技术问题。
根据本申请第一方面实施例的加热泵,包括:驱动电机;泵壳,所述泵壳内限定有泵腔和连通所述泵腔的加热腔,所述泵腔与所述加热腔大致呈轴向并排布置,所述泵腔和所述加热腔适于通过连通通道相连通,所述泵壳上形成有连通所述泵腔的进水口和连通所述加热腔的出水口;叶轮,所述叶轮设在所述泵腔内,所述叶轮与所述驱动电机的电机轴相连;加热件,所述加热件设在所述加热腔内。
根据本申请实施例的加热泵,通过使泵腔大致与加热腔轴向并排布置,叶轮设在泵腔内,并且加热腔与泵腔之间通过连通通道相连通,由此,不仅有利于缩小加热泵的体积,还可以避免加热件的高温辐射叶轮,从而能够防止叶轮出现过早的老化现象,进而可以提高加热泵的使用性能。
另外,根据本申请上述实施例的加热泵还具有如下附加的技术特征:
根据本申请的一些实施例,所述连通通道被构造成沿所述泵壳的内壁面的切向延伸。
进一步地,在水流的流动方向上,所述连通通道被构造成扩张通道,且所述扩张通道的扩张角度不大于20度。
根据本申请的一些实施例,在水流的流动方向上,所述泵腔包括:进口连接段以及水泵蜗壳,所述水泵蜗壳与所述加热腔之间形成所述扩张通道。
在本申请的一些实施例中,所述泵壳上设有连通所述加热腔的出口接管,所述出口接管的自由端形成所述出水口。
进一步地,所述出口接管被构造成沿所述加热腔的外侧壁的切向延伸。
进一步地,所述加热腔的底部形成有第一安装槽,所述第一安装槽内设有第一密封件。
根据本申请的一些实施例,所述加热件为螺旋延伸的发热管,且所述发热管的旋向被构造成与水流的流动方向一致。
在本申请的一些实施例中,所述加热件为设在所述加热腔的内壁面的厚膜。
根据本申请的一些实施例,所述加热腔的内壁面设有导流筋,且所述导流筋的延伸方向被构造成与水流的流动方向一致。
根据本申请的一些实施例,所述电机轴上形成有外螺纹,所述叶轮上形成有内螺纹,所述外螺纹与所述内螺纹相匹配以使所述电机轴与所述叶轮螺纹连接,所述外螺纹/内螺纹的旋向与所述驱动电机的旋转方向相反。
根据本申请的一些实施例,所述加热泵还包括:端盖,所述端盖上形成有所述进水口,且所述端盖与所述泵壳密封连接。
进一步地,所述端盖包括:进水端盖,所述进水端盖与所述泵壳之间设有第二密封件;出水端盖,所述出水端盖与所述泵壳之间设有第三密封件;其中,所述进水端盖上形成有配合槽,所述泵壳上形成有与所述配合槽相匹配的配合部,所述配合部上形成有适于安装所述第二密封件的第二安装槽,所述出水端盖上形成有适于安装所述第三密封件的第三安装槽。
在本申请的一些实施例中,在水流的流动方向上,所述端盖的内侧限定有进水通道、整流通道以及配合通道,所述进水通道的入水端形成所述进水口,所述叶轮设在所述配合通道处且与所述配合通道的内壁面间隔开设置,以在所述叶轮与所述配合通道之间限定出适于回流水流的回流通道。
进一步地,所述进水通道的外壁面形成有密封凸起以连接进水软管。
在本申请的一些实施例中,在水流的流动方向上,所述整流通道的内壁面被构造成径向尺寸逐渐收缩的形状。
进一步地,所述整流通道的内壁面被构造成锥形或弧形。
根据本申请的一些实施例,所述流通通道的纵截面为轴对称形状。
根据本申请的一些实施例,所述泵壳具有形成所述连通通道的内壁面和外壁面,所述连通通道的外壁面与所述加热腔的壁面相切。
根据本申请的一些实施例,所述泵壳具有形成所述连通通道的内壁面和外壁面,所述内壁面和/或外壁面为平面。
根据本申请的一些实施例,所述泵壳还包括将所述泵腔、叶轮和所述泵腔的水泵蜗壳形成的整体与所述加热腔分隔的间隔壁。
根据本申请的一些实施例,所述连通通道与所述加热腔的顶部开口连通,所述顶部开口设置在所述间隔壁和所述加热腔的第一端之间。
根据本申请的一些实施例,所述间隔壁还包括引导所述叶轮的出液口的液体流向所述泵腔的水泵蜗壳的引导件,所述引导件形成所述连通通道的内壁面。
根据本申请的一些实施例,所述泵腔的轴线与所述加热腔的轴线平行。
根据本申请的一些实施例,所述加热件从所述加热腔的第一端向相对的第二端延伸,所述出水口设置在所述加热腔的所述第二端。
根据本申请的一些实施例,所述泵壳上的出口接管的轴线与加热件的延伸方向垂直。
根据本申请的一些实施例,所述加热泵还包括:进口接管,用于插入所述泵腔内并与所述泵壳贴合。
根据本申请第二方面实施例的清洁装置,所述清洁装置包括前述所述的加热泵,所述清洁装置具有清洁物品的清洁空间,所述清洁空间的入水口与所述加热泵的出水口连通。
进一步地,所述清洁装置为洗衣机或洗碗机。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本申请实施例的加热泵的一个示意图;
图2是沿图1中A-A线的剖视图;
图3是沿图1中B-B线的剖视图;
图4是沿图1中C-C线的剖视图;
图5是沿图1中D-D线的剖视图;
图6是图1中根据本申请实施例的加热泵的另一个示意图;
图7是图1中根据本申请实施例的加热泵的再一个示意图;
图8是沿图7中E-E线的剖视图;
图9是沿图7中F-F线的剖视图;
图10是图1中根据本申请实施例的加热泵的还一个示意图;
图11是图1中根据本申请实施例的加热泵中泵壳的一个立体图;
图12是图1中根据本申请实施例的加热泵中泵壳的另一个立体图;
图13是图1中根据本申请实施例的加热泵中泵壳的一个示意图;
图14是图1中根据本申请实施例的加热泵中泵壳的另一个示意图;
图15是沿图14中G-G线的剖视图;
图16是沿图14中H-H线的剖视图;
图17是图1中根据本申请实施例的加热泵中泵壳的再一个示意图;
图18是沿图17中I-I线的剖视图;
图19是沿图17中J-J线的剖视图;
图20是图1中根据本申请实施例的加热泵中端盖的一个立体图;
图21是图20中根据本申请实施例的加热泵中端盖的一个剖视图;
图22是根据本申请实施例的加热泵的纵截面示意图;
图23是根据本申请实施例的加热泵的横截面示意图;
图24是根据本申请实施例的加热泵中进口接管和端盖的纵截面示意图。
附图标记:
加热泵100,
驱动电机1,电机轴11,
泵壳2,泵腔21,进口连接段211,水泵蜗壳212,加热腔22,接线端子221,第一安装槽212,连通通道23,出水口24,出口接管25,配合部26,第二安装槽261,
叶轮3,加热件4,
端盖5,进水口51,进水端盖52,配合槽521,出水端盖53,第三安装槽531,进水通道54,密封凸起541,整流通道55,配合通道56,
回流通道9,
导流筋131,内壁面141,外壁面142,间隔壁16,引导件161。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
相关技术中,洗碗机从申请到如今已有100年左右的历史,其主要功能是为了自动清洗餐具设备。通常具有洗涤、消毒、烘干等功能,为了有效地融油和除菌,往往需要将洗涤的水温加热到72℃左右,因此需要在水泵内或者其它洗碗机底部空间内分体地增加加热装置。而现代洗碗机越来越紧凑化的设计往往要求泵和加热装置做成一体结构,形成加热泵的结构需求。
相关技术中的方案存在以下缺点:其一,体积大:由于考虑热安全性的要求,发热管和泵壳通常留有较大的距离,因此造成了泵壳的外径增加,而洗碗机通常考虑有效容积率,往往要求水泵安装具有更小的高度,这种方案和洗碗机往大容积率的方向存在一定矛盾。其二,现有在泵壳内加热的方案,加热管和塑料叶轮以及蜗壳距离较近且无隔离,在热辐射的作用下容易导致水泵叶轮及蜗壳老化。其三,现有方案加热管往往不至于叶轮后部,而水流往往是径向往泵壳壁面运动,容易造成加热管表面的流速低,导致加热管表面雷诺数过低,进而产生表面换热不充分的现象。
下面参考附图描述根据本申请实施例的加热泵100。所述加热泵100上设有出口加热装置。
参照图1,根据本申请第一方面实施例的加热泵100,包括:驱动电机1、泵壳2、叶轮3以及加热件4。
具体而言,结合图2、3、4和图11,泵壳2内限定有泵腔21和连通泵腔21的加热腔22,泵腔21与加热腔22大致呈轴向并排布置,泵腔21和加热腔22适于通过连通通道23相连通,泵壳2上形成有连通泵腔21的进水口51和连通加热腔22的出水口24。
例如,泵壳2内可以限定有泵腔21和加热腔22,加热腔22可以连通泵腔21设置,泵腔21与加热腔22大致呈轴向并排布置,泵腔21的轴线与加热腔22的轴线平行,并且泵腔21的轴线与加热腔22的轴线可以间隔开设置。这样相当于降低了加热泵100的整体高度,从而有利于缩小加热泵100的体积。
在本申请的一些实施例中,泵腔21和加热腔22可以通过连通通道23相连通,泵壳2上可以形成有出水口24,出水口24可以连通加热腔22。
叶轮3设在泵腔21内,叶轮3与驱动电机1的电机轴11相连。例如,叶轮3可以为例如塑料件等,叶轮3可以为例如离心叶轮等,叶轮3可以设在泵腔21内,叶轮3可以与驱动电机1的电机轴11相连。由此,通过驱动电机1可以驱动叶轮3旋转。
加热件4可以设在加热腔22内。这样通过在加热腔22内设置加热件4,可以对流经加热腔22的水流进行加热。
根据本申请实施例的加热泵100,采用加热腔22基本与泵腔21(叶轮3设在泵腔21内)轴向并排布置的设计结构,并且,加热腔22与泵腔21之间通过连通通道23进行连接,由此,不仅有利于缩小加热泵100的体积,还可以避免加热件4的高温辐射叶轮3,因此,不会出现由于加热件4的热辐射导致叶轮3出现过早的老化现象而影响加热泵100的性能。
其中,由进水口51进入泵腔21的水流可以经由连通通道23进一步流入加热腔22内,进入加热腔22内的水流可以由加热件4进行加热,从而能够由出水口24输出经加热件4加热后的水流,更好地满足用户的需求。
根据本申请实施例的加热泵100,通过使泵腔21大致与加热腔22轴向并排布置,叶轮3设在泵腔21内,并且加热腔22与泵腔21之间通过连通通道23相连通,由此,不仅有利于缩小加热泵100的体积,还可以避免加热件4的高温辐射叶轮3,从而能够防止叶轮3出现过早的老化现象,进而可以提高加热泵100的使用性能。
参照图16和图18,根据本申请的一些实施例,连通通道23被构造成沿泵壳2的内壁面的切向延伸。例如,在本申请的一些具体实施例中,连通通道23可以被构造成沿泵壳2的内壁面的切向延伸。由此,一方面便于将叶轮3吸入的气泡顺利导入到加热腔22而不聚集在泵腔21内,避免发生气泡的噪音。另一方面,可以将水流高速导入加热腔22,并使水流沿着加热腔22的壁面旋绕,便于加热件4换热性能的提高。
当然,在本申请的一些实施例中,连通通道23也可以不采用切向延伸的方式设置,本申请对连通通道23的具体延伸方式不作限定,实际应用中可以根据需要而适应性设置。
进一步地,结合图4和图9,在水流的流动方向上,连通通道23被构造成扩张通道,且所述扩张通道的扩张角度不大于20度。例如,在水流的流动方向上,相距距离L取垂直于水流的流动方向的两个截面,其中,记位于上游侧的截面的当量直径为D1,记位于下游侧的截面的当量直径为D2,则有:扩张角度α=2*arctan(D2-D1)/L,即扩张角度的一半的正切值等于(D2-D1)/L。
参照图15和图16并结合图14,根据本申请的一些实施例,在水流的流动方向上,泵腔21包括:进口连接段211以及水泵蜗壳212,水泵蜗壳212与加热腔22之间形成所述扩张通道23。由此,通过在加热腔22和水泵蜗壳212之间设置了一个扩张通道,可以进一步回收水泵蜗壳212出口的动压,提高加热泵100的扬程,同时进入加热腔22速度的降低有利于降低水流进入加热腔22的损失系数,从而可以提高加热泵100的效 率。
参照图2并结合图1,在本申请的一些实施例中,泵壳2上设有连通加热腔22的出口接管25,出口接管25的自由端形成出水口24。例如,泵壳2上可以设有出口接管25,出口接管25可以连通加热腔22设置,出口接管25的自由端可以形成出水口24。由此,通过出口接管25便于外接管路,使得由加热件4加热后的水流可以经由出口接管25再由出水口24进一步流出。
进一步地,参照图3和图5,出口接管25被构造成沿加热腔22的外侧壁的切向延伸。例如,在本申请的一些实施例中,出口接管25可以被构造成沿加热腔22的外侧壁的切向延伸。由此,通过将切向的出口接管25和切向的扩张通道配合可以形成发热腔进口的强旋流,这样有利于达到更好地去除气泡的效果。
根据本申请实施例的加热泵100,通过将切向的出口接管25和切向的扩张通道配合可以形成发热腔进口的强旋流,从而可以进一步避免发热腔22内气泡聚集产生的异常噪音和干烧现象。
当然,本申请不限于此,在本申请的一些实施例中,出口接管25也可以不采用沿加热腔22的外侧壁的切向延伸,那样也可以形成一定的旋流。
参照图2并结合图1,根据本申请的一些实施例,加热腔22上设有与加热件4电连接的接线端子221,以连接外部的供电电路。例如,加热腔22上可以设有接线端子221,接线端子221可以与加热件4电连接,接线端子221可以设在加热腔22的外侧壁,通过接线端子221便于连接外部的供电电路,便于进一步实现对水流的加热。
进一步地,参照图2和图15,加热腔22的底部形成有第一安装槽212,第一安装槽212内设有第一密封件6。例如,加热腔22的底部可以形成有第一安装槽212,第一安装槽212内可以设有第一密封件6,所述第一密封件6可以为例如密封圈或密封垫等,由此,通过在第一安装槽212内设置第一密封件6,可以实现加热腔22的密封连接,从而能够防止加热腔22漏水。
参照图1和图2,根据本申请的一些实施例,加热件4为螺旋延伸的发热管,且所述发热管的旋向被构造成与水流的流动方向一致。例如,在本申请的一些实施例中,加热件4可以为发热管,所述发热管可以螺旋延伸,并且所述发热管的旋向被构造成与水流的流动方向一致。由此,使得进入加热腔22内的水流可以沿着加热腔22的壁面运动,从而可以形成旋流,该旋流可以阻止气泡在加热腔22内的聚集,还可以避免加热腔22内气泡聚集产生的异常噪音和干烧现象,有利于延长所述发热管的寿命。
例如,在本申请的一些实施例中,加热腔22内匹配的所述发热管的设计可以和水流的旋向(例如,水流的流动方向)一致,例如,从驱动电机侧看所述发热管可以是顺时 针旋绕的。
根据本申请实施例的加热泵100,泵腔21(例如水泵蜗壳212)和加热腔22可以通过连通通道23例如扩张通道相连通,由此,使得经由所述扩张通道流入加热腔22的水流会沿着加热腔22的壁面运动,从而可以形成旋流,该旋流可以阻止气泡在加热腔22内的聚集,还可以避免加热腔22内气泡聚集产生的异常噪音和干烧现象,有利于延长所述发热管的寿命。
当然,本申请不限于此,在本申请的一些实施例中,加热件4也可以采用不同于所述发热管的结构形式。在本申请的一些实施例中,加热件4可以为设在加热腔22的内壁面的厚膜(图中未示出)。例如,加热件4可以为厚膜,所述厚膜可以设在加热腔22的内壁面。由此,通过所述厚膜也可以实现对流入加热腔22内的水流的加热。
根据本申请的一些实施例,加热腔22的内壁面设有导流筋,且所述导流筋的延伸方向被构造成与水流的流动方向一致。例如,加热腔22的内壁面可以设有导流筋,并且所述导流筋的延伸方向可以被构造成与水流的流动方向一致。由此,通过在加热腔22的内壁面设置所述导流筋有利于增强水流的旋绕效果。
例如,所述导流筋可以为螺旋延伸的一体式结构,或者,所述导流筋可以包括分体设置的多个,多个导流筋的延伸方式可以与水流的流动方向保持一致等。
根据本申请的一些实施例,电机轴11上形成有外螺纹,叶轮3上形成有内螺纹,所述外螺纹与所述内螺纹相匹配以使电机轴11与叶轮3螺纹连接,其中,所述外螺纹与所述内螺纹的旋转向可以相同,所述外螺纹/所述内螺纹的旋向与驱动电机1的旋转方向相反。由此,通过所述外螺纹和所述内螺纹的配合可以实现驱动电机1与叶轮3之间的装配连接,通过使所述外螺纹/所述内螺纹的旋向与驱动电机1的旋转方向相反,可以进一步保证驱动电机1与叶轮3之间的装配可靠性。
参照图2,在本申请的一些实施例中,加热泵100还可以包括端盖5,端盖5上形成有所述进水口51,且端盖5与泵壳2密封连接。例如,在本申请的一些实施例中,端盖5上可以形成有所述进水口51,进水口51可以连通泵腔21设置,并且端盖5与泵壳2密封连接。由此,可以保证端盖5与泵壳2之间的密封性能,从而能够防止漏水,提高加热泵100的使用性能。
根据本申请的一些实施例,参照图6,端盖5与泵壳2可拆卸连接。由此,通过使端盖5与泵壳2可拆卸连接,便于实现端盖5与泵壳2之间的装配和拆卸,有利于加热泵100的维修保养。
例如,在本申请的一些实施例中,端盖5与泵壳2可以采用例如螺钉连接等方式相连;但本申请不限于此,在本申请的一些实施例中,端盖5与泵壳2也可以采用卡扣连 接的方式相连等。
进一步地,参照图20和图21,端盖5可以包括:进水端盖52以及出水端盖53。
具体而言,结合图2,进水端盖52与泵壳2之间可以设有第二密封件7;出水端盖53与泵壳2之间可以设有第三密封件8。示例性且不限制地,第二密封件7和第三密封件8可以为例如O型密封圈等。
其中,参照图20和图21,进水端盖52上可以形成有配合槽521,泵壳2上形成有配合部26(参照图15),配合部26与配合槽521相匹配,配合部26上可以形成有第二安装槽261,第二安装槽261内适于安装第二密封件7,出水端盖53上可以形成有第三安装槽531,第三安装槽531内适于安装第三密封件8。由此,通过在第二安装槽261内安装第二密封件7有利于实现进水端盖52与泵壳2之间的密封连接,通过在第三安装槽531内安装第三密封件8有利于实现出水端盖53与泵壳2之间的密封连接,这样能够防止漏水,保证加热泵100的使用可靠性。
参照图21并结合图2,在本申请的一些实施例中,在水流的流动方向上,端盖5(例如进水端盖52)的内侧限定有进水通道54、整流通道55以及配合通道56,进水通道54的入水端形成所述进水口51,叶轮3设在配合通道56处且与配合通道56的内壁面间隔开设置,以在叶轮3与配合通道56之间限定出适于回流水流的回流通道9。
例如,在水流的流动方向上,端盖5的内侧可以限定有进水通道54、整流通道55以及配合通道56,进水通道54的入水端可以形成所述进水口51,整流通道55用于与叶轮3对接,叶轮3可以设在配合通道56处,并且叶轮3与配合通道56的内壁面可以间隔开设置,这样可以在叶轮3与配合通道56之间限定出适于回流水流的回流通道9。
根据本申请实施例的加热泵100,由于加工工艺的原因,可能会存在水流的回流现象,因此,配合通道56的主要作用是和叶轮3匹配形成狭小的回流通道9,这样可以抑制回流量,从而有利于提高加热泵100的效率。
进一步地,结合图21,进水通道54的外壁面形成有密封凸起541以连接进水软管。例如,进水通道54的外壁面可以形成有密封凸起541,密封凸起541可以呈环形,密封凸起541可以包括多个,多个密封凸起541可以沿进水通道54的延伸方向间隔开设置,通过密封凸起541便于连接进水软管。
在本申请的一些实施例中,结合图2,出水接管25的外壁面也可以形成有相应的密封凸起,这样便于通过所述密封凸起连接出水软管。
参照图21并结合图2,在本申请的一些实施例中,在水流的流动方向上,整流通道55的内壁面被构造成径向尺寸逐渐收缩的形状。例如,在本申请的一些实施例中,在水流的流动方向上,整流通道55的内壁面被构造成径向尺寸逐渐收缩的形状。由此,通 过所述整流通道55有利于整流,稳定水流。
进一步地,整流通道55的内壁面被构造成锥形或弧形。例如,在图21中所示的本申请的实施例中,整流通道55的内壁面可以被构造成弧形。当然,本申请不限于此,在本申请的一些实施例中,整流通道55的内壁面也可以被构造成锥形。
在本申请的一些实施例中,端盖5为一体式结构或分体式结构。例如,在本申请的一些实施例中,端盖5可以为一体式结构;当然,在本申请的一些实施例中,端盖5也可以为分体式结构。本申请对端盖5的具体成型方式不作限定,实际应用中可以根据需要适应性设置。
下面结合附图描述根据本申请的加热泵100的具体实施例。
根据本申请实施例的加热泵100的结构如图1-图10所示,其中,图1是根据本申请实施例的加热泵100的一个示意图;图2是沿图1中A-A线的剖视图;图3是沿图1中B-B线的剖视图;图4是沿图1中C-C线的剖视图;图5是沿图1中D-D线的剖视图;图6是图1中根据本申请实施例的加热泵100的另一个示意图;图7是图1中根据本申请实施例的加热泵100的再一个示意图;图8是沿图7中E-E线的剖视图;图9是沿图7中F-F线的剖视图;图10是图1中根据本申请实施例的加热泵100的还一个示意图。
加热泵100包括:驱动电机1、泵壳2、叶轮3、接线端子221、加热件4(例如发热管或厚膜等)、第一密封件6、第二密封件7(例如O型圈等)、第三密封件8(例如O型圈等)以及端盖5等零部件。驱动电机1和叶轮3可以通过叶轮3的内螺纹和电机轴11的外螺纹进行连接,其中,所述内螺纹和所述外螺纹的旋向可以相同,所述内螺纹/外螺纹的旋向和驱动电机1的旋向相反以保证工作时不会脱落,叶轮3由驱动电机1驱动;泵壳2为两个腔体结构,泵壳2内可以限定有泵腔21和加热腔22,泵腔21和加热腔22之间通过连通通道23(例如扩张通道)将水泵蜗壳212和加热腔22连接。泵壳2下端和发热管的接线端子221可以通过螺栓连接,且在加热腔22上形成有第一安装槽212(例如凹型结构)用于安装第一密封件6(例如密封垫圈),以防止水泄漏。端盖5和泵壳2可以通过螺钉连接,并且在端盖5和泵壳2之间可以设置有第二密封件7和第三密封件8,防止水从端盖5处泄漏,例如,进水端盖52与泵壳2之间可以设有第二密封件7,出水端盖53与泵壳2之间可以设有第三密封件8。
水通过端盖5外侧带有密封凸起541的进水通道54(例如吸水接管)进入加热泵100,随后通过一个整流通道55进入叶轮3,整流通道55的设置有利于整流,经过叶轮3的做功加压,高速水流再进入到水泵蜗壳212内进行收集,然后通过一个切向的连通通道23(例如扩张通道)进入加热腔22,进入加热腔22的水由于是以切向方式进入,因此 主要水流会沿着壁面旋绕,并且高速地绕过旋向和水流旋向一致的发热管,最后旋绕一周加热后的水流可以通过切向的出口连接管25导出加热泵100。
泵壳2的结构详图如图11-图17所示,其中,图11是图1中根据本申请实施例的加热泵100中泵壳2的一个立体图;图12是图1中根据本申请实施例的加热泵100中泵壳2的另一个立体图;图13是图1中根据本申请实施例的加热泵100中泵壳2的一个示意图;图14是图1中根据本申请实施例的加热泵100中泵壳2的另一个示意图;图15是沿图14中G-G线的剖视图;图16是沿图14中H-H线的剖视图;图17是图1中根据本申请实施例的加热泵100中泵壳2的再一个示意图;图18是沿图17中I-I线的剖视图;图19是沿图17中J-J线的剖视图。
泵壳2主要包括:进口连接段211、水泵蜗壳212、连通通道23(例如扩张通道)、加热腔22、出口连接管25和第一安装槽212等。其中,进口连接段211将进口接管套住,通常为一直管。连通通道23例如扩张通道的作用是为了连接水泵蜗壳212和加热腔22,结构上布置在加热泵100的切向(靠近顶部)位置,这种设计主要的考虑是便于将叶轮3吸入的气泡顺利导入到加热腔22而不聚集在水泵蜗壳212内,避免发生气泡的噪音。连通通道23例如扩张通道的切向方式进入加热腔22的还一个考虑是将水流高速导入加热腔22,并使水流沿着加热腔22的壁面旋绕,便于发热管换热性能的提高,连通通道23例如扩张通道的结构为扩张型,在水流的流动方向上,从上游侧到下游侧逐渐增加,通常要求扩张度不大于20°以避免扩张太大带来损失。加热腔22的设置特点是基本与泵腔22(叶轮3设在泵腔22内)轴向并排布置,加热腔22底部形成有第一安装槽212,第一安装槽212用于安装第一密封件6例如密封垫,这样可以对加热件4例如发热管等和接线端子221进行内外密封。在加热腔22内部设置有发热管,由于所述发热管的高温只能辐射加热腔22而不会影响叶轮3,因此不会出现由于所述发热管的热辐射导致塑料的叶轮3出现过早的老化现象而影响加热泵100的性能。由于连通通道23例如扩张通道是从顶部进入加热腔22,因此所述发热管的设计通常和水流的旋向一致,即从驱动电机侧看所述发热管是顺时针旋绕的。最后,旋转一周的水流通过切向的出口连接管25将水流导出加热泵100,出口连接管25的设置最好设置在加热腔22的顶部。其目的主要是将进入加热腔22的气泡顺利排出加热腔22从而避免产生气泡的噪音,同时气泡的存在还会影响所述发热管的换热,严重时会导致干烧现象产生破坏。
端盖5的结构如图20-图21所示,其中,图20是图1中根据本申请实施例的加热泵100中端盖5的一个立体图;图21是图20中根据本申请实施例的加热泵100中端盖5的一个剖视图。端盖5的主要作用是连接进水管和密封加热腔22,端盖5的结构可以是一体结构,也可以是分开为进水端盖52和出水端盖53的两个端盖。端盖5主要包括: 进水通道54、整流通道55、配合通道56、进水端盖52及设在进水端盖52上的配合槽521、出水端盖53及设在出水端盖53上的第三安装槽531。
进水通道54的外侧带有密封凸起541结构用于连接进水软管,整流通道55则是一段收缩段,主要用于稳定水流设置,并和叶轮3对对接。配合通道56主要和叶轮3外侧形成回流通道9,由于这种小型的加热泵通常由于加工工艺的原因,会存在一定的水流的回流现象,因此配合通道56的主要作用是和叶轮3匹配形成狭小的回流通道9,抑制回流量,提高加热泵100的效率。出水端盖53主要是密封发热管一侧水流,并在端盖内部加工出第三安装槽531,配合第三密封件8例如O型圈对加热腔22进行密封。
根据本申请实施例的加热泵100,可被用于洗碗机、洗衣机、烘干机、洗干一体机等多种需要加热液体的装置中,通过加热泵100的介质可以是水或者带有泡沫的液体。本领域技术人员应当知晓,本申请实施例的加热泵100所应用的场景不对加热泵100本身的结构造成限定。根据实际应用的需要,加热泵100的出口和进口可以与加热泵100外部的管道连接。
需要说明的是,本申请实施例所称的物体的纵截面指的与该物体的对称轴平行的截面,横截面指的是垂直于对称轴的截面。
如图22所示,加热泵100包括泵壳2、叶轮3和加热件4。泵壳2内部形成泵腔21、泵腔的水泵蜗壳212(例如集液腔)和加热腔22,叶轮3的入液口连通泵腔21,叶轮3的出液口连通泵腔的水泵蜗壳212,泵腔的水泵蜗壳212到加热腔22由连通通道23连通,加热件4设置在加热腔22内,加热腔22设置有出口接管25,出口接管25内限定出出口通道,出口接管25的自由端形成有出水口24。流体通过泵腔21进入叶轮3,经过叶轮3的离心加压后,流体经过叶轮3的出口流入泵腔的水泵蜗壳212。泵腔的水泵蜗壳212中的流体由连通通道23流入加热腔22,并在加热腔22中被加热件4加热后流入出水口24。
叶轮3设置于泵腔21和泵腔的水泵蜗壳212之间,加热件4设置于加热腔22中,通过将叶轮3和加热件4设置于不同的腔室中,从而无需在泵壳2中设置体积较大的容纳叶轮3和加热件4的腔体,并且叶轮3和加热件4二者所在腔室具有连通通道23的隔离,从而避免加热件4的高温辐射叶轮3,避免了叶轮3的过早老化。
在本申请的一些实施例中,如图22所示,叶轮3与驱动装置连接,由所述驱动装置驱动旋转从而对流经叶轮3的流体离心加压做功,提升流体的速度。驱动装置可与泵壳2固定,驱动装置可以为例如驱动电机1,驱动电机1和叶轮3可以通过叶轮3的内螺纹与驱动电机1的输出轴(例如电机轴11)的一端连接,叶轮3的旋转方向与驱动电 机1的旋转方向相反以确保叶轮3工作时不会脱落。叶轮3的叶片形状、数量、间距等可以根据实际需要进行设计。
在一些实施例中,如图23所示,连通通道23的轴线与加热腔22的轴线垂直,且连通通道23的轴线与加热腔22的轴线不在同一个平面内,加热腔22类似为圆筒形。流体由连通通道23进入加热腔22时,流体的动压力被转化为两个方向上的力,在加热腔22的壁面的法线方向上,流体的动压力被转化为对加热腔22的壁面的静压力;在加热腔22的壁面的切线方向上,流体的动压力被转化为驱动力,该驱动力驱动流体沿加热腔22的壁面旋转流动,从而形成绕加热件4的旋流,避免了加热不均和干烧现象,提升了加热效率和加热件4的寿命。
在一些实施例中,如图23所示,连通通道23的横截面面积沿泵腔的水泵蜗壳212到加热腔22的方向增大。在流体的流量不变的前提下,截面面积与流体的流速呈反比,通过增大沿泵腔的水泵蜗壳212至加热腔22的连通通道23的横截面积,降低流体流入加热腔22时的流速,回收了流体的动压,进而增加了加热泵100的扬程。同时,降低流体流入加热腔22时的流速,还能够降低流体的动能损失,进一步增强水流的旋绕效果,从而实现对流体的均匀加热,避免干烧。
在一些实施例中,连通通道23的横截面积沿泵腔的水泵蜗壳212到加热腔22的方向连续均匀增大,避免由于截面突变导致流体的动能的损失,进一步增强水流的旋绕效果,从而实现对流体的均匀加热,避免干烧。
在一些实施例中,如图23所示,连通通道23的纵截面为轴对称形状,以便于连通通道23的加工,同时,沿泵腔的水泵蜗壳212到加热腔22的方向,连通通道23的横截面积的增大量小于一定的阈值,具体来说,连通通道23的纵截面的两侧边的夹角小于预设值,该预设值例如可以为20°,能够保证由泵腔的水泵蜗壳212到加热腔22的方向,连通通道23的横截面面积的增大量小于一定的阈值,从而保证流体流入加热腔22时流速大于一定的阈值,保证流体与加热腔22的壁面不发生分离,进一步增强流体的旋绕效果,从而实现对流体的均匀加热,避免干烧。
在一些实施例中,在连通通道23的横截面内,外壁面142与加热腔22的壁面相切,在离心力的作用下,流体由泵腔的水泵蜗壳212流入加热腔22时,沿连通通道23的外壁面142流动,并沿切向流入加热腔22中,流体的动压力全部被转化为驱动流体沿加热腔22的壁面旋转流动的驱动力,进一步增强水流的旋绕效果,从而实现对流体的均匀加热,避免干烧。
在一些实施例中,如图23所示,泵壳2具有形成连通通道23的内壁面141和外壁面142,其中,内壁面141和外壁面142均为与连通通道23内的流体接触的面,并非与 外部环境接触的面,以距离泵腔21的轴线较远的壁为外壁面142,以距离泵腔21的轴线较近的壁为内壁面141。内壁面141和外壁面142在连通通道23的纵截面中对应截面的两侧边。内壁面141和/或外壁面142的壁面均为平面,即,内壁面141和/或外壁面142与流体接触的内表面不存在任何凸起或凹槽。在一些实施例中,外壁面142的内表面与叶轮3的轴线垂直。从泵腔的水泵蜗壳212流到连通通道23的液体的流向与外壁面142的壁面方向一致,壁面为平面的情况下,流体发生分离的几率减小,流动方向保持不变。
流体由泵腔的水泵蜗壳212通过内壁面141和外壁面142形成的连通通道23流入加热腔22时,流体的动能发生沿程损失,具体来说,流体的沿程损失是指,由于流体与内壁面141和外壁面142之间的摩擦力,流体的动能转化为内壁面141和外壁面142的内能,流体的动能发生损失。内壁面141和外壁面142在横截面中为直线,使流体沿直线由泵腔的水泵蜗壳212流入加热腔22中,减小了流体沿内壁面141和外壁面142流动时的运动行程,减小了该摩擦力做功的大小,进而减小了流体通过连通通道23流入加热腔22时,流体的动能的沿程损失。
流体由泵腔的水泵蜗壳212通过连通通道23流入加热腔22时,流体的动能发生局部损失,具体来说,液体流经的连通通道23发生截面突变时,流体的动能会发生损失。内壁面141和外壁面142与流体接触的内表面不存在任何凸起或凹槽,避免连通通道23发生截面突变,避免流体通过连通通道23流入加热腔22时,流体的动能的局部损失。
通过将连通通道23的侧壁内表面设置为平面,减小了流体连通通道23流入加热腔22时,流体的动能的沿程损失和局部损失,增强了流体在加热腔22中绕加热件4的旋流,使流体的受热更加均匀,进一步避免了加热不均和干烧现象。
在一些实施例中,如图23所示,泵壳2还包括将泵腔21、叶轮3和泵腔的水泵蜗壳212形成的整体与加热腔22分隔的间隔壁16。设置间隔壁16将容纳叶轮3的泵腔21和泵腔的水泵蜗壳212与容纳加热件4的加热腔22分隔,能够防止加热腔22中的加热件4的热辐射作用于叶轮3,从而避免叶轮3受热老化,延长叶轮3的使用寿命。
在一些实施例中,如图22所示,连通通道23与加热腔22的顶部开口连通,顶部开口设置在间隔壁16和加热腔22的第一端之间。即,顶部开口为靠近加热腔22端部的开口,加热腔22的进口与连通通道23相对,能够将叶轮3转动时产生的流体中的气泡导入加热腔22中,防止气泡在泵腔的水泵蜗壳212中聚集导致噪声,并且流体由加热腔22的一端进入将沿加热腔22的壁面运动,进而旋转流动,避免了气泡在加热腔22内的聚集,从而避免异常噪音和干烧现象。
在一些实施例中,如图23所示,间隔壁16还包括引导出液口的液体流向泵腔的水 泵蜗壳212的引导件161,引导件161形成连通通道23的内壁面141,即,连通通道23的内壁面与间隔壁16连接为一体,将间隔壁16和连通通道23的内壁面141集成为整体,简化了加热泵100的内部结构,降低了加热泵100的制造成本,减小了加热泵100的体积。经过叶轮3出口流出的液体受到内壁面141的阻挡及导向,流入泵腔的水泵蜗壳212内,然后通过内壁面141和外壁面142形成的连通通道23流入到加热腔12中。
在一些实施例中,如图22所示,泵腔21和加热腔22的轴线平行,即:上述泵腔21和加热腔22两个腔并排设置,从而便于加热泵100的加工和安装。
在一些实施例中,如图22所示,加热件4从加热腔22的第一端向相对的第二端延伸,出水口24设置在加热腔22的第二端。流体由加热腔22的第一端进入加热腔22中,并在加热腔22中产生旋流,旋流绕加热件4被加热后,流过整个加热腔22,由加热腔22的第二端流入出水口24,然后流出。出水口24设置在加热腔22的第二端,使得流体在加热腔22中与加热件4充分接触,并配合切向的连通通道23,形成加热腔22进口的强旋流,进一步避免加热腔22内的气泡聚集。需要说明的是,出水口24也可以设置在加热腔22的其他位置,距离进入加热腔22的第一端一定间距,而并不一定要设置在加热腔22的第二端。
出口接管25的轴线与加热腔22的轴线垂直,可形成出口接管25的壁面与加热腔22的壁面相切,流体沿加热腔22的壁面的切向流入出水口24,流体从加热腔22切向流出与流体从加热腔22切向流入配合形成进入加热腔22进口的强旋流,进一步避免加热腔22内气泡聚集产生异常噪音,以及避免干烧现象。
在一些实施例中,如图22所示,在一些实施例中,加热件4为螺旋发热管,该螺旋发热管从加热腔22的第一端延伸至相对的第二端,从加热腔30的第一端向第二端看,该螺旋发热管沿顺时针方向缠绕。即,螺旋发热管的缠绕方向与流体在加热腔22中的旋转方向一致,能够增强水流的旋绕效果,并使流体更加充分地与该螺旋发热管接触,从而实现对流体的均匀加热,避免干烧。
在一些实施例中,如图22所示,出口接管25的轴线与加热件4的延伸方向垂直,有利于流体在加热腔22中形成旋流。流体在加热腔22内沿着壁面绕加热腔22的轴线旋转流动,沿加热腔22的壁面流入出水口24,然后流出加热泵100。
在一些实施例中,如图22所示,加热腔22从第一端到第二端的壁面上设置有沿周向的导流筋131。加热腔22类似为圆筒形,导流筋131沿着圆周方向设置。具体的,导流筋131可以有多个,在加热腔22的轴向,即从第一端到第二端,间隔排列。通过导流筋131的设置,能够对加热腔22中的流体起到导流作用,增加流体在加热腔22中的旋绕程度。在一些实施例中,导流筋131也可以是连续的螺旋形,从该加热腔22的第 一端向第二端看,导流筋131沿顺时针方向旋转延伸,即,导流筋131的旋转方向与流体在加热腔22中的旋转方向一致,能够进一步增强水流的旋绕效果,从而实现对流体的均匀加热,避免干烧。
在一些实施例中,如图22和图24所示,加热泵100还包括端盖5,端盖5包括进水端盖52和出水端盖53。
在一些实施例中,如图22所示,进水端盖52插入泵腔21内并与泵壳2贴合,即,进水端盖52的外壁与泵腔21的内壁之间不存在间隙。具体的,进水端盖52可以通过多种固定方式与泵壳2固定,例如,粘接,焊接等多种。
在一些实施例中,如图22和图24所示,进水端盖52依次包括引入流体的进水通道54、流道横截面面积减小的整流通道55和与叶轮3外侧形成间隙的配合通道56。其中,进水端盖52用于与加热泵100外部的外部管道连接,流体由外部管道流入进口连接段211的进水通道54,并沿进水通道54流入整流通道55。在整流通道55中,流体被整流,湍流度降低,并流入配合通道56中。液体由配合通道56的进入叶轮3,经过叶轮3离心从径向流出,然后流入泵腔的水泵蜗壳212。配合通道56与叶轮3的外侧形成间隙,与叶轮3匹配形成狭小通道,抑制流体经过叶轮3后的回流量,从而提高加热泵100的效率。
在一些实施例中,进水端盖52可以是轴对称结构,进水端盖52、泵腔21以及叶轮3同轴设置,从而能够使水流均匀、对称地在进水端盖52和叶轮3中流动。
加热件4固定于加热腔22的第一端,端盖5(例如出水端盖53)固定于加热腔22的第二端,以封盖加热腔22的第二端。在安装加热泵100时,将加热件4由加热腔22的第二端伸入加热腔22中,并将加热件4固定于加热腔22的第一端,在加热件4安装完成后,将端盖5与泵壳2连接,以封盖加热腔22的第二端。端盖5可以通过多种方式固定于加热腔22的第二端,在一些实施例中,端盖5通过不可拆卸的方式与加热腔22的第二端连接,例如,端盖5通过焊接固定于加热腔22的第二端,通过不可拆卸的方式连接端盖5与加热腔22的第二端,能够在不设置密封元件的前提下保证端盖5与加热腔22的第二端之间的密封性;在另一些实施例中,端盖5可拆卸地固定于加热腔22的第二端,例如,端盖5通过螺钉与加热腔22的第二端连接,并在端盖5与加热腔22的第二端之间设置密封垫圈,防止加热腔22中的流体由端盖5与加热腔22的第二端之间的接缝处漏出,通过可拆卸的方式将端盖5固定于加热腔22的第二端,可以在加热件4故障时拆下端盖5,并对加热件4进行更换或维修,而无需在加热件4损坏时报废整个加热泵100。
在一些实施例中,如图24所示,进水端盖52与出水端盖53固定连为一体,能够 在安装进水端盖52的同时将出水端盖53固定于加热腔22的第二端,简化了加热泵100的安装。在另一些实施例中,进水端盖52与出水端盖53为分离的两个部件,在安装时,进水端盖52与出水端盖53之间不会发生干涉,降低了对进水端盖52与出水端盖53的加工精度的要求。
本申请实施例还提供一种清洁装置。所述清洁装置包括如前述实施例所述的加热泵100,清洁装置具有清洁物品的清洁空间,该清洁空间的入水口与加热泵100的出水口24连通。
在一些实施例中,该清洁装置例如可以是洗碗机,将碗置入清洁空间中,加热泵100将加热后的带有洗洁精的热水注入清洁空间中,以对碗进行洗涤,然后加热泵100将加热后的清水注入清洁空间中,以对碗进行漂洗,冲走碗上的泡沫,实现清洁碗的目的。
在另一些实施例中,该清洁装置例如可以是洗衣机,将衣物置入清洁空间中,加热泵100将加热后的带有洗洁精的热水注入清洁空间中,以对衣物进行洗涤,然后加热泵100将加热后的清水注入清洁空间中,以对衣物进行漂洗,实现清洁衣物的目的。
根据本申请实施例的加热泵100及具有其的清洁装置的其他构成以及操作对于本领域普通技术人员而言都是已知的,这里不再详细描述。
在本申请的描述中,需要理解的是,术语“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (29)

  1. 一种加热泵,其特征在于,包括:
    驱动电机;
    泵壳,所述泵壳内限定有泵腔和连通所述泵腔的加热腔,所述泵腔与所述加热腔大致呈轴向并排布置,所述泵腔和所述加热腔适于通过连通通道相连通,所述泵壳上形成有连通所述泵腔的进水口和连通所述加热腔的出水口;
    叶轮,所述叶轮设在所述泵腔内,所述叶轮与所述驱动电机的电机轴相连;
    加热件,所述加热件设在所述加热腔内。
  2. 根据权利要求1所述的加热泵,其特征在于,所述连通通道被构造成沿所述泵壳的内壁面的切向延伸。
  3. 根据权利要求1或2所述的加热泵,其特征在于,在水流的流动方向上,所述连通通道被构造成扩张通道,且所述扩张通道的扩张角度不大于20度。
  4. 根据权利要求3所述的加热泵,其特征在于,在水流的流动方向上,所述泵腔包括:进口连接段以及水泵蜗壳,所述水泵蜗壳与所述加热腔之间形成所述扩张通道。
  5. 根据权利要求3所述的加热泵,其特征在于,所述泵壳上设有连通所述加热腔的出口接管,所述出口接管的自由端形成所述出水口。
  6. 根据权利要求5所述的加热泵,其特征在于,所述出口接管被构造成沿所述加热腔的外侧壁的切向延伸。
  7. 根据权利要求1-6中任一项所述的加热泵,其特征在于,所述加热腔的底部形成有第一安装槽,所述第一安装槽内设有第一密封件。
  8. 根据权利要求1-7中任一项所述的加热泵,其特征在于,所述加热件为螺旋延伸的发热管,且所述发热管的旋向被构造成与水流的流动方向一致。
  9. 根据权利要求1-7中任一项所述的加热泵,其特征在于,所述加热件为设在所述加热腔的内壁面的厚膜。
  10. 根据权利要求1-9中任一项所述的加热泵,其特征在于,所述加热腔的内壁面设有导流筋,且所述导流筋的延伸方向被构造成与水流的流动方向一致。
  11. 根据权利要求1-10中任一项所述的加热泵,其特征在于,所述电机轴上形成有外螺纹,所述叶轮上形成有内螺纹,所述外螺纹与所述内螺纹相匹配以使所述电机轴与所述叶轮螺纹连接,所述外螺纹/内螺纹的旋向与所述驱动电机的旋转方向相反。
  12. 根据权利要求1-11中任一项所述的加热泵,其特征在于,还包括:
    端盖,所述端盖上形成有所述进水口,且所述端盖与所述泵壳密封连接。
  13. 根据权利要求12所述的加热泵,其特征在于,所述端盖包括:
    进水端盖,所述进水端盖与所述泵壳之间设有第二密封件;
    出水端盖,所述出水端盖与所述泵壳之间设有第三密封件;
    其中,所述进水端盖上形成有配合槽,所述泵壳上形成有与所述配合槽相匹配的配合部,所述配合部上形成有适于安装所述第二密封件的第二安装槽,所述出水端盖上形成有适于安装所述第三密封件的第三安装槽。
  14. 根据权利要求13所述的加热泵,其特征在于,在水流的流动方向上,所述端盖的内侧限定有进水通道、整流通道以及配合通道,所述进水通道的入水端形成所述进水口,所述叶轮设在所述配合通道处且与所述配合通道的内壁面间隔开设置,以在所述叶轮与所述配合通道之间限定出适于回流水流的回流通道。
  15. 根据权利要求14所述的加热泵,其特征在于,所述进水通道的外壁面形成有密封凸起以连接进水软管。
  16. 根据权利要求14或15所述的加热泵,其特征在于,在水流的流动方向上,所述整流通道的内壁面被构造成径向尺寸逐渐收缩的形状。
  17. 根据权利要求16所述的加热泵,其特征在于,所述整流通道的内壁面被构造成锥形或弧形。
  18. 根据权利要求1-17中任一项所述的加热泵,其特征在于,所述连通通道的纵截面为轴对称形状。
  19. 根据权利要求1-18中任一项所述的加热泵,其特征在于,所述泵壳具有形成所述连通通道的内壁面和外壁面,所述连通通道的外壁面与所述加热腔的壁面相切。
  20. 根据权利要求1-18中任一项所述的加热泵,其特征在于,所述泵壳具有形成所述连通通道的内壁面和外壁面,所述内壁面和/或外壁面为平面。
  21. 根据权利要求1-20中任一项所述的加热泵,其特征在于,所述泵壳还包括将所述泵腔、叶轮和所述泵腔的水泵蜗壳形成的整体与所述加热腔分隔的间隔壁。
  22. 根据权利要求21所述的加热泵,其特征在于,所述连通通道与所述加热腔的顶部开口连通,所述顶部开口设置在所述间隔壁和所述加热腔的第一端之间。
  23. 根据权利要求21或22所述的加热泵,其特征在于,所述间隔壁还包括引导所述叶轮的出液口的液体流向所述泵腔的水泵蜗壳的引导件,所述引导件形成所述连通通道的内壁面。
  24. 根据权利要求1-23中任一项所述的加热泵,其特征在于,所述泵腔的轴线与所述加热腔的轴线平行。
  25. 根据权利要求1-24中任一项所述的加热泵,其特征在于,所述加热件从所述加 热腔的第一端向相对的第二端延伸,所述出水口设置在所述加热腔的所述第二端。
  26. 根据权利要求25所述的加热泵,其特征在于,所述泵壳上的出口接管的轴线与加热件的延伸方向垂直。
  27. 根据权利要求1-26中任一项所述的加热泵,其特征在于,所述加热泵还包括:进口接管,用于插入所述泵腔内并与所述泵壳贴合。
  28. 一种清洁装置,其特征在于,包括如权利要求1-27中任一项所述的加热泵,所述清洁装置具有清洁物品的清洁空间,所述清洁空间的入水口与所述加热泵的出水口连通。
  29. 根据权利要求28所述的清洁装置,其特征在于,所述清洁装置为洗衣机或洗碗机。
PCT/CN2019/124080 2019-09-03 2019-12-09 加热泵及具有其的清洁装置 WO2021042613A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19944628.7A EP4008907A4 (en) 2019-09-03 2019-12-09 HEAT PUMP AND CLEANING DEVICE WITH IT
US17/680,227 US20220178384A1 (en) 2019-09-03 2022-02-24 Heating Pump and Cleaning Device with Same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910829519.3 2019-09-03
CN201910829519.3A CN112443487A (zh) 2019-09-03 2019-09-03 一种具有加热装置的泵及一种清洁装置
CN201910827545.2A CN110552893A (zh) 2019-09-03 2019-09-03 加热泵及具有其的洗碗机或洗衣机
CN201910827545.2 2019-09-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/680,227 Continuation US20220178384A1 (en) 2019-09-03 2022-02-24 Heating Pump and Cleaning Device with Same

Publications (1)

Publication Number Publication Date
WO2021042613A1 true WO2021042613A1 (zh) 2021-03-11

Family

ID=74852268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/124080 WO2021042613A1 (zh) 2019-09-03 2019-12-09 加热泵及具有其的清洁装置

Country Status (3)

Country Link
US (1) US20220178384A1 (zh)
EP (1) EP4008907A4 (zh)
WO (1) WO2021042613A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1076512A (zh) * 1992-03-19 1993-09-22 王光华 汽车低温加热起动器
AU666103B3 (en) * 1995-10-03 1996-01-25 Onga Pty. Ltd. Improvements in or relating to spa pumps
CN105090127A (zh) * 2014-05-20 2015-11-25 德昌电机(深圳)有限公司 加热泵
CN206035897U (zh) * 2016-04-11 2017-03-22 广东顺德思客乐施电器科技有限公司 区分叶轮腔和加热腔的洗碗机水泵
CN108194422A (zh) * 2018-02-10 2018-06-22 佛山市顺德区美的洗涤电器制造有限公司 集热泵和洗碗机

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6170472B1 (en) * 1997-06-04 2001-01-09 Ford Global Technologies, Inc. Fuel delivery module for an automotive fuel system
DE10053415A1 (de) * 2000-10-27 2002-05-29 Bsh Bosch Siemens Hausgeraete Elektrischer Heizkörper
DE10325981A1 (de) * 2003-06-07 2004-12-23 Daimlerchrysler Ag Flüssigkeitspumpe mit Heizelement
KR100765674B1 (ko) * 2003-12-10 2007-10-12 마츠시타 덴끼 산교 가부시키가이샤 열교환기 및 그것을 구비한 세정 장치
KR20100048467A (ko) * 2008-10-31 2010-05-11 삼성전자주식회사 식기세척기
US8419358B2 (en) * 2009-06-17 2013-04-16 Sundyne, Llc Flow output nozzle for centrifugal pump
DE102011079510B4 (de) * 2011-07-20 2016-11-24 E.G.O. Elektro-Gerätebau GmbH Pumpe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1076512A (zh) * 1992-03-19 1993-09-22 王光华 汽车低温加热起动器
AU666103B3 (en) * 1995-10-03 1996-01-25 Onga Pty. Ltd. Improvements in or relating to spa pumps
CN105090127A (zh) * 2014-05-20 2015-11-25 德昌电机(深圳)有限公司 加热泵
CN206035897U (zh) * 2016-04-11 2017-03-22 广东顺德思客乐施电器科技有限公司 区分叶轮腔和加热腔的洗碗机水泵
CN108194422A (zh) * 2018-02-10 2018-06-22 佛山市顺德区美的洗涤电器制造有限公司 集热泵和洗碗机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4008907A4 *

Also Published As

Publication number Publication date
EP4008907A4 (en) 2022-10-19
US20220178384A1 (en) 2022-06-09
EP4008907A1 (en) 2022-06-08

Similar Documents

Publication Publication Date Title
CN211046642U (zh) 一种带有双冷却通道的电机
CN114060288B (zh) 电动汽车电源热管理系统用电泵
WO2021042613A1 (zh) 加热泵及具有其的清洁装置
CN110552893A (zh) 加热泵及具有其的洗碗机或洗衣机
CN209469626U (zh)
JP7401119B2 (ja) 集熱ポンプ及び家庭電器
CN112797003B (zh) 集热泵
CN112443487A (zh) 一种具有加热装置的泵及一种清洁装置
CN109114006B (zh) 一种具有加热功能的水泵
CN112648192B (zh) 加热泵及清洁装置
CN110875671A (zh) 一种带有双冷却通道的电机
WO2023071035A1 (zh) 一种双流道散热水泵
CN111503054B (zh) 一种泵
CN219317202U (zh) 加热泵及洗涤电器
WO2021227476A1 (zh) 加热泵和洗碗机
CN220505336U (zh) 智能双驱泵及供水系统
CN212003701U (zh) 一种泵密封结构和洗碗机泵
KR100797834B1 (ko) 순환펌프
CN210003519U (zh) 一种洗涤装置的泵
CN210003515U (zh) 一种洗涤装置的泵
CN211343492U (zh) 具有挡水导流结构的活水泵泵盖及活水泵
CN210003517U (zh) 一种洗涤装置的泵
CN219557153U (zh) 一种改善风机温升的洗地机
CN219795670U (zh) 一种泵用密封件冷却结构
CN210003511U (zh) 一种洗涤装置的泵

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19944628

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019944628

Country of ref document: EP

Effective date: 20220301

NENP Non-entry into the national phase

Ref country code: DE