WO2021042583A1 - 一种动力电池储能式有轨电车充电系统及其充电方法 - Google Patents

一种动力电池储能式有轨电车充电系统及其充电方法 Download PDF

Info

Publication number
WO2021042583A1
WO2021042583A1 PCT/CN2019/120553 CN2019120553W WO2021042583A1 WO 2021042583 A1 WO2021042583 A1 WO 2021042583A1 CN 2019120553 W CN2019120553 W CN 2019120553W WO 2021042583 A1 WO2021042583 A1 WO 2021042583A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
energy storage
ground
power battery
bms
Prior art date
Application number
PCT/CN2019/120553
Other languages
English (en)
French (fr)
Inventor
陈诚
李斌
束昊昱
Original Assignee
中车戚墅堰机车有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车戚墅堰机车有限公司 filed Critical 中车戚墅堰机车有限公司
Publication of WO2021042583A1 publication Critical patent/WO2021042583A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • B60L5/18Current collectors for power supply lines of electrically-propelled vehicles using bow-type collectors in contact with trolley wire
    • B60L5/22Supporting means for the contact bow
    • B60L5/28Devices for lifting and resetting the collector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • B60L5/38Current collectors for power supply lines of electrically-propelled vehicles for collecting current from conductor rails
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/68Off-site monitoring or control, e.g. remote control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the invention relates to the technical field of urban rail electric transmission systems, in particular to a power battery energy storage type tram charging system and a charging method thereof.
  • a tram is a light rail transit vehicle that uses electricity to drive and runs on the track.
  • a tram is a public transportation tool that is driven by electricity and does not emit exhaust gas. Therefore, it is a pollution-free and environmentally friendly transportation tool.
  • the on-board energy storage type power supply basically uses super capacitors or super capacitors plus small-capacity lithium batteries. Due to the low energy density of super capacitors, the on-board energy storage energy is limited and the vehicle's cruising range Short; supercapacitors combined with small-capacity lithium batteries can increase the energy storage capacity of the vehicle, but the increase in energy is limited. Although it can effectively increase the distance between stations, it still needs to be charged at stations.
  • This project uses pure lithium battery on-board energy storage method, the on-board energy storage energy is increased by more than 5 times, which effectively increases the cruising range.
  • the risk of blind charging of lithium batteries is high, especially in fast charging mode.
  • the charger needs to obtain the characteristics of the lithium battery to control the charging current and voltage to charge the lithium battery, so the charger needs to establish a communication channel with the on-board lithium battery.
  • the present invention provides a power battery energy storage type tram charging system and a charging method thereof.
  • the power battery charging control system data is controlled by the cooperation of the on-board wireless AP and the ground signal position recognition system. transmission. .
  • a power battery energy storage type tram charging system including a tram that uses a pantograph to get electricity from a contact rail, and a charging control system for energy supply ,
  • the on-board energy storage management system installed in the tram and the ground signal device installed in the platform.
  • the charging control system is composed of the charger and the charger controller.
  • the contact rail is connected to the charger through a cable, and the ground signal through the OVC
  • the antenna sends the current station number to the tram, the ground signal machine is connected to the charger controller through the RS485 bus, the charger controller is connected to the station WIFI-AP device through the switch, and the charger controller and the on-board energy storage management system are wirelessly connected through WIFI. connection.
  • the central compartment of the tram is equipped with the main control system VCU and the signal system OBU with OVC antenna.
  • the two compartments of the tram are equipped with on-board energy storage management systems.
  • the on-board energy storage management systems include BMS and WIFI.
  • the main control system VCU is connected to the on-board energy storage management system through the MVB bus.
  • a charging method for power battery energy storage tramcar charging system When the driver chooses to raise the bow,
  • Step 1 The VCU sends the bow raising command and the station number to the on-board energy storage management system BMS through the vehicle MVB bus;
  • Step 2 The BMS packs the bow raising command, the station number and the relevant parameters of the power battery pack, and sends it to the ground charger controller via WIFI-AP;
  • Step 3 The ground charger controller receives the data sent by the BMS and extracts the platform number information from it, and compares it with the platform number transmitted by the ground signal. When the platform number is the same, the ground charger controller will control the charger Enter the pre-charge state;
  • Step 4 When the bow raising is in place and the vehicle is ready for charging, the VCU sends the signal of the bow raising in place and the station number to the BMS again;
  • Step 5 The BMS then sends the charging request command to the ground charger controller through the WIFI-AP;
  • Step 6 The ground charger controller receives the instruction and starts charging after detecting the voltage fed back by the pantograph;
  • Step 7 The BMS sends the power battery parameters to the ground charger controller in real time via WIFI-AP.
  • Step 1 The VCU first sends the charging stop instruction to the BMS;
  • Step 2 BMS will give priority to stop charging command to ground charger controller via WIFI-AP;
  • Step 3 The ground charger controller immediately stops charging the charger after receiving the stop charging instruction
  • Step 4 After the charging is completely stopped, the ground charger controller sends the charging stop feedback signal to the BMS through the WIFI-AP;
  • Step 5 The BMS sends the charging stop feedback signal to the VCU via the vehicle MVB bus;
  • Step 6 The VCU executes the bow-down command after obtaining the charge stop feedback signal.
  • the beneficial effect of the present invention is that industrial-grade WIFI-AP equipment is used, configured in a point-to-point fast matching mode, the communication connection is started when the vehicle approaches the charging station, and the connection is completed when the vehicle arrives, and the on-board signal system OBU has also passed the near ground
  • the radio frequency communication antenna OVC completes the basic data interaction with the ground signal, and realizes real-time contactless transmission of data.
  • the OBU sends the obtained station number to the on-board VCU through the vehicle MVB bus to realize the rapid identification of the charged vehicle.
  • FIG. 1 is a diagram of the charging principle of the present invention.
  • Pantograph 2. Contact rail, 3. Tram, 4. Charger, 5. Charger controller, 6. Switch, 7. Platform, 8. Ground signal.
  • a power battery energy storage type tram charging system includes a tram 3 that uses a pantograph 1 to get electricity from a contact rail 2, a charging control system for energy supply, and a The on-board energy storage management system in the tram 3 and the ground signal 8 set in the platform 7.
  • the charging control system consists of the charger 4 and the charger controller 5.
  • the contact rail 2 is connected to the ground charger 4 through a cable, and the ground
  • the signal machine 8 sends the current station number to the tram 3 through the OVC antenna
  • the ground signal machine 8 is connected to the charger controller 5 through the RS485 bus
  • the charger controller 5 is connected to the station WIFI-AP device through the switch 6, and the charger is controlled
  • the device 5 and the on-board energy storage management system are wirelessly connected through WIFI.
  • the pantograph 1 is the electrical equipment that the electric traction vehicle obtains electric energy from the contact rail 2. It is installed on the top of the carriage.
  • OVC refers to the near-earth radio frequency communication antenna and charger controller.
  • 5 and tram 3 are equipped with matching WIFI-APs.
  • WIFI-AP refers to the use of wireless devices to achieve point-to-point data communication.
  • the central compartment of tram 3 is equipped with a main control system VCU and an OVC antenna.
  • OBU, OBU refers to the on-board signal system unit
  • VCU refers to the core electronic control unit that realizes the control logic of the whole vehicle.
  • the two compartments of the tram 3 are equipped with on-board energy storage management systems.
  • the on-board energy storage management system includes BMS With WIFI-AP, the main control system VCU is connected to the vehicle energy storage management system through the MVB bus.
  • BMS refers to the battery management system
  • MVB refers to the multifunctional vehicle bus, which is mainly used for interoperability and mutual A serial data communication bus between interconnected devices that are required for exchange.
  • the communication connection starts when the vehicle approaches the charging station, and the connection is completed when the vehicle arrives; at the same time, the on-board signal system OBU also The basic data interaction has been completed with the ground signal machine through the near-ground radio frequency communication antenna OVC; the OBU will send the obtained station number to the vehicle VCU through the vehicle MVB bus.
  • the VCU When the driver chooses to raise the bow, the VCU will send the bow raising command and the station number to the on-board energy storage management system BMS through the vehicle MVB bus; the BMS then packs the bow raising command, the station number and the relevant parameters of the power battery pack, and passes the WIFI -AP sent to the ground charger controller 5; the ground charger controller 5 receives the data sent by the BMS and extracts the station number information from it, and compares it with the station number transmitted by the ground signal machine 8.
  • the ground charger controller 5 When the station number is the same, Then the ground charger controller 5 will control the charger to enter the pre-charging state; when the bow lift is in place and the vehicle is ready for charging, the VCU will again send the bow lift in place and the station number signal to the BMS; the BMS will then send it through WIFI-AP
  • the charging request instruction is sent to the charger controller 5; the ground charger controller 5 receives the instruction and detects the voltage fed back by the pantograph 1 and starts charging; the BMS sends the power battery parameters to the ground charger in real time via WIFI-AP Controller 5:
  • the VCU first sends the charging stop command to the BMS; the BMS sends the charging stop command to the charger 4 controller through WIFI-AP priority; the ground charger controller 5 receives the stop charging command Stop the charging of the ground charger 4 immediately after the instruction; after the charging is completely stopped, the charger controller 5 sends the charging stop feedback signal to the BMS through the WIFI-AP; the BMS sends the charging stop feedback signal to the VCU through the vehicle M
  • WIF-AP technology solves the problem of real-time transmission of a large amount of data during lithium battery charging; considering the situation where uplink and downlink vehicles enter the station at the same time, because the wireless transmission has no directivity, the charging system obtains the current station number information from the signal system, To help the charging control system distinguish the corresponding vehicles and solve the problem of charging vehicle identification.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种动力电池储能式有轨电车充电系统及其充电方法,包括利用受电弓(1)从接触轨(2)上取电的有轨电车(3)、用于供能的充电控制系统、设置在有轨电车(3)内的车载储能管理系统和设置在站台(7)内的地面信号机(8),充电控制系统由充电机(4)和地面充电机控制器(5)构成,接触轨(2)通过电缆与充电机(4)连接,充电控制系统和有轨电车(3)均设置有WIFI-AP,利用WIFI-AP技术解决了锂电池充电时大量数据进行实时传输的难题;考虑上下行车辆同时进站的情况,因无线传输无指向性,车载储能管理系统通过从信号系统中获得当前站台编号信息,来帮助充电控制系统区分对应的车辆,解决充电车辆识别的难题。

Description

一种动力电池储能式有轨电车充电系统及其充电方法 技术领域
本发明涉及城轨电传动系统技术领域,尤其是一种动力电池储能式有轨电车充电系统及其充电方法。
背景技术
有轨电车是采用电力驱动并在轨道上行驶的轻型轨道交通车辆,有轨电车是一种公共交通工具,以电力驱动,车辆不会排放废气,因而是一种无污染的环保交通工具。现有有轨电车充电方案中,车载储能式供电方式基本都使用的是超级电容或超级电容加小容量锂电池的方案,由于超级电容能量密度低,因此车载储能能量有限,车辆续航里程短;超级电容配合小容量锂电池可以提高车载储能能量,但能量增加有限,虽然可有效增加站站距离,但仍然需要站站充电。本项目选用纯锂电池的车载储能方式,车载储能能量提升5倍以上,有效的提高了续航里程,但由于锂电池的特性,锂电池盲充风险高,特别是在快充模式下,充电机需要获取锂电池的特性来控制充电电流、电压给锂电池充电,因此充电机需要与车载锂电池建立通讯通道。
技术问题
为了克服现有的上述的不足,本发明提供了一种动力电池储能式有轨电车充电系统及其充电方法,利用车载无线AP及地面信号位置识别系统配合的方式进行动力电池充电控制系统数据传输。。
技术解决方案
本发明解决其技术问题所采用的技术方案是:一种动力电池储能式有轨电车充电系统,包括利用受电弓从接触轨上取电的有轨电车、用于供能的充电控制系统、设置在有轨电车内的车载储能管理系统和设置在站台内的地面信号机,充电控制系统由充电机和充电机控制器构成,接触轨通过电缆与充电机连接,地面信号机通过OVC天线向有轨电车发送当前站台编号,地面信号机与充电机控制器通过RS485总线连接,充电机控制器通过交换机与站台WIFI-AP设备连接,充电机控制器和车载储能管理系统通过WIFI无线连接。
进一步的,有轨电车的中部车厢内设置有主控制系统VCU及带OVC天线的信号系统OBU,有轨电车的两车厢内均设置有车载储能管理系统,车载储能管理系统包括BMS和WIFI-AP,主控制系统VCU通过MVB总线与车载储能管理系统连接。
一种动力电池储能式有轨电车充电系统的充电方法,当司机选择升弓时,
步骤一:VCU将升弓指令及站台编号,通过车辆MVB总线发给车载储能管理系统BMS;
步骤二:BMS再将升弓指令、站台编号及动力电池组的相关参数打包,并通过WIFI-AP发给地面充电机控制器;
步骤三:地面充电机控制器接收到BMS发来的数据,并从中提取站台编号信息,与地面信号机传送的站台编号进行对比,当站台编号一致时,则地面充电机控制器将控制充电机进入预充电状态;
步骤四:当升弓到位,并且车辆完成充电准备工作后,VCU再次把升弓到位及站台编号信号发给BMS;
步骤五:BMS再通过WIFI-AP发送充电请求指令给地面充电机控制器;
步骤六:地面充电机控制器收到指令,并检测到受电弓反馈的电压后开始充电;
步骤七:BMS通过WIFI-AP将动力电池的参数实时发送给地面充电机控制器。
当司机选择降弓时,
步骤一:VCU首先将停止充电指令发给BMS;
步骤二:BMS通过WIFI-AP优先将停止充电指令发给地面充电机控制器;
步骤三:地面充电机控制器在接收到停止充电指令后立即停止充电机充电;
步骤四:在充电完全停止后,地面充电机控制器通过WIFI-AP将充电停止反馈信号发给BMS;
步骤五:BMS将充电停止反馈信号通过车辆MVB总线发给VCU;
步骤六:VCU获得充电停止反馈信号后执行降弓指令。
有益效果
本发明的有益效果是,使用工业级WIFI-AP设备,配置成点对点快速匹配模式,在车辆接近充电站台时开始通讯连接,在车辆到站时已完成连接,车载信号系统OBU也已通过近地射频通讯天线OVC与地面信号机完成基本的数据交互,实现数据实时无接触传输,OBU将获得的站台编号通过车辆MVB总线发给车载VCU,实现充电车辆的快速识别。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1是本发明的充电原理图。
图中1.受电弓,2.接触轨,3.有轨电车,4.充电机,5.充电机控制器,6.交换机,7.站台,8.地面信号机。
本发明的实施方式
 如图1所示,一种动力电池储能式有轨电车充电系统,包括利用受电弓1从接触轨2上取电的有轨电车3、用于供能的充电控制系统、设置在有轨电车3内的车载储能管理系统和设置在站台7内的地面信号机8,充电控制系统由充电机4和充电机控制器5构成,接触轨2通过电缆与地面充电机4连接,地面信号机8通过OVC天线向有轨电车3发送当前站台编号,地面信号机8与充电机控制器5通过RS485总线连接,充电机控制器5通过交换机6与站台WIFI-AP设备连接,充电机控制器5和车载储能管理系统通过WIFI无线连接,受电弓1是电力牵引车辆从接触轨2取得电能的电气设备,安装在车厢顶部,OVC指的是近地射频通讯天线,充电机控制器5和有轨电车3均设置有相互匹配的WIFI-AP,WIFI-AP指的是使用无线设备实现点对点的数据通讯,有轨电车3的中部车厢内设置有主控制系统VCU及带OVC天线的OBU,OBU指的是车载信号系统单元,VCU指的是实现整车控制逻辑的核心电子控制单元,有轨电车3的两车厢内均设置有车载储能管理系统,车载储能管理系统包括BMS和WIFI-AP,主控制系统VCU通过MVB总线与车载储能管理系统连接,BMS指的是电池管理系统, MVB指的是多功能车辆总线,是一种主要用于对有互操作性和互换性要求的互连设备之间的串行数据通信总线。
使用工业级WIFI-AP设备,配置成点对点快速匹配模式,在车辆接近充电站台时开始通讯连接,在车辆到站时已完成连接;同时在车辆进站到停止的过程中,车载信号系统OBU也已通过近地射频通讯天线OVC与地面信号机完成基本的数据交互;OBU将获得的站台编号通过车辆MVB总线发给车载VCU。
当司机选择升弓时,VCU将升弓指令及站台编号,通过车辆MVB总线发给车载储能管理系统BMS;BMS再将升弓指令、站台编号及动力电池组的相关参数打包,并通过WIFI-AP发给地面充电机控制器5;地面充电机控制器5接收到BMS发来的数据,并从中提取站台编号信息,与地面信号机8传送的站台编号进行对比,当站台编号一致时,则地面充电机控制器5将控制充电机进入预充电状态;当升弓到位,并且车辆完成充电准备工作后,VCU再次把升弓到位及站台编号信号发给BMS;BMS再通过WIFI-AP发送充电请求指令给充电机控制器5;地面充电机控制器5收到指令,并检测到受电弓1反馈的电压后开始充电;BMS通过WIFI-AP将动力电池的参数实时发送给地面充电机控制器5;当司机选择降弓时,VCU首先将停止充电指令发给BMS;BMS通过WIFI-AP优先将停止充电指令发给充电机4控制器;地面充电机控制器5在接收到停止充电指令后立即停止地面充电机4充电;在充电完全停止后,充电机控制器5通过WIFI-AP将充电停止反馈信号发给BMS;BMS将充电停止反馈信号通过车辆MVB总线发给VCU;VCU获得充电停止反馈信号后执行降弓指令。利用WIF-AP技术解决了锂电池充电时的大量数据进行实时传输的难题;考虑上下行车辆同时进站的情况,因无线传输无指向性,该充电系统从信号系统中获得当前站台编号信息,来帮助充电控制系统区分对应的车辆,解决充电车辆识别的难题。
以上说明对本发明而言只是说明性的,而非限制性的,本领域普通技术人员理解,在不脱离所附权利要求所限定的精神和范围的情况下,可做出许多修改、变化或等效,但都将落入本发明的保护范围内。

Claims (10)

  1. 一种动力电池储能式有轨电车充电系统,其特征是,包括利用受电弓(1)从接触轨(2)上取电的有轨电车(3)、用于供能的充电控制系统、设置在有轨电车(3)内的车载储能管理系统和设置在站台(7)内的地面信号机(8),地面信号机(8)通过OVC天线向有轨电车(3)发送当前站台编号,地面信号机(8)与充电控制系统通过RS485总线连接,充电控制系统通过交换机(6)与站台WIFI-AP设备连接,充电控制系统和车载储能管理系统通过WIFI无线连接。
  2. 根据权利要求1所述的一种动力电池储能式有轨电车充电系统,其特征是,所述充电控制系统由充电机(4)和充电机控制器(5)构成。
  3. 根据权利要求2所述的一种动力电池储能式有轨电车充电系统,其特征是,所述充电机(4)通过电缆与接触轨(2)连接。
  4. 根据权利要求2所述的一种动力电池储能式有轨电车充电系统,其特征是,所述充电机控制器(5)通过RS485总线与地面信号机(8)连接。
  5. 根据权利要求2所述的一种动力电池储能式有轨电车充电系统,其特征是,所述充电机控制器(5)通过交换机(6)与站台WIFI-AP设备连接。
  6. 根据权利要求1所述的一种动力电池储能式有轨电车充电系统,其特征是,所述有轨电车(3)的中部车厢内设置有主控制系统VCU及带OVC天线的信号系统OBU。
  7. 根据权利要求1所述的一种动力电池储能式有轨电车充电系统,其特征是,所述有轨电车(3)的两车厢内均设置有车载储能管理系统。
  8. 根据权利要求7所述的一种动力电池储能式有轨电车充电系统,其特征是,所述车载储能管理系统包括BMS和WIFI-AP,主控制系统VCU通过MVB总线与车载储能管理系统连接。
  9. 根据权利要求1所述的一种动力电池储能式有轨电车充电装置的充电方法,其特征在于,当司机选择升弓时,
    步骤一:VCU将升弓指令及站台编号,通过车辆MVB总线发给车载储能管理系统BMS;
    步骤二:BMS再将升弓指令、站台编号及动力电池组的相关参数打包,并通过WIFI-AP发给地面充电机控制器;
    步骤三:地面充电机控制器接收到BMS发来的数据,并从中提取站台编号信息,与地面信号机传送的站台编号进行对比,当站台编号一致时,则地面充电机控制器将控制充电机进入预充电状态;
    步骤四:当升弓到位,并且车辆完成充电准备工作后,VCU再次把升弓到位及站台编号信号发给BMS;
    步骤五:BMS再通过WIFI-AP发送充电请求指令给地面充电机控制器;
    步骤六:地面充电机控制器收到指令,并检测到受电弓反馈的电压后开始充电;
    步骤七:BMS通过WIFI-AP将动力电池的参数实时发送给地面充电机控制器。
  10. 根据权利要求1所述的一种动力电池储能式有轨电车充电装置的充电方法,其特征在于,当司机选择降弓时,
    步骤一:VCU首先将停止充电指令发给BMS;
    步骤二:BMS通过WIFI-AP优先将停止充电指令发给地面充电机控制器;
    步骤三:地面充电机控制器在接收到停止充电指令后立即停止充电机充电;
    步骤四:在充电完全停止后,地面充电机控制器通过WIFI-AP将充电停止反馈信号发给BMS;
    步骤五:BMS将充电停止反馈信号通过车辆MVB总线发给VCU;
    步骤六:VCU获得充电停止反馈信号后执行降弓指令。
PCT/CN2019/120553 2019-09-04 2019-11-25 一种动力电池储能式有轨电车充电系统及其充电方法 WO2021042583A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910832527.3A CN110435433A (zh) 2019-09-04 2019-09-04 一种动力电池储能式有轨电车充电系统及其充电方法
CN201910832527.3 2019-09-04

Publications (1)

Publication Number Publication Date
WO2021042583A1 true WO2021042583A1 (zh) 2021-03-11

Family

ID=68439185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/120553 WO2021042583A1 (zh) 2019-09-04 2019-11-25 一种动力电池储能式有轨电车充电系统及其充电方法

Country Status (2)

Country Link
CN (1) CN110435433A (zh)
WO (1) WO2021042583A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110435433A (zh) * 2019-09-04 2019-11-12 中车戚墅堰机车有限公司 一种动力电池储能式有轨电车充电系统及其充电方法
CN113829931B (zh) * 2020-06-24 2023-07-11 比亚迪股份有限公司 一种列车充电控制方法、装置及列车
CN112406613B (zh) * 2020-10-30 2022-06-07 交控科技股份有限公司 一种车载动力电池充电控制方法及系统
CN113645290B (zh) * 2021-08-03 2024-04-05 安徽绿舟科技有限公司 一种基于AP和Station双模式的换电站和车WIFI通讯设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0968873A1 (fr) * 1998-07-02 2000-01-05 A.N.F. Industrie Réseau de transport en commun avec véhicules électriques
KR20110089596A (ko) * 2010-02-01 2011-08-09 주식회사 케이씨에스 스마트 정거장 분산 충전 시스템
CN108032743A (zh) * 2017-11-22 2018-05-15 孙艳洁 智能快速充电系统和方法
CN109606185A (zh) * 2018-12-17 2019-04-12 丹阳市新苏电子有限公司 充电管理方法及系统
CN109922987A (zh) * 2016-10-27 2019-06-21 株式会社东芝 充电系统
CN110254283A (zh) * 2019-04-30 2019-09-20 北京北交新能科技有限公司 有轨电车无线控制充电系统
CN110435433A (zh) * 2019-09-04 2019-11-12 中车戚墅堰机车有限公司 一种动力电池储能式有轨电车充电系统及其充电方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0968873A1 (fr) * 1998-07-02 2000-01-05 A.N.F. Industrie Réseau de transport en commun avec véhicules électriques
KR20110089596A (ko) * 2010-02-01 2011-08-09 주식회사 케이씨에스 스마트 정거장 분산 충전 시스템
CN109922987A (zh) * 2016-10-27 2019-06-21 株式会社东芝 充电系统
CN108032743A (zh) * 2017-11-22 2018-05-15 孙艳洁 智能快速充电系统和方法
CN109606185A (zh) * 2018-12-17 2019-04-12 丹阳市新苏电子有限公司 充电管理方法及系统
CN110254283A (zh) * 2019-04-30 2019-09-20 北京北交新能科技有限公司 有轨电车无线控制充电系统
CN110435433A (zh) * 2019-09-04 2019-11-12 中车戚墅堰机车有限公司 一种动力电池储能式有轨电车充电系统及其充电方法

Also Published As

Publication number Publication date
CN110435433A (zh) 2019-11-12

Similar Documents

Publication Publication Date Title
WO2021042583A1 (zh) 一种动力电池储能式有轨电车充电系统及其充电方法
CN103748761B (zh) 车辆以及非接触供电系统
CN107776416A (zh) 一种轨道交通混合动力电路、储能动力包及其供电方法
CN107571753B (zh) 一种基于电动公交车停靠过程的动态无线充电自动对准系统及其控制方法
CN113829906B (zh) 一种电动公交车的复合电源系统及其能量管理控制方法
CN105048650A (zh) 用于电动汽车行车充电的无线能量传输装置
CN108081982A (zh) 一种有轨电车混合供电方法
CN105946626A (zh) 城市轨道交通受电装置和系统
CN210502289U (zh) 一种动力电池储能式有轨电车充电装置
CN102795117B (zh) 电动客车
WO2020143390A1 (zh) 电动汽车车网融合v2x动态无线能量双向推送系统及方法
CN103117585B (zh) 一种电动汽车混合储能充电系统
CN114132346B (zh) 一种永磁直驱混铁车及其控制方法
CN108081969A (zh) 一种有轨电车混合供电系统
CN111660878B (zh) 制动能量回收和应急牵引储能系统、供电系统及控制方法
CN110014900A (zh) 一种基于无线充电的移动充电系统及控制方法
CN209381812U (zh) 电动汽车v2x动态无线能量双向推送系统
JP4709654B2 (ja) 交通システム
CN205737015U (zh) 全程无网型城市轨道交通受电装置和系统
CN212332397U (zh) 新能源轨道机车车辆无线充电系统
CN208069663U (zh) 共享充电轨道车
CN212400970U (zh) 一种轨道交通车辆用不对称辅助供电系统
Barbosa Battery electric rail technology review-a technical and operational assessment. Current status, challenges and perspectives
CN212708983U (zh) 车辆无线充电的混合储能装置及无网供电系统
CN210191213U (zh) 有轨电车无线控制充电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19944520

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19944520

Country of ref document: EP

Kind code of ref document: A1