WO2021042531A1 - 显示面板的制作方法 - Google Patents

显示面板的制作方法 Download PDF

Info

Publication number
WO2021042531A1
WO2021042531A1 PCT/CN2019/117398 CN2019117398W WO2021042531A1 WO 2021042531 A1 WO2021042531 A1 WO 2021042531A1 CN 2019117398 W CN2019117398 W CN 2019117398W WO 2021042531 A1 WO2021042531 A1 WO 2021042531A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer pattern
electrode layer
substrate
electrode
nanoparticle
Prior art date
Application number
PCT/CN2019/117398
Other languages
English (en)
French (fr)
Inventor
赵金阳
周淼
Original Assignee
Tcl华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl华星光电技术有限公司 filed Critical Tcl华星光电技术有限公司
Priority to US16/619,485 priority Critical patent/US11414774B2/en
Publication of WO2021042531A1 publication Critical patent/WO2021042531A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/22Servicing or operating apparatus or multistep processes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/18Electrophoretic coating characterised by the process using modulated, pulsed, or reversing current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/285Permanent coating compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8722Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0274Optical details, e.g. printed circuits comprising integral optical means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/01Tools for processing; Objects used during processing
    • H05K2203/0104Tools for processing; Objects used during processing for patterning or coating
    • H05K2203/0117Pattern shaped electrode used for patterning, e.g. plating or etching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0756Uses of liquids, e.g. rinsing, coating, dissolving
    • H05K2203/0776Uses of liquids not otherwise provided for in H05K2203/0759 - H05K2203/0773
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/10Using electric, magnetic and electromagnetic fields; Using laser light
    • H05K2203/105Using an electrical field; Special methods of applying an electric potential
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1105Heating or thermal processing not related to soldering, firing, curing or laminating, e.g. for shaping the substrate or during finish plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process

Definitions

  • This application relates to the field of display, and in particular to a manufacturing method of a display panel.
  • Nanomaterials are structural units with a size ranging from 1 nanometer to 100 nanometers. Due to its volume effect, surface effect, quantum size effect and macro quantum tunneling effect, it has unique properties in melting point, magnetism, optics, thermal conductivity, electrical conductivity, etc., and has important application value in many fields
  • Quantum dots are nanomaterials with high luminous efficiency and narrow luminous peaks, which have been widely used in backlight products.
  • the existing quantum dot patterning technology is mainly realized by inkjet printing and photolithography, and the high manufacturing cost and the complicated pixel point manufacturing process restrict its large-scale promotion.
  • the present application provides a manufacturing method of a display panel to solve the technical problem of the complicated manufacturing process of the existing quantum dot display panel.
  • the present application provides a manufacturing method of a display panel, which includes:
  • the second substrate is disposed opposite to the first substrate, and the first electrode layer pattern corresponds to the second electrode layer pattern;
  • the first electrode layer pattern and the second electrode layer pattern are connected to a power source, and the nanoparticles are patterned to form a nanoparticle layer pattern;
  • the second substrate is removed.
  • the step of forming a first electrode layer pattern on the first substrate includes:
  • the first photomask process is used to pattern the first metal thin film layer, so that the first metal thin film layer forms the first electrode layer pattern including at least two first electrode units.
  • the method before coating the nanoparticle solution on the first electrode layer pattern and the first substrate, the method further includes:
  • the retaining wall is located in an edge area of the first substrate, and the first electrode layer pattern is located in the retaining wall.
  • the nanoparticle solution covers the first electrode layer pattern and the first substrate, and the thickness of the nanoparticle solution is smaller than the thickness of the retaining wall.
  • the nanoparticles in the nanoparticle solution include one of quantum dots, holes, and electrons.
  • a second substrate formed with a second electrode layer pattern is provided, and the step of arranging the second substrate opposite to the first substrate includes:
  • the second photomask process is used to pattern the second metal thin film layer, so that the second metal thin film layer forms the second electrode layer pattern including at least two second electrode units.
  • the orthographic projection of the second electrode unit on the first electrode unit coincides with the first electrode unit.
  • the nanoparticle layer pattern includes at least two nanoparticle units
  • a said nanoparticle unit corresponds to a said first electrode unit or/and a said second electrode unit;
  • the pattern of the nanoparticle unit is the same as the pattern of the first electrode unit and the second electrode unit.
  • the first electrode layer pattern and the second electrode layer pattern are connected to a power source, and the step of patterning the nanoparticles to form the nanoparticle layer pattern includes:
  • the first electrode layer pattern and the second electrode layer pattern are supplied with an alternating current, and an alternating electric field is formed between the first electrode layer pattern and the second electrode layer pattern;
  • the AC electric field causes the nanoparticles in the nanoparticle solution to converge between the first electrode layer pattern and the second electrode layer pattern;
  • a predetermined process is used to remove the solvent in the nanoparticle solution to form a nanoparticle layer pattern.
  • the step of using a predetermined process to remove the solvent in the nanoparticle solution includes:
  • a reactive monomer is added to the nanoparticle solution and cured by heating or ultraviolet light to remove the solvent in the nanoparticle solution.
  • an AC electric field is formed between the first electrode layer pattern and the second electrode layer pattern, and the electric field strength and frequency of the AC electric field are adjusted to make the quantum dots in the solution layer containing the quantum dots form a predetermined pattern, thereby reducing the quantum dots.
  • the process of patterning is difficult and the production efficiency is improved.
  • FIG. 1 is a step diagram of a manufacturing method of a display panel of this application
  • 2A to 2G are process steps diagrams of the manufacturing method of the display panel of the present application.
  • the quantum dot patterning technology generally mainly includes inkjet printing and photolithography.
  • the above two technologies have certain limitations and the process is relatively complicated, the above two patterning technologies cannot be applied on a large scale commercially.
  • the manufacturing method of the display panel 100 includes:
  • step S10 specifically includes:
  • the raw material of the first substrate 11 in this step may be a glass substrate, a quartz substrate, a resin substrate, etc., or other hard insulating film materials and soft insulating film materials, which are not specifically limited in this application.
  • the first metal thin film layer may be formed on the first substrate 11 by sputtering or other processes.
  • the material of the first metal thin film layer may include indium tin oxide, graphene, or a conductive material composed of other metals and metal sulfur compounds, which is not specifically limited in this application.
  • This step mainly involves coating a photoresist layer on the first metal thin film layer, exposing and developing the photoresist layer using a mask to form a predetermined photoresist pattern, and applying the photoresist pattern to the photoresist pattern according to the photoresist pattern.
  • An etching process is performed on a metal thin film layer to form at least two first electrode units 121 on the first metal thin film layer, and the photoresist pattern is peeled off to complete the patterning process of the first metal thin film layer.
  • the etching process may be wet etching, using an acid solution to pattern the metal layer.
  • FIG. 2C is a top view of the structure of FIG. 2B.
  • the retaining wall 13 may be located at the edge area of the first substrate 11.
  • the edge of the retaining wall 13 may be aligned with the edge of the first substrate 11.
  • the first electrode layer pattern 12 is located in the annular area formed by the retaining wall 13.
  • the retaining wall 13 and the first substrate 11 form a groove to avoid the subsequent overflow of the nanoparticle solution 14.
  • the nanoparticle solution 14 in this step is a solution including a plurality of nanoparticles.
  • the nanoparticles are uniformly distributed in the solvent of the nanoparticle solution 14.
  • the nanoparticles may include quantum dots, holes, electrons, or other charged or uncharged inorganic nanoparticles, noble metal nanoparticles, colloidal nanosheets or colloidal nanorods, etc., which are not specifically limited in this application .
  • the nanoparticle solution 14 may be a quantum dot solution.
  • the quantum dot solution includes quantum dots and a dispersant.
  • the quantum dot may include a light-emitting core and an inorganic protective shell layer.
  • the material of the light-emitting core may include one or a combination of ZnCdSe2, InP, Cd2Sse, CdSe, Cd2SeTe, InAs, and the like.
  • the material of the inorganic protective shell layer may include one or a combination of CdS, ZnSe, ZnCdS2, ZnS, ZnO, and the like.
  • the quantum dots may also include other high-stability composite quantum dots, such as hydrogel-loaded quantum dot structure CdSe-SiO2, and perovskite quantum dots.
  • the quantum dots may also include quantum dot surface ligands, such as common QD organic ligands (amine/acid/mercaptohydrin/organophosphorus, etc.).
  • quantum dot surface ligands such as common QD organic ligands (amine/acid/mercaptohydrin/organophosphorus, etc.).
  • the dispersant may include a colorless and transparent low boiling point/volatile organic/inorganic reagent.
  • the nanoparticle solution 14 covers the first electrode layer pattern 12 and the first substrate 11.
  • the thickness of the nanoparticle solution 14 should be smaller than the barrier. The thickness of the wall 13 prevents the solution from overflowing.
  • step S40 specifically includes:
  • the material of the second substrate 21 may be the same as the material of the first substrate 11, which will not be repeated here.
  • the second metal thin film layer may be formed on the second substrate 21 by sputtering or other processes.
  • the material of the second metal thin film layer may include indium tin oxide, graphene, or a conductive material composed of other metals and metal sulfur compounds, which is not specifically limited in this application.
  • This step mainly involves coating a photoresist layer on the second metal thin film layer, exposing and developing the photoresist layer using a mask to form a predetermined photoresist pattern, and applying the photoresist pattern to the first photoresist pattern according to the photoresist pattern.
  • An etching process is performed on the two metal thin film layers to form at least two second electrode units 221 on the second metal thin film layer, and the photoresist pattern is peeled off to complete the patterning process of the second metal thin film layer.
  • the second substrate 21 and the first substrate 11 are arranged opposite to each other, so that the first electrode layer pattern 12 corresponds to the second electrode layer pattern 22;
  • the first substrate 11 and the second substrate 21 are disposed opposite to each other, and the first electrode unit 121 corresponds to the second electrode unit 221.
  • a first electrode unit 121 corresponds to a second electrode unit 221.
  • the orthographic projection of the second electrode unit 221 on the first electrode unit 121 coincides with the first electrode unit 121.
  • the size of the first electrode unit 121 and the second electrode unit 221 may be the same or different, which is not specifically limited in this application.
  • the first electrode layer pattern 12 and the second electrode layer pattern 22 are connected to a power source, and the nanoparticle solution is patterned to form a nanoparticle layer pattern 140;
  • step S50 specifically includes:
  • the AC electric field causes the nanoparticles in the nanoparticle solution 14 to converge between the first electrode layer pattern 12 and the second electrode layer pattern 22;
  • S503 Use a predetermined process to remove the solvent in the nanoparticle solution 14 to form a nanoparticle layer pattern 140;
  • an alternating current is applied to the first electrode layer pattern 12 and the second electrode layer pattern 22, so that the first electrode layer pattern 12 and the second electrode layer pattern An AC electric field is formed between 22.
  • the dielectric force and electroosmosis generated by the alternating current field make the quantum dots gather in the middle of the electric field.
  • the nanoparticle solution 14 is The nanoparticles form the same pattern as the first electrode unit 121 and the second electrode unit 221.
  • the nanoparticle layer pattern 140 includes at least two nanoparticle units 141.
  • a nanoparticle unit 141 corresponds to a first electrode unit 121 or/and a second electrode unit 221.
  • the pattern of the nanoparticle unit 141 is the same as the pattern of the first electrode unit 121 and the second electrode unit 221.
  • the quantum dots are uniformly dispersed in the dispersant.
  • the quantum dots are immediately gathered between the electrodes.
  • the location and extent of the quantum dots will also change. For example, when the frequency is less than 6KHz, the quantum dots will be scattered between the entire electrodes, showing a long strip; when the frequency is between 6KHz and 100KHz, the quantum dots will appear as short strips or dots; when the frequency exceeds 100KHz, The quantum dots will no longer accumulate.
  • the quantum dot patterning process of the present application requires the patterning design of the first electrode unit 121, the second electrode unit 221, and the alternating electric field between the first electrode layer pattern 12 and the second electrode layer pattern 22 The intensity and frequency are adjusted synchronously to form a predetermined pattern.
  • the nanoparticles in this application are uniformly dispersed in the corresponding solvent, in order to ensure the patterned preparation of the nanoparticles, the solvent in the nanoparticle solution 14 needs to be removed.
  • step S503 the predetermined process in this application may include:
  • a reactive monomer is added to the nanoparticle solution and cured by heating or ultraviolet light to remove the solvent in the nanoparticle solution.
  • the second substrate 21 and the second electrode layer pattern 22 on the second substrate 21 of the present application are tools for forming the AC electric field.
  • the above structure is not needed in the subsequent structure, so it can be moved except.
  • the preparation of the retaining wall 13 is mainly used to prevent the nanoparticle solution 14 from overflowing. Therefore, after the preparation of the nanoparticle layer pattern 140 is completed, the retaining wall 13 can also be removed.
  • This application proposes a method for manufacturing a display panel, which includes forming a first electrode layer pattern on a first substrate; coating a nanoparticle solution on the first electrode layer pattern and the first substrate; and providing a A second substrate with a second electrode layer pattern, the second substrate is disposed opposite to the first substrate, the first electrode layer pattern corresponds to the second electrode layer pattern; the first electrode layer pattern and the second electrode layer pattern
  • the electrode layer pattern is connected to a power source, and the nano particles are patterned to form a nano particle layer pattern.
  • an AC electric field is formed between the first electrode layer pattern and the second electrode layer pattern, and the electric field strength and frequency of the AC electric field are adjusted to make the quantum dots in the solution layer containing the quantum dots form a predetermined pattern, thereby reducing the quantum dots.
  • the process difficulty of patterning treatment improves production efficiency.

Abstract

一种显示面板(100)的制作方法,包括在第一衬底(11)上形成第一电极层图案(12);在第一电极层图案(12)及第一衬底(11)上涂布纳米颗粒溶液(14);提供一形成有第二电极层图案(22)的第二衬底(21),第一电极层图案(12)与第二电极层图案(22)对应;第一电极层图案(12)及第二电极层图案(22)连接电源,对纳米颗粒进行图案化处理,形成纳米颗粒层图案(140)。

Description

显示面板的制作方法 技术领域
本申请涉及显示领域,特别涉及一种显示面板的制作方法。
背景技术
纳米材料是一种尺寸介于1纳米~100纳米范围之间的结构单元。由于其具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等,因此其在熔点、磁性、光学、导热、导电特性等方面具有独特的性质,在很多领域内都有重要的应用价值
量子点是一种发光效率高、发光峰窄的纳米材料,已经广泛应用于背光产品中。现有的量子点图案化技术主要通过喷墨打印及光刻实现,制备成本高、像素点制备工艺复杂,制约了其大规模推广。
因此,亟需一种新型的量子点图案化技术以解决上述问题。
技术问题
本申请提供一种显示面板的制作方法,以解决现有量子点显示面板制备工艺复杂的技术问题。
技术解决方案
本申请提供一种显示面板的制作方法,其包括:
在第一衬底上形成第一电极层图案;
在所述第一电极层图案及所述第一衬底上涂布纳米颗粒溶液;
提供一形成有第二电极层图案的第二衬底,所述第二衬底与所述第一衬底相对设置,所述第一电极层图案与所述第二电极层图案对应;
所述第一电极层图案及所述第二电极层图案连接电源,对所述纳米颗粒进行图案化处理,形成纳米颗粒层图案;
去除所述第二衬底。
在本申请的制作方法中,
在第一衬底上形成第一电极层图案的步骤包括:
提供一所述第一衬底;
在所述第一衬底上涂布第一金属薄膜层;
利用第一光罩工艺对所述第一金属薄膜层进行图案化处理,使所述第一金属薄膜层形成包括至少两个第一电极单元的所述第一电极层图案。
在本申请的制作方法中,在所述第一电极层图案及所述第一衬底上涂布纳米颗粒溶液之前,还包括:
在所述第一衬底上形成一连续的挡墙;
其中,所述挡墙位于所述第一衬底的边缘区域,所述第一电极层图案位于所述挡墙内。
在本申请的制作方法中,
所述纳米颗粒溶液覆盖所述第一电极层图案及所述第一衬底,以及所述纳米颗粒溶液的厚度小于所述挡墙的厚度。
在本申请的制作方法中,所述纳米颗粒溶液中的纳米颗粒包括量子点、空穴以及电子中的一种。
在本申请的制作方法中,提供一形成有第二电极层图案的第二衬底,所述第二衬底与所述第一衬底相对设置的步骤包括:
提供一所述第二衬底;
在所述第二衬底上涂布第二金属薄膜层;
利用第二光罩工艺对所述第二金属薄膜层进行图案化处理,使所述第二金属薄膜层形成包括至少两个第二电极单元的所述第二电极层图案。
在本申请的制作方法中,所述第二电极单元在第一电极单元的正投影与所述第一电极单元重合。
在本申请的制作方法中,
所述纳米颗粒层图案包括至少两个纳米颗粒单元;
一所述纳米颗粒单元与一所述第一电极单元或/和一所述第二电极单元对应;
所述纳米颗粒单元的图案与所述第一电极单元及所述第二电极单元的图案相同。
在本申请的制作方法中,所述第一电极层图案及所述第二电极层图案连接电源,对所述纳米颗粒进行图案化处理,形成纳米颗粒层图案的步骤包括:
所述第一电极层图案及所述第二电极层图案通入交流电流,在所述第一电极层图案与第二电极层图案之间形成交流电场;
所述交流电场使所述纳米颗粒溶液中的纳米颗粒汇聚在所述第一电极层图案与所述第二电极层图案之间;
利用预定工艺去除所述纳米颗粒溶液中的溶剂,以形成纳米颗粒层图案。
在本申请的制作方法中,利用预定工艺去除所述纳米颗粒溶液中的溶剂的步骤包括:
利用加热或抽真空去除所述纳米颗粒溶液中的溶剂;或者
在所述纳米颗粒溶液中添加反应单体,并通过加热或紫外光固化以去除所述纳米颗粒溶液中的溶剂。
有益效果
本申请通过第一电极层图案与第二电极层图案之间形成交流电场,以及调节该交流电场的电场强度及频率使包含有量子点的溶液层中的量子点形成预定图案,降低了量子点图案化处理的工艺难度,提高了生产效率。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请显示面板制作方法的步骤图;
图2A~图2G为本申请显示面板制作方法的工艺步骤图。
本发明的实施方式
以下各实施例的说明是参考附加的图示,用以例示本申请可用以实施的特定实施例。本申请所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。使用的方向用语是用以说明及理解本申请,而非用以限制本申请。在图中,结构相似的单元是用以相同标号表示。
在现有技术中,量子点图案化的技术一般主要包括喷墨打印及光刻两种。而由于上述两种技术都存在一定的限制,并且工艺比较复杂,导致上述两种图案化技术无法在商业上大规模应用。
请参阅图1及图2A~2G,所述显示面板100的制作方法包括:
S10、在第一衬底11上形成第一电极层图案12;
请参阅图2A,步骤S10具体包括:
S101、提供一所述第一衬底11;
本步骤中的所述第一衬底11的原材料可以为玻璃基板、石英基板、树脂基板等,或其他阿德硬质绝缘膜材、软质绝缘膜材,本申请不作具体的限制。
S102、在所述第一衬底11上形成第一金属薄膜层;
本步骤上可以通过溅射等工艺在所述第一衬底11上形成所述第一金属薄膜层。所述第一金属薄膜层的材料可以包括氧化铟锡、石墨烯或其他金属及金属硫化合物构成的导电材料,本申请不作具体的限制。
S103、利用第一光罩工艺对所述第一金属薄膜层图案化处理,使所述第一金属薄膜层形成至少两第一电极单元121的所述第一电极层图案12;
本步骤主要通过在所述第一金属薄膜层上涂布一光阻层,以及采用掩模板对该光阻层曝光、显影形成预定的光阻图案,以及根据所述光阻图案对所述第一金属薄膜层进行蚀刻工艺,使所述第一金属薄膜层形成至少两第一电极单元121,以及剥离所述光阻图案,完成所述第一金属薄膜层的构图工艺。
在本实施例中,所述蚀刻工艺可以为湿法蚀刻,利用酸性溶液对金属层进行构图。
S20、在所述第一衬底11上形成一连续的挡墙13;
请参阅图2B及图2C,图2C为图2B的俯视结构图。
在本实施例中,所述挡墙13可以位于所述第一衬底11的边缘区域。所述挡墙13的边缘可以与所述第一衬底11的边缘对齐。
所述第一电极层图案12位于所述挡墙13所形成的环形区域内。所述挡墙13与所述第一衬底11形成一凹槽,避免后续所述纳米颗粒溶液14溢出。
S30、在所述第一电极层图案12及所述第一衬底11上涂布纳米颗粒溶液14;
请参阅图2D,本步骤中的所述纳米颗粒溶液14为包括多个纳米颗粒的溶液。该纳米颗粒均匀的分布于所述纳米颗粒溶液14的溶剂中。
在本实施例中,所述纳米颗粒可以包括量子点、空穴、电子或其他带电荷或不带电荷的无机纳米颗粒、贵金属纳米颗粒、胶体纳米片或胶体纳米棒等,本申请不作具体限制。
在本实施例中,所述纳米颗粒溶液14可以为量子点溶液。
所述量子点溶液包括量子点和分散剂。
所述量子点可以包括发光核和无机保护壳层。
在本实施例中,所述发光核的材料可以包括ZnCdSe2,InP,Cd2Sse,CdSe,Cd2SeTe,InAs等中的一种或一种以上的组合。
在本实施例中,所述无机保护壳层的材料可以包括CdS,ZnSe,ZnCdS2,ZnS,ZnO等中的一种或一种以上的组合。
所述量子点还可以包括其他高稳定性复合量子点,例如水凝胶装载量子点结构CdSe-SiO2、以及钙钛矿量子点等。
所述量子点还可以包括量子点表面配体,例如常见的QD有机配体(胺/酸/巯醇/有机磷等)。
在本实施例中,所述分散剂可以包括无色透明的低沸点/易挥发有机/无机试剂。
在本实施例中,所述纳米颗粒溶液14覆盖所述第一电极层图案12及所述第一衬底11。
在本实施例中,由于所述纳米颗粒溶液14以溶液的形式存在,为了保证所述纳米颗粒溶液14位于所述第一衬底11上,所述纳米颗粒溶液14的厚度应当小于所述挡墙13的厚度,避免该溶液溢出。
S40、提供一形成有第二电极层图案22的第二衬底21,所述第二衬底21与所述第一衬底11相对设置,所述第一电极层图案12与所述第二电极层图案22对应
请参阅图2E,步骤S40具体包括:
S401、提供一所述第二衬底21;
在本实施例中,所述第二衬底21的材料可以与所述第一衬底11的材料相同,此处不再赘述。
S402、在所述第二衬底21上形成第二金属薄膜层;
本步骤上可以通过溅射等工艺在所述第二衬底21上形成所述第二金属薄膜层。所述第二金属薄膜层的材料可以包括氧化铟锡、石墨烯或其他金属及金属硫化合物构成的导电材料,本申请不作具体的限制。
S403、利用第二光罩工艺对所述第二金属薄膜层图案化处理,使所述第二金属薄膜层形成至少两第二电极单元221的所述第二电极层图案22;
本步骤主要通过在所述第二金属薄膜层上涂布一光阻层,以及采用掩模板对该光阻层曝光、显影形成预定的光阻图案,以及根据所述光阻图案对所述第二金属薄膜层进行蚀刻工艺,使所述第二金属薄膜层形成至少两第二电极单元221,以及剥离所述光阻图案,完成所述第二金属薄膜层的构图工艺。
S404、将所述第二衬底21与所述第一衬底11相对设置,使所述第一电极层图案12与所述第二电极层图案22对应;
请参阅图2E,本步骤将所述第一衬底11与所述第二衬底21相对设置,所述第一电极单元121与所述第二电极单元221对应。
在本实施例中,一所述第一电极单元121与一所述第二电极单元221对应。
在本实施例中,请参阅图2F,所述第二电极单元221在所述第一电极单元121的正投影与所述第一电极单元121重合。
在一种实施例中,所述第一电极单元121与所述第二电极单元221的大小可以相同或不同,本申请不作具体限制。
S50、所述第一电极层图案12及所述第二电极层图案22连接电源,对所述纳米颗粒溶液进行图案化处理,形成纳米颗粒层图案140;
请参阅图2E,步骤S50具体包括:
S501、所述第一电极层图案12及所述第二电极层图案22通入交流电流,以在所述第一电极层图案12与所述第二电极层图案22之间形成交流电场;
S502、所述交流电场使所述纳米颗粒溶液14中的纳米颗粒汇聚在所述第一电极层图案12与所述第二电极层图案22之间;
S503、利用预定工艺去除所述纳米颗粒溶液14中的溶剂,以形成纳米颗粒层图案140;
在上述步骤中,本实施例通过在所述第一电极层图案12及所述第二电极层图案22上施加交流电流,以使所述第一电极层图案12与所述第二电极层图案22之间形成交流电场。而交流电场所产生的介电力以及电渗作用使得量子点聚集在电场中间,而通过对所述第一电极单元121及所述第二电极单元221图案化设计,使得所述纳米颗粒溶液14中的纳米颗粒形成与所述第一电极单元121及所述第二电极单元221相同的图案。
在本实施例中,所述纳米颗粒层图案140包括至少两个纳米颗粒单元141。一所述纳米颗粒单元141与一所述第一电极单元121或/和一所述第二电极单元221对应。
在本实施例中,所述纳米颗粒单元141的图案与所述第一电极单元121及所述第二电极单元221的图案相同。
在本实施例中,量子点均匀分散在分散剂中,当所述第一电极层图案12与所述第二电极层图案22之间形成交流电场后,量子点立刻聚集在电极之间。
在电场强度为10 V/μm时,当改变交流电场的频率时,量子点的聚集位置和程度也会发生变化。例如,在频率小于6KHz时,量子点将分散在整个电极之间,呈现长条形;当频率在6KHz到100KHz之间时,量子点呈现为短条状或点状;当频率超过100KHz时,量子点将不在聚集。
同理,当改变交流电场的强度时,量子点的分布规律同样发生改变。因此在实际操作中,需要对该交流电场的强度及频率进行一定的调整,以对量子点的聚集状态进行调节。
因此,本申请的量子点图案化处理需要在第一电极单元121、第二电极单元221的图案化设计、以及所述第一电极层图案12与所述第二电极层图案22之间交流电场的强度与频率同步调节以形成预定的图案。
请参阅图2G,由于本申请中纳米颗粒均匀分散在对应的溶剂中,因此为了保证纳米颗粒的图案化制备,需要去除所述纳米颗粒溶液14中的溶剂。
在步骤S503中,本申请中的预定工艺可以包括:
利用加热或抽真空去除所述纳米颗粒溶液中的溶剂;或者
在所述纳米颗粒溶液中添加反应单体,并通过加热或紫外光固化以去除所述纳米颗粒溶液中的溶剂。
在本实施例中,由于交流电场所会的介电力,因此即使该纳米颗粒为非带电荷粒子,该类粒子同样受到介电力的作用。
S60、去除所述第二衬底21。
请参阅图2G,本申请所述第二衬底21及所述第二衬底21上的第二电极层图案22为形成该交流电场的工具,在后续结构中不需要上述结构,因此可以移除。
所述挡墙13的制备主要用于避免所述纳米颗粒溶液14溢出,因此在完成所述纳米颗粒层图案140的制备后,所述挡墙13也可以移除。
本申请提出了一种显示面板的制作方法,包括在第一衬底上形成第一电极层图案;在该第一电极层图案及该第一衬底上涂布纳米颗粒溶液;提供一形成有第二电极层图案的第二衬底,该第二衬底与该第一衬底相对设置,该第一电极层图案与该第二电极层图案对应;该第一电极层图案及该第二电极层图案连接电源,对该纳米颗粒进行图案化处理,形成纳米颗粒层图案。本申请通过第一电极层图案与第二电极层图案之间形成交流电场,以及调节该交流电场的电场强度及频率使包含有量子点的溶液层中的量子点形成预定图案,降低了量子点图案化处理的工艺难度,提高了生产效率。
综上所述,虽然本申请已以优选实施例揭露如上,但上述优选实施例并非用以限制本申请,本领域的普通技术人员,在不脱离本申请的精神和范围内,均可作各种更动与润饰,因此本申请的保护范围以权利要求界定的范围为准。

Claims (18)

  1. 一种显示面板的制作方法,其中,包括:
    在第一衬底上形成第一电极层图案;
    在所述第一衬底上形成一连续的挡墙;
    在所述第一电极层图案及所述第一衬底上涂布纳米颗粒溶液;
    提供一形成有第二电极层图案的第二衬底,所述第二衬底与所述第一衬底相对设置,所述第一电极层图案与所述第二电极层图案对应;
    所述第一电极层图案及所述第二电极层图案连接电源,对所述纳米颗粒溶液进行图案化处理,形成纳米颗粒层图案;
    去除所述第二衬底。
  2. 根据权利要求1所述显示面板的制作方法,其中,
    在第一衬底上形成第一电极层图案的步骤包括:
    提供一所述第一衬底;
    在所述第一衬底上涂布第一金属薄膜层;
    利用第一光罩工艺对所述第一金属薄膜层进行图案化处理,使所述第一金属薄膜层形成包括至少两个第一电极单元的所述第一电极层图案。
  3. 根据权利要求1所述显示面板的制作方法,其中,
    所述挡墙位于所述第一衬底的边缘区域,所述第一电极层图案位于所述挡墙内。
  4. 根据权利要求3所述显示面板的制作方法,其中,
    所述纳米颗粒溶液覆盖所述第一电极层图案及所述第一衬底,以及所述纳米颗粒溶液的厚度小于所述挡墙的厚度。
  5. 根据权利要求1所述显示面板的制作方法,其中,所述纳米颗粒溶液中的纳米颗粒包括量子点、空穴以及电子中的一种。
  6. 根据权利要求1所述显示面板的制作方法,其中,
    提供一形成有第二电极层图案的第二衬底,所述第二衬底与所述第一衬底相对设置的步骤包括:
    提供一所述第二衬底;
    在所述第二衬底上涂布第二金属薄膜层;
    利用第二光罩工艺对所述第二金属薄膜层进行图案化处理,使所述第二金属薄膜层形成包括至少两个第二电极单元的所述第二电极层图案。
  7. 根据权利要求6所述显示面板的制作方法,其中,所述第二电极单元在第一电极单元的正投影与所述第一电极单元重合。
  8. 根据权利要求1所述显示面板的制作方法,其中,
    所述纳米颗粒层图案包括至少两个纳米颗粒单元;
    一所述纳米颗粒单元与一所述第一电极单元或/和一所述第二电极单元对应;
    所述纳米颗粒单元的图案与所述第一电极单元及所述第二电极单元的图案相同。
  9. 根据权利要求1所述显示面板的制作方法,其中,
    所述第一电极层图案及所述第二电极层图案连接电源,对所述纳米颗粒进行图案化处理,形成纳米颗粒层图案的步骤包括:
    所述第一电极层图案及所述第二电极图案层通入交流电流,以在所述第一电极层图案与所述第二电极层图案之间形成交流电场;
    所述交流电场使所述纳米颗粒溶液中的纳米颗粒汇聚在所述第一电极层图案与所述第二电极层图案之间;
    利用预定工艺去除所述纳米颗粒溶液中的溶剂,以形成纳米颗粒层图案。
  10. 根据权利要求9所述显示面板的制作方法,其中,利用预定工艺去除所述纳米颗粒溶液中的溶剂的步骤包括:
    利用加热或抽真空去除所述纳米颗粒溶液中的溶剂;或者
    在所述纳米颗粒溶液中添加反应单体,并通过加热或紫外光固化以去除所述纳米颗粒溶液中的溶剂。
  11. 一种显示面板的制作方法,其包括:
    在第一衬底上形成第一电极层图案;
    在所述第一电极层图案及所述第一衬底上涂布纳米颗粒溶液;
    提供一形成有第二电极层图案的第二衬底,所述第二衬底与所述第一衬底相对设置,所述第一电极层图案与所述第二电极层图案对应;
    所述第一电极层图案及所述第二电极层图案连接电源,对所述纳米颗粒溶液进行图案化处理,形成纳米颗粒层图案;
    去除所述第二衬底。
  12. 根据权利要求14所述显示面板的制作方法,其中,
    在第一衬底上形成第一电极层图案的步骤包括:
    提供一所述第一衬底;
    在所述第一衬底上涂布第一金属薄膜层;
    利用第一光罩工艺对所述第一金属薄膜层进行图案化处理,使所述第一金属薄膜层形成包括至少两个第一电极单元的所述第一电极层图案。
  13. 根据权利要求14所述显示面板的制作方法,其中,所述纳米颗粒溶液中的纳米颗粒包括量子点、空穴以及电子中的一种。
  14. 根据权利要求14所述显示面板的制作方法,其中,
    提供一形成有第二电极层图案的第二衬底,所述第二衬底与所述第一衬底相对设置的步骤包括:
    提供一所述第二衬底;
    在所述第二衬底上涂布第二金属薄膜层;
    利用第二光罩工艺对所述第二金属薄膜层进行图案化处理,使所述第二金属薄膜层形成包括至少两个第二电极单元的所述第二电极层图案。
  15. 根据权利要求14所述显示面板的制作方法,其中,所述第二电极单元在第一电极单元的正投影与所述第一电极单元重合。
  16. 根据权利要求11所述显示面板的制作方法,其中,
    所述纳米颗粒层图案包括至少两个纳米颗粒单元;
    一所述纳米颗粒单元与一所述第一电极单元或/和一所述第二电极单元对应;
    所述纳米颗粒单元的图案与所述第一电极单元及所述第二电极单元的图案相同。
  17. 根据权利要求11所述显示面板的制作方法,其中,
    所述第一电极层图案及所述第二电极层图案连接电源,对所述纳米颗粒进行图案化处理,形成纳米颗粒层图案的步骤包括:
    所述第一电极层图案及所述第二电极图案层通入交流电流,以在所述第一电极层图案与所述第二电极层图案之间形成交流电场;
    所述交流电场使所述纳米颗粒溶液中的纳米颗粒汇聚在所述第一电极层图案与所述第二电极层图案之间;
    利用预定工艺去除所述纳米颗粒溶液中的溶剂,以形成纳米颗粒层图案。
  18. 根据权利要求17所述显示面板的制作方法,其中,利用预定工艺去除所述纳米颗粒溶液中的溶剂的步骤包括:
    利用加热或抽真空去除所述纳米颗粒溶液中的溶剂;或者
    在所述纳米颗粒溶液中添加反应单体,并通过加热或紫外光固化以去除所述纳米颗粒溶液中的溶剂。
PCT/CN2019/117398 2019-09-04 2019-11-12 显示面板的制作方法 WO2021042531A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/619,485 US11414774B2 (en) 2019-09-04 2019-11-12 Manufacturing method of display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910831552.X 2019-09-04
CN201910831552.XA CN112542536B (zh) 2019-09-04 2019-09-04 显示面板的制作方法

Publications (1)

Publication Number Publication Date
WO2021042531A1 true WO2021042531A1 (zh) 2021-03-11

Family

ID=74852050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/117398 WO2021042531A1 (zh) 2019-09-04 2019-11-12 显示面板的制作方法

Country Status (3)

Country Link
US (1) US11414774B2 (zh)
CN (1) CN112542536B (zh)
WO (1) WO2021042531A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112736212A (zh) * 2019-10-28 2021-04-30 Tcl华星光电技术有限公司 一种纳米粒子图案化装置及纳米粒子图案化方法
CN113764609A (zh) * 2021-09-06 2021-12-07 深圳市华星光电半导体显示技术有限公司 量子点基板的制作方法以及量子点基板
CN113782664B (zh) * 2021-09-10 2023-12-01 深圳市华星光电半导体显示技术有限公司 显示面板及其制备方法和绑定结构及其制备方法
CN113871439B (zh) * 2021-09-24 2023-06-30 深圳市华星光电半导体显示技术有限公司 量子点基板的制作方法及量子点基板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1538787A (zh) * 2003-04-15 2004-10-20 精工爱普生株式会社 膜形成方法及形成装置、电子装置及其制法、电子机器
KR20080062907A (ko) * 2006-12-29 2008-07-03 엘지디스플레이 주식회사 유기전계 발광소자의 제조방법
CN104979484A (zh) * 2006-12-22 2015-10-14 乐金显示有限公司 有机发光二极管显示器件及其制造方法
CN106374056A (zh) * 2016-11-28 2017-02-01 武汉华星光电技术有限公司 Qled显示面板制造方法及qled显示器
CN106479503A (zh) * 2016-09-29 2017-03-08 Tcl集团股份有限公司 一种量子点固态膜及其制备方法
CN109658820A (zh) * 2019-02-19 2019-04-19 京东方科技集团股份有限公司 一种阵列基板、其制作方法及显示面板

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7455757B2 (en) * 2001-11-30 2008-11-25 The University Of North Carolina At Chapel Hill Deposition method for nanostructure materials
KR100995073B1 (ko) * 2004-04-23 2010-11-18 삼성에스디아이 주식회사 염료감응 태양전지의 모듈 및 그 제조방법
JP2007095488A (ja) * 2005-09-29 2007-04-12 Toshiba Corp 発光素子およびその製造方法
CN102431964B (zh) * 2011-12-15 2014-08-13 北京石油化工学院 可控生成量子点或量子线的方法
KR101665183B1 (ko) * 2014-07-28 2016-10-13 한국과학기술원 금속 전기 증착 방식을 이용한 접촉 대전 발전기 및 그 생성 방법
CN104808384B (zh) * 2015-05-22 2017-07-04 京东方科技集团股份有限公司 一种彩膜基板及其制作方法、显示面板、显示装置
CN105259683B (zh) * 2015-11-20 2018-03-30 深圳市华星光电技术有限公司 Coa型阵列基板的制备方法及coa型阵列基板
JP6651334B2 (ja) * 2015-11-24 2020-02-19 スタンレー電気株式会社 電気光学装置
CN108962965B (zh) * 2018-08-02 2021-03-30 京东方科技集团股份有限公司 显示面板及其制备方法、显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1538787A (zh) * 2003-04-15 2004-10-20 精工爱普生株式会社 膜形成方法及形成装置、电子装置及其制法、电子机器
CN104979484A (zh) * 2006-12-22 2015-10-14 乐金显示有限公司 有机发光二极管显示器件及其制造方法
KR20080062907A (ko) * 2006-12-29 2008-07-03 엘지디스플레이 주식회사 유기전계 발광소자의 제조방법
CN106479503A (zh) * 2016-09-29 2017-03-08 Tcl集团股份有限公司 一种量子点固态膜及其制备方法
CN106374056A (zh) * 2016-11-28 2017-02-01 武汉华星光电技术有限公司 Qled显示面板制造方法及qled显示器
CN109658820A (zh) * 2019-02-19 2019-04-19 京东方科技集团股份有限公司 一种阵列基板、其制作方法及显示面板

Also Published As

Publication number Publication date
US11414774B2 (en) 2022-08-16
CN112542536A (zh) 2021-03-23
CN112542536B (zh) 2024-02-27
US20210332493A1 (en) 2021-10-28

Similar Documents

Publication Publication Date Title
WO2021042531A1 (zh) 显示面板的制作方法
TWI584059B (zh) 用於製造透明光罩之方法及藉由該方法所製造之透明光罩、以及使用透明光罩製造導電網格圖案之方法
WO2017031951A1 (zh) 显示基板
Bae et al. Quantum dot-integrated GaN light-emitting diodes with resolution beyond the retinal limit
CN105489784B (zh) 柔性导电电极的制备方法及该方法制备的电极及其应用
US20050196707A1 (en) Patterned conductive coatings
US10403415B2 (en) Transparent electrode having reduced optical reflectance and transparent electrode manufacturing method using printing process
TWI510991B (zh) 觸控面板、導電薄膜及其製作方法
CN111427111A (zh) 量子点图案化方法、装置及系统
TW201728972A (zh) 可控制透光圖案變化的光學複合膜結構之製造方法
TW201409314A (zh) 觸控感應層及其製造方法
KR20140055351A (ko) 나노 와이어를 이용한 투명도전막 및 그 제조방법과 이를 이용한 어레이 기판, 유기전계발광소자 및 터치패널
WO2015085772A1 (zh) 基板的制作方法
WO2018008530A1 (ja) 導電性フィルム、電子ペーパー、タッチパネル、及びフラットパネルディスプレイ
CN105374467A (zh) 纳米转印方法及纳米功能器件
WO2016065799A1 (zh) 掩模板及其制造方法、利用掩模板构图的方法
CN112877740A (zh) 纳米材料薄膜的制作方法及显示面板
WO2019205635A1 (zh) 显示面板及其制造方法、显示装置
WO2022012351A1 (zh) 透明导电电极及其制备方法、电子器件
KR20130033538A (ko) 투명전극 필름의 제조 방법
CN111552148A (zh) 一种光罩结构
CN103870043B (zh) 触控电极结构及其制造工艺
CN108803159A (zh) 一种像素电极的制备方法、像素电极和显示面板
US11377723B2 (en) Method of patterning quantum dots, device using same, and system thereof
KR102355045B1 (ko) 펨토초레이저 가공을 이용한 투명전극 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19944071

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19944071

Country of ref document: EP

Kind code of ref document: A1