WO2021042455A1 - 一种双绕组永磁电机 - Google Patents

一种双绕组永磁电机 Download PDF

Info

Publication number
WO2021042455A1
WO2021042455A1 PCT/CN2019/112516 CN2019112516W WO2021042455A1 WO 2021042455 A1 WO2021042455 A1 WO 2021042455A1 CN 2019112516 W CN2019112516 W CN 2019112516W WO 2021042455 A1 WO2021042455 A1 WO 2021042455A1
Authority
WO
WIPO (PCT)
Prior art keywords
windings
permanent magnet
magnet motor
sets
phase
Prior art date
Application number
PCT/CN2019/112516
Other languages
English (en)
French (fr)
Inventor
成双银
汪伟
王坤俊
凌岳伦
罗骁
Original Assignee
中车时代电动汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车时代电动汽车股份有限公司 filed Critical 中车时代电动汽车股份有限公司
Priority to EP19944560.2A priority Critical patent/EP3910759A4/en
Publication of WO2021042455A1 publication Critical patent/WO2021042455A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/06Machines characterised by the presence of fail safe, back up, redundant or other similar emergency arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the invention relates to a permanent magnet motor, and more specifically, to a dual-winding permanent magnet motor.
  • the cost of the drive system of an electric vehicle is mainly composed of a drive motor and an inverter.
  • the drive motor is the core and key component of electric vehicles, and it has a vital impact on the safety of the vehicle. Especially for vehicles used in scenic spots or some vehicles with high safety requirements, the structure design of the traditional drive motor does not have redundant faults. I function.
  • medium- and heavy-duty vehicles such as electric buses and electric trucks require high-power drive systems, and the inverters of high-power drive systems need to use high-power devices with small industrial usage, resulting in very high costs.
  • a permanent magnet motor wherein the stator of the permanent magnet motor has two sets of three-phase windings, the two sets of windings are staggeredly distributed on the circumferential space of the stator of the permanent magnet motor, and the Two sets of windings can be independently controlled by two three-phase inverters without decoupling.
  • the two sets of windings are short-distance windings.
  • the pitch of the two sets of windings meets the maximum pitch of the short-distance winding.
  • the two sets of windings adopt a double-layer structure with two upper and lower layers in each stator slot.
  • the coil connection mode of any pole phase of any one of the two sets of windings is that the lower coil side of the slot is connected to the upper coil side of the slot spaced apart by the winding pitch.
  • the number of slots per pole per phase of the permanent magnet motor is 2, and every two coils form a coil group.
  • any two adjacent coil groups in each layer of the double-layer structure have opposite current directions.
  • the two sets of three-phase windings have the same number of windings and connection modes.
  • the two sets of three-phase windings are evenly staggered and distributed on the circumferential space of the stator of the permanent magnet motor.
  • an electric vehicle wherein the drive system of the electric vehicle includes:
  • a permanent magnet motor with two sets of three-phase windings as provided by the present invention and
  • Two three-phase inverters configured to independently control two sets of windings in the permanent magnet motor without decoupling.
  • the dual-winding motor proposed by the present invention has at least the following advantages:
  • the dual-winding permanent magnet motor of the present invention has two sets of three-phase windings, and each set of windings bears only half of the current and power of a traditional set of three-phase winding motors, which can avoid the use of high-power devices. Although the number of power devices has doubled, the total cost can still be reduced.
  • the stator of the dual-winding permanent magnet motor proposed in the present invention has two independent sets of windings, each set of windings can work independently, and one set of windings can produce half of the output power and torque when working independently. When one set of windings fails, the other set of windings can continue to work to maintain the operation of the vehicle, thus having the function of failure redundancy.
  • the dual-winding scheme proposed by the present invention has little interference between two sets of windings, and the control does not need decoupling, and two independent three-phase inverters can be used for control.
  • FIG. 1 is a schematic diagram showing the structure and winding distribution of a permanent magnet motor that can be used for vehicle driving according to an embodiment of the present invention.
  • Fig. 2 is a schematic diagram showing the arrangement of the first set of windings of the permanent magnet motor in Fig. 1.
  • Fig. 3 is a schematic diagram showing the connection of the first set of windings of the permanent magnet motor in Fig. 1.
  • Fig. 4 is a schematic diagram showing the arrangement of a second set of windings of the permanent magnet motor in Fig. 1.
  • Fig. 5 is a schematic diagram showing the connection of a second set of windings of the permanent magnet motor in Fig. 1.
  • Fig. 6 is a schematic diagram showing the arrangement of the first set of windings of the permanent magnet motor in Fig. 1 with three phases.
  • Fig. 7 is a schematic diagram showing the connection of a dual-winding motor and a control inverter according to an embodiment of the present invention.
  • an 8-pole 48-slot permanent magnet synchronous motor will be taken as an example to illustrate the principle of the dual-winding motor of the present invention.
  • the present invention is not limited to a specific number of magnetic poles and slots, and permanent magnet motors with other numbers of magnetic poles and slots are also applicable to the inventive concept and structure of the present invention to be described below.
  • FIG. 1 is a schematic diagram showing the structure and winding distribution of a permanent magnet motor that can be used for vehicle driving according to an embodiment of the present invention.
  • number I is the stator core
  • II is the rotor core
  • III is the permanent magnet.
  • the numbers 1-48 are the numbers of the 48 slots of the stator.
  • the motor of the present invention adopts a double-layer distributed winding structure, and the windings in slots 1-48 are divided into upper and lower layers.
  • “ ⁇ " and “ ⁇ ” indicate the positive direction of the winding current in the slot
  • “ ⁇ ” indicates the inflow in the normal direction of the drawing
  • " ⁇ " indicates the outflow in the normal direction of the drawing.
  • the motor has 48 coils in total, each pole has 2 slots per phase, every two coils form a one-phase coil group, and 6 coils form a three-phase pole-phase group.
  • the slot number corresponding to the lower side of each coil is used to represent the coil.
  • U, V, W three phases each have 16 coils, 8 coil groups, of which the U phase 8 coil groups are 1-2, 7-8 , 13-14, 19 -20 , 25-26, 31-32 , 37-38, 43-44 ; 8 coil groups of V phase are 5-6, 11-12 , 17-18, 23-24 , 29-30, 35-36 , 41-42, 47-48 ; W
  • the 8 coil groups of the phases are 3-4 , 9-10, 15-16 , 21-22, 27-28 , 33-34, 39-40 , 45-46.
  • the underlined and ununderlined above indicate the opposite direction.
  • the permanent magnet motor of the present invention adopts a dual-winding design. More specifically, the present invention divides the above-mentioned coil components distributed in the stator core into two parts, that is, two sets of windings are formed. In order to express the arrangement and connection of the windings more clearly, the following Figure 2-5 takes the U phase as an example.
  • the first part of the coil set, the first set of windings, is shown in Figures 2 and 3, where Figure 2 is the layout of the first set of windings, and Figure 3 is the wiring diagram of the first set of windings.
  • the pitch of the coil is a short-pitch winding, that is, a winding with a pitch smaller than the pole pitch.
  • the winding pitch of the present invention is 5, and the upper layer side and the lower layer side of each coil are spaced 5 slots apart in a regular arrangement of the lower layer side.
  • the pitch may not necessarily be 5, and in particular, different pitches may be set for structures with different numbers of poles or different numbers of slots.
  • the coil connection mode of any pole phase is that the lower coil side of the slot (assuming the slot number is n) is connected to the upper coil side of the slot (slot number is n+5) of the interval winding pitch.
  • the winding is a short-pitch winding with a pitch of 5
  • the lower coil sides of slot 1 and slot 2 and the upper coil sides of slot 6 and slot 7 Form the first coil group.
  • the lower coil sides of slot 7 and slot 8 and the upper coil sides of slot 12 and slot 13 form a second coil group.
  • the present invention also adopts a structure in which the two sets of windings are staggered and independently distributed on the circumferential space of the stator of the motor in the arrangement of the windings, so that the overlap of the two sets of windings on the circumferential space of the stator is reduced. Therefore, the third coil group of the first set of windings is composed of the lower coil sides of slots 25 and 26 and the upper coil sides of slots 30 and 31.
  • the fourth coil group is composed of the lower coil sides of slots 31 and 32 and The slot 36 and the upper coil side of the slot 37 are composed.
  • the slots left between the first and second coil groups and the third and fourth coil groups are used for the second set of windings, which will be described later in conjunction with FIGS. 4 and 5.
  • the coil groups 1-2, 7-8, 25-26, 31-32 in parallel a total of four sets of coils connected in parallel to an input end U1 ', The other end is connected to neutral point 1.
  • coil groups 1-2 and 25-26 have the same connection mode and positive direction
  • coil groups 7-8 and 31-32 have the same connection mode and positive direction.
  • the second part of the coil set, the second set of windings, is shown in Figures 4 and 5, where Figure 4 is the layout of the second set of windings, and Figure 5 is the connection diagram of the second set of windings.
  • the second set of windings As shown in Figure 4, the same as the first set of windings, the second set of windings also form a one-phase coil group for every two coils, and is a short-distance winding with a pitch of 5, so the lower layer of slot 13 and slot 14
  • the coil side and the upper coil side of the slot 18 and the slot 19 form the first coil group.
  • the lower coil sides of slot 19 and slot 20 and the upper coil sides of slot 24 and slot 25 form a second coil group.
  • the lower coil sides of slot 37 and slot 38 and the upper coil sides of slot 42 and slot 43 form a third coil group
  • the lower coil sides of slot 43 and slot 44 and slot 48 Compose the fourth coil group with the upper coil side of slot 1.
  • the coil groups 13-14, 19-20 , 37-38, 43-44 are 4 coil groups in parallel, and one end of the parallel connection is connected to the input terminal U1′′, The other end is connected to neutral point 2.
  • coil groups 13-14 and 37-38 have the same connection mode and positive direction
  • coil groups 19-20 and 43-44 have the same connection mode and positive direction. direction.
  • the above figures 2 to 5 only show the situation of one phase (U-phase) winding in the three-phase winding of the 8-pole 48-slot permanent magnet synchronous motor.
  • the V and W two-phase windings have the same Number of windings and connection method.
  • the U, V, and W phase windings are symmetrically and evenly distributed in the stator core slots, where the phase sequence can be arbitrary.
  • those skilled in the art can understand that the three phases of the windings do not necessarily need to have exactly the same number of windings and connection modes, nor do they need to be completely symmetrical and uniformly distributed in the stator core slots. In some embodiments, making appropriate changes according to actual needs can still achieve the main benefits of the distributed dual windings of the present invention, that is, reducing the interference between the windings and achieving independent control of the dual windings.
  • Figure 6 shows the arrangement of the first set of windings with three phases of U', V'and W'.
  • the slot numbers occupied by the lower edge of the U'phase are 1, 2, 7, 8, 25, 26, 31, and 32;
  • the slot numbers occupied by the lower edge of the V'phase are 5, 6, 11 , 12, 29, 30, 35, and 36;
  • the slot numbers occupied by the lower side of the W'phase are 3, 4, 9, 10, 27, 28, 33, and 34.
  • the three phases U', V'and W'of the first set of windings above occupy 24 lower-layer edges of the stator core I, and the other 24 lower-layer edges in Fig. 6 are occupied by the second set of windings.
  • each coil is arranged in a regular arrangement on the side of the lower layer with an interval of 5 slots.
  • any two adjacent coil groups of each layer of the double-layer structure have opposite current directions, for example, the coil group 1-2 and the adjacent coil group 3-4 and the coil group 47
  • the direction of current on the lower layer side of -48 is opposite, and the direction of current on the upper layer side of the coil group 2-3 is opposite to that of the adjacent coil group 4-5 and the coil group 48-1.
  • Fig. 7 shows the connection of the dual-winding motor of the present invention and the control inverter.
  • the dual-winding solution proposed by the present invention reduces the interference between the two sets of windings, so there is no need to decoupling during control, and two independent three-phase inverters can be used for control.
  • IV is the inverter connected to the first set of windings
  • V is the inverter connected to the second set of windings.
  • Inverter IV and inverter V are both well-known three-phase six-arm structures, and their DC ends are connected to the DC bus capacitor VI, and the DC bus capacitor VI is connected to the battery.
  • the battery provides the motor through two inverters. Drive energy, or receive braking energy output from the motor through the inverter.
  • Figure 7 only shows the connection of the U-phase winding.
  • the first set of winding inverter IV outputs AC three-phase U', V'and W', among which the U'-phase output line is connected to the first set of winding input terminal U';
  • the second set of winding inverter V outputs AC three-phase U", V" and W", wherein the U" phase output line is connected to the second set of winding input terminal U".
  • the inverter IV and the inverter V can respectively supply power to the first set of windings and the second set of windings at the same time or
  • the recovery of braking energy can also work alone, that is, when the inverter IV supplies power to the first set of windings or recovers the braking energy, the inverter V makes the second set of windings not input or output energy, or vice versa.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

一种永磁电机及采用这种永磁电机的电动车辆,其中所述永磁电机的定子具有两套三相绕组,两套绕组在所述永磁电机的定子圆周空间上交错分布,并且所述两套绕组可分别由电动车辆的驱动系统所包括的两个三相逆变器在无需解耦的情况下独立控制。

Description

一种双绕组永磁电机 技术领域
本发明涉及永磁电机,更具体的,涉及双绕组永磁电机。
背景技术
电动汽车的驱动系统的成本主要由驱动电机和逆变器构成。驱动电机是电动汽车的核心关键部件,其对车辆的安全性具有至关重要的影响,特别是对于景区用车或某些安全性要求高的车辆,传统的驱动电机的结构设计不具备故障冗余功能。此外,电动客车、电动卡车等中重型车辆需要大功率驱动系统,而大功率驱动系统的逆变器需要采用工业用量少的大功率器件,导致成本非常高。
产业中有过具有两套绕组的双绕组电机设计。然而,现有双绕组电机方案一般为双Y移相一定的角度。这类方案想要解决的问题是抵消绕组在电机中产生的特定次谐波,从而消除电机的转矩脉动,但其仍然存在一个主要问题是当两套绕组同时工作时,控制需要进行磁路解耦来消除两套绕组之间的相互干扰,因此不能采用独立的控制器分别同时控制两套绕组。
因此,希望有一种改进的适用于电动车辆的永磁电机。
发明内容
提供本发明内容以便以简化形式介绍将在以下具体实施方式中进一步的描述一些概念。本发明内容并非旨在标识所要求保护的主题的关键特征或必要特征,也不旨在用于帮助确定所要求保护的主题的范围。
根据本发明的一个方面,提供了一种永磁电机,其中所述永磁电机的定子具有两套三相绕组,两套绕组在所述永磁电机的定子圆周空间上交错分布,并且所述两套绕组可分别由两个三相逆变器在无需解耦的情况下独立控制。
根据本发明的一个进一步实施例,所述两套绕组为短距绕组。
根据本发明的一个进一步实施例,所述两套绕组的节距为满足短距绕组下的最大节距。
根据本发明的一个进一步实施例,所述两套绕组采用在每一个定子槽内具有上下两层的双层结构。
根据本发明的一个进一步实施例,所述两套绕组中的任一套绕组的任一极相的线圈连接方式为所在槽的下层线圈边连接到间隔绕组节距的槽的上层线圈边。
根据本发明的一个进一步实施例,所述永磁电机的每极每相槽数为2,每两个线圈组成一个线圈组。
根据本发明的一个进一步实施例,所述双层结构的每一层的任意两个相邻的线圈组具有相反的电流方向。
根据本发明的一个进一步实施例,所述两套三相绕组具有相同的绕组个数和连接方式。
根据本发明的一个进一步实施例,所述两套三相绕组在所述永磁电机的定子圆周空间上均匀地交错分布。
根据本发明的又一方面,提供了一种电动车辆,其中所述电动车辆的驱动系统包括:
如本发明所提供的具有两套三相绕组的永磁电机,以及
两个三相逆变器,所述两个三相逆变器被配置成在无需解耦的情况下独立控制所述永磁电机中的两套绕组。
与现有技术相比,本发明提出的双绕组电机至少具有以下优点:
1、本发明的双绕组永磁电机具有两套三相绕组,每套绕组承受的电流和功率只有传统一套三相绕组电机的一半,可以避免大功率器件的使用。尽管功率器件数量增加了一倍,但是总成本仍然可以降低。
2、本发明提出的双绕组永磁电机的定子具有两套独立的绕组,每套绕组可以单独工作,一套绕组单独工作时可以产生一半的输出功率和扭矩。当一套绕组出现故障时,另一套绕组可以继续工作,维持车辆运行,从而具有故障冗余功能。
3、本发明提出的双绕组方案两套绕组干扰小,控制无需解耦,可以采用两个独立的三相逆变器进行控制。
通过阅读下面的详细描述并参考相关联的附图,这些及其他特点和优点将变得显而易见。应该理解,前面的概括说明和下面的详细描述只是说明性的,不会对所要求保护的各方面形成限制。
附图说明
为了能详细地理解本发明的上述特征所用的方式,可以参照各实施例来对以上 简要概述的内容进行更具体的描述,其中一些方面在附图中示出。然而应该注意,附图仅示出了本发明的某些典型方面,故不应被认为限定其范围,因为该描述可以允许有其它等同有效的方面。
图1是示出根据本发明的一个实施例的可用于车辆驱动的永磁电机结构及绕组分布的示意图。
图2是示出图1中的永磁电机的第一套绕组的布置示意图。
图3是示出图1中的永磁电机的第一套绕组的连接示意图。
图4是示出图1中的永磁电机的第二套绕组的布置示意图。
图5是示出图1中的永磁电机的第二套绕组的连接示意图。
图6是示出图1中的永磁电机的具有三相的第一套绕组的布置示意图。
图7是示出根据本发明的一个实施例的双绕组电机与控制逆变器的连接的示意图。
具体实施方式
下面结合附图详细描述本发明,本发明的特点将在以下的具体描述中得到进一步的显现。
作为一个非限制性示例,以下将以一台8极48槽永磁同步电机为例来说明本发明双绕组电机的原理。本领域技术人员应该理解,本发明并不限于特定磁极数和槽数,其它磁极数和槽数的永磁电机也同样适用于以下要描述的本发明的发明构思和结构。
图1是示出根据本发明的一个实施例的可用于车辆驱动的永磁电机结构及绕组分布的示意图。在图1所示出的电机结构和绕组布置中,编号I为定子铁心,II为转子铁心,III为永磁体。数字1-48为定子48个槽的编号。作为一个示例,如图1中所示,本发明的电机采用双层分布式绕组结构,1-48槽内绕组分上下两层。其中“×”和“·”表示槽内绕组电流正方向,“×”表示图面法向流入,“·”表示图面法向流出。电机共有48个线圈,每极每相槽数为2,每两个线圈组成一个一相线圈组,6个线圈组成一个三相极相组。
为了清楚起见,用各线圈的下层边对应的槽号来表示该线圈。U、V、W三相 各有16个线圈,8个线圈组,其中U相的8个线圈组为1-2、 7-8、13-14、 19 -20、25-26、 31-32、37-38、 43-44;V相的8个线圈组为5-6、 11-12、17-18、 23-24、29-30、 35-36、41-42、 47-48;W相的8个线圈组为 3-4、9-10、 15-16、21-22、 27-28、33-34、 39-40、45-46。以上带下划线与未带下划线表示正方向相反。
为了提供故障安全冗余功能,并且解决单一大功率器件的成本问题,本发明的永磁电机采用了双绕组设计。更具体地,本发明将上述分布在定子铁心内的线圈组分成两部分,即形成两套绕组。为更清楚地表达绕组的布置和连接方式,以下的图2-5以U相为例来说明。
线圈组的第一部分即第一套绕组如图2和图3所示,其中图2为第一套绕组的布置图,图3为第一套绕组的连线图。作为本发明的一个实施例,各线圈之间存在节距,发明人认识到采用这种结构有助于减小两套绕组间的干扰。在本发明的示例中,线圈的节距为短距绕组,即节距小于极距的绕组。作为一个非限制性示例,本发明的绕组节距为5,各线圈的上层边与下层边间隔5槽依次按下层边的规则排列。本领域技术人员可以理解,节距可以不一定为5,尤其是针对不同极数或不同槽数的结构可以设置不同的节距。作为一个示例,任一极相的线圈连接方式为所在槽(假设槽号为n)的下层线圈边连接到间隔绕组节距的槽(槽号为n+5)的上层线圈边。如图2中所示,因为每两个线圈组成1个线圈组,且绕组是节距为5的短距绕组,因此槽1和槽2的下层线圈边与槽6和槽7的上层线圈边组成第1个线圈组。依次地,槽7和槽8的下层线圈边与槽12和槽13的上层线圈边组成第2个线圈组。为了减小两套绕组之间的相关干扰,本发明在绕组的设置上还采用了两套绕组在电机定子圆周空间上交错独立分布的结构,使得两套绕组在定子圆周空间上重叠减少。因此,第一套绕组的第3个线圈组由槽25和槽26的下层线圈边与槽30和槽31的上层线圈边组成,第4个线圈组由槽31和槽32的下层线圈边与槽36和槽37的上层线圈边组成。第1和第2线圈组与第3和第4线圈组之间留出的槽位供第二套绕组使用,这在之后会结合图4和5来描述。
在图3中所示的第一套绕组的连线图中,线圈组1-2、 7-8、25-26、 31- 32共4个线圈组并联,并联一端接到输入端U1′,另一端接到中性点1。在这4个线圈组中,线圈组1-2和25-26具有相同的连接方式和正方向,而线圈组 7-831-32具有相同的连接方式和正方向。
线圈组的第二部分即第二套绕组如图4和图5所示,其中图4为第二套绕组的布置图,图5为第二套绕组的连线图。如图4中所示,与第一套绕组相同,第二套绕组也是每两个线圈组成1个一相线圈组,并且是节距为5的短距绕组,因此槽13和槽14的下层线圈边与槽18和槽19的上层线圈边组成第1个线圈组。依次地,槽19和槽20的下层线圈边与槽24和槽25的上层线圈边组成第2个线圈组。与第一套绕组的分布式布置对应地,槽37和槽38的下层线圈边与槽42和槽43的上层线圈边组成第3个线圈组,槽43和槽44的下层线圈边与槽48和槽1的上层线圈边组成第4个线圈组。在图5中所示的第二套绕组的连线图中,线圈组13-14、 19-20、37-38、 43-44共4个线圈组并联,并联一端接到输入端U1″,另一端接到中性点2。在这4个线圈组中,线圈组13-14和37-38具有相同的连接方式和正方向,而线圈组 19-2043-44具有相同的连接方式和正方向。
以上图2-图5都只示出了所述8极48槽永磁同步电机三相绕组中的一相(U相)绕组的情况,另外V和W两相绕组均与U相具有相同的绕组个数和连接方式。作为一个示例,U、V、W相绕组对称均匀地分布在定子铁心槽内,其中相序可以任意。此外,本领域技术人员可以理解,绕组的三相并不一定需要具有完全相同的绕组个数和连接方式,也不一定需要完全对称均匀地分布在定子铁心槽内。在某些实施例中,根据实际需要作出适当的改变也仍然能够获得本发明的分布式双绕组的主要益处,即减小绕组间的干扰并实现双绕组的独立控制。
图6示出了具有U′、V′和W′三相的第一套绕组的布置情况。如图6中所示,U′相的下层边占据的槽号为1、2、7、8、25、26、31和32;V′相的下层边占据的槽号为5、6、11、12、29、30、35和36;W′相的下层边占据的槽号为3、4、9、10、27、28、33和34。以上第一套绕组的U′、V′和W′三相共占据了定子铁心I的24个下层边,图6中另外24个下层边则为第二套绕组占据。各线圈的上层边与下层边以5槽为间隔依次按下层边的规则排列。此外,如图6中所示,双层结构的每一层的任意两个相邻的线圈组具有相反的电流方向,例如线圈组1-2与相邻的线圈组 3-4和线圈组 47-48在下层边的电流方向相反,线圈组2-3与相邻的线圈组 4-5和线圈组 48-1在上层边的电流方向相反。
图7示出了本发明的双绕组电机与控制逆变器的连接。如上文中所描述的,本 发明提出的双绕组方案两套绕组间的干扰被减小,因此在控制时无需解耦,可以采用两个独立的三相逆变器进行控制。在图7中,IV为与第一套绕组连接的逆变器,V为与第二套绕组连接的逆变器。逆变器IV和逆变器V均为公知的三相六桥臂结构,其直流端均与直流母线电容VI相连,直流母线电容VI与蓄电池相连,由蓄电池通过两个逆变器向电机提供驱动能量,或者接收从电机通过逆变器输出的制动能量。为了表达清楚起见,图7中只示出了U相绕组的连接情况。第一套绕组逆变器IV输出交流三相U′、V′和W′,其中U′相输出线与第一套绕组输入端U′相连;第二套绕组逆变器V输出交流三相U″、V″和W″,其中U″相输出线与第二套绕组输入端U″相连。逆变器IV和逆变器V可以分别同时向第一套绕组和第二套绕组供电或回收制动能量,也可以单独工作,即当逆变器IV向第一套绕组供电或回收制动能量时,逆变器V使第二套绕组不输入或输出能量,或者相反。
以上所已经描述的内容包括所要求保护主题的各方面的示例。当然,出于描绘所要求保护主题的目的而描述每一个可以想到的组件或方法的组合是不可能的,但本领域内的普通技术人员应该认识到,所要求保护主题的许多进一步的组合和排列都是可能的。从而,所公开的主题旨在涵盖落入所附权利要求书的精神和范围内的所有这样的变更、修改和变化。

Claims (10)

  1. 一种永磁电机,其特征在于:
    所述永磁电机的定子具有两套三相绕组,两套绕组在所述永磁电机的定子圆周空间上交错分布,并且所述两套绕组可分别由两个三相逆变器在无需解耦的情况下独立控制。
  2. 如权利要求1所述的永磁电机,其特征在于,所述两套绕组为短距绕组。
  3. 如权利要求2所述的永磁电机,其特征在于,所述两套绕组的节距为满足短距绕组下的最大节距。
  4. 如权利要求1所述的永磁电机,其特征在于,所述两套绕组采用在每一个定子槽内具有上下两层的双层结构。
  5. 如权利要求4所述的永磁电机,其特征在于,所述两套绕组中的任一套绕组的任一极相的线圈连接方式为所在槽的下层线圈边连接到间隔绕组节距的槽的上层线圈边。
  6. 如权利要求4所述的永磁电机,其特征在于,所述永磁电机的每极每相槽数为2,每两个线圈组成一个线圈组。
  7. 如权利要求6所述的永磁电机,其特征在于,所述双层结构的每一层的任意两个相邻的线圈组具有相反的电流方向。
  8. 如权利要求1所述的永磁电机,其特征在于,所述两套三相绕组具有相同的绕组个数和连接方式。
  9. 如权利要求1所述的永磁电机,其特征在于,所述两套三相绕组在所述永磁电机的定子圆周空间上均匀地交错分布。
  10. 一种电动车辆,其特征在于,所述电动车辆的驱动系统包括:
    如权利要求1-9中任意一项所述的具有两套三相绕组的永磁电机,以及
    两个三相逆变器,所述两个三相逆变器被配置成在无需解耦的情况下独立控制所述永磁电机中的两套绕组。
PCT/CN2019/112516 2019-09-06 2019-10-22 一种双绕组永磁电机 WO2021042455A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19944560.2A EP3910759A4 (en) 2019-09-06 2019-10-22 DOUBLE WINDING PERMANENT MAGNET MOTOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910841504.9 2019-09-06
CN201910841504.9A CN112467913A (zh) 2019-09-06 2019-09-06 一种双绕组永磁电机

Publications (1)

Publication Number Publication Date
WO2021042455A1 true WO2021042455A1 (zh) 2021-03-11

Family

ID=74806939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/112516 WO2021042455A1 (zh) 2019-09-06 2019-10-22 一种双绕组永磁电机

Country Status (3)

Country Link
EP (1) EP3910759A4 (zh)
CN (1) CN112467913A (zh)
WO (1) WO2021042455A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113541435B (zh) * 2021-06-29 2022-09-06 中国科学院电工研究所 分布式直线电机推进系统及供电方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102857002A (zh) * 2012-10-09 2013-01-02 天津市松正电动汽车技术股份有限公司 一种磁路解耦的双绕组电机和六相电机
CN103269137A (zh) * 2013-05-28 2013-08-28 天津市松正电动汽车技术股份有限公司 一种双绕组电机结构
US20160226356A1 (en) * 2015-01-29 2016-08-04 Masayuki Nashiki Multiple-phase ac electric motor whose rotor is equipped with field winding and diode
CN106130289A (zh) * 2016-08-29 2016-11-16 桂林星辰混合动力有限公司 一种配有绕组电控切换机构的永磁电机及绕组切换方法
CN107017720A (zh) * 2017-05-19 2017-08-04 苏州汇川联合动力系统有限公司 双绕组定子及电机

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB953532A (en) * 1959-09-22 1964-03-25 Scott L & Electromotors Ltd Improvements in electric motor drive systems
CN102195370B (zh) * 2011-05-18 2013-10-23 哈尔滨工业大学 漏抗可变宽转速范围输出永磁发电机系统
CN103684196B (zh) * 2013-11-19 2016-02-17 南京航空航天大学 一种可切换绕组的永磁同步电机驱动系统
DE102014226570A1 (de) * 2014-12-19 2016-06-23 Robert Bosch Gmbh Asynchronmaschine für sicherheitsrelevante Einsatzgebiete
CN106286129B (zh) * 2016-10-12 2021-04-06 北京金风科创风电设备有限公司 风力发电机组及其控制方法
FR3064834B1 (fr) * 2017-03-29 2019-04-05 Valeo Equipements Electriques Moteur Machine electrique tournante a configuration optimisee

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102857002A (zh) * 2012-10-09 2013-01-02 天津市松正电动汽车技术股份有限公司 一种磁路解耦的双绕组电机和六相电机
CN103269137A (zh) * 2013-05-28 2013-08-28 天津市松正电动汽车技术股份有限公司 一种双绕组电机结构
US20160226356A1 (en) * 2015-01-29 2016-08-04 Masayuki Nashiki Multiple-phase ac electric motor whose rotor is equipped with field winding and diode
CN106130289A (zh) * 2016-08-29 2016-11-16 桂林星辰混合动力有限公司 一种配有绕组电控切换机构的永磁电机及绕组切换方法
CN107017720A (zh) * 2017-05-19 2017-08-04 苏州汇川联合动力系统有限公司 双绕组定子及电机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3910759A4 *

Also Published As

Publication number Publication date
EP3910759A1 (en) 2021-11-17
CN112467913A (zh) 2021-03-09
EP3910759A4 (en) 2022-10-19

Similar Documents

Publication Publication Date Title
JP2009303298A (ja) 交流モータ装置
TWI551006B (zh) 混合式雙轉子馬達結構
CN105634225B (zh) 直流无刷电机及使用其的电动助力转向系统
JP6564057B2 (ja) 回転電機および回転電機システム
CN107959362B (zh) 一种多模式双通道开关磁阻电机系统的容错控制方法
CN105743398B (zh) 用于五相永磁同步电机绕组开路故障容错控制的电流设定方法
KR20040105698A (ko) 전동발전기
JP2003009486A (ja) 可変速電動機
JP2010161846A (ja) 交流電動機駆動装置およびこれを用いた電気推進装置
US20200014323A1 (en) Drive device
CN107017720A (zh) 双绕组定子及电机
WO2021042455A1 (zh) 一种双绕组永磁电机
CN104795917B (zh) 一种多相电机绕组机构
JP2006050709A (ja) 電動パワーステアリング装置
JP6183267B2 (ja) パワーステアリングシステム
JP4842711B2 (ja) 多相電動機
US10790732B2 (en) Pole-number-changing rotary electric machine and driving method of pole-number-changing rotary electric machine
JP5301905B2 (ja) 複数相回転電機駆動装置、複数相発電機用コンバータ、複数相回転電機、及び回転電機駆動システム
JP2020198743A (ja) 回転電機および自動車用電動補機システム
WO2022113405A1 (ja) 回転電機、並びにそれを用いる電動車両用回転電機システム
JP5516045B2 (ja) 多相モータ
JP4476585B2 (ja) 2yモータの固定子構造
WO2022087997A1 (zh) 一种多相绕组eps电机定子结构
JP2015080283A (ja) 交流電動機駆動装置
JP2011130525A (ja) 電動機駆動システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19944560

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019944560

Country of ref document: EP

Effective date: 20210810

NENP Non-entry into the national phase

Ref country code: DE