WO2021042290A1 - 图像传感器及其制作方法、电子设备 - Google Patents

图像传感器及其制作方法、电子设备 Download PDF

Info

Publication number
WO2021042290A1
WO2021042290A1 PCT/CN2019/104386 CN2019104386W WO2021042290A1 WO 2021042290 A1 WO2021042290 A1 WO 2021042290A1 CN 2019104386 W CN2019104386 W CN 2019104386W WO 2021042290 A1 WO2021042290 A1 WO 2021042290A1
Authority
WO
WIPO (PCT)
Prior art keywords
photosensitive device
light
semiconductor wafer
image sensor
plane
Prior art date
Application number
PCT/CN2019/104386
Other languages
English (en)
French (fr)
Inventor
姚国峰
沈健
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to CN201980001910.2A priority Critical patent/CN110770908A/zh
Priority to PCT/CN2019/104386 priority patent/WO2021042290A1/zh
Publication of WO2021042290A1 publication Critical patent/WO2021042290A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14629Reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1463Pixel isolation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14685Process for coatings or optical elements

Definitions

  • This application relates to the field of semiconductor technology, and in particular to an image sensor, a manufacturing method thereof, and electronic equipment.
  • Image sensor refers to a sensor that can convert optical images into digital signals, and is widely used in various fields of digital products, mobile terminals, security monitoring, and scientific research industries.
  • the image sensor absorbs light and generates corresponding carriers.
  • the traditional image sensor has a better photoelectric conversion effect for visible light, but has a poor photoelectric conversion effect for longer wavelength light, such as Near Infrared (NIR) light.
  • NIR Near Infrared
  • NIR Near Infrared
  • AR/VR eye tracking and 3D facial recognition these technologies mostly use near-infrared light that is invisible to the human eye as the light source. Therefore, the imaging effect of the traditional image sensor in the corresponding scene Poor.
  • the embodiments of the present application provide an image sensor, a manufacturing method thereof, and an electronic device, which can improve the quantum efficiency of long-wavelength light-to-photoelectric conversion, thereby improving the imaging effect of the image sensor.
  • an image sensor including:
  • the photosensitive device In a direction perpendicular to the plane where the semiconductor wafer is located, the photosensitive device has opposite light incident surfaces and bottom surfaces;
  • a light-reduced medium layer located on the side of the bottom surface of the photosensitive device and adjacent to the light-sensitive device, the light-reduced medium layer and the bottom surface of the photosensitive device are in contact with each other and form an interface, and the interface includes at least one
  • the inclined plane forms an acute angle between the inclined plane and the plane where the semiconductor wafer is located, and the refractive index of the light thinning medium layer is smaller than the refractive index of the photosensitive device.
  • an embodiment of the present application also provides a manufacturing method of an image sensor, which is used to manufacture the above-mentioned image sensor, and the method includes:
  • the semiconductor wafer having a first surface
  • the etching mask layer is formed by using a grayscale photolithography process or a nanoimprint process, and the shape of the etching mask layer is transferred to the first surface of the semiconductor wafer through the etching process, so that the first surface of the semiconductor wafer At least one inclined plane is formed in the photosensitive device area, and an acute angle is formed between the inclined plane and the plane where the semiconductor wafer is located;
  • a light thinning medium layer is formed on the surface of the photosensitive device, so that the at least one inclined plane serves as the interface between the light sensitive device and the light thinning medium layer, and the refractive index of the light thinning medium layer is smaller than that of the photosensitive device. Refractive index.
  • an embodiment of the present application also provides an electronic device including the above-mentioned image sensor.
  • the interface between the photosensitive device and the light-reduced medium layer is arranged in the image sensor to include an inclined plane, and the refractive index of the light-reduced medium layer is smaller than that of the photosensitive device.
  • the refractive index makes it easier for the incident light to be reflected back into the photosensitive device at the inclined plane, that is, to increase the optical path of the light transmitted inside the photosensitive device, and enhance the absorption of light in the photosensitive device, thereby improving the quantum efficiency, especially The quantum efficiency of the photoelectric conversion of long-wavelength light, which is originally poor in absorption, is improved, thereby improving the imaging effect of the image sensor.
  • the thickness of the photosensitive device itself must be increased to increase the optical path of the light in the photosensitive device.
  • the overall thickness of the image sensor is required to be high.
  • the reflection method can increase the optical path of the light in the photosensitive device.
  • the film layer on the light-emitting side of the photosensitive device in the image sensor can be used to realize the light-thin dielectric layer, or the additional thickness is smaller.
  • an inclined plane is set to match the refractive index of the optically thin medium layer to form a reflective interface, and the optical path of light in the photosensitive device is increased by reflection.
  • the embodiment of the application increases the optical path by reflection Compared with the method of directly increasing the thickness of the photosensitive device itself to increase the optical path, under the same optical path, the requirement for the overall thickness of the image sensor is lower.
  • FIG. 1 is a schematic diagram of a cross-sectional structure of a partial area including a photosensitive device in an image sensor in an embodiment of the present application;
  • Fig. 2 is a schematic diagram showing the transmission of the structure in Fig. 1 under incident light from another direction;
  • FIG. 3 is a schematic diagram of the transmission of the structure in FIG. 1 under incident light in another direction;
  • FIG. 4 is a schematic diagram of a cross-sectional structure of a partial area of another image sensor in an embodiment of the application;
  • FIG. 5 is a schematic diagram of a cross-sectional structure of a partial area of another image sensor in an embodiment of the application
  • FIG. 6 is a schematic diagram of a cross-sectional structure of a partial area of another image sensor in an embodiment of the application.
  • FIG. 7 is a block diagram of the overall structure of an image sensor in an embodiment of the application.
  • FIG. 8 is a schematic diagram of an equivalent circuit of a pixel in the image sensor of FIG. 7;
  • FIG. 9 is a top view of a pixel in the image sensor of FIG. 7;
  • FIG. 10 is a flowchart of a manufacturing method of an image sensor in an embodiment of the application.
  • FIG. 11 is a schematic diagram of a structure formed at the end of some steps in FIG. 10;
  • FIG. 12 is a schematic diagram of another structure formed at the end of some steps in FIG. 10; FIG.
  • FIG. 13 is a schematic diagram of another structure formed at the end of some steps in FIG. 10;
  • FIG. 14 is a schematic diagram of another structure formed at the end of some steps in FIG. 10; FIG.
  • FIG. 15 is a schematic structural diagram of a modified embodiment of the structure shown in FIG. 4.
  • FIG. 1 is a schematic diagram of a cross-sectional structure of a partial area of an image sensor in an embodiment of the present application.
  • the image sensor includes: a semiconductor wafer 1 and a semiconductor wafer 1 It can be called a semiconductor substrate, such as a wafer made of single crystal silicon material; the photosensitive device 3 arranged in the semiconductor wafer 1, and the photosensitive device 3 is used for photoelectric conversion, that is, by absorbing light to generate carriers, so as to facilitate the corresponding The position of the carrier obtains the corresponding digital signal.
  • a part of the semiconductor wafer 1 in FIG. 1 is a first element doped area 301, and a part is a second element doped area 302.
  • the first element-doped region 301 can be a lightly doped P-type monocrystalline silicon substrate part
  • the second element-doped region 302 can be an N-type element-doped region, a P-type element-doped region and an N-type element doped region.
  • the element-doped area forms a PN junction, that is, a photodiode, which serves as the photosensitive device 3; in the direction perpendicular to the plane of the semiconductor wafer 1, the photosensitive device 3 has opposite light incident surfaces 31 and bottom surfaces 32, and the semiconductor wafer 1 is in the shape of a sheet as a whole , The x direction in FIG.
  • the y direction is the direction perpendicular to the plane where the semiconductor wafer 1 is located.
  • the upper surface of the photosensitive device 3 is the light incident surface 31.
  • the lower surface of the device 3 is the bottom surface 32.
  • the image sensor When the image sensor is used, light enters the photosensitive device 3 from the light incident surface 31, that is, in Figure 1, the initial transmission direction of the light is from top to bottom, where the arrow points to the light The transmission direction is indicated; the light thinning medium layer 4 located on the side of the bottom surface 32 of the photosensitive device 3 and adjacent to the light sensitive device 3, the light thinning medium layer 4 and the bottom surface 32 of the photosensitive device 3 are in contact with each other and form an interface, the interface includes at least An inclined plane 51 forms an acute angle ⁇ between the inclined plane 51 and the plane where the semiconductor wafer 1 is located, that is, the angle between the inclined plane 51 and the x direction is an acute angle ⁇ , and the refractive index of the optically thin medium layer 4 is smaller than the refractive index of the photosensitive device 3.
  • the photosensitive device 3 when the photosensitive device 3 is composed of the first element-doped region 301 and the second element-doped region 302, both of them are different element-doped regions in the single crystal silicon substrate material, even if it has a refractive index. The difference in rate can also be ignored, and the refractive index of the photosensitive device 3 is the refractive index of the semiconductor wafer 1.
  • the inclined arrangement of the inclined plane 51 two complementary angles will be formed between the inclined plane 51 and the plane (x direction) where the semiconductor wafer 1 is located. In the embodiment of the present application, only the acute angle ⁇ is described.
  • the angle ⁇ is an acute angle formed between the inclined plane 51 and the plane where the semiconductor wafer 1 is located.
  • Figure 1 illustrates the light transmission direction along the direction perpendicular to the plane where the semiconductor wafer 1 is located.
  • These light rays pass through the photosensitive device 3 Inside and transmitted to the bottom surface 32 of the photosensitive device 3, since the refractive index of the optically thinner medium layer 4 is smaller than the refractive index of the photosensitive device 3, that is, the initial light transmitted from the optically denser medium to the interface of the optically thinner medium, at the inclined plane 51, The light is more likely to be reflected, so it is reflected back to the inside of the photosensitive device 3 at the inclined plane 51.
  • F is the normal line of the initial incident light at the inclined plane 51.
  • the incident light and the normal line F The angle between is also ⁇ .
  • the greater the angle between the incident light and the normal F the greater the intensity of the light reflected to the inside of the photosensitive device 3, that is, where the inclined plane 51 and the semiconductor chip 1 are The greater the angle ⁇ between the planes, the greater the intensity of the light reflected to the inside of the photosensitive device 3.
  • the amount of light absorbed in the photosensitive device 3 Satisfy the following function formula, among them, Is the initial incident light intensity, R is the intensity that the incident light is reflected before entering the photosensitive device 3, ⁇ is the absorption coefficient, W is the optical path of the light inside the photosensitive device 3, and the optical path of the light inside the photosensitive device 3 and the light in the The amount of absorption in the photosensitive device 3 is positively correlated.
  • QE quantum efficiency
  • An important parameter of the photoelectric conversion capability of a device it refers to the ratio of the number of electrons produced per unit time under a certain wavelength to the number of incident photons.
  • the interface between the photosensitive device and the light-reduced medium layer to include an inclined plane
  • the refractive index of the light-reduced medium layer is smaller than the refractive index of the photosensitive device, so that the incident light is more intense at the inclined plane. It is easy to reflect back into the photosensitive device, that is, increase the optical path of the light transmitted inside the photosensitive device, thereby improving the quantum efficiency, especially the quantum efficiency of the long-wavelength optical photoelectric conversion, which has poor absorption effect, thereby improving the image sensor The imaging effect.
  • the thickness of the photosensitive device itself must be increased to increase the optical path of the light in the photosensitive device.
  • the overall thickness of the image sensor is required to be high.
  • the reflection method can increase the optical path of the light in the photosensitive device.
  • the film layer on the light-emitting side of the photosensitive device in the image sensor can be used to realize the light-thin dielectric layer, or the additional thickness is smaller.
  • an inclined plane is set to match the refractive index of the optically thin medium layer to form a reflective interface, and the optical path of light in the photosensitive device is increased by reflection.
  • the embodiment of the application increases the optical path by reflection Compared with the method of directly increasing the thickness of the photosensitive device itself to increase the optical path, under the same optical path, the requirement for the overall thickness of the image sensor is lower.
  • the acute angle formed between the inclined plane 51 and the plane where the semiconductor wafer 1 is located is ⁇ , ⁇ C , n 1 is the refractive index of the near-infrared light in the photosensitive device 3, and n 2 is the refractive index of the near-infrared light in the light thin medium layer 4.
  • the photosensitive device 3 is made of a single crystal silicon material, and the refractive index of the optically thin medium layer 4 is 1.45, and ⁇ C is calculated Is 23.5°.
  • ⁇ C is calculated Is 23.5°.
  • the angle ⁇ formed between the inclined plane 51 and the plane where the semiconductor wafer 1 is located is greater than or equal to the critical angle of 23.5°, most of the incident light can be totally reflected.
  • near-infrared light usually refers to electromagnetic waves with a wavelength of 780 to 1100 nm. In specific application scenarios, near-infrared light with a specific wavelength is usually selected as the light source. Therefore, it can be used according to the wavelength and wavelength of the light source used.
  • FIG. 2 is a schematic diagram of the transmission of the structure in Figure 1 under incident light in another direction.
  • the initial incident light shown in Figure 2 enters the photosensitive device 3 from the upper left, where the incident light and the y-direction sandwich The angle is ⁇ 1 , and the angle between the incident light and the normal line F of the inclined plane 51 is ⁇ 1 + ⁇ , which obviously satisfies the condition of total reflection. Therefore, the light incident from the upper left of the figure in FIG. 2 can be totally reflected.
  • Figure 3 is a schematic diagram of the transmission of the structure in Figure 1 under incident light in another direction.
  • the initial incident light shown in Figure 3 enters the photosensitive device 3 from the upper right, where the incident light and the y-direction sandwich The angle is ⁇ 2, and the angle between the incident light and the normal F of the inclined plane 51 is ⁇ 2 - ⁇ .
  • ⁇ 2 - ⁇ C the condition of total reflection is satisfied, otherwise part of the light cannot enter the photosensitive device due to refraction.
  • Figures 1, 2 and 3 illustrate the transmission paths of incident light at various angles. According to the above analysis, it can be seen that the structure in the embodiment of the present application can cause most of the incident light to be totally reflected at the inclined plane 51, thereby increasing The light path in the photosensitive device 3 improves the quantum efficiency of photoelectric conversion.
  • FIG. 4 is a schematic diagram of a cross-sectional structure of a partial area of another image sensor in an embodiment of the present application.
  • a plurality of convex ribs 50 are formed at the interface of the photosensitive device 3 and the light thinning medium layer 4,
  • a plurality of ribs 50 may be successively arranged to form a cross-sectional shape similar to a sawtooth shape.
  • the apex angle of each rib 50 may be formed by the intersection of an adjacent inclined plane 51 and a vertical plane 52, the vertical plane 52 may be perpendicular to the plane where the semiconductor wafer 1 is located, and the inclined plane 51 in any two ribs 50 Parallel to each other.
  • the structure shown in FIG. 4 has multiple inclined planes 51 formed at the interface between the photosensitive device 3 and the light thinning medium layer 4, and the light thinning is reduced under the condition that the tilt angle remains unchanged.
  • FIG. 5 is a schematic diagram of a cross-sectional structure of a partial area of another image sensor in an embodiment of the present application.
  • the interface between the photosensitive device 3 and the light-thin medium layer 4 forms a plurality of convex edges. 50.
  • a plurality of ribs 50 can be arranged in succession to form a cross-sectional shape similar to a sawtooth shape.
  • the apex angle of each convex edge 50 is formed by the intersection of an adjacent first inclined plane 511 and a second inclined plane 512.
  • the first inclined planes 511 of any two convex edges 50 are parallel to each other, and any two of the first inclined planes 511 are parallel to each other.
  • the second inclined planes 512 in the rib 50 are parallel to each other.
  • the structure shown in FIG. 5 is similar to the structure shown in FIG. 4, but because each rib 50 is composed of two inclined planes with opposite inclined directions, although the inclined directions of the first inclined plane 511 and the second inclined plane 512 are opposite , But both form an acute angle ⁇ with the plane where the semiconductor wafer 1 is located.
  • the first inclined plane 511 and the second inclined plane 512 have better absorption effects for the light incident from the upper right and the upper left, respectively. Therefore, In addition to reducing the thickness of the optically thin dielectric layer 4, the angle dependence of the trigger condition of total reflection on the incident light is reduced.
  • the image sensor further includes a groove wall 61
  • the photosensitive device 3 has a side surface 33 perpendicular to the plane where the semiconductor wafer 1 is located, and the groove wall 61 and the side surface 33 of the photosensitive device 3 are in contact with each other And form an interface perpendicular to the plane where the semiconductor wafer 1 is located; in the direction perpendicular to the plane where the semiconductor wafer 1 is located, the orthographic projection of the trench wall 61 at least partially surrounds the orthographic projection of the photosensitive device 3; the refractive index of the trench wall 61 is less than The refractive index of the photosensitive device 3.
  • the semiconductor wafer 1 has a first surface 11 and a second surface 12 opposite in a direction perpendicular to the plane where the semiconductor wafer 1 is located.
  • the first surface 11 is a side surface close to the light incident surface 31 of the photosensitive device 3, such as the first surface.
  • the surface 11 and the light incident surface 31 may be the same surface, and the second surface 12 is a surface close to the bottom surface 32 of the photosensitive device 3.
  • the bottom surface 32 of the photosensitive device 3 may be a portion recessed inward of the second surface 12.
  • the image sensor may further include a trench isolation portion 62, which is located on the side of the trench wall 61 close to the second surface 12, and the trench isolation portion 62 may be used to isolate different photosensitive devices 3 from each other.
  • the photosensitive device 3 can be specifically formed by implanting N-type elements into a P-type silicon substrate (or it can also be formed by implanting P-type elements into an N-type silicon substrate).
  • the photosensitive device 3 and A P-type doped region is set between the trench isolation portion 62, that is, the part between the photosensitive device 3 and the trench isolation portion 62 in FIGS. 1 to 5, and the purpose is to isolate the photosensitive device 3 from the interface with the trap state and prevent The photo-generated carriers recombine at this interface.
  • a silicon substrate is also provided between the trench wall 61 and the trench isolation portion 62, that is, the trench isolation portion 62 and the trench wall 61 are independent of each other.
  • the trench wall and the trench isolation portion may also be an integral structure.
  • the image sensor further includes: an anti-reflection coating 71 (anti-reflection coating) located on the side of the light incident surface 31 of the photosensitive device 3, a filter 72 and a micro lens 73,
  • the photosensitive device 3, the anti-reflection layer 71, the filter 72, and the microlens 73 are stacked in sequence.
  • the anti-reflection layer 71 is used to reduce the reflection of light and increase the transmittance before the light enters the photosensitive device 3.
  • the photosensitive device 3 includes an element-doped area in the semiconductor wafer 1.
  • the photosensitive device 3 is composed of a first element-doped area 301 and an adjacent second element-doped area 302 in the semiconductor wafer 1.
  • the lightly doped P-type silicon substrate is doped with N-type elements to form an N-type doped region and a P-type doped region.
  • the N-type doped region is the first element doped region 301
  • the P-type doped region is the second doped region.
  • the two-element doped region 302, the N-type doped region and the adjacent P-type silicon substrate part form a PN junction, that is, a photosensitive diode, as the photosensitive device 3; as shown in FIG. 6, FIG.
  • the image sensor further includes a transistor 8 which includes a gate 81 located between the photosensitive device 3 and the floating diffusion region O; the image sensor also includes a light-thin dielectric layer. 4
  • the metal wire 9 on the side away from the light incident surface 31, and the metal wire 9 is electrically connected to the gate 81 through the via 40 on the light-thin dielectric layer 4.
  • the transistor 8 is used to form a circuit for realizing signal control in the image sensor, and its specific function and principle will be introduced later.
  • the metal wire 9 is used to transmit and provide the signal required by the gate 81 of the transistor 8.
  • the gate 81 and the metal wire 9 are both located on the side of the bottom surface 32 of the photosensitive device 3, which can prevent the light from being blocked by the metal structure during the transmission process of the photosensitive device 3.
  • the light-thin dielectric layer 4 is disposed on the side of the bottom surface 32 of the photosensitive device 3. The side of the bottom surface 32 of the photosensitive device 3 can be multiplexed as a dielectric layer between the metal wire 9 and the gate 81.
  • the photosensitive device 3 is a photodiode.
  • FIG. 7 is a block diagram of the overall structure of an image sensor in an embodiment of the application
  • FIG. 8 is a schematic diagram of an equivalent circuit of one pixel in the image sensor of FIG. 7.
  • 9 is a top view of a pixel in the image sensor of FIG.
  • the image sensor includes a plurality of pixels 10 distributed in an array; each pixel 10 includes: a photosensitive device 3, the anode of the photosensitive device 3 is grounded; a transfer transistor TG, connected in series to the photosensitive device Between the cathode of the device 3 and the floating diffusion region O, in the equivalent circuit, the floating diffusion region O is a signal node, the first end of the transfer transistor TG is electrically connected to the cathode of the photosensitive device 3, and the first end of the transfer transistor TG The two ends are electrically connected to the floating diffusion region O, and the control end of the transfer transistor TG is its gate, as shown in Figure 6, Figure 7, Figure 8 and Figure 9, Figure 6 may be a cross section along the AA' direction in Figure 9 Structure diagram, the transistor 8 in FIG.
  • the reset transistor RST is connected in series between the floating diffusion region O and the power supply voltage terminal VDD, that is, the first terminal of the reset transistor RST Connected to the floating diffusion region O, the second terminal of the reset transistor RST is electrically connected to the power supply voltage terminal VDD;
  • the source follower transistor SF the first terminal of which is electrically connected to the power supply voltage terminal VDD, and its control terminal is electrically connected to the floating diffusion Area O;
  • row selection transistor RS its first end is electrically connected to the second end of the source follower transistor SF, and its second end is electrically connected to the column signal terminal Read.
  • Each pixel 10 may correspond to a photosensitive device 3, and the photosensitive devices 3 in adjacent pixels 10 may be isolated from each other by the trench wall 61 and the trench isolation portion 62.
  • CMOS Complementary Metal Oxide Semiconductor
  • the first end of the transistor is one of the source and drain
  • the second end of the transistor is the other of the source and the drain
  • the control end of the transistor is the gate.
  • the reset transistor RST resets the floating diffusion region O in response to the control signal of its gate
  • the photosensitive device 3 is used to receive light and generate corresponding carriers, which are stored in the floating diffusion region O
  • the source follower transistor SF is used
  • the row selection transistor RS transmits the signal generated by the source follower transistor SF to the column signal terminal Read in response to the control signal of its gate, so that the column signal terminal Read signal Is read.
  • the image sensor further includes a control circuit module 110 and a reading circuit module 120.
  • the control circuit module 110 is used to control the operating characteristics of the pixel 10 array, including generating a series of shutter signals for controlling the exposure process of the pixel 10.
  • the reading circuit module 120 specifically includes an amplifier circuit, an analog-to-digital conversion circuit (ADC), etc., for reading out the electrical signals generated in the pixels 10 in columns.
  • ADC analog-to-digital conversion circuit
  • FIG. 9 only illustrates a partial structure of the pixel 10, rather than a complete structure, for example, it only includes the film layer of the semiconductor wafer 1 and the metal film layer.
  • FIG. 1, FIG. 2, FIG. 3, FIG. 4, and FIG. 5 may be schematic diagrams of the cross-sectional structure in the BB' direction in FIG. 9.
  • the material of the photophobic dielectric layer 4 includes one of the following: silicon dioxide, silicon oxynitride, phosphorous silica glass (Phospho Silicate Glass), and borophosphosilicate glass (Boro Phospho Silicate Glass).
  • Figure 10 is a flowchart of an image sensor manufacturing method in an embodiment of the application
  • Figure 11 is a schematic diagram of a structure formed at the end of some steps in Figure 10
  • Figure 10 12 is another schematic diagram of another structure formed at the end of some steps in FIG. 10
  • FIG. 13 is another schematic diagram of another structure formed at the end of some steps in FIG. 10, and an embodiment of the present application also provides an image sensor
  • the manufacturing method can be used to manufacture the image sensor of any of the above embodiments, and the method includes:
  • Step 101 Provide a semiconductor wafer 1, and the semiconductor wafer 1 has a first surface 11;
  • Step 102 Use a gray-scale lithography process or a nano-imprinting process to form an etching mask layer, and transfer the shape of the etching mask layer to the semiconductor wafer 1 through the etching process.
  • the first surface 11 is such that the first surface 11 of the semiconductor wafer 1 forms at least one inclined plane 51 in the photosensitive device area 30, and an acute angle is formed between the inclined plane 51 and the plane where the semiconductor wafer 1 is located;
  • the semiconductor wafer 1 is a lightly doped P-type single crystal silicon substrate.
  • an isolation trench 620 may be formed on the first surface 11 of the semiconductor wafer 1.
  • a trench isolation portion is formed.
  • the structure shown in FIG. 11 may be formed.
  • the structure in FIG. 1 to FIG. 6 can also be referred to.
  • Step 103 Perform element doping on the photosensitive device area 30 on the semiconductor wafer 1, so that the photosensitive device area 30 forms the photosensitive device 3;
  • the semiconductor wafer 1 is a P-type element-doped substrate, a part of which is used as the first element-doped region 301, and a low-dose N-type doping element is implanted into a specific region of the semiconductor wafer 1 to form an N-type element.
  • the element-doped region, as the second element-doped region 302, the first element-doped region 301 and the second element-doped region 302 form a photodiode, as the photosensitive device 3, in the process of step 103, it can also be used in another
  • a high-dose N-type element is injected into a specific area to form a third element-doped area 303, which serves as a floating diffusion area O, and then a gate dielectric layer 82 and a gate 81 are formed, which is formed as shown in FIG.
  • the structure shown in FIG. 12 may be the structure formed after step 103 in FIG. 10 is completed.
  • Step 104 forming a light thinning medium layer 4 on the surface of the photosensitive device 3, making at least one inclined plane 51 as the interface between the light sensitive device 3 and the light thinning medium layer 4, and the refractive index of the light thinning medium layer 4 is smaller than the refractive index of the photosensitive device 3.
  • the photo-thin dielectric layer 4 can be specifically formed by a CVD (Chemical Vapor Deposition) process, and then can be planarized by a CMP (Chemical Mechanical Polishing) process, so that the surface becomes flat and convenient
  • the subsequent processing is to form the structure shown in FIG. 13, that is, FIG. 13 may be the structure formed after step 104 in FIG. 10 is completed.
  • step 101 step 103 may be executed first, and then Step 102 and then step 104 are performed, that is, element doping is performed on the semiconductor wafer 1 to obtain the second element doped region 302, and then the inclined plane 51 is formed to obtain the structure shown in FIG. 12.
  • the structure of the element doping area will change, for example, the second element doping in FIG. 12
  • the lower surface of the region 302 will become a plane (parallel to the x-square), that is, the finally formed second element-doped region 302 will become a trapezoid instead of the parallelogram shown in FIG. 12.
  • the structures shown in FIGS. 1 to 6 are all obtained by performing step 102 and then performing step 103.
  • FIG. 15 is the same as shown in FIG. 4.
  • the structure shown in FIG. 15 is obtained by first performing step 103 and then performing step 102.
  • the substrate structure with a horizontal plane is first doped, and the second element doped region 302 is formed.
  • the upper surface is also a horizontal structure, and then the lower serrated cross section is obtained through an etching process. Comparing FIG. 4 with FIG. 15, the other structures are the same, and the only difference lies in the structural difference of the upper surface of the element-doped region 302 due to the sequence of the process.
  • the interface between the photosensitive device and the photosensitive medium layer is set to include an inclined plane, and the refractive index of the photosensitive medium layer is smaller than the refractive index of the photosensitive device, so that the incident light is inclined
  • the plane is easier to reflect back to the inside of the photosensitive device, that is, the optical path of the light transmission inside the photosensitive device is increased, thereby improving the quantum efficiency, especially the quantum efficiency of the long-wavelength optical-to-electrical conversion that has poor absorption effect, thereby improving
  • the imaging effect of the image sensor is improved.
  • the thickness of the photosensitive device itself must be increased to increase the optical path of the light in the photosensitive device.
  • the overall thickness of the image sensor is required to be high.
  • the reflection method can increase the optical path of the light in the photosensitive device.
  • the film layer on the light-emitting side of the photosensitive device in the image sensor can be used to realize the light-thin dielectric layer, or the additional thickness is smaller.
  • an inclined plane is set to match the refractive index of the optically thin medium layer to form a reflective interface, and the optical path of light in the photosensitive device is increased by reflection.
  • the embodiment of the application increases the optical path by reflection Compared with the method of directly increasing the thickness of the photosensitive device itself to increase the optical path, under the same optical path, the requirement for the overall thickness of the image sensor is lower.
  • the semiconductor wafer 1 includes a first surface 11 and a second surface 12 opposite in a direction perpendicular to the plane where the semiconductor wafer 1 is located; as shown in FIGS. 1 to 6, after the above step 101, the semiconductor wafer 11 is provided, It also includes: forming a trench on the second surface 12 of the semiconductor wafer 1, the trench being a structure recessed inward from the second surface 12 of the semiconductor wafer 1, and filling the trench with a material having a refractive index smaller than that of the photosensitive device 3, such as The silicon dioxide material forms the trench wall 61. In a direction perpendicular to the plane where the semiconductor wafer 1 is located, the orthographic projection of the trench wall 61 at least partially surrounds the orthographic projection of the photosensitive device 3.
  • the step of forming a trench and filling it to form the trench wall 61 may be performed after the above step 104, or may be performed after other steps, and the embodiment of the present application does not limit the time.
  • FIG. 14 is a schematic diagram of another structure formed at the end of some of the steps in FIG. include:
  • a gate dielectric layer 82 is formed on the first surface 11 of the semiconductor wafer 1;
  • the steps of forming the gate dielectric layer 82 and forming the gate 81 may be performed after the above step 103.
  • the above step 104 after forming the light thinner medium layer 4 on the surface of the photosensitive device 3, further includes:
  • the photo-thin dielectric layer 4 is formed with a via hole corresponding to the gate 81 through a patterning process
  • a metal wire 9 is formed on the surface of the light thinning dielectric layer 4, and the metal wire 9 is electrically connected to the gate 81 through a via hole.
  • the formed structure is shown in FIG. 14, that is, FIG. 14 may be the structure formed after step 104 in FIG. 10 is completed.
  • FIG. 1 to FIG. 6 and FIG. 14 the side of the optically thin medium layer 4 away from the photosensitive device 3
  • a metal dielectric layer 401 and other metal wires 901 are also provided, and the other metal wires 901 are used to connect other devices.
  • the metal dielectric layer 401 may be one or more layers.
  • the semiconductor wafer 1 and the carrier wafer 100 are bonded (bonding) to thin the semiconductor wafer 1 (for example, thinning).
  • the trench wall 61, the anti-reflection layer 71, the filter 72, and the microlens 73 are sequentially formed on the thinned semiconductor wafer 1.
  • the final structure can refer to Figures 1 to 6 .
  • An embodiment of the present application also provides an electronic device, including the image sensor in any of the foregoing embodiments.
  • the electronic device may be any device used for imaging, such as a mobile phone, a camera, or a monitoring device.
  • the interface between the photosensitive device and the light-reduced medium layer is provided in the image sensor to include an inclined plane, and the refractive index of the light-reduced medium layer is smaller than that of the photosensitive device, so that the incident light is in
  • the inclined plane is easier to reflect back to the inside of the photosensitive device, that is, the optical path of light transmission inside the photosensitive device is increased, thereby improving the quantum efficiency, especially the quantum efficiency of long-wavelength optical-to-electrical conversion, which has poor absorption effect. Improved the imaging effect of the image sensor.
  • the thickness of the photosensitive device itself must be increased to increase the optical path of the light in the photosensitive device.
  • the overall thickness of the image sensor is required to be high.
  • the reflection method can increase the optical path of the light in the photosensitive device.
  • the film layer on the light-emitting side of the photosensitive device in the image sensor can be used to realize the light-thin dielectric layer, or the additional thickness is smaller.
  • an inclined plane is set to match the refractive index of the optically thin medium layer to form a reflective interface, and the optical path of light in the photosensitive device is increased by reflection.
  • the embodiment of the application increases the optical path by reflection Compared with the method of directly increasing the thickness of the photosensitive device itself to increase the optical path, under the same optical path, the requirement for the overall thickness of the image sensor is lower.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

本申请实施例提供一种图像传感器及其制作方法、电子设备,涉及半导体技术领域,可以提高对长波段光进行光电转换的量子效率,从而改善图像传感器的成像效果。该图像传感器包括:半导体晶片;设置于半导体晶片中的光敏器件,光敏器件用于光电转换;在垂直于半导体晶片所在平面的方向上,光敏器件具有相对的光入射表面和底面;位于光敏器件的底面一侧且与光敏器件相邻的光疏介质层,光疏介质层和光敏器件的底面相互接触且形成交界面,交界面包括至少一个倾斜平面,倾斜平面与半导体晶片所在平面之间形成锐角,光疏介质层的折射率小于光敏器件的折射率。本方案主要用于成像。

Description

图像传感器及其制作方法、电子设备 技术领域
本申请涉及半导体技术领域,尤其涉及一种图像传感器及其制作方法、电子设备。
背景技术
图像传感器是指可将光学图像转化成数字信号的传感器,广泛应用在数码产品、移动终端、安防监控以及科研工业各个领域。图像传感器会吸收光并产生对应的载流子,传统的图像传感器对于可见光的光电转换效果较好,对于更长波段的光的光电转换效果较差,例如近红外(Near Infrared,NIR)光。然而,随着AR/VR眼动追踪、3D面部识别等新技术不断涌现,这些技术中多采用了人眼不可见的近红外光作为光源,因此,传统的图像传感器在相应场景下的成像效果较差。
发明内容
本申请实施例提供一种图像传感器及其制作方法、电子设备,可以提高对长波段光光电转换的量子效率,从而改善图像传感器的成像效果。
一方面,本申请实施例提供一种图像传感器,包括:
半导体晶片;
设置于半导体晶片中的光敏器件,所述光敏器件用于光电转换;
在垂直于所述半导体晶片所在平面的方向上,所述光敏器件具有相对的光入射表面和底面;
位于所述光敏器件的底面一侧且与所述光敏器件相邻的光疏介质层,所述光疏介质层和所述光敏器件的底面相互接触且形成交界面,所述交界面包括至少一个倾斜平面,所述倾斜平面与所述半导体晶片所在平面之间形成锐角,所述光疏介质层的折射率小于所述光敏器件的折射率。
另一方面,本申请实施例还提供一种图像传感器的制作方法,用于制作上述的图像传感器,所述方法包括:
提供半导体晶片,所述半导体晶片具有第一表面;
使用灰度光刻工艺或者纳米压印工艺形成刻蚀掩膜层,通过刻蚀工艺将所述刻蚀掩膜层的形状转移至半导体晶片的第一表面,使所述半导体晶片的第一表面在光敏器件区域形成至少一个倾斜平面,所述倾斜平面与所述半导体晶片所在平面之间形成锐角;
在所述半导体晶片上的光敏器件区域进行元素掺杂,使所述光敏器件区域形成光敏器件;
在所述光敏器件表面形成光疏介质层,使所述至少一个倾斜平面作为所述光敏器件和所述光疏介质层的交界面,所述光疏介质层的折射率小于所述光敏器件的折射率。
再一方面,本申请实施例还提供一种电子设备,包括上述的图像传感器。
本申请实施例中的图像传感器及其制作方法、电子设备,在图像传感器中通过设置光敏器件与光疏介质层之间的交界面包括倾斜平面,且光疏介质层的折射率小于光敏器件的折射率,使得入射光线在倾斜平面处更容易反射回光敏器件内部,即增加了光线在光敏器件内部传输的光程,增强了光在光敏器件内的吸收,从而提高了量子效率,特别是提高了原本吸收效果较差的长波段光光电转换的量子效率,从而改善了图像传感器的成像效果。另外,如果不利用反射,则必须要增加光敏器件本身的厚度,以此来增加光在光敏器件中的光程,对于图像传感器整体的厚度要求较高,而在本申请实施例,由于是通过反射的方式来增加光在光敏器件中的光程,可以在光敏器件厚度不变的基础上,利用本身图像传感器中位于光敏器件出光侧的膜层实现光疏介质层,或者额外增加厚度较小的光疏介质层,同时设置倾斜平面来配合光疏介质层的折射率形成反射界面,通过反射的方式来增加光在光敏器件中的光程,本申请实施例通过反射的方式来增加光程和直接增加光敏器件本身的厚度的方式来增 加光程的方式相比,在相同的光程下,对于图像传感器整体的厚度要求较低。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例中一种图像传感器中包括光敏器件的部分区域的一种剖面结构示意图;
图2为图1中结构在另一方向入射光下的传输示意图;
图3为图1中结构在又一方向入射光下的传输示意图;
图4为本申请实施例中另一种图像传感器部分区域的一种剖面结构示意图;
图5为本申请实施例中又一种图像传感器部分区域的一种剖面结构示意图;
图6为本申请实施例中再一种图像传感器部分区域的一种剖面结构示意图;
图7为本申请实施例中一种图像传感器的整体结构框图;
图8为图7的图像传感器中一个像素的等效电路示意图;
图9为图7的图像传感器中一个像素的俯视图;
图10为本申请实施例中一种图像传感器的制作方法流程图;
图11为图10中部分步骤结束时所形成的一种结构示意图;
图12为图10中部分步骤结束时所形成的另一种结构示意图;
图13为图10中部分步骤结束时所形成的又一种结构示意图;
图14为图10中部分步骤结束时所形成的再一种结构示意图;
图15为图4中所示结构的一种变形实施例的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将 结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
本申请实施例提供一种图像传感器,如图1所示,图1为本申请实施例中一种图像传感器部分区域的一种剖面结构示意图,该图像传感器包括:半导体晶片1,半导体晶片1也可以称为半导体衬底,例如使用单晶硅材料制作的晶片;设置于半导体晶片1中的光敏器件3,光敏器件3用于光电转换,即通过吸收光线来产生载流子,以便于根据对应位置的载流子得到相应的数字信号,例如,图1中半导体晶片1的部分区域为第一元素掺杂区域301,部分区域为第二元素掺杂区域302,两者相邻,共同构成光敏器件3,第一元素掺杂区域301可以为轻掺杂的P型单晶硅衬底部分,第二元素掺杂区域302可以为N型元素掺杂区域,P型元素掺杂区域和N型元素掺杂区域形成PN结,即光电二极管,作为光敏器件3;在垂直于半导体晶片1所在平面的方向上,光敏器件3具有相对的光入射表面31和底面32,半导体晶片1整体呈片状,图1中的x方向即为半导体晶片1所在平面的延伸方向,y方向即为垂直于半导体晶片1所在平面的方向,在图1中,光敏器件3的上表面为光入射表面31,光敏器件3的下表面为底面32,当图像传感器使用时,光线从光入射表面31射入光敏器件3,即在图1中,光线的初始传输方向为从上向下,其中箭头指向为光线的传输方向示意;位于光敏器件3的底面32一侧且与光敏器件3相邻的光疏介质层4,光疏介质层4和光敏器件3的底面32相互接触且形成交界面,交界面包括至少一个 倾斜平面51,倾斜平面51与半导体晶片1所在平面之间形成锐角θ,即倾斜平面51与x方向的夹角为锐角θ,光疏介质层4的折射率小于光敏器件3的折射率。需要说明的是,例如,光敏器件3由第一元素掺杂区域301和第二元素掺杂区域302构成时,两者均为单晶硅衬底材料中的不同元素掺杂区域,即便具有折射率差异,也可以忽略不计,光敏器件3的折射率即为半导体晶片1的折射率。另外,由于倾斜平面51的倾斜设置,倾斜平面51与半导体晶片1所在平面(x方向)之间会形成互补的两个角,在本申请实施例中,仅描述其中的锐角θ,以下出现的角度θ均为倾斜平面51与半导体晶片1所在平面之间形成的锐角。
具体地,在图像传感器的使用过程中,沿垂直于半导体晶片1所在平面方向的光最多,图1中示意了沿垂直于半导体晶片1所在平面方向的光线传输方向,这些光线在经过光敏器件3内部并传输至光敏器件3的底面32处,由于光疏介质层4的折射率小于光敏器件3的折射率,即初始光线从光密介质传输至光疏介质的界面,在倾斜平面51处,光线更容易发生反射,从而在倾斜平面51处反射回光敏器件3内部,在图1中,F为初始入射光在倾斜平面51处的法线,根据几何原理分析可知,入射光与法线F之间的夹角同样为θ,根据光学原理可知,入射光与法线F之间的夹角越大,则反射至光敏器件3内部的光线强度越大,即倾斜平面51与半导体晶片1所在平面之间的夹角θ越大,则反射至光敏器件3内部的光线强度越大。光线在光敏器件3中的吸收量
Figure PCTCN2019104386-appb-000001
满足以下函数公式,
Figure PCTCN2019104386-appb-000002
Figure PCTCN2019104386-appb-000003
其中,
Figure PCTCN2019104386-appb-000004
为初始入射光强度,R为入射光进入光敏器件3之前被反射掉的强度,α为吸收系数,W为光线在光敏器件3内部的光程,光线在光敏器件3内部的光程和光线在光敏器件3中的吸收量正相关,光线在光敏器件内部的光程越大,则光线在光敏器件中的吸收量越大,即量子效率(Quantum Efficiency,QE)越高,量子效率是描述光敏器件光电转换能力的一个重要参数,它是指在某一特定波长下单位时间内产生的电子数与入射光子数之比。
本申请实施例中的图像传感器,通过设置光敏器件与光疏介质层之间的交界面包括倾斜平面,且光疏介质层的折射率小于光敏器件的折射率,使得入射光线在倾斜平面处更容易反射回光敏器件内部,即增加了光线在光敏器件内部传输的光程,从而提高了量子效率,特别是提高了原本吸收效果较差的长波段光光电转换的量子效率,从而改善了图像传感器的成像效果。另外,如果不利用反射,则必须要增加光敏器件本身的厚度,以此来增加光在光敏器件中的光程,对于图像传感器整体的厚度要求较高,而在本申请实施例,由于是通过反射的方式来增加光在光敏器件中的光程,可以在光敏器件厚度不变的基础上,利用本身图像传感器中位于光敏器件出光侧的膜层实现光疏介质层,或者额外增加厚度较小的光疏介质层,同时设置倾斜平面来配合光疏介质层的折射率形成反射界面,通过反射的方式来增加光在光敏器件中的光程,本申请实施例通过反射的方式来增加光程和直接增加光敏器件本身的厚度的方式来增加光程的方式相比,在相同的光程下,对于图像传感器整体的厚度要求较低。
可选地,倾斜平面51与半导体晶片1所在平面之间形成的锐角为θ,θ≥θ C
Figure PCTCN2019104386-appb-000005
n 1为近红外光在光敏器件3的折射率,n 2为近红外光在光疏介质层4的折射率。
具体地,如图1所示,当光线从光密介质射向光疏介质时,存在一个临界角θ C,当入射角大于等于该临界角θ C时,此时不存在折射光,而只存在反射光,即发生了所谓的全反射。当沿垂直于半导体晶片1所在平面方向传输的近红外光在倾斜平面51处发生全反射时,可以防止由于发生折射而损失的光,以进一步提高近红外光光电转换的量子效率。以850纳米波长的近红外光为例,此波长下单晶硅的折射率为3.64,例如光敏器件3由单晶硅材料制成,光疏介质层4的折射率为1.45,计算出θ C为23.5°。倾斜平面51与半导体晶片1所在平面之间形成的夹角θ大于等于临界角23.5°时,便可以让大部分入射光实现全反射。需要说明的是,近红外光通常指波长为780~1100nm的电磁波,在具体的应用场景下,通常会选择特定波长 的近红外光作为光源来使用,因此,可以根据所使用的光源的波长以及光疏介质层4和光敏器件3的折射率来计算临界角,以此为依据对倾斜平面51与半导体晶片1所在平面之间形成的夹角角度进行设计。如图2所示,图2为图1中结构在另一方向入射光下的传输示意图,图2中示意的初始入射光从左上方射入光敏器件3,其中,入射光与y方向的夹角为θ 1,入射光与倾斜平面51的法线F的夹角为θ 1+θ,显然满足全反射条件,因此,图2中从图的左上方射入的光均可以实现全反射。如图3所示,图3为图1中结构在又一方向入射光下的传输示意图,图3中示意的初始入射光从右上方射入光敏器件3,其中,入射光与y方向的夹角为θ2,入射光与倾斜平面51的法线F的夹角为θ 2-θ,当θ 2-θ≥θ C时满足全反射条件,否则会有部分光由于发生折射而无法进入光敏器件3。图1、图2和图3示意了各种角度下入射光的传输路径,根据上述分析可知,本申请实施例中的结构可以使大部分的入射光在倾斜平面51处发生全反射,从而增加光在光敏器件3中的光程,提高光电转换的量子效率。
可选地,如图4所示,图4为本申请实施例中另一种图像传感器部分区域的一种剖面结构示意图,光敏器件3和光疏介质层4的交界面形成多个凸棱50,多个凸棱50可以接续排列,形成类似锯齿状的截面形状。具体的,每个凸棱50的顶角可由相邻的一个倾斜平面51和一个垂直平面52相交形成,垂直平面52可以垂直于半导体晶片1所在平面,任意两个凸棱50中的倾斜平面51相互平行。图4中所示的结构与图1中所示的结构相比,由于光敏器件3和光疏介质层4的交界面形成多个倾斜平面51,在倾斜角度不变的情况下,降低了光疏介质层4的厚度。
可选地,如图5所示,图5为本申请实施例中又一种图像传感器部分区域的一种剖面结构示意图,光敏器件3和光疏介质层4之间的交界面形成多个凸棱50,多个凸棱50可以接续排列,形成类似锯齿状的截面形状。具体的,每个凸棱50的顶角由相邻的一个第一 倾斜平面511和一个第二倾斜平面512相交形成,任意两个凸棱50中的第一倾斜平面511相互平行,任意两个凸棱50中的第二倾斜平面512相互平行。图5所示的结构与图4所示的结构类似,但是由于每个凸棱50均由两个倾斜方向相反的倾斜平面组成,虽然第一倾斜平面511和第二倾斜平面512的倾斜方向相反,但是两者与半导体晶片1所在平面之间均形成锐角θ,第一倾斜平面511和第二倾斜平面512分别针对从右上方入射和从左上方入射的光线具有更好的吸收效果,因此,除了可以降低光疏介质层4的厚度外,全反射的触发条件对入射光的角度依赖性下降。
可选地,如图1至图5所示,图像传感器还包括沟槽壁61,光敏器件3具有垂直于半导体晶片1所在平面的侧面33,沟槽壁61与光敏器件3的侧面33相互接触且形成垂直于半导体晶片1所在平面的交界面;在垂直于半导体晶片1所在平面的方向上,沟槽壁61的正投影至少部分围绕光敏器件3的正投影;沟槽壁61的折射率小于光敏器件3的折射率。
具体地,由于沟槽壁61的折射率小于光敏器件3的折射率,因此当光线在光敏器件3中传输并到达与沟槽壁61的交界面时,更容易发生反射,从而进一步提高了光在光敏器件3中的光程,配合倾斜平面51的设置,可以进一步提高光电转换的量子效率。另外,半导体晶片1具有在垂直于半导体晶片1所在平面方向上相对的第一表面11和第二表面12,第一表面11为靠近光敏器件3的光入射表面31的一侧表面,例如第一表面11和光入射表面31可以为同一表面,第二表面12为靠近光敏器件3的底面32一侧的表面,例如,光敏器件3的底面32可以为第二表面12向内凹陷的部分。图像传感器还可以包括沟槽隔离部62,沟槽隔离部62位于沟槽壁61靠近第二表面12的一侧,沟槽隔离部62可以用于使不同的光敏器件3之间相互隔离。本申请实施例中,光敏器件3具体可以通过在P型硅衬底中注入N型元素形成(或者也可以是在N型硅衬底中注入P型元素形成),此时,光敏器件3和沟槽隔离部62之间设置P型掺 杂区,即图1至图5中光敏器件3和沟槽隔离部62之间的部分,目的是将光敏器件3与具有陷阱状态的界面隔离,防止光生载流子在该界面复合。另外,在图1至图5中,沟槽壁61和沟槽隔离部62之间同样设置有硅衬底,即沟槽隔离部62和沟槽壁61相互独立,可以理解地,在其他可实现的实施方式中,沟槽壁和沟槽隔离部也可以为一体结构。
可选地,如图1至图5所示,图像传感器还包括:位于光敏器件3的光入射表面31一侧的抗反射层71(Anti-reflection coating)、滤光片72和微透镜73,光敏器件3、抗反射层71、滤光片72和微透镜73依次层叠设置。其中,抗反射层71用于在光进入光敏器件3之前,减少光的反射,增加透过率,另一方面,在本申请实施例中,当光从光敏器件3中向抗反射层71的方向传输,并到达抗反射层71的表面时,同样会有部分光发生反射,重新进入光敏器件3,以提高光电转换的量子效率。
可选地,光敏器件3包括半导体晶片1中的元素掺杂区域,例如,光敏器件3由半导体晶片1中的第一元素掺杂区域301和相邻的第二元素掺杂区域302构成,在轻掺杂的P型硅衬底中掺杂N型元素,形成N型掺杂区域和P型掺杂区域,N型掺杂区域为第一元素掺杂区域301,P型掺杂区域为第二元素掺杂区域302,N型掺杂区域和与其相邻的P型硅衬底部分构成PN结,即光敏二极管,作为光敏器件3;如图6所示,图6为本申请实施例中再一种图像传感器部分区域的一种剖面结构示意图,图像传感器还包括晶体管8,晶体管8包括位于光敏器件3和浮置扩散区O之间的栅极81;图像传感器还包括位于光疏介质层4远离光入射表面31一侧的金属线9,金属线9通过光疏介质层4上的过孔40电连接于栅极81。晶体管8用于形成图像传感器中的用于实现信号控制的电路,其具体功能和原理会在后文中介绍,金属线9用于传输并提供晶体管8中栅极81所需要的信号。在本申请实施例中,栅极81以及金属线9均位于光敏器件3的底面32一侧,可以避免光线在光敏器件3中传输 过程中被金属结构遮挡,另外,光疏介质层4设置于光敏器件3的底面32一侧,可以复用为金属线9和栅极81之间的介质层。
可选地,光敏器件3为光电二极管(Photodiode)。
可选地,如图7、图8和图9所示,图7为本申请实施例中一种图像传感器的整体结构框图,图8为图7的图像传感器中一个像素的等效电路示意图,图9为图7的图像传感器中一个像素的俯视图;图像传感器包括呈阵列分布的多个像素10;每个像素10包括:光敏器件3,光敏器件3的阳极接地;传输晶体管TG,串联于光敏器件3的阴极和浮置扩散区O之间,在等效电路中,浮置扩散区O为一个信号节点,传输晶体管TG的第一端电连接于光敏器件3的阴极,传输晶体管TG的第二端电连接于浮置扩散区O,传输晶体管TG的控制端即为其栅极,参考图6、图7、图8和图9所示,图6可以为图9中AA’向的剖面结构示意图,图6中的晶体管8即为图8和图9中的传输晶体管TG;复位晶体管RST,串联于浮置扩散区O和电源电压端VDD之间,即复位晶体管RST的第一端电连接于浮置扩散区O,复位晶体管RST的第二端电连接于电源电压端VDD;源极跟随晶体管SF,其第一端电连接于电源电压端VDD,其控制端电连接于浮置扩散区O;行选择晶体管RS,其第一端电连接于源极跟随晶体管SF的第二端,其第二端电连接于列信号端Read。图8所示的一个像素10的具体结构即为CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)图像传感器的像素结构。每个像素10可以对应一个光敏器件3,相邻像素10中的光敏器件3可以由沟槽壁61和沟槽隔离部62实现相互隔离。
具体地,在上述各晶体管中,晶体管的第一端为源极和漏极中的一者,晶体管的第二端为源极和漏极中的另一者,晶体管的控制端为栅极。其中,复位晶体管RST响应于其栅极的控制信号使浮置扩散区O复位;光敏器件3用于接收光并生成对应的载流子,存储于浮置扩散区O,源极跟随晶体管SF用于产生和浮置扩散区O的电位相关的信号,行选择晶体管RS响应于其栅极的控制信号使源 极跟随晶体管SF产生的信号传输至列信号端Read,以使列信号端Read的信号被读取。另外,图像传感器还包括控制电路模块110以及读取电路模块120。控制电路模块110用于控制像素10阵列的操作特性,包括产生一系列的快门信号用于控制像素10的曝光进程。读取电路模块120具体包括放大电路、模数转换电路(ADC)等,用于将像素10中产生的电信号按列读出。需要说明的是,图9中的俯视图仅仅示意出了像素10中的部分结构,而非完整结构,例如,仅包括半导体晶片1的膜层和金属的膜层。另外,图1、图2、图3、图4和图5可以为图9中BB’向的剖面结构示意图。
可选地,光疏介质层4的材料包括以下各项中的一者:二氧化硅、氮氧化硅、磷硅玻璃(Phospho Silicate Glass)以及硼磷硅玻璃(Boro Phospho Silicate Glass)。
如图10、图11、图12和图13所示,图10为本申请实施例中一种图像传感器的制作方法流程图,图11为图10中部分步骤结束时所形成的一种结构示意图,图12为图10中部分步骤结束时所形成的另一种结构示意图,图13为图10中部分步骤结束时所形成的又一种结构示意图,本申请实施例还提供一种图像传感器的制作方法,可以用于制作上述任一实施例的图像传感器,该方法包括:
步骤101、提供半导体晶片1,半导体晶片1具有第一表面11;
步骤102、使用灰度光刻(gray-scale lithography)工艺或者纳米压印(nano-imprinting)工艺形成刻蚀掩膜层,通过刻蚀工艺将刻蚀掩膜层的形状转移至半导体晶片1的第一表面11,使半导体晶片1的第一表面11在光敏器件区域30形成至少一个倾斜平面51,倾斜平面51与半导体晶片1所在平面之间形成锐角;
具体地,例如,半导体晶片1为轻掺杂的P型单晶硅衬底,在形成倾斜平面51之前,还可以在半导体晶片1的第一表面11形成隔离沟槽620,隔离沟槽620用于在后续步骤中形成沟槽隔离部。步骤102结束之后,可以形成如图11所示的结构,另外,还可以参考图1至图6中的结构。
步骤103、在半导体晶片1上的光敏器件区域30进行元素掺杂,使光敏器件区域30形成光敏器件3;
具体地,例如,半导体晶片1为P型元素掺杂衬底,其中的部分区域作为第一元素掺杂区域301,在半导体晶片1的特定区域注入低剂量的N型掺杂元素以形成N型元素掺杂区域,作为第二元素掺杂区域302,第一元素掺杂区域301和第二元素掺杂区域302形成光敏二极管,作为光敏器件3,在步骤103的过程中,还可以同时在另外特定区域注入高剂量的N型元素以形成第三元素掺杂区域303,第三元素掺杂区域303作为浮置扩散区O,然后制作栅极介质层82和栅极81,即形成如图12所示的结构,即图12可以为图10中步骤103结束之后所形成的结构。
步骤104、在光敏器件3表面形成光疏介质层4,使至少一个倾斜平面51作为光敏器件3和光疏介质层4的交界面,光疏介质层4的折射率小于光敏器件3的折射率。光疏介质层4具体可以通过CVD(Chemical Vapor Deposition,化学气相沉积)工艺形成,之后可以通过CMP(Chemical Mechanical Polishing,化学机械抛光)工艺对其表面进行平坦化处理,使得表面变得平坦,便于后续的加工,即形成如图13所示的结构,即图13可以为图10中步骤104结束之后所形成的结构。
最终形成的结构可以参考图1至图6,所形成的图像传感器的具体结构和原理与上述实施例相同,在此不再赘述。可以理解地,上述各步骤的执行顺序仅为举例,本申请实施例对于各步骤的执行顺序不作限定,例如,在其他可实现的实施方式中,在步骤101之后,可以先执行步骤103、再执行步骤102、再执行步骤104,即先在半导体晶片1上进行元素掺杂,得到第二元素掺杂区域302,然后制作倾斜平面51,得到如图12所示的结构,需要说明的是,在离子注入实现元素掺杂的工艺中,由于工艺的原因,各位置处离子注入深度相同,因此,在步骤顺序改变后,元素掺杂区域的结构会改变,例如图12中第二元素掺杂区域302的下表面会变为平面(平行于x方 形),即最终形成的第二元素掺杂区域302会变为梯形,而非图12中所示的平行四边形。例如图1至图6所示的结构,均通过先执行步骤102再执行步骤103所得到,例如在图4所示的结构中,先通过刻蚀工艺得到下方锯齿状的截面,然后在元素掺杂形成光敏元件的过程中,由于掺杂深度相同,因此在上方,得到同样的锯齿状截面,作为第二元素掺杂区域302的上表面;如图15所示,图15为图4中所示结构的一种变形,图15所示的结构为通过先执行步骤103再执行步骤102所得到,先在具有水平面的衬底结构上进行掺杂,所形成的第二元素掺杂区域302的上表面同样为水平结构,然后在通过刻蚀工艺得到下方锯齿状的截面。图4和图15相比较,其他结构均相同,区别仅在于由于工艺的顺序而导致的元素掺杂区域302的上表面的结构差异。
本申请实施例中的图像传感器的制作方法,通过设置光敏器件与光疏介质层之间的交界面包括倾斜平面,且光疏介质层的折射率小于光敏器件的折射率,使得入射光线在倾斜平面处更容易反射回光敏器件内部,即增加了光线在光敏器件内部传输的光程,从而提高了量子效率,特别是提高了原本吸收效果较差的长波段光光电转换的量子效率,从而改善了图像传感器的成像效果。另外,如果不利用反射,则必须要增加光敏器件本身的厚度,以此来增加光在光敏器件中的光程,对于图像传感器整体的厚度要求较高,而在本申请实施例,由于是通过反射的方式来增加光在光敏器件中的光程,可以在光敏器件厚度不变的基础上,利用本身图像传感器中位于光敏器件出光侧的膜层实现光疏介质层,或者额外增加厚度较小的光疏介质层,同时设置倾斜平面来配合光疏介质层的折射率形成反射界面,通过反射的方式来增加光在光敏器件中的光程,本申请实施例通过反射的方式来增加光程和直接增加光敏器件本身的厚度的方式来增加光程的方式相比,在相同的光程下,对于图像传感器整体的厚度要求较低。
可选地,半导体晶片1包括在垂直于半导体晶片1所在平面方 向上相对的第一表面11和第二表面12;如图1至图6所示,在上述步骤101、提供半导体晶片11之后,还包括:在半导体晶片1的第二表面12形成沟槽,沟槽为从半导体晶片1的第二表面12向内凹陷的结构;在沟槽中填充小于光敏器件3的折射率的材料,例如二氧化硅材料,形成沟槽壁61,在垂直于半导体晶片1所在平面的方向上,沟槽壁61的正投影至少部分围绕光敏器件3的正投影。形成沟槽并填充以形成沟槽壁61的步骤可以在上述步骤104之后执行,也可以在其他步骤之后执行,本申请实施例对次不做限定。
可选地,如图6以及图14所示,图14为图10中部分步骤结束时所形成的再一种结构示意图,上述步骤104、在光敏器件3表面形成光疏介质层4之前,还包括:
在半导体晶片1的第一表面11形成栅极介质层82;
在栅极介质层82的表面形成栅极81;
形成栅极介质层82和形成栅极81的步骤可以在上述步骤103之后执行。
上述步骤104、在光敏器件3表面形成光疏介质层4之后,还包括:
通过图案化工艺使光疏介质层4形成与栅极81对应的过孔;
在光疏介质层4表面形成金属线9,金属线9通过过孔电连接于栅极81。所形成的结构如图14所示,即图14可以为图10中步骤104结束之后所形成的结构,在图1至图6以及图14中,光疏介质层4远离光敏器件3的一侧还设置有金属介质层401以及其他金属线901(图1至图5中未示出其他金属线901),其他金属线901用于连接其他器件。金属介质层401可以为一层或多层,在形成如图14所示的结构之后,将半导体晶片1和载片晶圆100键合(bonding),对半导体晶片1进行减薄(例如减薄至2至3微米),以及在减薄后的半导体晶片1上依次形成沟槽壁61、抗反射层71、滤光片72和微透镜73等,最终形成的结构可以参考图1至图6。
本申请实施例还提供一种电子设备,包括上述任意实施例中的 图像传感器。
其中,图像传感器的具体结构和原理与上述实施例相同,在此不再赘述,该电子设备可以为手机、相机、监控设备等任何用于成像的装置。
本申请实施例中的电子设备,在图像传感器中通过设置光敏器件与光疏介质层之间的交界面包括倾斜平面,且光疏介质层的折射率小于光敏器件的折射率,使得入射光线在倾斜平面处更容易反射回光敏器件内部,即增加了光线在光敏器件内部传输的光程,从而提高了量子效率,特别是提高了原本吸收效果较差的长波段光光电转换的量子效率,从而改善了图像传感器的成像效果。另外,如果不利用反射,则必须要增加光敏器件本身的厚度,以此来增加光在光敏器件中的光程,对于图像传感器整体的厚度要求较高,而在本申请实施例,由于是通过反射的方式来增加光在光敏器件中的光程,可以在光敏器件厚度不变的基础上,利用本身图像传感器中位于光敏器件出光侧的膜层实现光疏介质层,或者额外增加厚度较小的光疏介质层,同时设置倾斜平面来配合光疏介质层的折射率形成反射界面,通过反射的方式来增加光在光敏器件中的光程,本申请实施例通过反射的方式来增加光程和直接增加光敏器件本身的厚度的方式来增加光程的方式相比,在相同的光程下,对于图像传感器整体的厚度要求较低。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (14)

  1. 一种图像传感器,其特征在于,包括:
    半导体晶片;
    设置于半导体晶片中的光敏器件,所述光敏器件用于光电转换;
    在垂直于所述半导体晶片所在平面的方向上,所述光敏器件具有相对的光入射表面和底面;
    位于所述光敏器件的底面一侧且与所述光敏器件相邻的光疏介质层,所述光疏介质层和所述光敏器件的底面相互接触且形成交界面,所述交界面包括至少一个倾斜平面,所述倾斜平面与所述半导体晶片所在平面之间形成锐角,所述光疏介质层的折射率小于所述光敏器件的折射率。
  2. 根据权利要求1所述的图像传感器,其特征在于,
    所述倾斜平面与所述半导体晶片所在平面之间形成的锐角为θ,θ≥θ C
    Figure PCTCN2019104386-appb-100001
    n 1为近红外光在所述光敏器件的折射率,n 2为近红外光在所述光疏介质层的折射率。
  3. 根据权利要求1所述的图像传感器,其特征在于,
    所述光敏器件和所述光疏介质层的交界面形成多个凸棱,每个所述凸棱的顶角由相邻的一个所述倾斜平面和一个垂直平面相交形成,所述垂直平面垂直于所述半导体晶片所在平面,任意两个所述凸棱中的所述倾斜平面相互平行。
  4. 根据权利要求1所述的图像传感器,其特征在于,
    所述光敏器件和所述光疏介质层之间的交界面形成多个凸棱,每个所述凸棱的顶角由相邻的一个第一倾斜平面和一个第二倾斜平面相交形成,任意两个所述凸棱中的所述第一倾斜平面相互平行,任意两个所述凸棱中的所述第二倾斜平面相互平行。
  5. 根据权利要求1所述的图像传感器,其特征在于,
    还包括沟槽壁,所述光敏器件具有垂直于所述半导体晶片所在平面的侧面,所述沟槽壁与所述光敏器件的侧面相互接触且形成垂直于所述半导体晶片所在平面的交界面;
    在垂直于所述半导体晶片所在平面的方向上,所述沟槽壁的正投影至少部分围绕所述光敏器件的正投影;
    所述沟槽壁的折射率小于所述光敏器件的折射率。
  6. 根据权利要求1所述的图像传感器,其特征在于,
    还包括:位于所述光敏器件的光入射表面一侧的抗反射层、滤光片和微透镜,所述光敏器件、所述抗反射层、所述滤光片和所述微透镜依次层叠设置。
  7. 根据权利要求1所述的图像传感器,其特征在于,
    所述光敏器件包括所述半导体晶片中的元素掺杂区域;
    所述图像传感器还包括晶体管,所述晶体管包括栅极;
    所述图像传感器还包括位于所述光疏介质层远离所述光入射表面一侧的金属线,所述金属线通过所述光疏介质层上的过孔电连接于所述栅极。
  8. 根据权利要求1所述的图像传感器,其特征在于,
    所述光敏器件为光电二极管。
  9. 根据权利要求8所述的图像传感器,其特征在于,
    所述图像传感器包括呈阵列分布的多个像素;
    每个所述像素包括:
    所述光敏器件,所述光敏器件的阳极接地;
    传输晶体管,串联于所述光敏器件的阴极和浮置扩散区之间;
    复位晶体管,串联于所述浮置扩散区和电源电压端之间;
    源极跟随晶体管,其第一端电连接于所述电源电压端,其控制端电连接于所述浮置扩散区;
    行选择晶体管,其第一端电连接于所述源极跟随晶体管的第二端,其第二端电连接于列信号端。
  10. 根据权利要求1-9任意一项所述的图像传感器,其特征在于,
    所述光疏介质层的材料包括以下各项中的一者:二氧化硅、氮氧化硅、磷硅玻璃以及硼磷硅玻璃。
  11. 一种图像传感器的制作方法,其特征在于,用于制作如权利 要求1至10中任意一项所述的图像传感器,所述方法包括:
    提供半导体晶片,所述半导体晶片具有第一表面;
    使用灰度光刻工艺或者纳米压印工艺形成刻蚀掩膜层,通过刻蚀工艺将所述刻蚀掩膜层的形状转移至半导体晶片的第一表面,使所述半导体晶片的第一表面在光敏器件区域形成至少一个倾斜平面,所述倾斜平面与所述半导体晶片所在平面之间形成锐角;
    在所述半导体晶片上的光敏器件区域进行元素掺杂,使所述光敏器件区域形成光敏器件;
    在所述光敏器件表面形成光疏介质层,使所述至少一个倾斜平面作为所述光敏器件和所述光疏介质层的交界面,所述光疏介质层的折射率小于所述光敏器件的折射率。
  12. 根据权利要求11所述的方法,其特征在于,
    所述半导体晶片包括在垂直于所述半导体晶片所在平面方向上相对的第一表面和第二表面;
    在形成所述半导体晶片之后,还包括:
    在所述半导体晶片的第二表面形成沟槽;
    在所述沟槽中填充小于所述光敏器件的折射率的材料,形成沟槽壁,在垂直于所述半导体晶片所在平面的方向上,所述沟槽壁的正投影至少部分围绕所述光敏器件的正投影。
  13. 根据权利要求11所述的方法,其特征在于,
    在所述光敏器件表面形成光疏介质层之前,还包括:
    在所述半导体晶片的第一表面形成栅极介质层;
    在所述栅极介质层的表面形成栅极;
    在所述光敏器件表面形成光疏介质层之后,还包括:
    通过图案化工艺使所述光疏介质层形成与所述栅极对应的过孔;
    在所述光疏介质层表面形成金属线,所述金属线通过所述过孔电连接于所述栅极。
  14. 一种电子设备,其特征在于,包括如权利要求1至10中任意一项所述的图像传感器。
PCT/CN2019/104386 2019-09-04 2019-09-04 图像传感器及其制作方法、电子设备 WO2021042290A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980001910.2A CN110770908A (zh) 2019-09-04 2019-09-04 图像传感器及其制作方法、电子设备
PCT/CN2019/104386 WO2021042290A1 (zh) 2019-09-04 2019-09-04 图像传感器及其制作方法、电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/104386 WO2021042290A1 (zh) 2019-09-04 2019-09-04 图像传感器及其制作方法、电子设备

Publications (1)

Publication Number Publication Date
WO2021042290A1 true WO2021042290A1 (zh) 2021-03-11

Family

ID=69341861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/104386 WO2021042290A1 (zh) 2019-09-04 2019-09-04 图像传感器及其制作方法、电子设备

Country Status (2)

Country Link
CN (1) CN110770908A (zh)
WO (1) WO2021042290A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080100025A (ko) * 2007-05-11 2008-11-14 삼성전자주식회사 이미지 센서의 제조 방법 및 이에 따라 제조된 이미지 센서
US20110316002A1 (en) * 2010-06-29 2011-12-29 Jung-Chak Ahn Cmos image sensor
CN102693996A (zh) * 2012-06-20 2012-09-26 上海中科高等研究院 图像传感器
CN108987419A (zh) * 2017-05-31 2018-12-11 台湾积体电路制造股份有限公司 图像传感器及其制造方法
CN109786402A (zh) * 2017-11-13 2019-05-21 台湾积体电路制造股份有限公司 具有吸收增强半导体层的图像传感器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6021439B2 (ja) * 2012-05-25 2016-11-09 キヤノン株式会社 固体撮像装置
CN108847417A (zh) * 2018-05-24 2018-11-20 上海集成电路研发中心有限公司 一种减少串扰和提高灵敏度的像素单元结构和形成方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080100025A (ko) * 2007-05-11 2008-11-14 삼성전자주식회사 이미지 센서의 제조 방법 및 이에 따라 제조된 이미지 센서
US20110316002A1 (en) * 2010-06-29 2011-12-29 Jung-Chak Ahn Cmos image sensor
CN102693996A (zh) * 2012-06-20 2012-09-26 上海中科高等研究院 图像传感器
CN108987419A (zh) * 2017-05-31 2018-12-11 台湾积体电路制造股份有限公司 图像传感器及其制造方法
CN109786402A (zh) * 2017-11-13 2019-05-21 台湾积体电路制造股份有限公司 具有吸收增强半导体层的图像传感器

Also Published As

Publication number Publication date
CN110770908A (zh) 2020-02-07

Similar Documents

Publication Publication Date Title
US20220123041A1 (en) Solid-state imaging device, method of manufacturing the same, and electronic apparatus
US20210305440A1 (en) Single photon avalanche diode and manufacturing method, detector array, and image sensor
US8969776B2 (en) Solid-state imaging device, method of manufacturing the same, and electronic apparatus having an on-chip micro lens with rectangular shaped convex portions
KR102270950B1 (ko) 고체 촬상 장치 및 그 제조 방법, 및 전자 기기
CN108122935A (zh) 图像传感器集成芯片及其形成方法
US10910425B2 (en) Solid-state image sensor
KR20080032978A (ko) 자외선 수광용 포토 다이오드 및 이를 포함하는 이미지센서
TW201727880A (zh) 影像感測器
US7884397B2 (en) Solid-state image sensor and method for producing the same
US20230352507A1 (en) Transparent refraction structure for an image sensor and methods of forming the same
KR100791842B1 (ko) 마이크로렌즈의 쉬프트가 필요 없는 이미지센서 및 그 제조방법
KR100829378B1 (ko) 이미지 센서 및 이의 제조 방법
US10186543B2 (en) Image sensor including phase difference detectors
CN113380837A (zh) 具有表面微柱体结构的固态影像传感器暨其制作方法
WO2021042290A1 (zh) 图像传感器及其制作方法、电子设备
US11749700B2 (en) Transparent refraction structure for an image sensor and methods of forming the same
CN114388539A (zh) 集成芯片及其形成方法
KR20150089650A (ko) 이미지 센서 및 그 제조 방법
US20160336365A1 (en) Semiconductor device and manufacturing method thereof
JP2016004826A (ja) 半導体装置およびその製造方法
CN114078892A (zh) 图像传感器的器件、光学相机的图像传感器和光学相机
WO2023004773A1 (zh) 光电传感器及其形成方法、电子设备
JPH03109769A (ja) 固体撮像装置の単位画素

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19944123

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19944123

Country of ref document: EP

Kind code of ref document: A1