WO2021040220A1 - 복합재료 제품의 제조방법 - Google Patents

복합재료 제품의 제조방법 Download PDF

Info

Publication number
WO2021040220A1
WO2021040220A1 PCT/KR2020/008638 KR2020008638W WO2021040220A1 WO 2021040220 A1 WO2021040220 A1 WO 2021040220A1 KR 2020008638 W KR2020008638 W KR 2020008638W WO 2021040220 A1 WO2021040220 A1 WO 2021040220A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
composite material
product
manufacturing
composite
Prior art date
Application number
PCT/KR2020/008638
Other languages
English (en)
French (fr)
Inventor
신동수
Original Assignee
(주)에스플러스컴텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)에스플러스컴텍 filed Critical (주)에스플러스컴텍
Publication of WO2021040220A1 publication Critical patent/WO2021040220A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/002Methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/06Making preforms by moulding the material
    • B29B11/12Compression moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/14Making preforms characterised by structure or composition
    • B29B11/16Making preforms characterised by structure or composition comprising fillers or reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/84Venting or degassing ; Removing liquids, e.g. by evaporating components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing

Definitions

  • the present invention relates to a method of manufacturing a composite material product, and more particularly, to a method of manufacturing a fiber reinforced plastic (FRP) product.
  • FRP fiber reinforced plastic
  • Fiber reinforced plastic (FRP) materials include fibers such as glass fiber, carbon fiber, or aramid fiber in a matrix such as phenol resin and epoxy resin. It is a composite material used as a reinforcing material.
  • Korean Patent Laid-Open No. 10-2012-0093659 discloses a resin composition and reinforcing fibers in the melting space inside the extruder, and heating and kneading them. Describes a method for forming a fiber-reinforced composite material after producing the melt of the fiber-reinforced composite material and supplying the melted product of the fiber-reinforced composite material to a shaping section that presses the melt of the fiber-reinforced composite material using a conveying device to shape it into a certain shape. Has been.
  • the technical problem of the present invention is to provide a method for manufacturing a composite material product.
  • a material mixing step of dispersing and mixing reinforcing fibers, resins, and additives in water to obtain a composite material slurry raw material A raw material input step of supplying the composite material slurry raw material onto the sieve of a sieve having a sieve through which water passes; A draining step of discharging water from the filter tank into which the composite material slurry material is added to obtain a waste material slurry remaining on the sieve; A vacuum dehydration step of forming a vacuum in the space under the strainer to obtain a composite material base sheet having reduced moisture from the drainage slurry raw material; A compression dehydration step of compressing the composite base sheet to obtain a compressed sheet having reduced moisture; A blanking step of obtaining an intermediate product by blanking the composite plate material having the compression sheet; And a final processing step of heating the intermediate product to obtain a final product.
  • a composite material slurry raw material formed by dispersing and mixing reinforcing fibers, resins and additives in water is prepared by using natural drainage and vacuum dehydration in a strainer equipped with a strainer to prepare a composite base sheet, and a plurality of composite materials By blanking the composite sheet material formed by laminating the base sheet, it is possible to easily manufacture mechanical parts such as gears from the composite material.
  • FIG. 1 is a flowchart schematically illustrating a method of manufacturing a composite material product according to an embodiment of the present invention.
  • FIG. 2 is a diagram schematically illustrating an example of a base sheet manufacturing apparatus used to perform the base sheet manufacturing step of FIG. 1.
  • FIG. 3 is a flow chart schematically illustrating an embodiment of a base sheet manufacturing step of FIG. 1 using the base sheet manufacturing apparatus shown in FIG. 2.
  • FIG. 4 shows a state of a manure tank when the drainage step of FIG. 3 is performed.
  • FIG. 5 shows a state of a manure tank when the vacuum dehydration step of FIG. 3 is performed.
  • FIG. 6 is a flowchart schematically illustrating a manufacturing step of the composite material plate of FIG. 1.
  • FIG. 7 is a diagram illustrating a state in which the compression dehydration step of FIG. 6 is performed.
  • FIG. 8 is a side view showing a laminate formed by the lamination step of FIG. 6.
  • FIG. 9 is a perspective view illustrating a state in which an intermediate product is manufactured by the blanking step of FIG. 1.
  • FIG. 10 is a process diagram illustrating an embodiment of the final processing step shown in FIG. 1.
  • FIG. 11 is a perspective view showing a final product manufactured by the final processing step shown in FIG. 10.
  • FIG. 12 is a diagram schematically showing another example of a base sheet manufacturing apparatus used to perform the base sheet manufacturing step of FIG. 1.
  • FIG. 13 is a perspective view illustrating a raw material discharge nozzle in the apparatus shown in FIG. 12.
  • FIG. 14 is a plan view of the raw material discharge nozzle shown in FIG. 13.
  • FIG. 15 is a flowchart illustrating a step of manufacturing a foundation sheet according to another embodiment of the present invention using the apparatus for manufacturing a foundation sheet shown in FIG. 12.
  • FIG. 16 shows a state of a manure tank when the raw material dropping step of FIG. 15 is performed.
  • FIG. 17 shows a state of a manure tank when the drainage step of FIG. 15 is performed.
  • FIG. 18 shows a state of a manure tank when the vacuum dehydration step of FIG. 15 is performed.
  • a method for manufacturing a composite material product according to an embodiment of the present invention includes a base sheet manufacturing step (S10) of manufacturing a composite material base sheet made of a fiber-reinforced composite material, and a base sheet manufacturing step (S10).
  • the blanking step (S30) in which the intermediate product is manufactured by performing blanking processing the drying step (S40) in which the intermediate product manufactured through the blanking step (S30) is dried, and the drying step (S40) It includes a final processing step (S50) in which the final processing is performed on the intermediate product and the final product is completed.
  • the base sheet manufacturing apparatus 100 includes a mixing tank 110 in which reinforcing fibers, resins, and other additives are dispersed and mixed in water to form a composite slurry raw material, and a composite formed in the mixing tank 110.
  • Material Slurry A manure tank 140 for separating and discharging water from the raw material, a drain pipe 150 through which water is drained from the manure tank 140, and a vacuum forming unit 160 connected to the drain pipe 150 are provided.
  • reinforcing fibers, resins, and other additives are dispersed and mixed in water to form a composite material slurry raw material (A).
  • the mixing tank 110 is provided with a stirrer 111.
  • Aramid fiber or carbon fiber may be used as the reinforcing fiber, and phenol resin may be used as the resin. It is preferable that the reinforcing fiber has a length of 10 mm or less, and in this embodiment, it is described that the reinforcing fiber has a length of 5 to 10 mm.
  • Other additives include silicon dioxide (SiO 2 ), a stabilizer, a dispersant, a cross linking agent, and a fixing agent.
  • the fixing agent functions to fix the resin on the reinforcing fiber.
  • the fixing agent may be one commonly used such as polyvinyl acetate resin and sodium thiosulfate.
  • the composite material slurry raw material A formed in the mixing tank 110 is transferred to the manure tank 140 through the raw material transfer pipe 120.
  • the fixing agent is supplied to the mixing tank 110, but it is not shown otherwise, but the fixing agent may be supplied to the raw material transfer pipe 120, which is also within the scope of the present invention.
  • water may be additionally supplied to the mixing tank 110 in order to control the concentration of the composite material slurry raw material A formed in the mixing tank 110.
  • the composite material slurry raw material (A) contains 16 to 22 wt% of reinforcing fibers, 14 to 18 wt% of resin, 2 to 4 wt% of other additives, and the rest of the water based on the total weight.
  • the composite material slurry raw material A discharged from the mixing tank 110 is transferred to the manure tank 140 through the raw material transfer pipe 120.
  • the raw material transport pipe 120 is provided with a transport pump and an opening/closing valve for transporting the composite material slurry raw material A.
  • the manure tank 140 separates water from the composite material slurry raw material A supplied through the raw material transfer pipe 120.
  • the manure bath 140 is a manure bath body 141, a manure net 145 installed inside the manure bath body 141, and a net installed inside the manure bath body 141 to support the manure net 145 A support body 148 is provided.
  • the manure tank body 141 includes a bottom 142 and a side wall 143 extending upward from the bottom 142.
  • the floor 142 is provided with a drain hole 1421 for drainage.
  • the side wall 143 includes a lower side wall 1431 and an upper side wall 1432 that are detachably coupled up and down.
  • the lower sidewall 1431 is formed integrally with the bottom 142, and a sieve 145 and a net support 148 are installed between the lower sidewall 1431 and the upper sidewall 1432.
  • the inner space of the manure tank main body 141 is separated into an upper space 1411 and a lower space 1412 by a sieve 145.
  • the sieve 145 is installed so as to be horizontally disposed inside the manure tank body 141. Specifically, the strainer 145 is detachably coupled between the lower sidewall 1431 and the upper sidewall 1432. The sieve 145 passes water through the raw material of the composite material slurry. After the water falls down into the sieve 145, a large amount of water is drained from the composite slurry raw material on the sieve 145, and the rest remains. In the present invention, the remainder remaining on the sieve 145 after water is drained from the composite material slurry raw material is referred to as a drainage slurry raw material.
  • the strainer 145 is structurally supported by the mesh support 148.
  • the net support 148 is installed inside the sieve body 141 to support the sieve 145. Specifically, the net support 148 is detachably coupled between the lower sidewall 1431 and the upper sidewall 1432 and is positioned under the sieve 145 to structurally support the sieve 145.
  • the drain pipe 150 extends from the drain hole 1421 formed in the bottom 142 of the manure tank body 141. Water is discharged from the inner space of the manure tank body 141 to the outside through the drain pipe 150.
  • a drain valve 151 for opening and closing the drain pipe 150 is installed in the drain pipe 150. In the present embodiment, it is described that water is drained through the drain pipe 150 by its own weight. Unlike this, a drain pump may be installed to be drained by a drain pump.
  • a vacuum forming unit 160 is connected to the drain pipe 150.
  • the vacuum forming unit 160 discharges air inside the manure tank 140 to the outside through the drain pipe 150 to form a vacuum in the lower space 1412 of the manure tank 140.
  • the vacuum forming unit 160 includes a vacuum pump 161 and a connection pipe 165 connecting the vacuum pump 161 and the drain pipe 150. A portion to which the connection pipe and the drain pipe 150 are connected is located upstream of the drain valve 151.
  • the vacuum pump 161 is operated to form a vacuum state in the lower space 1412 of the strainer 140, thereby further reducing moisture in the raw material of the drainage slurry left on the sieve 145, which is a composite material in the present invention. It is called the basic sheet.
  • the step of preparing a base sheet according to an embodiment of the present invention is a material mixing step of dispersing and mixing reinforcing fibers, resins, and other additives in water to obtain a composite material slurry raw material ( S11) and the raw material input step (S12) of introducing the raw material of the composite material slurry obtained through the material mixing step (S11) into the manure tank (140 in Fig. 2), and the composite material slurry raw material in the manure tank (140 in Fig.
  • a vacuum dehydration step (S14) is provided in which a vacuum is formed to further reduce moisture from the wastewater slurry raw material remaining in the manure tank (140 in FIG. 2) to form a composite base sheet.
  • reinforcing fibers, resins, and other additives are dispersed and mixed in water to obtain a composite material slurry raw material.
  • the material blending step S11 is performed in the blending tank 110 of the base sheet manufacturing apparatus 100 shown in FIG. 2.
  • reinforcing fibers, resins, and other additives are dispersed and mixed in water by a stirrer 111 to form a composite material slurry raw material (A).
  • an aramid fiber or carbon fiber may be used as the reinforcing fiber, and a phenol resin may be used as the resin.
  • the reinforcing fiber has a length of 10 mm or less, and in this embodiment, it is described that the reinforcing fiber has a length of 5 to 10 mm.
  • Other additives include silicon dioxide (SiO 2 ), a stabilizer, a dispersant, a cross linking agent, and a fixing agent. It will be described that an epoxy resin is used as the crosslinking agent in this embodiment.
  • the fixing agent functions to fix the resin on the reinforcing fiber.
  • the fixing agent may be one commonly used such as polyvinyl acetate resin and sodium thiosulfate.
  • the fixing agent is supplied to the mixing tank 110, but it is not shown otherwise, but the fixing agent may be supplied to the raw material transfer pipe 120, which is also within the scope of the present invention.
  • water may be additionally supplied to the mixing tank 110 in the material mixing step S11 in order to control the concentration of the composite material slurry raw material A formed in the mixing tank 110.
  • the composite material slurry raw material (A) obtained through the material mixing step (S11) contains 16 to 22 wt% of reinforcing fibers, 14 to 18 wt% of resin, and 2 to 4 wt% of the total weight. It is described as including an additive and the remaining water, but the present invention is not limited thereto.
  • the raw material input step S12 is performed.
  • chips or fiber-reinforced plastic waste generated in the process of manufacturing fiber-reinforced plastic products may be pulverized using a grinder. It is within the scope of the present invention.
  • the composite material slurry raw material (FIG. 1A) prepared through the material blending step (S11) is introduced into the manure tank (140 in FIG. 1) through the raw material transfer pipe (120 in FIG. 1).
  • the composite material slurry raw material (A) from the raw material transfer pipe 120 in a state in which water is filled in the sieve tank 140 higher than the sieve 145 Is discharged and an appropriate amount is supplied to the upper space 1411 of the manure tank 140.
  • the composite material slurry raw material A injected into the manure tank 140 exists only in the upper space 1411 of the manure tank 140 by the sieve 145.
  • the draining step (S13) water is drained from the manure tank 140 through the drain port 1421.
  • the drainage step (S13) is performed by opening the drain valve (151 of FIG. 2) installed in the drain pipe (150 of FIG. 2). After the water in the strainer 140 is naturally drained through the drainage step S13, a large amount of water is drained from the composite material slurry raw material A on the sieve 140, and the remainder remains.
  • the drainage slurry raw material is referred to as a drainage slurry raw material.
  • the drainage slurry raw material formed on the sieve 145 by the drainage step S13 contains a considerable amount of moisture, and the moisture content of the drainage slurry raw material is about 55%.
  • the vacuum dehydration step S14 is performed.
  • a vacuum is formed in the manure tank 140 to reduce moisture in the raw material of the waste water slurry formed by the drainage step (S13).
  • the vacuum dehydration step S14 is performed by operating the vacuum pump (161 in FIG. 2) while the drain valve (151 in FIG. 2) is closed.
  • the lower space 1412 of the strainer 140 is a drainage slurry raw material B1 stacked on the sieve 145. ), and the air in the lower space 1412 is discharged to the outside through the drain port 1421 by a vacuum pump (161 in FIG.
  • the lower space 1412 forms a vacuum state, and accordingly, Moisture contained in the drainage slurry raw material (B1) is further removed.
  • the addition of moisture from the drainage slurry raw material (B1) through the vacuum dehydration step (S14) is referred to as a composite material base sheet, and the moisture content of the composite material base sheet is about 40%.
  • the composite material sheet manufacturing step (S20) a composite material sheet made of a fiber-reinforced composite material is manufactured by using the composite material base sheet manufactured through the base sheet manufacturing step (S10).
  • 6 is a flow chart showing an embodiment of the composite plate manufacturing step (S20).
  • the composite material sheet manufacturing step (S20) according to an embodiment of the present invention is a compression dehydration step of producing a compressed sheet by compressing and dewatering the composite base sheet manufactured through the base sheet manufacturing step (S10).
  • the composite base sheet (B) manufactured through the base sheet manufacturing step (S10) as shown in FIG. 7 schematically showing the process of the compression dehydration step (S21) is a compression press 170 ) To further dehydrate.
  • the sheet manufactured by being compressed by the compression dehydration step (S21) is referred to as a compressed sheet.
  • the moisture content of the compressed sheet manufactured through the compression dehydration step (S21) is lowered to about 25%.
  • the lamination step (S22) is performed.
  • the lamination step (S22) a plurality of compressed sheets prepared through the compression dehydration step (S21) are stacked and bonded to produce a composite plate.
  • 8 is a side view of the composite plate formed through the lamination step (S22).
  • the composite material plate D is formed by laminating and bonding a plurality of compression sheets B2.
  • a blanking step (S30) is performed.
  • the composite material plate (D) is described as being formed by stacking a plurality of compression sheets (B2), but unlike this, the lamination step (S22) is omitted, so that the composite material plate may consist of only one compression sheet (B2). And this is also within the scope of the present invention.
  • a blanking process is performed on the composite sheet material (D) manufactured through the composite material sheet manufacturing step (S20) to manufacture an intermediate product.
  • the final product is a helical gear
  • 9 shows a state in which an intermediate product is manufactured by the blanking step (S30).
  • a plurality of spur gear-shaped intermediate products (G) are manufactured by blanking the composite material plate (D) performed in the blanking step (S30).
  • a drying step (S40) is performed.
  • the intermediate product (G) manufactured through the blanking step (S30) is heat-treated in a high-temperature furnace and dried.
  • the moisture content of the intermediate product (G) is lowered to a level of about 3%.
  • the final processing step S50 for the intermediate product G is performed.
  • the final processing is performed on the intermediate product (G) dried through the drying step (S40) to complete the final product.
  • 10 shows a process in which the final processing step (S50) is performed for the spur gear-shaped intermediate product (G).
  • the intermediate product G in the form of a spur gear is deformed into the shape of the helical gear G2 shown in FIG. 11 by the torsion processing device 180.
  • the torsion processing device 180 has two pressing parts 181 and 182 for pressing the intermediate product G from both sides, and at least one pressing part 181 of the two pressing parts rotates to remove the intermediate product G.
  • the intermediate product (G) in the form of a spur gear is transformed into the form of a helical gear (G2).
  • the central axis of the spur gear-shaped intermediate product G and the rotation axis of the pressing unit 181 coincide.
  • heating processing is performed together with pressing by the two pressing portions 181 and 182. If the final product is a spur gear, pressurization and heat processing are performed without twisting.
  • the final product has been described mainly in the case of a helical gear, but the present invention is not limited thereto, and other types of gears, gaskets, etc. may be manufactured, and this also falls within the scope of the present invention. .
  • a basic sheet manufacturing apparatus 200 includes a mixing tank 110 in which reinforcing fibers, resins, and other additives are dispersed and mixed in water to form a composite material slurry raw material.
  • the raw material discharge nozzle 240 for discharging the raw material of the composite material slurry stored in the raw material storage tank, and the raw material discharge nozzle 240
  • a manure tank 250 for separating and discharging water from the discharged composite material slurry raw material, a drain pipe 150 through which water is drained from the manure tank 250, and a vacuum forming unit 160 connected to the drain pipe 150 are provided. do.
  • the composite material slurry raw material A transferred from the mixing tank 110 is temporarily stored.
  • a stirrer 231 is installed in the raw material storage tank 230 so that the elements constituting the composite material slurry raw material A are evenly dispersed to maintain a mixed state.
  • the composite material slurry raw material A stored in the raw material storage tank 230 is discharged through the outlet 232 formed at the bottom of the raw material storage tank 230, and the composite material slurry raw material A discharged through the outlet 232 is discharged. It flows downward by its own weight through the extension pipe 235 extending downward from 232 and moves to the raw material discharge nozzle 240.
  • the extension pipe 235 is provided with a control valve 236 for controlling the movement of the composite material slurry raw material A through the extension pipe 235 to the raw material discharge nozzle 240.
  • the raw material discharge nozzle 240 sprays and discharges the composite material slurry raw material A stored in the raw material storage tank 230 into the manure tank 250.
  • the raw material discharge nozzle 240 is located at the lower end of the extension pipe 235 extending from the raw material storage tank 230. 12 to 14, the raw material discharge nozzle 240 has a raw material discharge surface 241 formed to be convex downward.
  • a plurality of injection ports 242 are formed on the raw material discharge surface 241.
  • the plurality of injection ports 242 are evenly distributed on the raw material discharge surface 241 formed convex downward, so that the composite material slurry raw material A is evenly injected and discharged.
  • the raw material discharge surface 241 may be formed as a spherical surface. As the raw material is uniformly sprayed into the filter tank 250 through the plurality of jetting holes 242, the raw material A of the composite material slurry is uniformly dispersed primarily.
  • the manure tank 250 separates water from the composite material slurry raw material A discharged from the raw material discharge nozzle 240.
  • the manure tank 250 includes a manure tank main body 251, a raw material dropping part 260 installed inside the georim tank main body 251 to drop the composite material slurry raw material A downward, and a manure tank main body 251. ) Is provided with a fertilizer 265 installed in the interior.
  • the manure tank main body 251 includes a bottom 252 and a side wall 254 extending upward from the bottom 252.
  • a drain hole 253 for drainage is provided in the floor 252.
  • the sidewall 254 includes a lower sidewall portion 255 formed integrally with the bottom 252, an upper sidewall portion 256 positioned above the lower sidewall portion 255 and spaced apart from the lower sidewall portion 255, and a lower portion.
  • An intermediate side wall portion 257 positioned between the side wall portion 255 and the upper side wall portion 256 is provided.
  • the raw material dropping part 260 is installed between the upper side wall part 256 and the middle side wall part 257, and a filter part 265 is installed between the middle side wall part 257 and the lower side wall part 255. .
  • the inner space of the manure tank main body 251 includes an intermediate space 251a positioned between the raw material dropping part 260 and the manure part 265, an upper space 251b positioned above the raw material dropping part 260, It is separated into a lower space 251c located below the manure part 265.
  • the raw material dropping part 260 is provided between the upper space 251b and the intermediate space 251a, so that the composite material slurry raw material A accommodated in the upper space 251b is dropped into the intermediate space 251a.
  • the raw material dropping part 260 includes a fixed plate 261, a moving plate 263 that is movably installed in a stacked state on the fixed plate 261, and an actuator 265 for moving the moving plate 263. Equipped.
  • the fixed plate 261 is installed to be horizontally disposed between the upper space 251b and the intermediate space 251a.
  • a plurality of first through holes 262 evenly distributed are formed in the fixed plate 261.
  • the moving plate material 263 is installed to be slidably moved in the horizontal direction with respect to the fixed plate material 261 in a state of being stacked on the fixed plate material 261.
  • a plurality of second through holes 264 evenly distributed are formed in the moving plate 263.
  • the plurality of first through holes 262 are blocked by the moving plate material 263, or are aligned so that the position of each of the plurality of second through holes 264 coincide with each other to be opened. I can.
  • the composite material slurry raw material (A) accommodated in the upper space 251b is the first through hole It falls downward toward the intermediate space 251a through the 262 and the second through hole 264.
  • the moving plate member 263 is capable of sliding and reciprocating by the actuator 265. In this embodiment, the moving plate member 263 is described as being positioned above the fixed plate member 261, but it may be positioned below the fixed plate member 261, and this is also within the scope of the present invention.
  • the actuator 265 slides and reciprocates the moving plate member 263 in the horizontal direction, and adjusts the moving position of the moving plate member 263 with respect to the fixed plate member 261.
  • the sieve 265 includes a sieve 266 and a net support 67 for supporting the sieve 266.
  • the sieve 266 is installed so as to be horizontally disposed inside the sieve main body 251. Specifically, the strainer 266 is detachably coupled between the middle side wall portion 257 and the lower side wall portion 155.
  • the configuration and operation of the sieve 266 is substantially the same as the sieve 145 of the embodiment shown in FIG. 2.
  • the net support 267 is installed inside the sieve body 251 to support the sieve 266. Specifically, the net support 267 is detachably coupled between the middle side wall portion 257 and the lower side wall portion 255 and is positioned under the sieve 266 to structurally support the sieve 266.
  • the configuration and operation of the net support 267 is substantially the same as the net support 148 of the embodiment shown in FIG. 2.
  • a vacuum dehydration step (S14) of forming a composite material base sheet by further reducing moisture from the raw material of the drainage slurry remaining in the manure tank (240 in FIG. 12) is provided.
  • the material mixing step (S11) reinforcing fibers, resins, and other additives are dispersed and mixed in water to obtain a composite material slurry raw material.
  • the material blending step S11 is substantially the same as the configuration of the material blending step S11 shown in FIG. 3, so a detailed description thereof will be omitted.
  • the composite material slurry raw material A obtained through the material mixing step S11 is transferred to the raw material storage tank 230 through the raw material transfer pipe 120 and temporarily stored in the raw material storage tank 230.
  • the composite material slurry raw material A stored in the raw material storage tank 230 is discharged to the manure tank 250.
  • 12 shows the state of the base sheet manufacturing apparatus 200 in the raw material discharging step S12.
  • the composite material slurry raw material (A) through the raw material discharge nozzle 240. ) Is discharged to the upper space 251b, and an appropriate amount is supplied to the upper space 251b of the manure tank 250.
  • the moving plate 263 is positioned so that the composite material slurry raw material A in the upper space 251b cannot move to the intermediate space 251a. That is, the plurality of first through-holes 262 formed in the fixed plate 261 and the plurality of second through-holes 264 formed in the moving plate 262 are positioned to be offset from each other.
  • the composite material slurry raw material A injected into the manure tank 250 exists only in the upper space 251b by the fixed plate material 261 and the moving plate material 263.
  • the composite material slurry raw material A is uniformly first dispersed. After an appropriate amount of the composite material slurry raw material A is filled in the upper space 251b through the raw material input step (S121), the composite material slurry raw material A through the raw material discharge nozzle 240 is Spraying is stopped and the raw material dropping step (S122) is performed.
  • FIG. 16 shows a state in which the raw material dropping step S122 is performed.
  • the moving plate member 263 of the raw material dropping portion 260 is moved by the actuator 265 so that each of the plurality of second through holes 264 formed in the moving plate member 263 is a fixed plate member 261 ), the composite material slurry raw material (A) stored in the upper space 251b is matched with each of the plurality of first through holes 262 formed in the first through holes 262 and the second through holes 264. It falls down through and is supplied to the intermediate space 251a.
  • the composite material slurry raw material A falls through the plurality of first through holes 262 and the plurality of second through holes 264 and collides with water contained in the intermediate space 251a to form a vortex.
  • the raw material (A) is uniformly secondarily dispersed.
  • the composite material slurry raw material A supplied to the intermediate space 251a through the raw material dropping step S122 exists only in the intermediate space 251a by the sieve 266. After all the composite material slurry raw materials A in the upper space 251b are dropped and supplied to the intermediate space 251a, the drainage step S13 is performed.
  • the raw material discharging step S121 and the raw material dropping step S122 are different embodiments of the raw material input step S12 shown in FIG. 3.
  • the drainage step (S13) water is drained from the manure tank 250 through the drain hole 253.
  • the drainage step S13 is performed by opening the drain valve 151 installed in the drain pipe 150. 17 shows a state in which the drainage step S13 is performed.
  • the drainage step (S60) water (W) is drained through the drain pipe 150, and after the water (W) is completely drained, the composite material slurry raw material (A) on the sieve 266 After a large amount of water is drained from, the rest is left.
  • the drainage sludge raw material (B1) contains a considerable amount of moisture, while the drainage slurry feedstock (B1) contains about 55% of moisture.
  • the vacuum dehydration step S70 is performed.
  • a vacuum is formed in the manure tank 266 to reduce moisture in the drainage slurry raw material B1.
  • 18 shows a state in which the vacuum dehydration step S14 is performed.
  • the vacuum dehydration step (S14) is performed by operating the vacuum pump (161 of FIG. 12) while the drain valve (151 of FIG. 12) is closed.
  • the lower space 251c of the strainer 266 is sealed by the drainage slurry raw material B1 stacked on the strainer 266, and the air in the lower space 251c is external by a vacuum pump (161 in FIG. 2).
  • a vacuum state is formed, and accordingly, moisture contained in the drainage slurry raw material B1 is further removed.
  • the addition of moisture from the drainage slurry raw material (B1) by the vacuum dehydration step (S14) is referred to as the composite material base sheet (B), and the composite material recycling sheet (B) contains 40% moisture. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Treatment Of Sludge (AREA)

Abstract

본 발명은 복합재료 제품 제조 방법에 관한 것으로서, 본 발명에 의하면, 강화섬유, 수지 및 첨가물을 물에 분산·혼합하여 복합재료 슬러리 원료를 얻는 재료 배합 단계; 물을 통과시키는 거름망을 구비하는 거름조의 상기 거름망 위로 상기 복합재료 슬러리 원료를 공급하는 원료 투입 단계; 상기 복합재료 슬러리 원료가 투입된 상기 거름조로부터 물을 배출시켜서 상기 거름망 위에 남는 배수 슬러리 원료를 얻는 배수 단계; 상기 거름망 아래의 공간에 진공을 형성하여 상기 배수 슬러리 원료로부터 수분이 저감된 복합재료 기초 시트를 얻는 진공 탈수 단계; 상기 복합재료 기초 시트를 압축하여 수분이 저감된 압축 시트를 얻는 압축 탈수 단계; 상기 압축 시트를 구비하는 복합재료 판재를 블랭킹 가공하여 중간 제품을 얻는 블랭킹 단계; 및 상기 중간 제품을 가열 처리하여 최종 제품을 얻는 최종 가공 단계를 포함하는 복합재료 제품 제조 방법이 제공된다.

Description

복합재료 제품의 제조방법
본 발명은 복합재료 제품의 제조 방법에 관한 것으로서, 더욱 상세하게는 섬유강화플라스틱(FRP) 제품의 제조방법에 관한 것이다.
섬유강화플라스틱(FRP: Fiber Reinforced Plastic) 재료는 페놀수지, 에폭시 수지 등의 매트릭스(matrix)에 섬유질인 유리 섬유(Glass fiber), 탄소 섬유(Carbon fiber) 또는 아라미드 섬유(Aramid fiber) 등의 섬유를 강화재로 사용한 복합재료이다.
본 발명과 관련된 기술분야인 섬유강화 복합재료의 성형방법에 대한 선행특허로서 대한민국 공개특허 제10-2012-0093659호에는 압출기 내부의 용융공간에 수지조성물과 강화섬유를 투입하고, 이를 가열 및 혼련하여 섬유강화 복합재료의 용융물을 생산한 후, 섬유강화 복합재료의 용융물을 운반장치를 이용하여 섬유강화 복합재료의 용융물을 가압하여 일정 형태로 형상화하는 형상화부로 공급하는 섬유강화 복합재료의 성형방법이 기재되어 있다.
본 발명의 기술적 과제는 복합재료 제품의 제조방법을 제공하는 것이다.
상기한 본 발명의 기술적 과제를 달성하기 위하여, 본 발명의 일 측면에 따르면, 강화섬유, 수지 및 첨가물을 물에 분산·혼합하여 복합재료 슬러리 원료를 얻는 재료 배합 단계; 물을 통과시키는 거름망을 구비하는 거름조의 상기 거름망 위로 상기 복합재료 슬러리 원료를 공급하는 원료 투입 단계; 상기 복합재료 슬러리 원료가 투입된 상기 거름조로부터 물을 배출시켜서 상기 거름망 위에 남는 배수 슬러리 원료를 얻는 배수 단계; 상기 거름망 아래의 공간에 진공을 형성하여 상기 배수 슬러리 원료로부터 수분이 저감된 복합재료 기초 시트를 얻는 진공 탈수 단계; 상기 복합재료 기초 시트를 압축하여 수분이 저감된 압축 시트를 얻는 압축 탈수 단계; 상기 압축 시트를 구비하는 복합재료 판재를 블랭킹 가공하여 중간 제품을 얻는 블랭킹 단계; 및 상기 중간 제품을 가열 처리하여 최종 제품을 얻는 최종 가공 단계를 포함하는 복합재료 제품 제조 방법이 제공된다.
본 발명에 의하면 앞서서 기재한 본 발명의 기술적 과제를 모두 달성할 수 있다. 구체적으로는, 강화섬유, 수지 및 첨가물을 물에 분산·혼합하여 형성된 복합재료 슬러리 원료를 거름망을 구비하는 거름조에서 자연 배수 및 진공 탈수를 이용하여 복합재료 기초 시트를 제조하고, 복수개의 복합재료 기초 시트를 적층하여 형성된 복합재료 판재를 블랭킹 가공하여 기어와 같은 기계 부품을 복합소재로 용이하게 제조할 수 있게 된다.
도 1은 본 발명의 일 실시예에 따른 복합재료 제품 제조 방법을 개략적으로 설명하는 순서도이다.
도 2는 도 1의 기초 시트 제조 단계의 수행에 사용되는 기초 시트 제조 장치의 일 예를 개략적으로 도시한 도면이다.
도 3은 도 2에 도시된 기초 시트 제조 장치를 활용한 도 1의 기초 시트 제조 단계의 일 실시예를 개략적으로 설명하는 순서도이다.
도 4는 도 3의 배수 단계가 수행될 때의 거름조의 상태를 도시한 것이다.
도 5는 도 3의 진공 탈수 단계가 수행될 때의 거름조의 상태를 도시한 것이다.
도 6은 도 1의 복합재료 판재 제조 단계를 개략적으로 설명하는 순서도이다.
도 7은 도 6의 압축 탈수 단계가 수행되는 상태를 도시한 도면이다.
도 8은 도 6의 적층 단계에 의해 형성된 적층체를 도시한 측면도이다.
도 9는 도 1의 블랭킹 단계에 의해 중간 제품이 제조되는 상태를 도시한 사시도이다.
도 10은 도 1에 도시된 최종 가공 단계의 일 실시예를 도시한 공정도이다.
도 11은 도 10에 도시된 최종 가공 단계에 의해 제조된 최종 제품을 도시한 사시도이다.
도 12는 도 1의 기초 시트 제조 단계의 수행에 사용되는 기초 시트 제조 장치의 다른 예를 개략적으로 도시한 도면이다.
도 13은 도 12에 도시된 장치에서 원료 배출 노즐을 도시한 사시도이다.
도 14는 도 13에 도시된 원료 배출 노즐의 평면도이다.
도 15는 도 12에 도시된 기초 시트 제조 장치를 이용한 본 발명의 다른 실시예에 따른 기초 시트 제조 단계를 설명하는 순서도이다.
도 16은 도 15의 원료 낙하 단계가 수행될 때의 거름조의 상태를 도시한 것이다.
도 17은 도 15의 배수 단계가 수행될 때의 거름조의 상태를 도시한 것이다.
도 18은 도 15의 진공 탈수 단계가 수행될 때의 거름조의 상태를 도시한 것이다.
이하, 도면을 참조하여 본 발명의 실시예의 구성 및 작용을 상세하게 설명한다.
도 1에는 본 발명의 일 실시예에 따른 복합재료 제품 제조 방법을 개략적으로 설명하는 순서도가 도시되어 있다. 도 1을 참조하면, 본 발명의 일 실시예에 따른 복합재료 제품 제조 방법은, 섬유강화 복합재료로 이루어진 복합재료 기초 시트를 제조하는 기초 시트 제조 단계(S10)와, 기초 시트 제조 단계(S10)를 통해 제조된 복합재료 기초 시트를 이용하여 섬유강화 복합재료로 이루어진 복합재료 판재를 제조하는 복합재료 판재 제조 단계(S20)와, 복합재료 판재 제조 단계(S20)를 통해 제조된 복합재료 판재에 대한 블랭킹(blanking) 가공이 수행되어서 중간 제품이 제조되는 블랭킹 단계(S30)와, 블랭킹 단계(S30)를 통해 제조된 중간 제품이 건조되는 건조 단계(S40)와, 건조 단계(S40)를 통해 건조된 중간 제품에 대한 최종 가공이 수행되어서 최종 제품이 완성되는 최종 가공 단계(S50)를 포함한다.
기초 시트 제조 단계(S10)에서는 섬유강화 복합재료로 이루어진 복합재료 기초 시트가 제조된다. 도 2에는 기초 시트 제조 단계(S10)를 수행하는 기초 시트 제조 장치의 일 예에 대한 구성이 개략적으로 도시되어 있다. 도 2를 참조하면, 기초 시트 제조 장치(100)는 강화섬유, 수지 및 기타 첨가물이 물에 분산·혼합되어 복합재료 슬러리 원료가 형성되는 배합조(110)와, 배합조(110)에서 형성된 복합재료 슬러리 원료로부터 물을 분리하여 배출시키는 거름조(140)와, 거름조(140)로부터 물이 배수되는 배수관(150)과, 배수관(150)에 연결된 진공 형성부(160)를 구비한다.
배합조(110)에서는 강화섬유, 수지 및 기타 첨가물이 물에 분산·혼합되어 복합재료 슬러리 원료(A)가 형성된다. 이를 위하여 배합조(110)는 교반기(111)를 구비한다. 강화섬유로서 아라미드 섬유 또는 탄소 섬유가 사용될 수 있으며, 수지로는 페놀 수지가 사용될 수 있다. 강화섬유는 길이가 10mm 이하의 길이를 갖는 것이 바람직하며, 본 실시예에서는 강화섬유가 5 ~ 10mm의 길이를 갖는 것으로 설명한다. 기타 첨가물은 이산화규소(SiO2), 안정제, 분산제, 가교제(cross linking agent) 및 정착제를 포함한다. 본 실시예에서 가교제로는 에폭시 수지가 사용되는 것으로 설명한다. 정착제는 강화섬유에 수지를 정착시키는 기능을 한다. 정착제로는 초산비닐수지(polyvinyl acetate resin), 티오황산나트륜(sodium thiosulfate)와 같이 통상적으로 사용되는 것일 수 있다. 배합조(110)에서 형성된 복합재료 슬러리 원료(A)는 원료 이송관(120)을 통해 거름조(140)로 이송된다. 본 실시예에서는 정착제가 배합조(110)에 공급되는 것으로 설명하지만, 이와는 달리 도시되지는 않았으나 원료 이송관(120)으로 정착제가 공급될 수도 있으며, 이 또한 본 발명의 범위에 속하는 것이다. 도시되지는 않았으나, 배합조(110)에서 형성되는 복합재료 슬러리 원료(A)의 농도 조절을 위하여 배합조(110)에 물이 추가로 공급될 수 있다.
본 실시예에서 복합재료 슬러리 원료(A)가 전체 충량 대비 16 내지 22wt%의 강화섬유와, 전체 중량 대비 14 내지 18wt%의 수지와, 2 내지 4wt%의 기타 첨가물과, 나머지 물을 포함하는 것으로 설명한다.
배합조(110)로부터 배출되는 복합재료 슬러리 원료(A)가 원료 이송관(120)을 통해 거름조(140) 쪽으로 이송된다. 이를 위하여 도시되지는 않았으나, 원료 이송관(120)에는 복합재료 슬러리 원료(A)의 이송을 위한 이송 펌프 및 개폐밸브가 구비된다.
거름조(140)는 원료 이송관(120)을 통해 공급되는 복합재료 슬러리 원료(A)로부터 물을 분리한다. 거름조(140)는 거름조 본체(141)와, 거름조 본체(141)의 내부에 설치되는 거름망(145)과, 거름조 본체(141)의 내부에 설치되어서 거름망(145)을 지지하는 망 지지체(148)을 구비한다.
거름조 본체(141)는 바닥(142)과, 바닥(142)으로부터 위로 연장되는 측벽(143)을 구비한다. 바닥(142)에는 배수를 위한 배수구(1421)가 마련된다. 측벽(143)은 상하로 분리가능하게 결합되는 하부 측벽(1431)과, 상부 측벽(1432)을 구비한다. 하부 측벽(1431)은 바닥(142)과 일체로 형성되며, 하부 측벽(1431)과 상부 측벽(1432)의 사이에 거름망(145)과 망 지지체(148)가 설치된다. 거름조 본체(141)의 내부 공간은 거름망(145)에 의해 상부 공간(1411)과 하부 공간(1412)으로 분리된다.
거름망(145)은 거름조 본체(141)의 내부에 수평으로 배치되도록 설치된다. 구체적으로, 거름망(145)은 하부 측벽(1431)과 상부 측벽(1432)의 사이에 분리가능하게 결합된다. 거름망(145)은 복합재료 슬러리 원료에서 물을 통과시킨다. 거름망(145)에 물이 아래로 빠진 후 거름망(145) 위에는 복합재료 슬러리 원료에서 많은 양의 물이 빠진 후 나머지가 남게 된다. 본 발명에서는 복합재료 슬러리 원료에서 물이 빠진 후 거름망(145) 위에 남은 나머지를 배수 슬러리 원료라 한다. 거름망(145)은 망 지지체(148)에 의해 구조적으로 지지된다.
망 지지체(148)는 거름조 본체(141)의 내부에 설치되어서 거름망(145)을 지지한다. 구체적으로, 망 지지체(148)는 하부 측벽(1431)과 상부 측벽(1432)의 사이에 분리가능하게 결합되고 거름망(145)의 아래에 위치하여 거름망(145)을 구조적으로 지지하게 된다.
배수관(150)은 거름조 본체(141)의 바닥(142)에 형성된 배수구(1421)로부터 연장된다. 배수관(150)을 통해 거름조 본체(141)의 내부 공간에서 물이 외부로 배출된다. 배수관(150)에는 배수관(150)을 개폐하는 배수 밸브(151)가 설치된다. 본 실시예에서는 물이 자중에 의해 배수관(150)을 통해 배수되는 것으로 설명하는데, 이와는 달리 배수 펌프가 설치되어서 배수 펌프에 의해 배수될 수도 있다. 배수관(150)에는 진공 형성부(160)가 연결된다.
진공 형성부(160)는 배수관(150)을 통해 거름조(140)의 내부의 공기를 외부로 배출하여 거름조(140)의 하부 공간(1412)에 진공을 형성한다. 진공 형성부(160)는 진공 펌프(161)와, 진공 펌프(161)와 배수관(150)을 연결하는 연결관(165)를 구비한다. 연결관과 배수관(150)이 연결되는 부분은 배수 밸브(151)보다 상류에 위치한다. 진공 펌프(161)가 작동하여 거름조(140)의 하부 공간(1412)에 진공 상태가 형성됨으로써, 거름망(145)의 위에 남겨진 배수 슬러리 원료에서 수분이 추가로 저감되며, 이를 본 발명에서는 복합재료 기초 시트라 한다.
도 3에는 도 2에 도시된 기초 시트 제조 장치(100)를 활용한 본 발명의 일 실시예에 따른 기초 시트 제조 단계(도 1의 S10)가 순서도로서 도시되어 있다. 도 3을 참조하면, 본 발명의 일 실시예에 따른 기초 시트 제조 단계(도 1의 S10)는, 강화섬유, 수지 및 기타 첨가물을 물에 분산·혼합하여 복합재료 슬러리 원료를 얻는 재료 배합 단계(S11)와, 재료 배합 단계(S11)를 통해 얻은 복합재료 슬러리 원료를 거름조(도 2의 140)에 투입하는 원료 투입 단계(S12)와, 거름조(도 2의 140)에 복합재료 슬러리 원료가 투입된 후 거름조(도 2의 140)에서 물을 배수하여 배수 슬러리 원료를 형성하는 배수 단계(S13)와, 배수 단계(S13)에 의해 물이 배수된 후 거름조(도 2의 140)에 진공을 형성하여 거름조(도 2의 140)에 남은 배수 슬러리 원료에서 수분을 추가로 저감시켜서 복합재료 기초 시트를 형성하는 진공 탈수 단계(S14)를 구비한다.
재료 배합 단계(S11)에서는 강화섬유, 수지 및 기타 첨가물을 물에 분산·혼합하여 복합재료 슬러리 원료를 얻는다. 재료 배합 단계(S11)는 도 2에 도시된 기초 시트 제조 장치(100)의 배합조(110)에서 수행된다. 배합조(110)에서는 교반기(111)에 의해 강화섬유, 수지 및 기타 첨가물이 물에 분산·혼합되어 복합재료 슬러리 원료(A)가 형성된다. 본 실시예에서 강화섬유로 아라미드 섬유 또는 탄소 섬유가 사용될 수 있으며, 수지로는 페놀 수지가 사용될 수 있다. 강화섬유는 길이가 10mm 이하의 길이를 갖는 것이 바람직하며, 본 실시예에서는 강화섬유가 5 ~ 10mm의 길이를 갖는 것으로 설명한다. 기타 첨가물은 이산화규소(SiO2), 안정제, 분산제, 가교제(cross linking agent) 및 정착제를 포함한다. 본 실시예에서 가교제로는 에폭시 수지가 사용되는 것으로 설명한다. 정착제는 강화섬유에 수지를 정착시키는 기능을 한다. 정착제로는 초산비닐수지(polyvinyl acetate resin), 티오황산나트륜(sodium thiosulfate)와 같이 통상적으로 사용되는 것일 수 있다. 배합조(110)에서 형성된 복합재료 슬러리 원료(A)는 원료 이송관(120)을 통해 거름조(140)로 이송된다. 본 실시예에서는 정착제가 배합조(110)에 공급되는 것으로 설명하지만, 이와는 달리 도시되지는 않았으나 원료 이송관(120)으로 정착제가 공급될 수도 있으며, 이 또한 본 발명의 범위에 속하는 것이다. 도시되지는 않았으나, 배합조(110)에서 형성되는 복합재료 슬러리 원료(A)의 농도 조절을 위하여 재료 배합 단계(S11)에서 배합조(110)에 물이 추가로 공급될 수 있다. 본 실시예에서 재료 배합 단계(S11)를 통해 얻어지는 복합재료 슬러리 원료(A)가 전체 충량 대비 16 내지 22wt%의 강화섬유와, 전체 중량 대비 14 내지 18wt%의 수지와, 2 내지 4wt%의 기타 첨가물과, 나머지 물을 포함하는 것으로 설명하는데, 본 발명이 이에 제한되는 것은 아니다. 재료 배합 단계(S11)를 통해 복합재료 슬러리 원료(A)가 준비된 후에는 원료 투입 단계(S12)가 수행된다. 재료 배합 단계(S11)에서 배합되는 강화섬유와 수지로는 섬유강화플라스틱 제품 제조시 가공 과정에서 발생하는 칩(chip) 또는 섬유강화플라스틱 폐기물을 분쇄기를 이용하여 분쇄된 것이 활용될 수 있으며, 이 또한 본 발명의 범위에 속하는 것이다.
원료 투입 단계(S12)에서는 재료 배합 단계(S11)를 통해 준비된 복합재료 슬러리 원료(도 1의 A)가 원료 이송관(도 1의 120)을 거쳐서 거름조(도 1의 140)에 투입된다. 도 2를 참조하여 원료 투입 단계(S12)를 더욱 구체적으로 설명하면, 거름조(140)에 물이 거름망(145)보다 높게 채워져 있는 상태에서 원료 이송관(120)으로부터 복합재료 슬러리 원료(A)가 배출되어서 거름조(140)의 상부 공간(1411)으로 적정량이 공급된다. 거름조(140)에 투입된 복합재료 슬러리 원료(A)는 거름망(145)에 의해 거름조(140)의 상부 공간(1411)에만 존재하게 된다.
배수 단계(S13)에서는 도 4에 도시된 바와 같이, 거름조(140)에서 물이 배수구(1421)를 통해 배수된다. 배수 단계(S13)는 배수관(도 2의 150)에 설치된 배수 밸브(도 2의 151)가 개방되어서 수행된다. 배수 단계(S13)를 통해 거름조(140)의 물이 자연 배수된 후 거름망(140) 위에는 복합재료 슬러리 원료(A)에서 많은 양의 물이 빠진 후 나머지가 남게 된다. 본 발명에서는 배수 단계(S13)에 의해 복합재료 슬러리 원료(A)에서 물이 빠진 후 거름망(145) 위에 남은 나머지를 배수 슬러리 원료라 한다. 배수 단계(S13)에 의해 거름망(145) 위에 형성된 배수 슬러리 원료는 상당량의 수분을 함유하는데, 배수 슬러리 원료의 수분 함량은 약 55%이다. 배수 단계(S13)에 의해 배수 슬러리 원료가 형성된 후에는 진공 탈수 단계(S14)가 수행된다.
진공 탈수 단계(S14)에서는 거름조(140)에 진공을 형성하여 배수 단계(S13)에 의해 형성된 배수 슬러리 원료의 수분이 저감된다. 진공 탈수 단계(S14)는 배수 밸브(도 2의 151)가 닫힌 상태에서, 진공 펌프(도 2의 161)가 작동함으로써 수행된다. 진공 탈수 단계(S14)가 수행되는 거름조(140)의 상태가 도시된 도 5를 참조하면, 거름조(140)의 하부 공간(1412)은 거름망(145)의 위에 적층된 배수 슬러리 원료(B1)에 의해 밀폐되며, 진공 펌프(도 2의 161)에 의해 하부 공간(1412)의 공기가 배수구(1421)을 통해 외부로 배출됨으로써 하부 공간(1412)은 진공 상태를 형성하게 되며, 그에 따라, 배수 슬러리 원료(B1)에 함유된 수분이 추가로 제거된다. 본 발명에서는 배수 슬러리 원료(B1)에서 진공 탈수 단계(S14)를 통해 수분이 추가로 제거된 것을 복합재료 기초 시트라 하며, 복합재료 기초 시트의 수분 함량은 약 40%이다.
복합재료 판재 제조 단계(S20)에서는 기초 시트 제조 단계(S10)를 통해 제조된 복합재료 기초 시트를 이용하여 섬유강화 복합재료로 이루어진 복합재료 판재가 제조된다. 도 6에는 복합재료 판재 제조 단계(S20)의 일 실시예가 순서도로서 도시되어 있다. 도 6을 참조하면, 본 발명의 일 실시예에 따른 복합재료 판재 제조 단계(S20)는 기초 시트 제조 단계(S10)를 통해 제조된 복합재료 기초 시트를 압축탈수하여 압축 시트를 제조하는 압축 탈수 단계(S21)와, 압축 탈수 단계(S21)를 통해 제조된 압축 시트 복수개를 적층하여 복합재료 판재를 제조하는 적층 단계(S22)를 구비한다.
압축 탈수 단계(S21)에서는 압축 탈수 단계(S21)의 공정이 개략적으로 도시된 도 7에 도시된 바와 같이 기초 시트 제조 단계(S10)를 통해 제조된 복합재료 기초 시트(B)가 압축 프레스(170)에 의해 압축되어서 추가적으로 탈수된다. 본 발명에서는 압축 탈수 단계(S21)에 의해 압축되어서 제조된 시트를 압축 시트라 한다. 압축 탈수 단계(S21)를 통해 제조된 압축 시트의 수분 함량은 약 25% 수준으로 낮아진다. 본 실시예에서는 압축 탈수 단계(S21)에서 하나의 복합재료 기초 시트(B)에 대해 압축이 이루어지는 것으로 설명하지만, 이와는 달리 여러 장의 복합재료 기초 시트(B)가 적층된 상태로 동시에 압축되어서 수행될 수도 있으며, 이 또한 본 발명의 범위에 속하는 것이다. 압축 탈수 단계(S21)를 통해 복수개의 압축 시트들이 준비된 후에는 적층 단계(S22)가 수행된다.
적층 단계(S22)에서는 압축 탈수 단계(S21)를 통해 준비된 복수개의 압축 시트들을 적층하고 접합하여 복합재료 판재가 제조된다. 도 8에는 적층 단계(S22)를 통해 형성된 복합재료 판재의 측면도가 도시되어 있다. 도 8을 참조하면, 복합재료 판재(D)는 복수개의 압축 시트(B2)들이 적층 및 접합되어서 형성된다. 복합재료 판재 제조 단계를 통해 복합재료 판재(D)가 제조된 후에는 블랭킹 단계(S30)가 수행된다. 본 발명에서는 복합재료 판재(D)가 복수개의 압축 시트(B2)들이 적층되어서 형성되는 것으로 설명하지만, 이와는 달리 적층 단계(S22)가 생략되어서 복합재료 판재는 하나의 압축 시트(B2)만으로 이루어질 수도 있으며, 이 또한 본 발명의 범위에 속하는 것이다.
블랭킹 단계(S30)에서는 복합재료 판재 제조 단계(S20)를 통해 제조된 복합재료 판재(D)에 대한 블랭킹(blanking) 가공이 수행되어서 중간 제품이 제조된다. 본 실시예에서는 최종 제품이 헬리컬 기어(helical gear)인 경우에 대해 설명한다. 도 9에는 블랭킹 단계(S30)에 의해 중간 제품이 제조되는 상태가 도시되어 있다. 도 9를 참조하면, 블랭킹 단계(S30)에서 수행되는 복합재료 판재(D)에 대한 블랭킹 가공에 의해 평기어 형상의 중간 제품(G) 복수개가 제조된다. 블랭킹 단계(S30)를 통해 중간 제품(G)이 제조된 후에는 건조 단계(S40)가 수행된다.
건조 단계(S40)에서는 블랭킹 단계(S30)를 통해 제조된 중간 제품(G)이 고온로에서 가열 처리되어서 건조된다. 건조 단계(S40)에 의해 중간 제품(G)의 수분 함량은 약 3% 수준으로 낮아진다. 건조 단계(S40)가 수행된 후에는 중간 제품(G)에 대한 최종 가공 단계(S50)가 수행된다.
최종 가공 단계(S50)에서는 건조 단계(S40)를 통해 건조된 중간 제품(G)에 대한 최종 가공이 수행되어서 최종 제품이 완성된다. 도 10에는 평기어 형태의 중간 제품(G)에 대한 최종 가공 단계(S50)가 수행되는 공정이 도시되어 있다. 도 10을 참조하면, 평기어 형태의 중간 제품(G)이 비틀림 가공 장치(180)에 의해 도 11에 도시된 헬리컬 기어(G2)의 형태로 변형된다. 비틀림 가공 장치(180)는 중간 제품(G)을 양면에서 가압하는 두 가압부(181, 182)를 구비하며, 두 가압부 중 적어도 하나의 가압부(181)가 회전하여 중간 제품(G)을 비틀어서 평기어 형태의 중간 제품(G)을 헬리컬 기어(G2)의 형태로 변형시킨다. 이 때, 평기어 형태의 중간 제품(G)의 중심축과 가압부(181)의 회전축은 일치한다. 또한, 최종 가공 단계(S50)에서는 두 가압부(181, 182)에 의한 가압과 함께 가열 가공이 이루어진다. 최종 제품이 평기어인 경우에는 비틀림없이 가압과 가열 가공이 이루어진다.
상기 실시예에서는 최종 제품이 헬리컬 기어인 경우를 중심으로 설명되었으나, 본 발명은 이에 제한되는 것은 아니며, 다른 형태의 기어류, 개스킷류 등이 제조될 수 있으며, 이 또한 본 발명의 범위에 속하는 것이다.
도 12는 도 1의 기초 시트 제조 단계의 수행에 사용되는 기초 시트 제조 장치의 다른 예를 개략적으로 도시한 도면이다. 도 12를 참조하면, 본 발명의 다른 실시예에 따른 기초 시트 제조 장치(200)는, 강화섬유, 수지 및 기타 첨가물이 물에 분산·혼합되어 복합재료 슬러리 원료가 형성되는 배합조(110)와, 배합조(110)로부터 이송된 복합재료 슬러리 원료가 일시 저장되는 원료 저장조(230)와, 원료 저장조에 저장된 복합재료 슬러리 원료를 배출하는 원료 배출 노즐(240)과, 원료 배출 노즐(240)로부터 배출되는 복합재료 슬러리 원료로부터 물을 분리하여 배출시키는 거름조(250)와, 거름조(250)로부터 물이 배수되는 배수관(150)과, 배수관(150)에 연결된 진공 형성부(160)를 구비한다. 도 12에 도시된 실시예에서 배합조(110), 배수관(150) 및 진공 형성부(160)의 구성 및 작용은 도 2에 도시된 배합조(110), 배수관(150) 및 진공 형성부(160)와 각각 동일하므로, 이에 대한 설명은 생략하며 여기서는 원료 저장조(230), 원료 배출 노즐(240) 및 거름조(250)에 대해서만 상세하게 설명한다.
원료 저장조(230)에는 배합조(110)로부터 이송된 복합재료 슬러리 원료(A)가 일시 저장된다. 원료 저장조(230)에는 복합재료 슬러리 원료(A)를 구성하는 요소들이 고르게 분산되어 혼합된 상태를 유지하도록 교반기(231)가 설치된다. 원료 저장조(230)에 저장된 복합재료 슬러리 원료(A)는 원료 저장조(230)의 바닥에 형성된 배출구(232)를 통해 배출되며, 배출구(232)를 통해 배출되는 복합재료 슬러리 원료(A)는 배출구(232)로부터 아래로 연장되는 연장관(235)을 통해 자중에 의해 아래로 유동하여 원료 배출 노즐(240)로 이동하게 된다. 연장관(235)에는 연장관(235)을 통한 복합재료 슬러리 원료(A)의 원료 배출 노즐(240)로의 이동을 조절하는 조절 밸브(236)가 설치된다.
원료 배출 노즐(240)은 원료 저장조(230)에 저장된 복합재료 슬러리 원료(A)를 거름조(250)로 분사하여 배출한다. 원료 배출 노즐(240)은 원료 저장조(230)로부터 연장되는 연장관(235)의 하단에 위치한다. 도 12 내지 도 14를 참조하면, 원료 배출 노즐(240)은 아래로 볼록하게 형성된 원료 배출면(241)을 구비한다. 원료 배출면(241)에는 복수개의 분사구(242)들이 형성된다. 복수개의 분사구(242)들은 아래로 볼록하게 형성된 원료 배출면(241)에 고르게 분포되어서 복합재료 슬러리 원료(A)를 고르게 분사하여 배출하게 된다. 원료 배출면(241)은 구면으로 형성될 수도 있다. 복수개의 분사구(242)들을 통해 원료가 거름조(250)로 균일하게 분사되면서 복합재료 슬러리 원료(A)가 1차적으로 균일하게 분산된다.
거름조(250)는 원료 배출 노즐(240)로부터 배출되는 복합재료 슬러리 원료(A)로부터 물을 분리한다. 거름조(250)는 거름조 본체(251)와, 거림조 본체(251)의 내부에 설치되어서 복합재료 슬러리 원료(A)를 아래로 낙하시키는 원료 낙하부(260)와, 거름조 본체(251)의 내부에 설치되는 거름부(265)를 구비한다.
거름조 본체(251)는 바닥(252)과, 바닥(252)으로부터 위로 연장되는 측벽(254)을 구비한다. 바닥(252)에는 배수를 위한 배수구(253)가 마련된다. 측벽(254)은 바닥(252)과 일체로 형성되는 하부 측벽부(255)와, 하부 측벽부(255)와 이격되어서 하부 측벽부(255)보다 위에 위치하는 상부 측벽부(256)와, 하부 측벽부(255)와 상부 측벽부(256)의 사이에 위치하는 중간 측벽부(257)를 구비한다. 상부 측벽부(256)와 중간 측벽부(257)의 사이에 원료 낙하부(260)가 설치되며, 중간 측벽부(257)과 하부 측벽부(255)의 사이에 거름부(265)가 설치된다. 거름조 본체(251)의 내부 공간은 원료 낙하부(260)와 거름부(265) 사이에 위치하는 중간 공간(251a)과, 원료 낙하부(260)의 위에 위치하는 상부 공간(251b)과, 거름부(265)의 아래에 위치하는 하부 공간(251c)으로 분리된다.
원료 낙하부(260)는 상부 공간(251b)과 중간 공간(251a)의 사이에 설치되어서, 상부 공간(251b)에 수용된 복합재료 슬러리 원료(A)를 중간 공간(251a)으로 낙하시킨다. 원료 낙하부(260)는 고정 판재(261)와, 고정 판재(261)의 위에 적층된 상태로 이동가능하게 설치되는 이동 판재(263)와, 이동판재(263)를 이동시키는 액추에이터(265)를 구비한다.
고정 판재(261)는 상부 공간(251b)과 중간 공간(251a)의 사이에 수평으로 배치되도록 설치된다. 고정 판재(261)에는 고르게 분포되는 복수개의 제1 관통구(262)들이 형성된다.
이동 판재(263)는 고정 판재(261)의 위에 적층된 상태로 고정 판재(261)에 대해 수평방향으로 슬라이드 이동가능하게 설치된다. 이동 판재(263)에는 고르게 분포되는 복수개의 제2 관통구(264)들이 형성된다. 이동 판재(263)의 이동 위치에 따라 복수개의 제1 관통구(262)들은 이동 판재(263)에 의해 막히거나, 복수개의 제2 관통구(264)들 각각과 위치가 일치하도록 정렬되어서 개방될 수 있다. 복수개의 제1 관통구(262)들 각각과 복수개의 제2 관통구(264)들 각각이 일치하도록 정렬되었을 때, 상부 공간(251b)에 수용되는 복합재료 슬러리 원료(A)가 제1 관통구(262) 및 제2 관통구(264)를 통해 중간 공간(251a)을 향해 아래로 낙하하게 된다. 이동 판재(263)는 액추에이터(265)에 의해 슬라이드 왕복 이동 가능하게 된다. 본 실시예에서는 이동 판재(263)가 고정 판재(261)의 위에 위치하는 것으로 설명하지만, 이와는 달리 고정 판재(261)의 아래에 위치할 수도 있으며, 이 또한 본 발명의 범위에 속하는 것이다.
액추에이터(265)는 이동 판재(263)를 수평방향으로 슬라이드 왕복 이동시켜서, 이동 판재(263)의 고정 판재(261)에 대한 이동 위치를 조절한다.
거름부(265)는 거름망(266)과, 거름망(266)을 지지하는 망 지지체(67)을 구비한다.
거름망(266)은 거름조 본체(251)의 내부에 수평으로 배치되도록 설치된다. 구체적으로, 거름망(266)은 중간 측벽부(257)와 하부 측벽부(155)의 사이에 분리가능하게 결합된다. 거름망(266)의 구성 및 작용은 도 2에 도시된 실시예의 거름망(145)과 대체로 동일하다.
망 지지체(267)는 거름조 본체(251)의 내부에 설치되어서 거름망(266)을 지지한다. 구체적으로, 망 지지체(267)는 중간 측벽부(257)와 하부 측벽부(255)의 사이에 분리가능하게 결합되고 거름망(266)의 아래에 위치하여 거름망(266)을 구조적으로 지지하게 된다. 망 지지체(267)의 구성 및 작용은 도 2에 도시된 실시예의 망 지지체(148)와 대체로 동일하다.
도 15는 도 12에 도시된 기초 시트 제조 장치를 이용한 본 발명의 다른 실시예에 따른 기초 시트 제조 단계를 설명하는 순서도이다. 도 15를 참조하면, 본 발명의 다른 실시예에 따른 기초 시트 제조 단계는, 강화섬유, 수지 및 기타 첨가물을 물에 분산·혼합하여 복합재료 슬러리 원료를 얻는 재료 배합 단계(S11)와, 재료 배합 단계(S11)를 통해 얻은 복합재료 슬러리 원료를 거름조(도 12의 250)로 배출하는 원료 배출 단계(S121)와, 거름조(도 12의 250)에서 복합재료 슬러리 원료를 아래로 낙하시키는 원료 낙하 단계(S122)와, 낙하된 복합재료 원료에서 물을 자연 배수하여 배수 슬러리 원료를 형성하는 배수 단계(S13)와, 배수 단계(S13)에 의해 물이 배수된 후 거름조(도 12의 250)에 진공을 형성하여 거름조(도 12의 240)에 남은 배수 슬러리 원료에서 수분을 추가로 저감시켜서 복합재료 기초 시트를 형성하는 진공 탈수 단계(S14)를 구비한다.
재료 배합 단계(S11)에서는 강화섬유, 수지 및 기타 첨가물을 물에 분산·혼합하여 복합재료 슬러리 원료를 얻는다. 재료 배합 단계(S11)는 도 3에 도시된 재료 배합 단계(S11)의 구성과 대체로 동일하므로 이에 대한 상세한 설명은 생략한다. 재료 배합 단계(S11)를 통해 얻은 복합재료 슬러리 원료(A)는 원료 이송관(120)을 통해 원료 저장조(230)로 이송되어서 원료 저장조(230)에 일시 저장된다.
원료 배출 단계(S121)에서는 원료 저장조(230)에 저장된 복합재료 슬러리 원료(A)가 거름조(250)로 배출된다. 도 12에는 원료 배출 단계(S12)에서의 기초 시트 제조 장치(200)의 상태가 도시되어 있다. 도 12를 참조하면, 거름조(250)에서 물이 하부 공간(251c)과 중간 공간(251a)에 거름망(266)보다 높게 채워져 있는 상태에서 원료 배출 노즐(240)을 통해 복합재료 슬러리 원료(A)가 상부 공간(251b)으로 배출되어서 거름조(250)의 상부 공간(251b)으로 적정량이 공급된다. 이때, 원료 낙하부(260)는 상부 공간(251b)의 복합재료 슬러리 원료(A)가 중간 공간(251a)으로 이동하지 못하도록 이동 판재(263)가 위치한다. 즉, 고정 판재(261)에 형성된 복수개의 제1 관통구(262)들과 이동 판재(262)에 형성된 복수개의 제2 관통구(264)들이 서로 어긋나게 위치해 있다. 거름조(250)에 투입된 복합재료 슬러리 원료(A)는 고정 판재(261)와 이동 판재(263)에 의해 상부 공간(251b)에만 존재하게 된다. 원료 투입 단계(S121)에서 원료 배출 노즐(240)에 형성된 복수개의 분사구(242)를 통해 상부 공간(251b)으로 고르게 분사되는 과정에서 복합재료 슬러리 원료(A)는 균일하게 1차 분산된다. 원료 투입 단계(S121)를 통해 복합재료 슬러리 원료(A)가 상부 공간(251b)에 적정량이 채워진 후에는 조절 밸브(236)에 의해 원료 배출 노즐(240)을 통한 복합재료 슬러리 원료(A)의 분사가 멈추고 원료 낙하 단계(S122)가 수행된다.
도 16에는 원료 낙하 단계(S122)가 수행되는 상태가 도시되어 있다. 도 16을 참조하면, 원료 낙하부(260)의 이동 판재(263)가 액추에이터(265)에 의해 이동하여 이동 판재(263)에 형성된 복수개의 제2 관통구(264)들 각각이 고정 판재(261)에 형성된 복수개의 제1 관통구(262)들 각각과 일치하게 되어서, 상부 공간(251b)에 저장된 복합재료 슬러리 원료(A)가 제1 관통구(262)와 제2 관통구(264)를 통해 아래로 낙하하여 중간 공간(251a)으로 공급된다. 복수개의 제1 관통구(262)들 및 복수개의 제2 관통구(264)들을 통해 복합재료 슬러리 원료(A)가 낙하하여 중간 공간(251a)에 수용된 물과 충돌하여 와류를 형성함으로써 복합재료 슬러리 원료(A)가 균일하게 2차 분산된다. 원료 낙하 단계(S122)를 통해 중간 공간(251a)으로 공급된 복합재료 슬러리 원료(A)는 거름망(266)에 의해 중간 공간(251a)에만 존재하게 된다. 상부 공간(251b)의 복합재료 슬러리 원료(A)가 모두 낙하하여 중간 공간(251a)으로 공급된 후에는 배수 단계(S13)가 수행된다. 원료 배출 단계(S121)와 원료 낙하 단계(S122)는 도 3에 도시된 원료 투입 단계(S12)의 다른 실시예가 된다.
배수 단계(S13)에서는 거름조(250)에서 물이 배수구(253)를 통해 배수된다. 배수 단계(S13)는 배수관(150)에 설치된 배수 밸브(151)가 개방되어서 수행된다. 도 17에는 배수 단계(S13)가 수행되는 상태가 도시되어 있다. 도 17에 도시된 바와 같이, 배수 단계(S60)에서 물(W)이 배수관(150)을 통해 배수되며, 물(W)이 완전히 배수된 후에는 거름망(266) 위에 복합재료 슬러리 원료(A)에서 많은 양의 물이 빠니 후 나머지가 남게 된다. 본 발명에서는 배수 단계(S13) 에 의해 복합재료 슬러리 원료(A)에서 물이 빠진 후 거름망(266) 위에 남은 나머지를 배수 슬러지 원료(B1)라 한다. 배수 슬러리 원료(B1)는 상당량의 수분을 함유하는데, 배수 슬러리 원료(B1)는 약 55%의 수분을 함유한다. 배수 단계(S13)가 완료된 후에는 진공 탈수 단계(S70)가 수행된다.
진공 탈수 단계(S14)에서는 거름조(266)에 진공을 형성하여 배수 슬러리 원료(B1)의 수분이 저감된다. 도 18에는 진공 탈수 단계(S14)가 수행되는 상태가 도시되어 있다. 도 18을 참조하면, 진공 탈수 단계(S14)는 배수 밸브(도 12의 151)가 닫힌 상태에서, 진공 펌프(도 12의 161)가 작동함으로써 수행된다. 거름조(266)의 하부 공간(251c)은 거름망(266)의 위에 적층된 배수 슬러리 원료(B1)에 의해 밀폐되며, 진공 펌프(도 2의 161)에 의해 하부 공간(251c)의 공기가 외부로 배출됨으로써 하부 공간(251c)은 진공 상태를 형성하게 되며, 그에 따라, 배수 슬러리 원료 (B1)에 함유된 수분이 추가로 제거된다. 본 발명에서는 배수 슬러리 원료(B1)에서 진공 탈수 단계(S14)에 의해 수분이 추가로 제거된 것을 복합재료 기초 시트(B)라 하며, 복합재료 재활용 시트(B)는 40%의 수분을 함유한다.
이상 실시예를 통해 본 발명을 설명하였으나, 본 발명은 이에 제한되는 것은 아니다. 상기 실시예는 본 발명의 취지 및 범위를 벗어나지 않고 수정되거나 변경될 수 있으며, 본 기술분야의 통상의 기술자는 이러한 수정과 변경도 본 발명에 속하는 것임을 알 수 있을 것이다.

Claims (14)

  1. 강화섬유, 수지 및 첨가물을 물에 분산·혼합하여 복합재료 슬러리 원료를 얻는 재료 배합 단계;
    물을 통과시키는 거름망을 구비하는 거름조의 상기 거름망 위로 상기 복합재료 슬러리 원료를 공급하는 원료 투입 단계;
    상기 복합재료 슬러리 원료가 투입된 상기 거름조로부터 물을 배출시켜서 상기 거름망 위에 남는 배수 슬러리 원료를 얻는 배수 단계;
    상기 거름망 아래의 공간에 진공을 형성하여 상기 배수 슬러리 원료로부터 수분이 저감된 복합재료 기초 시트를 얻는 진공 탈수 단계;
    상기 복합재료 기초 시트를 압축하여 수분이 저감된 압축 시트를 얻는 압축 탈수 단계;
    상기 압축 시트를 구비하는 복합재료 판재를 블랭킹 가공하여 중간 제품을 얻는 블랭킹 단계; 및
    상기 중간 제품을 가열 처리하여 최종 제품을 얻는 최종 가공 단계를 포함하는 복합재료 제품 제조 방법.
  2. 청구항 1에 있어서,
    상기 압축 시트를 복수개 적층하여 상기 복합재료 판재를 얻는 적층 단계를 더 포함하는 복합재료 제품 제조 방법.
  3. 청구항 1에 있어서,
    상기 최종 가공 단계가 수행되기 전 상기 중간 제품을 건조하는 건조 단계를 더 포함하는 복합재료 제품 제조 방법.
  4. 청구항 1에 있어서,
    상기 최종 가공 단계에서 상기 중간 제품의 형태를 변형시키는 성형 가공이 상기 가열 처리와 함께 수행되는 복합재료 제품 제조 방법.
  5. 청구항 4에 있어서,
    상기 성형 가공은 상기 중간 제품을 비틀어서 형태를 변형시키는 것인 복합재료 제품 제조 방법.
  6. 청구항 5에 있어서,
    상기 성형 가공은 상기 중간 제품의 양면을 가압한 상태에서 수행되는 복합 재료 제품 제조 방법.
  7. 청구항 6에 있어서,
    상기 중간 제품은 평기어 형태이며, 상기 중간 제품은 상기 성형 가공에 의해 헬리컬 기어로 변형되는 복합재료 제품 제조 방법.
  8. 청구항 1에 있어서,
    상기 강화섬유의 길이는 5 ~ 10mm인 복합재료 제품 제조 방법.
  9. 청구항 1에 있어서,
    상기 강화섬유는 아라미드 섬유 또는 탄소 섬유이며,
    상기 수지는 페놀 수지인 복합재료 제품 제조 방법.
  10. 청구항 1에 있어서,
    상기 강화섬유는 상기 복합재료 슬러리 원료의 전체 중량 대비 16 내지 22wt%이고, 상기 수지는 상기 복합재료 슬러리 원료의 전체 중량 대비 14 내지 18wt%이며, 상기 첨가물은 상기 복합재료 슬러리 원료의 전체 중량 대비 2 내지 4wt%인 복합재료 제품 제조 방법.
  11. 청구항 1에 있어서,
    상기 거름조는 상기 거름망보다 위에 설치되는 원료 낙하부를 더 구비하며,
    상기 거름조의 내부 공간은 상기 원료 낙하부 위에 형성되는 상부 공간과, 상기 원료 낙하부와 상기 거름망 사이에 형성되는 중간 공간과, 상기 거름망 아래에 형성되는 하부 공간으로 분리되며,
    상기 원료 투입 단계는 상기 복합재료 슬러리 원료를 원료 배출 노즐을 이용하여 상기 상부 공간으로 분사시켜서 공급하는 원료 배출 단계와, 상기 상부 공간에 채워진 상기 복합재료 슬러리 원료를 상기 중간 공간으로 낙하시키는 원료 낙하 단계를 구비하는 복합재료 제품 제조 방법.
  12. 청구항 11에 있어서,
    상기 원료 배출 노즐은 상기 복합재료 슬러리 원료가 배출되는 복수개의 분사구들이 형성되고 아래로 볼록한 원료 배출면을 구비하는 복합재료 제품 제조 방법.
  13. 청구항 11에 있어서,
    상기 원료 낙하부는, 수평으로 배치되고 복수개의 제1 관통구들이 형성되는 고정 판재와, 상기 고정 판재의 위 또는 아래에 적층되고 상기 고정 판재에 대해 슬라이드 이동이 가능하며 복수개의 제2 관통구들이 형성되는 이동 판재와, 상기 이동 판재를 이동시키는 액추에이터를 구비하며,
    상기 이동 판재의 이동 위치에 따라 상기 복수개의 제1 관통구들 각각과 상기 복수개의 제2 관통구들 각각은 일치하거나 어긋나게 정렬되는 복합재료 제품 제조 방법.
  14. 청구항 1에 있어서,
    상기 원료 투입 단계에서 상기 복합재료 슬러리 원료는 상기 거름조 내에서 물이 상기 거름망보다 높게 채워진 상태에서 투입되는 복합재료 제품 제조 방법.
PCT/KR2020/008638 2019-08-28 2020-07-02 복합재료 제품의 제조방법 WO2021040220A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190105882A KR102080269B1 (ko) 2019-08-28 2019-08-28 복합재료 제품의 제조방법
KR10-2019-0105882 2019-08-28

Publications (1)

Publication Number Publication Date
WO2021040220A1 true WO2021040220A1 (ko) 2021-03-04

Family

ID=69647686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/008638 WO2021040220A1 (ko) 2019-08-28 2020-07-02 복합재료 제품의 제조방법

Country Status (2)

Country Link
KR (1) KR102080269B1 (ko)
WO (1) WO2021040220A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113650311A (zh) * 2021-08-23 2021-11-16 威海市源兴塑胶制品有限公司 一种碳纤维导眼的制备方法
CN113942139A (zh) * 2021-10-18 2022-01-18 西北工业大学 一种搅滤一体直接制备短纤维预制体的装置及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102080269B1 (ko) * 2019-08-28 2020-02-25 (주)에스플러스컴텍 복합재료 제품의 제조방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4645565A (en) * 1980-04-30 1987-02-24 Arjomari-Prioux Material in sheet form, convertible into a finished product by moulding-stamping or heat-shaping, comprising reinforcing fibers and a thermoplastics resin in power form, and process for preparing said material
US5744075A (en) * 1995-05-19 1998-04-28 Martin Marietta Energy Systems, Inc. Method for rapid fabrication of fiber preforms and structural composite materials
KR20070111989A (ko) * 2006-05-19 2007-11-22 아즈델, 인코포레이티드 다공성 섬유강화 열가소성 시트에서 로프트를 증가시키는방법
KR20120052995A (ko) * 2009-07-17 2012-05-24 카본 파이버 프리폼스 리미티드 섬유 매트릭스 및 섬유 매트릭스의 제조 방법
KR101941264B1 (ko) * 2018-08-31 2019-04-12 (주)에스플러스컴텍 부직포 재활용 장치 및 방법
KR102080269B1 (ko) * 2019-08-28 2020-02-25 (주)에스플러스컴텍 복합재료 제품의 제조방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101188374B1 (ko) 2011-02-15 2012-10-08 (주)삼박 섬유강화 복합재료의 성형시스템 및 성형방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4645565A (en) * 1980-04-30 1987-02-24 Arjomari-Prioux Material in sheet form, convertible into a finished product by moulding-stamping or heat-shaping, comprising reinforcing fibers and a thermoplastics resin in power form, and process for preparing said material
US5744075A (en) * 1995-05-19 1998-04-28 Martin Marietta Energy Systems, Inc. Method for rapid fabrication of fiber preforms and structural composite materials
KR20070111989A (ko) * 2006-05-19 2007-11-22 아즈델, 인코포레이티드 다공성 섬유강화 열가소성 시트에서 로프트를 증가시키는방법
KR20120052995A (ko) * 2009-07-17 2012-05-24 카본 파이버 프리폼스 리미티드 섬유 매트릭스 및 섬유 매트릭스의 제조 방법
KR101941264B1 (ko) * 2018-08-31 2019-04-12 (주)에스플러스컴텍 부직포 재활용 장치 및 방법
KR102080269B1 (ko) * 2019-08-28 2020-02-25 (주)에스플러스컴텍 복합재료 제품의 제조방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113650311A (zh) * 2021-08-23 2021-11-16 威海市源兴塑胶制品有限公司 一种碳纤维导眼的制备方法
CN113942139A (zh) * 2021-10-18 2022-01-18 西北工业大学 一种搅滤一体直接制备短纤维预制体的装置及方法
CN113942139B (zh) * 2021-10-18 2023-09-29 西北工业大学 一种搅滤一体直接制备短纤维预制体的装置及方法

Also Published As

Publication number Publication date
KR102080269B1 (ko) 2020-02-25

Similar Documents

Publication Publication Date Title
WO2021040220A1 (ko) 복합재료 제품의 제조방법
WO2020045894A1 (ko) 부직포 재활용 장치 및 방법
WO2020149562A1 (ko) 부직포 재활용 방법
CN110405909B (zh) 一种建筑垃圾处理系统
CN1489656A (zh) 减少用于制造纤维强化水泥复合材料的纤维素纤维的杂质的制造方法
CN101342764A (zh) 多功能墙体组合大板和纤维石膏大板连续浇注生产线
WO2020045895A1 (ko) 복합재료 재활용 장치 및 방법
EP3702530B1 (en) Molding process and equipment
WO2010150992A2 (ko) 버개스 복합재, 복합재 제조방법 및 이를 이용한 인테리어재
CA2281613A1 (en) Slurry preform system
KR20200090663A (ko) 부직포 재활용 방법
CN101391454A (zh) 全自动石膏砌块挤压成型生产线
WO2017135575A1 (ko) 프리프레그 제조 장치 및 이를 이용한 프리프레그 제조 방법
WO2020091136A1 (ko) 레진 주입 장치 및 이를 포함하는 복합재 제조장치
CA2357864C (en) Process for continuous cooking of pulp
CN101352891A (zh) 一体式成型拼装大板工艺及生产线
CN207325076U (zh) 一种固液分离机构
WO2024049079A2 (ko) 벽돌 및 그 제조방법
CN110883929A (zh) 布料系统
WO2011031039A2 (ko) 열가소성 복합판재와 그 성형장치 및 성형방법
CN214778887U (zh) 一种新型的上料粉槽
CN215359041U (zh) 一种建筑废料再利用设备
CN106553259A (zh) 自动石膏砌块挤压成型生产装置
CN217833826U (zh) 一种根块类中药饮片生产线
CN117128729B (zh) 一种纺织面料加工用干燥设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20856994

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20856994

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29/06/2022)