WO2021039809A1 - Semiconductor encapsulation resin composition, and semiconductor device - Google Patents

Semiconductor encapsulation resin composition, and semiconductor device Download PDF

Info

Publication number
WO2021039809A1
WO2021039809A1 PCT/JP2020/032084 JP2020032084W WO2021039809A1 WO 2021039809 A1 WO2021039809 A1 WO 2021039809A1 JP 2020032084 W JP2020032084 W JP 2020032084W WO 2021039809 A1 WO2021039809 A1 WO 2021039809A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
semiconductor
resin
epoxy resin
encapsulating
Prior art date
Application number
PCT/JP2020/032084
Other languages
French (fr)
Japanese (ja)
Inventor
清泉 小森
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to CN202080060595.3A priority Critical patent/CN114364736A/en
Priority to KR1020227009993A priority patent/KR102435734B1/en
Priority to JP2021521068A priority patent/JP6950854B2/en
Publication of WO2021039809A1 publication Critical patent/WO2021039809A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/092Polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/206Applications use in electrical or conductive gadgets use in coating or encapsulating of electronic parts

Definitions

  • the present invention relates to a semiconductor encapsulating resin composition and a semiconductor device including a semiconductor element sealed with the resin composition.
  • the pitch of the electrode spacing cannot be narrowed as much as that of a semiconductor element. ing.
  • the wire is easily flown by the injection pressure of the resin in the subsequent resin sealing step. This tendency is particularly remarkable in the side gate method.
  • the so-called compression molding method has come to be used as a method of resin-sealing an electronic element such as a semiconductor chip.
  • the powder-granular resin composition is supplied so as to face the object to be sealed held in the mold (for example, a substrate provided with an electronic element such as a semiconductor chip), and the resin composition is coated. Resin sealing is performed by compressing the sealed material and the powdery granular resin composition.
  • the molten powdery and granular resin flows in a direction substantially parallel to the main surface of the object to be sealed, so that the amount of flow can be reduced, and the object to be sealed due to the flow of the resin. Deformation and damage can be reduced. In particular, it is effective in reducing the occurrence of so-called wire flow in which wire-bonded wiring or the like is deformed or damaged by the resin flow.
  • Patent Document 1 contains an epoxy resin, a curing agent, a curing accelerator, an inorganic filler, a fatty acid having a melting point of 70 ° C. or lower, and a silane coupling agent having a boiling point of 200 ° C. or higher, and is in the form of particles having a specific particle size. It is described that the epoxy resin composition has improved meltability of the resin composition at the time of sealing and improved releasability after sealing.
  • the present invention has been made in view of such circumstances, and is a semiconductor encapsulating resin capable of improving meltability at the time of semiconductor encapsulation and suitably encapsulating a semiconductor element mounted on a substrate by compression molding. It is an object of the present invention to provide a composition. Another object of the present invention is to provide a semiconductor element having excellent reliability in which the semiconductor element is sealed with the semiconductor encapsulating resin composition.
  • the present inventor has made a sealing in order to sufficiently improve the filling property so that the resin composition as a sealing material hardly flows when the semiconductor element is sealed by compression molding and an unfilled portion is not generated. It was noted that sometimes this resin composition needs to be sufficiently melted.
  • the inorganic filler is highly dispersed by blending a resin composition for encapsulating a semiconductor containing an inorganic filler with a specific composition, or by setting the melt viscosity to a specific value while making the formulation a specific formulation. As a result, they have found that the meltability of the sealing resin composition is improved and the wire flow at the time of sealing can be suppressed, and the present invention has been completed.
  • thermosetting resin selected from the group consisting of (A) epoxy resin and bismaleimide resin, and (B) Hardener and (C) Inorganic filler and (D) A resin composition for encapsulating a semiconductor, which comprises a dispersant.
  • the minimum melt viscosity ⁇ min measured in the following ⁇ Measurement conditions for melt viscosity> is 1 mPa ⁇ s or more and 68,000 mPa ⁇ s or less.
  • ⁇ min be the minimum melt viscosity 5 seconds after the start of melt viscosity measurement.
  • a semiconductor device including a sealing member for sealing the semiconductor element.
  • a semiconductor device is provided in which the sealing member is a cured product of the semiconductor sealing resin composition.
  • the epoxy resin (A) is a biphenyl type epoxy resin, a bisphenol type epoxy resin, a stillben type epoxy resin, a phenol novolac type epoxy resin, a novolac type epoxy resin, a polyfunctional epoxy resin, a phenol aralkyl type epoxy resin, a naphthol type epoxy resin, Contains at least one selected from the group consisting of triazine nuclei-containing epoxy resins and bridged cyclic hydrocarbon compound modified phenolic epoxy resins.
  • the dispersant (D) is a polymer ionic dispersant having a polycarboxylic acid as a main skeleton.
  • a resin composition for semiconductor encapsulation is provided in which the dispersant (D) is in an amount of 0.01% by mass or more and 5.0% by mass or less with respect to the entire resin composition.
  • the resin composition for encapsulating a semiconductor of the present embodiment may be in the shape of a tablet, a sheet, or granules.
  • a semiconductor encapsulation resin composition capable of suitably encapsulating a semiconductor element mounted on a substrate by a compression molding method.
  • the resin composition for encapsulating a semiconductor in the first embodiment is in the form of granules (hereinafter, referred to as "granular resin composition” or simply “resin composition”).
  • the granular resin composition of the present embodiment comprises at least one thermosetting resin selected from the group consisting of (A) epoxy resin and bismaleimide resin, (B) a curing agent, and (C) an inorganic filler. (D) Includes a dispersant.
  • the granular resin composition of the present embodiment has a minimum melt viscosity of 1 mPa ⁇ s or more and 68000 mPa ⁇ s or less.
  • the granular resin composition of the present embodiment has a low melt viscosity due to the enhanced dispersibility of the inorganic filler by containing the dispersant. As a result, when the semiconductor element mounted on the substrate is sealed by the compression molding method using the resin composition, wire flow and wire deformation can be reduced. Further, since such a granular resin composition has good fluidity in a molten state, the semiconductor element can be suitably sealed without forming an unfilled portion on the semiconductor element.
  • the semiconductor element tends to be unable to be suitably sealed by compression molding.
  • the resin compositions having too small particle sizes are preferentially melted, and the resin composition used as a sealing material is produced during compression molding. It does not melt uniformly, and there is a tendency that the semiconductor element cannot be suitably sealed.
  • the amount of the resin composition having an excessively large particle size is too large, the resin composition having an excessively small particle size is difficult to melt, and is in the form of granules remaining in the resin composition melted during compression molding without melting. In some cases, the resin composition is present and the semiconductor element cannot be suitably sealed.
  • the particle size distribution of the granular resin composition can be measured with a general particle size meter. Alternatively, it can be calculated from the mass of particles remaining on each sieve by sieving a granular resin composition by stacking various mesh-opening sieves in ascending order of mesh size.
  • the melt viscosity of the granular resin composition can be set to a desired value by adjusting the type and blending amount of the components used.
  • thermosetting resin (A) used in the granular resin composition of the present embodiment contains at least one selected from an epoxy resin and a bismaleimide resin.
  • epoxy resin monomers, oligomers, and polymers having two or more epoxy groups in one molecule can be used in general, and the molecular weight and molecular structure thereof are not limited.
  • the epoxy resin include biphenyl type epoxy resin; bisphenol A type epoxy resin, bisphenol F type epoxy resin, tetramethyl bisphenol F type epoxy resin and other bisphenol type epoxy resin; stillben type epoxy resin; phenol novolac type epoxy resin, cresol.
  • Novolak type epoxy resin such as novolak type epoxy resin; polyfunctional epoxy resin such as triphenol methane type epoxy resin, alkyl modified triphenol methane type epoxy resin, etc .; phenol aralkyl type having a phenylene skeleton Phenol aralkyl type epoxy resin such as epoxy resin, naphthol aralkyl type epoxy resin having a phenylene skeleton, phenol aralkyl type epoxy resin having a biphenylene skeleton, naphthol aralkyl type epoxy resin having a biphenylene skeleton; dihydroxynaphthalene type epoxy resin, dihydroxynaphthalene 2 Naftor-type epoxy resin such as epoxy resin obtained by glycidyl etherification of the body; triazine nucleus-containing epoxy resin such as triglycidyl isocyanurate and monoallyl diglycidyl isocyanurate; Arashi ring such as dicyclopentadiene-modified phenol-
  • novolac type epoxy resin and polyfunctional epoxy from the viewpoint of suppressing warpage of the molded product obtained by curing the granular resin composition and improving the balance of various properties such as filling property, heat resistance, and moisture resistance.
  • a resin and a phenol aralkyl type epoxy resin can be preferably used.
  • the epoxy resin preferably contains one or more selected from the group consisting of orthocresol novolac type epoxy resin, phenol aralkyl type epoxy resin having a biphenylene skeleton, and triphenylmethane type epoxy resin, and more.
  • it comprises one or more selected from the group consisting of orthocresol novolac type epoxy resin and phenol aralkyl type epoxy resin having a biphenylene skeleton.
  • the bismaleimide resin used as the thermosetting resin (A) is a (co) polymer of a compound having two or more maleimide groups.
  • the compound having two or more maleimide groups includes, for example, at least one of the compound represented by the following general formula (1) and the compound represented by the following general formula (2).
  • R 1 is a divalent organic group having 1 or more carbon atoms and 30 or less carbon atoms, and may contain one or more of an oxygen atom and a nitrogen atom. From the viewpoint of improving the heat resistance of the cured product, it is more preferable that R 1 is an organic group containing an aromatic ring.
  • R 1 for example, a structure of the following general formula (1a) or (1b) can be exemplified.
  • R 31 is a divalent organic group having 1 to 18 carbon atoms which may contain one or more of an oxygen atom and a nitrogen atom. Further, each of the plurality of R 32s is independently a hydrogen atom or a substituted or unsubstituted hydrocarbon group having 1 or more and 4 or less carbon atoms.
  • R represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms or a phenyl group, and is preferably a hydrogen atom.
  • m is an average value, which is a number of 1 or more and 5 or less, preferably a number larger than 1 and 5 or less, more preferably a number larger than 1 and 3 or less, and further preferably a number larger than 1 and 2 or less. is there.
  • Examples of the compound represented by the general formula (1) that can be applied in the present embodiment include compounds represented by the following formulas (1-1) to (1-3).
  • n is an average value, which is a number of 0 or more and 10 or less, preferably 0 or more and 5 or less.
  • thermosetting resin (A) may further contain a thermosetting resin other than the epoxy resin and the bismaleimide resin.
  • thermosetting resins include unsaturated polyester resins such as benzoxazine resins, phenol resins, urea (urea) resins, and melamine resins, polyurethane resins, diallyl phthalate resins, silicone resins, cyanate resins, and polyimide resins.
  • unsaturated polyester resins such as benzoxazine resins, phenol resins, urea (urea) resins, and melamine resins, polyurethane resins, diallyl phthalate resins, silicone resins, cyanate resins, and polyimide resins.
  • One or more selected from the group consisting of polyamideimide resin and benzocyclobutene resin can be mentioned.
  • the content of the thermosetting resin (A) is preferably 2% by mass or more, and more preferably 4% by mass or more, based on the entire resin composition.
  • the upper limit of the blending ratio of the entire resin composition is not particularly limited, but is preferably 22% by mass or less, more preferably 20% by mass or less, based on the total amount of the resin composition.
  • the upper limit of the blending ratio is within the above range, the decrease in the glass transition temperature of the resin composition is small, and mutual adhesion can be appropriately suppressed. Further, in order to improve the fluidity and meltability, it is desirable to appropriately adjust the blending ratio according to the type of epoxy resin used.
  • the content of any component in the entire resin composition refers to the content of the resin composition in the entire solid content excluding the solvent when the resin composition contains a solvent. ..
  • the solid content of the resin composition refers to the non-volatile content in the resin composition, and refers to the balance excluding volatile components such as water and solvent.
  • the curing agent (B) used in the resin composition of the present embodiment can be roughly classified into three types, for example, a polyaddition type curing agent, a catalytic type curing agent, and a condensation type curing agent. These may be used alone or in combination of two or more.
  • the heavy addition type curing agent includes, for example, aliphatic polyamines such as diethylenetriamine (DETA), triethylenetetramine (TETA), and metaxylylene diamine (MXDA), diaminodiphenylmethane (DDM), m-phenylenediamine (MPDA), and the like.
  • aliphatic polyamines such as diethylenetriamine (DETA), triethylenetetramine (TETA), and metaxylylene diamine (MXDA), diaminodiphenylmethane (DDM), m-phenylenediamine (MPDA), and the like.
  • aromatic polyamines such as diaminodiphenylsulfone (DDS), polyamine compounds containing dicyandiamide (DICY), organic acid dihydrazide and the like
  • alicyclic acids such as hexahydrophthalic anhydride (HHPA) and methyltetrahydrophthalic anhydride (MTHPA).
  • Acid anhydrides containing anhydrides aromatic acid anhydrides such as trimellitic anhydride (TMA), pyromellitic anhydride (PMDA), benzophenone tetracarboxylic acid (BTDA); novolak type phenolic resin, polyvinylphenol, aralkyl type Phenolic resin-based curing agent such as phenol resin; Polymercaptan compound such as polysulfide, thioester, thioether; Isocyanate compound such as isocyanate prepolymer, blocked isocyanate; Organic acid such as carboxylic acid-containing polyester resin selected from the group 1 Includes species or two or more.
  • TMA trimellitic anhydride
  • PMDA pyromellitic anhydride
  • BTDA benzophenone tetracarboxylic acid
  • novolak type phenolic resin polyvinylphenol, aralkyl type Phenolic resin-based curing agent such as phenol resin
  • Polymercaptan compound such as poly
  • Catalytic curing agents are tertiary amine compounds such as, for example, benzyldimethylamine (BDMA), 2,4,6-trisdimethylaminomethylphenol (DMP-30); 2-methylimidazole, 2-ethyl-4- including one or two or more selected from the group consisting of Lewis acids such as BF 3 complex; imidazole compounds such as methylimidazole (EMI24).
  • BDMA benzyldimethylamine
  • DMP-30 2,4,6-trisdimethylaminomethylphenol
  • 2-methylimidazole, 2-ethyl-4- including one or two or more selected from the group consisting of Lewis acids such as BF 3 complex
  • imidazole compounds such as methylimidazole (EMI24).
  • the condensation type curing agent contains, for example, one or more selected from the group consisting of a resol type phenol resin; a urea resin such as a methylol group-containing urea resin; and a melamine resin such as a methylol group-containing melamine resin.
  • a phenol resin-based curing agent for example, a monomer, an oligomer, or a polymer having two or more phenolic hydroxyl groups in one molecule can be used in general, and the molecular weight and molecular structure thereof are not limited.
  • the phenol resin-based curing agent is, for example, a novolak type phenol resin such as phenol novolac resin, cresol novolac resin, bisphenol novolak; a polyfunctional phenol resin such as polyvinylphenol, triphenol methane type phenol resin; terpen modified phenol resin, dicyclo.
  • a novolak type phenol resin such as phenol novolac resin, cresol novolac resin, bisphenol novolak
  • a polyfunctional phenol resin such as polyvinylphenol, triphenol methane type phenol resin
  • terpen modified phenol resin dicyclo.
  • Modified phenol resins such as pentadiene-modified phenol resins; phenol aralkyl resins having a phenylene skeleton and / or biphenylene skeleton, phenol aralkyl resins such as naphthol aralkyl resins having a phenylene and / or biphenylene skeleton; bisphenols such as bisphenol A and bisphenol F Includes one or more selected from the group consisting of compounds.
  • a novolak type phenol resin a polyfunctional phenol resin and a phenol aralkyl type phenol resin.
  • a phenol novolac resin, a phenol aralkyl resin having a biphenylene skeleton, and a formaldehyde-modified triphenylmethane-type phenol resin can also be preferably used.
  • the lower limit of the blending ratio of the curing agent (B) is preferably 2% by mass or more, and more preferably 3% by mass or more, based on the entire resin composition. When the lower limit of the blending ratio is within the above range, sufficient fluidity can be obtained.
  • the upper limit of the blending ratio of the curing agent is preferably 16% by mass or less, more preferably 15% by mass or less, based on the entire resin composition. When the upper limit of the blending ratio is within the above range, mutual adhesion can be appropriately suppressed. Further, in order to improve the fluidity and the meltability, it is desirable to appropriately adjust the blending ratio according to the type of the curing agent used.
  • inorganic filler (C) examples include molten silica such as molten crushed silica and molten spherical silica; silica such as crystalline silica and amorphous silica; silicon dioxide; alumina; aluminum hydroxide; Silicon dioxide; and aluminum nitride and the like. These may be used alone or in combination of two or more.
  • the particle shape is preferably spherical as much as possible, and the filling amount can be increased by mixing particles having different particle sizes. Further, in order to improve the meltability of the resin composition, it is preferable to use silica or alumina, and it is preferable to use fused spherical silica as the silica.
  • the content of the inorganic filler (C) is preferably 80.0% by mass or more and 97.0% by mass or less with respect to the entire resin composition. If the content of the inorganic filler is too small, the heat resistance of the cured product of the resin composition is lowered, and the reliability of the obtained semiconductor device tends to be lowered. Further, when the content of the inorganic filler is large, the heat resistance of the cured product of the resin composition is enhanced, and the reliability of the obtained semiconductor device is improved. However, as the content of the inorganic filler increases, the meltability of the resin composition generally decreases, in other words, it tends to be difficult to melt and wire flow tends to occur. In the present embodiment, by containing a dispersant, which will be described later, the meltability of the resin composition is enhanced and the occurrence of wire flow is suppressed while maintaining the performance such as heat resistance of the cured product of the resin composition. Can be done.
  • Dispersant (D) As the dispersant (D) used in the resin composition of the present embodiment, a polymer ionic dispersant having a polycarboxylic acid as a main skeleton is used.
  • the polymer ionic dispersant preferably has a carboxyl group that acts as an adsorptive group that adsorbs to the inorganic filler, and a moiety that is compatible with the above-mentioned thermosetting resin.
  • Examples of such a polymer ionic dispersant include Aron A-6330 (manufactured by Toa Synthetic Co., Ltd., trade name), Hypermer KD-4, Hypermer KD8, Hypermer KD-9, Hypermer KD-57 (above, Crowder). Made by Japan Co., Ltd., product name), etc.
  • the polymer ionic dispersant represented by the following formula (3) is preferable, and specifically, Hypermer KD-4, Hypermer KD-8, Hypermer KD-9, etc. (all manufactured by Croda Japan, trade name). ) Can be mentioned.
  • p and m represent the number of repeating units, p is an integer of 1 to 20, m is an integer of 1 to 5, and R 3 is a carbon which may have a substituent. It is an alkyl group of numbers 1 to 10).
  • the polymer ionic dispersant as represented by the formula (3) has a carboxyl group adsorbed on the inorganic filler and a bulky aliphatic group having compatibility with the above-mentioned thermosetting resin.
  • the inorganic filler is highly dispersed in the thermosetting resin (A).
  • aggregation of inorganic fillers is suppressed due to steric hindrance between bulky aliphatic groups of the polymer ionic dispersant.
  • the inorganic filler is highly dispersed in the thermosetting resin (A) without agglutination.
  • the dispersant (D) is preferably used in an amount of 0.01% by mass or more and 5.0% by mass or less, and 0.1% by mass or more and 2.0% by mass or less, based on the entire resin composition.
  • the amount is more preferably 0.2% by mass or more and 1.5% by mass or less.
  • the resin composition of the present embodiment may contain a curing accelerator (E).
  • the curing accelerator (E) can be used without particular limitation as long as it can accelerate the curing reaction between the thermosetting resin (A) and the curing agent (B), for example.
  • Imidazoles such as 2-methylimidazole and 2-phenylimidazole, organic phosphines such as triphenylphosphine, tributylphosphine and trimethylphosphine, 1,8-diazabicyclo (5,4,0) undecene-7 (DBU), Examples thereof include tertiary amines such as triethanolamine and benzyldimethylamine. These may be used alone or in combination of two or more.
  • the content of the curing accelerator (E) is preferably 0.1% by mass or more and 2% by mass or less with respect to the total amount of the thermosetting resin (A) and the curing agent (B). If the content of the curing accelerator is less than the above lower limit, the curing promoting effect tends to be unable to be enhanced. Further, if it is more than the above upper limit value, problems tend to occur in fluidity and moldability, and it may lead to an increase in manufacturing cost.
  • the resin composition of the present embodiment may contain a silane coupling agent. A silane coupling agent can be used.
  • silane coupling agent examples include vinylsilanes such as vinyltris ( ⁇ -methoxyethoxy) silane, vinylethoxysilane and vinyltrimethoxysilane, (meth) acrylic silanes such as ⁇ -methacryloxypropyltrimethoxysilane, and ⁇ - (3).
  • the coupling agent is preferably used in an amount of 0.01% by mass or more and 1.0% by mass or less, and in an amount of 0.05% by mass or more and 0.9% by mass or less, based on the entire resin composition. It is more preferable that the amount is 0.08% by mass or more and 0.8% by mass or less.
  • the resin composition of the present embodiment contains conventionally known additives such as flame retardants, colorants, silicone flexible agents, and silicone flexible agents, as long as they do not interfere with the desired properties of the present invention.
  • An ion trap agent or the like may be used as needed.
  • the upper limit of the minimum melt viscosity ⁇ min measured by the slit type viscosity measuring device is 68,000 mPa ⁇ s or less, preferably 60,000 mPa ⁇ s or less, and more preferably 50,000 mPa ⁇ s or less. More preferably, it is 40,000 mPa ⁇ s or less. As a result, the filling property of the sealing material is improved.
  • the lower limit of the minimum melt viscosity ⁇ min measured by the slit type viscosity measuring device is not particularly limited, but is, for example, 1 mPa ⁇ s or more, preferably 50 mPa ⁇ s or more.
  • the upper limit of the time t1 at which the minimum melt viscosity ⁇ min measured by the slit type viscosity measuring device is reached is 15 seconds or less, preferably 12 seconds or less, and more preferably 10 seconds or less. is there. As a result, the filling property of the sealing material is improved.
  • the lower limit of the time t1 at which the minimum melt viscosity ⁇ min measured by the slit type viscosity measuring device is reached is not particularly limited, but is, for example, 5 seconds or more. Further, when t2 is the time when the melt viscosity increases after reaching ⁇ min and becomes ( ⁇ min +1000) (mPa ⁇ s) or more, the lower limit of t2-t1 is 1 second or more.
  • the upper limit of t2-t1 is 30 seconds or less, preferably 25 seconds or less, and more preferably 20 seconds or less.
  • the meltability (filling rate (%)) represented by ((A1 / (A1 + A2)) ⁇ 100) is preferably 30% or more and 100% or less.
  • the method for preparing the granular resin composition of the present embodiment is not particularly limited as long as it can produce a granular resin composition containing the above components and having a particle size distribution in the above range. Specifically, for example, it can be produced as follows. First, the above components and, if necessary, additives are uniformly mixed with a mixer such as a tumbler mixer or a Henschel mixer or a blender so as to have a predetermined content, and then a kneader, a roll, a disper, an ajihomo mixer, etc. And knead while heating with a planetary mixer or the like.
  • a mixer such as a tumbler mixer or a Henschel mixer or a blender
  • the temperature at the time of kneading needs to be in a temperature range in which a curing reaction does not occur, and although it depends on the composition of the epoxy resin and the curing agent, melt kneading is preferably performed at about 70 to 150 ° C. After kneading, it is cooled and solidified, and the solidified kneaded product is crushed with a crusher or the like. Thereby, a granular resin composition can be produced. Then, the resin composition may be sieved so that the particle size distribution is in the above range.
  • the granular resin composition of the present embodiment is used as a sealing material for sealing a semiconductor element mounted on a lead frame or a circuit board by using a compression molding method.
  • a lead frame or a circuit board one or more semiconductor elements laminated or mounted in parallel on the lead frame or the circuit board, and a bonding wire for electrically connecting the lead frame or the circuit board and the semiconductor element.
  • the semiconductor device including the semiconductor element and the sealing material for sealing the bonding wire will be described in detail with reference to the drawings, but the present invention is not limited to the one using the bonding wire.
  • FIG. 1 is a diagram showing a cross-sectional structure of an example of a semiconductor device obtained by sealing a semiconductor element mounted on a lead frame using the resin composition of the present embodiment.
  • the semiconductor element 401 is fixed on the die pad 403 via the cured die bond material 402.
  • the electrode pad of the semiconductor element 401 and the lead frame 405 are connected by a wire 404.
  • the semiconductor element 401 is sealed by a sealing material 406 composed of a cured product of the resin composition of the present embodiment.
  • FIG. 2 is a diagram showing a cross-sectional structure of an example of a semiconductor device obtained by sealing a semiconductor element mounted on a circuit board using the resin composition of the present embodiment.
  • the semiconductor element 401 is fixed on the circuit board 408 via the cured die bond material 402.
  • the electrode pad 407 of the semiconductor element 401 and the electrode pad 407 on the circuit board 408 are connected by a wire 404.
  • the surface of the circuit board 408 on which the semiconductor element 401 is mounted is sealed by the sealing material 406 composed of the cured product of the resin composition of the present embodiment.
  • the electrode pad 407 on the circuit board 408 is internally joined to the solder ball 409 on the unsealed surface side of the circuit board 408.
  • the semiconductor device including the resin composition of the present embodiment as a sealing material has excellent reliability because wire flow and wire breakage do not occur in the sealing process.
  • the semiconductor encapsulating resin composition in the second embodiment is in the form of a tablet or a sheet (hereinafter, referred to as “tablet or sheet-like resin composition”).
  • the tablet-shaped or sheet-shaped resin composition of the present embodiment contains (A) an epoxy resin, (B) a curing agent, (C) an inorganic filler, and (D) a dispersant.
  • the epoxy resin (A) is a biphenyl type epoxy resin, a bisphenol type epoxy resin, a stillben type epoxy resin, a phenol novolac type epoxy resin, a novolac type epoxy resin, a polyfunctional epoxy resin, a phenol aralkyl type.
  • the dispersant (D) is a polymer ionic dispersant having a polycarboxylic acid as a main skeleton, and the dispersant (D) is 0.01 mass by mass with respect to the entire resin composition. The amount is% or more and 5.0% by mass or less.
  • the same components as those described in the first embodiment can be used as the components (A) to (D). Further, the blending amount of these components can be the same as the blending amount in the resin composition of the first embodiment.
  • the semiconductor resin composition of the present embodiment may further contain a bismaleimide resin.
  • a bismaleimide resin the same resin as that used in the first embodiment can be used.
  • the above components and, if necessary, additives are uniformly mixed with a mixer such as a tumbler mixer or a Henschel mixer or a blender so as to have a predetermined content. After that, the mixture is kneaded while being heated with a kneader, a roll, a disper, an azihomo mixer, a planetary mixer or the like, and this can be produced by tableting into a tablet shape.
  • a mixer such as a tumbler mixer or a Henschel mixer or a blender
  • the temperature at the time of kneading needs to be in a temperature range in which a curing reaction does not occur, and although it depends on the composition of the epoxy resin and the curing agent, melt kneading is preferably performed at about 70 to 150 ° C.
  • the tablet-shaped resin composition can be used for semiconductor encapsulation by known molding methods such as a transfer molding method, an injection molding method and a compression molding method.
  • the resin composition of the present embodiment is in the form of a sheet, it is obtained by heating and melting the resin composition heat-kneaded as described above between the pressure members, compressing it, and forming it into a sheet. More specifically, the resin composition is supplied onto a heat-resistant release film such as a polyester film so as to have a substantially uniform thickness to form a resin layer, and then the resin layer is rolled while being heated and softened. And roll by hot press. At that time, a heat-resistant film such as a polyester film is also arranged on the resin layer. After rolling the resin layer to a desired thickness in this way, it is cooled and solidified, the heat-resistant film is peeled off, and further cut into a desired size and shape if necessary. As a result, a resin sheet for encapsulating a semiconductor can be obtained.
  • the heating temperature for softening the resin layer is usually about 70 to 150 ° C.
  • the sheet-shaped resin composition can be used for semiconductor encapsulation by a compression molding method.
  • the sheet-shaped resin composition preferably has a thickness of 0.1 mm or more and 2 mm or less. If it is within the above range, there is no risk of damage, it is excellent in handleability, and it is easy to carry it into a compression molding die.
  • the minimum melt viscosity ⁇ min of the tablet or sheet resin composition of the present embodiment is 1 mPa ⁇ s or more and 68,000 mPa ⁇ s or less, preferably 60,000 mPa ⁇ s or less, more preferably 50,000 mPa ⁇ s or less, and most. Preferably, it is 40,000 mPa ⁇ s or less. If it exceeds the above range, the filling property is lowered, and voids and unfilled portions may be generated.
  • the lower limit is not particularly limited, but for example, 1 mPa ⁇ s or more, or 50 mPa ⁇ s or more is sufficient.
  • Hardener ⁇ -naphthol aralkyl (manufactured by Toto Kasei Co., Ltd., SN-485)
  • Inorganic filler Inorganic filler
  • Inorganic filler 1 Alumina (made by Micron, AX3-10R)
  • Inorganic filler 2 Silica (MUF-4, manufactured by Ryumori Co., Ltd.)
  • Dispersant 1 High molecular weight ionic dispersant having a polycarboxylic acid as the main skeleton (manufactured by Crowder Japan Co., Ltd., HYPERMER KD-9, CAS No.
  • Dispersant 2 High molecular weight ionic dispersant having a polycarboxylic acid as the main skeleton (manufactured by Claude Japan, HYPERMER KD-4, weight average molecular weight 1700, acid value 33 mgKOH)
  • Dispersant 3 High molecular weight ionic dispersant having a polycarboxylic acid as the main skeleton (manufactured by Croda Japan, HYPERMER KD-57)
  • (Coupling agent) -Coupling agent 1 N-Phenylaminopropyltrimethoxysilane (manufactured by Toray Dow Corning Co., Ltd., CF-4083)
  • Curing accelerator Tetraphenylphosphonium bis (naphthalene-2,3-dioxy) Phenyl silicate (manufactured by Sumitomo Bakelite)
  • Curing accelerator 2 Tetraphenylphosphonium-4,4'-sulfonyl diphenolate (manufactured by Sumitomo Bakelite)
  • Release agent Glycerin trimontanate (Recolve WE-4, manufactured by Client Japan)
  • Release agent 2 Diethanolamine-Dimontan ester (manufactured by Client Japan, Recommon NC-133)
  • (Colorant) -Colorant 1 Carbon black (manufactured by Tokai Carbon Co., Ltd., ERS-2001)
  • (oil) -Oil 1 Carbonyl-terminated butylnitrile rubber (manufactured by Chori GLEX, CTBN1008SP)
  • sica Silica (manufactured by Admatex, SC-2500-SQ)
  • Examples 1 to 4, Comparative Example 1 The raw materials of the resin compositions having the formulations shown in Table 1 are pulverized and mixed by a super mixer for 5 minutes, and then the mixed raw materials are mixed with a screw rotation speed of 400 rpm and 100 ° C. It was melt-kneaded at the resin temperature. Next, a resin composition melt-kneaded from above a rotor having a diameter of 20 cm was supplied at a rate of 2 kg / hr, and the rotor was rotated at 3000 rpm to obtain a cylindrical shape heated to 115 ° C. by centrifugal force. A plurality of small holes (hole diameter 1.2 mm) on the outer peripheral portion were passed through.
  • the obtained granular epoxy resin composition for sealing was stirred at 15 ° C. for 3 hours under an air stream in which the relative humidity was adjusted to 55% RH.
  • the obtained sealing resin composition was evaluated for the following items by the methods shown below.
  • melt viscosity (175 ° C)
  • the melt viscosity was measured using a slit type viscosity measuring device. Specifically, using a low-pressure transfer molding machine (40t manual press manufactured by NEC Co., Ltd.), the mold temperature is 175 ° C., the injection speed is Q: 178mm, 3 / sec, the width W: 15mm, and the thickness. D: P1 by injecting the obtained sealing resin composition into a rectangular flow path of 1 mm and length: 175 mm, and using a pressure sensor 1 embedded at a position 25 mm from the upstream tip of the flow path of the transfer molding machine.
  • the minimum pressure loss ⁇ P min (kgf / cm 2 ) was set to the minimum pressure loss ⁇ P (kgf / cm 2 ) 5 seconds after the start of measurement.
  • the melt viscosity converted from the minimum pressure loss ⁇ P min (kgf / cm 2 ) is defined as the minimum melt viscosity ⁇ min (mPa ⁇ s).
  • t1 be the time when the melt viscosity reaches ⁇ min (mPa ⁇ s). Further, the time at which the melt viscosity increases after reaching ⁇ min (mPa ⁇ s) and reaches a point of ( ⁇ min +1000) (mPa ⁇ s) or more is defined as t2.
  • Table 1 shows ⁇ P min (kgf / cm 2 ), ⁇ min (mPa ⁇ s), t1, ( ⁇ min +1000) (mPa ⁇ s) and t2.
  • meltability of the obtained resin composition was evaluated using the "filling rate” described below as an index.
  • the powder-granular sealing resin composition (7 g) obtained in Examples and Comparative Examples was added to an aluminum cup (diameter 50 mm, outer circumference height 10 mm, thickness 70 ⁇ m), and the oven was set at 175 ° C. for 3 minutes. It was heated. The cured resin composition was taken out from the aluminum cup, and the surface of the resin composition in contact with the bottom surface of the aluminum cup was photographed with a digital camera and imaged.
  • the obtained image is binarized, and the area of the contact portion where the melted resin composition and the bottom surface of the aluminum cup are in contact with each other in the portion where the heated resin composition is melted and spread on the bottom surface of the aluminum cup (A1).
  • the area (A2) of the gap portion where the molten resin composition and the bottom surface of the aluminum cup are not in contact with each other was measured, and the filling rate (%) was calculated as shown by the formula (1).
  • Filling rate [%] (A1 / (A1 + A2)) x 100 ... (1)
  • Table 1 The results of each are shown in Table 1 below.
  • a mold for measuring spiral flow according to EMMI-1-66 has a mold temperature of 175 ° C, an injection pressure of 6.9 MPa, and a holding time.
  • the resin composition was injected under the condition of 120 seconds, and the flow length was measured.
  • Spiral flow is an index of liquidity, and the larger the value, the better the liquidity.
  • the unit is cm.
  • the measurement of the meltability (filling rate) of the comparative example (* 1) indicates that the resin composition did not melt and remained granular.
  • the sealing resin composition of the examples has excellent meltability and fluidity, and is suitable as a sealing material used for sealing a semiconductor element mounted on a substrate by a compression molding method. It was usable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Epoxy Resins (AREA)

Abstract

Provided is a semiconductor encapsulation resin composition containing (A) at least one thermosetting resin selected from the group consisting of an epoxy resin and a bismaleimide resin, (B) a curing agent, (C) an inorganic filler, and (D) a dispersant. The semiconductor encapsulation resin composition is a granular resin composition and has a minimum melt viscosity of 1-68000 mPa·s as measured, under the conditions of a mold temperature of 175°C and an injection speed Q of 178 mm3/sec, by a slit-type viscometer having a rectangular flow path (width W: 15 mm, thickness D: 1 mm, length: 175 mm).

Description

半導体封止用樹脂組成物および半導体装置Resin composition for semiconductor encapsulation and semiconductor devices
 本発明は、半導体封止用樹脂組成物、および当該樹脂組成物で封止された半導体素子を備える半導体装置に関する。 The present invention relates to a semiconductor encapsulating resin composition and a semiconductor device including a semiconductor element sealed with the resin composition.
 近年、電子部品のプリント配線板への高密度実装化に伴い、半導体装置は従来よく用いられているピン挿入型のパッケージから、表面実装型のパッケージが主流に変わってきている。表面実装型のIC、LSI等は、高実装密度化した薄型、小型のパッケージになっており、素子のパッケージに対する占有体積も大きくなり、パッケージの肉厚は非常に薄くなってきている。また、素子の多機能化、大容量化によって、チップ面積の増大、多ピン化が進み、さらにはパッド数の増大によって、パッドピッチの縮小化とパッド寸法の縮小化、いわゆる狭パッドピッチ化も進んでいる。 In recent years, with the high-density mounting of electronic components on printed wiring boards, surface-mounted packages have changed from the pin-insertion type packages that are often used in the past to the mainstream of semiconductor devices. Surface mount type ICs, LSIs, etc. are thin and compact packages with high mounting densities, the volume occupied by the device package is also large, and the wall thickness of the package is becoming very thin. In addition, the chip area and pins are increasing due to the increasing number of functions and capacities of the elements, and the number of pads is increasing, so that the pad pitch is reduced and the pad size is reduced, so-called narrow pad pitch. It is progressing.
 しかし、半導体素子を搭載する基板においては半導体素子ほどの電極間隔の狭ピッチ化ができないため、半導体素子から引き出すワイヤ長を長くするか、またはワイヤを紐線化することにより多端子化に対応している。しかし、ワイヤが細くなると、後の樹脂封止工程において、ワイヤが樹脂の注入圧力により流され易くなる。特に、サイド・ゲート方式ではこの傾向が著しい。 However, in a substrate on which a semiconductor element is mounted, the pitch of the electrode spacing cannot be narrowed as much as that of a semiconductor element. ing. However, when the wire becomes thin, the wire is easily flown by the injection pressure of the resin in the subsequent resin sealing step. This tendency is particularly remarkable in the side gate method.
 そのため、半導体チップなどの電子素子を樹脂封止する方法として、いわゆる圧縮成形法が用いられるようになってきている。この圧縮成形法においては、金型内に保持された被封止物(例えば、半導体チップなどの電子素子が設けられた基板など)に対向させるようにして粉粒状樹脂組成物を供給し、被封止物と粉粒状樹脂組成物とを圧縮することで樹脂封止が行われる。 Therefore, the so-called compression molding method has come to be used as a method of resin-sealing an electronic element such as a semiconductor chip. In this compression molding method, the powder-granular resin composition is supplied so as to face the object to be sealed held in the mold (for example, a substrate provided with an electronic element such as a semiconductor chip), and the resin composition is coated. Resin sealing is performed by compressing the sealed material and the powdery granular resin composition.
 このような圧縮成形法によれば、溶融した粉粒状樹脂が被封止物の主面と略平行な方向に流動するため、流動量を少なくすることができ、樹脂の流れによる被封止物の変形や破損を低減させることができる。特に、ワイヤボンディングされた配線などが樹脂の流れにより変形したり破損したりする、いわゆるワイヤ流れの発生を低減させることに有効である。 According to such a compression molding method, the molten powdery and granular resin flows in a direction substantially parallel to the main surface of the object to be sealed, so that the amount of flow can be reduced, and the object to be sealed due to the flow of the resin. Deformation and damage can be reduced. In particular, it is effective in reducing the occurrence of so-called wire flow in which wire-bonded wiring or the like is deformed or damaged by the resin flow.
 圧縮成形法に用いられる封止材として、例えば、特許文献1で提案された樹脂組成物がある。特許文献1では、エポキシ樹脂、硬化剤、硬化促進剤、無機充填材、融点が70℃以下の脂肪酸、および沸点が200℃以上のシランカップリング剤を含み、特定の粒子径を有する粒子状のエポキシ樹脂組成物は、封止時の樹脂組成物の融け性が改善され、封止後の離型性が改善されたことが記載されている。 As a sealing material used in the compression molding method, for example, there is a resin composition proposed in Patent Document 1. Patent Document 1 contains an epoxy resin, a curing agent, a curing accelerator, an inorganic filler, a fatty acid having a melting point of 70 ° C. or lower, and a silane coupling agent having a boiling point of 200 ° C. or higher, and is in the form of particles having a specific particle size. It is described that the epoxy resin composition has improved meltability of the resin composition at the time of sealing and improved releasability after sealing.
特開2011-153173号公報Japanese Unexamined Patent Publication No. 2011-153173
 しかしながら、本発明者が検討した結果、特許文献1に記載される樹脂組成物においては、封止材の充填性が不十分となる等、半導体素子を好適に封止することができない場合があった。 However, as a result of the examination by the present inventor, in the resin composition described in Patent Document 1, there are cases where the semiconductor element cannot be suitably sealed due to insufficient filling property of the sealing material. It was.
 本発明はかかる事情に鑑みてなされたものであって、半導体封止時の融け性が改善され、基板に搭載された半導体素子を圧縮成形で好適に封止することができる半導体封止用樹脂組成物を提供することを目的とする。また、前記半導体封止用樹脂組成物で半導体素子が封止された、優れた信頼性を備える半導体素子を提供することを目的とする。 The present invention has been made in view of such circumstances, and is a semiconductor encapsulating resin capable of improving meltability at the time of semiconductor encapsulation and suitably encapsulating a semiconductor element mounted on a substrate by compression molding. It is an object of the present invention to provide a composition. Another object of the present invention is to provide a semiconductor element having excellent reliability in which the semiconductor element is sealed with the semiconductor encapsulating resin composition.
 本発明者は、圧縮成形により半導体素子を封止する際、封止材である樹脂組成物がほとんど流動せず、また未充填部分が生じないよう充填性を充分に高めるためには、封止時にこの樹脂組成物が充分に溶融する必要があることに着目した。本発明者は、無機フィラーを含む半導体封止用樹脂組成物を特定の配合することにより、または特定の配合とするとともにその溶融粘度を特定の値とすることにより、無機フィラーが高分散され、その結果封止用樹脂組成物の融け性が向上し、封止時のワイヤ流れを抑制できることを見出し、本発明を完成するに至った。 The present inventor has made a sealing in order to sufficiently improve the filling property so that the resin composition as a sealing material hardly flows when the semiconductor element is sealed by compression molding and an unfilled portion is not generated. It was noted that sometimes this resin composition needs to be sufficiently melted. According to the present inventor, the inorganic filler is highly dispersed by blending a resin composition for encapsulating a semiconductor containing an inorganic filler with a specific composition, or by setting the melt viscosity to a specific value while making the formulation a specific formulation. As a result, they have found that the meltability of the sealing resin composition is improved and the wire flow at the time of sealing can be suppressed, and the present invention has been completed.
 本発明によれば、(A)エポキシ樹脂およびビスマレイミド樹脂からなる群より選択される少なくとも1つの熱硬化性樹脂と、
 (B)硬化剤と、
 (C)無機フィラーと、
 (D)分散剤と、を含む半導体封止用の樹脂組成物であって、
 以下<溶融粘度測定条件>において測定される最低溶融粘度ηminが、1mPa・s以上68000mPa・s以下であり、
 顆粒状である、半導体封止用樹脂組成物。
<溶融粘度測定条件>
 金型温度:175℃、注入速度Q:178mm/秒の条件にて、幅W:15mm、厚さD:1mm、長さ:175mmの矩形状の流路を有するスリット式粘度測定装置を用いて測定する。溶融粘度測定開始後5秒後以降における最低溶融粘度をηminとする。
According to the present invention, at least one thermosetting resin selected from the group consisting of (A) epoxy resin and bismaleimide resin, and
(B) Hardener and
(C) Inorganic filler and
(D) A resin composition for encapsulating a semiconductor, which comprises a dispersant.
The minimum melt viscosity η min measured in the following <Measurement conditions for melt viscosity> is 1 mPa · s or more and 68,000 mPa · s or less.
A granular resin composition for encapsulating semiconductors.
<Measurement conditions for melt viscosity>
Mold temperature: 175 ° C., injection rate Q: at 178 mm 3 / sec condition, the width W: a slit-type viscosity measuring apparatus having a rectangular shaped flow path of 175mm: 15 mm, thickness D: 1 mm, length To measure. Let η min be the minimum melt viscosity 5 seconds after the start of melt viscosity measurement.
 また本発明によれば、
 基板上に搭載された半導体素子と、
 前記半導体素子を封止する封止部材と、を備える半導体装置であって、
 前記封止部材が、上記半導体封止用樹脂組成物の硬化物からなる、半導体装置が提供される。
Further, according to the present invention.
Semiconductor elements mounted on the substrate and
A semiconductor device including a sealing member for sealing the semiconductor element.
A semiconductor device is provided in which the sealing member is a cured product of the semiconductor sealing resin composition.
 本発明によれば、
 (A)エポキシ樹脂と、
 (B)硬化剤と、
 (C)無機フィラーと、
 (D)分散剤と、を含む半導体封止用樹脂組成物であって、
 前記エポキシ樹脂(A)が、ビフェニル型エポキシ樹脂、ビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ノボラック型エポキシ樹脂、多官能エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトール型エポキシ樹脂、トリアジン核含有エポキシ樹脂、有橋環状炭化水素化合物変性フェノール型エポキシ樹脂からなる群より選択される少なくとも1つを含み、
 前記分散剤(D)が、ポリカルボン酸を主骨格とする高分子イオン性分散剤であり、
 前記分散剤(D)が、樹脂組成物全体に対して、0.01質量%以上5.0質量%以下の量である、半導体封止用樹脂組成物が提供される。
 本実施形態の半導体封止用樹脂組成物は、タブレット状、シート状または顆粒状のいずれの形状であっても良い。
According to the present invention
(A) Epoxy resin and
(B) Hardener and
(C) Inorganic filler and
(D) A resin composition for encapsulating a semiconductor, which comprises a dispersant.
The epoxy resin (A) is a biphenyl type epoxy resin, a bisphenol type epoxy resin, a stillben type epoxy resin, a phenol novolac type epoxy resin, a novolac type epoxy resin, a polyfunctional epoxy resin, a phenol aralkyl type epoxy resin, a naphthol type epoxy resin, Contains at least one selected from the group consisting of triazine nuclei-containing epoxy resins and bridged cyclic hydrocarbon compound modified phenolic epoxy resins.
The dispersant (D) is a polymer ionic dispersant having a polycarboxylic acid as a main skeleton.
A resin composition for semiconductor encapsulation is provided in which the dispersant (D) is in an amount of 0.01% by mass or more and 5.0% by mass or less with respect to the entire resin composition.
The resin composition for encapsulating a semiconductor of the present embodiment may be in the shape of a tablet, a sheet, or granules.
 本発明によれば、基板に搭載された半導体素子を圧縮成形法で好適に封止することができる半導体封止用樹脂組成物が提供される。 According to the present invention, there is provided a semiconductor encapsulation resin composition capable of suitably encapsulating a semiconductor element mounted on a substrate by a compression molding method.
本実施形態の樹脂組成物を用いて、リードフレームに搭載した半導体素子を封止して得られる半導体装置の断面構造を示した図である。It is a figure which showed the cross-sectional structure of the semiconductor apparatus obtained by sealing the semiconductor element mounted on the lead frame using the resin composition of this embodiment. 本実施形態の樹脂組成物を用いて、回路基板に搭載した半導体素子を封止して得られる半導体装置の断面構造を示した図である。It is a figure which showed the cross-sectional structure of the semiconductor apparatus obtained by sealing the semiconductor element mounted on the circuit board using the resin composition of this embodiment.
 以下、本発明の実施の形態について、図面を用いて説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all drawings, similar components are designated by the same reference numerals, and description thereof will be omitted as appropriate.
(第1の実施形態)
 第1の実施形態における半導体封止用樹脂組成物は、顆粒状である(以下、「顆粒状樹脂組成物」、または単に「樹脂組成物」と称する)。本実施形態の顆粒状樹脂組成物は、(A)エポキシ樹脂およびビスマレイミド樹脂からなる群より選択される少なくとも1つの熱硬化性樹脂と、(B)硬化剤と、(C)無機フィラーと、(D)分散剤とを含む。また、本実施形態の顆粒状樹脂組成物は、1mPa・s以上68000mPa・s以下の最低溶融粘度を有する。
(First Embodiment)
The resin composition for encapsulating a semiconductor in the first embodiment is in the form of granules (hereinafter, referred to as "granular resin composition" or simply "resin composition"). The granular resin composition of the present embodiment comprises at least one thermosetting resin selected from the group consisting of (A) epoxy resin and bismaleimide resin, (B) a curing agent, and (C) an inorganic filler. (D) Includes a dispersant. Further, the granular resin composition of the present embodiment has a minimum melt viscosity of 1 mPa · s or more and 68000 mPa · s or less.
 本実施形態の顆粒状樹脂組成物は、分散剤を含むことにより、無機フィラーの分散性が高められ、低い溶融粘度を有する。その結果、当該樹脂組成物を用いて基板に搭載された半導体素子を圧縮成形法で封止する場合、ワイヤ流れやワイヤ変形を低減できる。またこのような顆粒状樹脂組成物は、溶融状態における流動性が良好であるため、半導体素子上に未充填箇所を生じることなく、半導体素子を好適に封止することができる。 The granular resin composition of the present embodiment has a low melt viscosity due to the enhanced dispersibility of the inorganic filler by containing the dispersant. As a result, when the semiconductor element mounted on the substrate is sealed by the compression molding method using the resin composition, wire flow and wire deformation can be reduced. Further, since such a granular resin composition has good fluidity in a molten state, the semiconductor element can be suitably sealed without forming an unfilled portion on the semiconductor element.
 以下、本実施形態における顆粒状樹脂組成物について説明する。 Hereinafter, the granular resin composition in the present embodiment will be described.
 本実施形態の顆粒状樹脂組成物は、その内の85質量%以上が、粒子径分布における100μm~3mmの粒径範囲内に存在することが好ましい。前記粒子径範囲外の粒子が多すぎると、圧縮成形で半導体素子を好適に封止できない傾向がある。具体的には、例えば、粒子径が小さすぎる樹脂組成物が多すぎると、その粒子径が小さすぎる樹脂組成物が優先的に溶融して、封止材として用いる樹脂組成物が、圧縮成形時に均一に溶融せず、半導体素子を好適に封止できない傾向がある。また、粒子径が大きすぎる樹脂組成物が多すぎると、その粒子径が小さすぎる樹脂組成物が、溶融しにくく、圧縮成形時に溶融した樹脂組成物中に、溶融せずに残存する顆粒状の樹脂組成物が存在し、半導体素子を好適に封止できない場合がある。なお、顆粒状樹脂組成物の粒子径分布は、一般的な粒度計で測定することができる。または、種々の目開きの篩を、目開きの小さい順に下から重ねたもので、顆粒状の樹脂組成物を篩い、各篩に残存する粒子の質量から算出することができる。 It is preferable that 85% by mass or more of the granular resin composition of the present embodiment exists within the particle size range of 100 μm to 3 mm in the particle size distribution. If there are too many particles outside the particle size range, the semiconductor element tends to be unable to be suitably sealed by compression molding. Specifically, for example, if there are too many resin compositions having too small particle sizes, the resin compositions having too small particle sizes are preferentially melted, and the resin composition used as a sealing material is produced during compression molding. It does not melt uniformly, and there is a tendency that the semiconductor element cannot be suitably sealed. Further, if the amount of the resin composition having an excessively large particle size is too large, the resin composition having an excessively small particle size is difficult to melt, and is in the form of granules remaining in the resin composition melted during compression molding without melting. In some cases, the resin composition is present and the semiconductor element cannot be suitably sealed. The particle size distribution of the granular resin composition can be measured with a general particle size meter. Alternatively, it can be calculated from the mass of particles remaining on each sieve by sieving a granular resin composition by stacking various mesh-opening sieves in ascending order of mesh size.
 以下、封止材として用いる顆粒状樹脂組成物に用いられる各成分について具体例を挙げて説明する。顆粒状樹脂組成物の溶融粘度は、用いられる成分の種類や配合量を調整することにより目的の値とすることができる。 Hereinafter, each component used in the granular resin composition used as a sealing material will be described with specific examples. The melt viscosity of the granular resin composition can be set to a desired value by adjusting the type and blending amount of the components used.
 (熱硬化性樹脂(A))
 本実施形態の顆粒状樹脂組成物に用いられる熱硬化性樹脂(A)は、エポキシ樹脂およびビスマレイミド樹脂より選択される少なくとも1種を含む。
(Thermosetting resin (A))
The thermosetting resin (A) used in the granular resin composition of the present embodiment contains at least one selected from an epoxy resin and a bismaleimide resin.
 エポキシ樹脂としては、1分子内にエポキシ基を2個以上有するモノマー、オリゴマー、ポリマー全般を用いることができ、その分子量や分子構造は限定されない。エポキシ樹脂としては、例えば、ビフェニル型エポキシ樹脂;ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、テトラメチルビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂;スチルベン型エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂等に例示されるトリスフェノール型エポキシ樹脂等の多官能エポキシ樹脂;フェニレン骨格を有するフェノールアラルキル型エポキシ樹脂、フェニレン骨格を有するナフトールアラルキル型エポキシ樹脂、ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂、ビフェニレン骨格を有するナフトールアラルキル型エポキシ樹脂等のフェノールアラルキル型エポキシ樹脂;ジヒドロキシナフタレン型エポキシ樹脂、ジヒドロキシナフタレンの2量体をグリシジルエーテル化して得られるエポキシ樹脂等のナフトール型エポキシ樹脂;トリグリシジルイソシアヌレート、モノアリルジグリシジルイソシアヌレート等のトリアジン核含有エポキシ樹脂;ジシクロペンタジエン変性フェノール型エポキシ樹脂等の有橋環状炭化水素化合物変性フェノール型エポキシ樹脂が挙げられる。これらは1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 As the epoxy resin, monomers, oligomers, and polymers having two or more epoxy groups in one molecule can be used in general, and the molecular weight and molecular structure thereof are not limited. Examples of the epoxy resin include biphenyl type epoxy resin; bisphenol A type epoxy resin, bisphenol F type epoxy resin, tetramethyl bisphenol F type epoxy resin and other bisphenol type epoxy resin; stillben type epoxy resin; phenol novolac type epoxy resin, cresol. Novolak type epoxy resin such as novolak type epoxy resin; polyfunctional epoxy resin such as triphenol methane type epoxy resin, alkyl modified triphenol methane type epoxy resin, etc .; phenol aralkyl type having a phenylene skeleton Phenol aralkyl type epoxy resin such as epoxy resin, naphthol aralkyl type epoxy resin having a phenylene skeleton, phenol aralkyl type epoxy resin having a biphenylene skeleton, naphthol aralkyl type epoxy resin having a biphenylene skeleton; dihydroxynaphthalene type epoxy resin, dihydroxynaphthalene 2 Naftor-type epoxy resin such as epoxy resin obtained by glycidyl etherification of the body; triazine nucleus-containing epoxy resin such as triglycidyl isocyanurate and monoallyl diglycidyl isocyanurate; Arashi ring such as dicyclopentadiene-modified phenol-type epoxy resin Examples thereof include a hydrocarbon compound modified phenol type epoxy resin. These may be used individually by 1 type, and may be used in combination of 2 or more type.
 顆粒状樹脂組成物を硬化して得られる成形体の反り抑制や、充填性、耐熱性、耐湿性等の諸特性のバランスを向上させる観点から、これらのうち、ノボラック型エポキシ樹脂、多官能エポキシ樹脂、およびフェノールアラルキル型エポキシ樹脂を好ましく用いることができる。また、同様の観点から、エポキシ樹脂は、好ましくはオルソクレゾールノボラック型エポキシ樹脂、ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂およびトリフェニルメタン型エポキシ樹脂からなる群から選択される1種以上を含み、より好ましくはオルソクレゾールノボラック型エポキシ樹脂およびビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂からなる群から選択される1種以上を含む。 Of these, novolac type epoxy resin and polyfunctional epoxy from the viewpoint of suppressing warpage of the molded product obtained by curing the granular resin composition and improving the balance of various properties such as filling property, heat resistance, and moisture resistance. A resin and a phenol aralkyl type epoxy resin can be preferably used. From the same viewpoint, the epoxy resin preferably contains one or more selected from the group consisting of orthocresol novolac type epoxy resin, phenol aralkyl type epoxy resin having a biphenylene skeleton, and triphenylmethane type epoxy resin, and more. Preferably, it comprises one or more selected from the group consisting of orthocresol novolac type epoxy resin and phenol aralkyl type epoxy resin having a biphenylene skeleton.
 熱硬化性樹脂(A)として用いられるビスマレイミド樹脂は、マレイミド基を2つ以上有する化合物の(共)重合体である。
 マレイミド基を2つ以上有する化合物は、たとえば下記一般式(1)に示す化合物および下記一般式(2)に示す化合物のうちの少なくとも一方を含む。これにより顆粒状樹脂組成物の硬化物のガラス転移温度を高めることができ、硬化物の耐熱性をより効果的に向上させることができる。
The bismaleimide resin used as the thermosetting resin (A) is a (co) polymer of a compound having two or more maleimide groups.
The compound having two or more maleimide groups includes, for example, at least one of the compound represented by the following general formula (1) and the compound represented by the following general formula (2). As a result, the glass transition temperature of the cured product of the granular resin composition can be increased, and the heat resistance of the cured product can be improved more effectively.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記一般式(1)において、Rは炭素数1以上30以下の2価の有機基であり、酸素原子および窒素原子のうちの1種以上を含んでいてもよい。硬化物の耐熱性を向上させる観点からは、Rが芳香環を含む有機基であることがより好ましい。本実施形態においては、Rとして、たとえば下記一般式(1a)または(1b)のような構造が例示できる。 In the above general formula (1), R 1 is a divalent organic group having 1 or more carbon atoms and 30 or less carbon atoms, and may contain one or more of an oxygen atom and a nitrogen atom. From the viewpoint of improving the heat resistance of the cured product, it is more preferable that R 1 is an organic group containing an aromatic ring. In the present embodiment, as R 1, for example, a structure of the following general formula (1a) or (1b) can be exemplified.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 上記一般式(1a)において、R31は、酸素原子および窒素原子のうちの1種以上を含んでいてもよい炭素数1以上18以下の2価の有機基である。また、複数のR32は、それぞれ独立して水素原子または炭素数1以上4以下の置換もしくは無置換の炭化水素基である。 In the above general formula (1a), R 31 is a divalent organic group having 1 to 18 carbon atoms which may contain one or more of an oxygen atom and a nitrogen atom. Further, each of the plurality of R 32s is independently a hydrogen atom or a substituted or unsubstituted hydrocarbon group having 1 or more and 4 or less carbon atoms.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 上記一般式(1b)において、複数存在するRはそれぞれ独立して存在し、Rは水素原子、炭素数1~5のアルキル基もしくはフェニル基を表し、好ましくは水素原子である。また、mは平均値であり、1以上5以下の数であり、好ましくは1より大きく5以下の数、より好ましくは1より大きく3以下の数、さらに好ましくは1より大きく2以下の数である。 In the above general formula (1b), a plurality of Rs existing independently exist, and R represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms or a phenyl group, and is preferably a hydrogen atom. Further, m is an average value, which is a number of 1 or more and 5 or less, preferably a number larger than 1 and 5 or less, more preferably a number larger than 1 and 3 or less, and further preferably a number larger than 1 and 2 or less. is there.
 本実施形態において適用することができる上記一般式(1)に示した化合物としては、たとえば、下記式(1-1)~(1-3)に示す化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000006
Examples of the compound represented by the general formula (1) that can be applied in the present embodiment include compounds represented by the following formulas (1-1) to (1-3).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 上記一般式(2)において、複数のRは、それぞれ独立して水素原子または炭素数1以上4以下の置換もしくは無置換の炭化水素基である。nは平均値であり、0以上10以下の数であり、好ましくは0以上5以下の数である。 In the general formula (2), a plurality of R 2 are each independently substituted or unsubstituted at least 1 but no greater than 4 hydrogen or C hydrocarbon group. n is an average value, which is a number of 0 or more and 10 or less, preferably 0 or more and 5 or less.
 また、熱硬化性樹脂(A)は、エポキシ樹脂、ビスマレイミド樹脂以外の熱硬化性樹脂をさらに含んでもよい。このような熱硬化性樹脂としては、たとえば、ベンゾオキサジン樹脂、フェノール樹脂、ユリア(尿素)樹脂、メラミン樹脂等、不飽和ポリエステル樹脂、ポリウレタン樹脂、ジアリルフタレート樹脂、シリコーン樹脂、シアネート樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、およびベンゾシクロブテン樹脂からなる群から選択される1種または2種以上が挙げられる。 Further, the thermosetting resin (A) may further contain a thermosetting resin other than the epoxy resin and the bismaleimide resin. Examples of such thermosetting resins include unsaturated polyester resins such as benzoxazine resins, phenol resins, urea (urea) resins, and melamine resins, polyurethane resins, diallyl phthalate resins, silicone resins, cyanate resins, and polyimide resins. One or more selected from the group consisting of polyamideimide resin and benzocyclobutene resin can be mentioned.
 熱硬化性樹脂(A)の含有量は、樹脂組成物全体に対して、2質量%以上であることが好ましく、4質量%以上であることがより好ましい。配合割合の下限値が上記範囲内であると、封止工程において流動性の低下等が生じにくい。また、樹脂組成物全体の配合割合の上限値についても、特に限定されないが、樹脂組成物全量に対して、22質量%以下であることが好ましく、20質量%以下であることがより好ましい。配合割合の上限値が上記範囲内であると、樹脂組成物のガラス転移温度の低下が少なく、互着を適正に抑制することができる。また、流動性および融け性を向上させるため、用いるエポキシ樹脂の種類に応じて配合割合を適宜調整することが望ましい。 The content of the thermosetting resin (A) is preferably 2% by mass or more, and more preferably 4% by mass or more, based on the entire resin composition. When the lower limit of the blending ratio is within the above range, the fluidity is unlikely to decrease in the sealing step. The upper limit of the blending ratio of the entire resin composition is not particularly limited, but is preferably 22% by mass or less, more preferably 20% by mass or less, based on the total amount of the resin composition. When the upper limit of the blending ratio is within the above range, the decrease in the glass transition temperature of the resin composition is small, and mutual adhesion can be appropriately suppressed. Further, in order to improve the fluidity and meltability, it is desirable to appropriately adjust the blending ratio according to the type of epoxy resin used.
 ここで、本実施形態において、任意の成分の樹脂組成物全体に対する含有量とは、樹脂組成物が溶媒を含む場合には、樹脂組成物のうちの溶媒を除く固形分全体に対する含有量を指す。樹脂組成物の固形分とは、樹脂組成物中における不揮発分を指し、水や溶媒等の揮発成分を除いた残部を指す。 Here, in the present embodiment, the content of any component in the entire resin composition refers to the content of the resin composition in the entire solid content excluding the solvent when the resin composition contains a solvent. .. The solid content of the resin composition refers to the non-volatile content in the resin composition, and refers to the balance excluding volatile components such as water and solvent.
 (硬化剤(B))
 本実施形態の樹脂組成物に用いられる硬化剤(B)としては、たとえば重付加型の硬化剤、触媒型の硬化剤、および縮合型の硬化剤の3タイプに大別することができる。これらを単独で用いても2種以上を組み合わせて用いてもよい。
(Curing agent (B))
The curing agent (B) used in the resin composition of the present embodiment can be roughly classified into three types, for example, a polyaddition type curing agent, a catalytic type curing agent, and a condensation type curing agent. These may be used alone or in combination of two or more.
 重付加型の硬化剤は、たとえば、ジエチレントリアミン(DETA)、トリエチレンテトラミン(TETA)、メタキシレリレンジアミン(MXDA)などの脂肪族ポリアミン、ジアミノジフェニルメタン(DDM)、m-フェニレンジアミン(MPDA)、ジアミノジフェニルスルホン(DDS)などの芳香族ポリアミンのほか、ジシアンジアミド(DICY)、有機酸ジヒドラジドなどを含むポリアミン化合物;ヘキサヒドロ無水フタル酸(HHPA)、メチルテトラヒドロ無水フタル酸(MTHPA)などの脂環族酸無水物、無水トリメリット酸(TMA)、無水ピロメリット酸(PMDA)、ベンゾフェノンテトラカルボン酸(BTDA)などの芳香族酸無水物などを含む酸無水物;ノボラック型フェノール樹脂、ポリビニルフェノール、アラルキル型フェノール樹脂などのフェノール樹脂系硬化剤;ポリサルファイド、チオエステル、チオエーテルなどのポリメルカプタン化合物;イソシアネートプレポリマー、ブロック化イソシアネートなどのイソシアネート化合物;カルボン酸含有ポリエステル樹脂などの有機酸類からなる群から選択される1種または2種以上を含む。 The heavy addition type curing agent includes, for example, aliphatic polyamines such as diethylenetriamine (DETA), triethylenetetramine (TETA), and metaxylylene diamine (MXDA), diaminodiphenylmethane (DDM), m-phenylenediamine (MPDA), and the like. In addition to aromatic polyamines such as diaminodiphenylsulfone (DDS), polyamine compounds containing dicyandiamide (DICY), organic acid dihydrazide and the like; alicyclic acids such as hexahydrophthalic anhydride (HHPA) and methyltetrahydrophthalic anhydride (MTHPA). Acid anhydrides containing anhydrides, aromatic acid anhydrides such as trimellitic anhydride (TMA), pyromellitic anhydride (PMDA), benzophenone tetracarboxylic acid (BTDA); novolak type phenolic resin, polyvinylphenol, aralkyl type Phenolic resin-based curing agent such as phenol resin; Polymercaptan compound such as polysulfide, thioester, thioether; Isocyanate compound such as isocyanate prepolymer, blocked isocyanate; Organic acid such as carboxylic acid-containing polyester resin selected from the group 1 Includes species or two or more.
 触媒型の硬化剤は、たとえば、ベンジルジメチルアミン(BDMA)、2,4,6-トリスジメチルアミノメチルフェノール(DMP-30)などの3級アミン化合物;2-メチルイミダゾール、2-エチル-4-メチルイミダゾール(EMI24)などのイミダゾール化合物;BF錯体などのルイス酸からなる群から選択される1種または2種以上を含む。 Catalytic curing agents are tertiary amine compounds such as, for example, benzyldimethylamine (BDMA), 2,4,6-trisdimethylaminomethylphenol (DMP-30); 2-methylimidazole, 2-ethyl-4- including one or two or more selected from the group consisting of Lewis acids such as BF 3 complex; imidazole compounds such as methylimidazole (EMI24).
 縮合型の硬化剤は、たとえば、レゾール型フェノール樹脂;メチロール基含有尿素樹脂などの尿素樹脂;メチロール基含有メラミン樹脂などのメラミン樹脂からなる群から選択される1種または2種以上を含む。 The condensation type curing agent contains, for example, one or more selected from the group consisting of a resol type phenol resin; a urea resin such as a methylol group-containing urea resin; and a melamine resin such as a methylol group-containing melamine resin.
 これらの中でも、得られる樹脂組成物の耐燃性、耐湿性、電気特性、硬化性、および保存安定性等についてのバランスを向上させる観点から、フェノール樹脂系硬化剤を含むことがより好ましい。フェノール樹脂系硬化剤としては、たとえば、一分子内にフェノール性水酸基を2個以上有するモノマー、オリゴマー、ポリマー全般を用いることができ、その分子量、分子構造は限定されない。 Among these, it is more preferable to contain a phenol resin-based curing agent from the viewpoint of improving the balance between the flame resistance, moisture resistance, electrical properties, curability, storage stability, etc. of the obtained resin composition. As the phenol resin-based curing agent, for example, a monomer, an oligomer, or a polymer having two or more phenolic hydroxyl groups in one molecule can be used in general, and the molecular weight and molecular structure thereof are not limited.
 フェノール樹脂系硬化剤は、たとえば、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールノボラック等のノボラック型フェノール樹脂;ポリビニルフェノール、トリフェノールメタン型フェノール樹脂等の多官能型フェノール樹脂;テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂等の変性フェノール樹脂;フェニレン骨格及び/又はビフェニレン骨格を有するフェノールアラルキル樹脂、フェニレン及び/又はビフェニレン骨格を有するナフトールアラルキル樹脂等のフェノールアラルキル型フェノール樹脂;ビスフェノールA、ビスフェノールF等のビスフェノール化合物からなる群から選択される1種または2種以上を含む。これらの中でも、成形体の反りを抑制する観点からは、ノボラック型フェノール樹脂、多官能型フェノール樹脂およびフェノールアラルキル型フェノール樹脂を含むことがより好ましい。また、フェノールノボラック樹脂、ビフェニレン骨格を有するフェノールアラルキル樹脂、ホルムアルデヒドで変性したトリフェニルメタン型フェノール樹脂を好ましく使用することもできる。 The phenol resin-based curing agent is, for example, a novolak type phenol resin such as phenol novolac resin, cresol novolac resin, bisphenol novolak; a polyfunctional phenol resin such as polyvinylphenol, triphenol methane type phenol resin; terpen modified phenol resin, dicyclo. Modified phenol resins such as pentadiene-modified phenol resins; phenol aralkyl resins having a phenylene skeleton and / or biphenylene skeleton, phenol aralkyl resins such as naphthol aralkyl resins having a phenylene and / or biphenylene skeleton; bisphenols such as bisphenol A and bisphenol F Includes one or more selected from the group consisting of compounds. Among these, from the viewpoint of suppressing warpage of the molded product, it is more preferable to contain a novolak type phenol resin, a polyfunctional phenol resin and a phenol aralkyl type phenol resin. Further, a phenol novolac resin, a phenol aralkyl resin having a biphenylene skeleton, and a formaldehyde-modified triphenylmethane-type phenol resin can also be preferably used.
 硬化剤(B)の配合割合の下限値は、樹脂組成物全体に対して、2質量%以上であることが好ましく3質量%以上であることがより好ましい。配合割合の下限値が上記範囲内であると、充分な流動性を得ることができる。また、硬化剤の配合割合の上限値は、樹脂組成物全体に対して、16質量%以下であることが好ましく、15質量%以下であることがより好ましい。配合割合の上限値が上記範囲内であると、互着を適正に抑制することができ。また、流動性および融け性を向上させるため、用いる硬化剤の種類に応じて配合割合を適宜調整することが望ましい。 The lower limit of the blending ratio of the curing agent (B) is preferably 2% by mass or more, and more preferably 3% by mass or more, based on the entire resin composition. When the lower limit of the blending ratio is within the above range, sufficient fluidity can be obtained. The upper limit of the blending ratio of the curing agent is preferably 16% by mass or less, more preferably 15% by mass or less, based on the entire resin composition. When the upper limit of the blending ratio is within the above range, mutual adhesion can be appropriately suppressed. Further, in order to improve the fluidity and the meltability, it is desirable to appropriately adjust the blending ratio according to the type of the curing agent used.
 (無機フィラー(C))
 本実施形態の樹脂組成物に用いられる無機フィラー(C)としては、溶融破砕シリカ、溶融球状シリカ等の溶融シリカ;結晶シリカ、非晶質シリカ等のシリカ;二酸化ケイ素;アルミナ;水酸化アルミニウム;窒化珪素;および窒化アルミ等が挙げられる。これらは1種単独で用いても、2種以上を組み合わせて用いてもよい。粒子形状は限りなく真球状であることが好ましく、また、粒子の大きさの異なるものを混合することにより充填量を多くすることができる。また、樹脂組成物の融け性を向上させるため、シリカまたはアルミナを用いることが好ましく、シリカとしては溶融球状シリカを用いるのが好ましい。
(Inorganic filler (C))
Examples of the inorganic filler (C) used in the resin composition of the present embodiment include molten silica such as molten crushed silica and molten spherical silica; silica such as crystalline silica and amorphous silica; silicon dioxide; alumina; aluminum hydroxide; Silicon dioxide; and aluminum nitride and the like. These may be used alone or in combination of two or more. The particle shape is preferably spherical as much as possible, and the filling amount can be increased by mixing particles having different particle sizes. Further, in order to improve the meltability of the resin composition, it is preferable to use silica or alumina, and it is preferable to use fused spherical silica as the silica.
 無機フィラー(C)の含有量は、樹脂組成物全体に対して80.0質量%以上97.0質量%以下であることが好ましい。無機フィラーの含有量が少なすぎると、樹脂組成物の硬化物の耐熱性等が低下し、得られた半導体装置の信頼性が低下する傾向がある。また、無機フィラーの含有量が多いと、樹脂組成物の硬化物の耐熱性等を高め、得られた半導体装置の信頼性が向上する。しかしながら、無機フィラーの含有量が多くなるにつれ、一般的には、樹脂組成物の融け性は低下し、換言すると、溶融されにくくなり、ワイヤ流れが発生しやすくなる傾向がある。本実施形態では、後述する、分散剤を含有することにより、樹脂組成物の硬化物の耐熱性等の性能を維持しつつ、樹脂組成物の融け性を高め、ワイヤ流れの発生を抑制することができる。 The content of the inorganic filler (C) is preferably 80.0% by mass or more and 97.0% by mass or less with respect to the entire resin composition. If the content of the inorganic filler is too small, the heat resistance of the cured product of the resin composition is lowered, and the reliability of the obtained semiconductor device tends to be lowered. Further, when the content of the inorganic filler is large, the heat resistance of the cured product of the resin composition is enhanced, and the reliability of the obtained semiconductor device is improved. However, as the content of the inorganic filler increases, the meltability of the resin composition generally decreases, in other words, it tends to be difficult to melt and wire flow tends to occur. In the present embodiment, by containing a dispersant, which will be described later, the meltability of the resin composition is enhanced and the occurrence of wire flow is suppressed while maintaining the performance such as heat resistance of the cured product of the resin composition. Can be done.
 (分散剤(D))
 本実施形態の樹脂組成物に用いられる分散剤(D)として、ポリカルボン酸を主骨格とする高分子イオン性分散剤が用いられる。高分子イオン性分散剤は、無機フィラーに吸着する吸着性基として働くカルボキシル基と、上述の熱硬化性樹脂に対して相溶性を有する部位とを有することが好ましい。
(Dispersant (D))
As the dispersant (D) used in the resin composition of the present embodiment, a polymer ionic dispersant having a polycarboxylic acid as a main skeleton is used. The polymer ionic dispersant preferably has a carboxyl group that acts as an adsorptive group that adsorbs to the inorganic filler, and a moiety that is compatible with the above-mentioned thermosetting resin.
 このような高分子イオン性分散剤としては、例えば、アロンA-6330(東亜合成株式会社製、商品名)、Hypermer KD-4、Hypermer KD8、Hypermer KD-9、Hypermer KD-57(以上、クローダジャパン株式会社製、商品名)、等を挙げることができる。中でも、下記式(3)で表される高分子イオン性分散剤が好ましく、具体的には、Hypermer KD-4、Hypermer KD-8、Hypermer KD-9等(以上、クローダジャパン社製、商品名)を挙げることができる。 Examples of such a polymer ionic dispersant include Aron A-6330 (manufactured by Toa Synthetic Co., Ltd., trade name), Hypermer KD-4, Hypermer KD8, Hypermer KD-9, Hypermer KD-57 (above, Crowder). Made by Japan Co., Ltd., product name), etc. Among them, the polymer ionic dispersant represented by the following formula (3) is preferable, and specifically, Hypermer KD-4, Hypermer KD-8, Hypermer KD-9, etc. (all manufactured by Croda Japan, trade name). ) Can be mentioned.
Figure JPOXMLDOC01-appb-C000008
 (式(3)において、pおよびmは繰り返し単位数を表し、pは1~20の整数であり、mは1~5の整数であり、Rは、置換基を有してもよい炭素数1~10のアルキル基である)。
Figure JPOXMLDOC01-appb-C000008
(In formula (3), p and m represent the number of repeating units, p is an integer of 1 to 20, m is an integer of 1 to 5, and R 3 is a carbon which may have a substituent. It is an alkyl group of numbers 1 to 10).
 式(3)で表されるような高分子イオン性分散剤は、無機フィラーに吸着するカルボキシル基と、上述の熱硬化性樹脂に対して相溶性を有するかさ高い脂肪族基とを有する。このような高分子イオン性分散剤が無機フィラーに吸着することにより、無機フィラーは熱硬化性樹脂(A)中に高度に分散される。また、高分子イオン性分散剤のかさ高い脂肪族基同士の立体障害により、無機フィラー同士の凝集が抑制される。その結果、無機フィラーは、熱硬化性樹脂(A)中で、凝集することなく高度に分散される。 The polymer ionic dispersant as represented by the formula (3) has a carboxyl group adsorbed on the inorganic filler and a bulky aliphatic group having compatibility with the above-mentioned thermosetting resin. By adsorbing such a polymer ionic dispersant on the inorganic filler, the inorganic filler is highly dispersed in the thermosetting resin (A). In addition, aggregation of inorganic fillers is suppressed due to steric hindrance between bulky aliphatic groups of the polymer ionic dispersant. As a result, the inorganic filler is highly dispersed in the thermosetting resin (A) without agglutination.
 分散剤(D)は、樹脂組成物全体に対して、0.01質量%以上5.0質量%以下の量で使用されることが好ましく、0.1質量%以上2.0質量%以下の量であることがより好ましく、0.2質量%以上1.5質量%以下の量であることがさらにより好ましい。分散剤(D)が上記範囲内の量で配合されることにより、無機フィラーを樹脂組成物中に高度に分散させることができる。 The dispersant (D) is preferably used in an amount of 0.01% by mass or more and 5.0% by mass or less, and 0.1% by mass or more and 2.0% by mass or less, based on the entire resin composition. The amount is more preferably 0.2% by mass or more and 1.5% by mass or less. By blending the dispersant (D) in an amount within the above range, the inorganic filler can be highly dispersed in the resin composition.
 (硬化促進剤(E))
 本実施形態の樹脂組成物は、硬化促進剤(E)を含んでもよい。硬化促進剤(E)としては、熱硬化性樹脂(A)と硬化剤(B)との硬化反応を促進することができるものであれば、特に制限することなく使用することができ、例えば、2-メチルイミダゾールや2-フェニルイミダゾール等のイミダゾール類、トリフェニルホスフィン、トリブチルホスフィン、トリメチルホスフィン等の有機ホスフィン類、1,8-ジアザ-ビシクロ(5,4,0)ウンデセン-7(DBU)、トリエタノールアミン、ベンジルジメチルアミン等の三級アミン類等が挙げられる。これらは、単独で用いても、2種以上を組み合わせて用いてもよい。
(Curing accelerator (E))
The resin composition of the present embodiment may contain a curing accelerator (E). The curing accelerator (E) can be used without particular limitation as long as it can accelerate the curing reaction between the thermosetting resin (A) and the curing agent (B), for example. Imidazoles such as 2-methylimidazole and 2-phenylimidazole, organic phosphines such as triphenylphosphine, tributylphosphine and trimethylphosphine, 1,8-diazabicyclo (5,4,0) undecene-7 (DBU), Examples thereof include tertiary amines such as triethanolamine and benzyldimethylamine. These may be used alone or in combination of two or more.
 硬化促進剤(E)の含有量は、熱硬化性樹脂(A)と硬化剤(B)の合計量に対して、0.1質量%以上2質量%以下であることが好ましい。硬化促進剤の含有量が上記下限値より少ないと、硬化促進効果を高めることができない傾向にある。また、上記上限値より多いと、流動性や成形性に不具合を生じる傾向があり、また、製造コストの増加につながる場合がある。
 (カップリング剤)
 本実施形態の樹脂組成物は、シランカップリング剤を含んでもよい。シランカップリング剤を使用することができる。シランカップリング剤としては、ビニルトリス(β-メトキシエトキシ)シラン、ビニルエトキシシラン、ビニルトリメトキシシラン等のビニルシラン類、γ-メタクリロキシプロピルトリメトキシシラン等の(メタ)アクリルシラン類、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)メチルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)メチルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン等のエポキシシラン類、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリエトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジエトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、N-フェニル-γ-アミノプロピルトリエトキシシラン等のアミノシラン類、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン等のチオシラン類等が挙げられる。
The content of the curing accelerator (E) is preferably 0.1% by mass or more and 2% by mass or less with respect to the total amount of the thermosetting resin (A) and the curing agent (B). If the content of the curing accelerator is less than the above lower limit, the curing promoting effect tends to be unable to be enhanced. Further, if it is more than the above upper limit value, problems tend to occur in fluidity and moldability, and it may lead to an increase in manufacturing cost.
(Coupling agent)
The resin composition of the present embodiment may contain a silane coupling agent. A silane coupling agent can be used. Examples of the silane coupling agent include vinylsilanes such as vinyltris (β-methoxyethoxy) silane, vinylethoxysilane and vinyltrimethoxysilane, (meth) acrylic silanes such as γ-methacryloxypropyltrimethoxysilane, and β- (3). , 4-epoxycyclohexyl) ethyltrimethoxysilane, β- (3,4-epoxycyclohexyl) methyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltriethoxysilane, β- (3,4-epoxycyclohexyl) ) Epoxysilanes such as methyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-β ( Aminoethyl) γ-aminopropyltriethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldiethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, N-phenyl-γ-amino Examples thereof include aminosilanes such as propyltrimethoxysilane and N-phenyl-γ-aminopropyltriethoxysilane, and thiosilanes such as γ-mercaptopropyltrimethoxysilane and γ-mercaptopropyltriethoxysilane.
 カップリング剤は、樹脂組成物全体に対して、0.01質量%以上1.0質量%以下の量で使用されることが好ましく、0.05質量%以上0.9質量%以下の量であることがより好ましく、0.08質量%以上0.8質量%以下の量であることがさらにより好ましい。カップリング剤が上記範囲内の量で配合されることにより、得られる樹脂組成物の融け性の改善と、樹脂組成物の耐マイグレーション性を両立することができる。 The coupling agent is preferably used in an amount of 0.01% by mass or more and 1.0% by mass or less, and in an amount of 0.05% by mass or more and 0.9% by mass or less, based on the entire resin composition. It is more preferable that the amount is 0.08% by mass or more and 0.8% by mass or less. By blending the coupling agent in an amount within the above range, it is possible to achieve both improvement in the meltability of the obtained resin composition and migration resistance of the resin composition.
 (その他の添加剤)
 本実施形態の樹脂組成物には、上記成分に加え、本発明の目的とする所望の特性を阻害しない範囲で、従来公知の添加剤、例えば、難燃剤、着色剤、シリコーン可とう剤、及びイオントラップ剤等を必要に応じて使用してもよい。
(Other additives)
In addition to the above components, the resin composition of the present embodiment contains conventionally known additives such as flame retardants, colorants, silicone flexible agents, and silicone flexible agents, as long as they do not interfere with the desired properties of the present invention. An ion trap agent or the like may be used as needed.
 本実施形態における、顆粒状樹脂組成物の特性について説明する。 The characteristics of the granular resin composition in the present embodiment will be described.
 本実施形態において、スリット式粘度測定装置にて測定される最低溶融粘度ηminの上限は、68000mPa・s以下であり、好ましくは60000mPa・s以下であり、より好ましくは50000mPa・s以下であり、さらに好ましくは、40000mPa・s以下である。これにより、封止材の充填性を良好にする。スリット式粘度測定装置にて測定される最低溶融粘度ηminの下限は、特に制限されないが、例えば1mPa・s以上であり、好ましくは50mPa・s以上である。 In the present embodiment, the upper limit of the minimum melt viscosity η min measured by the slit type viscosity measuring device is 68,000 mPa · s or less, preferably 60,000 mPa · s or less, and more preferably 50,000 mPa · s or less. More preferably, it is 40,000 mPa · s or less. As a result, the filling property of the sealing material is improved. The lower limit of the minimum melt viscosity η min measured by the slit type viscosity measuring device is not particularly limited, but is, for example, 1 mPa · s or more, preferably 50 mPa · s or more.
 本実施形態において、スリット式粘度測定装置にて測定される最低溶融粘度ηminに到達する時刻t1の上限は、15秒以下であり、好ましくは12秒以下であり、より好ましくは10秒以下である。これにより、封止材の充填性を良好にする。スリット式粘度測定装置にて測定される最低溶融粘度ηminに到達する時刻t1の下限は、特に制限されないが、例えば5秒以上である。
 また、ηmin到達後、溶融粘度が上昇して(ηmin+1000)(mPa・s)以上となる時刻をt2としたとき、t2-t1の下限は、1秒以上である。t2-t1の上限は、30秒以下であり、好ましくは25秒以下であり、より好ましくは、20秒以下である。t2-t1を上記下限値以上とすることで、樹脂組成物の可使時間を充分に取ることができ、封止材の充填性を良好とすることができる。また、t2-t1を上記上限値以下とすることで、硬化ムラを抑制でき、成形サイクルを長くすることができ、製造効率の低下を防ぐことができる。
In the present embodiment, the upper limit of the time t1 at which the minimum melt viscosity η min measured by the slit type viscosity measuring device is reached is 15 seconds or less, preferably 12 seconds or less, and more preferably 10 seconds or less. is there. As a result, the filling property of the sealing material is improved. The lower limit of the time t1 at which the minimum melt viscosity η min measured by the slit type viscosity measuring device is reached is not particularly limited, but is, for example, 5 seconds or more.
Further, when t2 is the time when the melt viscosity increases after reaching η min and becomes (η min +1000) (mPa · s) or more, the lower limit of t2-t1 is 1 second or more. The upper limit of t2-t1 is 30 seconds or less, preferably 25 seconds or less, and more preferably 20 seconds or less. By setting t2-t1 to the above lower limit value or more, the usable time of the resin composition can be sufficiently taken, and the filling property of the sealing material can be improved. Further, by setting t2-t1 to the above upper limit value or less, uneven curing can be suppressed, the molding cycle can be lengthened, and a decrease in manufacturing efficiency can be prevented.
 本実施形態において、アルミカップへ樹脂組成物を加え、175℃で3分加熱した場合に、加熱後の硬化した樹脂組成物をアルミカップから取り出し、加熱後の樹脂組成物がアルミカップ底面上で融けて広がった部分において、溶融した樹脂組成物とアルミカップ底面とが接触している接触部の面積をA1とし、溶融した樹脂組成物とアルミカップ底面とが接触していない空隙部の面積をA2としたときに、((A1/(A1+A2))×100)で表される融け性(充填率(%))が、30%以上100%以下となることが好ましい。これにより、封止材の充填性を良好にし、安定的な硬化物性を得ることができる。 In the present embodiment, when the resin composition is added to the aluminum cup and heated at 175 ° C. for 3 minutes, the cured resin composition after heating is taken out from the aluminum cup, and the heated resin composition is placed on the bottom surface of the aluminum cup. In the melted and expanded portion, the area of the contact portion where the molten resin composition and the bottom surface of the aluminum cup are in contact is defined as A1, and the area of the gap portion where the molten resin composition and the bottom surface of the aluminum cup are not in contact is defined as A1. When A2 is used, the meltability (filling rate (%)) represented by ((A1 / (A1 + A2)) × 100) is preferably 30% or more and 100% or less. As a result, the filling property of the sealing material can be improved and stable cured physical properties can be obtained.
 (顆粒状樹脂組成物の製造)
 本実施形態の顆粒状樹脂組成物の調製方法としては、上記成分を含有し、粒子径分布が上記のような範囲となるような粒子状のものが製造できれば、特に限定されない。具体的には、例えば、以下のようにして製造することができる。まず、上記成分および及び必要に応じて添加剤を所定の含有量となるように、タンブラーミキサーやヘンシェルミキサー等のミキサーやブレンダー等で均一に混合した後、ニーダー、ロール、ディスパー、アジホモミキサー、及びプラネタリーミキサー等で加熱しながら混練する。なお、混練時の温度としては、硬化反応が生じない温度範囲である必要があり、エポキシ樹脂及び硬化剤の組成にもよるが、70~150℃程度で溶融混練することが好ましい。混練後に冷却固化し、固化された混練物を粉砕機等で粉砕する。これにより、顆粒状の樹脂組成物を製造することができる。その後、粒子径分布が上記のような範囲となるように、樹脂組成物を篩にかけてもよい。
(Manufacturing of granular resin composition)
The method for preparing the granular resin composition of the present embodiment is not particularly limited as long as it can produce a granular resin composition containing the above components and having a particle size distribution in the above range. Specifically, for example, it can be produced as follows. First, the above components and, if necessary, additives are uniformly mixed with a mixer such as a tumbler mixer or a Henschel mixer or a blender so as to have a predetermined content, and then a kneader, a roll, a disper, an ajihomo mixer, etc. And knead while heating with a planetary mixer or the like. The temperature at the time of kneading needs to be in a temperature range in which a curing reaction does not occur, and although it depends on the composition of the epoxy resin and the curing agent, melt kneading is preferably performed at about 70 to 150 ° C. After kneading, it is cooled and solidified, and the solidified kneaded product is crushed with a crusher or the like. Thereby, a granular resin composition can be produced. Then, the resin composition may be sieved so that the particle size distribution is in the above range.
 (用途)
 本実施形態の顆粒状樹脂組成物は、リードフレームまたは回路基板上に搭載された半導体素子を、圧縮成形法を用いて封止するための封止材料として用いられる。
(Use)
The granular resin composition of the present embodiment is used as a sealing material for sealing a semiconductor element mounted on a lead frame or a circuit board by using a compression molding method.
 以下に、リードフレーム又は回路基板と、リードフレーム又は回路基板上に積層または並列して搭載された1以上の半導体素子と、リードフレーム又は回路基板と半導体素子とを電気的に接続するボンディングワイヤと、半導体素子とボンディングワイヤを封止する封止材とを備えた半導体装置について、図を用いて詳細に説明するが、本発明はボンディングワイヤを用いたものに限定されるものではない。 Below, a lead frame or a circuit board, one or more semiconductor elements laminated or mounted in parallel on the lead frame or the circuit board, and a bonding wire for electrically connecting the lead frame or the circuit board and the semiconductor element. The semiconductor device including the semiconductor element and the sealing material for sealing the bonding wire will be described in detail with reference to the drawings, but the present invention is not limited to the one using the bonding wire.
 図1は、本実施形態の樹脂組成物を用いて、リードフレームに搭載した半導体素子を封止して得られる半導体装置の一例について、断面構造を示した図である。ダイパッド403上に、ダイボンド材硬化体402を介して半導体素子401が固定されている。半導体素子401の電極パッドとリードフレーム405との間はワイヤ404によって接続されている。半導体素子401は、本実施形態の樹脂組成物の硬化体で構成される封止材406によって封止されている。 FIG. 1 is a diagram showing a cross-sectional structure of an example of a semiconductor device obtained by sealing a semiconductor element mounted on a lead frame using the resin composition of the present embodiment. The semiconductor element 401 is fixed on the die pad 403 via the cured die bond material 402. The electrode pad of the semiconductor element 401 and the lead frame 405 are connected by a wire 404. The semiconductor element 401 is sealed by a sealing material 406 composed of a cured product of the resin composition of the present embodiment.
 図2は、本実施形態の樹脂組成物を用いて、回路基板に搭載した半導体素子を封止して得られる半導体装置の一例について、断面構造を示した図である。回路基板408上にダイボンド材硬化体402を介して半導体素子401が固定されている。半導体素子401の電極パッド407と回路基板408上の電極パッド407との間はワイヤ404によって接続されている。本実施形態の樹脂組成物の硬化体で構成される封止材406によって、回路基板408の半導体素子401が搭載された面が封止されている。回路基板408上の電極パッド407は回路基板408上の非封止面側の半田ボール409と内部で接合されている。 FIG. 2 is a diagram showing a cross-sectional structure of an example of a semiconductor device obtained by sealing a semiconductor element mounted on a circuit board using the resin composition of the present embodiment. The semiconductor element 401 is fixed on the circuit board 408 via the cured die bond material 402. The electrode pad 407 of the semiconductor element 401 and the electrode pad 407 on the circuit board 408 are connected by a wire 404. The surface of the circuit board 408 on which the semiconductor element 401 is mounted is sealed by the sealing material 406 composed of the cured product of the resin composition of the present embodiment. The electrode pad 407 on the circuit board 408 is internally joined to the solder ball 409 on the unsealed surface side of the circuit board 408.
 本実施形態の樹脂組成物を封止材として備える半導体装置は、その封止工程においてワイヤ流れやワイヤの破損が生じないため優れた信頼性を有する。 The semiconductor device including the resin composition of the present embodiment as a sealing material has excellent reliability because wire flow and wire breakage do not occur in the sealing process.
(第2の実施形態)
 第2の実施形態における半導体封止用樹脂組成物は、タブレット状またはシート状である(以下、「タブレットまたはシート状樹脂組成物」と称する)。本実施形態のタブレット状またはシート状樹脂組成物は、(A)エポキシ樹脂と、(B)硬化剤と、(C)無機フィラーと、(D)分散剤とを含む。本実施形態の樹脂組成物において、エポキシ樹脂(A)は、ビフェニル型エポキシ樹脂、ビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ノボラック型エポキシ樹脂、多官能エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトール型エポキシ樹脂、トリアジン核含有エポキシ樹脂、有橋環状炭化水素化合物変性フェノール型エポキシ樹脂からなる群より選択される少なくとも1つを含む。また、本実施形態において、分散剤(D)は、ポリカルボン酸を主骨格とする高分子イオン性分散剤であり、分散剤(D)は、樹脂組成物全体に対して、0.01質量%以上5.0質量%以下の量である。
(Second Embodiment)
The semiconductor encapsulating resin composition in the second embodiment is in the form of a tablet or a sheet (hereinafter, referred to as “tablet or sheet-like resin composition”). The tablet-shaped or sheet-shaped resin composition of the present embodiment contains (A) an epoxy resin, (B) a curing agent, (C) an inorganic filler, and (D) a dispersant. In the resin composition of the present embodiment, the epoxy resin (A) is a biphenyl type epoxy resin, a bisphenol type epoxy resin, a stillben type epoxy resin, a phenol novolac type epoxy resin, a novolac type epoxy resin, a polyfunctional epoxy resin, a phenol aralkyl type. It contains at least one selected from the group consisting of an epoxy resin, a naphthol type epoxy resin, a triazine nucleus-containing epoxy resin, and a bridged cyclic hydrocarbon compound modified phenol type epoxy resin. Further, in the present embodiment, the dispersant (D) is a polymer ionic dispersant having a polycarboxylic acid as a main skeleton, and the dispersant (D) is 0.01 mass by mass with respect to the entire resin composition. The amount is% or more and 5.0% by mass or less.
 第2の実施形態の半導体封止用樹脂組成物において、上記成分(A)~(D)は、第1の実施形態で記載したものと同様の成分を使用できる。またこれらの成分の配合量についても、第1の実施形態の樹脂組成物における配合量と同様とすることができる。 In the semiconductor encapsulation resin composition of the second embodiment, the same components as those described in the first embodiment can be used as the components (A) to (D). Further, the blending amount of these components can be the same as the blending amount in the resin composition of the first embodiment.
 本実施形態の半導体樹脂組成物は、ビスマレイミド樹脂をさらに含んでもよい。ビスマレイミド樹脂は、第1の実施形態で使用したものと同様の樹脂を使用できる。 The semiconductor resin composition of the present embodiment may further contain a bismaleimide resin. As the bismaleimide resin, the same resin as that used in the first embodiment can be used.
 本実施形態の樹脂組成物は、タブレット状である場合、上記成分および及び必要に応じて添加剤を所定の含有量となるように、タンブラーミキサーやヘンシェルミキサー等のミキサーやブレンダー等で均一に混合した後、ニーダー、ロール、ディスパー、アジホモミキサー、及びプラネタリーミキサー等で加熱しながら混練し、これをタブレット状に打錠成形することにより製造できる。混練時の温度としては、硬化反応が生じない温度範囲である必要があり、エポキシ樹脂及び硬化剤の組成にもよるが、70~150℃程度で溶融混練することが好ましい。タブレット状の樹脂組成物は、トランスファー成形法、射出成形法および圧縮成形法等の公知の成型方法による半導体封止に用いることができる。 When the resin composition of the present embodiment is in the form of a tablet, the above components and, if necessary, additives are uniformly mixed with a mixer such as a tumbler mixer or a Henschel mixer or a blender so as to have a predetermined content. After that, the mixture is kneaded while being heated with a kneader, a roll, a disper, an azihomo mixer, a planetary mixer or the like, and this can be produced by tableting into a tablet shape. The temperature at the time of kneading needs to be in a temperature range in which a curing reaction does not occur, and although it depends on the composition of the epoxy resin and the curing agent, melt kneading is preferably performed at about 70 to 150 ° C. The tablet-shaped resin composition can be used for semiconductor encapsulation by known molding methods such as a transfer molding method, an injection molding method and a compression molding method.
 本実施形態の樹脂組成物は、シート状である場合、上記のように加熱混練された樹脂組成物を加圧部材間で加熱溶融し圧縮してシート状に成形することにより得られる。より具体的には、ポリエステルフィルム等の耐熱性の離型フィルム上に上記樹脂組成物を略均一な厚さになるように供給して樹脂層を形成した後、樹脂層を加熱軟化させながらロール及び熱プレスにより圧延する。その際、樹脂層上にもポリエステルフィルム等の耐熱性フィルムを配置する。このようにして樹脂層を所望の厚さに圧延した後、冷却固化し、耐熱性フィルムを剥離し、さらに必要に応じて所望の大きさ、形状に切断する。これにより、半導体封止用樹脂シートが得られる。なお、樹脂層を軟化させる際の加熱温度は、通常、70~150℃程度である。シート状樹脂組成物は、圧縮成形法による半導体封止に用いることができる。 When the resin composition of the present embodiment is in the form of a sheet, it is obtained by heating and melting the resin composition heat-kneaded as described above between the pressure members, compressing it, and forming it into a sheet. More specifically, the resin composition is supplied onto a heat-resistant release film such as a polyester film so as to have a substantially uniform thickness to form a resin layer, and then the resin layer is rolled while being heated and softened. And roll by hot press. At that time, a heat-resistant film such as a polyester film is also arranged on the resin layer. After rolling the resin layer to a desired thickness in this way, it is cooled and solidified, the heat-resistant film is peeled off, and further cut into a desired size and shape if necessary. As a result, a resin sheet for encapsulating a semiconductor can be obtained. The heating temperature for softening the resin layer is usually about 70 to 150 ° C. The sheet-shaped resin composition can be used for semiconductor encapsulation by a compression molding method.
 シート状樹脂組成物は、0.1mm以上2mm以下の厚みを有することが好ましい。上記範囲内であれば、破損のおそれがなく取扱い性に優れ、圧縮成形用金型への搬入が容易である。 The sheet-shaped resin composition preferably has a thickness of 0.1 mm or more and 2 mm or less. If it is within the above range, there is no risk of damage, it is excellent in handleability, and it is easy to carry it into a compression molding die.
 本実施形態のタブレットまたはシート状樹脂組成物の最低溶融粘度ηminは、1mPa・s以上68000mPa・s以下であり、好ましくは60000mPa・s以下であり、より好ましくは50000mPa・s以下であり、最も好ましくは、40000mPa・s以下である。上記範囲を超えると、充填性が低下し、ボイドや未充填部分が発生するおそれがある。なお、下限については特に制限がないが、たとえば、1mPa・s以上、あるいは50mPa・s以上とすることで充分である。 The minimum melt viscosity η min of the tablet or sheet resin composition of the present embodiment is 1 mPa · s or more and 68,000 mPa · s or less, preferably 60,000 mPa · s or less, more preferably 50,000 mPa · s or less, and most. Preferably, it is 40,000 mPa · s or less. If it exceeds the above range, the filling property is lowered, and voids and unfilled portions may be generated. The lower limit is not particularly limited, but for example, 1 mPa · s or more, or 50 mPa · s or more is sufficient.
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 Although the embodiments of the present invention have been described above, these are examples of the present invention, and various configurations other than the above can be adopted.
 以下、本発明を実施例および比較例により説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
 実施例、比較例で用いた成分を以下に示す。
(熱硬化性樹脂)
・エポキシ樹脂1:ビフェニル型エポキシ樹脂(三菱化学社製、YX4000K)
・エポキシ樹脂2:ビフェニルアラルキル型エポキシ樹脂(日本化薬社製、NC3000L)
The components used in Examples and Comparative Examples are shown below.
(Thermosetting resin)
-Epoxy resin 1: Biphenyl type epoxy resin (manufactured by Mitsubishi Chemical Corporation, YX4000K)
-Epoxy resin 2: Biphenyl aralkyl type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., NC3000L)
(硬化剤)
・硬化剤1:α-ナフトールアラルキル(東都化成社製、SN-485)
(Hardener)
・ Hardener 1: α-naphthol aralkyl (manufactured by Toto Kasei Co., Ltd., SN-485)
(無機フィラー)
・無機フィラー1:アルミナ(マイクロン社製、AX3-10R)
・無機フィラー2:シリカ(龍森社製、MUF-4)
(Inorganic filler)
-Inorganic filler 1: Alumina (made by Micron, AX3-10R)
-Inorganic filler 2: Silica (MUF-4, manufactured by Ryumori Co., Ltd.)
(分散剤)
・分散剤1:ポリカルボン酸を主骨格とする高分子イオン性分散剤(クローダジャパン株式会社製、HYPERMER KD-9、CAS No.58128-22-6、重量平均分子量 760、酸価 74mgKOH、融点 20℃)
・分散剤2:ポリカルボン酸を主骨格とする高分子イオン性分散剤(クローダジャパン社製、HYPERMER KD-4、重量平均分子量 1700、酸価 33mgKOH)
・分散剤3:ポリカルボン酸を主骨格とする高分子イオン性分散剤(クローダジャパン社製、HYPERMER KD-57)
(Dispersant)
Dispersant 1: High molecular weight ionic dispersant having a polycarboxylic acid as the main skeleton (manufactured by Crowder Japan Co., Ltd., HYPERMER KD-9, CAS No. 58128-22-6, weight average molecular weight 760, acid value 74 mgKOH, melting point 20 ° C)
Dispersant 2: High molecular weight ionic dispersant having a polycarboxylic acid as the main skeleton (manufactured by Claude Japan, HYPERMER KD-4, weight average molecular weight 1700, acid value 33 mgKOH)
Dispersant 3: High molecular weight ionic dispersant having a polycarboxylic acid as the main skeleton (manufactured by Croda Japan, HYPERMER KD-57)
(カップリング剤)
・カップリング剤1:N-フェニルアミノプロピルトリメトキシシラン(東レ・ダウコーニング株式会社製、CF-4083)
(Coupling agent)
-Coupling agent 1: N-Phenylaminopropyltrimethoxysilane (manufactured by Toray Dow Corning Co., Ltd., CF-4083)
(硬化促進剤)
・硬化促進剤1:テトラフェニルホスホニウムビス(ナフタレン-2,3-ジオキシ)フェニルシリケート(住友ベークライト社製)
・硬化促進剤2:テトラフェニルホスホニウム-4,4'-スルフォニルジフェノラート(住友ベークライト社製)
(Curing accelerator)
-Curing accelerator 1: Tetraphenylphosphonium bis (naphthalene-2,3-dioxy) Phenyl silicate (manufactured by Sumitomo Bakelite)
-Curing accelerator 2: Tetraphenylphosphonium-4,4'-sulfonyl diphenolate (manufactured by Sumitomo Bakelite)
(離型剤)
・離型剤1:グリセリントリモンタン酸エステル(クライアント・ジャパン社製、リコルブ WE-4)
・離型剤2:ジエタノールアミン ・ジモンタンエステル(クライアント・ジャパン社製、リコモント NC-133)
(Release agent)
-Release agent 1: Glycerin trimontanate (Recolve WE-4, manufactured by Client Japan)
-Release agent 2: Diethanolamine-Dimontan ester (manufactured by Client Japan, Recommon NC-133)
(着色剤)
・着色剤1:カーボンブラック(東海カーボン社製、ERS-2001)
(オイル)
・オイル1:カルボニル末端ブチルニトリルゴム(蝶理GLEX社製、CTBN1008SP)
(シリカ)
・シリカ1:シリカ(アドマテックス社製、SC-2500-SQ)
(Colorant)
-Colorant 1: Carbon black (manufactured by Tokai Carbon Co., Ltd., ERS-2001)
(oil)
-Oil 1: Carbonyl-terminated butylnitrile rubber (manufactured by Chori GLEX, CTBN1008SP)
(silica)
-Silica 1: Silica (manufactured by Admatex, SC-2500-SQ)
(実施例1~4、比較例1)
 表1で示す配合の樹脂組成物の原材料をスーパーミキサーにより5分間粉砕混合したのち、この混合原料を直径65mmのシリンダー内径を持つ同方向回転二軸押出機にてスクリュー回転数400rpm、100℃の樹脂温度で溶融混練した。次に、直径20cmの回転子の上方より溶融混練された樹脂組成物を2kg/hrの割合で供給し、回転子を3000rpmで回転させて得られる遠心力によって、115℃に加熱された円筒状外周部の複数の小孔(孔径1.2mm)を通過させた。その後、冷却することで顆粒状の封止用エポキシ樹脂組成物を得た。得られた顆粒状の封止用樹脂組成物は、15℃で相対湿度を55%RHに調整した空気気流下3時間撹拌した。得られた封止用樹脂組成物を、以下の項目について、以下に示す方法により評価した。
(Examples 1 to 4, Comparative Example 1)
The raw materials of the resin compositions having the formulations shown in Table 1 are pulverized and mixed by a super mixer for 5 minutes, and then the mixed raw materials are mixed with a screw rotation speed of 400 rpm and 100 ° C. It was melt-kneaded at the resin temperature. Next, a resin composition melt-kneaded from above a rotor having a diameter of 20 cm was supplied at a rate of 2 kg / hr, and the rotor was rotated at 3000 rpm to obtain a cylindrical shape heated to 115 ° C. by centrifugal force. A plurality of small holes (hole diameter 1.2 mm) on the outer peripheral portion were passed through. Then, it cooled to obtain the granular epoxy resin composition for sealing. The obtained granular resin composition for sealing was stirred at 15 ° C. for 3 hours under an air stream in which the relative humidity was adjusted to 55% RH. The obtained sealing resin composition was evaluated for the following items by the methods shown below.
(最低溶融粘度(175℃))
 スリット式粘度測定装置を用いて、溶融粘度を測定した。具体的には、低圧トランスファー成形機(NEC(株)製40tマニュアルプレス)を用いて、金型温度:175℃、注入速度Q:178mm/秒の条件にて、幅W:15mm、厚さD:1mm、長さ:175mmの矩形状の流路に得られた封止用樹脂組成物を注入し、トランスファー成形機の流路の上流先端から25mmの位置に埋設した圧力センサー1にてP1(kgf/cm)を測定し、流路の上流先端から75mmの位置に埋設した圧力センサー2にて圧力P2(kgf/cm)を測定し、(P1-P2)で表される圧力損失ΔP(kgf/cm)の経時変化を測定した。圧力センサー1と圧力センサー2の距離はL:50mmとした。次いで、測定結果から、封止用樹脂組成物の流動時における圧力損失ΔPを算出して、圧力損失ΔPが最低となる点を最低圧力損失ΔPmin(kgf/cm)とした。測定開始直後は、圧力の測定結果が安定しないため、最低圧力損失ΔPmin(kgf/cm)は、測定開始後5秒以降における最低圧力損失ΔP(kgf/cm)とした。
 上記圧力損失ΔP(kgf/cm)は、以下の式により、溶融粘度η(mPa・s)に換算できる。
 η(mPa・s)=(ΔP/10.1972×10・WD)×10/12QL
 最低圧力損失ΔPmin(kgf/cm)より換算した溶融粘度を最低溶融粘度ηmin(mPa・s)とする。
 溶融粘度がηmin(mPa・s)に到達する時刻をt1とする。またηmin(mPa・s)到達後、溶融粘度が上昇して、(ηmin+1000)(mPa・s)以上となる点に到達した時刻をt2とする。
 表1にΔPmin(kgf/cm)、ηmin(mPa・s)、t1、(ηmin+1000)(mPa・s)およびt2を示す。
(Minimum melt viscosity (175 ° C))
The melt viscosity was measured using a slit type viscosity measuring device. Specifically, using a low-pressure transfer molding machine (40t manual press manufactured by NEC Co., Ltd.), the mold temperature is 175 ° C., the injection speed is Q: 178mm, 3 / sec, the width W: 15mm, and the thickness. D: P1 by injecting the obtained sealing resin composition into a rectangular flow path of 1 mm and length: 175 mm, and using a pressure sensor 1 embedded at a position 25 mm from the upstream tip of the flow path of the transfer molding machine. (Kgf / cm 2 ) is measured, pressure P2 (kgf / cm 2 ) is measured by a pressure sensor 2 embedded at a position 75 mm from the upstream tip of the flow path, and pressure loss represented by (P1-P2) is measured. The time course of ΔP (kgf / cm 2) was measured. The distance between the pressure sensor 1 and the pressure sensor 2 was set to L: 50 mm. Next, the pressure loss ΔP at the time of flow of the sealing resin composition was calculated from the measurement results, and the point where the pressure loss ΔP became the minimum was defined as the minimum pressure loss ΔP min (kgf / cm 2 ). Since the pressure measurement result is not stable immediately after the start of measurement, the minimum pressure loss ΔP min (kgf / cm 2 ) was set to the minimum pressure loss ΔP (kgf / cm 2 ) 5 seconds after the start of measurement.
The pressure loss ΔP (kgf / cm 2 ) can be converted into a melt viscosity η (mPa · s) by the following formula.
η (mPa · s) = (ΔP / 10.1972 × 10 6 · WD 3 ) × 10 3 / 12QL
The melt viscosity converted from the minimum pressure loss ΔP min (kgf / cm 2 ) is defined as the minimum melt viscosity η min (mPa · s).
Let t1 be the time when the melt viscosity reaches η min (mPa · s). Further, the time at which the melt viscosity increases after reaching η min (mPa · s) and reaches a point of (η min +1000) (mPa · s) or more is defined as t2.
Table 1 shows ΔP min (kgf / cm 2 ), η min (mPa · s), t1, (η min +1000) (mPa · s) and t2.
(融け性(充填率))
 得られた樹脂組成物の融け性を、以下に記載する「充填率」を指標として評価した。まず、アルミカップ(直径50mm、外周高さ10mm、厚み70μm)に実施例及び比較例の得られた粉粒状の封止用樹脂組成物(7g)を加え、175℃に設定したオーブンで3分加熱した。アルミカップから硬化した樹脂組成物を取りだし、アルミカップの底面と接していた樹脂組成物の面をデジタルカメラで撮影し画像化した。得られた画像を二値化し、加熱後の樹脂組成物がアルミカップ底面上で融けて広がった部分において、溶融した樹脂組成物とアルミカップ底面とが接触している接触部の面積(A1)と、溶融した樹脂組成物とアルミカップ底面とが接触していない空隙部の面積(A2)を計測し、充填率(%)を式(1)で示すように算出した。充填率(%)の値が大きいほど、樹脂組成物の融け性が優れていることを示す。
 [充填率(%)]
 充填率[%]=(A1/(A1+A2))×100・・・(1)
 それぞれの結果を、以下の表1に示す。
(Melting property (filling rate))
The meltability of the obtained resin composition was evaluated using the "filling rate" described below as an index. First, the powder-granular sealing resin composition (7 g) obtained in Examples and Comparative Examples was added to an aluminum cup (diameter 50 mm, outer circumference height 10 mm, thickness 70 μm), and the oven was set at 175 ° C. for 3 minutes. It was heated. The cured resin composition was taken out from the aluminum cup, and the surface of the resin composition in contact with the bottom surface of the aluminum cup was photographed with a digital camera and imaged. The obtained image is binarized, and the area of the contact portion where the melted resin composition and the bottom surface of the aluminum cup are in contact with each other in the portion where the heated resin composition is melted and spread on the bottom surface of the aluminum cup (A1). The area (A2) of the gap portion where the molten resin composition and the bottom surface of the aluminum cup are not in contact with each other was measured, and the filling rate (%) was calculated as shown by the formula (1). The larger the filling rate (%) value, the better the meltability of the resin composition.
[Filling rate(%)]
Filling rate [%] = (A1 / (A1 + A2)) x 100 ... (1)
The results of each are shown in Table 1 below.
(流動性(スパイラルフロー))
 低圧トランスファー成形機(コータキ精機株式会社製、KTS-15)を用いて、EMMI-1-66に準じたスパイラルフロー測定用金型に、金型温度175℃、注入圧力6.9MPa、保圧時間120秒の条件で、樹脂組成物を注入し、流動長を測定した。スパイラルフローは、流動性の指標であり、数値が大きい方が、流動性が良好である。単位はcm。
(Liquidity (spiral flow))
Using a low-pressure transfer molding machine (KTS-15, manufactured by Kotaki Seiki Co., Ltd.), a mold for measuring spiral flow according to EMMI-1-66 has a mold temperature of 175 ° C, an injection pressure of 6.9 MPa, and a holding time. The resin composition was injected under the condition of 120 seconds, and the flow length was measured. Spiral flow is an index of liquidity, and the larger the value, the better the liquidity. The unit is cm.
(室温(25℃)における弾性率)
 上記方法で得られた顆粒状の封止用樹脂組成物を、長さ80mm以上、高さ4mm、巾10mmの試験片を作製した。この試験片を、ポストキュアした後、クロスヘッド速度2mm/min、支点間距離64mmの条件で曲げ応力を徐々に加えて、荷重―歪み曲線を求め、試験片の曲げ弾性率を計算した。N=2で測定を行い、その平均値を代表値とした。
(Elastic modulus at room temperature (25 ° C))
A test piece having a length of 80 mm or more, a height of 4 mm, and a width of 10 mm was prepared from the granular sealing resin composition obtained by the above method. After post-curing this test piece, bending stress was gradually applied under the conditions of a crosshead speed of 2 mm / min and a distance between fulcrums of 64 mm to obtain a load-strain curve, and the flexural modulus of the test piece was calculated. The measurement was performed at N = 2, and the average value was used as a representative value.
(260℃における弾性率)
 上記方法で得られた顆粒状の封止用樹脂組成物を、長さ80mm以上、高さ4mm、巾10mmの試験片を作製した。この試験片を、ポストキュアした後、260度の恒温槽内でクロスヘッド速度2mm/min、支点間距離64mmの条件で曲げ応力を徐々に加えて、荷重―歪み曲線を求め、試験片の曲げ弾性率を計算した。N=2で測定を行い、その平均値を代表値とした。
(Elastic modulus at 260 ° C)
A test piece having a length of 80 mm or more, a height of 4 mm, and a width of 10 mm was prepared from the granular sealing resin composition obtained by the above method. After post-curing this test piece, bending stress is gradually applied under the conditions of a crosshead speed of 2 mm / min and a distance between fulcrums of 64 mm in a constant temperature bath at 260 degrees to obtain a load-strain curve and bend the test piece. The elastic modulus was calculated. The measurement was performed at N = 2, and the average value was used as a representative value.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 比較例の融け性(充填率)の測定(※1)は、樹脂組成物が、融けずに粒状のままであったことを示す。 The measurement of the meltability (filling rate) of the comparative example (* 1) indicates that the resin composition did not melt and remained granular.
 実施例の封止用樹脂組成物は、優れた融け性および流動性を有しており、基板に搭載された半導体素子を圧縮成形法にて封止するために用いられる封止材料として好適に使用できるものであった。 The sealing resin composition of the examples has excellent meltability and fluidity, and is suitable as a sealing material used for sealing a semiconductor element mounted on a substrate by a compression molding method. It was usable.
 この出願は、2019年8月30日に出願された日本出願特願2019-158029号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Application Japanese Patent Application No. 2019-158029 filed on August 30, 2019, and incorporates all of its disclosures herein.

Claims (23)

  1.  (A)エポキシ樹脂およびビスマレイミド樹脂からなる群より選択される少なくとも1つの熱硬化性樹脂と、
     (B)硬化剤と、
     (C)無機フィラーと、
     (D)分散剤と、を含む半導体封止用の樹脂組成物であって、
     以下<溶融粘度測定条件>において測定される最低溶融粘度ηminが、1mPa・s以上68000mPa・s以下であり、
     顆粒状である、半導体封止用樹脂組成物。
    <溶融粘度測定条件>
     金型温度:175℃、注入速度Q:178mm/秒の条件にて、幅W:15mm、厚さD:1mm、長さ:175mmの矩形状の流路を有するスリット式粘度測定装置を用いて測定する。溶融粘度測定開始後5秒後以降における最低溶融粘度をηminとする。
    (A) At least one thermosetting resin selected from the group consisting of an epoxy resin and a bismaleimide resin, and
    (B) Hardener and
    (C) Inorganic filler and
    (D) A resin composition for encapsulating a semiconductor, which comprises a dispersant.
    The minimum melt viscosity η min measured in the following <Measurement conditions for melt viscosity> is 1 mPa · s or more and 68,000 mPa · s or less.
    A granular resin composition for encapsulating semiconductors.
    <Measurement conditions for melt viscosity>
    Mold temperature: 175 ° C., injection rate Q: at 178 mm 3 / sec condition, the width W: a slit-type viscosity measuring apparatus having a rectangular shaped flow path of 175mm: 15 mm, thickness D: 1 mm, length To measure. Let η min be the minimum melt viscosity 5 seconds after the start of melt viscosity measurement.
  2.  前記分散剤(D)が、ポリカルボン酸を主骨格とする高分子イオン性分散剤である、請求項1に記載の半導体封止用樹脂組成物。 The resin composition for semiconductor encapsulation according to claim 1, wherein the dispersant (D) is a polymer ionic dispersant having a polycarboxylic acid as a main skeleton.
  3.  前記ポリカルボン酸を主骨格とする高分子イオン性分散剤が、下記式(3)で示される化合物を含む、請求項2に記載の半導体封止用樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
     (式(3)において、pおよびmは繰り返し単位数を表し、pは1~20の整数であり、mは1~5の整数であり、Rは、置換基を有してもよい炭素数1~10のアルキル基である)。
    The resin composition for semiconductor encapsulation according to claim 2, wherein the polymer ionic dispersant having a polycarboxylic acid as a main skeleton contains a compound represented by the following formula (3).
    Figure JPOXMLDOC01-appb-C000001
    (In formula (3), p and m represent the number of repeating units, p is an integer of 1 to 20, m is an integer of 1 to 5, and R 3 is a carbon which may have a substituent. It is an alkyl group of numbers 1 to 10).
  4.  前記熱硬化性樹脂が前記エポキシ樹脂を含み、前記エポキシ樹脂が、ビフェニル型エポキシ樹脂、ビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ノボラック型エポキシ樹脂、多官能エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトール型エポキシ樹脂、トリアジン核含有エポキシ樹脂、有橋環状炭化水素化合物変性フェノール型エポキシ樹脂からなる群より選択される少なくとも1つを含む、請求項1~3のいずれかに記載の半導体封止用樹脂組成物。 The thermosetting resin contains the epoxy resin, and the epoxy resin is a biphenyl type epoxy resin, a bisphenol type epoxy resin, a stillben type epoxy resin, a phenol novolac type epoxy resin, a novolak type epoxy resin, a polyfunctional epoxy resin, a phenol aralkyl. The invention according to any one of claims 1 to 3, further comprising at least one selected from the group consisting of a type epoxy resin, a naphthol type epoxy resin, a triazine nucleus-containing epoxy resin, and a bridged cyclic hydrocarbon compound modified phenol type epoxy resin. Resin composition for encapsulating semiconductors.
  5.  (E)硬化促進剤をさらに含む、請求項1~4のいずれかに記載の半導体封止用樹脂組成物。 (E) The resin composition for semiconductor encapsulation according to any one of claims 1 to 4, further comprising a curing accelerator.
  6.  前記無機フィラー(C)が、シリカおよびアルミナから選択される少なくとも1つを含む、請求項1~5のいずれかに記載の半導体封止用樹脂組成物。 The resin composition for semiconductor encapsulation according to any one of claims 1 to 5, wherein the inorganic filler (C) contains at least one selected from silica and alumina.
  7.  前記分散剤(D)が、樹脂組成物全体に対して、0.1質量%以上2.0質量%以下の量である、請求項1~6のいずれかに記載の半導体封止用樹脂組成物。 The semiconductor encapsulating resin composition according to any one of claims 1 to 6, wherein the dispersant (D) is in an amount of 0.1% by mass or more and 2.0% by mass or less with respect to the entire resin composition. Stuff.
  8.  前記無機フィラー(C)が、樹脂組成物全体に対して、80.0質量%以上97.0質量%以下の量である、請求項1~7のいずれかに記載の半導体封止用樹脂組成物。 The semiconductor encapsulating resin composition according to any one of claims 1 to 7, wherein the inorganic filler (C) is in an amount of 80.0% by mass or more and 97.0% by mass or less with respect to the entire resin composition. Stuff.
  9.  請求項1~8のいずれかに記載の半導体封止用の樹脂組成物であって、
     前記<溶融粘度測定条件>において測定される、前記最低溶融粘度ηminに到達する時刻をt1とし、前記最低溶融粘度ηminに到達後、溶融粘度が上昇して(ηmin+1000)mPa・s以上となる点に到達した時刻をt2としたときに、t2-t1が1秒以上30秒以下である、半導体封止用樹脂組成物。
    The resin composition for encapsulating a semiconductor according to any one of claims 1 to 8.
    The time when the minimum melt viscosity η min measured in the <melt viscosity measurement condition> is reached is t1, and after reaching the minimum melt viscosity η min , the melt viscosity increases (η min +1000) mPa · s. A resin composition for encapsulating a semiconductor, in which t2-t1 is 1 second or more and 30 seconds or less, where t2 is the time when the above points are reached.
  10.  請求項1~9のいずれかに記載の半導体封止用の樹脂組成物であって、
     前記最低溶融粘度ηminに到達する時刻t1が5秒以上15秒以下である、半導体封止用樹脂組成物。
    The resin composition for encapsulating a semiconductor according to any one of claims 1 to 9.
    A resin composition for encapsulating a semiconductor, in which the time t1 at which the minimum melt viscosity η min is reached is 5 seconds or more and 15 seconds or less.
  11.  請求項1~10のいずれかに記載の半導体封止用の樹脂組成物であって、
     加熱後の樹脂組成物がアルミカップ底面上で融けて広がった部分において、以下<融け性>の試験において測定される充填率(%)が30%以上100%以下である、半導体封止用樹脂組成物。
     <融け性>
     アルミカップ(直径50mm、外周高さ10mm、厚み70μm)に樹脂組成物(7g)を加え、175℃に設定したオーブンで3分加熱する。アルミカップから硬化した樹脂組成物を取りだし、溶融した樹脂組成物とアルミカップ底面とが接触している接触部の面積をA1とし、溶融した樹脂組成物とアルミカップ底面とが接触していない空隙部の面積をA2としたときに、「充填率(%)」を以下の式(1)により算出する。
     充填率[%]=(A1/(A1+A2))×100・・・(1)
    The resin composition for encapsulating a semiconductor according to any one of claims 1 to 10.
    A semiconductor encapsulating resin in which the filling rate (%) measured in the <meltability> test below is 30% or more and 100% or less in the portion where the heated resin composition melts and spreads on the bottom surface of the aluminum cup. Composition.
    <Melting property>
    The resin composition (7 g) is added to an aluminum cup (diameter 50 mm, outer circumference height 10 mm, thickness 70 μm) and heated in an oven set at 175 ° C. for 3 minutes. The cured resin composition is taken out from the aluminum cup, the area of the contact portion where the molten resin composition and the bottom surface of the aluminum cup are in contact is set to A1, and the gap between the molten resin composition and the bottom surface of the aluminum cup is not in contact. When the area of the part is A2, the "filling rate (%)" is calculated by the following formula (1).
    Filling rate [%] = (A1 / (A1 + A2)) x 100 ... (1)
  12.  基板上に搭載された半導体素子と、
     前記半導体素子を封止する封止部材と、を備える半導体装置であって、
     前記封止部材が、請求項1~11のいずれかに記載の半導体封止用樹脂組成物の硬化物からなる、半導体装置。
    Semiconductor elements mounted on the substrate and
    A semiconductor device including a sealing member for sealing the semiconductor element.
    A semiconductor device in which the sealing member is a cured product of the resin composition for sealing a semiconductor according to any one of claims 1 to 11.
  13.  (A)エポキシ樹脂と、
     (B)硬化剤と、
     (C)無機フィラーと、
     (D)分散剤と、を含む半導体封止用樹脂組成物であって、
     前記エポキシ樹脂(A)が、ビフェニル型エポキシ樹脂、ビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ノボラック型エポキシ樹脂、多官能エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトール型エポキシ樹脂、トリアジン核含有エポキシ樹脂、有橋環状炭化水素化合物変性フェノール型エポキシ樹脂からなる群より選択される少なくとも1つを含み、
     前記分散剤(D)が、ポリカルボン酸を主骨格とする高分子イオン性分散剤であり、
     前記分散剤(D)が、樹脂組成物全体に対して、0.01質量%以上5.0質量%以下の量である、半導体封止用樹脂組成物。
    (A) Epoxy resin and
    (B) Hardener and
    (C) Inorganic filler and
    (D) A resin composition for encapsulating a semiconductor, which comprises a dispersant.
    The epoxy resin (A) is a biphenyl type epoxy resin, a bisphenol type epoxy resin, a stillben type epoxy resin, a phenol novolac type epoxy resin, a novolac type epoxy resin, a polyfunctional epoxy resin, a phenol aralkyl type epoxy resin, a naphthol type epoxy resin, Contains at least one selected from the group consisting of triazine nuclei-containing epoxy resins and bridged cyclic hydrocarbon compound modified phenolic epoxy resins.
    The dispersant (D) is a polymer ionic dispersant having a polycarboxylic acid as a main skeleton.
    A resin composition for encapsulating a semiconductor, wherein the dispersant (D) is in an amount of 0.01% by mass or more and 5.0% by mass or less with respect to the entire resin composition.
  14.  請求項13に記載の半導体封止用樹脂組成物であって、
     タブレット状またはシート状である、半導体封止用樹脂組成物。
    The semiconductor encapsulating resin composition according to claim 13.
    A resin composition for encapsulating a semiconductor, which is in the form of a tablet or a sheet.
  15.  請求項13に記載の半導体封止用樹脂組成物であって、
     顆粒状である、半導体封止用樹脂組成物。
    The semiconductor encapsulating resin composition according to claim 13.
    A granular resin composition for encapsulating semiconductors.
  16.  ビスマレイミド樹脂をさらに含む、請求項13~15のいずれかに記載の半導体封止用樹脂組成物。 The resin composition for semiconductor encapsulation according to any one of claims 13 to 15, further comprising a bismaleimide resin.
  17.  以下<溶融粘度測定条件>において測定される最低溶融粘度ηminが、1mPa・s以上68000mPa・s以下である、請求項13~16のいずれかに記載の半導体封止用樹脂組成物。
     <溶融粘度測定条件>
     金型温度:175℃、注入速度Q:178mm/秒の条件にて、幅W:15mm、厚さD:1mm、長さ:175mmの矩形状の流路を有するスリット式粘度測定装置を用いて測定する。溶融粘度測定開始後5秒後以降における最低溶融粘度をηminとする。
    The resin composition for semiconductor encapsulation according to any one of claims 13 to 16, wherein the minimum melt viscosity η min measured in the following <Measurement conditions for melt viscosity> is 1 mPa · s or more and 68,000 mPa · s or less.
    <Measurement conditions for melt viscosity>
    Using a slit-type viscosity measuring device having a rectangular flow path with a width W: 15 mm, a thickness D: 1 mm, and a length: 175 mm under the conditions of a mold temperature of 175 ° C. and an injection speed of Q: 178 mm 3 / sec. To measure. Let η min be the minimum melt viscosity 5 seconds after the start of melt viscosity measurement.
  18.  前記ポリカルボン酸を主骨格とする高分子イオン性分散剤が、下記式(3)で示される化合物を含む、請求項13~17のいずれかに記載の半導体封止用樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
     (式(3)において、pおよびmは繰り返し単位数を表し、pは1~20の整数であり、mは1~5の整数であり、Rは、置換基を有してもよい炭素数1~10のアルキル基である)。
    The resin composition for semiconductor encapsulation according to any one of claims 13 to 17, wherein the polymer ionic dispersant having a polycarboxylic acid as a main skeleton contains a compound represented by the following formula (3).
    Figure JPOXMLDOC01-appb-C000002
    (In formula (3), p and m represent the number of repeating units, p is an integer of 1 to 20, m is an integer of 1 to 5, and R 3 is a carbon which may have a substituent. It is an alkyl group of numbers 1 to 10).
  19.  (E)硬化促進剤をさらに含む、請求項13~18のいずれかに記載の半導体封止用樹脂組成物。 (E) The resin composition for semiconductor encapsulation according to any one of claims 13 to 18, further comprising a curing accelerator.
  20.  前記無機フィラー(C)が、シリカおよびアルミナから選択される少なくとも1つを含む、請求項13~19のいずれかに記載の半導体封止用樹脂組成物。 The resin composition for semiconductor encapsulation according to any one of claims 13 to 19, wherein the inorganic filler (C) contains at least one selected from silica and alumina.
  21.  前記分散剤(D)が、樹脂組成物全体に対して、0.1質量%以上2.0質量%以下の量である、請求項13~20のいずれかに記載の半導体封止用樹脂組成物。 The semiconductor encapsulating resin composition according to any one of claims 13 to 20, wherein the dispersant (D) is in an amount of 0.1% by mass or more and 2.0% by mass or less with respect to the entire resin composition. Stuff.
  22.  前記無機フィラー(C)が、樹脂組成物全体に対して、80.0質量%以上97.0質量%以下の量である、請求項13~21のいずれかに記載の半導体封止用樹脂組成物。 The semiconductor encapsulating resin composition according to any one of claims 13 to 21, wherein the inorganic filler (C) is in an amount of 80.0% by mass or more and 97.0% by mass or less with respect to the entire resin composition. Stuff.
  23.  基板上に搭載された半導体素子と、
     前記半導体素子を封止する封止部材と、を備える半導体装置であって、
     前記封止部材が、請求項13~22のいずれかに記載の半導体封止用樹脂組成物の硬化物からなる、半導体装置。
    Semiconductor elements mounted on the substrate and
    A semiconductor device including a sealing member for sealing the semiconductor element.
    A semiconductor device in which the sealing member is a cured product of the resin composition for sealing a semiconductor according to any one of claims 13 to 22.
PCT/JP2020/032084 2019-08-30 2020-08-25 Semiconductor encapsulation resin composition, and semiconductor device WO2021039809A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080060595.3A CN114364736A (en) 2019-08-30 2020-08-25 Resin composition for semiconductor encapsulation and semiconductor device
KR1020227009993A KR102435734B1 (en) 2019-08-30 2020-08-25 Resin composition for semiconductor encapsulation and semiconductor device
JP2021521068A JP6950854B2 (en) 2019-08-30 2020-08-25 Resin composition for semiconductor encapsulation and semiconductor devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-158029 2019-08-30
JP2019158029 2019-08-30

Publications (1)

Publication Number Publication Date
WO2021039809A1 true WO2021039809A1 (en) 2021-03-04

Family

ID=74685899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/032084 WO2021039809A1 (en) 2019-08-30 2020-08-25 Semiconductor encapsulation resin composition, and semiconductor device

Country Status (5)

Country Link
JP (1) JP6950854B2 (en)
KR (1) KR102435734B1 (en)
CN (1) CN114364736A (en)
TW (1) TW202116560A (en)
WO (1) WO2021039809A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016009814A (en) * 2014-06-26 2016-01-18 京セラケミカル株式会社 Resin sheet for sealing semiconductor, and resin seal-type semiconductor device
JP2016219600A (en) * 2015-05-20 2016-12-22 京セラ株式会社 Die attach paste for semiconductor and semiconductor device
JP2018024747A (en) * 2016-08-09 2018-02-15 京セラ株式会社 Resin composition for sealing and semiconductor device
JP2018039925A (en) * 2016-09-08 2018-03-15 京セラ株式会社 Resin composition for semiconductor adhesion and semiconductor device
WO2018150779A1 (en) * 2017-02-14 2018-08-23 京セラ株式会社 Resin composition, resin sheet, semiconductor device and method for producing semiconductor device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5189606B2 (en) 2010-01-26 2013-04-24 パナソニック株式会社 Epoxy resin composition for semiconductor encapsulation, and semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016009814A (en) * 2014-06-26 2016-01-18 京セラケミカル株式会社 Resin sheet for sealing semiconductor, and resin seal-type semiconductor device
JP2016219600A (en) * 2015-05-20 2016-12-22 京セラ株式会社 Die attach paste for semiconductor and semiconductor device
JP2018024747A (en) * 2016-08-09 2018-02-15 京セラ株式会社 Resin composition for sealing and semiconductor device
JP2018039925A (en) * 2016-09-08 2018-03-15 京セラ株式会社 Resin composition for semiconductor adhesion and semiconductor device
WO2018150779A1 (en) * 2017-02-14 2018-08-23 京セラ株式会社 Resin composition, resin sheet, semiconductor device and method for producing semiconductor device

Also Published As

Publication number Publication date
KR20220047384A (en) 2022-04-15
KR102435734B1 (en) 2022-08-25
CN114364736A (en) 2022-04-15
TW202116560A (en) 2021-05-01
JPWO2021039809A1 (en) 2021-09-13
JP6950854B2 (en) 2021-10-13

Similar Documents

Publication Publication Date Title
TWI549241B (en) Method for manufacturing wafer sealant and semiconductor device
JP6880567B2 (en) Manufacturing method of epoxy resin composition for semiconductor encapsulation and semiconductor device
JP4892164B2 (en) Liquid epoxy resin composition and electronic component device
JP3794349B2 (en) Liquid epoxy resin composition for sealing and semiconductor device
KR20180013751A (en) Epoxy resin composition for encapsulating semiconductor device, and semiconductor device
JP6233441B2 (en) Liquid epoxy resin composition and electronic component device
JP6315170B2 (en) Epoxy resin composition for semiconductor encapsulation, semiconductor packaging structure, and method for producing the same
JP2022116077A (en) Thermosetting resin composition for lds and manufacturing method of semiconductor device
JP2021059741A (en) Epoxy resin composition for semiconductor encapsulation and method for manufacturing semiconductor device
JP4569137B2 (en) Semiconductor sealing resin composition and semiconductor device
JP2021024945A (en) Granular semiconductor-sealing resin composition and semiconductor device
JP7167912B2 (en) Liquid encapsulating resin composition, electronic component device, and method for manufacturing electronic component device
JP2020107767A (en) Sealing resin composition, hollow package and method for manufacturing the same
JP2009057575A (en) Liquid epoxy resin composition and electronic component device
WO2021039809A1 (en) Semiconductor encapsulation resin composition, and semiconductor device
JP3365725B2 (en) Epoxy resin composition and semiconductor device
JPH08157561A (en) Semiconductor-sealing epoxy resin composition and semiconductor device
JP2020107768A (en) Hollow package and method for manufacturing the same
TWI803608B (en) Particulate encapsulating composition, semiconductor device and method for producing thereof
JP5708666B2 (en) Liquid epoxy resin composition and electronic component device
JP2010209266A (en) Liquid epoxy resin composition for sealing semiconductor, and flip-chip semiconductor device sealed with the same as underfill material
JP2016040393A (en) Liquid epoxy resin composition, and electronic component device
JP2009013308A (en) Sheet-like epoxy resin composition and semiconductor device using the same
JP3444237B2 (en) Liquid epoxy resin composition for semiconductor encapsulation and semiconductor device
JP5924443B2 (en) Liquid epoxy resin composition and electronic component device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20858311

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021521068

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227009993

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20858311

Country of ref document: EP

Kind code of ref document: A1