WO2021039802A1 - Semiconductor element, and method for manufacturing semiconductor element - Google Patents

Semiconductor element, and method for manufacturing semiconductor element Download PDF

Info

Publication number
WO2021039802A1
WO2021039802A1 PCT/JP2020/032062 JP2020032062W WO2021039802A1 WO 2021039802 A1 WO2021039802 A1 WO 2021039802A1 JP 2020032062 W JP2020032062 W JP 2020032062W WO 2021039802 A1 WO2021039802 A1 WO 2021039802A1
Authority
WO
WIPO (PCT)
Prior art keywords
main
back surface
semiconductor element
groove
surface side
Prior art date
Application number
PCT/JP2020/032062
Other languages
French (fr)
Japanese (ja)
Inventor
英明 山路
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Publication of WO2021039802A1 publication Critical patent/WO2021039802A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting

Definitions

  • the present disclosure relates to a semiconductor element and a method for manufacturing the semiconductor element.
  • a plurality of functional regions are formed in a main part material including a semiconductor such as a wafer. Then, the main part material is cut so as to divide these functional regions individually.
  • a contact layer made of metal is formed on the back surface side of the main part material. Then, in the above cutting, dicing using a dicing blade is performed from the main surface side opposite to the back surface side. As a result, a plurality of semiconductor elements, each having the above functional region, are formed.
  • dicing with laser light is also being developed.
  • chipping does not occur because the main material and the contact layer are separated by vaporization.
  • burrs on the contact layer do not occur.
  • the laser beam melts a portion of the contact layer and attaches it to the cut sides of the main material. Since the deposit is conductive, when it reaches the main surface of the main material, the electrode formed on the main surface and the contact layer may be made conductive.
  • the present disclosure has been devised under the above circumstances, and one of the problems thereof is to provide a semiconductor element capable of suppressing defects caused by dicing, and a method for manufacturing the semiconductor element.
  • the semiconductor element provided by the first aspect of the present disclosure comprises at least a part of a semiconductor and is orthogonal to a main surface and a back surface facing opposite sides in the thickness direction and a first direction orthogonal to the thickness direction.
  • a main portion having a main surface side first side surface connected to the main surface, a main surface facing the same side as the main surface side first side surface, and a back surface side first side surface connected to the back surface, and the main surface.
  • the back surface electrode layer covers at least a part of the back surface of the portion, the back surface side first side surface is located outside the main surface side first side surface in the first direction, and the back surface electrode layer is It is provided with a first stretched portion that covers at least a part of the first side surface on the back surface side.
  • the method for manufacturing a semiconductor device provided by the second aspect of the present disclosure comprises at least a part made of a semiconductor, a main surface and a back surface facing opposite sides in the thickness direction, and at least a part of the back surface.
  • the groove forming step of forming the first groove by deleting a part of the main surface side of the main part material and the dimensions of the first direction orthogonal to the thickness direction and the second direction are the first.
  • a dividing step of forming a first slit that is equal to or less than the dimension of the groove in the first direction, is included in the first groove in the thickness direction, and divides the main material in the thickness direction.
  • the division step is performed by irradiation with a laser beam.
  • the first groove is formed first on the main surface side of the main part material, and the first slit included in the first groove is formed by irradiation with laser light in the thickness direction.
  • the main part material and the back surface electrode layer are separated and manufactured.
  • the main part material and the back surface electrode layer are not separated, so that the main part material sways less and chipping is less likely to occur.
  • the division is performed by irradiating the laser beam, the shaking of the main material is small and the occurrence of chipping is suppressed.
  • burrs on the conductor layer do not occur.
  • a part of the conductor layer melted by the irradiation of the laser beam L adheres to the cut side surface, but the deposit is connected to the main surface side of the main part material by the first groove formed earlier. Is suppressed.
  • FIG. 6 is a cross-sectional view taken along the line VII-VII of FIG.
  • FIG. 3 is an enlarged cross-sectional view taken along the line XIV-XIV of FIG. It is a photograph of an example of an actually created semiconductor element shown in FIG. It is sectional drawing which shows the semiconductor device which mounted the semiconductor element which concerns on 1st Embodiment. It is a perspective view which shows the semiconductor element which concerns on 2nd Embodiment.
  • FIG. 6 is an enlarged cross-sectional view taken along the line XVIII-XVIII of FIG. It is an enlarged sectional view which shows the semiconductor element which concerns on 3rd Embodiment. It is sectional drawing which shows the process of forming the 1st groove in the manufacturing method of the semiconductor element shown in FIG. It is a perspective view which shows the semiconductor element which concerns on 4th Embodiment. It is a bottom view which shows the main part material used in the manufacturing method of the semiconductor element shown in FIG.
  • 1 to 12 show a method for manufacturing a semiconductor element according to the first embodiment.
  • FIG. 1 is a plan view of the main material 10 in the z-direction, which is the thickness direction.
  • FIG. 2 is a perspective view of the main material 10.
  • FIG. 3 is a cross-sectional view taken along the line III-III of FIG.
  • the main material 10 is made of at least a part of a semiconductor material, and in the present embodiment, is made of Si in which an n-type region and a p-type region are formed. That is, prior to the states shown in FIGS. 1 to 3, the main material 10 is formed with a plurality of functional regions that should perform a predetermined function of the semiconductor element in the wafer state.
  • the thickness of the main part material 10 is, for example, 80 to 260 ⁇ m, and is 150 ⁇ m in this embodiment.
  • the thickness of the main material 10 is not limited.
  • the main material 10 has a main surface 101 and a back surface 102.
  • the main surface 101 and the back surface 102 face each other in the z direction.
  • a plurality of main surface electrodes 4 and an insulating layer 30 are formed on the main surface 101.
  • the plurality of main surface electrodes 4 are electrodes conducting on the functional region, and are made of, for example, Au.
  • the insulating layer 30 is made of, for example, SiO 2 , and has a thickness of, for example, 3 to 10 ⁇ m.
  • a plurality of openings 31 are formed in the insulating layer 30. Each opening 31 exposes the main surface electrode 4.
  • a plurality of insulating layer first slits 32a and a plurality of insulating layer second slits 32b are formed in the insulating layer 30.
  • the first slit 32a of the insulating layer is formed by removing a part of the insulating layer 30 along the x direction.
  • the plurality of insulating layer first slits 32a extend in the x direction and are spaced apart from each other in the y direction at equal pitches.
  • the second slit 32b of the insulating layer is formed by removing a part of the insulating layer 30 along the y direction.
  • the plurality of insulating layer second slits 32b extend in the y direction and are spaced apart from each other in the x direction at equal pitches.
  • One main surface electrode 4 is arranged in each of the plurality of rectangular regions partitioned by the plurality of insulating layer first slits 32a and the plurality of insulating layer second slits 32b.
  • a conductor layer 20 is formed on the back surface 102.
  • the conductor layer 20 is a layer made of a metal such as Au, and in the present embodiment, covers the entire back surface 102.
  • the thickness of the conductor layer 20 is, for example, about 2 ⁇ m.
  • the main material 10 is held by the holding tape Dt.
  • the upper surface of the holding tape Dt is an adhesive surface in the drawing.
  • the main part material 10 is held by the holding tape Dt in a posture in which the back surface 102 faces downward in the z direction and faces the holding tape Dt. Therefore, the insulating layer 30 is exposed upward in the z direction.
  • the first groove 103a is formed.
  • the first groove 103a is formed, for example, by cutting with a dicing blade Dc.
  • the dicing blade Dc is used to sequentially delete the region near the main surface 101 of the main material 10 along the x direction to form the first groove 103a extending in the x direction.
  • the dicing blade Dc is scanned along the first slit 32a of the insulating layer. As a result, the region near the main surface 101 of the main part material 10 exposed from the first slit 32a of the insulating layer is deleted.
  • the width of the dicing blade Dc is about the same as the width (dimension in the y direction) of the first slit 32a of the insulating layer.
  • the depth of the first groove 103a is, for example, about 30 to 200 ⁇ m, and the width of the first groove 103a is, for example, about 15 to 50 ⁇ m. In the present embodiment, the depth of the first groove 103a is about 100 ⁇ m, which is about two-thirds of the thickness of the main part material 10. In addition, each dimension is not limited.
  • the main material 10 is not cut in the thickness direction, and the first groove 103a having the above-mentioned dimensions is formed.
  • a second groove 103b extending in the y direction is formed.
  • the formation of the second groove 103b is performed, for example, by cutting with a dicing blade Dc, similarly to the formation of the first groove 103a. That is, by scanning the dicing blade Dc along the second slit 32b of the insulating layer, the region near the main surface 101 of the main material 10 exposed from the second slit 32b of the insulating layer is sequentially deleted in the y direction.
  • the extending second groove 103b is formed.
  • a plurality of second grooves 103b are formed, each extending in the y direction and being spaced apart from each other at equal pitches in the x direction.
  • the conditions such as the removal depth of the dicing blade Dc are the same as the conditions in the formation of the first groove 103a. Therefore, the second groove 103b has the same configuration as the first groove 103a, except that the main difference is that the extending direction is different from that of the first groove 103a.
  • the protective film 8 is formed.
  • the protective film 8 is made of a water-soluble resin material, for example, a material containing polyvinyl alcohol or the like.
  • laser processing waste debris
  • the debris adhering to the main material 10 causes device defects such as bonding defects and an increase in leakage current.
  • the protective film 8 is formed to prevent debris from directly adhering to the main material 10.
  • the protective film 8 is formed by being applied to the main surface 101 side of the main part material 10 and solidified.
  • the protective film 8 is formed so as to cover the main surface 101 of the main part material 10, the insulating layer 30, and the plurality of main surface electrodes 4, and is also formed on the inner surfaces of the plurality of first grooves 103a and the plurality of second grooves 103b. Will be done.
  • a part of the main material 10 is deleted so as to penetrate in the z direction along the x direction.
  • This deletion is performed by dicing with the laser beam L. That is, the laser beam L from the pulse-oscillated laser light source is condensed by the condenser lens, and the condensed laser beam L is irradiated to the main part material 10 from the z direction.
  • the irradiation output is adjusted so as to penetrate the main material 10 and the conductor layer 20 and not penetrate the holding tape Dt. Dicing along the x direction is performed by scanning the irradiation of the laser beam L along the first groove 103a.
  • the irradiation width of the laser beam in the y direction is smaller than the width of the first groove 103a. Further, in the z-direction view, the irradiation region of the laser beam overlaps the first groove 103a, and is further included in the first groove 103a in the y-direction. As a result, the first slit 104a is formed.
  • the first slit 104a is formed from the bottom surface of the first groove 103a to the back surface 102 in the z direction, and divides the main part material 10 in the thickness direction.
  • the width dimension (dimension in the y direction) of the first slit 104a is smaller than the width dimension of the first groove 103a, for example, by about 10 ⁇ m, and the first slit 104a is included in the first groove 103a in the z-direction view.
  • the first slit 104a penetrates from the bottom surface of the first groove 103a to the back surface 102, and the side surface of the first slit 104a is from the side surface of the first groove 103a in the y direction. Is also located on the outside. Further, as shown in FIG. 11, a first connecting surface 15a connected to the side surface of the first slit 104a and the side surface of the first groove 103a is formed. The shape of the first connecting surface 15a depends on the shape of the dicing blade Dc when the first groove 103a is formed. In the present embodiment, as shown in FIG. 5, the cross section of the dicing blade Dc parallel to the rotation axis has a U-shaped end and rounded corners.
  • the first connecting surface 15a includes a curved surface portion 16a and an orthogonal portion 17a.
  • the curved surface portion 16a is a concave curved surface portion connected to the side surface of the first groove 103a.
  • the orthogonal portion 17a is a portion connected to the side surface of the first slit 104a and orthogonal to the side surface of the first slit 104a, and is a flat portion facing the z direction.
  • the back surface 102 has a first end edge 102a that extends long in the x direction. At least a part of the first end edge 102a overlaps with the conductor layer 20 in the z-direction view, and in the present embodiment, the first end edge 102a overlaps with the conductor layer 20 over the entire length of the first end edge 102a.
  • the conductor layer 20 has a first stretched portion 22a.
  • the first stretched portion 22a extends from the first end edge 102a toward the main surface 101 (upward in the z direction) and covers a part of the side surface of the first slit 104a.
  • an example in which the first stretched portion 22a exists over the entire length of the first end edge 102a is given as a typical example, but the first stretched portion 22a exists only in a part of the first end edge 102a. It may be a configuration.
  • the first stretched portion 22a is formed by melting a part of the conductor layer 20 by the laser beam when the first slit 104a is formed and adhering to the side surface of the first slit 104a. Since the first groove 103a is covered with the protective film 8, the first stretched portion 22a is not formed so as to be in direct contact with the first groove 103a.
  • the irradiation width of the laser beam in the x direction is smaller than the width of the second groove 103b.
  • the irradiation region of the laser beam overlaps the second groove 103b, and is further included in the second groove 103b in the x-direction. As a result, the second slit 104b is formed.
  • the second slit 104b is formed from the bottom surface of the second groove 103b to the back surface 102 in the z direction, and divides the main part material 10 in the thickness direction.
  • the width dimension (dimension in the x direction) of the second slit 104b is smaller than the width dimension of the second groove 103b, for example, by about 10 ⁇ m, and the second slit 104b is included in the second groove 103b in the z-direction view.
  • a plurality of second slits 104b are formed by repeating the scanning of the irradiation of the laser beam along the y direction a plurality of times.
  • the second slit 104b penetrates from the bottom surface of the second groove 103b to the back surface 102, and the side surface of the second slit 104b is located outside the side surface of the second groove 103b in the x direction.
  • a second connecting surface 15b is formed which connects the side surface of the second slit 104b and the side surface of the second groove 103b.
  • the shape of the second connecting surface 15b depends on the shape of the dicing blade Dc when the second groove 103b is formed.
  • the second connecting surface 15b includes a curved surface portion 16b and an orthogonal portion 17b.
  • the curved surface portion 16b is a concave curved surface portion connected to the side surface of the second groove 103b.
  • the orthogonal portion 17b is a portion connected to the side surface of the second slit 104b and orthogonal to the side surface of the second slit 104b, and is a flat portion facing the z direction.
  • the back surface 102 has a second edge 102b that extends long in the y direction due to the formation of the second slit 104b.
  • the second edge 102b overlaps at least a part of the conductor layer 20 in the z direction, and in the present embodiment, the second edge 102b overlaps the conductor layer 20 over the entire length of the second edge 102b.
  • the conductor layer 20 has a second stretched portion 22b.
  • the second extending portion 22b extends from the second end edge 102b toward the main surface 101 (upward in the z direction) and covers a part of the side surface of the second slit 104b.
  • an example in which the second stretched portion 22b exists over the entire length of the second edge 102b is given as a typical example, but the second stretched portion 22b is present only in a part of the second edge 102b. It may be a configuration.
  • the second stretched portion 22b is formed by melting a part of the conductor layer 20 by the laser light when the second slit 104b is formed and adhering to the side surface of the second slit 104b. Since the second groove 103b is covered with the protective film 8, the second stretched portion 22b is not formed so as to be in direct contact with the second groove 103b.
  • each semiconductor element A1 is divided into a plurality of individual pieces. By going through the above steps, the semiconductor element A1 is formed.
  • FIG. 13 and 14 show the semiconductor element A1.
  • FIG. 13 is a perspective view showing the semiconductor element A1.
  • FIG. 14 is an enlarged cross-sectional view taken along the line XIV-XIV of FIG.
  • the semiconductor element A1 includes a main portion 1, a back surface electrode layer 2, an insulating layer 3, and a main surface electrode 4.
  • the semiconductor element A1 of this embodiment is configured as, for example, a diode.
  • the main part 1 is composed of individual pieces obtained by dividing the main part material 10.
  • the main portion 1 of the present embodiment has a rectangular shape in the z-direction, and the lengths of the side extending in the x direction and the side extending in the y direction are, for example, 0.4 mm to 6 mm.
  • the thickness of the main portion 1 in the z direction is, for example, 80 ⁇ m to 260 ⁇ m, and is 150 ⁇ m in the present embodiment. In addition, each dimension is not limited.
  • the main portion 1 has a main surface 11 and a back surface 12.
  • the main surface 11 and the back surface 12 face in opposite directions in the z direction.
  • At least a part of the main part 1 is formed of a semiconductor, and in the present embodiment, most of the main part 1 is made of Si.
  • the main portion 1 has two main surface side first side surfaces 13a, a back surface side first side surface 14a, a main surface side second side surface 13b, and a back surface side second side surface 14b.
  • the first side surface 13a on the main surface side is a portion that was the first groove 103a
  • the first side surface 14a on the back surface side is a portion that was the first slit 104a.
  • the second side surface 13b on the main surface side is a portion that was the second groove 103b
  • the second side surface 14b on the back surface side is a portion that was the second slit 104b.
  • the first side surface 13a on the main surface side and the second side surface 13b on the main surface side are flat because they are formed by cutting with the dicing blade Dc.
  • the back surface side first side surface 14a and the back surface side second side surface 14b are formed by irradiating the laser beam L in the z direction, a groove extending in the z direction is formed.
  • the first side surface 13a on the main surface side is orthogonal to the y direction and is connected to the main surface 11.
  • the back surface side first side surface 14a faces the same side as the main surface side first side surface 13a and is connected to the back surface 12.
  • the back surface side first side surface 14a is located outside the main surface side first side surface 13a by, for example, about 5 ⁇ m in the y direction.
  • the two main surface side first side surfaces 13a face each other in the y direction. Further, the two back surface side first side surfaces 14a face each other in the y direction.
  • the second side surface 13b on the main surface side is orthogonal to the x direction and is connected to the main surface 11.
  • the back surface side second side surface 14b faces the same side as the main surface side second side surface 13b and is connected to the back surface 12.
  • the back surface side second side surface 14b is located outside the main surface side second side surface 13b by, for example, about 5 ⁇ m in the x direction.
  • the two main surface side second side surfaces 13b face each other in the x direction. Further, the two back surface side second side surfaces 14b face each other in the x direction.
  • the main part 1 has two first connection surfaces 15a and two second connection surfaces 15b.
  • the first connecting surface 15a is connected to the main surface side first side surface 13a and the back surface side first side surface 14a.
  • the first connecting surface 15a includes a curved surface portion 16a and an orthogonal portion 17a.
  • the curved surface portion 16a is a concave curved surface portion connected to the first side surface 13a on the main surface side.
  • the orthogonal portion 17a is a portion connected to the back surface side first side surface 14a and orthogonal to the back surface side first side surface 14a, and is a flat portion facing the z direction.
  • the second connecting surface 15b is connected to the main surface side second side surface 13b and the back surface side second side surface 14b.
  • the second connecting surface 15b includes a curved surface portion 16b and an orthogonal portion 17b.
  • the curved surface portion 16b is a concave curved surface portion connected to the second side surface 13b on the main surface side.
  • the orthogonal portion 17b is a portion that is connected to the back surface side second side surface 14b and is orthogonal to the back surface side second side surface 14b, and is a flat portion that faces the z direction.
  • the z-direction dimension h1 of the main surface side first side surface 13a is larger than the z-direction dimension h2 of the back surface side first side surface 14a, and in the present embodiment, it is about twice the dimension h2.
  • the z-direction dimension h1 of the main surface side first side surface 13a is about 100 ⁇ m
  • the z-direction dimension h2 of the back surface side first side surface 14a is about 50 ⁇ m. It is desirable that the dimension h1 is 5 times or less the dimension h2.
  • the z-direction dimension of the main surface side second side surface 13b is larger than the z direction dimension of the back surface side second side surface 14b, and in the present embodiment, it is about twice the z direction dimension of the back surface side second side surface 14b. .. In the present embodiment, the z-direction dimension of the main surface side second side surface 13b is about 100 ⁇ m, and the z-direction dimension of the back surface side second side surface 14b is about 50 ⁇ m. In addition, each dimension is not limited.
  • the z-direction dimensions of the back surface side first side surface 14a and the back surface side second side surface 14b are 50 ⁇ m in order to secure the strength of the main part material 10 in which the first groove 103a and the second groove 103b are formed at the time of manufacturing. The above is desirable.
  • the back surface electrode layer 2 is formed on the back surface 12, and in the present embodiment, covers the entire back surface 12.
  • the back surface electrode layer 2 is a layer made of a metal such as Au, and in the present embodiment, the thickness thereof is, for example, about 2 ⁇ m.
  • the back surface electrode layer 2 covers each of the first end edge 12a connected to the back surface side first side surface 14a of the back surface 12 and the second end edge 12b connected to the back surface side second side surface 14b of the back surface 12 and the entire surface thereof.
  • the back surface electrode layer 2 is formed by dividing the conductor layer 20.
  • the back electrode layer 2 has two first stretched portions 22a and two second stretched portions 22b.
  • Each of the first stretched portions 22a covers at least a part of each back surface side first side surface 14a, and in the present embodiment, as shown in FIG. 13, the first end edge is over the entire length of the first end edge 12a. It extends from 12a toward the main surface 11 side.
  • Each second extending portion 22b covers at least a part of each back surface side second side surface 14b, and in the present embodiment, as shown in FIG. 13, the second end edge over the entire length of the second end edge 12b. It extends from 12b toward the main surface 11 side.
  • the dicing step using the laser beam is performed after the protective film 8 is formed on the inner surfaces of the plurality of first grooves 103a and the plurality of second grooves 103b, a part of the conductor layer 20 melted by the laser beam is formed. It does not adhere to the first groove 103a or the second groove 103b. Therefore, the first stretched portion 22a does not extend to the main surface side first side surface 13a and does not cover the main surface side first side surface 13a. Further, the second stretched portion 22b does not stretch to the main surface side second side surface 13b and does not cover the main surface side second side surface 13b.
  • the main surface electrode 4 is an electrode that conducts to the functional region, and is made of, for example, Au.
  • the insulating layer 3 is formed by dividing the insulating layer 30 and is composed of, for example, SiO 2 , and has a thickness of, for example, 3 to 10 ⁇ m.
  • An opening 31 is formed in the insulating layer 3. The opening 31 exposes the main surface electrode 4.
  • FIG. 15 is a photograph of an example of the semiconductor element A1 actually created.
  • FIG. 15 shows the semiconductor element A1 centered on the main surface side first side surface 13a and the back surface side first side surface 14a from the back surface 12 side of the main portion 1.
  • the first stretched portion 22a extended from the back surface electrode layer 2 covers most of the back surface side first side surface 14a, while hardly covering the main surface side second side surface 13b. ..
  • FIG. 16 shows a semiconductor device C1 manufactured by using the semiconductor element A1.
  • the semiconductor device C1 includes a semiconductor element A1, a lead 51, a lead 52, a wire 6, and a sealing resin 7.
  • the leads 51 and 52 are made of, for example, Cu, and the surfaces thereof may be plated with Ni, if necessary.
  • a semiconductor element A1 is mounted on the lead 51. More specifically, the semiconductor element A1 leads by co-crystallizing the back electrode layer 2 and the lead 51 by applying ultrasonic vibration while pressing the back electrode layer 2 of the semiconductor element A1 against the reed 51. It is joined to 51.
  • the lead 52 is conducting with the main surface electrode 4 of the semiconductor element A1 via the wire 6.
  • the sealing resin 7 covers all of the semiconductor element A1 and the wire 6, and a part of the lead 51 and the lead 52, and is made of, for example, a black epoxy resin. The portion of the lead 51 and the lead 52 exposed from the sealing resin 7 is used as a mounting terminal for mounting the semiconductor device C1 on a circuit board or the like.
  • the first groove 103a and the second groove 103b are formed first on the main surface 101 side of the main part material 10, and the protective film 8 is formed, and then in the z-direction view.
  • the main material 10 and the conductor layer 20 are separated by forming the first slit 104a contained in the first groove 103a and the second slit 104b contained in the second groove 103b by irradiation with the laser beam L. Manufactured.
  • the dicing blade is less likely to shake and chipping is less likely to occur.
  • the division is performed by irradiating the laser beam L, chipping does not occur at the time of division. Further, burrs on the conductor layer 20 do not occur. Further, a part of the conductor layer 20 melted by irradiation with the laser beam L adheres to the back surface side first side surface 14a and the back surface side second side surface 14b, which are the cut side surfaces, and the first stretched portion 22a and the first stretched portion 22a.
  • the two stretched portions 22b are formed, but since the protective film 8 is formed on the inner surfaces of the first groove 103a and the second groove 103b formed earlier, the first side surface 13a on the main surface side and the first side surface on the main surface side The two side surfaces 13b are not covered by the first stretched portion 22a and the second stretched portion 22b. Therefore, the first stretched portion 22a and the second stretched portion 22b do not stretch to the main surface 11 of the main portion 1, and the conduction between the main surface electrode 4 and the back surface electrode layer 2 can be prevented.
  • the first stretched portion 22a in which the back surface electrode layer 2 is stretched is formed on the back surface side first side surface 14a, and the back surface electrode layer 2 is stretched on the back surface side second side surface 14b.
  • the portion 22b is formed. Therefore, as shown in FIG. 16, when the semiconductor element A1 is bonded to the lead 51, the lead 51 is eutectic and bonded to the first stretched portion 22a and the second stretched portion 22b. Thereby, the joint strength can be increased. In addition, it is easy to determine the bonding state between the semiconductor element A1 and the lead 51 after bonding by visual inspection.
  • the back surface side first side surface 14a and the back surface side second side surface 14b are formed by irradiating the laser beam L in the z direction, a groove extending in the z direction is formed. Therefore, as shown in FIG. 16, when the semiconductor element A1 is sealed by the sealing resin 7, the unevenness of the groove prevents the main portion 1 and the sealing resin 7 from peeling off. Can be done.
  • the main surface side first side surface 13a and the main surface side second side surface 13b are flat because they are formed by cutting with the dicing blade Dc. Therefore, it is easy to pick up the semiconductor element A1 with a collet.
  • FIG. 17 is a perspective view showing the semiconductor element A2, and is a diagram corresponding to FIG.
  • FIG. 18 is an enlarged cross-sectional view taken along the line XVIII-XVIII of FIG.
  • the semiconductor element A2 is different from the semiconductor element A1 according to the first embodiment in that the main surface side first side surface 13a and the main surface side second side surface 13b are also formed by irradiation with the laser beam L.
  • the semiconductor element A2 is irradiated with the laser beam L instead of cutting with the dicing blade Dc.
  • the output of the irradiation is adjusted so as to remove it to a predetermined depth without penetrating the main material 10. Therefore, as shown in FIG. 17, grooves extending in the z direction are formed on the main surface side first side surface 13a and the main surface side second side surface 13b, similarly to the back surface side first side surface 14a and the back surface side second side surface 14b. Has been done.
  • the first connecting surface 15a and the second connecting surface 15b are surfaces on which fine irregularities are formed.
  • the first groove 103a and the second groove 103b are formed first on the main surface 101 side of the main part material 10, and the first slit 104a and the second slit 104b are the laser beams L. It is formed and manufactured by irradiation. Therefore, the occurrence of chipping is suppressed and the occurrence of burrs is prevented. Further, the conduction between the main surface electrode 4 and the back surface electrode layer 2 can be prevented.
  • the first stretched portion 22a is formed on the first side surface 14a on the back surface side
  • the second stretched portion 22b is formed on the second side surface 14b on the back surface side. Therefore, the bonding strength between the semiconductor element A2 and the lead 51 can be increased, and the bonding state can be easily determined by visual inspection.
  • the back surface side first side surface 14a and the back surface side second side surface 14b are formed with grooves extending in the z direction. Therefore, when the semiconductor element A2 is sealed by the sealing resin 7, it is possible to prevent the main portion 1 and the sealing resin 7 from peeling off.
  • FIG. 19 is an enlarged cross-sectional view showing the semiconductor element A3, and is a view corresponding to FIG.
  • FIG. 20 is a cross-sectional view showing a step of forming the first groove in the method of manufacturing the semiconductor element A3, and is a diagram corresponding to FIG.
  • the semiconductor element A3 is different from the semiconductor element A1 according to the first embodiment in that the protective film 8 is not formed in the manufacturing process.
  • the main portion 1 of the semiconductor element A3 has a smaller z-direction dimension h1 of the first side surface 13a on the main surface side than the main portion 1 of the semiconductor element A1 (see FIG. 14), and the back surface side.
  • the z-direction dimension h2 of the first side surface 14a is large.
  • the width dimension (dimension in the y direction) of the first connecting surface 15a is large.
  • the semiconductor element A3 is formed by cutting shallowly with a wide dicing blade Dc in the process of forming the first groove 103a.
  • the z-direction dimension of the second side surface 13b on the main surface side is smaller, the z-direction dimension of the second side surface 14b on the back surface side is larger, and the width dimension of the second connection surface 15b is larger than that of the semiconductor element A1. large.
  • the semiconductor element A3 after the first groove 103a and the second groove 103b are formed, the first slit 104a and the second slit 104b are formed without forming the protective film 8.
  • the shape of the main portion 1 of the semiconductor element A3 is the above-mentioned shape, the first stretched portion 22a and the second stretched portion 22b are stretched to the main surface 11 of the main portion 1 even when the protective film 8 is not formed in the manufacturing process. There is little to do.
  • the first groove 103a and the second groove 103b are formed first on the main surface 101 side of the main part material 10, and the first slit 104a and the second slit 104b are the laser beams L. It is formed and manufactured by irradiation. Therefore, the occurrence of chipping is suppressed and the occurrence of burrs is prevented. Further, the conduction between the main surface electrode 4 and the back surface electrode layer 2 can be suppressed.
  • the first stretched portion 22a is formed on the first side surface 14a on the back surface side
  • the second stretched portion 22b is formed on the second side surface 14b on the back surface side. Therefore, the bonding strength between the semiconductor element A3 and the lead 51 can be increased, and the bonding state can be easily determined by visual inspection.
  • the back surface side first side surface 14a and the back surface side second side surface 14b are formed with grooves extending in the z direction. Therefore, when the semiconductor element A3 is sealed by the sealing resin 7, it is possible to prevent the main portion 1 and the sealing resin 7 from peeling off.
  • the main surface side first side surface 13a and the main surface side second side surface 13b are flat. Therefore, it is easy to pick up the semiconductor element A3 with a collet.
  • the shape of the main portion 1 of the semiconductor element A3 is different from the shape of the main portion 1 of the semiconductor element A1 has been described, but the present disclosure is not limited to this.
  • the shape of the main portion 1 of the semiconductor element A3 is described above so that the first stretched portion 22a and the second stretched portion 22b are difficult to stretch to the main surface 11 of the main portion 1 even when the protective film 8 is not formed. It is supposed to have been done. Even if the shape of the main portion 1 is the same as that of the semiconductor element A1, the first stretched portion 22a and the second stretched portion 22b are the main parts of the main portion 1 as compared with the conventional semiconductor element that cuts only by the laser beam L. It is possible to suppress stretching to the surface 11.
  • the z of the main surface side first side surface 13a and the main surface side second side surface 13b It is desirable to reduce the directional dimension, increase the z-direction dimension of the back surface side first side surface 14a and the back surface side second side surface 14b, and increase the width dimension of the first connection surface 15a and the second connection surface 15b. Further, it is desirable to reduce the width dimension of the first slit 104a and the second slit 104b.
  • FIG. 21 is a perspective view showing the semiconductor element A4, and is a diagram corresponding to FIG.
  • FIG. 22 is a bottom view showing a main part material used in the method for manufacturing the semiconductor element A4, and is a view corresponding to a view of FIG. 1 from the bottom side.
  • the holding tape Dt is transmitted and shown by a two-dot chain line.
  • the semiconductor element A4 according to the first embodiment is formed by penetrating the second slit 104b from the main surface 101 to the back surface 102 of the main part material 10 without forming the second groove 103b in the manufacturing process. Different from A1.
  • the main portion 1 of the semiconductor element A4 does not include the main surface side second side surface 13b, and the back surface side second side surface 14b is connected to the main surface 11 and the back surface 12. Further, the back surface electrode layer 2 does not cover the entire back surface 12, but exposes the entire second end edge 12b connected to the back surface side second side surface 14b. Therefore, the back surface electrode layer 2 does not have the second stretched portion 22b.
  • the main material 10 used in the method for manufacturing the semiconductor element A4 has a plurality of conductor layers 20 formed on the back surface 102.
  • pointillism is attached to the conductor layer 20.
  • the plurality of conductor layers 20 extend in the y direction and are spaced apart from each other in the x direction at equal pitches.
  • Each conductor layer 20 overlaps the entire main surface electrode 4 and does not overlap each insulating layer second slit 32b in the z-direction view.
  • Each conductor layer 20 may or may not overlap a part of each main surface electrode 4 in the z-direction view.
  • the second groove 103b is not formed and the protective film 8 is formed.
  • the first slit 104a and the second slit 104b are formed by dicing with the laser beam L.
  • the second slit 104b penetrates from the main surface 101 to the back surface 102 of the main material 10. Since each conductor layer 20 does not overlap with each insulating layer second slit 32b, in the formation of the second slit 104b, it is not melted by the laser beam and the second stretched portion 22b is not formed.
  • the first groove 103a is formed first on the main surface 101 side of the main part material 10, and the first slit 104a and the second slit 104b are formed by irradiation with the laser beam L.
  • the occurrence of chipping is suppressed and the occurrence of burrs is prevented.
  • a part of the conductor layer 20 melted by irradiation with the laser beam L adheres to the first side surface 14a on the back surface side, which is the cut side surface, to form the first stretched portion 22a, but the first stretched portion 22a is formed first.
  • the protective film 8 is formed on the inner surface of the first groove 103a, the first side surface 13a on the main surface side is not covered by the first extension portion 22a. Further, since each conductor layer 20 does not overlap with each insulating layer second slit 32b, the second stretched portion 22b is not formed. Therefore, the conduction between the main surface electrode 4 and the back surface electrode layer 2 can be suppressed.
  • the bonding strength between the semiconductor element A4 and the lead 51 can be increased, and the bonding state is determined by visual inspection. It's easy to do.
  • the back surface side first side surface 14a and the back surface side second side surface 14b are formed with grooves extending in the z direction. Therefore, when the semiconductor element A4 is sealed by the sealing resin 7, it is possible to prevent the main portion 1 and the sealing resin 7 from peeling off.
  • the semiconductor element and the method for manufacturing the semiconductor element according to the present disclosure are not limited to the above-described embodiment.
  • the specific configuration of each part of the semiconductor element according to the present disclosure and the specific processing of each step of the method for manufacturing the semiconductor element of the present disclosure can be variously redesigned.
  • Appendix 1 The main surface and the back surface, which are at least partly made of a semiconductor and face opposite to each other in the thickness direction, and the first surface on the main surface side which is orthogonal to the first direction orthogonal to the thickness direction and is connected to the main surface. And a main portion having the same side as the first side surface on the main surface side and the first side surface on the back surface side connected to the back surface.
  • a back electrode layer that covers at least a part of the back surface of the main portion, With The back surface side first side surface is located outside the main surface side first side surface in the first direction.
  • the back surface electrode layer is a semiconductor device including a first stretched portion that covers at least a part of the back surface side first side surface. Appendix 2.
  • the semiconductor element according to Appendix 1 wherein a groove extending in the thickness direction is formed on the first side surface on the back surface side.
  • Appendix 3. The semiconductor element according to Appendix 1 or 2, wherein the first side surface on the main surface side is flat.
  • Appendix 4. The semiconductor element according to Appendix 1 or 2, wherein a groove extending in the thickness direction is formed on the first side surface on the main surface side.
  • Appendix 5. The semiconductor element according to any one of Supplementary note 1 to 4, wherein the first stretched portion does not cover the first side surface on the main surface side.
  • Appendix 6. The semiconductor element according to any one of Supplementary note 1 to 5, wherein the back surface electrode layer covers the entire first end edge connected to the back surface side first side surface of the back surface.
  • Appendix 8. The semiconductor element according to any one of Appendix 1 to 7, wherein the back surface electrode layer covers the entire back surface.
  • Appendix 9. The semiconductor element according to any one of Supplementary note 1 to 8, wherein the main portion further includes a first connecting surface that connects the first side surface on the main surface side and the first side surface on the back surface side.
  • the first connecting surface includes a concave curved surface portion connected to the first side surface on the main surface side and an orthogonal portion connected to the first side surface on the back surface side and orthogonal to the first side surface on the back surface side.
  • Appendix 11 The semiconductor element according to any one of Supplementary note 1 to 10, wherein the dimension of the first side surface on the main surface side in the thickness direction is larger than the dimension of the first side surface on the back surface side in the thickness direction.
  • Appendix 12 The semiconductor element according to Appendix 11, wherein the dimension of the first side surface on the main surface side in the thickness direction is five times or less the dimension in the thickness direction of the first side surface on the back surface side.
  • Appendix 13 The semiconductor element according to any one of Supplementary note 1 to 12, wherein the dimension of the first side surface on the back surface side in the thickness direction is 50 ⁇ m or more. Appendix 14.
  • the main portion is any one of Supplementary notes 1 to 13, which has two main surface side first side surfaces and two back surface side first side surfaces facing each other in the first direction.
  • the main portion has a main surface side second side surface orthogonal to the thickness direction and a second direction orthogonal to the first direction and connected to the main surface, and the same side as the main surface side second side surface. It also has a second side surface on the back surface side that is oriented and is connected to the back surface.
  • the back surface side second side surface is located outside the main surface side second side surface in the second direction.
  • Appendix 16 The semiconductor element according to Appendix 15, wherein the main portion has two main surface side second side surfaces and two back surface side second side surfaces facing each other in the second direction.
  • Appendix 17. A preparatory step of preparing a main material, which is at least partly made of a semiconductor, has a main surface and a back surface facing opposite sides in the thickness direction, and at least a part of the back surface is covered with a conductor layer.
  • a dividing step of forming a first slit for dividing the main material in the thickness direction, and With The dividing step is a method for manufacturing a semiconductor element, which is performed by irradiating a laser beam.
  • Appendix 18 The method for manufacturing a semiconductor device according to Appendix 17, wherein the groove forming step is performed by cutting with a dicing blade.
  • Appendix 19 The method for manufacturing a semiconductor device according to Appendix 17, wherein the groove forming step is performed by irradiating the laser beam. Appendix 20.
  • a protective film forming step which is performed between the groove forming step and the dividing step to form a protective film on the inner surface of the first groove
  • a protective film removing step which is performed after the dividing step and removes the protective film
  • the dimension in the second direction is not more than or equal to the dimension in the second direction of the second groove, and the second groove is included in the second groove in the thickness direction view, and the main The method for manufacturing a semiconductor device according to any one of Supplementary note 17 to 20, wherein a second slit for dividing a part material in the thickness direction is formed.
  • A1 to A4 Semiconductor element 1: Main part 11: Main surface 12: Back surface 12a: First end edge 12b: Second end edge 13a: Main surface side first side surface 13b: Main surface side second side surface 14a: Back surface side first One side surface 14b: Back surface side Second side surface 15a: First connection surface 16a: Curved surface portion 17a: Orthogonal portion 15b: Second connection surface 16b: Curved surface portion 17b: Orthogonal portion 2: Back surface electrode layer 22a: First extension portion 22b: Second stretched portion 3: Insulation layer 4: Main surface electrode C1: Semiconductor device 51: Lead 52: Lead 6: Wire 7: Encapsulating resin 8: Protective film 10: Main part material 101: Main surface 102: Back surface 102a: First One end edge 102b: Second end edge 103a: First groove 103b: Second groove 104a: First slit 104b: Second slit 20: Conductor layer 30: Insulation layer 31: Opening 32a: Insulation layer first slit 32b: Insul

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Dicing (AREA)
  • Laser Beam Processing (AREA)

Abstract

This semiconductor element is provided with a main portion and a rear surface electrode layer. The main portion at least partially comprises a semiconductor, and includes: a main surface and a rear surface which face toward mutually opposite sides in the thickness direction; a main-surface-side first side surface which is orthogonal to a first direction that is orthogonal to the thickness direction, and which is joined to the main surface; and a rear-surface-side first side surface which faces toward the same side as the main-surface-side first side surface, and which is joined to the rear surface. The rear surface electrode layer covers at least a portion of the rear surface of the main portion. The rear-surface-side first side surface is positioned to the outside of the main-surface-side first side surface in the first direction. The rear surface electrode layer is provided with a first elongated portion which covers at least a portion of the rear-surface-side first side surface.

Description

半導体素子、および半導体素子の製造方法Semiconductor devices and methods for manufacturing semiconductor devices
 本開示は、半導体素子、および半導体素子の製造方法に関する。 The present disclosure relates to a semiconductor element and a method for manufacturing the semiconductor element.
 半導体素子の製造方法においては、ウエハなどの半導体を含む主部材料に、各々が所定の機能を果たす複数の機能領域が形成される。そして、これらの機能領域を個別に分割するように上記主部材料が切断される。特許文献1に記載の構成においては、上記主部材料の裏面側に金属からなるコンタクト層が形成されている。そして、上記切断においては、裏面とは反対側の主面側から、ダイシングブレードを用いたダイシングが行われている。これにより、各々が上記機能領域を具備する複数の半導体素子が形成される。 In the method of manufacturing a semiconductor element, a plurality of functional regions, each of which fulfills a predetermined function, are formed in a main part material including a semiconductor such as a wafer. Then, the main part material is cut so as to divide these functional regions individually. In the configuration described in Patent Document 1, a contact layer made of metal is formed on the back surface side of the main part material. Then, in the above cutting, dicing using a dicing blade is performed from the main surface side opposite to the back surface side. As a result, a plurality of semiconductor elements, each having the above functional region, are formed.
 上記切断において、コンタクト層には、ダイシングブレードによって裏面が向く方向に押し出される力が作用する。このため、製造された半導体素子の裏面に設けられたコンタクト層は、その端縁に裏面が向く方向に突出する微小なバリが生じやすい。また、主部材料およびコンタクト層が分断されたときに、ダイシングブレードが揺れて、主部材料の主面側の端縁に接触して、チッピングが発生する場合がある。 In the above cutting, a force is applied to the contact layer by the dicing blade in the direction in which the back surface faces. For this reason, the contact layer provided on the back surface of the manufactured semiconductor element tends to have minute burrs protruding from the edge of the contact layer in the direction in which the back surface faces. Further, when the main material and the contact layer are separated, the dicing blade may shake and come into contact with the edge of the main material on the main surface side, causing chipping.
 一方、レーザ光によるダイシングも開発されている。レーザ光によるダイシングの場合、主部材料およびコンタクト層を気化させることで分断するので、チッピングが発生しない。また、コンタクト層のバリは発生しない。しかしながら、レーザ光によってコンタクト層の一部が溶融して、主部材料の切断された側面に付着する。当該付着物は導電性があるので、主部材料の主面に達した場合、主面に形成された電極とコンタクト層とを導通させる可能性がある。 On the other hand, dicing with laser light is also being developed. In the case of dicing with laser light, chipping does not occur because the main material and the contact layer are separated by vaporization. In addition, burrs on the contact layer do not occur. However, the laser beam melts a portion of the contact layer and attaches it to the cut sides of the main material. Since the deposit is conductive, when it reaches the main surface of the main material, the electrode formed on the main surface and the contact layer may be made conductive.
特開2011-0096707号公報Japanese Unexamined Patent Publication No. 2011-909670
 本開示は、上記した事情のもとで考え出されたものであって、ダイシングに起因する不具合を抑制可能な半導体素子、および半導体素子の製造方法を提供することをその一の課題とする。 The present disclosure has been devised under the above circumstances, and one of the problems thereof is to provide a semiconductor element capable of suppressing defects caused by dicing, and a method for manufacturing the semiconductor element.
 本開示の第1の側面によって提供される半導体素子は、少なくとも一部が半導体からなり、厚さ方向において互いに反対側を向く主面および裏面と、前記厚さ方向に直交する第一方向に直交し、かつ、前記主面に繋がる主面側第一側面と、前記主面側第一側面と同じ側を向き、かつ、前記裏面に繋がる裏面側第一側面とを有する主部と、前記主部の前記裏面の少なくとも一部を覆う裏面電極層とを備え、前記裏面側第一側面は、前記第一方向において、前記主面側第一側面より外側に位置し、前記裏面電極層は、前記裏面側第一側面の少なくとも一部を覆う第一延伸部を備えている。 The semiconductor element provided by the first aspect of the present disclosure comprises at least a part of a semiconductor and is orthogonal to a main surface and a back surface facing opposite sides in the thickness direction and a first direction orthogonal to the thickness direction. A main portion having a main surface side first side surface connected to the main surface, a main surface facing the same side as the main surface side first side surface, and a back surface side first side surface connected to the back surface, and the main surface. The back surface electrode layer covers at least a part of the back surface of the portion, the back surface side first side surface is located outside the main surface side first side surface in the first direction, and the back surface electrode layer is It is provided with a first stretched portion that covers at least a part of the first side surface on the back surface side.
 本開示の第2の側面によって提供される半導体素子の製造方法は、少なくとも一部が半導体からなり、厚さ方向において互いに反対側を向く主面および裏面を有し、前記裏面の少なくとも一部が導電体層によって覆われた主部材料を準備する準備工程と、前記主部材料の前記裏面側を保持テープに保持させる保持工程と、前記厚さ方向に直交する第二方向に沿って、前記主部材料の前記主面側の一部を削除することにより、第一溝を形成する溝形成工程と、前記厚さ方向および前記第二方向に直交する第一方向の寸法が、前記第一溝の前記第一方向の寸法以下であり、かつ、前記厚さ方向視において前記第一溝に内包されるとともに、前記主部材料を前記厚さ方向に分断する第一スリットを形成する分断工程とを備え、前記分断工程は、レーザ光の照射により行われる。 The method for manufacturing a semiconductor device provided by the second aspect of the present disclosure comprises at least a part made of a semiconductor, a main surface and a back surface facing opposite sides in the thickness direction, and at least a part of the back surface. The preparation step of preparing the main part material covered with the conductor layer, the holding step of holding the back surface side of the main part material on the holding tape, and the second direction orthogonal to the thickness direction. The groove forming step of forming the first groove by deleting a part of the main surface side of the main part material and the dimensions of the first direction orthogonal to the thickness direction and the second direction are the first. A dividing step of forming a first slit that is equal to or less than the dimension of the groove in the first direction, is included in the first groove in the thickness direction, and divides the main material in the thickness direction. The division step is performed by irradiation with a laser beam.
 本開示によると、半導体素子は、主部材料の主面側に先に第一溝が形成され、厚さ方向視において第一溝に内包される第一スリットがレーザ光の照射により形成されることで主部材料および裏面電極層が分断されて製造される。第一溝の形成では、主部材料および裏面電極層が分断されないので、主部材料の揺れが小さく、チッピングは発生しにくい。また、分断はレーザ光の照射により行われるので、主部材料の揺れが小さく、チッピングの発生が抑制される。また、導電体層のバリは発生しない。さらに、レーザ光Lの照射により溶融した導電体層の一部が切断された側面に付着するが、先に形成された第一溝によって、当該付着物が主部材料の主面側まで繋がることが抑制される。 According to the present disclosure, in the semiconductor element, the first groove is formed first on the main surface side of the main part material, and the first slit included in the first groove is formed by irradiation with laser light in the thickness direction. As a result, the main part material and the back surface electrode layer are separated and manufactured. In the formation of the first groove, the main part material and the back surface electrode layer are not separated, so that the main part material sways less and chipping is less likely to occur. Further, since the division is performed by irradiating the laser beam, the shaking of the main material is small and the occurrence of chipping is suppressed. In addition, burrs on the conductor layer do not occur. Further, a part of the conductor layer melted by the irradiation of the laser beam L adheres to the cut side surface, but the deposit is connected to the main surface side of the main part material by the first groove formed earlier. Is suppressed.
 本開示のその他の特徴および利点は、添付図面を参照して以下に行う詳細な説明によって、より明らかとなろう。 Other features and advantages of this disclosure will become more apparent with the detailed description given below with reference to the accompanying drawings.
第1実施形態にかかる半導体素子の製造方法に用いられる主部材料を示す平面図である。It is a top view which shows the main part material used in the manufacturing method of the semiconductor element which concerns on 1st Embodiment. 図1に示す主部材料の斜視図である。It is a perspective view of the main part material shown in FIG. 図2のIII-III線に沿う断面図である。It is sectional drawing which follows the line III-III of FIG. 第1実施形態にかかる半導体素子の製造方法において第一溝を形成する工程を示す斜視図である。It is a perspective view which shows the process of forming the 1st groove in the manufacturing method of the semiconductor element which concerns on 1st Embodiment. 図4のV-V線に沿う断面図である。It is sectional drawing which follows the VV line of FIG. 第1実施形態にかかる半導体素子の製造方法において第一溝および第二溝が形成された状態を示す斜視図である。It is a perspective view which shows the state which the 1st groove and the 2nd groove were formed in the manufacturing method of the semiconductor element which concerns on 1st Embodiment. 図6のVII-VII線に沿う断面図である。FIG. 6 is a cross-sectional view taken along the line VII-VII of FIG. 第1実施形態にかかる半導体素子の製造方法において保護膜が形成された状態を示す断面図である。It is sectional drawing which shows the state which the protective film was formed in the manufacturing method of the semiconductor element which concerns on 1st Embodiment. 第1実施形態にかかる半導体素子の製造方法において第一スリットを形成する工程を示す断面図である。It is sectional drawing which shows the step of forming the 1st slit in the manufacturing method of the semiconductor element which concerns on 1st Embodiment. 第1実施形態にかかる半導体素子の製造方法において第一スリットが形成された状態を示す断面図である。It is sectional drawing which shows the state which the 1st slit was formed in the manufacturing method of the semiconductor element which concerns on 1st Embodiment. 第一溝および第一スリットを示す拡大断面図である。It is an enlarged sectional view which shows the 1st groove and the 1st slit. 第1実施形態にかかる半導体素子の製造方法において第一スリットおよび第二スリットが形成された状態を示す斜視図である。It is a perspective view which shows the state which the 1st slit and the 2nd slit were formed in the manufacturing method of the semiconductor element which concerns on 1st Embodiment. 第1実施形態にかかる半導体素子を示す斜視図である。It is a perspective view which shows the semiconductor element which concerns on 1st Embodiment. 図13のXIV-XIV線に沿う拡大断面図である。FIG. 3 is an enlarged cross-sectional view taken along the line XIV-XIV of FIG. 図13に示す半導体素子の実際に作成されたものの一例の写真である。It is a photograph of an example of an actually created semiconductor element shown in FIG. 第1実施形態にかかる半導体素子が搭載された半導体装置を示す断面図である。It is sectional drawing which shows the semiconductor device which mounted the semiconductor element which concerns on 1st Embodiment. 第2実施形態にかかる半導体素子を示す斜視図である。It is a perspective view which shows the semiconductor element which concerns on 2nd Embodiment. 図17のXVIII-XVIII線に沿う拡大断面図である。FIG. 6 is an enlarged cross-sectional view taken along the line XVIII-XVIII of FIG. 第3実施形態にかかる半導体素子を示す拡大断面図である。It is an enlarged sectional view which shows the semiconductor element which concerns on 3rd Embodiment. 図19に示す半導体素子の製造方法において第一溝を形成する工程を示す断面図である。It is sectional drawing which shows the process of forming the 1st groove in the manufacturing method of the semiconductor element shown in FIG. 第4実施形態にかかる半導体素子を示す斜視図である。It is a perspective view which shows the semiconductor element which concerns on 4th Embodiment. 図21に示す半導体素子の製造方法に用いられる主部材料を示す底面図である。It is a bottom view which shows the main part material used in the manufacturing method of the semiconductor element shown in FIG.
 以下、本開示の好ましい実施の形態を添付図面を参照して具体的に説明する。 Hereinafter, preferred embodiments of the present disclosure will be specifically described with reference to the accompanying drawings.
 図1~図12は、第1実施形態にかかる半導体素子の製造方法を示している。 1 to 12 show a method for manufacturing a semiconductor element according to the first embodiment.
 まず、主部材料10を準備する。図1~図3は、本製造方法に用いられる主部材料10を示している。図1は、主部材料10の厚さ方向であるz方向視における平面図である。図2は、主部材料10の斜視図である。図3は、図2のIII-III線に沿う断面図である。主部材料10は、少なくとも一部が半導体材料からなり、本実施形態においては、n型領域およびp型領域が形成されたSiからなる。すなわち、主部材料10は、図1~図3に示す状態に先立ち、ウエハの状態で、半導体素子の所定の機能を果たすべき複数の機能領域が作りこまれたものである。主部材料10の厚さは、たとえば80~260μmであり、本実施形態では150μmである。なお、主部材料10の厚さは限定されない。 First, prepare the main material 10. 1 to 3 show the main material 10 used in the present manufacturing method. FIG. 1 is a plan view of the main material 10 in the z-direction, which is the thickness direction. FIG. 2 is a perspective view of the main material 10. FIG. 3 is a cross-sectional view taken along the line III-III of FIG. The main material 10 is made of at least a part of a semiconductor material, and in the present embodiment, is made of Si in which an n-type region and a p-type region are formed. That is, prior to the states shown in FIGS. 1 to 3, the main material 10 is formed with a plurality of functional regions that should perform a predetermined function of the semiconductor element in the wafer state. The thickness of the main part material 10 is, for example, 80 to 260 μm, and is 150 μm in this embodiment. The thickness of the main material 10 is not limited.
 主部材料10は、主面101および裏面102を有する。主面101および裏面102は、z方向において互いに反対側を向いている。主面101には、複数の主面電極4と絶縁層30が形成されている。複数の主面電極4は、上記機能領域に導通する電極であり、たとえばAuからなる。絶縁層30は、たとえばSiO2からなり、厚さがたとえば3~10μmである。絶縁層30には、複数の開口31が形成されている。各開口31は、主面電極4を露出させている。 The main material 10 has a main surface 101 and a back surface 102. The main surface 101 and the back surface 102 face each other in the z direction. A plurality of main surface electrodes 4 and an insulating layer 30 are formed on the main surface 101. The plurality of main surface electrodes 4 are electrodes conducting on the functional region, and are made of, for example, Au. The insulating layer 30 is made of, for example, SiO 2 , and has a thickness of, for example, 3 to 10 μm. A plurality of openings 31 are formed in the insulating layer 30. Each opening 31 exposes the main surface electrode 4.
 図1および図2に示すように、絶縁層30には、複数の絶縁層第一スリット32aおよび複数の絶縁層第二スリット32bが形成されている。絶縁層第一スリット32aは、絶縁層30の一部がx方向に沿って除去されたことによって形成されている。複数の絶縁層第一スリット32aは、各々がx方向に延び、互いにy方向に等ピッチで離間配置されている。絶縁層第二スリット32bは、絶縁層30の一部がy方向に沿って除去されたことによって形成されている。複数の絶縁層第二スリット32bは、各々がy方向に延び、互いにx方向に等ピッチで離間配置されている。複数の絶縁層第一スリット32aおよび複数の絶縁層第二スリット32bによって区画された複数の矩形状領域には、各々に1個ずつの主面電極4が配置された状態となる。 As shown in FIGS. 1 and 2, a plurality of insulating layer first slits 32a and a plurality of insulating layer second slits 32b are formed in the insulating layer 30. The first slit 32a of the insulating layer is formed by removing a part of the insulating layer 30 along the x direction. The plurality of insulating layer first slits 32a extend in the x direction and are spaced apart from each other in the y direction at equal pitches. The second slit 32b of the insulating layer is formed by removing a part of the insulating layer 30 along the y direction. The plurality of insulating layer second slits 32b extend in the y direction and are spaced apart from each other in the x direction at equal pitches. One main surface electrode 4 is arranged in each of the plurality of rectangular regions partitioned by the plurality of insulating layer first slits 32a and the plurality of insulating layer second slits 32b.
 裏面102には、導電体層20が形成されている。導電体層20は、たとえばAuなどの金属からなる層であり、本実施形態においては、裏面102の全面を覆っている。導電体層20の厚さは、たとえば2μm程度である。 A conductor layer 20 is formed on the back surface 102. The conductor layer 20 is a layer made of a metal such as Au, and in the present embodiment, covers the entire back surface 102. The thickness of the conductor layer 20 is, for example, about 2 μm.
 図1~図3においては、主部材料10は、保持テープDtに保持されている。保持テープDtは、図中上面が接着面とされている。主部材料10は、裏面102がz方向下方を向き、保持テープDtと対面する姿勢で保持テープDtに保持されている。このため、絶縁層30がz方向上方に露出している。 In FIGS. 1 to 3, the main material 10 is held by the holding tape Dt. The upper surface of the holding tape Dt is an adhesive surface in the drawing. The main part material 10 is held by the holding tape Dt in a posture in which the back surface 102 faces downward in the z direction and faces the holding tape Dt. Therefore, the insulating layer 30 is exposed upward in the z direction.
 次いで、図4および図5に示すように、第一溝103aを形成する。第一溝103aの形成は、たとえばダイシングブレードDcでの切削により行う。まず、ダイシングブレードDcを用いて、主部材料10の主面101近傍の領域を、x方向に沿って順次削除することにより、x方向に延びる第一溝103aを形成する。この際、ダイシングブレードDcは、絶縁層第一スリット32aに沿って走査される。これにより、絶縁層第一スリット32aから露出した主部材料10の主面101近傍の領域が削除される。ダイシングブレードDcの幅は、絶縁層第一スリット32aの幅(y方向の寸法)と同程度としている。第一溝103aの深さは、たとえば30~200μm程度、第一溝103aの幅は、たとえば15~50μm程度である。本実施形態では、第一溝103aの深さは、主部材料10の厚さの3分の2程度として、100μm程度としている。なお、各寸法は限定されない。本工程では、ダイシングブレードDcをハーフカットの状態で使用することにより、主部材料10が厚さ方向に切断されてしまうことはなく、上述した程度の寸法の第一溝103aが形成される。x方向に沿ったダイシングブレードDcによる削除作業を複数回行うことにより、各々がx方向に延び、互いにy方向に等ピッチで離間配置された複数の第一溝103aが形成される。 Next, as shown in FIGS. 4 and 5, the first groove 103a is formed. The first groove 103a is formed, for example, by cutting with a dicing blade Dc. First, the dicing blade Dc is used to sequentially delete the region near the main surface 101 of the main material 10 along the x direction to form the first groove 103a extending in the x direction. At this time, the dicing blade Dc is scanned along the first slit 32a of the insulating layer. As a result, the region near the main surface 101 of the main part material 10 exposed from the first slit 32a of the insulating layer is deleted. The width of the dicing blade Dc is about the same as the width (dimension in the y direction) of the first slit 32a of the insulating layer. The depth of the first groove 103a is, for example, about 30 to 200 μm, and the width of the first groove 103a is, for example, about 15 to 50 μm. In the present embodiment, the depth of the first groove 103a is about 100 μm, which is about two-thirds of the thickness of the main part material 10. In addition, each dimension is not limited. In this step, by using the dicing blade Dc in a half-cut state, the main material 10 is not cut in the thickness direction, and the first groove 103a having the above-mentioned dimensions is formed. By performing the deletion operation by the dicing blade Dc along the x direction a plurality of times, a plurality of first grooves 103a extending in the x direction and spaced apart from each other at equal pitches in the y direction are formed.
 次いで、y方向に延びる第二溝103bを形成する。第二溝103bの形成は、第一溝103aの形成と同様に、たとえばダイシングブレードDcでの切削により行う。すなわち、絶縁層第二スリット32bに沿ってダイシングブレードDcを走査することで、絶縁層第二スリット32bから露出した主部材料10の主面101近傍の領域を順次削除することにより、y方向に延びる第二溝103bを形成する。y方向に沿ったダイシングブレードDcによる削除作業を複数回行うことにより、各々がy方向に延び、互いにx方向に等ピッチで離間配置された複数の第二溝103bが形成される。第二溝103bの形成においては、ダイシングブレードDcの削除深さなどの条件は第一溝103aの形成における条件と同様である。このため、第二溝103bは、第一溝103aと延びる方向が異なることを主な相違点とする以外は、同様の構成となっている。これらのダイシング工程によって、図6に示すように、主部材料10の主面101側に、複数の第一溝103aおよび複数の第二溝103bが形成される。 Next, a second groove 103b extending in the y direction is formed. The formation of the second groove 103b is performed, for example, by cutting with a dicing blade Dc, similarly to the formation of the first groove 103a. That is, by scanning the dicing blade Dc along the second slit 32b of the insulating layer, the region near the main surface 101 of the main material 10 exposed from the second slit 32b of the insulating layer is sequentially deleted in the y direction. The extending second groove 103b is formed. By performing the deletion operation by the dicing blade Dc along the y direction a plurality of times, a plurality of second grooves 103b are formed, each extending in the y direction and being spaced apart from each other at equal pitches in the x direction. In the formation of the second groove 103b, the conditions such as the removal depth of the dicing blade Dc are the same as the conditions in the formation of the first groove 103a. Therefore, the second groove 103b has the same configuration as the first groove 103a, except that the main difference is that the extending direction is different from that of the first groove 103a. By these dicing steps, as shown in FIG. 6, a plurality of first grooves 103a and a plurality of second grooves 103b are formed on the main surface 101 side of the main part material 10.
 次いで、図8に示すように、保護膜8を形成する。保護膜8は、水溶性の樹脂材料からなり、たとえばポリビニルアルコールなどを含む材料からなる。次の工程であるレーザ光によるダイシング工程では、レーザ加工屑(デブリ)が発生する。主部材料10にデブリが付着すると、純粋洗浄だけでは完全に除去することが難しい。主部材料10に付着したデブリは、ボンディング不良やリーク電流の増加といったデバイス不良を発生させる。保護膜8は、デブリが主部材料10に直接付着することを防止するために形成される。保護膜8は、主部材料10の主面101側に塗布されて固化されることで形成される。保護膜8は、主部材料10の主面101、絶縁層30、および複数の主面電極4を覆うように形成され、複数の第一溝103aおよび複数の第二溝103bの内面にも形成される。 Next, as shown in FIG. 8, the protective film 8 is formed. The protective film 8 is made of a water-soluble resin material, for example, a material containing polyvinyl alcohol or the like. In the dicing process using laser light, which is the next process, laser processing waste (debris) is generated. If debris adheres to the main material 10, it is difficult to completely remove it by pure cleaning alone. The debris adhering to the main material 10 causes device defects such as bonding defects and an increase in leakage current. The protective film 8 is formed to prevent debris from directly adhering to the main material 10. The protective film 8 is formed by being applied to the main surface 101 side of the main part material 10 and solidified. The protective film 8 is formed so as to cover the main surface 101 of the main part material 10, the insulating layer 30, and the plurality of main surface electrodes 4, and is also formed on the inner surfaces of the plurality of first grooves 103a and the plurality of second grooves 103b. Will be done.
 次いで、図9に示すように、x方向に沿って主部材料10の一部をz方向に貫通するように削除する。この削除は、レーザ光Lによるダイシングによって行う。すなわち、パルス発振されたレーザ光源からのレーザ光Lを集光レンズで集光し、集光されたレーザ光Lを主部材料10にz方向から照射する。照射の出力は、主部材料10および導電体層20を貫通し、かつ、保持テープDtを貫通しない程度に調整されている。レーザ光Lの照射を第一溝103aに沿って走査させることで、x方向に沿ったダイシングを行う。 Next, as shown in FIG. 9, a part of the main material 10 is deleted so as to penetrate in the z direction along the x direction. This deletion is performed by dicing with the laser beam L. That is, the laser beam L from the pulse-oscillated laser light source is condensed by the condenser lens, and the condensed laser beam L is irradiated to the main part material 10 from the z direction. The irradiation output is adjusted so as to penetrate the main material 10 and the conductor layer 20 and not penetrate the holding tape Dt. Dicing along the x direction is performed by scanning the irradiation of the laser beam L along the first groove 103a.
 図9に示すように、レーザ光のy方向の照射幅は、第一溝103aの幅よりも小さい。また、z方向視において、レーザ光の照射領域は、第一溝103aに重なり、さらに、y方向において、第一溝103aに内包されている。これにより、第一スリット104aが形成される。第一スリット104aは、z方向において第一溝103aの底面から裏面102にわたって形成されており、主部材料10を厚さ方向に分断している。第一スリット104aの幅寸法(y方向の寸法)は、第一溝103aの幅寸法よりもたとえば10μm程度小さく、第一スリット104aは、z方向視において第一溝103aに内包されている。x方向に沿うレーザ光の照射の走査を複数回繰り返すことにより、図10に示すように、複数の第一スリット104aが形成される。 As shown in FIG. 9, the irradiation width of the laser beam in the y direction is smaller than the width of the first groove 103a. Further, in the z-direction view, the irradiation region of the laser beam overlaps the first groove 103a, and is further included in the first groove 103a in the y-direction. As a result, the first slit 104a is formed. The first slit 104a is formed from the bottom surface of the first groove 103a to the back surface 102 in the z direction, and divides the main part material 10 in the thickness direction. The width dimension (dimension in the y direction) of the first slit 104a is smaller than the width dimension of the first groove 103a, for example, by about 10 μm, and the first slit 104a is included in the first groove 103a in the z-direction view. By repeating the scanning of the irradiation of the laser beam along the x direction a plurality of times, a plurality of first slits 104a are formed as shown in FIG.
 図10および図11に示すように、第一スリット104aは、第一溝103aの底面から裏面102まで貫通しており、y方向において、第一スリット104aの側面は、第一溝103aの側面よりも外方に位置している。また、図11に示すように、第一スリット104aの側面と第一溝103aの側面とに繋がる第一接続面15aが形成されている。第一接続面15aの形状は、第一溝103aを形成したときのダイシングブレードDcの形状に依存する。本実施形態では、図5に示すように、ダイシングブレードDcの回転軸に平行な断面は、端部がU字形状であり、角部が丸まっている。本実施形態では、第一接続面15aは、曲面部16aおよび直交部17aを備えている。曲面部16aは、第一溝103aの側面に繋がる凹曲面状の部分である。直交部17aは、第一スリット104aの側面に繋がり、かつ、第一スリット104aの側面に直交する部分であり、z方向を向く平坦な部分である。 As shown in FIGS. 10 and 11, the first slit 104a penetrates from the bottom surface of the first groove 103a to the back surface 102, and the side surface of the first slit 104a is from the side surface of the first groove 103a in the y direction. Is also located on the outside. Further, as shown in FIG. 11, a first connecting surface 15a connected to the side surface of the first slit 104a and the side surface of the first groove 103a is formed. The shape of the first connecting surface 15a depends on the shape of the dicing blade Dc when the first groove 103a is formed. In the present embodiment, as shown in FIG. 5, the cross section of the dicing blade Dc parallel to the rotation axis has a U-shaped end and rounded corners. In the present embodiment, the first connecting surface 15a includes a curved surface portion 16a and an orthogonal portion 17a. The curved surface portion 16a is a concave curved surface portion connected to the side surface of the first groove 103a. The orthogonal portion 17a is a portion connected to the side surface of the first slit 104a and orthogonal to the side surface of the first slit 104a, and is a flat portion facing the z direction.
 図11に示すように、第一スリット104aの形成により、裏面102は、x方向に長く延びる第一端縁102aを有するものとなっている。そして、第一端縁102aは、z方向視において導電体層20と少なくとも一部が重なっており、本実施形態においては、第一端縁102aの全長にわたって導電体層20と重なっている。 As shown in FIG. 11, due to the formation of the first slit 104a, the back surface 102 has a first end edge 102a that extends long in the x direction. At least a part of the first end edge 102a overlaps with the conductor layer 20 in the z-direction view, and in the present embodiment, the first end edge 102a overlaps with the conductor layer 20 over the entire length of the first end edge 102a.
 また、導電体層20は、第一延伸部22aを有している。第一延伸部22aは、第一端縁102aから主面101に向かう方向(z方向上方)に延出しており、第一スリット104aの側面の一部を覆っている。本実施形態においては、第一端縁102aの全長にわたって第一延伸部22aが存在している例を典型例として挙げるが、第一端縁102aの一部のみに第一延伸部22aが存在する構成であってもよい。第一延伸部22aは、第一スリット104aを形成したときのレーザ光によって導電体層20の一部が溶融して、第一スリット104aの側面に付着したものである。第一溝103aは保護膜8によって覆われているので、第一延伸部22aは、第一溝103aに直接接するようには形成されない。 Further, the conductor layer 20 has a first stretched portion 22a. The first stretched portion 22a extends from the first end edge 102a toward the main surface 101 (upward in the z direction) and covers a part of the side surface of the first slit 104a. In the present embodiment, an example in which the first stretched portion 22a exists over the entire length of the first end edge 102a is given as a typical example, but the first stretched portion 22a exists only in a part of the first end edge 102a. It may be a configuration. The first stretched portion 22a is formed by melting a part of the conductor layer 20 by the laser beam when the first slit 104a is formed and adhering to the side surface of the first slit 104a. Since the first groove 103a is covered with the protective film 8, the first stretched portion 22a is not formed so as to be in direct contact with the first groove 103a.
 複数の第一スリット104aを形成した後は、同様にして、レーザ光Lの照射を第二溝103bに沿って走査させることで、y方向に沿ったダイシングを行う。この際、レーザ光のx方向の照射幅は、第二溝103bの幅よりも小さい。また、z方向視において、レーザ光の照射領域は、第二溝103bに重なり、さらに、x方向において、第二溝103bに内包されている。これにより、第二スリット104bが形成される。第二スリット104bは、z方向において第二溝103bの底面から裏面102にわたって形成されており、主部材料10を厚さ方向に分断している。第二スリット104bの幅寸法(x方向の寸法)は、第二溝103bの幅寸法よりもたとえば10μm程度小さく、第二スリット104bは、z方向視において第二溝103bに内包されている。y方向に沿うレーザ光の照射の走査を複数回繰り返すことにより、複数の第二スリット104bが形成される。 After forming the plurality of first slits 104a, dicing along the y direction is performed in the same manner by scanning the irradiation of the laser beam L along the second groove 103b. At this time, the irradiation width of the laser beam in the x direction is smaller than the width of the second groove 103b. Further, in the z-direction view, the irradiation region of the laser beam overlaps the second groove 103b, and is further included in the second groove 103b in the x-direction. As a result, the second slit 104b is formed. The second slit 104b is formed from the bottom surface of the second groove 103b to the back surface 102 in the z direction, and divides the main part material 10 in the thickness direction. The width dimension (dimension in the x direction) of the second slit 104b is smaller than the width dimension of the second groove 103b, for example, by about 10 μm, and the second slit 104b is included in the second groove 103b in the z-direction view. A plurality of second slits 104b are formed by repeating the scanning of the irradiation of the laser beam along the y direction a plurality of times.
 第二スリット104bは、第二溝103bの底面から裏面102まで貫通しており、x方向において、第二スリット104bの側面は、第二溝103bの側面よりも外方に位置している。また、図示を省略しているが、第二スリット104bの側面と第二溝103bの側面とに繋がる第二接続面15bが形成されている。第二接続面15bの形状は、第二溝103bを形成したときのダイシングブレードDcの形状に依存する。本実施形態では、第二接続面15bは、曲面部16bおよび直交部17bを備えている。曲面部16bは、第二溝103bの側面に繋がる凹曲面状の部分である。直交部17bは、第二スリット104bの側面に繋がり、かつ、第二スリット104bの側面に直交する部分であり、z方向を向く平坦な部分である。 The second slit 104b penetrates from the bottom surface of the second groove 103b to the back surface 102, and the side surface of the second slit 104b is located outside the side surface of the second groove 103b in the x direction. Further, although not shown, a second connecting surface 15b is formed which connects the side surface of the second slit 104b and the side surface of the second groove 103b. The shape of the second connecting surface 15b depends on the shape of the dicing blade Dc when the second groove 103b is formed. In the present embodiment, the second connecting surface 15b includes a curved surface portion 16b and an orthogonal portion 17b. The curved surface portion 16b is a concave curved surface portion connected to the side surface of the second groove 103b. The orthogonal portion 17b is a portion connected to the side surface of the second slit 104b and orthogonal to the side surface of the second slit 104b, and is a flat portion facing the z direction.
 図示を省略しているが、第二スリット104bの形成により、裏面102は、y方向に長く延びる第二端縁102bを有するものとなっている。そして、第二端縁102bは、z方向視において導電体層20と少なくとも一部が重なっており、本実施形態においては、第二端縁102bの全長にわたって導電体層20と重なっている。 Although not shown, the back surface 102 has a second edge 102b that extends long in the y direction due to the formation of the second slit 104b. The second edge 102b overlaps at least a part of the conductor layer 20 in the z direction, and in the present embodiment, the second edge 102b overlaps the conductor layer 20 over the entire length of the second edge 102b.
 また、導電体層20は、第二延伸部22bを有している。第二延伸部22bは、第二端縁102bから主面101に向かう方向(z方向上方)に延出しており、第二スリット104bの側面の一部を覆っている。本実施形態においては、第二端縁102bの全長にわたって第二延伸部22bが存在している例を典型例として挙げるが、第二端縁102bの一部のみに第二延伸部22bが存在する構成であってもよい。第二延伸部22bは、第二スリット104bを形成したときのレーザ光によって導電体層20の一部が溶融して、第二スリット104bの側面に付着したものである。第二溝103bは保護膜8によって覆われているので、第二延伸部22bは、第二溝103bに直接接するようには形成されない。 Further, the conductor layer 20 has a second stretched portion 22b. The second extending portion 22b extends from the second end edge 102b toward the main surface 101 (upward in the z direction) and covers a part of the side surface of the second slit 104b. In the present embodiment, an example in which the second stretched portion 22b exists over the entire length of the second edge 102b is given as a typical example, but the second stretched portion 22b is present only in a part of the second edge 102b. It may be a configuration. The second stretched portion 22b is formed by melting a part of the conductor layer 20 by the laser light when the second slit 104b is formed and adhering to the side surface of the second slit 104b. Since the second groove 103b is covered with the protective film 8, the second stretched portion 22b is not formed so as to be in direct contact with the second groove 103b.
 その後、保護膜8を除去することにより、図12に示すように、主部材料10が複数の第一スリット104aおよび複数の第二スリット104bによって分割された複数の個片が、保持テープDtに保持された状態になる。保護膜8の除去は、たとえば、純水での洗浄により行われる。次いで、保持テープDtを剥離する。これにより、半導体素子A1ごとの複数の個片に分割される。以上の工程を経ることにより、半導体素子A1が形成される。 After that, by removing the protective film 8, as shown in FIG. 12, a plurality of pieces of the main material 10 divided by the plurality of first slits 104a and the plurality of second slits 104b are formed on the holding tape Dt. It will be in a held state. The protective film 8 is removed, for example, by washing with pure water. Then, the holding tape Dt is peeled off. As a result, each semiconductor element A1 is divided into a plurality of individual pieces. By going through the above steps, the semiconductor element A1 is formed.
 図13および図14は、半導体素子A1を示している。図13は、半導体素子A1を示す斜視図である。図14は、図13のXIV-XIV線に沿う拡大断面図である。半導体素子A1は、主部1、裏面電極層2、絶縁層3および主面電極4を備えている。本実施形態の半導体素子A1は、たとえばダイオードとして構成されている。 13 and 14 show the semiconductor element A1. FIG. 13 is a perspective view showing the semiconductor element A1. FIG. 14 is an enlarged cross-sectional view taken along the line XIV-XIV of FIG. The semiconductor element A1 includes a main portion 1, a back surface electrode layer 2, an insulating layer 3, and a main surface electrode 4. The semiconductor element A1 of this embodiment is configured as, for example, a diode.
 主部1は、主部材料10が分割されることによって得られた個片からなる。本実施形態の主部1は、z方向視において矩形状であり、x方向に延びる辺およびy方向に延びる辺の長さがたとえば0.4mm~6mmとされる。また、主部1のz方向厚さは、たとえば80μm~260μmであり、本実施形態では150μmである。なお、各寸法は限定されない。主部1は、主面11および裏面12を有している。主面11および裏面12は、z方向において互いに反対方向を向いている。主部1は、少なくとも一部が半導体によって形成されており、本実施形態においては、そのほとんどがSiからなる。 The main part 1 is composed of individual pieces obtained by dividing the main part material 10. The main portion 1 of the present embodiment has a rectangular shape in the z-direction, and the lengths of the side extending in the x direction and the side extending in the y direction are, for example, 0.4 mm to 6 mm. The thickness of the main portion 1 in the z direction is, for example, 80 μm to 260 μm, and is 150 μm in the present embodiment. In addition, each dimension is not limited. The main portion 1 has a main surface 11 and a back surface 12. The main surface 11 and the back surface 12 face in opposite directions in the z direction. At least a part of the main part 1 is formed of a semiconductor, and in the present embodiment, most of the main part 1 is made of Si.
 主部1は、2個ずつの主面側第一側面13a、裏面側第一側面14a、主面側第二側面13b、および裏面側第二側面14bを有している。主面側第一側面13aは、第一溝103aであった部分であり、裏面側第一側面14aは、第一スリット104aであった部分である。また、主面側第二側面13bは、第二溝103bであった部分であり、裏面側第二側面14bは、第二スリット104bであった部分である。主面側第一側面13aおよび主面側第二側面13bは、ダイシングブレードDcでの切削により形成されているので、平坦になっている。一方、裏面側第一側面14aおよび裏面側第二側面14bは、レーザ光Lのz方向への照射により形成されているので、z方向に延びる溝が形成されている。 The main portion 1 has two main surface side first side surfaces 13a, a back surface side first side surface 14a, a main surface side second side surface 13b, and a back surface side second side surface 14b. The first side surface 13a on the main surface side is a portion that was the first groove 103a, and the first side surface 14a on the back surface side is a portion that was the first slit 104a. Further, the second side surface 13b on the main surface side is a portion that was the second groove 103b, and the second side surface 14b on the back surface side is a portion that was the second slit 104b. The first side surface 13a on the main surface side and the second side surface 13b on the main surface side are flat because they are formed by cutting with the dicing blade Dc. On the other hand, since the back surface side first side surface 14a and the back surface side second side surface 14b are formed by irradiating the laser beam L in the z direction, a groove extending in the z direction is formed.
 主面側第一側面13aは、y方向に直交し、かつ、主面11に繋がっている。裏面側第一側面14aは、主面側第一側面13aと同じ側を向き、かつ、裏面12に繋がっている。裏面側第一側面14aは、主面側第一側面13aよりもy方向においてたとえば5μm程度外側に位置している。2個の主面側第一側面13aは、y方向において互いに反対側を向いている。また、2個の裏面側第一側面14aは、y方向において互いに反対側を向いている。 The first side surface 13a on the main surface side is orthogonal to the y direction and is connected to the main surface 11. The back surface side first side surface 14a faces the same side as the main surface side first side surface 13a and is connected to the back surface 12. The back surface side first side surface 14a is located outside the main surface side first side surface 13a by, for example, about 5 μm in the y direction. The two main surface side first side surfaces 13a face each other in the y direction. Further, the two back surface side first side surfaces 14a face each other in the y direction.
 主面側第二側面13bは、x方向に直交し、かつ、主面11に繋がっている。裏面側第二側面14bは、主面側第二側面13bと同じ側を向き、かつ、裏面12に繋がっている。裏面側第二側面14bは、主面側第二側面13bよりもx方向においてたとえば5μm程度外側に位置している。2個の主面側第二側面13bは、x方向において互いに反対側を向いている。また、2個の裏面側第二側面14bは、x方向において互いに反対側を向いている。 The second side surface 13b on the main surface side is orthogonal to the x direction and is connected to the main surface 11. The back surface side second side surface 14b faces the same side as the main surface side second side surface 13b and is connected to the back surface 12. The back surface side second side surface 14b is located outside the main surface side second side surface 13b by, for example, about 5 μm in the x direction. The two main surface side second side surfaces 13b face each other in the x direction. Further, the two back surface side second side surfaces 14b face each other in the x direction.
 主部1は、2個ずつの第一接続面15aおよび第二接続面15bを有している。第一接続面15aは、主面側第一側面13aおよび裏面側第一側面14aに繋がっている。図14に示すように、本実施形態では、第一接続面15aは、曲面部16aおよび直交部17aを備えている。曲面部16aは、主面側第一側面13aに繋がる凹曲面状の部分である。直交部17aは、裏面側第一側面14aに繋がり、かつ、裏面側第一側面14aに直交する部分であり、z方向を向く平坦な部分である。第二接続面15bは、主面側第二側面13bおよび裏面側第二側面14bに繋がっている。図示を省略しているが、本実施形態では、第二接続面15bは、曲面部16bおよび直交部17bを備えている。曲面部16bは、主面側第二側面13bに繋がる凹曲面状の部分である。直交部17bは、裏面側第二側面14bに繋がり、かつ、裏面側第二側面14bに直交する部分であり、z方向を向く平坦な部分である。 The main part 1 has two first connection surfaces 15a and two second connection surfaces 15b. The first connecting surface 15a is connected to the main surface side first side surface 13a and the back surface side first side surface 14a. As shown in FIG. 14, in the present embodiment, the first connecting surface 15a includes a curved surface portion 16a and an orthogonal portion 17a. The curved surface portion 16a is a concave curved surface portion connected to the first side surface 13a on the main surface side. The orthogonal portion 17a is a portion connected to the back surface side first side surface 14a and orthogonal to the back surface side first side surface 14a, and is a flat portion facing the z direction. The second connecting surface 15b is connected to the main surface side second side surface 13b and the back surface side second side surface 14b. Although not shown, in the present embodiment, the second connecting surface 15b includes a curved surface portion 16b and an orthogonal portion 17b. The curved surface portion 16b is a concave curved surface portion connected to the second side surface 13b on the main surface side. The orthogonal portion 17b is a portion that is connected to the back surface side second side surface 14b and is orthogonal to the back surface side second side surface 14b, and is a flat portion that faces the z direction.
 図14に示すように、主面側第一側面13aのz方向寸法h1は、裏面側第一側面14aのz方向寸法h2より大きく、本実施形態では、寸法h2の2倍程度である。本実施形態では、主面側第一側面13aのz方向寸法h1が100μm程度であり、裏面側第一側面14aのz方向寸法h2が50μm程度である。なお、寸法h1は、寸法h2の5倍以下であることが望ましい。同様に、主面側第二側面13bのz方向寸法は、裏面側第二側面14bのz方向寸法より大きく、本実施形態では、裏面側第二側面14bのz方向寸法の2倍程度である。本実施形態では、主面側第二側面13bのz方向寸法が100μm程度であり、裏面側第二側面14bのz方向寸法が50μm程度である。なお、各寸法は限定されない。ただし、裏面側第一側面14aおよび裏面側第二側面14bのz方向寸法は、製造時の第一溝103aおよび第二溝103bが形成された主部材料10の強度を確保するために、50μm以上であることが望ましい。 As shown in FIG. 14, the z-direction dimension h1 of the main surface side first side surface 13a is larger than the z-direction dimension h2 of the back surface side first side surface 14a, and in the present embodiment, it is about twice the dimension h2. In the present embodiment, the z-direction dimension h1 of the main surface side first side surface 13a is about 100 μm, and the z-direction dimension h2 of the back surface side first side surface 14a is about 50 μm. It is desirable that the dimension h1 is 5 times or less the dimension h2. Similarly, the z-direction dimension of the main surface side second side surface 13b is larger than the z direction dimension of the back surface side second side surface 14b, and in the present embodiment, it is about twice the z direction dimension of the back surface side second side surface 14b. .. In the present embodiment, the z-direction dimension of the main surface side second side surface 13b is about 100 μm, and the z-direction dimension of the back surface side second side surface 14b is about 50 μm. In addition, each dimension is not limited. However, the z-direction dimensions of the back surface side first side surface 14a and the back surface side second side surface 14b are 50 μm in order to secure the strength of the main part material 10 in which the first groove 103a and the second groove 103b are formed at the time of manufacturing. The above is desirable.
 裏面電極層2は、裏面12に形成されており、本実施形態においては、裏面12の全体を覆っている。裏面電極層2は、たとえばAuなどの金属からなる層であり、本実施形態においては、その厚さは、たとえば2μm程度である。裏面電極層2は、裏面12の裏面側第一側面14aに繋がる第一端縁12aおよび裏面12の裏面側第二側面14bに繋がる第二端縁12bのそれぞれとそれらの全体を覆っている。裏面電極層2は、導電体層20が分割されることによって形成されている。 The back surface electrode layer 2 is formed on the back surface 12, and in the present embodiment, covers the entire back surface 12. The back surface electrode layer 2 is a layer made of a metal such as Au, and in the present embodiment, the thickness thereof is, for example, about 2 μm. The back surface electrode layer 2 covers each of the first end edge 12a connected to the back surface side first side surface 14a of the back surface 12 and the second end edge 12b connected to the back surface side second side surface 14b of the back surface 12 and the entire surface thereof. The back surface electrode layer 2 is formed by dividing the conductor layer 20.
 裏面電極層2は、2個の第一延伸部22aおよび2個の第二延伸部22bを有している。各第一延伸部22aはそれぞれ、各裏面側第一側面14aの少なくとも一部を覆っており、本実施形態においては、図13に示すように、第一端縁12aの全長にわたって第一端縁12aから主面11側に向かって延伸している。各第二延伸部22bはそれぞれ、各裏面側第二側面14bの少なくとも一部を覆っており、本実施形態においては、図13に示すように、第二端縁12bの全長にわたって第二端縁12bから主面11側に向かって延伸している。レーザ光によるダイシング工程は、複数の第一溝103aおよび複数の第二溝103bの内面に保護膜8が形成された上で行われるので、レーザ光によって溶融した導電体層20の一部は、第一溝103aまたは第二溝103bには付着しない。したがって、第一延伸部22aは、主面側第一側面13aまでは延伸しておらず、主面側第一側面13aを覆っていない。また、第二延伸部22bは、主面側第二側面13bまでは延伸しておらず、主面側第二側面13bを覆っていない。 The back electrode layer 2 has two first stretched portions 22a and two second stretched portions 22b. Each of the first stretched portions 22a covers at least a part of each back surface side first side surface 14a, and in the present embodiment, as shown in FIG. 13, the first end edge is over the entire length of the first end edge 12a. It extends from 12a toward the main surface 11 side. Each second extending portion 22b covers at least a part of each back surface side second side surface 14b, and in the present embodiment, as shown in FIG. 13, the second end edge over the entire length of the second end edge 12b. It extends from 12b toward the main surface 11 side. Since the dicing step using the laser beam is performed after the protective film 8 is formed on the inner surfaces of the plurality of first grooves 103a and the plurality of second grooves 103b, a part of the conductor layer 20 melted by the laser beam is formed. It does not adhere to the first groove 103a or the second groove 103b. Therefore, the first stretched portion 22a does not extend to the main surface side first side surface 13a and does not cover the main surface side first side surface 13a. Further, the second stretched portion 22b does not stretch to the main surface side second side surface 13b and does not cover the main surface side second side surface 13b.
 主面電極4は、上述した通り、上記機能領域に導通する電極であり、たとえばAuからなる。絶縁層3は、絶縁層30が分割されることによって形成されており、たとえばSiO2からなり、厚さがたとえば3~10μmである。絶縁層3には、開口31が形成されている。開口31は、主面電極4を露出させている。 As described above, the main surface electrode 4 is an electrode that conducts to the functional region, and is made of, for example, Au. The insulating layer 3 is formed by dividing the insulating layer 30 and is composed of, for example, SiO 2 , and has a thickness of, for example, 3 to 10 μm. An opening 31 is formed in the insulating layer 3. The opening 31 exposes the main surface electrode 4.
 図15は、実際に作成された半導体素子A1の一例の写真である。図15は、半導体素子A1を、主部1の裏面12側から、主面側第一側面13aおよび裏面側第一側面14aを中心にして表している。図15に示すように、裏面電極層2から延伸した第一延伸部22aは、裏面側第一側面14aの大部分を覆っており、一方で、主面側第二側面13bをほとんど覆っていない。 FIG. 15 is a photograph of an example of the semiconductor element A1 actually created. FIG. 15 shows the semiconductor element A1 centered on the main surface side first side surface 13a and the back surface side first side surface 14a from the back surface 12 side of the main portion 1. As shown in FIG. 15, the first stretched portion 22a extended from the back surface electrode layer 2 covers most of the back surface side first side surface 14a, while hardly covering the main surface side second side surface 13b. ..
 図16は、半導体素子A1を用いて製造された半導体装置C1を示している。半導体装置C1は、半導体素子A1、リード51、リード52、ワイヤ6および封止樹脂7を備えている。 FIG. 16 shows a semiconductor device C1 manufactured by using the semiconductor element A1. The semiconductor device C1 includes a semiconductor element A1, a lead 51, a lead 52, a wire 6, and a sealing resin 7.
 リード51およびリード52は、たとえばCuからなり、必要に応じてその表面にNiメッキなどが施されてもよい。リード51には、半導体素子A1が搭載されている。より具体的には、半導体素子A1の裏面電極層2をリード51に押し付けつつ、超音波振動を付与することにより、裏面電極層2とリード51とを共晶させることによって、半導体素子A1がリード51に接合されている。リード52は、ワイヤ6を介して半導体素子A1の主面電極4と導通している。封止樹脂7は、半導体素子A1およびワイヤ6のすべてと、リード51およびリード52の一部ずつを覆っており、たとえば黒色のエポキシ樹脂からなる。リード51およびリード52のうち封止樹脂7から露出した部分は、半導体装置C1を回路基板などに実装するための実装端子として用いられる。 The leads 51 and 52 are made of, for example, Cu, and the surfaces thereof may be plated with Ni, if necessary. A semiconductor element A1 is mounted on the lead 51. More specifically, the semiconductor element A1 leads by co-crystallizing the back electrode layer 2 and the lead 51 by applying ultrasonic vibration while pressing the back electrode layer 2 of the semiconductor element A1 against the reed 51. It is joined to 51. The lead 52 is conducting with the main surface electrode 4 of the semiconductor element A1 via the wire 6. The sealing resin 7 covers all of the semiconductor element A1 and the wire 6, and a part of the lead 51 and the lead 52, and is made of, for example, a black epoxy resin. The portion of the lead 51 and the lead 52 exposed from the sealing resin 7 is used as a mounting terminal for mounting the semiconductor device C1 on a circuit board or the like.
 次に、半導体素子A1および半導体素子A1の製造方法の作用について説明する。 Next, the operation of the semiconductor element A1 and the manufacturing method of the semiconductor element A1 will be described.
 本実施形態によると、半導体素子A1は、主部材料10の主面101側に先に第一溝103aおよび第二溝103bが形成され、保護膜8が形成された上で、z方向視において第一溝103aに内包される第一スリット104aおよび第二溝103bに内包される第二スリット104bがレーザ光Lの照射により形成されることで主部材料10および導電体層20が分断されて製造される。第一溝103aおよび第二溝103bの形成では、主部材料10および導電体層20が分断されないので、ダイシングブレードの揺れは発生しにくく、チッピングは発生しにくい。また、分断はレーザ光Lの照射により行われるので、分断時にはチッピングが発生しない。また、導電体層20のバリは発生しない。さらに、レーザ光Lの照射により溶融した導電体層20の一部が、切断された側面である裏面側第一側面14aおよび裏面側第二側面14bに付着して、第一延伸部22aおよび第二延伸部22bが形成されるが、先に形成された第一溝103aおよび第二溝103bの内面には保護膜8が形成されているので、主面側第一側面13aおよび主面側第二側面13bは、第一延伸部22aおよび第二延伸部22bに覆われない。したがって、第一延伸部22aおよび第二延伸部22bが、主部1の主面11まで延伸することがなく、主面電極4と裏面電極層2との導通が防止できる。 According to the present embodiment, in the semiconductor element A1, the first groove 103a and the second groove 103b are formed first on the main surface 101 side of the main part material 10, and the protective film 8 is formed, and then in the z-direction view. The main material 10 and the conductor layer 20 are separated by forming the first slit 104a contained in the first groove 103a and the second slit 104b contained in the second groove 103b by irradiation with the laser beam L. Manufactured. In the formation of the first groove 103a and the second groove 103b, since the main part material 10 and the conductor layer 20 are not divided, the dicing blade is less likely to shake and chipping is less likely to occur. Further, since the division is performed by irradiating the laser beam L, chipping does not occur at the time of division. Further, burrs on the conductor layer 20 do not occur. Further, a part of the conductor layer 20 melted by irradiation with the laser beam L adheres to the back surface side first side surface 14a and the back surface side second side surface 14b, which are the cut side surfaces, and the first stretched portion 22a and the first stretched portion 22a. The two stretched portions 22b are formed, but since the protective film 8 is formed on the inner surfaces of the first groove 103a and the second groove 103b formed earlier, the first side surface 13a on the main surface side and the first side surface on the main surface side The two side surfaces 13b are not covered by the first stretched portion 22a and the second stretched portion 22b. Therefore, the first stretched portion 22a and the second stretched portion 22b do not stretch to the main surface 11 of the main portion 1, and the conduction between the main surface electrode 4 and the back surface electrode layer 2 can be prevented.
 本実施形態によると、裏面側第一側面14aには裏面電極層2が延伸した第一延伸部22aが形成されており、裏面側第二側面14bには裏面電極層2が延伸した第二延伸部22bが形成されている。したがって、図16に示すように、半導体素子A1がリード51に接合される際、リード51と第一延伸部22aおよび第二延伸部22bとも共晶して接合される。これにより、接合強度を高めることができる。また、接合後の半導体素子A1とリード51との接合状態を、外観検査により判断しやすい。 According to the present embodiment, the first stretched portion 22a in which the back surface electrode layer 2 is stretched is formed on the back surface side first side surface 14a, and the back surface electrode layer 2 is stretched on the back surface side second side surface 14b. The portion 22b is formed. Therefore, as shown in FIG. 16, when the semiconductor element A1 is bonded to the lead 51, the lead 51 is eutectic and bonded to the first stretched portion 22a and the second stretched portion 22b. Thereby, the joint strength can be increased. In addition, it is easy to determine the bonding state between the semiconductor element A1 and the lead 51 after bonding by visual inspection.
 本実施形態によると、裏面側第一側面14aおよび裏面側第二側面14bは、レーザ光Lのz方向への照射により形成されているので、z方向に延びる溝が形成されている。したがって、図16に示すように、半導体素子A1が封止樹脂7によって封止された場合、当該溝の凹凸があることで、主部1と封止樹脂7とが剥離することを抑制することができる。一方、本実施形態によると、主面側第一側面13aおよび主面側第二側面13bは、ダイシングブレードDcでの切削により形成されているので、平坦になっている。したがって、半導体素子A1をコレットでピックアップしやすい。 According to the present embodiment, since the back surface side first side surface 14a and the back surface side second side surface 14b are formed by irradiating the laser beam L in the z direction, a groove extending in the z direction is formed. Therefore, as shown in FIG. 16, when the semiconductor element A1 is sealed by the sealing resin 7, the unevenness of the groove prevents the main portion 1 and the sealing resin 7 from peeling off. Can be done. On the other hand, according to the present embodiment, the main surface side first side surface 13a and the main surface side second side surface 13b are flat because they are formed by cutting with the dicing blade Dc. Therefore, it is easy to pick up the semiconductor element A1 with a collet.
 図17~図18に基づき、第2実施形態にかかる半導体素子A2について説明する。これらの図において、先述した半導体素子A1と同一または類似の要素には同一の符号を付して、重複する説明を省略する。図17は、半導体素子A2を示す斜視図であり、図13に対応する図である。図18は、図17のXVIII-XVIII線に沿う拡大断面図である。 The semiconductor element A2 according to the second embodiment will be described with reference to FIGS. 17 to 18. In these figures, elements that are the same as or similar to the semiconductor element A1 described above are designated by the same reference numerals, and redundant description will be omitted. FIG. 17 is a perspective view showing the semiconductor element A2, and is a diagram corresponding to FIG. FIG. 18 is an enlarged cross-sectional view taken along the line XVIII-XVIII of FIG.
 半導体素子A2は、主面側第一側面13aおよび主面側第二側面13bも、レーザ光Lの照射により形成されている点で、第1実施形態にかかる半導体素子A1と異なる。 The semiconductor element A2 is different from the semiconductor element A1 according to the first embodiment in that the main surface side first side surface 13a and the main surface side second side surface 13b are also formed by irradiation with the laser beam L.
 半導体素子A2は、第一溝103aおよび第二溝103bの形成工程において、ダイシングブレードDcでの切削に代えて、レーザ光Lの照射が行われる。照射の出力は、主部材料10を貫通せずに所定の深さまで削除するように調整されている。したがって、図17に示すように、主面側第一側面13aおよび主面側第二側面13bには、裏面側第一側面14aおよび裏面側第二側面14bと同様、z方向に延びる溝が形成されている。また、図17および図18に示すように、第一接続面15aおよび第二接続面15bは、細かい凹凸が形成された面になっている。 In the process of forming the first groove 103a and the second groove 103b, the semiconductor element A2 is irradiated with the laser beam L instead of cutting with the dicing blade Dc. The output of the irradiation is adjusted so as to remove it to a predetermined depth without penetrating the main material 10. Therefore, as shown in FIG. 17, grooves extending in the z direction are formed on the main surface side first side surface 13a and the main surface side second side surface 13b, similarly to the back surface side first side surface 14a and the back surface side second side surface 14b. Has been done. Further, as shown in FIGS. 17 and 18, the first connecting surface 15a and the second connecting surface 15b are surfaces on which fine irregularities are formed.
 本実施形態においても、半導体素子A2は、主部材料10の主面101側に先に第一溝103aおよび第二溝103bが形成され、第一スリット104aおよび第二スリット104bがレーザ光Lの照射により形成されて製造される。したがって、チッピングの発生が抑制され、バリの発生が防止される。また、主面電極4と裏面電極層2との導通が防止できる。 Also in this embodiment, in the semiconductor element A2, the first groove 103a and the second groove 103b are formed first on the main surface 101 side of the main part material 10, and the first slit 104a and the second slit 104b are the laser beams L. It is formed and manufactured by irradiation. Therefore, the occurrence of chipping is suppressed and the occurrence of burrs is prevented. Further, the conduction between the main surface electrode 4 and the back surface electrode layer 2 can be prevented.
 本実施形態においても、裏面側第一側面14aに第一延伸部22aが形成されており、裏面側第二側面14bに第二延伸部22bが形成されている。したがって、半導体素子A2とリード51との接合強度を高めることができ、また、接合状態を外観検査により判断しやすい。また、裏面側第一側面14aおよび裏面側第二側面14bは、z方向に延びる溝が形成されている。したがって、半導体素子A2が封止樹脂7によって封止された場合、主部1と封止樹脂7とが剥離することを抑制することができる。 Also in this embodiment, the first stretched portion 22a is formed on the first side surface 14a on the back surface side, and the second stretched portion 22b is formed on the second side surface 14b on the back surface side. Therefore, the bonding strength between the semiconductor element A2 and the lead 51 can be increased, and the bonding state can be easily determined by visual inspection. Further, the back surface side first side surface 14a and the back surface side second side surface 14b are formed with grooves extending in the z direction. Therefore, when the semiconductor element A2 is sealed by the sealing resin 7, it is possible to prevent the main portion 1 and the sealing resin 7 from peeling off.
 図19~図20に基づき、本開示の第3実施形態にかかる半導体素子A3について説明する。これらの図において、先述した半導体素子A1と同一または類似の要素には同一の符号を付して、重複する説明を省略する。図19は、半導体素子A3を示す拡大断面図であり、図14に対応する図である。図20は、半導体素子A3の製造方法において第一溝を形成する工程を示す断面図であり、図5に対応する図である。 The semiconductor element A3 according to the third embodiment of the present disclosure will be described with reference to FIGS. 19 to 20. In these figures, elements that are the same as or similar to the semiconductor element A1 described above are designated by the same reference numerals, and redundant description will be omitted. FIG. 19 is an enlarged cross-sectional view showing the semiconductor element A3, and is a view corresponding to FIG. FIG. 20 is a cross-sectional view showing a step of forming the first groove in the method of manufacturing the semiconductor element A3, and is a diagram corresponding to FIG.
 半導体素子A3は、製造工程において保護膜8を形成しない点で、第1実施形態にかかる半導体素子A1と異なる。 The semiconductor element A3 is different from the semiconductor element A1 according to the first embodiment in that the protective film 8 is not formed in the manufacturing process.
 図19に示すように、半導体素子A3の主部1は、半導体素子A1の主部1(図14参照)と比較して、主面側第一側面13aのz方向寸法h1が小さく、裏面側第一側面14aのz方向寸法h2が大きい。また、第一接続面15aの幅寸法(y方向の寸法)が大きい。半導体素子A3は、図20に示すように、第一溝103aの形成工程において、幅の大きいダイシングブレードDcで、浅く切削して行うことで形成される。なお、図示しないが、半導体素子A1と比較して、主面側第二側面13bのz方向寸法も小さく、裏面側第二側面14bのz方向寸法も大きく、第二接続面15bの幅寸法も大きい。半導体素子A3は、第一溝103aおよび第二溝103bが形成された後、保護膜8が形成されることなく、第一スリット104aおよび第二スリット104bが形成される。 As shown in FIG. 19, the main portion 1 of the semiconductor element A3 has a smaller z-direction dimension h1 of the first side surface 13a on the main surface side than the main portion 1 of the semiconductor element A1 (see FIG. 14), and the back surface side. The z-direction dimension h2 of the first side surface 14a is large. Further, the width dimension (dimension in the y direction) of the first connecting surface 15a is large. As shown in FIG. 20, the semiconductor element A3 is formed by cutting shallowly with a wide dicing blade Dc in the process of forming the first groove 103a. Although not shown, the z-direction dimension of the second side surface 13b on the main surface side is smaller, the z-direction dimension of the second side surface 14b on the back surface side is larger, and the width dimension of the second connection surface 15b is larger than that of the semiconductor element A1. large. In the semiconductor element A3, after the first groove 103a and the second groove 103b are formed, the first slit 104a and the second slit 104b are formed without forming the protective film 8.
 半導体素子A3の主部1の形状は、上述した形状なので、製造工程において保護膜8を形成しない場合でも、第一延伸部22aおよび第二延伸部22bは、主部1の主面11まで延伸することはほとんどない。 Since the shape of the main portion 1 of the semiconductor element A3 is the above-mentioned shape, the first stretched portion 22a and the second stretched portion 22b are stretched to the main surface 11 of the main portion 1 even when the protective film 8 is not formed in the manufacturing process. There is little to do.
 本実施形態においても、半導体素子A3は、主部材料10の主面101側に先に第一溝103aおよび第二溝103bが形成され、第一スリット104aおよび第二スリット104bがレーザ光Lの照射により形成されて製造される。したがって、チッピングの発生が抑制され、バリの発生が防止される。また、主面電極4と裏面電極層2との導通を抑制できる。 Also in this embodiment, in the semiconductor element A3, the first groove 103a and the second groove 103b are formed first on the main surface 101 side of the main part material 10, and the first slit 104a and the second slit 104b are the laser beams L. It is formed and manufactured by irradiation. Therefore, the occurrence of chipping is suppressed and the occurrence of burrs is prevented. Further, the conduction between the main surface electrode 4 and the back surface electrode layer 2 can be suppressed.
 本実施形態においても、裏面側第一側面14aに第一延伸部22aが形成されており、裏面側第二側面14bに第二延伸部22bが形成されている。したがって、半導体素子A3とリード51との接合強度を高めることができ、また、接合状態を外観検査により判断しやすい。また、裏面側第一側面14aおよび裏面側第二側面14bは、z方向に延びる溝が形成されている。したがって、半導体素子A3が封止樹脂7によって封止された場合、主部1と封止樹脂7とが剥離することを抑制することができる。また、本実施形態においても、主面側第一側面13aおよび主面側第二側面13bは、平坦になっている。したがって、半導体素子A3をコレットでピックアップしやすい。 Also in this embodiment, the first stretched portion 22a is formed on the first side surface 14a on the back surface side, and the second stretched portion 22b is formed on the second side surface 14b on the back surface side. Therefore, the bonding strength between the semiconductor element A3 and the lead 51 can be increased, and the bonding state can be easily determined by visual inspection. Further, the back surface side first side surface 14a and the back surface side second side surface 14b are formed with grooves extending in the z direction. Therefore, when the semiconductor element A3 is sealed by the sealing resin 7, it is possible to prevent the main portion 1 and the sealing resin 7 from peeling off. Further, also in the present embodiment, the main surface side first side surface 13a and the main surface side second side surface 13b are flat. Therefore, it is easy to pick up the semiconductor element A3 with a collet.
 本実施形態においては、半導体素子A3の主部1の形状が半導体素子A1の主部1の形状と異なる場合について説明したが、本開示はこれに限られない。本実施形態では、保護膜8が形成されない場合でも第一延伸部22aおよび第二延伸部22bが主部1の主面11まで延伸しにくい形状として、半導体素子A3の主部1の形状を上述したものとしている。主部1の形状がたとえば半導体素子A1と同じであっても、レーザ光Lのみで切断を行う従来の半導体素子と比較すると、第一延伸部22aおよび第二延伸部22bが主部1の主面11まで延伸することの抑制は可能である。ただし、第一延伸部22aおよび第二延伸部22bが主部1の主面11まで延伸することをより抑制するためには、主面側第一側面13aおよび主面側第二側面13bのz方向寸法を小さくし、裏面側第一側面14aおよび裏面側第二側面14bのz方向寸法を大きくし、第一接続面15aおよび第二接続面15bの幅寸法を大きくすることが望ましい。また、第一スリット104aおよび第二スリット104bの幅寸法を小さくすることが望ましい。 In the present embodiment, the case where the shape of the main portion 1 of the semiconductor element A3 is different from the shape of the main portion 1 of the semiconductor element A1 has been described, but the present disclosure is not limited to this. In the present embodiment, the shape of the main portion 1 of the semiconductor element A3 is described above so that the first stretched portion 22a and the second stretched portion 22b are difficult to stretch to the main surface 11 of the main portion 1 even when the protective film 8 is not formed. It is supposed to have been done. Even if the shape of the main portion 1 is the same as that of the semiconductor element A1, the first stretched portion 22a and the second stretched portion 22b are the main parts of the main portion 1 as compared with the conventional semiconductor element that cuts only by the laser beam L. It is possible to suppress stretching to the surface 11. However, in order to further prevent the first stretched portion 22a and the second stretched portion 22b from stretching to the main surface 11 of the main portion 1, the z of the main surface side first side surface 13a and the main surface side second side surface 13b It is desirable to reduce the directional dimension, increase the z-direction dimension of the back surface side first side surface 14a and the back surface side second side surface 14b, and increase the width dimension of the first connection surface 15a and the second connection surface 15b. Further, it is desirable to reduce the width dimension of the first slit 104a and the second slit 104b.
 図21~図22に基づき、本開示の第4実施形態にかかる半導体素子A4について説明する。これらの図において、先述した半導体素子A1と同一または類似の要素には同一の符号を付して、重複する説明を省略する。図21は、半導体素子A4を示す斜視図であり、図13に対応する図である。図22は、半導体素子A4の製造方法に用いられる主部材料を示す底面図であり、図1を底面側から見た図に対応する図である。なお、図22においては、保持テープDtを透過して、2点鎖線で示している。 The semiconductor element A4 according to the fourth embodiment of the present disclosure will be described with reference to FIGS. 21 to 22. In these figures, elements that are the same as or similar to the semiconductor element A1 described above are designated by the same reference numerals, and redundant description will be omitted. FIG. 21 is a perspective view showing the semiconductor element A4, and is a diagram corresponding to FIG. FIG. 22 is a bottom view showing a main part material used in the method for manufacturing the semiconductor element A4, and is a view corresponding to a view of FIG. 1 from the bottom side. In FIG. 22, the holding tape Dt is transmitted and shown by a two-dot chain line.
 半導体素子A4は、製造工程において第二溝103bを形成せず、第二スリット104bを主部材料10の主面101から裏面102まで貫通させて形成する点で、第1実施形態にかかる半導体素子A1と異なる。 The semiconductor element A4 according to the first embodiment is formed by penetrating the second slit 104b from the main surface 101 to the back surface 102 of the main part material 10 without forming the second groove 103b in the manufacturing process. Different from A1.
 図21に示すように、半導体素子A4の主部1は、主面側第二側面13bを備えておらず、裏面側第二側面14bが主面11および裏面12に繋がっている。また、裏面電極層2は、裏面12の全体を覆っておらず、裏面側第二側面14bに繋がる第二端縁12bの全体を露出させている。したがって、裏面電極層2は、第二延伸部22bを有していない。 As shown in FIG. 21, the main portion 1 of the semiconductor element A4 does not include the main surface side second side surface 13b, and the back surface side second side surface 14b is connected to the main surface 11 and the back surface 12. Further, the back surface electrode layer 2 does not cover the entire back surface 12, but exposes the entire second end edge 12b connected to the back surface side second side surface 14b. Therefore, the back surface electrode layer 2 does not have the second stretched portion 22b.
 半導体素子A4の製造方法に用いられる主部材料10は、図22に示すように、裏面102に、複数の導電体層20が形成されている。なお、理解の便宜上、導電体層20に点描を付している。複数の導電体層20は、各々がy方向に延び、互いにx方向に等ピッチで離間配置されている。各導電体層20は、z方向視において、各主面電極4の全体に重なり、各絶縁層第二スリット32bに重ならない。なお、各導電体層20は、z方向視において、各主面電極4の一部に重なってもよいし、各主面電極4に重ならなくてもよい。 As shown in FIG. 22, the main material 10 used in the method for manufacturing the semiconductor element A4 has a plurality of conductor layers 20 formed on the back surface 102. For convenience of understanding, pointillism is attached to the conductor layer 20. The plurality of conductor layers 20 extend in the y direction and are spaced apart from each other in the x direction at equal pitches. Each conductor layer 20 overlaps the entire main surface electrode 4 and does not overlap each insulating layer second slit 32b in the z-direction view. Each conductor layer 20 may or may not overlap a part of each main surface electrode 4 in the z-direction view.
 製造工程において、第一溝103aが形成された後、第二溝103bは形成されず、保護膜8が形成される。次いで、レーザ光Lによるダイシングによって、第一スリット104aおよび第二スリット104bが形成される。第二スリット104bは、主部材料10の主面101から裏面102まで貫通している。各導電体層20は、各絶縁層第二スリット32bに重なっていないので、第二スリット104bの形成において、レーザ光によって溶融されず、第二延伸部22bが形成されない。 In the manufacturing process, after the first groove 103a is formed, the second groove 103b is not formed and the protective film 8 is formed. Next, the first slit 104a and the second slit 104b are formed by dicing with the laser beam L. The second slit 104b penetrates from the main surface 101 to the back surface 102 of the main material 10. Since each conductor layer 20 does not overlap with each insulating layer second slit 32b, in the formation of the second slit 104b, it is not melted by the laser beam and the second stretched portion 22b is not formed.
 本実施形態によると、半導体素子A4は、主部材料10の主面101側に先に第一溝103aが形成され、第一スリット104aおよび第二スリット104bがレーザ光Lの照射により形成されて製造される。したがって、チッピングの発生が抑制され、バリの発生が防止される。また、レーザ光Lの照射により溶融した導電体層20の一部が、切断された側面である裏面側第一側面14aに付着して、第一延伸部22aが形成されるが、先に形成された第一溝103aの内面には保護膜8が形成されているので、主面側第一側面13aは、第一延伸部22aに覆われない。また、各導電体層20が各絶縁層第二スリット32bに重なっていないので、第二延伸部22bが形成されない。したがって、主面電極4と裏面電極層2との導通を抑制できる。 According to the present embodiment, in the semiconductor element A4, the first groove 103a is formed first on the main surface 101 side of the main part material 10, and the first slit 104a and the second slit 104b are formed by irradiation with the laser beam L. Manufactured. Therefore, the occurrence of chipping is suppressed and the occurrence of burrs is prevented. Further, a part of the conductor layer 20 melted by irradiation with the laser beam L adheres to the first side surface 14a on the back surface side, which is the cut side surface, to form the first stretched portion 22a, but the first stretched portion 22a is formed first. Since the protective film 8 is formed on the inner surface of the first groove 103a, the first side surface 13a on the main surface side is not covered by the first extension portion 22a. Further, since each conductor layer 20 does not overlap with each insulating layer second slit 32b, the second stretched portion 22b is not formed. Therefore, the conduction between the main surface electrode 4 and the back surface electrode layer 2 can be suppressed.
 本実施形態においても、裏面側第一側面14aに第一延伸部22aが形成されているので、半導体素子A4とリード51との接合強度を高めることができ、また、接合状態を外観検査により判断しやすい。また、裏面側第一側面14aおよび裏面側第二側面14bは、z方向に延びる溝が形成されている。したがって、半導体素子A4が封止樹脂7によって封止された場合、主部1と封止樹脂7とが剥離することを抑制することができる。 Also in this embodiment, since the first stretched portion 22a is formed on the first side surface 14a on the back surface side, the bonding strength between the semiconductor element A4 and the lead 51 can be increased, and the bonding state is determined by visual inspection. It's easy to do. Further, the back surface side first side surface 14a and the back surface side second side surface 14b are formed with grooves extending in the z direction. Therefore, when the semiconductor element A4 is sealed by the sealing resin 7, it is possible to prevent the main portion 1 and the sealing resin 7 from peeling off.
 本開示にかかる半導体素子および半導体素子の製造方法は、先述した実施形態に限定されるものではない。本開示にかかる半導体素子の各部の具体的な構成および、本開示の半導体素子の製造方法の各工程の具体的な処理は、種々に設計変更自在である。 The semiconductor element and the method for manufacturing the semiconductor element according to the present disclosure are not limited to the above-described embodiment. The specific configuration of each part of the semiconductor element according to the present disclosure and the specific processing of each step of the method for manufacturing the semiconductor element of the present disclosure can be variously redesigned.
 付記1. 少なくとも一部が半導体からなり、厚さ方向において互いに反対側を向く主面および裏面と、前記厚さ方向に直交する第一方向に直交し、かつ、前記主面に繋がる主面側第一側面と、前記主面側第一側面と同じ側を向き、かつ、前記裏面に繋がる裏面側第一側面と、を有する主部と、
 前記主部の前記裏面の少なくとも一部を覆う裏面電極層と、
を備え、
 前記裏面側第一側面は、前記第一方向において、前記主面側第一側面より外側に位置し、
 前記裏面電極層は、前記裏面側第一側面の少なくとも一部を覆う第一延伸部を備えている、半導体素子。
 付記2. 前記裏面側第一側面は、前記厚さ方向に延びる溝が形成されている、付記1に記載の半導体素子。
 付記3. 前記主面側第一側面は、平坦である、付記1または2に記載の半導体素子。
 付記4. 前記主面側第一側面は、前記厚さ方向に延びる溝が形成されている、付記1または2に記載の半導体素子。
 付記5. 前記第一延伸部は、前記主面側第一側面を覆わない、付記1ないし4のいずれか1つに記載の半導体素子。
 付記6. 前記裏面電極層は、前記裏面の前記裏面側第一側面に繋がる第一端縁の全体を覆っている、付記1ないし5のいずれか1つに記載の半導体素子。
 付記7. 前記第一延伸部は、前記第一端縁の全長にわたって、前記第一端縁から前記主面側に向かって延伸している、付記6に記載の半導体素子。
 付記8. 前記裏面電極層は、前記裏面の全体を覆っている、付記1ないし7のいずれか1つに記載の半導体素子。
 付記9. 前記主部は、前記主面側第一側面と前記裏面側第一側面とに繋がる第一接続面をさらに備えている、付記1ないし8のいずれか1つに記載の半導体素子。
 付記10. 前記第一接続面は、前記主面側第一側面に繋がる凹曲面状の曲面部と、前記裏面側第一側面に繋がり、かつ、前記裏面側第一側面に直交する直交部とを備えている、付記9に記載の半導体素子。
 付記11. 前記主面側第一側面の前記厚さ方向の寸法は、前記裏面側第一側面の前記厚さ方向の寸法より大きい、付記1ないし10のいずれか1つに記載の半導体素子。
 付記12. 前記主面側第一側面の前記厚さ方向の寸法は、前記裏面側第一側面の前記厚さ方向の寸法の5倍以下である、付記11に記載の半導体素子。
 付記13. 前記裏面側第一側面の前記厚さ方向の寸法は、50μm以上である、付記1ないし12のいずれか1つに記載の半導体素子。
 付記14. 前記主部は、前記第一方向において互いに反対側を向く2個の前記主面側第一側面および2個の前記裏面側第一側面を有している、付記1ないし13のいずれか1つに記載の半導体素子。
 付記15. 前記主部は、前記厚さ方向および前記第一方向に直交する第二方向に直交し、かつ、前記主面に繋がる主面側第二側面と、前記主面側第二側面と同じ側を向き、かつ、前記裏面に繋がる裏面側第二側面とをさらに有し、
 前記裏面側第二側面は、前記第二方向において、前記主面側第二側面より外側に位置し、
 前記裏面電極層は、前記裏面側第二側面の少なくとも一部を覆う第二延伸部を備えている、付記1ないし14のいずれか1つに記載の半導体素子。
 付記16. 前記主部は、前記第二方向において互いに反対側を向く2個の前記主面側第二側面および2個の前記裏面側第二側面を有している、付記15に記載の半導体素子。
 付記17. 少なくとも一部が半導体からなり、厚さ方向において互いに反対側を向く主面および裏面を有し、前記裏面の少なくとも一部が導電体層によって覆われた主部材料を準備する準備工程と、
 前記主部材料の前記裏面側を保持テープに保持させる保持工程と、
 前記厚さ方向に直交する第二方向に沿って、前記主部材料の前記主面側の一部を削除することにより、第一溝を形成する溝形成工程と、
 前記厚さ方向および前記第二方向に直交する第一方向の寸法が、前記第一溝の前記第一方向の寸法以下であり、かつ、前記厚さ方向視において前記第一溝に内包されるとともに、前記主部材料を前記厚さ方向に分断する第一スリットを形成する分断工程と、
を備え、
 前記分断工程は、レーザ光の照射により行われる、半導体素子の製造方法。
 付記18. 前記溝形成工程は、ダイシングブレードでの切削により行われる、付記17に記載の半導体素子の製造方法。
 付記19. 前記溝形成工程は、前記レーザ光の照射により行われる、付記17に記載の半導体素子の製造方法。
 付記20. 前記溝形成工程と前記分断工程との間に行われ、前記第一溝の内面に保護膜を形成する保護膜形成工程と、
 前記分断工程の後に行われ、前記保護膜を除去する保護膜除去工程と、
をさらに備える、付記17ないし19のいずれか1つに記載の半導体素子の製造方法。
 付記21. 前記溝形成工程は、さらに、前記第一方向に沿って、前記主部材料の前記主面側の一部を削除することにより、第二溝を形成し、
 前記分断工程は、さらに、前記第二方向の寸法が、前記第二溝の前記第二方向の寸法以下であり、かつ、前記厚さ方向視において前記第二溝に内包されるとともに、前記主部材料を前記厚さ方向に分断する第二スリットを形成する、付記17ないし20のいずれか1つに記載の半導体素子の製造方法。
Appendix 1. The main surface and the back surface, which are at least partly made of a semiconductor and face opposite to each other in the thickness direction, and the first surface on the main surface side which is orthogonal to the first direction orthogonal to the thickness direction and is connected to the main surface. And a main portion having the same side as the first side surface on the main surface side and the first side surface on the back surface side connected to the back surface.
A back electrode layer that covers at least a part of the back surface of the main portion,
With
The back surface side first side surface is located outside the main surface side first side surface in the first direction.
The back surface electrode layer is a semiconductor device including a first stretched portion that covers at least a part of the back surface side first side surface.
Appendix 2. The semiconductor element according to Appendix 1, wherein a groove extending in the thickness direction is formed on the first side surface on the back surface side.
Appendix 3. The semiconductor element according to Appendix 1 or 2, wherein the first side surface on the main surface side is flat.
Appendix 4. The semiconductor element according to Appendix 1 or 2, wherein a groove extending in the thickness direction is formed on the first side surface on the main surface side.
Appendix 5. The semiconductor element according to any one of Supplementary note 1 to 4, wherein the first stretched portion does not cover the first side surface on the main surface side.
Appendix 6. The semiconductor element according to any one of Supplementary note 1 to 5, wherein the back surface electrode layer covers the entire first end edge connected to the back surface side first side surface of the back surface.
Appendix 7. The semiconductor element according to Appendix 6, wherein the first stretched portion extends from the first end edge toward the main surface side over the entire length of the first end edge.
Appendix 8. The semiconductor element according to any one of Appendix 1 to 7, wherein the back surface electrode layer covers the entire back surface.
Appendix 9. The semiconductor element according to any one of Supplementary note 1 to 8, wherein the main portion further includes a first connecting surface that connects the first side surface on the main surface side and the first side surface on the back surface side.
Appendix 10. The first connecting surface includes a concave curved surface portion connected to the first side surface on the main surface side and an orthogonal portion connected to the first side surface on the back surface side and orthogonal to the first side surface on the back surface side. The semiconductor element according to Appendix 9.
Appendix 11. The semiconductor element according to any one of Supplementary note 1 to 10, wherein the dimension of the first side surface on the main surface side in the thickness direction is larger than the dimension of the first side surface on the back surface side in the thickness direction.
Appendix 12. The semiconductor element according to Appendix 11, wherein the dimension of the first side surface on the main surface side in the thickness direction is five times or less the dimension in the thickness direction of the first side surface on the back surface side.
Appendix 13. The semiconductor element according to any one of Supplementary note 1 to 12, wherein the dimension of the first side surface on the back surface side in the thickness direction is 50 μm or more.
Appendix 14. The main portion is any one of Supplementary notes 1 to 13, which has two main surface side first side surfaces and two back surface side first side surfaces facing each other in the first direction. The semiconductor element according to.
Appendix 15. The main portion has a main surface side second side surface orthogonal to the thickness direction and a second direction orthogonal to the first direction and connected to the main surface, and the same side as the main surface side second side surface. It also has a second side surface on the back surface side that is oriented and is connected to the back surface.
The back surface side second side surface is located outside the main surface side second side surface in the second direction.
The semiconductor element according to any one of Supplementary note 1 to 14, wherein the back surface electrode layer includes a second stretched portion that covers at least a part of the back surface side second side surface.
Appendix 16. The semiconductor element according to Appendix 15, wherein the main portion has two main surface side second side surfaces and two back surface side second side surfaces facing each other in the second direction.
Appendix 17. A preparatory step of preparing a main material, which is at least partly made of a semiconductor, has a main surface and a back surface facing opposite sides in the thickness direction, and at least a part of the back surface is covered with a conductor layer.
A holding step of holding the back side of the main material on the holding tape, and
A groove forming step of forming a first groove by deleting a part of the main surface side of the main part material along a second direction orthogonal to the thickness direction.
The dimensions in the thickness direction and the first direction orthogonal to the second direction are equal to or less than the dimensions in the first direction of the first groove, and are included in the first groove in the thickness direction view. At the same time, a dividing step of forming a first slit for dividing the main material in the thickness direction, and
With
The dividing step is a method for manufacturing a semiconductor element, which is performed by irradiating a laser beam.
Appendix 18. The method for manufacturing a semiconductor device according to Appendix 17, wherein the groove forming step is performed by cutting with a dicing blade.
Appendix 19. The method for manufacturing a semiconductor device according to Appendix 17, wherein the groove forming step is performed by irradiating the laser beam.
Appendix 20. A protective film forming step, which is performed between the groove forming step and the dividing step to form a protective film on the inner surface of the first groove,
A protective film removing step, which is performed after the dividing step and removes the protective film,
The method for manufacturing a semiconductor device according to any one of Appendix 17 to 19, further comprising.
Appendix 21. In the groove forming step, a second groove is further formed by deleting a part of the main part material on the main surface side along the first direction.
In the dividing step, the dimension in the second direction is not more than or equal to the dimension in the second direction of the second groove, and the second groove is included in the second groove in the thickness direction view, and the main The method for manufacturing a semiconductor device according to any one of Supplementary note 17 to 20, wherein a second slit for dividing a part material in the thickness direction is formed.
A1~A4:半導体素子
1    :主部
11   :主面
12   :裏面
12a  :第一端縁
12b  :第二端縁
13a  :主面側第一側面
13b  :主面側第二側面
14a  :裏面側第一側面
14b  :裏面側第二側面
15a  :第一接続面
16a  :曲面部
17a  :直交部
15b  :第二接続面
16b  :曲面部
17b  :直交部
2    :裏面電極層
22a  :第一延伸部
22b  :第二延伸部
3    :絶縁層
4    :主面電極
C1   :半導体装置
51   :リード
52   :リード
6    :ワイヤ
7    :封止樹脂
8    :保護膜
10   :主部材料
101  :主面
102  :裏面
102a :第一端縁
102b :第二端縁
103a :第一溝
103b :第二溝
104a :第一スリット
104b :第二スリット
20   :導電体層
30   :絶縁層
31   :開口
32a  :絶縁層第一スリット
32b  :絶縁層第二スリット
Dc   :ダイシングブレード
Dt   :保持テープ
L    :レーザ光
A1 to A4: Semiconductor element 1: Main part 11: Main surface 12: Back surface 12a: First end edge 12b: Second end edge 13a: Main surface side first side surface 13b: Main surface side second side surface 14a: Back surface side first One side surface 14b: Back surface side Second side surface 15a: First connection surface 16a: Curved surface portion 17a: Orthogonal portion 15b: Second connection surface 16b: Curved surface portion 17b: Orthogonal portion 2: Back surface electrode layer 22a: First extension portion 22b: Second stretched portion 3: Insulation layer 4: Main surface electrode C1: Semiconductor device 51: Lead 52: Lead 6: Wire 7: Encapsulating resin 8: Protective film 10: Main part material 101: Main surface 102: Back surface 102a: First One end edge 102b: Second end edge 103a: First groove 103b: Second groove 104a: First slit 104b: Second slit 20: Conductor layer 30: Insulation layer 31: Opening 32a: Insulation layer first slit 32b: Insulation layer second slit Dc: Dicing blade Dt: Holding tape L: Laser light

Claims (21)

  1.  少なくとも一部が半導体からなり、厚さ方向において互いに反対側を向く主面および裏面と、前記厚さ方向に直交する第一方向に直交し、かつ、前記主面に繋がる主面側第一側面と、前記主面側第一側面と同じ側を向き、かつ、前記裏面に繋がる裏面側第一側面と、を有する主部と、
     前記主部の前記裏面の少なくとも一部を覆う裏面電極層と、
    を備え、
     前記裏面側第一側面は、前記第一方向において、前記主面側第一側面より外側に位置し、
     前記裏面電極層は、前記裏面側第一側面の少なくとも一部を覆う第一延伸部を備えている、半導体素子。
    The main surface and the back surface, which are at least partly made of a semiconductor and face opposite to each other in the thickness direction, and the first surface on the main surface side which is orthogonal to the first direction orthogonal to the thickness direction and is connected to the main surface. And a main portion having the same side as the first side surface on the main surface side and the first side surface on the back surface side connected to the back surface.
    A back electrode layer that covers at least a part of the back surface of the main portion,
    With
    The back surface side first side surface is located outside the main surface side first side surface in the first direction.
    The back surface electrode layer is a semiconductor device including a first stretched portion that covers at least a part of the back surface side first side surface.
  2.  前記裏面側第一側面は、前記厚さ方向に延びる溝が形成されている、請求項1に記載の半導体素子。 The semiconductor element according to claim 1, wherein a groove extending in the thickness direction is formed on the first side surface on the back surface side.
  3.  前記主面側第一側面は、平坦である、請求項1または2に記載の半導体素子。 The semiconductor element according to claim 1 or 2, wherein the first side surface on the main surface side is flat.
  4.  前記主面側第一側面は、前記厚さ方向に延びる溝が形成されている、請求項1または2に記載の半導体素子。 The semiconductor element according to claim 1 or 2, wherein a groove extending in the thickness direction is formed on the first side surface on the main surface side.
  5.  前記第一延伸部は、前記主面側第一側面を覆わない、請求項1ないし4のいずれか1つに記載の半導体素子。 The semiconductor element according to any one of claims 1 to 4, wherein the first stretched portion does not cover the first side surface on the main surface side.
  6.  前記裏面電極層は、前記裏面の前記裏面側第一側面に繋がる第一端縁の全体を覆っている、請求項1ないし5のいずれか1つに記載の半導体素子。 The semiconductor element according to any one of claims 1 to 5, wherein the back surface electrode layer covers the entire first end edge connected to the back surface side first side surface of the back surface.
  7.  前記第一延伸部は、前記第一端縁の全長にわたって、前記第一端縁から前記主面側に向かって延伸している、請求項6に記載の半導体素子。 The semiconductor element according to claim 6, wherein the first stretched portion extends from the first end edge toward the main surface side over the entire length of the first end edge.
  8.  前記裏面電極層は、前記裏面の全体を覆っている、請求項1ないし7のいずれか1つに記載の半導体素子。 The semiconductor element according to any one of claims 1 to 7, wherein the back surface electrode layer covers the entire back surface.
  9.  前記主部は、前記主面側第一側面と前記裏面側第一側面とに繋がる第一接続面をさらに備えている、請求項1ないし8のいずれか1つに記載の半導体素子。 The semiconductor element according to any one of claims 1 to 8, wherein the main portion further includes a first connecting surface that connects the first side surface on the main surface side and the first side surface on the back surface side.
  10.  前記第一接続面は、前記主面側第一側面に繋がる凹曲面状の曲面部と、前記裏面側第一側面に繋がり、かつ、前記裏面側第一側面に直交する直交部とを備えている、請求項9に記載の半導体素子。 The first connecting surface includes a concave curved surface portion connected to the first side surface on the main surface side and an orthogonal portion connected to the first side surface on the back surface side and orthogonal to the first side surface on the back surface side. The semiconductor device according to claim 9.
  11.  前記主面側第一側面の前記厚さ方向の寸法は、前記裏面側第一側面の前記厚さ方向の寸法より大きい、請求項1ないし10のいずれか1つに記載の半導体素子。 The semiconductor element according to any one of claims 1 to 10, wherein the dimension of the first side surface on the main surface side in the thickness direction is larger than the dimension of the first side surface on the back surface side in the thickness direction.
  12.  前記主面側第一側面の前記厚さ方向の寸法は、前記裏面側第一側面の前記厚さ方向の寸 法の5倍以下である、請求項11に記載の半導体素子。 The semiconductor element according to claim 11, wherein the dimension of the first side surface on the main surface side in the thickness direction is five times or less the dimension method of the first side surface on the back surface side in the thickness direction.
  13.  前記裏面側第一側面の前記厚さ方向の寸法は、50μm以上である、請求項1ないし12のいずれか1つに記載の半導体素子。 The semiconductor element according to any one of claims 1 to 12, wherein the dimension of the first side surface on the back surface side in the thickness direction is 50 μm or more.
  14.  前記主部は、前記第一方向において互いに反対側を向く2個の前記主面側第一側面および2個の前記裏面側第一側面を有している、請求項1ないし13のいずれか1つに記載の半導体素子。 Any one of claims 1 to 13, wherein the main portion has two main surface side first side surfaces and two back surface side first side surfaces facing each other in the first direction. The semiconductor element described in 1.
  15.  前記主部は、前記厚さ方向および前記第一方向に直交する第二方向に直交し、かつ、前記主面に繋がる主面側第二側面と、前記主面側第二側面と同じ側を向き、かつ、前記裏面に繋がる裏面側第二側面とをさらに有し、
     前記裏面側第二側面は、前記第二方向において、前記主面側第二側面より外側に位置し、
     前記裏面電極層は、前記裏面側第二側面の少なくとも一部を覆う第二延伸部を備えている、請求項1ないし14のいずれか1つに記載の半導体素子。
    The main portion has a main surface side second side surface orthogonal to the thickness direction and a second direction orthogonal to the first direction and connected to the main surface, and the same side as the main surface side second side surface. It also has a second side surface on the back surface side that is oriented and is connected to the back surface.
    The back surface side second side surface is located outside the main surface side second side surface in the second direction.
    The semiconductor element according to any one of claims 1 to 14, wherein the back surface electrode layer includes a second stretched portion that covers at least a part of the back surface side second side surface.
  16.  前記主部は、前記第二方向において互いに反対側を向く2個の前記主面側第二側面および2個の前記裏面側第二側面を有している、請求項15に記載の半導体素子。 The semiconductor element according to claim 15, wherein the main portion has two main surface side second side surfaces and two back surface side second side surfaces facing each other in the second direction.
  17.  少なくとも一部が半導体からなり、厚さ方向において互いに反対側を向く主面および裏面を有し、前記裏面の少なくとも一部が導電体層によって覆われた主部材料を準備する準備工程と、
     前記主部材料の前記裏面側を保持テープに保持させる保持工程と、
     前記厚さ方向に直交する第二方向に沿って、前記主部材料の前記主面側の一部を削除することにより、第一溝を形成する溝形成工程と、
     前記厚さ方向および前記第二方向に直交する第一方向の寸法が、前記第一溝の前記第一方向の寸法以下であり、かつ、前記厚さ方向視において前記第一溝に内包されるとともに、前記主部材料を前記厚さ方向に分断する第一スリットを形成する分断工程と、
    を備え、
     前記分断工程は、レーザ光の照射により行われる、半導体素子の製造方法。
    A preparatory step of preparing a main material, which is at least partly made of a semiconductor, has a main surface and a back surface facing opposite sides in the thickness direction, and at least a part of the back surface is covered with a conductor layer.
    A holding step of holding the back side of the main material on the holding tape, and
    A groove forming step of forming a first groove by deleting a part of the main surface side of the main part material along a second direction orthogonal to the thickness direction.
    The dimensions in the thickness direction and the first direction orthogonal to the second direction are equal to or less than the dimensions in the first direction of the first groove, and are included in the first groove in the thickness direction view. At the same time, a dividing step of forming a first slit for dividing the main material in the thickness direction, and
    With
    The dividing step is a method for manufacturing a semiconductor element, which is performed by irradiating a laser beam.
  18.  前記溝形成工程は、ダイシングブレードでの切削により行われる、請求項17に記載の半導体素子の製造方法。 The method for manufacturing a semiconductor element according to claim 17, wherein the groove forming step is performed by cutting with a dicing blade.
  19.  前記溝形成工程は、前記レーザ光の照射により行われる、請求項17に記載の半導体素子の製造方法。 The method for manufacturing a semiconductor device according to claim 17, wherein the groove forming step is performed by irradiating the laser beam.
  20.  前記溝形成工程と前記分断工程との間に行われ、前記第一溝の内面に保護膜を形成する保護膜形成工程と、
     前記分断工程の後に行われ、前記保護膜を除去する保護膜除去工程と、
    をさらに備える、請求項17ないし19のいずれか1つに記載の半導体素子の製造方法。
    A protective film forming step, which is performed between the groove forming step and the dividing step to form a protective film on the inner surface of the first groove,
    A protective film removing step, which is performed after the dividing step and removes the protective film,
    The method for manufacturing a semiconductor device according to any one of claims 17 to 19, further comprising.
  21.  前記溝形成工程は、さらに、前記第一方向に沿って、前記主部材料の前記主面側の一部を削除することにより、第二溝を形成し
     前記分断工程は、さらに、前記第二方向の寸法が、前記第二溝の前記第二方向の寸法以下であり、かつ、前記厚さ方向視において前記第二溝に内包されるとともに、前記主部材料を前記厚さ方向に分断する第二スリットを形成する、請求項17ないし20のいずれか1つに記載の半導体素子の製造方法。
    The groove forming step further forms a second groove by deleting a part of the main part material on the main surface side along the first direction, and the dividing step further forms the second groove. The dimension in the direction is equal to or less than the dimension in the second direction of the second groove, and is included in the second groove in the thickness direction view, and the main part material is divided in the thickness direction. The method for manufacturing a semiconductor device according to any one of claims 17 to 20, which forms a second slit.
PCT/JP2020/032062 2019-08-27 2020-08-25 Semiconductor element, and method for manufacturing semiconductor element WO2021039802A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019154592A JP2022177326A (en) 2019-08-27 2019-08-27 Semiconductor element, and method for manufacturing semiconductor element
JP2019-154592 2019-08-27

Publications (1)

Publication Number Publication Date
WO2021039802A1 true WO2021039802A1 (en) 2021-03-04

Family

ID=74685898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/032062 WO2021039802A1 (en) 2019-08-27 2020-08-25 Semiconductor element, and method for manufacturing semiconductor element

Country Status (2)

Country Link
JP (1) JP2022177326A (en)
WO (1) WO2021039802A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6195544A (en) * 1984-10-17 1986-05-14 Hitachi Ltd Pelletizing method
JPH0927639A (en) * 1995-07-12 1997-01-28 Toshiba Corp Semiconductor device
JP2017228651A (en) * 2016-06-22 2017-12-28 株式会社ディスコ Processing method of wafer
JP2018078192A (en) * 2016-11-09 2018-05-17 株式会社村田製作所 Semiconductor device
JP2018078162A (en) * 2016-11-08 2018-05-17 株式会社ディスコ Processing method for wafer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6195544A (en) * 1984-10-17 1986-05-14 Hitachi Ltd Pelletizing method
JPH0927639A (en) * 1995-07-12 1997-01-28 Toshiba Corp Semiconductor device
JP2017228651A (en) * 2016-06-22 2017-12-28 株式会社ディスコ Processing method of wafer
JP2018078162A (en) * 2016-11-08 2018-05-17 株式会社ディスコ Processing method for wafer
JP2018078192A (en) * 2016-11-09 2018-05-17 株式会社村田製作所 Semiconductor device

Also Published As

Publication number Publication date
JP2022177326A (en) 2022-12-01

Similar Documents

Publication Publication Date Title
JP3662260B2 (en) Semiconductor device and manufacturing method thereof
KR100741864B1 (en) Method for manufacturing semiconductor device
KR100650538B1 (en) Semiconductor device manufacturing method
US6955947B2 (en) Backside metallization on microelectronic dice having beveled sides for effective thermal contact with heat dissipation devices
JP2004031526A (en) Manufacturing method of group iii nitride compound semiconductor element
JP2001144126A (en) Semiconductor device and manufacturing method
JPH03204954A (en) Semiconductor device and manufacture thereof
CN101872720A (en) Make the method for semiconductor device
JP2006086509A (en) Method for dividing semiconductor substrate
JP5300470B2 (en) Semiconductor package and method for forming the same
JP6304243B2 (en) Semiconductor device and method for manufacturing semiconductor device
CN1441479A (en) Semiconductor device and its producing method
KR101525638B1 (en) Method for producing a plurality of radiation emitting components and radiation emitting component
JP4535834B2 (en) Light emitting device and manufacturing method thereof
WO2021039802A1 (en) Semiconductor element, and method for manufacturing semiconductor element
JP7144157B2 (en) Semiconductor device and its manufacturing method
TWI743778B (en) Manufacturing method of semiconductor device
JP4542508B2 (en) Vertical light emitting diode and manufacturing method thereof
EP0793269B1 (en) Semiconductor device having a chip with via hole soldered on a support, and its method of fabrication
JPWO2020166512A1 (en) Semiconductor devices and methods for manufacturing semiconductor devices
WO2023188587A1 (en) Method for manufacturing processed article, method for manufacturing semiconductor device, and device for manufacturing processed article
JP3525808B2 (en) Semiconductor device manufacturing method and semiconductor device
US20230197518A1 (en) Semiconductor device and method for manufacturing same
US20220093733A1 (en) Semiconductor device and method of manufacturing the same
JPS62298138A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20856985

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20856985

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP