JP2006086509A - Method for dividing semiconductor substrate - Google Patents

Method for dividing semiconductor substrate Download PDF

Info

Publication number
JP2006086509A
JP2006086509A JP2005228279A JP2005228279A JP2006086509A JP 2006086509 A JP2006086509 A JP 2006086509A JP 2005228279 A JP2005228279 A JP 2005228279A JP 2005228279 A JP2005228279 A JP 2005228279A JP 2006086509 A JP2006086509 A JP 2006086509A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
dividing
mounting member
divided
mounting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005228279A
Other languages
Japanese (ja)
Inventor
Muneo Tamura
宗生 田村
Yasuo Soki
安男 左右木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2005228279A priority Critical patent/JP2006086509A/en
Publication of JP2006086509A publication Critical patent/JP2006086509A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To realize a method for dividing a semiconductor substrate wherein the dimension of a divided DAF and a metal thin film can be adapted to a semiconductor chip, thus allowing no packaging defect of a semiconductor chip to be generated. <P>SOLUTION: A notch 1a is formed in a DAF 2 and a semiconductor substrate 1 along an intended dividing line L1 by a diamond blade 3. Next, a part along the intended dividing line L1 is irradiated with a laser beam 4, so that a converging point P is formed in the semiconductor substrate 1, and a reformed area 1c by multiphoton absorption is formed in the converging point P. Next, by pulling a dicing film 5 in a direction shown by arrows F2 and F3, and the semiconductor substrate 1 is divided along the intended dividing line L1. Next, a pressing member 6 is moved in the direction shown by arrow F4 and a semiconductor chip 1e is picked up. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、分断された半導体基板を実装するための実装部材が基板面に取付けられた半導体基板をその厚さ方向に分断する半導体基板の分断方法に関する。   The present invention relates to a method for dividing a semiconductor substrate, in which a mounting member for mounting the divided semiconductor substrate is divided in the thickness direction thereof.

従来、この種の半導体基板の分断方法として、高速回転するダイヤモンドブレードにより、シリコンウェハなどの半導体基板を切断して半導体チップを得る方法が用いられていた。しかし、この方法では、切断幅分のシリコンの損失により、半導体チップの収量が制限されるという問題や、切断時に半導体チップの一部が欠けるチッピングにより歩留まりが低下するという問題などがあった。
そこで、半導体基板の内部に集光点を合わせてレーザ光を照射し、集光点に多光子吸収による改質領域を形成し、その改質領域を起点に分断する方法が提案されている(特許文献1)。図4は、その方法を示す説明図であり、図4(a)〜(c)は、改質領域の形成から分断までの工程を示す説明図である。
図4(a)に示すように、半導体基板1の裏面(素子が形成されていない面)には、分断により生成された半導体チップ1eを実装するための貼着フィルム(フィルム状接着剤)であるダイアタッチフィルム(ダイボンドフィルムともいう。以下、DAFという)2が貼着されており、そのDAF2の裏面(実装側の面)には、分断後の半導体チップが離散しないようにするためのダイシングフィルム(ダイシングシートまたはダイシングテープとも呼ばれる)5が貼着されている。DAF2およびダイシングフィルム5は、例えば合成樹脂製フィルム上に接着剤を塗工して形成されている。
まず、レーザ光4をその集光点Pが半導体基板1の内部の下方に位置するように設定したレーザ照射条件で、分断予定ラインL1上に沿って半導体基板1の表面から照射する。これにより、集光点Pおよびその近傍では、光学的損傷という現象が発生し、これにより熱ひずみが誘起され、その部分にクラックが発生し、そのクラックが集合した領域、つまり改質領域1cが形成される。続いて、集光点Pを前述で形成した改質領域より上方の半導体基板内部の位置に移動させ、分断予定ラインL1に沿って改質領域1cを形成し、分断予定ラインL1の下方の基板厚さ方向に対し、連続もしくは断続の層状の改質領域を少なくとも一層形成する。このような分断予定ラインL1上に改質領域1cを形成する工程を各分断予定ラインL1に対して行う(図4(a))。続いて、ダイシングフィルム5を両方向(図中矢印F2,F3で示す方向)へ引っ張り、半導体基板1の内部にせん断応力を発生させることにより、改質領域1cを形成するクラックを成長させ、改質領域1cに沿ったライン上に割れ1bを形成させる(図4(b))。続いて、割れ1b,1bにより挟まれた部分の裏面に押圧部材6の先端を当接させ、その押圧部材6を上方(図中矢印F4で示す方向)へ移動させ、半導体チップ1eをピックアップし、DAF2を引きちぎる(図4(c))。
Conventionally, as a method for dividing a semiconductor substrate of this type, a method of obtaining a semiconductor chip by cutting a semiconductor substrate such as a silicon wafer with a diamond blade rotating at high speed has been used. However, this method has a problem that the yield of the semiconductor chip is limited due to loss of silicon corresponding to the cutting width, and a problem that the yield is reduced due to chipping in which a part of the semiconductor chip is missing during cutting.
Therefore, a method has been proposed in which a condensing point is aligned inside the semiconductor substrate and laser light is irradiated, a modified region by multiphoton absorption is formed at the condensing point, and the modified region is divided from the starting point ( Patent Document 1). FIG. 4 is an explanatory view showing the method, and FIGS. 4A to 4C are explanatory views showing steps from formation of the modified region to division.
As shown to Fig.4 (a), it is the adhesive film (film adhesive) for mounting the semiconductor chip 1e produced | generated by the division | segmentation on the back surface (surface in which the element is not formed) of the semiconductor substrate 1. FIG. A die attach film (also referred to as a die bond film; hereinafter referred to as DAF) 2 is attached, and dicing is performed on the back surface (mounting side surface) of the DAF 2 so that the divided semiconductor chips are not dispersed. A film (also called a dicing sheet or dicing tape) 5 is attached. The DAF 2 and the dicing film 5 are formed, for example, by applying an adhesive on a synthetic resin film.
First, the laser beam 4 is irradiated from the surface of the semiconductor substrate 1 along the planned dividing line L1 under the laser irradiation conditions set so that the condensing point P is positioned below the inside of the semiconductor substrate 1. As a result, a phenomenon called optical damage occurs in the light condensing point P and its vicinity, thereby inducing thermal strain, cracks are generated in the portion, and the region where the cracks gather, that is, the modified region 1c is formed. It is formed. Subsequently, the condensing point P is moved to a position inside the semiconductor substrate above the modified region formed above, and a modified region 1c is formed along the planned dividing line L1, and the substrate below the planned dividing line L1. At least one continuous or intermittent layered modified region is formed in the thickness direction. The step of forming the reformed region 1c on the planned dividing line L1 is performed on each planned dividing line L1 (FIG. 4A). Subsequently, the dicing film 5 is pulled in both directions (directions indicated by arrows F2 and F3 in the figure) to generate a shear stress in the semiconductor substrate 1, thereby growing a crack that forms the modified region 1c and modifying the film. A crack 1b is formed on the line along the region 1c (FIG. 4B). Subsequently, the tip of the pressing member 6 is brought into contact with the back surface of the portion sandwiched between the cracks 1b and 1b, the pressing member 6 is moved upward (in the direction indicated by arrow F4 in the figure), and the semiconductor chip 1e is picked up. , DAF2 is torn off (FIG. 4C).

特許第3408805号公報(第77〜81段落、図28〜図32)。Japanese Patent No. 3408805 (paragraphs 77 to 81, FIGS. 28 to 32).

しかし、図4に示す上記従来の方法では、図4(c)に示すように、半導体チップ1eをピックアップするときにDAF2を引きちぎるため、DAF2が分断予定ラインL1に沿って分断されず、寸足らずのDAF2bが発生し、実装時の貼着面積が小さくなり、実装の強度が低下してしまう。また、半導体チップ1eの端部からはみ出たDAF2cが発生すると、そのはみ出た部分が、実装の妨げになるという問題がある。なお、半導体チップ1eをハンダ付けにより実装するための金属薄膜をDAFに代えて用いる場合も、DAFを用いた場合と同様の問題がある。
つまり、従来の方法では、分断されたDAFや金属薄膜の寸法が、半導体チップに適合しないため、半導体チップの実装不良が発生するおそれがあるという問題がある。
However, in the conventional method shown in FIG. 4, as shown in FIG. 4C, the DAF 2 is torn off when picking up the semiconductor chip 1 e, so that the DAF 2 is not divided along the scheduled division line L <b> 1. DAF 2b is generated, the sticking area at the time of mounting is reduced, and the strength of mounting is reduced. Further, when the DAF 2c that protrudes from the end portion of the semiconductor chip 1e occurs, there is a problem that the protruding portion hinders mounting. In addition, when the metal thin film for mounting the semiconductor chip 1e by soldering is used instead of the DAF, there is a problem similar to the case where the DAF is used.
In other words, the conventional method has a problem in that the size of the divided DAF and the metal thin film is not compatible with the semiconductor chip, which may cause a mounting failure of the semiconductor chip.

そこでこの発明は、分断されたDAFや金属薄膜の寸法を半導体チップに適合させることができ、半導体チップの実装不良が発生することがない半導体基板の分断方法を実現することを目的とする。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to realize a method for dividing a semiconductor substrate, in which the size of the divided DAF or metal thin film can be adapted to the semiconductor chip, and the mounting failure of the semiconductor chip does not occur.

この発明は、上記目的を達成するため、請求項1に記載の発明では、分断された半導体基板を実装するための実装部材が基板面に取付けられた半導体基板をその厚さ方向に分断する半導体基板の分断方法において、前記実装部材側の面から、前記半導体基板をその厚さ方向に分断するための分断予定ラインに沿って少なくとも前記実装部材を分断する実装部材分断工程と、この実装部材分断工程により前記実装部材が分断された前記実装部材側の面に、分断された半導体基板の離散を防止するための膜状部材を貼着する貼着工程と、前記実装部材側の面およびその面と反対側の基板面の少なくとも一方の面から、前記分断予定ラインに沿った前記半導体基板の内部に集光点を合わせてレーザ光を照射し、前記集光点に多光子吸収による改質領域を形成する改質領域形成工程と、この改質領域形成工程および前記貼着工程が終了した後に前記半導体基板を前記分断予定ラインに沿って厚さ方向に分断して半導体チップを得る半導体基板分断工程とを備えたという技術的手段を用いる。
なお、上記集光点とは、レーザ光が集光した箇所のことである。
In order to achieve the above object, according to the first aspect of the present invention, in the semiconductor device according to the first aspect, the semiconductor substrate in which the mounting member for mounting the divided semiconductor substrate is divided in the thickness direction is attached to the substrate surface. In the substrate dividing method, a mounting member dividing step for dividing at least the mounting member from a surface on the mounting member side along a planned dividing line for dividing the semiconductor substrate in the thickness direction, and the mounting member dividing step An attaching step of attaching a film-like member for preventing the discontinuity of the divided semiconductor substrate to the surface on the mounting member side where the mounting member is divided by the process, the surface on the mounting member side, and the surface thereof A laser beam is irradiated with a condensing point inside the semiconductor substrate along the planned dividing line from at least one of the substrate surfaces opposite to the substrate surface, and the condensing point is modified by multiphoton absorption. A modified region forming step of forming a semiconductor chip, and dividing the semiconductor substrate in the thickness direction along the planned dividing line after completion of the modified region forming step and the attaching step, thereby obtaining a semiconductor chip The technical means of providing a process is used.
In addition, the said condensing point is a location where the laser beam condensed.

請求項2に記載の発明では、請求項1に記載の半導体基板の分断方法において、前記実装部材分断工程は、前記実装部材側の面から、前記分断予定ラインに沿って前記実装部材側の面から前記半導体基板の内部に達する切り込みを形成するという技術的手段を用いる。   According to a second aspect of the present invention, in the method for dividing a semiconductor substrate according to the first aspect, the mounting member dividing step includes a surface on the mounting member side from the surface on the mounting member side along the planned cutting line. And a technical means for forming a cut reaching the inside of the semiconductor substrate.

請求項3に記載の発明では、分断された半導体基板を実装するための実装部材が基板面に取付けられており、さらに、前記実装部材の実装面に、分断された半導体基板の離散を防止するための膜状部材が貼着された半導体基板をその厚さ方向に分断する半導体基板の分断方法において、前記実装部材側の面またはその面と反対側の基板面から第1のレーザ光を照射し、前記半導体基板をその厚さ方向に分断するための分断予定ラインに沿って前記実装部材を分断する実装部材分断工程と、前記実装部材側の面および前記反対側の基板面の少なくとも一方の面から、前記分断予定ラインに沿った前記半導体基板の内部に集光点を合わせて第2のレーザ光を照射し、前記集光点に多光子吸収による改質領域を形成する改質領域形成工程と、前記実装部材分断工程の後であって、前記改質領域形成工程の前または後で、前記実装部材側の面に、分断された半導体基板の離散を防止するための膜状部材を貼着する貼着工程と、前記改質領域形成工程および前記貼着工程が終了した後に前記半導体基板を前記分断予定ラインに沿って厚さ方向に分断して半導体チップを得る半導体基板分断工程とを備えたという技術的手段を用いる。   According to a third aspect of the present invention, a mounting member for mounting the divided semiconductor substrate is attached to the substrate surface, and further, the divided semiconductor substrate is prevented from being dispersed on the mounting surface of the mounting member. In a semiconductor substrate dividing method for dividing a semiconductor substrate having a film member attached thereto in the thickness direction, the first laser beam is irradiated from the surface on the mounting member side or the substrate surface opposite to the surface. And a mounting member dividing step of dividing the mounting member along a dividing line for dividing the semiconductor substrate in the thickness direction, and at least one of the surface on the mounting member side and the substrate surface on the opposite side Forming a modified region for forming a modified region by multiphoton absorption at the condensing point by irradiating a second laser beam with a converging point inside the semiconductor substrate along the planned dividing line from the surface Process and the actual Affixing a film-like member for preventing the separation of the divided semiconductor substrate on the surface on the mounting member side after the member dividing step and before or after the modified region forming step And a semiconductor substrate dividing step of dividing the semiconductor substrate in the thickness direction along the planned dividing line and obtaining a semiconductor chip after the modified region forming step and the attaching step are completed. Use appropriate means.

請求項4に記載の発明では、請求項3に記載の半導体基板の分断方法において、前記第1のレーザ光および前記第2のレーザ光を同一の面から照射するという技術的手段を用いる。   According to a fourth aspect of the invention, in the method for dividing a semiconductor substrate according to the third aspect, the technical means of irradiating the first laser beam and the second laser beam from the same surface is used.

請求項5に記載の発明では、請求項3または請求項4に記載の半導体基板の分断方法において、前記第1のレーザ光および前記第2のレーザ光は同一のレーザ源から出射されるという技術的手段を用いる。   According to a fifth aspect of the present invention, in the semiconductor substrate dividing method according to the third or fourth aspect, the first laser light and the second laser light are emitted from the same laser source. Use appropriate means.

請求項6に記載の発明では、半導体基板をその厚さ方向に分断する半導体基板の分断方法において、分断された半導体基板を実装する側の面である実装面から、前記半導体基板をその厚さ方向に分断するための分断予定ラインに沿って前記半導体基板の内部に達する所定の深さの切り込みを形成する切り込み形成工程と、この切り込み形成工程により前記切り込みが形成された前記実装面に、分断された半導体基板の離散を防止するための膜状部材を貼着する貼着工程と、前記実装面およびその面と反対側の基板面の少なくとも一方の面から、前記分断予定ラインに沿った前記半導体基板の内部に集光点を合わせてレーザ光を照射し、前記集光点に多光子吸収による改質領域を形成する改質領域形成工程と、この改質領域形成工程および前記貼着工程が終了した後に前記半導体基板を前記分断予定ラインに沿って厚さ方向に分断して半導体チップを得る半導体基板分断工程とを備えたという技術的手段を用いる。   According to a sixth aspect of the present invention, in a method for dividing a semiconductor substrate in which the semiconductor substrate is divided in the thickness direction, the thickness of the semiconductor substrate is reduced from a mounting surface which is a surface on which the divided semiconductor substrate is mounted. A notch forming step of forming a notch of a predetermined depth reaching the inside of the semiconductor substrate along a dividing line for dividing in a direction, and the mounting surface on which the notch is formed by the notch forming step is divided A bonding step of bonding a film-like member for preventing dispersal of the formed semiconductor substrate, and at least one of the mounting surface and the substrate surface on the opposite side of the mounting surface, along the planned dividing line A modified region forming step of forming a modified region by multiphoton absorption at the focused point by irradiating a laser beam with a focused point inside the semiconductor substrate, the modified region forming step, and the Chakukotei use of technical means that is provided with a semiconductor substrate cutting step for obtaining a semiconductor chip by dividing the semiconductor substrate in the thickness direction along the cutting-scheduled line after completion.

請求項7に記載の発明では、請求項1ないし請求項6のいずれか1つに記載の半導体基板の分断方法において、前記半導体基板の実装側の面には、半導体基板材料と同一または異なる材料により基板が形成されており、その基板の実装側の面に前記実装部材が取付けられており、前記半導体基板分断工程では、前記半導体基板および前記基板を前記分断予定ラインに沿って厚さ方向に分断して前記半導体チップを得るという技術的手段を用いる。   According to a seventh aspect of the present invention, in the method for dividing a semiconductor substrate according to any one of the first to sixth aspects, a surface on the mounting side of the semiconductor substrate is the same or different material as the semiconductor substrate material. And the mounting member is attached to the mounting side surface of the substrate. In the semiconductor substrate cutting step, the semiconductor substrate and the substrate are arranged in the thickness direction along the planned cutting line. The technical means of dividing and obtaining the semiconductor chip is used.

請求項8に記載の発明では、請求項6に記載の半導体基板の分断方法において、前記半導体基板の実装側の面には、半導体基板材料と同一または異なる材料により基板が形成されており、前記半導体基板分断工程では、前記半導体基板および前記基板を前記分断予定ラインに沿って厚さ方向に分断して前記半導体チップを得るという技術的手段を用いる。   According to an eighth aspect of the present invention, in the method for dividing a semiconductor substrate according to the sixth aspect, a substrate is formed of a material that is the same as or different from a semiconductor substrate material on the surface on the mounting side of the semiconductor substrate, In the semiconductor substrate dividing step, technical means is used in which the semiconductor chip is obtained by dividing the semiconductor substrate and the substrate in the thickness direction along the line to be divided.

請求項9に記載の発明では、請求項7に記載の半導体基板の分断方法において、前記基板は、前記実装部材の熱膨張率と、前記半導体チップを実装する実装基材の熱膨張率との相違によって前記実装部材と前記実装基材との間に発生する応力を緩和する材料により形成されているという技術的手段を用いる。   According to a ninth aspect of the present invention, in the method for dividing a semiconductor substrate according to the seventh aspect, the substrate has a coefficient of thermal expansion of the mounting member and a coefficient of thermal expansion of a mounting substrate on which the semiconductor chip is mounted. A technical means is used that is formed of a material that relieves stress generated between the mounting member and the mounting substrate due to the difference.

請求項10に記載の発明では、請求項7ないし請求項9のいずれか1つに記載の半導体基板の分断方法において、前記半導体基板と異なる材料は、ガラスであるという技術的手段を用いる。   According to a tenth aspect of the present invention, in the method for dividing a semiconductor substrate according to any one of the seventh to ninth aspects, a technical means that a material different from the semiconductor substrate is glass is used.

請求項11に記載の発明では、請求項1、請求項2、請求項3、請求項4、請求項5、請求項7、請求項9および請求項10のいずれか1つに記載の半導体基板の分断方法により得られた半導体チップであって、前記分断により形成された実装部材の分断面間の幅が、前記半導体チップのうち、前記実装部材が取付けられている面の分断面間の幅以下であるという技術的手段を用いる。   According to an eleventh aspect of the invention, the semiconductor substrate according to any one of the first, second, third, fourth, fifth, seventh, ninth, and tenth aspects. The width between the divided sections of the semiconductor chip obtained by the dividing method, wherein the width between the divided sections of the mounting member formed by the dividing is the width between the divided sections of the surface of the semiconductor chip to which the mounting member is attached Use technical means that:

請求項12に記載の発明では、請求項11に記載の半導体チップにおいて、前記分断により形成された実装部材の分断面間の幅が、前記半導体チップのうち、前記実装部材が取付けられている面の分断面間の幅以下であり、かつ、前記実装部材が取付けられている面の分断面間の幅が、前記実装側の面と反対側の面の分断面間の幅以下であるという技術的手段を用いる。   According to a twelfth aspect of the present invention, in the semiconductor chip according to the eleventh aspect, the width between the divided sections of the mounting member formed by the division is a surface of the semiconductor chip on which the mounting member is attached. And the width between the divided surfaces of the surface on which the mounting member is mounted is equal to or smaller than the width between the divided surfaces of the surface on the opposite side to the surface on the mounting side. Use appropriate means.

請求項13に記載の発明では、請求項1ないし請求項10のいずれか1つに記載の半導体基板の分断方法により得られた半導体チップであって、前記半導体チップのうち、実装側の面の分断面間の幅が、前記実装側の面と反対側の面の分断面間の幅以下であるという技術的手段を用いる。   According to a thirteenth aspect of the present invention, there is provided a semiconductor chip obtained by the method for dividing a semiconductor substrate according to any one of the first to tenth aspects, wherein a surface of the mounting side of the semiconductor chip is mounted. A technical means is used in which the width between the divided surfaces is equal to or less than the width between the divided surfaces of the surface on the opposite side to the surface on the mounting side.

(請求項1に係る発明の効果)
半導体基板を分断予定ラインに沿って厚さ方向に分断する半導体基板分断工程を実行する前に、実装部材側の面から、分断予定ラインに沿って少なくとも実装部材を分断する実装部材分断工程を実行するため、半導体基板を分断するときに実装部材を引きちぎる従来の方法のように、分断された実装部材が寸足らずになったり、半導体チップの端部からはみ出たりすることがない。
従って、分断された実装部材の寸法を、半導体チップに適合させることができ、半導体チップの実装不良が発生することがない半導体基板の分断方法を実現することができる。
しかも、レーザ光の照射により、分断予定ラインに沿って改質領域を形成し、その分断予定ラインに沿って半導体基板を分断するため、半導体基板をダイヤモンドブレードにより切断する従来の方法のように、切断幅分の半導体基板の損失により、半導体チップの収量が制限されるおそれもないし、切断時に半導体チップの一部が欠けるチッピングにより歩留まりが低下するおそれもない。
(Effect of the invention according to claim 1)
Before executing the semiconductor substrate cutting process, which divides the semiconductor substrate in the thickness direction along the planned cutting line, the mounting member cutting process is performed to cut at least the mounting member along the planned cutting line from the surface on the mounting member side. Therefore, unlike the conventional method of tearing the mounting member when the semiconductor substrate is divided, the divided mounting member is not short and does not protrude from the end of the semiconductor chip.
Therefore, the dimension of the divided mounting member can be adapted to the semiconductor chip, and a semiconductor substrate dividing method that does not cause mounting failure of the semiconductor chip can be realized.
In addition, the modified region is formed along the planned dividing line by laser light irradiation, and the semiconductor substrate is divided along the planned dividing line. There is no possibility that the yield of the semiconductor chip is limited due to the loss of the semiconductor substrate corresponding to the cutting width, and there is no possibility that the yield is lowered due to chipping in which a part of the semiconductor chip is missing at the time of cutting.

(請求項2に係る発明の効果)
実装部材を分断するだけでなく、予め分断予定ラインに沿って半導体基板の内部に切り込みを形成しておくため、分断すべき半導体基板の実質厚が薄くなり、半導体基板の分断に必要な改質領域の層数が少なくて済み、半導体基板の分断にかかるレーザ照射時間を短縮することができる。また、切り込みが形成されていない場合よりも、分断に必要な力を小さくすることができる。
なお、請求項1に係る発明と同じ効果を奏することができる。
(Effect of the invention according to claim 2)
In addition to dividing the mounting member, a cut is formed in the semiconductor substrate in advance along the line to be divided, so that the substantial thickness of the semiconductor substrate to be divided is reduced, and the modification necessary for dividing the semiconductor substrate The number of layers in the region is small, and the laser irradiation time required for dividing the semiconductor substrate can be shortened. Moreover, the force required for dividing can be made smaller than when no cut is formed.
The same effect as that of the invention according to claim 1 can be obtained.

(請求項3に係る発明の効果)
半導体基板を分断予定ラインに沿って厚さ方向に分断する半導体基板分断工程を実行する前に、実装部材側の面またはその面と反対側の基板面から第1のレーザ光を照射し、分断予定ラインに沿って実装部材を分断する実装部材分断工程を実行するため、半導体基板を分断するときに実装部材を引きちぎる従来の方法のように、分断された実装部材が寸足らずになったり、半導体チップの端部からはみ出たりすることがない。
従って、分断された実装部材の寸法を、半導体チップに適合させることができ、半導体チップの実装不良が発生することがない半導体基板の分断方法を実現することができる。
しかも、第2のレーザ光の照射により、分断予定ラインに沿って改質領域を形成し、その分断予定ラインに沿って半導体基板を分断するため、半導体基板をダイヤモンドブレードにより切断する従来の方法のように、切断幅分の半導体基板の損失により、半導体チップの収量が制限されるおそれもないし、切断時に半導体チップの一部が欠けるチッピングにより歩留まりが低下するおそれもない。
(Effect of the invention according to claim 3)
Before executing the semiconductor substrate cutting step of cutting the semiconductor substrate along the planned cutting line in the thickness direction, the first laser light is irradiated from the surface on the mounting member side or the substrate surface opposite to the surface to divide the semiconductor substrate. In order to execute a mounting member dividing process that divides the mounting member along the planned line, the divided mounting member becomes short in size as in the conventional method of tearing the mounting member when dividing the semiconductor substrate, or the semiconductor chip. It does not protrude from the end of the.
Therefore, the dimension of the divided mounting member can be adapted to the semiconductor chip, and a semiconductor substrate dividing method that does not cause mounting failure of the semiconductor chip can be realized.
Moreover, the conventional method of cutting the semiconductor substrate with a diamond blade in order to form the modified region along the planned dividing line by the irradiation of the second laser light and to cut the semiconductor substrate along the planned cutting line. As described above, there is no possibility that the yield of the semiconductor chip is limited due to the loss of the semiconductor substrate corresponding to the cutting width, and there is no possibility that the yield is lowered due to chipping in which a part of the semiconductor chip is missing during cutting.

(請求項4に係る発明の効果)
第1のレーザ光および第2のレーザ光を同一の面から照射するため、第1のレーザ光を照射する場合と第2のレーザ光を照射する場合とで、半導体基板を裏返す工程をなくすことができるため、半導体基板の分断のための全行程にかかる時間を短縮することができる。
なお、請求項3に係る発明と同じ効果を奏することができる。
(Effect of the invention according to claim 4)
Since the first laser beam and the second laser beam are irradiated from the same surface, the process of turning over the semiconductor substrate is eliminated depending on whether the first laser beam or the second laser beam is irradiated. Therefore, the time required for the entire process for dividing the semiconductor substrate can be shortened.
The same effect as that of the invention according to claim 3 can be obtained.

(請求項5に係る発明の効果)
第1のレーザ光および第2のレーザ光は同一のレーザ源から出射されるため、レーザ源を1つだけ設ければよいので、半導体基板を分断するためのレーザ照射装置を簡易な構成にすることができる。
従って、レーザ源を複数設ける場合よりも、レーザ源が少ない分、上記装置の故障率および製造コストを低減することができる。また、上記装置のメンテナンスを容易にすることができる。
また、同一のレーザ源から出射された第1のレーザ光および第2のレーザ光を同一の面から照射し、その集光点の深さを変えるようにすれば、実装部材の分断および改質領域の形成を連続して行うことができるため、半導体基板の分断にかかる時間を短縮することができる。
なお、請求項3および請求項4に係る発明と同じ効果を奏することができる。
(Effect of the invention according to claim 5)
Since the first laser beam and the second laser beam are emitted from the same laser source, only one laser source needs to be provided, so that the laser irradiation apparatus for dividing the semiconductor substrate has a simple configuration. be able to.
Therefore, the failure rate and manufacturing cost of the apparatus can be reduced by the amount of laser sources compared to the case where a plurality of laser sources are provided. In addition, maintenance of the apparatus can be facilitated.
Further, if the first laser beam and the second laser beam emitted from the same laser source are irradiated from the same surface and the depth of the condensing point is changed, the mounting member is divided and modified. Since the formation of the regions can be performed continuously, the time required for dividing the semiconductor substrate can be shortened.
The same effects as those of the inventions according to claims 3 and 4 can be obtained.

(請求項6に係る発明の効果)
基板面に実装部材が取付けられていない半導体基板の実装面から分断予定ラインに沿って所定の深さまで切り込みを形成する切り込み形成工程と、レーザ光の照射により、分断予定ラインに沿って改質領域を形成する改質領域形成工程とを併用するため、半導体基板をダイヤモンドブレードだけで切断する従来の方法よりも、切断幅分の半導体基板の損失を少なくすることができ、半導体チップの収量を増加することができる。また、切断時に半導体チップの一部が欠けるチッピングにより歩留まりが低下するおそれもない。さらに、レーザ照射により改質層だけを形成して分断する場合よりも、分断に必要な加工に要する時間を短縮することができる。
(Effect of the invention according to claim 6)
A notch forming process for forming a notch to a predetermined depth along the planned cutting line from the mounting surface of the semiconductor substrate on which no mounting member is attached to the substrate surface, and a modified region along the planned cutting line by laser irradiation In combination with the modified region forming process to form the semiconductor substrate, the loss of the semiconductor substrate by the cutting width can be reduced and the yield of the semiconductor chip can be increased as compared with the conventional method of cutting the semiconductor substrate with only a diamond blade. can do. In addition, there is no possibility that the yield is lowered due to chipping in which a part of the semiconductor chip is cut during cutting. Furthermore, it is possible to reduce the time required for processing necessary for the division, compared to the case where only the modified layer is formed by laser irradiation and divided.

(請求項7に係る発明の効果)
半導体基板の実装側の面に、半導体基板材料と同一または異なる材料により基板が形成されており、その基板の実装側の面に実装部材が取付けられている構成の場合でも、半導体基板分断工程では、半導体基板および基板を分断予定ラインに沿って厚さ方向に分断して半導体チップを得ることができる。
(Effect of the invention according to claim 7)
Even in the case where the substrate is formed of the same or different material as the semiconductor substrate material on the mounting side surface of the semiconductor substrate, and the mounting member is attached to the mounting side surface of the substrate, in the semiconductor substrate cutting process The semiconductor chip can be obtained by dividing the semiconductor substrate and the substrate in the thickness direction along the planned dividing line.

(請求項8に係る発明の効果)
半導体基板の実装側の面に、半導体基板材料と同一または異なる材料により基板が形成されている構成の場合でも、半導体基板分断工程では、半導体基板および基板を分断予定ラインに沿って厚さ方向に分断して半導体チップを得ることができる。
(Effect of the invention according to claim 8)
Even in the case where the substrate is formed of the same or different material as the semiconductor substrate material on the mounting side surface of the semiconductor substrate, in the semiconductor substrate cutting step, the semiconductor substrate and the substrate are arranged in the thickness direction along the planned cutting line. A semiconductor chip can be obtained by dividing.

(請求項9に係る発明の効果)
上記基板が、実装部材の熱膨張率と、半導体チップを実装する実装基材の熱膨張率との相違によって実装部材と実装基材との間に発生する応力を緩和する材料により形成されている場合でも、半導体基板分断工程では、半導体基板および基板を分断予定ラインに沿って厚さ方向に分断して半導体チップを得ることができる。
(Effect of the invention according to claim 9)
The substrate is formed of a material that relieves stress generated between the mounting member and the mounting substrate due to a difference between the thermal expansion coefficient of the mounting member and the thermal expansion coefficient of the mounting substrate on which the semiconductor chip is mounted. Even in the case, in the semiconductor substrate cutting step, the semiconductor substrate and the substrate can be cut in the thickness direction along the line to be cut, thereby obtaining a semiconductor chip.

(請求項10に係る発明の効果)
上記基板が半導体基板と異なる材料であるガラスにより形成されている場合でも、半導体基板分断工程では、半導体基板および基板を分断予定ラインに沿って厚さ方向に分断して半導体チップを得ることができる。
(Effect of the invention according to claim 10)
Even when the substrate is formed of glass which is a material different from that of the semiconductor substrate, in the semiconductor substrate cutting step, the semiconductor substrate and the substrate can be cut in the thickness direction along the planned cutting line to obtain a semiconductor chip. .

(請求項11に係る発明の効果)
請求項1、請求項2、請求項3、請求項4、請求項5、請求項7、請求項9および請求項10のいずれか1つに記載の半導体基板の分断方法により得られた半導体チップは、分断により形成された実装部材の分断面間の幅が、半導体チップのうち、実装部材が取付けられている面の分断面間の幅以下になる。
つまり、例えば、実装部材をダイヤモンドブレードによって切削し、半導体基板についてはレーザ光を照射して改質領域を形成することにより分断予定ラインに沿って分断した場合は、ダイヤモンドブレードによって切削された部分には、ダイヤモンドブレードの刃の厚さ分の隙間が形成されるため、その分、分断面間の幅が減少するが、半導体基板の方は、改質領域に沿って、略分断予定ライン通りに分断されるので、実装部材の分断面間の幅は、実装部材が取付けられている面の分断面間の幅以下になる。
従って、分断により形成された実装部材の分断面間の幅が、半導体チップのうち、実装部材が取付けられている面の分断面間の幅以下になっている半導体チップは、請求項1、請求項2、請求項3、請求項4、請求項5、請求項7、請求項8および請求項9のいずれか1つに記載の半導体基板の分断方法により得られたものであると推定することができる。
(Effect of the invention according to claim 11)
A semiconductor chip obtained by the semiconductor substrate cutting method according to any one of claims 1, 2, 3, 4, 5, 7, 9, and 10. The width between the divided sections of the mounting member formed by the division is equal to or smaller than the width between the divided sections of the surface of the semiconductor chip to which the mounting member is attached.
In other words, for example, when a mounting member is cut with a diamond blade and a semiconductor substrate is cut along a planned cutting line by irradiating a laser beam to form a modified region, the portion cut by the diamond blade is cut. Since the gap corresponding to the thickness of the blade of the diamond blade is formed, the width between the divided sections is reduced by that amount, but the semiconductor substrate is almost along the planned cutting line along the modified region. Since it is divided, the width between the divided sections of the mounting member is equal to or smaller than the width between the divided sections of the surface to which the mounting member is attached.
Therefore, a semiconductor chip in which the width between the divided sections of the mounting member formed by the division is equal to or smaller than the width between the divided sections of the surface to which the mounting member is attached is included in the semiconductor chip. It is assumed that the semiconductor substrate is obtained by the method for dividing a semiconductor substrate according to any one of claims 2, 3, 4, 5, 7, 8, and 9. Can do.

(請求項12に係る発明の効果)
実装部材を基板面に取付ける際に、実装部材に対して面方向に張力を作用させた状態で実装部材を基板面に取付けた場合、実装部材分断工程において実装部材が分断されると、実装部材が分断された部分から、分断面間の方向へ縮むことがある。
従って、分断された実装部材の分断面間の幅は、実装部材が取付けられている面の分断面間の幅以下になる。
つまり、分断により形成された実装部材の分断面間の幅が、半導体チップのうち、実装部材が取付けられている面の分断面間の幅以下であり、かつ、実装部材が取付けられている面の分断面間の幅が、実装側の面と反対側の面の分断面間の幅以下になっている半導体チップも、請求項1、請求項2、請求項3、請求項4、請求項5、請求項7、請求項9および請求項10のいずれか1つに記載の半導体基板の分断方法により得られたものであると推定することができる。
(Effect of the invention according to claim 12)
When mounting the mounting member on the board surface, when the mounting member is mounted on the board surface in a state where tension is applied to the mounting member in the surface direction, the mounting member is divided in the mounting member cutting step. May be shrunk in the direction between the divided sections from the divided part.
Therefore, the width between the divided sections of the divided mounting member is equal to or smaller than the width between the divided sections of the surface to which the mounting member is attached.
That is, the width between the divided sections of the mounting member formed by the division is equal to or less than the width between the divided sections of the surface of the semiconductor chip on which the mounting member is mounted, and the surface on which the mounting member is mounted The semiconductor chip in which the width between the divided sections is equal to or smaller than the width between the divided sections of the surface on the opposite side to the surface on the mounting side is also defined in claim 1, claim 2, claim 3, claim 4, claim 4, It can be estimated that the semiconductor substrate was obtained by the method for dividing a semiconductor substrate according to any one of claims 5, 7, 9, and 10.

(請求項13に係る発明の効果)
請求項1ないし請求項10のいずれか1つに記載の半導体基板の分断方法により得られた半導体チップは、半導体チップのうち、実装側の面の分断面間の幅が、実装側の面と反対側の面の分断面間の幅以下となる。
つまり、例えば、実装部材から半導体基板の所定の深さまでをダイヤモンドブレードによって切削し、残りの厚さ方向の半導体基板についてはレーザ光を照射して改質領域を形成することにより分断した場合は、ダイヤモンドブレードによって切削された部分には、ダイヤモンドブレードの刃の厚さ分の隙間が形成されるため、その分、分断面間の幅が減少するが、改質領域が形成された部分は、略分断予定ライン通りに分断されるので、実装側の分断面間の幅は、実装側の面と反対側の面の分断面間の幅以下になる。
従って、実装側の面の分断面間の幅が、実装側の面と反対側の面の分断面間の幅以下である半導体チップは、請求項1ないし請求項10のいずれか1つに記載の半導体基板の分断方法により得られたものであると推定することができる。
(Effect of the invention according to claim 13)
A semiconductor chip obtained by the method for dividing a semiconductor substrate according to any one of claims 1 to 10, wherein the width between the divided sections of the surface on the mounting side of the semiconductor chip is the same as that on the surface on the mounting side. The width is less than or equal to the width between the split surfaces of the opposite surface.
That is, for example, when cutting from the mounting member to a predetermined depth of the semiconductor substrate with a diamond blade, and dividing the remaining semiconductor substrate in the thickness direction by irradiating a laser beam to form a modified region, Since a gap corresponding to the thickness of the blade of the diamond blade is formed in the portion cut by the diamond blade, the width between the divided sections is reduced accordingly, but the portion where the modified region is formed is approximately Since the cutting is performed according to the planned dividing line, the width between the divided surfaces on the mounting side is equal to or smaller than the width between the divided surfaces on the surface opposite to the surface on the mounting side.
Therefore, the semiconductor chip in which the width between the divided surfaces of the mounting side surface is equal to or smaller than the width between the divided surfaces of the surface opposite to the mounting side surface is described in any one of claims 1 to 10. It can be estimated that the semiconductor substrate was obtained by the method for dividing a semiconductor substrate.

<第1実施形態>
この発明の第1実施形態について図1を参照して説明する。図1(a)〜(d)は、この実施形態に係る半導体基板の分断方法の工程を示す説明図である。
(図1(a)に示す工程)
半導体基板1の裏面1gには、DAF2が貼着されている。まず、図中矢印F1で示す方向に高速回転するダイヤモンドブレード3により、DAF2を分断予定ラインL1に沿って切断し、さらに半導体基板1をその内部に達するまで切削する(本願請求項1の実装部材分断工程に対応)。この切削を各分断予定ラインL1について行う。これにより、各分断予定ラインL1に沿ってDAF2が分断されるとともに、半導体基板1の分断予定ラインL1に沿った内部まで切り込み1aが形成される。なお、DAF2が本願特許請求の範囲に記載の実装部材に対応する。
<First Embodiment>
A first embodiment of the present invention will be described with reference to FIG. FIGS. 1A to 1D are explanatory views showing steps of a method for dividing a semiconductor substrate according to this embodiment.
(Step shown in FIG. 1 (a))
DAF 2 is attached to the back surface 1 g of the semiconductor substrate 1. First, the diamond blade 3 that rotates at high speed in the direction indicated by the arrow F1 in the figure cuts the DAF 2 along the planned dividing line L1, and further cuts the semiconductor substrate 1 until it reaches the inside (the mounting member of claim 1 of this application). Corresponding to the cutting process). This cutting is performed for each division planned line L1. As a result, the DAF 2 is divided along each division planned line L1, and a cut 1a is formed to the inside of the semiconductor substrate 1 along the planned division line L1. Note that DAF 2 corresponds to the mounting member described in the claims of the present application.

(図1(b)に示す工程)
次に、DAF2の裏面(実装側の面)にダイシングフィルム5を貼着する(本願請求項1の貼着工程に対応)。続いて半導体基板1を裏返し、レーザ光4を、その集光点Pが分断予定ラインL1に沿った半導体基板1の内部(切り込み1aの延長上)に形成されるように表面1fから照射する。これにより、レーザ光4の集光点Pには、多光子吸収による改質領域1cが形成される(本願請求項1の改質領域形成工程に対応)。このとき、レーザ光4の集光点Pの深さを調整することにより、半導体基板1の表面1fから、切り込み1aが形成されていない部分の厚さnの範囲内で任意の深さに任意の層数の改質層1cを形成することができる。例えば、厚さnが比較的厚い場合は、その厚さ方向へ集光点Pを移動させて改質領域1cを厚さ方向に連続状、または複数箇所に形成することにより、分断を容易にすることができる。このような改質領域1cの形成を各分断予定ラインL1について行う。なお、ダイシングフィルム5が本願特許請求の範囲に記載の膜状部材に対応する。
(Step shown in FIG. 1B)
Next, the dicing film 5 is stuck on the back surface (mounting side surface) of the DAF 2 (corresponding to the sticking step of claim 1 of the present application). Subsequently, the semiconductor substrate 1 is turned over, and the laser beam 4 is irradiated from the surface 1f so that the condensing point P is formed inside the semiconductor substrate 1 (on the extension of the cut 1a) along the line L1. Thus, a modified region 1c by multiphoton absorption is formed at the condensing point P of the laser beam 4 (corresponding to the modified region forming step of claim 1 of the present application). At this time, the depth of the condensing point P of the laser beam 4 is adjusted to any depth within the range of the thickness n of the portion where the notch 1a is not formed from the surface 1f of the semiconductor substrate 1. The modified layer 1c having the number of layers can be formed. For example, when the thickness n is relatively large, the condensing point P is moved in the thickness direction so that the modified region 1c is continuously formed in the thickness direction or formed at a plurality of locations, so that the division is easy. can do. Such a modified region 1c is formed for each of the planned dividing lines L1. The dicing film 5 corresponds to the film-like member described in the claims.

多光子吸収とは、物質が複数個の同種もしくは異種の光子を吸収することをいう。その多光子吸収により、半導体基板1の集光点Pおよびその近傍では、光学的損傷という現象が発生し、これにより熱ひずみが誘起され、その部分にクラックが発生し、そのクラックが集合した領域、つまり改質領域1cが形成される。レーザ光4がパルス波の場合、レーザ光の強度は、集光点のピークパワー密度(W/cm2)で決まり、例えばピークパワー密度が1×108(W/cm2)以上でパルス幅が1μs以下の条件で多光子吸収が発生する。レーザ光としては、例えば、YAG(Yttrium Aluminium Garnet)レーザによるレーザ光を用いる。そのレーザ光の波長は、例えば1064nmの赤外光領域の波長である。   Multiphoton absorption means that a substance absorbs a plurality of the same or different photons. Due to the multiphoton absorption, a phenomenon called optical damage occurs at the condensing point P of the semiconductor substrate 1 and the vicinity thereof, thereby inducing a thermal strain, a crack is generated in the portion, and a region where the crack is gathered. That is, the modified region 1c is formed. When the laser beam 4 is a pulse wave, the intensity of the laser beam is determined by the peak power density (W / cm 2) at the focal point. For example, the peak power density is 1 × 10 8 (W / cm 2) or more and the pulse width is 1 μs or less. Multiphoton absorption occurs under these conditions. As the laser light, for example, laser light from a YAG (Yttrium Aluminum Garnet) laser is used. The wavelength of the laser light is, for example, in the infrared light region of 1064 nm.

(図1(c)に示す工程)
次に、ダイシングフィルムを引っ張るためのテープエキスパンド装置などにより、ダイシングフィルム5を両方向(図中矢印F2,F3で示す方向)へ引っ張り、半導体基板1の内部にせん断応力を発生させることにより、改質領域1cを形成するクラックを成長させ、改質領域1cに沿ったライン上に割れ1bを形成させる。
(Step shown in FIG. 1C)
Next, the dicing film 5 is pulled in both directions (directions indicated by arrows F2 and F3 in the figure) by a tape expanding device for pulling the dicing film, and the shearing stress is generated inside the semiconductor substrate 1, thereby modifying the film. A crack forming the region 1c is grown, and a crack 1b is formed on a line along the modified region 1c.

(図1(d)に示す工程)
続いて、割れ1b,1bにより挟まれた部分の裏面1gに押圧部材6の先端を当接させ、その押圧部材6を上方(図中矢印F4で示す方向)へ移動させ、半導体チップ1eをピックアップする(本願請求項1の半導体基板分断工程に対応)。
(Step shown in FIG. 1 (d))
Subsequently, the tip of the pressing member 6 is brought into contact with the back surface 1g of the portion sandwiched between the cracks 1b and 1b, the pressing member 6 is moved upward (in the direction indicated by arrow F4 in the figure), and the semiconductor chip 1e is picked up. (Corresponding to the semiconductor substrate cutting step of claim 1 of the present application).

(半導体チップ)
図5(a)は、図1(d)に示す工程により得られた半導体チップの縦断面図である。半導体チップ1eのうち、実装側の面の分断面(切り込み1aが入っている面)間の幅W2が、実装側の面と反対側の面の分断面(割れ1bが入っている面)間の幅W1以下(W2≦W1)に形成されている。
つまり、この実施形態にように、DAF2から半導体基板1の所定の深さまでをダイヤモンドブレード3によって切削し、残りの厚さ方向の半導体基板1についてはレーザ光4を照射して改質領域1cを形成することにより分断した場合、実装側の切削部分には、ダイヤモンドブレード3の刃の厚さ分の隙間が形成されるため、その分、分断面間の幅が減少している。
一方、改質領域1cが形成された部分は、略分断予定ライン通りに分断されるため、分断された半導体チップ1eは、実装側の面の分断面間の幅W2が、実装側の面と反対側の面の分断面間の幅W1以下となる。
従って、実装側の面の分断面間の幅W2が、実装側の面と反対側の面の分断面間の幅W1以下である半導体チップは、この実施形態の半導体基板の分断方法により得られたものであると推定することができる。
(Semiconductor chip)
FIG. 5A is a longitudinal sectional view of the semiconductor chip obtained by the process shown in FIG. Of the semiconductor chip 1e, the width W2 between the divided surfaces of the surface on the mounting side (the surface containing the cut 1a) is between the divided surfaces of the surface opposite to the surface on the mounting side (the surface containing the crack 1b). Width W1 or less (W2 ≦ W1).
That is, as in this embodiment, the diamond blade 3 cuts from the DAF 2 to the predetermined depth of the semiconductor substrate 1, and the semiconductor substrate 1 in the remaining thickness direction is irradiated with the laser beam 4 to form the modified region 1c. When divided by forming, a gap corresponding to the thickness of the diamond blade 3 is formed in the cutting portion on the mounting side, and the width between the divided sections is reduced accordingly.
On the other hand, since the portion where the modified region 1c is formed is divided substantially according to the planned dividing line, the divided semiconductor chip 1e has a width W2 between the divided surfaces of the mounting side surface and the mounting side surface. The width is equal to or less than the width W1 between the sectional surfaces of the opposite surface.
Therefore, a semiconductor chip in which the width W2 between the divided surfaces of the mounting side surface is equal to or smaller than the width W1 between the divided surfaces of the surface opposite to the mounting side surface can be obtained by the semiconductor substrate dividing method of this embodiment. Can be estimated.

図7は、図1(d)に示す工程により得られた半導体チップの縦断面図の他の例を示すものである。
半導体チップ1eの裏面(実装側の面)に貼着されたDAF2の分断面間の幅W4が、DAF2が貼着されている面の分断面間の幅W2以下(W4≦W2)に形成されている。
つまり、この実施形態のように、DAF2をレーザ光7によって溶断する場合は、溶融によりDAF2が消失したり、収縮した部分が形成されるため、その分、DAF2の分断面間の幅が減少している。また、DAF2を半導体基板1の裏面1gに貼着する際に、DAF2に対して面方向に張力を作用させた状態でDAF2を裏面1gに貼着した場合、DAF2を分断する工程においてDAF2が分断されると、分断された部分から、分断面間(内側)の方向へ縮むことがある。このため、分断されたDAF2の分断面間の幅が減少することがある。
従って、分断により形成されたDAF2の分断面間の幅W4が、半導体チップ1eのうち、DAF2が貼着されている面の分断面間の幅W2以下であり、かつ、DAF2が取付けられている面の分断面間の幅W2が、反対側の面の分断面間の幅W1以下になっている半導体チップ1eは、上記実施形態の半導体基板の分断方法により得られたものであると推定することができる。
FIG. 7 shows another example of a longitudinal sectional view of the semiconductor chip obtained by the process shown in FIG.
The width W4 between the divided sections of the DAF 2 bonded to the back surface (mounting side surface) of the semiconductor chip 1e is formed to be equal to or less than the width W2 between the divided sections of the surface where the DAF 2 is bonded (W4 ≦ W2). ing.
That is, when the DAF 2 is melted by the laser beam 7 as in this embodiment, the DAF 2 disappears due to melting or a contracted portion is formed, so that the width between the cross sections of the DAF 2 decreases accordingly. ing. Further, when DAF2 is attached to the back surface 1g of the semiconductor substrate 1, when DAF2 is attached to the back surface 1g in a state where tension is applied to the DAF2 in the surface direction, the DAF2 is divided in the step of dividing the DAF2. If it is done, it may shrink in the direction between the divided sections (inner side) from the divided part. For this reason, the width between the divided sections of the divided DAF 2 may be reduced.
Accordingly, the width W4 between the divided sections of the DAF 2 formed by the division is equal to or smaller than the width W2 between the divided sections of the surface of the semiconductor chip 1e where the DAF 2 is attached, and the DAF 2 is attached. The semiconductor chip 1e in which the width W2 between the divided surfaces of the surface is equal to or smaller than the width W1 between the divided surfaces of the opposite surface is estimated to be obtained by the method for dividing the semiconductor substrate of the above embodiment. be able to.

[第1実施形態の効果]
(1)以上のように、上記第1実施形態に係る半導体基板の分断方法を用いれば、半導体基板1を分断予定ラインL1に沿って厚さ方向に分断する工程を実行する前に、DAF2の裏面1gから、分断予定ラインL1に沿って少なくともDAF2を分断する工程を実行するため、半導体基板1を分断するときにDAF2を引きちぎる従来の方法のように、分断されたDAF2が寸足らずになったり、半導体チップ1eの端部からはみ出たりすることがない。
従って、分断されたDAF2の寸法を、半導体チップ1eに適合させることができ、半導体チップ1eの実装不良が発生することがない半導体基板1の分断方法を実現することができる。
しかも、レーザ光4の照射により、分断予定ラインL1に沿って改質領域1cを形成し、その分断予定ラインL1に沿って半導体基板1を分断するため、半導体基板1をダイヤモンドブレードにより切断する従来の方法のように、切断幅分の半導体基板1の損失により、半導体チップ1eの収量が制限されるおそれもないし、切断時に半導体チップ1eの一部が欠けるチッピングにより歩留まりが低下するおそれもない。
[Effect of the first embodiment]
(1) As described above, if the method for dividing a semiconductor substrate according to the first embodiment is used, before performing the step of dividing the semiconductor substrate 1 in the thickness direction along the line L1 to be divided, In order to execute the process of dividing at least the DAF 2 from the back surface 1g along the planned division line L1, the divided DAF 2 becomes short as in the conventional method of tearing off the DAF 2 when dividing the semiconductor substrate 1, It does not protrude from the end of the semiconductor chip 1e.
Therefore, the size of the divided DAF 2 can be adapted to the semiconductor chip 1e, and a method for dividing the semiconductor substrate 1 that does not cause a mounting failure of the semiconductor chip 1e can be realized.
In addition, the modified region 1c is formed along the planned division line L1 by irradiation with the laser beam 4, and the semiconductor substrate 1 is cut along the planned division line L1, so that the semiconductor substrate 1 is cut with a diamond blade. As in the above method, there is no possibility that the yield of the semiconductor chip 1e is limited due to the loss of the semiconductor substrate 1 corresponding to the cutting width, and there is no possibility that the yield is reduced due to chipping in which a part of the semiconductor chip 1e is missing at the time of cutting.

(2)また、DAF2を分断するだけでなく、予め分断予定ラインL1に沿って半導体基板1の内部に切り込み1aを形成しておくため、分断すべき半導体基板1の実質厚が薄くなり、半導体基板1の分断に必要な改質層1cの層数が少なくて済み、半導体基板1の分断にかかるレーザ照射時間を短縮することができる。また、切り込み1aが形成されていない場合よりも、分断に必要な力を小さくすることができる。
(3)さらに、半導体基板1の表面1fではレーザ光4がほとんど吸収されないため、表面1fが溶融することがない。
(2) Further, not only the DAF 2 is divided, but the cut 1a is formed in the semiconductor substrate 1 in advance along the division line L1, so that the substantial thickness of the semiconductor substrate 1 to be divided is reduced. The number of modified layers 1c required for dividing the substrate 1 can be reduced, and the laser irradiation time required for dividing the semiconductor substrate 1 can be shortened. Moreover, the force required for dividing can be made smaller than when the cut 1a is not formed.
(3) Furthermore, since the laser beam 4 is hardly absorbed on the surface 1f of the semiconductor substrate 1, the surface 1f is not melted.

<第1実施形態の変更例>
次に、第1実施形態の変更例について図8を参照して説明する。図8(a)〜(d)は、この変更例に係る半導体基板の分断方法の工程を示す説明図である。この変更例は、実装面にガラス基板が形成されており、そのガラス基板の実装側の面にDAF2が貼着されている半導体基板1を分断することを特徴とする。
<Modified example of the first embodiment>
Next, a modified example of the first embodiment will be described with reference to FIG. FIGS. 8A to 8D are explanatory views showing the steps of the semiconductor substrate dividing method according to this modification. This modified example is characterized in that the glass substrate is formed on the mounting surface, and the semiconductor substrate 1 having the DAF 2 attached to the surface on the mounting side of the glass substrate is divided.

(図8(a)に示す工程)
半導体基板1の裏面1gには、ガラス基板8が形成されており、そのガラス基板8の実装側の面には、DAF2が貼着されている。ガラス基板8は、DAF2の熱膨張率と、半導体チップ1eを実装する回路基板の熱膨張率との差に起因して、DAF2と回路基板との間に発生する応力を緩和するための基板である。その応力を緩和するためには、半導体チップ1eの熱膨張率と、回路基板などの実装基材の熱膨張率との中間の熱膨張率を有する材料が選定され、しかも、基板としてある程度の厚みがあれば、上記応力を緩和できる。例えば、ガラス基板に代えて樹脂基板、半導体基板と同じ材料の基板(例えばSi基板)などを用いることもできる。
まず、図中矢印F1で示す方向に高速回転するダイヤモンドブレード3により、DAF2およびガラス基板8を分断予定ラインL1に沿って切断し、さらに半導体基板1をその内部に達するまで切削する。この切削を各分断予定ラインL1について行う。これにより、各分断予定ラインL1に沿ってDAF2が分断されるとともに、半導体基板1の分断予定ラインL1に沿った内部まで切り込み1aが形成される。
なお、半導体基板1の内部に達しないようにDAF2およびガラス基板8のみを分断予定ラインL1に沿って切断することもできる。この切断方法によれば、切削時にダイヤモンドブレード3に噴射する切削水が半導体基板1およびDAF2の接合間の隙間に浸入し、半導体基板1およびDAF2の接合力が低下したり、半導体チップ1eの半導体特性が劣化したりするおそれがない。
(Step shown in FIG. 8A)
A glass substrate 8 is formed on the back surface 1 g of the semiconductor substrate 1, and DAF 2 is attached to the mounting side surface of the glass substrate 8. The glass substrate 8 is a substrate for relaxing the stress generated between the DAF 2 and the circuit board due to the difference between the thermal expansion coefficient of the DAF 2 and the thermal expansion coefficient of the circuit board on which the semiconductor chip 1e is mounted. is there. In order to relieve the stress, a material having a thermal expansion coefficient intermediate between the thermal expansion coefficient of the semiconductor chip 1e and the thermal expansion coefficient of a mounting substrate such as a circuit board is selected, and the substrate has a certain thickness. If there exists, the said stress can be relieved. For example, instead of the glass substrate, a resin substrate, a substrate made of the same material as the semiconductor substrate (for example, a Si substrate) or the like can be used.
First, the diamond blade 3 that rotates at high speed in the direction indicated by the arrow F1 in the drawing cuts the DAF 2 and the glass substrate 8 along the planned dividing line L1, and further cuts the semiconductor substrate 1 until it reaches the inside. This cutting is performed for each division planned line L1. As a result, the DAF 2 is divided along each division planned line L1, and a cut 1a is formed to the inside of the semiconductor substrate 1 along the planned division line L1.
Note that only the DAF 2 and the glass substrate 8 can be cut along the planned dividing line L1 so as not to reach the inside of the semiconductor substrate 1. According to this cutting method, the cutting water sprayed to the diamond blade 3 during cutting enters the gap between the junctions of the semiconductor substrate 1 and the DAF 2, and the bonding force between the semiconductor substrate 1 and the DAF 2 decreases, or the semiconductor of the semiconductor chip 1e. There is no risk of deterioration of characteristics.

(図8(b)に示す工程)
次に、DAF2の裏面(実装側の面)にダイシングフィルム5を貼着する。続いて半導体基板1を裏返し、レーザ光4を、その集光点Pが分断予定ラインL1に沿った半導体基板1の内部(切り込み1aの延長上)に形成されるように表面1fから照射する。これにより、レーザ光4の集光点Pには、多光子吸収による改質領域1cが形成される。このとき、レーザ光4の集光点Pの深さを調整することにより、半導体基板1の表面1fから、切り込み1aが形成されていない部分の厚さnの範囲内で任意の深さに任意の層数の改質層1cを形成することができる。例えば、厚さnが比較的厚い場合は、その厚さ方向へ集光点Pを移動させて改質領域1cを厚さ方向に連続状、または複数箇所に形成することにより、分断を容易にすることができる。このような改質領域1cの形成を各分断予定ラインL1について行う。
(Step shown in FIG. 8B)
Next, the dicing film 5 is attached to the back surface (mounting side surface) of the DAF 2. Subsequently, the semiconductor substrate 1 is turned over, and the laser beam 4 is irradiated from the surface 1f so that the condensing point P is formed inside the semiconductor substrate 1 (on the extension of the cut 1a) along the line L1. As a result, a modified region 1 c by multiphoton absorption is formed at the condensing point P of the laser beam 4. At this time, the depth of the condensing point P of the laser beam 4 is adjusted to any depth within the range of the thickness n of the portion where the notch 1a is not formed from the surface 1f of the semiconductor substrate 1. The modified layer 1c having the number of layers can be formed. For example, when the thickness n is relatively large, the condensing point P is moved in the thickness direction so that the modified region 1c is continuously formed in the thickness direction or formed at a plurality of locations, so that the division is easy. can do. Such a modified region 1c is formed for each of the planned dividing lines L1.

(図8(c)に示す工程)
次に、ダイシングフィルムを引っ張るためのテープエキスパンド装置などにより、ダイシングフィルム5を両方向(図中矢印F2,F3で示す方向)へ引っ張り、半導体基板1の内部にせん断応力を発生させることにより、改質領域1cを形成するクラックを成長させ、改質領域1cに沿ったライン上に割れ1bを形成させる。
(Step shown in FIG. 8C)
Next, the dicing film 5 is pulled in both directions (directions indicated by arrows F2 and F3 in the figure) by a tape expanding device for pulling the dicing film, and the shearing stress is generated inside the semiconductor substrate 1, thereby modifying the film. A crack forming the region 1c is grown, and a crack 1b is formed on a line along the modified region 1c.

(図1(d)に示す工程)
続いて、割れ1b,1bにより挟まれた部分の裏面1gに押圧部材6の先端を当接させ、その押圧部材6を上方(図中矢印F4で示す方向)へ移動させ、半導体チップ1eをピックアップする。
(Step shown in FIG. 1 (d))
Subsequently, the tip of the pressing member 6 is brought into contact with the back surface 1g of the portion sandwiched between the cracks 1b and 1b, the pressing member 6 is moved upward (in the direction indicated by arrow F4 in the figure), and the semiconductor chip 1e is picked up. To do.

(半導体チップ)
分断されたガラス基板の分断面間の幅をW2とすると、第1実施形態において図5(a)および図7に基づいて説明した各分断面間の幅の関係と同じ関係が成立する。従って、その関係を満たす半導体チップは、上記上記第1実施形態の変更例に係る半導体基板の分断方法によって得られたものであると推定することができる。
上記第1実施形態の変更例を適用した場合でも、第1実施形態と同じ効果を奏することができる。
(Semiconductor chip)
Assuming that the width between the divided sections of the divided glass substrate is W2, the same relationship as the relationship between the widths of the divided sections described with reference to FIGS. 5A and 7 in the first embodiment is established. Therefore, it can be estimated that the semiconductor chip satisfying the relationship is obtained by the method for dividing the semiconductor substrate according to the modified example of the first embodiment.
Even when the modification of the first embodiment is applied, the same effect as that of the first embodiment can be obtained.

<第2実施形態>
次に、この発明の第2実施形態について図2を参照して説明する。図2(a)〜(d)は、この実施形態に係る半導体基板の分断方法の工程を示す説明図である。この実施形態は、レーザ光のみを用い、ダイヤモンドブレードによる切削を全く用いないことを特徴とする。なお、第1実施形態と同じ構成および工程については、説明を簡略化または省略し、同じ構成については同じ符号を用いる。
(図2(a)に示す工程)
まず、レーザ光7を半導体基板1の裏面1gに貼着されているDAF2の表面から、分断予定ラインL1に沿って、集光点がDAF2に合うように照射し、DAF2を溶融して分断する(本願請求項3の実装部材分断工程に対応)。このDAF2の分断を各分断予定ラインL1に対して行う。レーザ光7は、DAF2を溶融して分断する強度を有する。
Second Embodiment
Next, a second embodiment of the present invention will be described with reference to FIG. 2A to 2D are explanatory views showing the steps of the semiconductor substrate dividing method according to this embodiment. This embodiment is characterized in that only laser light is used and no cutting with a diamond blade is used. In addition, about the same structure and process as 1st Embodiment, description is simplified or abbreviate | omitted and the same code | symbol is used about the same structure.
(Step shown in FIG. 2A)
First, the laser beam 7 is irradiated from the front surface of the DAF 2 attached to the back surface 1g of the semiconductor substrate 1 along the planned dividing line L1 so that the focal point matches the DAF 2, and the DAF 2 is melted and divided. (Corresponding to the mounting member dividing step of claim 3 of the present application). The division of DAF2 is performed for each division planned line L1. The laser beam 7 has an intensity for melting and dividing the DAF 2.

(図2(b)に示す工程)
次に、DAF2の裏面(実装側の面)にダイシングフィルム5を貼着する(本願請求項3の貼着工程に対応)。次に、半導体基板1を裏返し、レーザ光4をその集光点Pが半導体基板1の内部の下方に位置するように設定したレーザ照射条件で、分断予定ラインL1に沿って半導体基板1の表面から照射し、集光点Pに改質領域1cを形成する。続いて、集光点Pを前述で形成した改質領域より上方の半導体基板内部の位置に移動させ、分断予定ラインL1に沿って改質領域1cを形成し、分断予定ラインL1の下方の基板厚さ方向に対し、連続もしくは断続層状の改質領域を少なくとも一層形成する。このような分断予定ラインL1上に改質領域1cを形成する工程を各分断予定ラインL1に対して行う(本願請求項3の改質領域形成工程に対応)。図中2aは、DAF2が分断された部分である実装部材分断部を示す。
(Step shown in FIG. 2B)
Next, the dicing film 5 is stuck on the back surface (the surface on the mounting side) of the DAF 2 (corresponding to the sticking step of claim 3 of the present application). Next, the semiconductor substrate 1 is turned over, and the surface of the semiconductor substrate 1 along the planned dividing line L1 under the laser irradiation conditions in which the laser beam 4 is set so that the condensing point P is located below the inside of the semiconductor substrate 1. The modified region 1c is formed at the condensing point P. Subsequently, the condensing point P is moved to a position inside the semiconductor substrate above the modified region formed above, and a modified region 1c is formed along the planned dividing line L1, and the substrate below the planned dividing line L1. At least one continuous or intermittent layer-like modified region is formed in the thickness direction. The step of forming the modified region 1c on the planned dividing line L1 is performed on each planned dividing line L1 (corresponding to the modified region forming step of claim 3 of the present application). 2a in the figure shows a mounting member dividing portion which is a portion where the DAF 2 is divided.

(図2(c)に示す工程)
次に、ダイシングフィルム5を両方向(図中矢印F2,F3で示す方向)へ引っ張り、半導体基板1の内部にせん断応力を発生させることにより、改質領域1cを形成するクラックを成長させ、改質領域1cに沿ったライン上に割れ1bを形成させる。
(Step shown in FIG. 2 (c))
Next, the dicing film 5 is pulled in both directions (directions indicated by arrows F2 and F3 in the figure) to generate a shear stress inside the semiconductor substrate 1, thereby growing a crack that forms the modified region 1c and modifying the film. A crack 1b is formed on a line along the region 1c.

(図2(d)に示す工程)
続いて、割れ1b,1bにより挟まれた部分の裏面1gに押圧部材6の先端を当接させ、その押圧部材6を上方(図中矢印F4で示す方向)へ移動させ、半導体チップ1eをピックアップする(本願請求項3の半導体基板分断工程に対応)。
(Step shown in FIG. 2 (d))
Subsequently, the tip of the pressing member 6 is brought into contact with the back surface 1g of the portion sandwiched between the cracks 1b and 1b, the pressing member 6 is moved upward (in the direction indicated by arrow F4 in the figure), and the semiconductor chip 1e is picked up. (Corresponding to the semiconductor substrate cutting step of claim 3).

(半導体チップ)
図5(b)は、図2(d)に示す工程により得られた半導体チップの縦断面図である。半導体チップ1eの裏面(実装側の面)に貼着されたDAF2の分断面間の幅W2が、DAF2が貼着されている面の分断面間の幅W3以下(W2≦W3)に形成されている。
つまり、この実施形態のように、DAF2をレーザ光7によって溶断する場合は、溶融によりDAF2が消失したり、収縮した部分が形成されるため、その分、DAF2の分断面間の幅が減少している。
一方、改質領域1cが形成された半導体基板1は、略分断予定ライン通りに分断されるため、分断された半導体チップ1eは、分断により形成されたDAF2の分断面間の幅W2が、半導体チップ1eのうち、DAF2が貼着されている面の分断面間の幅W3以下となる。
従って、分断により形成されたDAF2の分断面間の幅W2が、半導体チップ1eのうち、DAF2が貼着されている面の分断面間の幅W3以下になっている半導体チップは、この実施形態の半導体基板の分断方法により得られたものであると推定することができる。
(Semiconductor chip)
FIG. 5B is a longitudinal sectional view of the semiconductor chip obtained by the process shown in FIG. The width W2 between the sectional surfaces of the DAF 2 adhered to the back surface (mounting side surface) of the semiconductor chip 1e is formed to be equal to or less than the width W3 between the sectional surfaces of the surface to which the DAF 2 is adhered (W2 ≦ W3). ing.
That is, when the DAF 2 is melted by the laser beam 7 as in this embodiment, the DAF 2 disappears due to melting or a contracted portion is formed, so that the width between the cross sections of the DAF 2 decreases accordingly. ing.
On the other hand, since the semiconductor substrate 1 in which the modified region 1c is formed is divided according to a substantially divided line, the divided semiconductor chip 1e has a width W2 between the divided sections of the DAF 2 formed by the division. Of the chip 1e, the width is equal to or less than the width W3 between the sectional surfaces of the surface on which the DAF 2 is adhered.
Therefore, the semiconductor chip in which the width W2 between the divided sections of the DAF 2 formed by the division is equal to or smaller than the width W3 between the divided sections of the surface to which the DAF 2 is attached is the semiconductor chip 1e. It can be estimated that the semiconductor substrate was obtained by the method for dividing a semiconductor substrate.

[第2実施形態の効果]
以上のように、上記第2実施形態に係る半導体基板の分断方法を用いれば、半導体基板1を分断予定ラインL1に沿って厚さ方向に分断する前に、半導体基板1の裏面1gからレーザ光7を照射し、分断予定ラインL1に沿ってDAF2を分断するため、半導体基板1を分断するときにDAF2を引きちぎる従来の方法のように、分断されたDAF2が寸足らずになったり、半導体チップ1eの端部からはみ出たりすることがない。
従って、分断されたDAF2の寸法を半導体チップ1eに適合させることができ、半導体チップ1eの実装不良が発生することがない半導体基板1の分断方法を実現することができる。
しかも、レーザ光4の照射により、分断予定ラインL1に沿って改質領域1cを形成し、その分断予定ラインL1に沿って半導体基板1を分断するため、半導体基板1をダイヤモンドブレードにより切断する従来の方法のように、切断幅分の半導体基板1の損失により、半導体チップ1eの収量が制限されるおそれもないし、切断時に半導体チップ1eの一部が欠けるチッピングにより歩留まりが低下するおそれもない。
[Effects of Second Embodiment]
As described above, if the semiconductor substrate dividing method according to the second embodiment is used, the laser beam is separated from the back surface 1g of the semiconductor substrate 1 before dividing the semiconductor substrate 1 along the planned dividing line L1 in the thickness direction. 7 to divide the DAF 2 along the division line L1, the divided DAF 2 may become short as in the conventional method of tearing off the DAF 2 when dividing the semiconductor substrate 1, or the semiconductor chip 1e. It does not protrude from the edge.
Therefore, the size of the divided DAF 2 can be adapted to the semiconductor chip 1e, and a method for dividing the semiconductor substrate 1 that does not cause a mounting failure of the semiconductor chip 1e can be realized.
In addition, the modified region 1c is formed along the planned division line L1 by irradiation with the laser beam 4, and the semiconductor substrate 1 is cut along the planned division line L1, so that the semiconductor substrate 1 is cut with a diamond blade. As in the above method, there is no possibility that the yield of the semiconductor chip 1e is limited due to the loss of the semiconductor substrate 1 corresponding to the cutting width, and there is no possibility that the yield is reduced due to chipping in which a part of the semiconductor chip 1e is missing at the time of cutting.

<第3実施形態>
次に、この発明の第3実施形態について図3を参照して説明する。図3(a)〜(d)は、この実施形態に係る半導体基板の分断方法の工程を示す説明図である。この実施形態は、レーザ光を半導体基板の表面から照射してDAFの分断および改質領域の形成を行うことを特徴とする。なお、第2実施形態と同じ構成および工程については、説明を簡略化または省略し、同じ構成については同じ符号を用いる。
(図3(a)に示す工程)
まず、DAF2の上にダイシングフィルム5を貼着する。次に、レーザ光7を半導体基板1の表面1fから、分断予定ラインL1に沿って、集光点がDAF2に合うようにして照射し、DAF2を溶融して分断する(本願請求項3の実装部材分断工程に対応)。このDAF2の分断を各分断予定ラインL1に対して行う。
<Third Embodiment>
Next, a third embodiment of the present invention will be described with reference to FIG. 3A to 3D are explanatory views showing the steps of the method for dividing a semiconductor substrate according to this embodiment. This embodiment is characterized in that laser light is irradiated from the surface of a semiconductor substrate to divide the DAF and form a modified region. In addition, about the same structure and process as 2nd Embodiment, description is simplified or abbreviate | omitted and the same code | symbol is used about the same structure.
(Step shown in FIG. 3A)
First, the dicing film 5 is stuck on the DAF 2. Next, the laser beam 7 is irradiated from the surface 1f of the semiconductor substrate 1 along the planned dividing line L1 so that the focal point is aligned with the DAF 2, and the DAF 2 is melted and divided. Corresponds to the parting process). The division of DAF2 is performed for each division planned line L1.

(図3(b)〜(d)に示す工程)
第2実施形態の図2(b)〜(d)に示す工程と同じ工程を実行することにより、半導体基板1を各分断予定ラインL1に沿って分断し、半導体チップ1eをピックアップする。
(Steps shown in FIGS. 3B to 3D)
By performing the same steps as the steps shown in FIGS. 2B to 2D of the second embodiment, the semiconductor substrate 1 is divided along the respective division lines L1 and the semiconductor chip 1e is picked up.

(半導体チップ)
図5(b)は、図2(d)に示す工程により得られた半導体チップの縦断面図である。第2実施形態と同じように、半導体チップ1eの裏面(実装側の面)に貼着されたDAF2の分断面間の幅W2が、DAF2が貼着されている面の分断面間の幅W3以下(W2≦W3)に形成されている。
従って、分断により形成されたDAF2の分断面間の幅W2が、半導体チップ1eのうち、DAF2が貼着されている面の分断面間の幅W3以下になっている半導体チップは、この実施形態の半導体基板の分断方法により得られたものであると推定することができる。
(Semiconductor chip)
FIG. 5B is a longitudinal sectional view of the semiconductor chip obtained by the process shown in FIG. As in the second embodiment, the width W2 between the divided surfaces of the DAF 2 attached to the back surface (mounting side surface) of the semiconductor chip 1e is equal to the width W3 between the divided surfaces of the surface where the DAF 2 is attached. It is formed below (W2 ≦ W3).
Therefore, the semiconductor chip in which the width W2 between the divided sections of the DAF 2 formed by the division is equal to or smaller than the width W3 between the divided sections of the surface of the semiconductor chip 1e to which the DAF 2 is attached is described in this embodiment. It can be estimated that the semiconductor substrate was obtained by the method for dividing a semiconductor substrate.

[第3実施形態の効果]
以上のように、上記第3実施形態に係る半導体基板の分断方法を用いれば、レーザ光7およびレーザ光4を半導体基板1の表面1fから照射するため、レーザ光7を照射する場合とレーザ光4を照射する場合とで、半導体基板1を裏返す工程をなくすことができるため、半導体基板1の分断のための全行程にかかる時間を短縮することができる。
また、第3実施形態は、改質領域1cを形成する以降の工程は、第2実施形態と同じであるため、第2実施形態と同じ効果を奏することができる。
[Effect of the third embodiment]
As described above, when the method for dividing a semiconductor substrate according to the third embodiment is used, the laser light 7 and the laser light 4 are emitted from the surface 1f of the semiconductor substrate 1. 4, the process of turning the semiconductor substrate 1 upside down can be eliminated, so that the time required for the entire process for dividing the semiconductor substrate 1 can be shortened.
In the third embodiment, the subsequent steps for forming the modified region 1c are the same as those in the second embodiment, and thus the same effects as those in the second embodiment can be obtained.

<第4実施形態>
次に、この発明の第4実施形態について図6を参照して説明する。図6(a)〜(d)は、この実施形態に係る半導体基板の分断方法の工程を示す説明図である。この実施形態は、DAFを使用しないで実装する半導体チップを得るための半導体基板の分断方法であって、ダイヤモンドブレードによる切削と、レーザ光の照射による改質領域の形成とを併用して分断することを特徴とする。なお、第1実施形態と同じ構成および工程については、説明を簡略化または省略し、同じ構成については同じ符号を用いる。この半導体基板の分断方法によって得られる半導体チップは、半田によって回路基板と接続されたり、あるいは、半導体チップおよび回路基板間に接着フィルムや液状の接着剤を介在させることにより実装される。例えば、フリップチップは、半導体素子を形成した半導体チップの主面に半田バンプを設け、その半田バンプにより、半導体チップの主面と当該チップを搭載する配線基板を向かい合わせて接続される。
<Fourth embodiment>
Next, a fourth embodiment of the present invention will be described with reference to FIG. 6A to 6D are explanatory views showing the steps of the method for dividing a semiconductor substrate according to this embodiment. This embodiment is a method for dividing a semiconductor substrate for obtaining a semiconductor chip to be mounted without using a DAF, which is divided by using a combination of cutting with a diamond blade and formation of a modified region by laser light irradiation. It is characterized by that. In addition, about the same structure and process as 1st Embodiment, description is simplified or abbreviate | omitted and the same code | symbol is used about the same structure. A semiconductor chip obtained by this method for dividing a semiconductor substrate is connected to a circuit board by soldering, or is mounted by interposing an adhesive film or a liquid adhesive between the semiconductor chip and the circuit board. For example, in a flip chip, a solder bump is provided on a main surface of a semiconductor chip on which a semiconductor element is formed, and the main surface of the semiconductor chip and a wiring board on which the chip is mounted are connected to each other by the solder bump.

(図6(a)に示す工程)
半導体基板1の裏面1gには、DAF2が貼着されていない。まず、図中矢印F1で示す方向に高速回転するダイヤモンドブレード3により、半導体基板1を裏面1gから、その内部に達する所定の深さまで切削する。この切削を各分断予定ラインL1について行う。これにより、半導体基板1の分断予定ラインL1に沿った内部まで切り込み1aが形成される(本願請求項6の切り込み形成工程に対応)。
(Step shown in FIG. 6A)
DAF 2 is not attached to the back surface 1 g of the semiconductor substrate 1. First, the semiconductor substrate 1 is cut from the back surface 1g to a predetermined depth reaching the inside by the diamond blade 3 that rotates at high speed in the direction indicated by the arrow F1 in the drawing. This cutting is performed for each division planned line L1. Thereby, the cut 1a is formed as far as the inside of the semiconductor substrate 1 along the division line L1 (corresponding to the cut forming process of claim 6 of the present application).

(図6(b)に示す工程)
次に、半導体基板1の裏面1gにダイシングフィルム5を貼着する(本願請求項6の貼着工程に対応)。続いて、レーザ光4を、その集光点Pが分断予定ラインL1に沿った半導体基板1の内部(切り込み1aの延長上)に形成されるように表面1fから照射する。これにより、レーザ光4の集光点Pには、多光子吸収による改質領域1cが形成される(本願請求項6の改質領域形成工程に対応)。このとき、レーザ光4の集光点Pの深さを調整することにより、半導体基板1の表面1fから、切り込み1aが形成されていない部分の厚さnの範囲内で任意の深さに任意の層数の改質層1cを形成することができる。例えば、厚さnが比較的厚い場合は、その厚さ方向へ集光点Pを移動させて改質領域1cを厚さ方向に連続状、または複数箇所に形成することにより、分断を容易にすることができる。このような改質領域1cの形成を各分断予定ラインL1について行う。
(Step shown in FIG. 6B)
Next, the dicing film 5 is stuck to the back surface 1g of the semiconductor substrate 1 (corresponding to the sticking step of claim 6 of the present application). Subsequently, the laser beam 4 is irradiated from the surface 1f so that the condensing point P is formed inside the semiconductor substrate 1 (on the extension of the cut 1a) along the line to be cut L1. Thus, a modified region 1c by multiphoton absorption is formed at the condensing point P of the laser beam 4 (corresponding to the modified region forming step of claim 6 of the present application). At this time, the depth of the condensing point P of the laser beam 4 is adjusted to any depth within the range of the thickness n of the portion where the notch 1a is not formed from the surface 1f of the semiconductor substrate 1. The modified layer 1c having the number of layers can be formed. For example, when the thickness n is relatively large, the condensing point P is moved in the thickness direction so that the modified region 1c is continuously formed in the thickness direction or formed at a plurality of locations, so that the division is easy. can do. Such a modified region 1c is formed for each of the planned dividing lines L1.

(図6(c)に示す工程)
次に、ダイシングフィルムを引っ張るためのテープエキスパンド装置などにより、ダイシングフィルム5を両方向(図中矢印F2,F3で示す方向)へ引っ張り、半導体基板1の内部にせん断応力を発生させることにより、改質領域1cを形成するクラックを成長させ、改質領域1cに沿ったライン上に割れ1bを形成させる。
(Step shown in FIG. 6C)
Next, the dicing film 5 is pulled in both directions (directions indicated by arrows F2 and F3 in the figure) by a tape expanding device for pulling the dicing film, and the shearing stress is generated inside the semiconductor substrate 1, thereby modifying the film. A crack forming the region 1c is grown, and a crack 1b is formed on a line along the modified region 1c.

(図6(d)に示す工程)
続いて、割れ1b,1bにより挟まれた部分の裏面1gに押圧部材6の先端を当接させ、その押圧部材6を上方(図中矢印F4で示す方向)へ移動させ、半導体チップ1eをピックアップする(本願請求項6の半導体基板分断工程に対応)。
(Step shown in FIG. 6D)
Subsequently, the tip of the pressing member 6 is brought into contact with the back surface 1g of the portion sandwiched between the cracks 1b and 1b, the pressing member 6 is moved upward (in the direction indicated by arrow F4 in the figure), and the semiconductor chip 1e is picked up. (Corresponding to the semiconductor substrate cutting step of claim 6).

(半導体チップ)
この実施形態により分断して得られた半導体チップは、図5(a)に示す半導体チップ1eからDAF2を除いたものと同じ形状である。このため、第1実施形態と同じように、半導体チップ1eのうち、実装側の面の分断面(切り込み1aが入っている面)間の幅W2が、実装側の面と反対側の面の分断面(割れ1bが入っている面)間の幅W1以下(W2≦W1)に形成されている。
つまり、この実施形態にように、実装側の面から所定の深さまでをダイヤモンドブレード3によって切削し、残りの厚さ方向の部分についてはレーザ光4を照射して改質領域1cを形成することにより分断した場合、実装側の切削部分には、ダイヤモンドブレード3の刃の厚さ分の隙間が形成されるため、その分、分断面間の幅が減少している。
一方、改質領域1cの形成による半導体基板1の損失はないため、分断された半導体チップ1eは、実装側の面の分断面間の幅W2が、実装側の面と反対側の面の分断面間の幅W1以下となる。
従って、実装側の面にDAF2が貼着されておらず、実装側の面の分断面間の幅W2が、実装側の面と反対側の面の分断面間の幅W1以下である半導体チップは、この実施形態の半導体基板の分断方法により得られたものであると推定することができる。
(Semiconductor chip)
The semiconductor chip obtained by dividing according to this embodiment has the same shape as that obtained by removing DAF 2 from the semiconductor chip 1e shown in FIG. For this reason, as in the first embodiment, in the semiconductor chip 1e, the width W2 between the divided surfaces of the surface on the mounting side (the surface where the notch 1a is inserted) is the same as the surface on the opposite side to the surface on the mounting side. It is formed to have a width W1 or less (W2 ≦ W1) between the sectional surfaces (the surface containing the crack 1b).
That is, as in this embodiment, the diamond blade 3 cuts from the surface on the mounting side to a predetermined depth, and the remaining portion in the thickness direction is irradiated with the laser beam 4 to form the modified region 1c. When the cutting is performed, a gap corresponding to the thickness of the diamond blade 3 is formed in the cutting portion on the mounting side, and the width between the divided sections is reduced accordingly.
On the other hand, since there is no loss of the semiconductor substrate 1 due to the formation of the modified region 1c, the divided semiconductor chip 1e has a width W2 between the divided sections of the mounting side surface of the surface opposite to the mounting side surface. A width W1 or less between the cross sections.
Therefore, DAF2 is not adhered to the mounting side surface, and the width W2 between the divided surfaces of the mounting side surface is equal to or less than the width W1 between the divided surfaces of the surface opposite to the mounting side. Can be estimated to have been obtained by the semiconductor substrate cutting method of this embodiment.

[第4実施形態の効果]
(1)以上のように、上記第4実施形態に係る半導体基板の分断方法を用いれば、実装面にDAF2が貼着されていない半導体基板1の実装面から分断予定ラインL1に沿ってダイヤモンドブレード3により所定の深さまで切り込みを形成する切り込み形成工程と、レーザ光の照射により、分断予定ラインL1に沿って改質領域を形成する改質領域形成工程とを併用するため、半導体基板1をダイヤモンドブレードだけで切断する従来の方法よりも、切断幅分の半導体基板1の損失を少なくすることができ、半導体チップ1eの収量を増加することができる。また、切断時に半導体チップ1eの一部が欠けるチッピングにより歩留まりが低下するおそれもない。さらに、レーザ照射により改質層だけを形成して分断する場合よりも、分断に必要な加工に要する時間を短縮することができる。
[Effect of Fourth Embodiment]
(1) As described above, if the method for dividing a semiconductor substrate according to the fourth embodiment is used, the diamond blade extends from the mounting surface of the semiconductor substrate 1 on which the DAF 2 is not attached to the mounting surface along the planned cutting line L1. 3 is used in combination with the notch forming step for forming the notch to a predetermined depth by 3 and the modified region forming step for forming the modified region along the planned dividing line L1 by laser irradiation. The loss of the semiconductor substrate 1 corresponding to the cutting width can be reduced and the yield of the semiconductor chip 1e can be increased as compared with the conventional method of cutting only with a blade. Further, there is no possibility that the yield is lowered due to chipping in which a part of the semiconductor chip 1e is missing at the time of cutting. Furthermore, it is possible to reduce the time required for processing necessary for the division, compared to the case where only the modified layer is formed by laser irradiation and divided.

(2)また、予め分断予定ラインL1に沿って半導体基板1の内部に切り込み1aを形成しておくため、分断すべき半導体基板1の実質厚が薄くなり、半導体基板1の分断に必要な改質層1cの層数が少なくて済み、半導体基板1の分断にかかるレーザ照射時間を短縮することができる。また、切り込み1aが形成されていない場合よりも、分断に必要な力を小さくすることができる。
(3)さらに、半導体基板1の表面1fではレーザ光4がほとんど吸収されないため、表面1fが溶融することがない。
(2) Further, since the cut 1a is formed in the semiconductor substrate 1 along the division line L1 in advance, the substantial thickness of the semiconductor substrate 1 to be divided is reduced, and the modification necessary for dividing the semiconductor substrate 1 is performed. The number of layers of the quality layer 1c is small, and the laser irradiation time required for dividing the semiconductor substrate 1 can be shortened. Moreover, the force required for dividing can be made smaller than when the cut 1a is not formed.
(3) Furthermore, since the laser beam 4 is hardly absorbed on the surface 1f of the semiconductor substrate 1, the surface 1f is not melted.

<その他の実施形態>
(1)上記第2および第3実施形態では、DAF2を分断する工程と、改質領域1cを形成する工程とでは、異なるレーザ光を使用したが、同一のレーザ源から出射されるレーザ光を使用してDAF2の分断および改質領域1cの形成を行うこともできる。
この方法によれば、レーザ源を1つだけ設ければよいので、半導体基板1を分断するためのレーザ照射装置を簡易な構成にすることができる。
従って、レーザ源を複数設ける場合よりも、レーザ源が少ない分、上記装置の故障率および製造コストを低減することができる。また、上記装置のメンテナンスを容易にすることができる。
また、第3実施形態において、同一のレーザ源から出射されたレーザ光7およびレーザ光4を半導体基板1の表面1fから照射し、その集光点Pの深さを変えるようにすれば、DAF2の分断および改質領域1cの形成を連続して行うことができるため、半導体基板1の分断にかかる時間を短縮することができる。
<Other embodiments>
(1) In the second and third embodiments, different laser beams are used in the step of dividing the DAF 2 and the step of forming the modified region 1c. However, laser beams emitted from the same laser source are used. It can also be used to divide the DAF 2 and form the modified region 1c.
According to this method, since only one laser source needs to be provided, a laser irradiation apparatus for dividing the semiconductor substrate 1 can be simplified.
Therefore, the failure rate and manufacturing cost of the apparatus can be reduced by the amount of laser sources compared to the case where a plurality of laser sources are provided. In addition, maintenance of the apparatus can be facilitated.
In the third embodiment, if the laser beam 7 and the laser beam 4 emitted from the same laser source are irradiated from the surface 1f of the semiconductor substrate 1 and the depth of the condensing point P is changed, the DAF 2 Therefore, the time required for dividing the semiconductor substrate 1 can be shortened.

(2)前述の第1実施形態では、半導体基板1に切り込み1aを形成してから改質領域1cを形成したが、改質領域1cを形成してから切り込み1aを形成することも可能である。この場合も第1実施形態の効果と同じ効果を奏することができる。
(3)前述の第4実施形態では、半導体基板1に切り込み1aを形成してから改質領域1cを形成したが、改質領域1cを形成してから切り込み1aを形成することも可能である。この場合も第4実施形態の効果と同じ効果を奏することができる。
(4)第2実施形態では、DAF2を分断してから改質領域1cを形成したが、改質領域1cを形成してからDAF2を分断してもよい。この場合も第2実施形態の効果と同じ効果を奏することができる。
(2) In the first embodiment described above, the modified region 1c is formed after forming the cut 1a in the semiconductor substrate 1. However, it is also possible to form the cut 1a after forming the modified region 1c. . In this case, the same effect as that of the first embodiment can be obtained.
(3) In the fourth embodiment described above, the modified region 1c is formed after forming the cut 1a in the semiconductor substrate 1. However, it is also possible to form the cut 1a after forming the modified region 1c. . In this case, the same effect as that of the fourth embodiment can be obtained.
(4) In the second embodiment, the modified region 1c is formed after dividing the DAF 2, but the DAF 2 may be divided after forming the modified region 1c. In this case, the same effect as that of the second embodiment can be obtained.

(5)レーザ光の集光点Pを分断予定ラインL1に沿って移動させる場合、レーザ源を移動させてもよいし、半導体基板1を上下方向に移動させてもよい。また、レーザ源および半導体基板1の両方を相互に逆方向に移動させてもよい。この方法によれば、改質領域1cを形成する時間を短縮することができる。
(6)レーザ光を照射して改質領域1cを形成する場合、半導体基板1の表面1fおよび裏面1gの両面からレーザ光を照射して改質領域1cを形成してもよい。この場合、複数のレーザ源を使用し、表面1fおよび裏面1gの両面からレーザ光を同時または順番に照射して改質領域1cを形成してもよい。
(7)前述の第1〜第3実施形態では、半導体チップ1eを実装するための実装部材としてDAFを使用する場合を説明したが、半導体チップ1eをハンダ付けして実装するための金属薄膜を実装部材として使用する場合にも、この発明を適用することができる。また、実装部材が樹脂またはガラスなどにより形成されている場合にも、この発明を適用することができる。
(5) When the condensing point P of the laser beam is moved along the planned dividing line L1, the laser source may be moved, or the semiconductor substrate 1 may be moved in the vertical direction. Further, both the laser source and the semiconductor substrate 1 may be moved in directions opposite to each other. According to this method, the time for forming the modified region 1c can be shortened.
(6) When the modified region 1c is formed by irradiating the laser beam, the modified region 1c may be formed by irradiating the laser beam from both the front surface 1f and the back surface 1g of the semiconductor substrate 1. In this case, a modified region 1c may be formed by using a plurality of laser sources and irradiating laser light simultaneously or sequentially from both the front surface 1f and the back surface 1g.
(7) In the first to third embodiments described above, the case where the DAF is used as the mounting member for mounting the semiconductor chip 1e has been described. However, a metal thin film for mounting the semiconductor chip 1e by soldering is used. The present invention can also be applied when used as a mounting member. The present invention can also be applied when the mounting member is formed of resin or glass.

(8)DAF2および金属薄膜などの実装部材の分断は、ダイヤモンドブレードだけでなく、鋭利な刃先を有する物を押し当てることにより行うこともできる。
(9)曲率を持った物(例えば、半球状の物)の曲面(膨らんだ方の面)をダイシングフィルム5を介して半導体基板1に押し当てることにより、半導体基板1に矢印F2,F3に相当する力をかけて、半導体基板1を分断することもできる。
(8) The mounting member such as the DAF 2 and the metal thin film can be divided not only by a diamond blade but also by pressing an object having a sharp blade edge.
(9) A curved surface (swelled surface) of an object having a curvature (for example, a hemispherical object) is pressed against the semiconductor substrate 1 through the dicing film 5, thereby causing the arrows F2 and F3 on the semiconductor substrate 1. The semiconductor substrate 1 can also be divided by applying a corresponding force.

図1(a)〜(d)は、第1実施形態に係る半導体基板の分断方法の工程を示す説明図である。FIGS. 1A to 1D are explanatory views showing steps of a method for dividing a semiconductor substrate according to the first embodiment. 図2(a)〜(d)は、第2実施形態に係る半導体基板の分断方法の工程を示す説明図である。2A to 2D are explanatory views showing steps of a method for dividing a semiconductor substrate according to the second embodiment. 図3(a)〜(d)は、第3実施形態に係る半導体基板の分断方法の工程を示す説明図である。FIGS. 3A to 3D are explanatory views showing steps of a method for dividing a semiconductor substrate according to the third embodiment. 図4(a)〜(c)は、従来の半導体基板の分断方法を示す説明図である。4A to 4C are explanatory views showing a conventional method for dividing a semiconductor substrate. 図5(a)は、図1(d)に示す工程により得られた半導体チップの縦断面図であり、図5(b)は、図2(d)に示す工程により得られた半導体チップの縦断面図である。FIG. 5A is a vertical cross-sectional view of the semiconductor chip obtained by the process shown in FIG. 1D, and FIG. 5B is the semiconductor chip obtained by the process shown in FIG. It is a longitudinal cross-sectional view. 図6(a)〜(d)は、第4実施形態に係る半導体基板の分断方法の工程を示す説明図である。6A to 6D are explanatory views showing steps of a method for dividing a semiconductor substrate according to the fourth embodiment. 図1(d)に示す工程により得られた半導体チップの縦断面図の他の例を示すものである。FIG. 9 shows another example of a longitudinal sectional view of a semiconductor chip obtained by the process shown in FIG. 図8(a)〜(d)は、第1実施形態の変更例に係る半導体基板の分断方法の工程を示す説明図である。FIGS. 8A to 8D are explanatory views showing the steps of the semiconductor substrate dividing method according to the modification of the first embodiment.

符号の説明Explanation of symbols

1・・半導体基板、1a・・切り込み、1b・・割れ、1c・・改質領域、1e・・半導体チップ、1f・・表面、1g・・裏面、2・・DAF、2a・・実装部材分断部、3・・ダイヤモンドブレード、4・・レーザ光、5・・ダイシングフィルム、6・・押圧部材、7・・レーザ光、8・・ガラス基板。   1 ... Semiconductor substrate, 1a ... Cut, 1b ... Crack, 1c ... Modified region, 1e ... Semiconductor chip, 1f ... Front, 1g ... Back, 2. DAF, 2a ... Mounting member division 3. Diamond blade 4. Laser beam 5 Dicing film 6 Pressing member 7 Laser beam 8 Glass substrate

Claims (13)

分断された半導体基板を実装するための実装部材が基板面に取付けられた半導体基板をその厚さ方向に分断する半導体基板の分断方法において、
前記実装部材側の面から、前記半導体基板をその厚さ方向に分断するための分断予定ラインに沿って少なくとも前記実装部材を分断する実装部材分断工程と、
この実装部材分断工程により前記実装部材が分断された前記実装部材側の面に、分断された半導体基板の離散を防止するための膜状部材を貼着する貼着工程と、
前記実装部材側の面およびその面と反対側の基板面の少なくとも一方の面から、前記分断予定ラインに沿った前記半導体基板の内部に集光点を合わせてレーザ光を照射し、前記集光点に多光子吸収による改質領域を形成する改質領域形成工程と、
この改質領域形成工程および前記貼着工程が終了した後に前記半導体基板を前記分断予定ラインに沿って厚さ方向に分断して半導体チップを得る半導体基板分断工程と、
を備えたことを特徴とする半導体基板の分断方法。
In a method for dividing a semiconductor substrate in which a mounting member for mounting the divided semiconductor substrate is divided in the thickness direction of the semiconductor substrate attached to the substrate surface,
A mounting member dividing step for dividing at least the mounting member along a dividing line for dividing the semiconductor substrate in the thickness direction from the surface on the mounting member side,
A sticking step of sticking a film-like member to prevent the divided semiconductor substrate from being separated on the surface of the mounting member where the mounting member is divided by the mounting member dividing step;
A laser beam is emitted from at least one of the surface on the mounting member side and the substrate surface on the opposite side of the surface to the inside of the semiconductor substrate along the planned dividing line to irradiate the laser beam. A modified region forming step of forming a modified region by multiphoton absorption at a point;
A semiconductor substrate cutting step for obtaining a semiconductor chip by dividing the semiconductor substrate in the thickness direction along the scheduled cutting line after the modified region forming step and the attaching step are completed,
A method for dividing a semiconductor substrate, comprising:
前記実装部材分断工程は、前記実装部材側の面から、前記分断予定ラインに沿って前記実装部材側の面から前記半導体基板の内部に達する切り込みを形成することを特徴とする請求項1に記載の半導体基板の分断方法。   The said mounting member parting process forms the notch which reaches the inside of the said semiconductor substrate from the surface by the said mounting member along the said parting plan line from the said surface by the side of the said mounting member. Method for dividing a semiconductor substrate. 分断された半導体基板を実装するための実装部材が基板面に取付けられており、さらに、前記実装部材の実装面に、分断された半導体基板の離散を防止するための膜状部材が貼着された半導体基板をその厚さ方向に分断する半導体基板の分断方法において、
前記実装部材側の面またはその面と反対側の基板面から第1のレーザ光を照射し、前記半導体基板をその厚さ方向に分断するための分断予定ラインに沿って前記実装部材を分断する実装部材分断工程と、
前記実装部材側の面および前記反対側の基板面の少なくとも一方の面から、前記分断予定ラインに沿った前記半導体基板の内部に集光点を合わせて第2のレーザ光を照射し、前記集光点に多光子吸収による改質領域を形成する改質領域形成工程と、
前記改質領域形成工程が終了した後に前記半導体基板を前記分断予定ラインに沿って厚さ方向に分断して半導体チップを得る半導体基板分断工程と、
を備えたことを特徴とする半導体基板の分断方法。
A mounting member for mounting the divided semiconductor substrate is attached to the substrate surface, and a film-like member for preventing the separation of the divided semiconductor substrate is attached to the mounting surface of the mounting member. In the semiconductor substrate dividing method of dividing the semiconductor substrate in the thickness direction,
The first laser beam is irradiated from the surface on the mounting member side or the substrate surface opposite to the surface, and the mounting member is divided along a dividing line for dividing the semiconductor substrate in the thickness direction. Mounting member cutting step;
A second laser beam is irradiated from the at least one surface of the mounting member side surface and the opposite substrate surface to the inside of the semiconductor substrate along the planned dividing line with a second laser beam. A modified region forming step of forming a modified region by multiphoton absorption at the light spot;
A semiconductor substrate dividing step of obtaining a semiconductor chip by dividing the semiconductor substrate in the thickness direction along the planned dividing line after the modified region forming step is completed;
A method for dividing a semiconductor substrate, comprising:
前記第1のレーザ光および前記第2のレーザ光を同一の面から照射することを特徴とする請求項3に記載の半導体基板の分断方法。   4. The method for dividing a semiconductor substrate according to claim 3, wherein the first laser beam and the second laser beam are irradiated from the same surface. 前記第1のレーザ光および前記第2のレーザ光は同一のレーザ源から出射されることを特徴とする請求項3または請求項4に記載の半導体基板の分断方法。   5. The method for dividing a semiconductor substrate according to claim 3, wherein the first laser beam and the second laser beam are emitted from the same laser source. 半導体基板をその厚さ方向に分断する半導体基板の分断方法において、
分断された半導体基板を実装する側の面である実装面から、前記半導体基板をその厚さ方向に分断するための分断予定ラインに沿って前記半導体基板の内部に達する所定の深さの切り込みを形成する切り込み形成工程と、
この切り込み形成工程により前記切り込みが形成された前記実装面に、分断された半導体基板の離散を防止するための膜状部材を貼着する貼着工程と、
前記実装面およびその面と反対側の基板面の少なくとも一方の面から、前記分断予定ラインに沿った前記半導体基板の内部に集光点を合わせてレーザ光を照射し、前記集光点に多光子吸収による改質領域を形成する改質領域形成工程と、
この改質領域形成工程および前記貼着工程が終了した後に前記半導体基板を前記分断予定ラインに沿って厚さ方向に分断して半導体チップを得る半導体基板分断工程と、
を備えたことを特徴とする半導体基板の分断方法。
In a semiconductor substrate dividing method for dividing a semiconductor substrate in its thickness direction,
A notch having a predetermined depth reaching the inside of the semiconductor substrate from a mounting surface, which is a surface on which the divided semiconductor substrate is mounted, along a planned dividing line for dividing the semiconductor substrate in its thickness direction. A notch forming step to be formed;
A sticking step of sticking a film-like member for preventing the separation of the divided semiconductor substrate on the mounting surface on which the cut is formed by the cut forming step;
From at least one of the mounting surface and the substrate surface opposite to the mounting surface, a laser beam is irradiated to the inside of the semiconductor substrate along the line to be cut along the converging line to irradiate a laser beam. A modified region forming step for forming a modified region by photon absorption;
A semiconductor substrate cutting step for obtaining a semiconductor chip by dividing the semiconductor substrate in the thickness direction along the scheduled cutting line after the modified region forming step and the attaching step are completed,
A method for dividing a semiconductor substrate, comprising:
前記半導体基板の実装側の面には、半導体基板材料と同一または異なる材料により基板が形成されており、その基板の実装側の面に前記実装部材が取付けられており、
前記半導体基板分断工程では、前記半導体基板および前記基板を前記分断予定ラインに沿って厚さ方向に分断して前記半導体チップを得ることを特徴とする請求項1ないし請求項6のいずれか1つに記載の半導体基板の分断方法。
On the mounting side surface of the semiconductor substrate, a substrate is formed of the same or different material as the semiconductor substrate material, and the mounting member is attached to the mounting side surface of the substrate,
7. The semiconductor chip is obtained by dividing the semiconductor substrate and the substrate in a thickness direction along the scheduled dividing line in the semiconductor substrate dividing step. 8. A method for dividing a semiconductor substrate according to 1.
前記半導体基板の実装側の面には、半導体基板材料と同一または異なる材料により基板が形成されており、
前記半導体基板分断工程では、前記半導体基板および前記基板を前記分断予定ラインに沿って厚さ方向に分断して前記半導体チップを得ることを特徴とする請求項6に記載の半導体基板の分断方法。
On the surface of the mounting side of the semiconductor substrate, a substrate is formed of the same or different material as the semiconductor substrate material,
The semiconductor substrate cutting method according to claim 6, wherein, in the semiconductor substrate cutting step, the semiconductor chip is obtained by cutting the semiconductor substrate and the substrate in a thickness direction along the line to be cut.
前記基板は、前記実装部材の熱膨張率と、前記半導体チップを実装する実装基材の熱膨張率との相違によって前記実装部材と前記実装基材との間に発生する応力を緩和する材料により形成されていることを特徴とする請求項7に記載の半導体基板の分断方法。   The substrate is made of a material that relieves stress generated between the mounting member and the mounting substrate due to a difference between the thermal expansion coefficient of the mounting member and the thermal expansion coefficient of the mounting substrate on which the semiconductor chip is mounted. The method for dividing a semiconductor substrate according to claim 7, wherein the semiconductor substrate is divided. 前記半導体基板と異なる材料は、ガラスであることを特徴とする請求項7ないし請求項9のいずれか1つに記載の半導体基板の分断方法。   The method for dividing a semiconductor substrate according to claim 7, wherein the material different from that of the semiconductor substrate is glass. 請求項1、請求項2、請求項3、請求項4、請求項5、請求項7、請求項9および請求項10のいずれか1つに記載の半導体基板の分断方法により得られた半導体チップであって、前記分断により形成された実装部材の分断面間の幅が、前記半導体チップのうち、前記実装部材が取付けられている面の分断面間の幅以下であることを特徴とする半導体チップ。   A semiconductor chip obtained by the semiconductor substrate cutting method according to any one of claims 1, 2, 3, 4, 5, 7, 9, and 10. The width between the divided sections of the mounting member formed by the cutting is equal to or less than the width between the divided sections of the surface of the semiconductor chip to which the mounting member is attached. Chip. 前記分断により形成された実装部材の分断面間の幅が、前記半導体チップのうち、前記実装部材が取付けられている面の分断面間の幅以下であり、かつ、前記実装部材が取付けられている面の分断面間の幅が、前記実装側の面と反対側の面の分断面間の幅以下であることを特徴とする請求項11に記載の半導体チップ。   The width between the divided sections of the mounting member formed by the division is equal to or less than the width between the divided sections of the surface of the semiconductor chip to which the mounting member is attached, and the mounting member is attached. 12. The semiconductor chip according to claim 11, wherein a width between the divided sections of the surface to be mounted is equal to or smaller than a width between the divided sections of the surface on the opposite side to the surface on the mounting side. 請求項1ないし請求項10のいずれか1つに記載の半導体基板の分断方法により得られた半導体チップであって、前記半導体チップのうち、実装側の面の分断面間の幅が、前記実装側の面と反対側の面の分断面間の幅以下であることを特徴とする半導体チップ。   A semiconductor chip obtained by the method for dividing a semiconductor substrate according to claim 1, wherein a width between divided sections of a surface on a mounting side of the semiconductor chip is the mounting size. A semiconductor chip having a width equal to or smaller than a width between divided surfaces of a side surface and an opposite surface.
JP2005228279A 2004-08-17 2005-08-05 Method for dividing semiconductor substrate Pending JP2006086509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005228279A JP2006086509A (en) 2004-08-17 2005-08-05 Method for dividing semiconductor substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004237300 2004-08-17
JP2005228279A JP2006086509A (en) 2004-08-17 2005-08-05 Method for dividing semiconductor substrate

Publications (1)

Publication Number Publication Date
JP2006086509A true JP2006086509A (en) 2006-03-30

Family

ID=36164712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005228279A Pending JP2006086509A (en) 2004-08-17 2005-08-05 Method for dividing semiconductor substrate

Country Status (1)

Country Link
JP (1) JP2006086509A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009048060A1 (en) * 2007-10-09 2009-04-16 Hitachi Chemical Company, Ltd. Method for producing semiconductor chip with adhesive film, adhesive film for semiconductor used in the method, and method for producing semiconductor device
WO2009048061A1 (en) * 2007-10-09 2009-04-16 Hitachi Chemical Company, Ltd. Method for producing semiconductor chip with adhesive film, adhesive film for semiconductor used in the method, and method for producing semiconductor device
JP2010232378A (en) * 2009-03-26 2010-10-14 Oki Semiconductor Co Ltd Method of producing semiconductor device
JP2011135075A (en) * 2009-12-23 2011-07-07 Xerox Corp Method for dicing semiconductor wafer, chip diced from semiconductor wafer, and array of chips diced from semiconductor wafer
JP2012059989A (en) * 2010-09-10 2012-03-22 Disco Abrasive Syst Ltd Dividing method
JP2013104931A (en) * 2011-11-11 2013-05-30 Renesas Electronics Corp Semiconductor device and manufacturing method thereof, and liquid crystal display unit
KR20130111994A (en) * 2012-04-02 2013-10-11 가부시기가이샤 디스코 Forming method of chip with die attach film
JP2014041187A (en) * 2012-08-21 2014-03-06 Japan Display Inc Method of manufacturing display device
JP2016187014A (en) * 2015-03-27 2016-10-27 株式会社ディスコ Wafer processing method
WO2018230297A1 (en) * 2017-06-15 2018-12-20 株式会社デンソー Semiconductor device and method for manufacturing same
CN109909608A (en) * 2019-04-03 2019-06-21 大族激光科技产业集团股份有限公司 Wafer processing method and device
JP2019186491A (en) * 2018-04-16 2019-10-24 株式会社ディスコ Processing method for work piece

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0410554A (en) * 1990-04-27 1992-01-14 Mitsubishi Electric Corp Manufacture of semiconductor device
JPH1167699A (en) * 1997-08-13 1999-03-09 Texas Instr Japan Ltd Manufacture of semiconductor device
JP2002118081A (en) * 2000-10-10 2002-04-19 Toshiba Corp Method of manufacturing semiconductor device
JP2002205180A (en) * 2000-09-13 2002-07-23 Hamamatsu Photonics Kk Method for laser beam machining
JP2004111946A (en) * 2002-08-30 2004-04-08 Tokyo Seimitsu Co Ltd Laser dicing equipment and dicing method
JP2005012203A (en) * 2003-05-29 2005-01-13 Hamamatsu Photonics Kk Laser machining method
JP2005109442A (en) * 2003-09-10 2005-04-21 Hamamatsu Photonics Kk Method of cutting semiconductor substrate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0410554A (en) * 1990-04-27 1992-01-14 Mitsubishi Electric Corp Manufacture of semiconductor device
JPH1167699A (en) * 1997-08-13 1999-03-09 Texas Instr Japan Ltd Manufacture of semiconductor device
JP2002205180A (en) * 2000-09-13 2002-07-23 Hamamatsu Photonics Kk Method for laser beam machining
JP2002118081A (en) * 2000-10-10 2002-04-19 Toshiba Corp Method of manufacturing semiconductor device
JP2004111946A (en) * 2002-08-30 2004-04-08 Tokyo Seimitsu Co Ltd Laser dicing equipment and dicing method
JP2005012203A (en) * 2003-05-29 2005-01-13 Hamamatsu Photonics Kk Laser machining method
JP2005109442A (en) * 2003-09-10 2005-04-21 Hamamatsu Photonics Kk Method of cutting semiconductor substrate

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013179317A (en) * 2007-10-09 2013-09-09 Hitachi Chemical Co Ltd Manufacturing method of semiconductor chip with adhesive film, adhesive film for semiconductor used in manufacturing method and semiconductor device manufacturing method
WO2009048061A1 (en) * 2007-10-09 2009-04-16 Hitachi Chemical Company, Ltd. Method for producing semiconductor chip with adhesive film, adhesive film for semiconductor used in the method, and method for producing semiconductor device
JPWO2009048060A1 (en) * 2007-10-09 2011-02-17 日立化成工業株式会社 Manufacturing method of semiconductor chip with adhesive film, adhesive film for semiconductor used in manufacturing method, and manufacturing method of semiconductor device
US8071465B2 (en) 2007-10-09 2011-12-06 Hitachi Chemical Company, Ltd. Method for producing semiconductor chip with adhesive film, adhesive film for semiconductor used in the method, and method for producing semiconductor device
US8198176B2 (en) 2007-10-09 2012-06-12 Hitachi Chemical Company, Ltd. Method for producing semiconductor chip with adhesive film, adhesive film for semiconductor used in the method, and method for producing semiconductor device
JP5353702B2 (en) * 2007-10-09 2013-11-27 日立化成株式会社 Manufacturing method of semiconductor chip with adhesive film, adhesive film for semiconductor used in manufacturing method, and manufacturing method of semiconductor device
JP2013179316A (en) * 2007-10-09 2013-09-09 Hitachi Chemical Co Ltd Manufacturing method of semiconductor chip with adhesive film, adhesive film for semiconductor used in manufacturing method and semiconductor device manufacturing method
JP5353703B2 (en) * 2007-10-09 2013-11-27 日立化成株式会社 Manufacturing method of semiconductor chip with adhesive film, adhesive film for semiconductor used in manufacturing method, and manufacturing method of semiconductor device
WO2009048060A1 (en) * 2007-10-09 2009-04-16 Hitachi Chemical Company, Ltd. Method for producing semiconductor chip with adhesive film, adhesive film for semiconductor used in the method, and method for producing semiconductor device
JP2010232378A (en) * 2009-03-26 2010-10-14 Oki Semiconductor Co Ltd Method of producing semiconductor device
JP2011135075A (en) * 2009-12-23 2011-07-07 Xerox Corp Method for dicing semiconductor wafer, chip diced from semiconductor wafer, and array of chips diced from semiconductor wafer
JP2012059989A (en) * 2010-09-10 2012-03-22 Disco Abrasive Syst Ltd Dividing method
JP2013104931A (en) * 2011-11-11 2013-05-30 Renesas Electronics Corp Semiconductor device and manufacturing method thereof, and liquid crystal display unit
JP2013214600A (en) * 2012-04-02 2013-10-17 Disco Abrasive Syst Ltd Method of forming chips with adhesive film
KR20130111994A (en) * 2012-04-02 2013-10-11 가부시기가이샤 디스코 Forming method of chip with die attach film
KR101938426B1 (en) * 2012-04-02 2019-01-14 가부시기가이샤 디스코 Forming method of chip with die attach film
JP2014041187A (en) * 2012-08-21 2014-03-06 Japan Display Inc Method of manufacturing display device
JP2016187014A (en) * 2015-03-27 2016-10-27 株式会社ディスコ Wafer processing method
WO2018230297A1 (en) * 2017-06-15 2018-12-20 株式会社デンソー Semiconductor device and method for manufacturing same
JP2019004053A (en) * 2017-06-15 2019-01-10 株式会社デンソー Semiconductor device and manufacturing method thereof
CN110709965A (en) * 2017-06-15 2020-01-17 株式会社电装 Semiconductor device and method for manufacturing the same
CN110709965B (en) * 2017-06-15 2023-05-02 株式会社电装 Semiconductor device and method for manufacturing the same
JP2019186491A (en) * 2018-04-16 2019-10-24 株式会社ディスコ Processing method for work piece
JP7037422B2 (en) 2018-04-16 2022-03-16 株式会社ディスコ Processing method of work piece
CN109909608A (en) * 2019-04-03 2019-06-21 大族激光科技产业集团股份有限公司 Wafer processing method and device
CN109909608B (en) * 2019-04-03 2021-10-12 大族激光科技产业集团股份有限公司 Wafer processing method and apparatus

Similar Documents

Publication Publication Date Title
JP2006086509A (en) Method for dividing semiconductor substrate
US7550367B2 (en) Method for separating semiconductor substrate
US8058103B2 (en) Semiconductor substrate cutting method
US8450187B2 (en) Method of cutting semiconductor substrate
JP4440582B2 (en) Semiconductor substrate cutting method
US7939430B2 (en) Laser processing method
JP5608521B2 (en) Semiconductor wafer dividing method, semiconductor chip and semiconductor device
EP1811551A1 (en) Laser beam machining method and semiconductor chip
US9099546B2 (en) Workpiece dividing method including two laser beam application steps
JP2005116844A (en) Method for manufacturing semiconductor device
US8148240B2 (en) Method of manufacturing semiconductor chips
JP2005032903A (en) Semiconductor device and its manufacturing method
JPS6336988A (en) Dividing method for semiconductor wafer
JP4553878B2 (en) Manufacturing method of semiconductor device
JP2006294688A (en) Semiconductor device and manufacturing method thereof
JP2009208136A (en) Method for manufacturing semiconductor chip
JP2019075504A (en) Method of dividing wafer and adhesive film
JP2006156619A (en) Substrate splitting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100917

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110125