WO2021039299A1 - Two-sided metal-clad layered plate, printed wiring substrate, and printed wiring device - Google Patents

Two-sided metal-clad layered plate, printed wiring substrate, and printed wiring device Download PDF

Info

Publication number
WO2021039299A1
WO2021039299A1 PCT/JP2020/029683 JP2020029683W WO2021039299A1 WO 2021039299 A1 WO2021039299 A1 WO 2021039299A1 JP 2020029683 W JP2020029683 W JP 2020029683W WO 2021039299 A1 WO2021039299 A1 WO 2021039299A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
glass cloth
pad
warp
weft
Prior art date
Application number
PCT/JP2020/029683
Other languages
French (fr)
Japanese (ja)
Inventor
立石 徹
出田 吾朗
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021542678A priority Critical patent/JP7250149B2/en
Publication of WO2021039299A1 publication Critical patent/WO2021039299A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits

Definitions

  • This disclosure relates to a double-sided metal-clad laminate, a printed wiring board, and a printed wiring device.
  • Patent Document 1 discloses a metal-clad laminate used for a multilayer printed wiring board.
  • the present disclosure has been made in view of the above problems, and an object thereof is a double-sided metal capable of suppressing the occurrence of cracks in the ceramic capacitor regardless of the arrangement direction of the ceramic capacitor with respect to the metal-clad laminate. It is to provide a tension laminated board, a printed wiring board and a printed wiring device.
  • the double-sided metal-clad laminate of the present disclosure is provided on both sides of a laminate in which a plurality of central insulating layers and outer insulating layers arranged on both sides of the plurality of central insulating layers are laminated to each other. It has a metal layer.
  • the outer insulating layer includes a first glass cloth and a first insulating resin member impregnated in the first glass cloth and covering the first glass cloth, respectively.
  • Each of the plurality of central insulating layers includes a second glass cloth and a second insulating resin member impregnated in the second glass cloth and covering the second glass cloth.
  • the first longitudinal glass occupancy of each of the outer insulating layers is 20% or less.
  • the first lateral glass occupancy of each of the outer insulating layers is 20% or less.
  • the first longitudinal glass occupancy and the first transverse glass occupancy are both smaller than the larger of the second longitudinal glass occupancy and the second transverse glass occupancy of each of the plurality of central insulating layers.
  • the first warp glass occupancy rate is the area ratio of the warp threads of the first glass cloth in the cross section perpendicular to the extending direction of the warp threads of the first glass cloth.
  • the first weft glass occupancy is the area ratio of the weft of the first glass cloth in the cross section perpendicular to the extending direction of the weft of the first glass cloth.
  • the second warp glass occupancy rate is the area ratio of the warp threads of the second glass cloth in the cross section perpendicular to the extending direction of the warp threads of the second glass cloth.
  • the second weft glass occupancy is the area ratio of the weft of the second glass cloth in the cross section perpendicular to the extending direction of the weft of the second glass cloth.
  • the printed wiring board of the present disclosure includes the double-sided metal-clad laminate of the present disclosure.
  • the metal layer includes a first pad, a second pad separated from the first pad, a first lead-out wire connected to the first pad, and a second lead-out wire connected to the second pad. ..
  • the width of the first pad is 0.4 mm or less.
  • the width of the second pad is 0.4 mm or less.
  • the printed wiring device of the present disclosure includes a printed wiring board of the present disclosure and a ceramic capacitor bonded to the first pad and the second pad.
  • the ceramic capacitor has a length of 0.6 mm or less and a width of 0.3 mm or less.
  • the printed wiring board of the present disclosure includes a laminate in which a plurality of central insulating layers and outer insulating layers arranged on both sides of the plurality of central insulating layers are laminated to each other, and a metal provided on both sides of the laminate. It includes a layer and an internal metal layer provided inside the laminate.
  • the outer insulating layer includes a first glass cloth and a first insulating resin member impregnated in the first glass cloth and covering the first glass cloth, respectively.
  • Each of the plurality of central insulating layers includes a second glass cloth and a second insulating resin member impregnated in the second glass cloth and covering the second glass cloth.
  • the first longitudinal glass occupancy of each of the outer insulating layers is 20% or less.
  • the first lateral glass occupancy of each of the outer insulating layers is 20% or less.
  • the first longitudinal glass occupancy and the first transverse glass occupancy are both smaller than the larger of the second longitudinal glass occupancy and the second transverse glass occupancy of each of the plurality of central insulating layers.
  • the first warp glass occupancy is the area ratio of the warp of the first glass cloth in the cross section perpendicular to the extending direction of the warp of the first glass cloth.
  • the first weft glass occupancy is the area ratio of the weft of the first glass cloth in the cross section perpendicular to the extending direction of the weft of the first glass cloth.
  • the second warp glass occupancy rate is the area ratio of the warp threads of the second glass cloth in the cross section perpendicular to the extending direction of the warp threads of the second glass cloth.
  • the second weft glass occupancy is the area ratio of the weft of the second glass cloth in the cross section perpendicular to the extending direction of the weft of the second glass cloth.
  • the thickness of the laminate is 1.0 mm or more.
  • the metal layer includes a first pad, a second pad separated from the first pad, a first lead-out wire connected to the first pad, and a second lead-out wire connected to the second pad. ..
  • the width of the first pad is 0.4 mm or less.
  • the width of the second pad is 0.4 mm or less.
  • FIG. 5 is a schematic partially enlarged cross-sectional view showing one step of the method for manufacturing a double-sided metal-clad laminate according to the first embodiment. It is a schematic partial enlarged plan view which shows an example of the printed wiring board and the printed wiring apparatus of Embodiment 1 and Embodiment 2.
  • FIG. 5 is a schematic partially enlarged plan view showing another example of the printed wiring board and the printed wiring device of the first embodiment and the second embodiment. It is a figure which shows the result of an Example and a comparative example. It is a schematic partial enlarged sectional view of the multilayer metal-clad laminate of the second embodiment.
  • the double-sided metal-clad laminate 1 of the first embodiment will be described with reference to FIGS. 1 and 2.
  • the double-sided metal-clad laminate 1 includes a laminate 10 and metal layers 21 and 28.
  • the double-sided metal-clad laminate 1 means a metal-clad laminate having two metal layers 21 and 28.
  • the metal-clad laminate containing three or more metal layers is not the double-sided metal-clad laminate 1.
  • the laminate 10 includes a plurality of central insulating layers 11 and outer insulating layers 12 arranged on both sides of the plurality of central insulating layers 11.
  • the plurality of central insulating layers 11 and the outer insulating layer 12 are laminated on each other.
  • the number of outer insulating layers 12 is two or more. Specifically, at least one outer insulating layer 12 is arranged on the top surface 14 side of the laminated body 10. At least one outer insulating layer 12 is arranged on the bottom surface 15 side of the laminated body 10. The number of layers of the outer insulating layer 12 arranged on the top surface 14 side of the laminated body 10 may be equal to the number of layers of the outer insulating layer 12 arranged on the bottom surface 15 side of the laminated body 10.
  • the laminated body 10 may have a layer structure that is line-symmetrical in the thickness direction (z direction) of the laminated body 10.
  • the outer insulating layer 12 includes a first glass cloth 6 and a first insulating resin member 7 impregnated in the first glass cloth 6 and covering the first glass cloth 6, respectively. As shown in FIG. 2, the first glass cloth 6 extends in the x direction and the y direction. The first thickness of the first glass cloth 6 is smaller than the second thickness of the second glass cloth 8.
  • the first glass cloth 6 is formed by weaving warp threads 6a and weft threads 6b together. For example, the warp threads 6a extend in the y direction and the weft threads 6b extend in the x direction.
  • the weaving method of the first glass cloth 6 is not particularly limited, but is, for example, a plain weave.
  • the warp threads 6a and weft threads 6b of the first glass cloth 6 are each formed by bundling the first glass filaments.
  • the first diameter of the first glass filament contained in the warp 6a and the weft 6b of the first glass cloth 6 is smaller than the second diameter of the second glass filament contained in the warp 8a and the weft 8b of the second glass cloth 8.
  • the first glass cloth 6 is, for example, a glass cloth of IPC style number 2116, a glass cloth of IPC style number 3313, a glass cloth of IPC style number 1080, or a glass cloth of IPC style number 1501.
  • the first glass cloth 6 may be formed of E glass having an alkaline component content of 1% or less, or may be formed of S glass, T glass or NE glass.
  • E-glass is excellent in electrical insulation, weather resistance and cost performance.
  • S glass has higher tensile strength and higher tensile elastic modulus than E glass.
  • T-glass has a lower coefficient of thermal expansion and higher tensile elastic modulus than E-glass.
  • NE glass has a lower dielectric constant and lower dielectric loss tangent than E glass, and has a lower transmission loss than E glass.
  • the first insulating resin member 7 is mainly formed of a thermosetting resin such as an epoxy resin.
  • the first insulating resin member 7 may further contain a curing accelerator, a filler, a flame retardant, and the like.
  • the first longitudinal glass occupancy of each of the outer insulating layers 12 is 20% or less.
  • the first warp glass occupancy is the area ratio of the warp 6a of the first glass cloth 6 in the cross section (xz plane) perpendicular to the extending direction (longitudinal direction, y direction) of the warp 6a of the first glass cloth 6. is there.
  • the area ratio of the warp 6a of the first glass cloth 6 is obtained by dividing the area of the warp 6a of the first glass cloth 6 in this cross section (xz plane) by the area of each of the outer insulating layers 12 in this cross section (xz plane). Defined as a value.
  • the first lateral glass occupancy of each of the outer insulating layers 12 is 20% or less.
  • the first weft glass occupancy is the area ratio of the weft 6b of the first glass cloth 6 in the cross section (yz plane) perpendicular to the extending direction (horizontal direction, x direction) of the weft 6b of the first glass cloth 6. is there.
  • the area ratio of the weft 6b of the first glass cloth 6 is obtained by dividing the area of the weft 6b of the first glass cloth 6 in this cross section (xz plane) by the area of each of the outer insulating layers 12 in this cross section (yz plane). Defined as a value.
  • the area ratio of the yarn (warp 6a or weft 6b) of the first glass cloth 6 is the area of the yarn (warp 6a or weft 6b) calculated from the specifications of the first glass cloth 6 in the cross-sectional area of the first prepreg 42. Obtained by dividing.
  • the thickness of each of the outer insulating layers 12 is given by the nominal thickness of the first prepreg 42, which is standardized according to the first glass cloth 6.
  • the area of the yarn (warp 6a or weft 6b) is determined from the specifications of the first glass cloth 6 by, for example, the following formula (1).
  • the specifications of the first glass cloth 6 are the filament diameter, the number of filaments per yarn, and the yarn density (yarn arrangement direction (for example, the arrangement direction of the warp threads 6a is the x direction, and the arrangement direction of the weft threads 6b is the y direction). ) Includes the unit length of the glass cloth (eg, the number of yarns per inch (2.54 cm)).
  • Yarn area (filament diameter / 2) 2 x ⁇ x (number of filaments per yarn) x yarn density (1)
  • the number of layers of the plurality of central insulating layers 11 is, for example, three or more.
  • the number of layers of the central insulating layer 11 may be, for example, four or more, five or more, or six or more.
  • the number of layers of the central insulating layer 11 may be an even number or an odd number.
  • Each of the plurality of central insulating layers 11 includes a second glass cloth 8 and a second insulating resin member 9 impregnated in the second glass cloth 8 and covering the second glass cloth 8.
  • the second glass cloth 8 extends in the x direction and the y direction.
  • the second glass cloth 8 is formed by weaving warp threads 8a and weft threads 8b together.
  • the warp 8a extends in the y direction and the weft 8b extends in the x direction.
  • the weaving method of the second glass cloth 8 is not particularly limited, but is, for example, a plain weave.
  • the warp threads 8a and the weft threads 8b of the second glass cloth 8 are each formed by bundling the second glass filaments.
  • the second glass cloth 8 is, for example, a glass cloth having IPC style number 7628 or a glass cloth having IPC style number 7629.
  • the second glass cloth 8 (warp 8a and weft 8b) may be formed of E glass having an alkaline component content of 1% or less, or may be formed of S glass, T glass or NE glass.
  • the warp 8a and the weft 8b of the second glass cloth 8 may be formed of a material having the same composition as the warp 6a and the weft 6b of the first glass cloth 6. That is, the warp 8a and the weft 8b of the second glass cloth 8 may be the same as the warp 6a and the weft 6b of the first glass cloth 6 in the type of glass fiber.
  • the warp 8a and the weft 8b of the second glass cloth 8 may be formed of a material having a composition different from that of the warp 6a and the weft 6b of the first glass cloth 6. That is, the warp 8a and the weft 8b of the second glass cloth 8 may be different from the warp 6a and the weft 6b of the first glass cloth 6 in the type of glass fiber.
  • the second insulating resin member 9 is mainly formed of a thermosetting resin such as an epoxy resin.
  • the second insulating resin member 9 may further contain a curing accelerator, a filler, a flame retardant, and the like.
  • the second insulating resin member 9 may have the same composition as the first insulating resin member 7, or may have a composition different from that of the first insulating resin member 7.
  • the first longitudinal glass occupancy rate and the first horizontal glass occupancy rate of each of the outer insulating layers 12 are the second longitudinal glass occupancy rate and the second horizontal glass occupancy rate of each of the plurality of central insulating layers 11. Is smaller than the larger one.
  • the second warp glass occupancy is the area ratio of the warp 8a of the second glass cloth 8 in the cross section (xz plane) perpendicular to the extending direction (longitudinal direction, y direction) of the warp 8a of the second glass cloth 8. is there.
  • the area ratio of the warp 8a of the second glass cloth 8 is obtained by dividing the area of the warp 8a of the second glass cloth 8 in this cross section (xz plane) by the area of each of the central insulating layers 11 in this cross section (xz plane).
  • the second weft glass occupancy is the area ratio of the weft 8b of the second glass cloth 8 in the cross section (yz plane) perpendicular to the extending direction (horizontal direction, x direction) of the weft 8b of the second glass cloth 8. is there.
  • the area ratio of the weft 8b of the second glass cloth 8 is obtained by dividing the area of the weft 8b of the second glass cloth 8 in this cross section (yz plane) by the area of each of the central insulating layers 11 in this cross section (yz plane). Defined as a value.
  • the area ratio of the yarn (warp 8a or weft 8b) of the second glass cloth 8 is the area of the yarn (warp 8a or weft 8b) calculated from the specifications of the second glass cloth 8 in the cross-sectional area of the second prepreg 41. Obtained by dividing.
  • the thickness of each of the central insulating layers 11 is given by the nominal thickness of the second prepreg 41, which is standardized according to the second glass cloth 8.
  • the area of the yarn (warp 8a or weft 8b) is determined from the specifications of the second glass cloth 8 by, for example, the already described formula (1).
  • the specifications of the second glass cloth 8 are the filament diameter, the number of filaments per yarn, and the yarn density (yarn arrangement direction (for example, the arrangement direction of the warp 8a is the x direction, and the arrangement direction of the weft 8b is the y direction). ) Includes the unit length of the glass cloth (eg, the number of yarns per inch (2,54 cm)).
  • the thickness t 1 of one layer of the outer insulating layer 12 is smaller than the thickness t 2 of one layer of the central insulating layer 11.
  • the number of layers of the outer insulating layer 12 arranged on one side (top surface 14 side) of the plurality of central insulating layers 11 may be smaller than the number of layers of the plurality of central insulating layers 11.
  • the number of layers of the outer insulating layer 12 arranged on the other side (bottom surface 15 side) of the plurality of central insulating layers 11 may be smaller than the number of layers of the plurality of central insulating layers 11.
  • the number of layers of the outer insulating layer 12 arranged on one side (top surface 14 side) of the plurality of central insulating layers 11 is the outer insulation arranged on the other side (bottom surface 15 side) of the plurality of central insulating layers 11. It may be equal to the number of layers of the layer 12.
  • the thickness t of the laminated body 10 is 1.0 mm or more.
  • the thickness t of the laminate 10 may be 1.2 mm or more, or 1.4 mm or more.
  • the double-sided metal-clad laminate 1 is, for example, train equipment, video system, heavy electric system such as substation system or elevator, industrial mechatronics such as FA equipment or automobile equipment, or air conditioning equipment, cooling equipment, LCD TV or It is applied to home appliances such as solar power generation systems (excluding mobile terminals such as smartphones).
  • the metal layers 21 and 28 are provided on both sides of the laminated body 10.
  • the metal layer 21 is provided on the top surface 14 of the laminated body 10.
  • the metal layer 28 is provided on the bottom surface 15 of the laminated body 10.
  • the metal layers 21 and 28 are formed of, for example, a metal foil such as a copper foil.
  • the first glass cloth 6 is impregnated with the thermosetting resin, and the first glass cloth 6 is covered with the thermosetting resin.
  • the thermosetting resin is heated and dried to make it semi-cured. In this way, the first prepreg 42 is obtained.
  • the second glass cloth 8 is impregnated with the thermosetting resin, and the second glass cloth 8 is covered with the thermosetting resin.
  • the thermosetting resin is heated and dried to make it semi-cured. In this way, the second prepreg 41 is obtained.
  • the first prepreg 42 is superposed on both sides of the second prepreg 41, and the metal layers 21 and 28 such as metal foils are superposed on the outside of the first prepreg 42.
  • the first prepreg 42, the second prepreg 41, and the metal layers 21, 28 are molded while applying heat and pressure.
  • the thermosetting resin of the first prepreg 42 and the thermosetting resin of the second prepreg 41 are cured.
  • the first prepreg 42, the second prepreg 41, and the metal layers 21, 28 are integrated. In this way, the double-sided metal-clad laminate 1 is obtained.
  • the thickness t 1 of one layer of the outer insulating layer 12 is substantially equal to the nominal thickness of the first prepreg 42.
  • the thickness t 2 of one layer of the central insulating layer 11 is substantially equal to the nominal thickness of the second prepreg 41.
  • the double-sided metal-clad laminate 1 is used for manufacturing a printed wiring board 2 (see FIGS. 4 and 5).
  • the second insulating resin member 9 may be formed of a material having the same composition as the first insulating resin member 7, and the second glass cloth 8 may be formed of a material having the same composition as the first glass cloth 6. .. That is, the second insulating resin member 9 is the same as the first insulating resin member 7 in the type of resin, and the warp 8a and the weft 8b of the second glass cloth 8 are the first glass in the type of glass fiber. It may be the same as the warp 6a and the weft 6b of the cloth 6. In this case, it becomes easy to mold and cure the first prepreg 42 and the second prepreg 41 at the same time.
  • the printed wiring board 2 and the printed wiring device 3 will be described with reference to FIGS. 4 and 5.
  • the printed wiring board 2 includes a double-sided metal-clad laminate 1.
  • the printed wiring board 2 is a double-sided printed wiring board.
  • the double-sided printed wiring board means a printed wiring board 2 having two metal layers 21 and 28.
  • a printed wiring board containing three or more metal layers is not a double-sided printed wiring board.
  • At least one of the metal layers 21 and 28 includes a first pad 22, a second pad 24 separated from the first pad 22, a first lead-out wire 23, and a second lead-out wire 25.
  • the metal layer 21 includes a first pad 22, a second pad 24, a first lead-out wire 23, and a second lead-out wire 25.
  • the second pad 24 is separated from the first pad 22 in the direction (longitudinal direction, y direction) in which the warp threads 6a and 8a of the first glass cloth 6 and the second glass cloth 8 extend. You may. As shown in FIG. 5, the second pad 24 is separated from the first pad 22 in the direction (horizontal direction, x direction) in which the weft threads 6b and 8b of the first glass cloth 6 and the second glass cloth 8 extend. You may.
  • the first pad 22 and the second pad 24 have a size suitable for a ceramic capacitor 30 having a size of 0603 or less.
  • the ceramic capacitor 30 having a size of 0603 or less has a length L 1 of 0.6 mm or less and a width W 1 of 0.3 mm or less.
  • the length L 1 of the ceramic capacitor 30 is the length of the ceramic capacitor 30 in the direction in which the pair of electrodes 32 and 33 of the ceramic capacitor 30 are separated from each other.
  • the width W 1 of the ceramic capacitor 30 is the length of the ceramic capacitor 30 in the direction perpendicular to the direction in which the pair of electrodes 32, 33 of the ceramic capacitor 30 are separated from each other.
  • the length L 1 and the width W 1 of the ceramic capacitor 30 are both expressed as TYPE values.
  • the width W 2 of the first pad 22 is, for example, 0.4 mm or less.
  • the width W 3 of the second pad 24 is, for example, 0.4 mm or less.
  • the width of the pads (first pad 22, second pad 24) is the pad in the direction perpendicular to the direction in which the pair of electrodes 32, 33 of the ceramic capacitor 30 are separated from each other (first pad 22, second pad 24). Is the length of.
  • the length L 2 of the first pad 22 is, for example, 0.3 mm or less.
  • the length L 3 of the second pad 24 is, for example, 0.3 mm or less.
  • the length of the pads is the length of the pads (first pad 22, second pad 24) in the direction in which the pair of electrodes 32, 33 of the ceramic capacitor 30 are separated from each other. Is.
  • the distance G between the first pad 22 and the second pad 24 is, for example, 0.3 mm or less.
  • the first lead-out wiring 23 is connected to the first pad 22.
  • the first lead-out wiring 23 is drawn out from, for example, the first edge of the first pad 22 distal to the second pad 24.
  • the second lead-out wiring 25 is connected to the second pad 24.
  • the second lead-out wire 25 is drawn out from, for example, the second edge of the second pad 24 distal to the first pad 22.
  • the printed wiring board 2 is obtained by etching and patterning the metal layer 21 included in the double-sided metal-clad laminate 1.
  • the printed wiring board 2 further includes an insulating protective film 26.
  • the insulating protective film 26 is provided on the top surface 14 and the metal layer 21 of the laminated body 10.
  • the insulating protective film 26 is provided with a first opening 26a and a second opening 26b.
  • the first pad 22 is exposed from the insulating protective film 26 at the first opening 26a.
  • the second pad 24 is exposed from the insulating protective film 26 at the second opening 26b.
  • the insulating protective film 26 is not particularly limited, but is made of a resin material such as a solder resist.
  • the printed wiring device 3 includes a printed wiring board 2 and a ceramic capacitor 30 joined to the first pad 22 and the second pad 24.
  • the ceramic capacitor 30 has a size of 0603 or less.
  • the printed wiring device 3 joins the pair of electrodes 32 and 33 of the ceramic capacitor 30 to the first pad 22 and the second pad 24 of the printed wiring board 2 by using a conductive joining member (not shown) such as solder. Obtained by doing.
  • the conductive bonding member (not shown) is provided in the first opening 26a and the second opening 26b of the insulating protective film 26.
  • Example. The double-sided metal-clad laminate 1 of the examples shown in Table 1 was prepared. The specifications of the glass cloth are shown in Table 2. The metal layers 21 and 28 included in the double-sided metal-clad laminate 1 of the embodiment are patterned, and the first pad 22, the second pad 24, the first drawer wiring 23, and the second drawer wiring shown in FIG. 4 are patterned. 25 and form. A ceramic capacitor 30 having a size of 0603 is soldered to the first pad 22 and the second pad 24. In this way, sample 1 was obtained. In sample 1, the ceramic capacitor 30 is arranged in the extending direction (longitudinal direction, y direction) of the warp threads 6a.
  • the metal layers 21 and 28 included in the double-sided metal-clad laminate 1 of the embodiment are patterned, and the first pad 22, the second pad 24, the first drawer wiring 23, and the second drawer wiring shown in FIG. 5 are patterned. 25 and form.
  • a ceramic capacitor 30 having a size of 0603 is soldered to the first pad 22 and the second pad 24. In this way, sample 2 was obtained. In sample 2, the ceramic capacitor 30 is arranged in the extending direction (horizontal direction, x direction) of the weft thread 6b.
  • a double-sided metal-clad laminate of the comparative example shown in Table 1 was prepared.
  • the specifications of the glass cloth are shown in Table 2.
  • the metal layers 21 and 28 included in the double-sided metal-clad laminate of the comparative example are patterned, and the first pad 22, the second pad 24, the first lead wiring 23, and the second lead wiring 25 shown in FIG. 4 are patterned. And form.
  • a ceramic capacitor 30 having a size of 0603 is soldered to the first pad 22 and the second pad 24. In this way, sample 3 was obtained. In sample 3, the ceramic capacitor 30 is arranged in the extending direction (longitudinal direction, y direction) of the warp threads 6a.
  • the metal layers 21 and 28 included in the double-sided metal-clad laminate of the comparative example are patterned, and the first pad 22, the second pad 24, the first lead wiring 23, and the second lead wiring 25 shown in FIG. 5 are patterned. And form.
  • a ceramic capacitor 30 having a size of 0603 is soldered to the first pad 22 and the second pad 24. In this way, sample 4 was obtained. In sample 4, the ceramic capacitor 30 is arranged in the extending direction (horizontal direction, x direction) of the weft thread 6b.
  • the reason why cracks are less likely to occur in the ceramic capacitor 30 when the double-sided metal-clad laminate 1 (printed wiring board 2) is bent is presumed as follows.
  • the outer insulating layer 12 in contact with the metal layer 21 to which the ceramic capacitor 30 is bonded includes the first glass cloth 6 and the first insulating resin member 7.
  • the first glass cloth 6 is made of a material harder than the first insulating resin member 7. Therefore, when the double-sided metal-clad laminate 1 (printed wiring board 2) is bent, the first glass cloth 6 has a great influence on the stress applied to the ceramic capacitor 30 having a size of 0603 or less.
  • the double-sided metal-clad laminate 1 By reducing the first longitudinal glass occupancy and the first lateral glass occupancy of the outer insulating layer 12 in contact with the metal layer 21 to which the ceramic capacitor 30 is bonded to 20% or less, the double-sided metal-clad laminate 1 ( The stress applied to the ceramic capacitor 30 when the printed wiring board 2) is bent can be reduced. In this way, cracks are suppressed in the ceramic capacitor 30 regardless of the arrangement direction of the ceramic capacitor 30 with respect to the double-sided metal-clad laminate 1.
  • the double-sided metal-clad laminate 1 of the present embodiment is laminated with a laminate 10 in which a plurality of central insulating layers 11 and outer insulating layers 12 arranged on both sides of the plurality of central insulating layers 11 are laminated to each other. It includes metal layers 21 and 28 provided on both sides of the body 10.
  • the outer insulating layer 12 includes a first glass cloth 6 and a first insulating resin member 7 impregnated in the first glass cloth 6 and covering the first glass cloth 6, respectively.
  • Each of the plurality of central insulating layers 11 includes a second glass cloth 8 and a second insulating resin member 9 which is impregnated in the second glass cloth 8 and covers the second glass cloth 8.
  • the first longitudinal glass occupancy of each of the outer insulating layers 12 is 20% or less.
  • the first lateral glass occupancy of each of the outer insulating layers 12 is 20% or less.
  • the first longitudinal glass occupancy and the first transverse glass occupancy are both smaller than the larger of the second longitudinal glass occupancy and the second transverse glass occupancy of each of the plurality of central insulating layers 11. ..
  • the first warp glass occupancy is the area ratio of the warp 6a of the first glass cloth 6 in the cross section (xz plane) perpendicular to the extending direction (longitudinal direction, y direction) of the warp 6a of the first glass cloth 6. is there.
  • the first weft glass occupancy is the area ratio of the weft 6b of the first glass cloth 6 in the cross section (yz plane) perpendicular to the extending direction (horizontal direction, x direction) of the weft 6b of the first glass cloth 6. is there.
  • the second warp glass occupancy is the area ratio of the warp 8a of the second glass cloth 8 in the cross section (xz plane) perpendicular to the extending direction (longitudinal direction, y direction) of the warp 8a of the second glass cloth 8. is there.
  • the second weft glass occupancy is the area ratio of the weft 8b of the second glass cloth 8 in the cross section (yz plane) perpendicular to the extending direction (horizontal direction, x direction) of the weft 8b of the second glass cloth 8. is there.
  • the ceramic capacitor when the double-sided metal-clad laminate 1 is bent By reducing the first longitudinal glass occupancy and the first lateral glass occupancy of the outer insulating layer 12 in contact with the metal layer 21 to 20% or less, the ceramic capacitor when the double-sided metal-clad laminate 1 is bent.
  • the stress applied to 30 can be reduced. In this way, cracks in the ceramic capacitor 30 can be suppressed regardless of the arrangement direction of the ceramic capacitor 30 with respect to the double-sided metal-clad laminate 1.
  • both the first vertical glass occupancy rate and the first horizontal glass occupancy rate are larger than the larger of the second vertical glass occupancy rate and the second horizontal glass occupancy rate of each of the plurality of central insulating layers 11. Is also small. That is, the larger of the second longitudinal glass occupancy and the second horizontal glass occupancy of each of the plurality of central insulating layers 11 is the first longitudinal glass occupancy and the first lateral glass occupancy of each of the outer insulating layers 12. It is the largest of the directional glass occupancy and the second longitudinal glass occupancy and the second horizontal glass occupancy of each of the plurality of central insulating layers 11. Therefore, the double-sided metal-clad laminate 1 has improved dimensional stability. Further, as the plurality of central insulating layers 11, an insulating layer including a glass cloth widely used for the printed wiring board 2 can be used, so that the cost increase of the double-sided metal-clad laminate 1 can be reduced.
  • the thickness t of the laminate 10 is 1.0 mm or more. As the thickness t of the laminate 10 increases, the stress applied to the ceramic capacitor 30 increases when the double-sided metal-clad laminate 1 is bent. Since the first longitudinal glass occupancy rate and the first horizontal glass occupancy rate of the outer insulating layer 12 in contact with the metal layer 21 are 20% or less, even if the thickness t of the laminated body 10 is 1.0 mm or more. Regardless of the arrangement direction of the ceramic capacitor 30 with respect to the double-sided metal-clad laminate 1, cracks in the ceramic capacitor 30 can be suppressed.
  • the first diameter of the first glass filament contained in the warp 6a and the weft 6b of the first glass cloth 6 is included in the warp 8a and the weft 8b of the second glass cloth 8. It is smaller than the second diameter of the second glass filament. Therefore, the first longitudinal glass occupancy of each of the outer insulating layers 12 can be made smaller than the second longitudinal glass occupancy of each of the plurality of central insulating layers 11, and each of the outer insulating layers 12 can be made smaller. The occupancy of the first lateral glass can be made smaller than the occupancy of the second lateral glass of each of the plurality of central insulating layers 11. It is possible to suppress the occurrence of cracks in the ceramic capacitor 30 regardless of the arrangement direction of the ceramic capacitor 30 with respect to the double-sided metal-clad laminate 1.
  • the first thickness of the first glass cloth 6 is smaller than the second thickness of the second glass cloth 8. Therefore, the first longitudinal glass occupancy of each of the outer insulating layers 12 can be made smaller than the second longitudinal glass occupancy of each of the plurality of central insulating layers 11, and each of the outer insulating layers 12 can be made smaller.
  • the occupancy of the first lateral glass can be made smaller than the occupancy of the second lateral glass of each of the plurality of central insulating layers 11. It is possible to suppress the occurrence of cracks in the ceramic capacitor 30 regardless of the arrangement direction of the ceramic capacitor 30 with respect to the double-sided metal-clad laminate 1.
  • the double-sided metal-clad laminate 1 Since the second thickness of the second glass cloth 8 is larger than the first thickness of the first glass cloth 6, the double-sided metal-clad laminate 1 has improved dimensional stability. Since an insulating layer including a glass cloth widely used for the printed wiring board 2 can be used as the plurality of central insulating layers 11, the cost increase of the double-sided metal-clad laminate 1 can be reduced.
  • the second glass cloth 8 is a glass cloth of IPC style number 7628 or a glass cloth of IPC style number 7629.
  • the first glass cloth 6 is a glass cloth of IPC style number 2116, a glass cloth of IPC style number 3313, a glass cloth of IPC style number 1080, or a glass cloth of IPC style number 1501. Therefore, it is possible to suppress the occurrence of cracks in the ceramic capacitor 30 regardless of the arrangement direction of the ceramic capacitor 30 with respect to the double-sided metal-clad laminate 1.
  • the warp threads 6a and weft threads 6b of the first glass cloth 6 are formed of E glass, S glass, T glass or NE glass having an alkaline component content of 1% or less.
  • the warp 8a and the weft 8b of the second glass cloth 8 are made of E glass, S glass, T glass or NE glass having an alkaline component content of 1% or less. Therefore, it is possible to suppress the occurrence of cracks in the ceramic capacitor 30 regardless of the arrangement direction of the ceramic capacitor 30 with respect to the double-sided metal-clad laminate 1.
  • the warp 8a and the weft 8b of the second glass cloth 8 are the same as the warp 6a and the weft 6b of the first glass cloth 6 in the type of glass fiber.
  • the second insulating resin member 9 is the same as the first insulating resin member 7 in the type of resin. Therefore, the double-sided metal-clad laminate 1 has a structure that can be manufactured more easily and at a lower cost.
  • the printed wiring board 2 of the present embodiment includes a double-sided metal-clad laminate 1.
  • the metal layers 21 and 28 are connected to the first pad 22, the second pad 24 separated from the first pad 22, the first lead wiring 23 connected to the first pad 22, and the second pad 24.
  • the second lead-out wiring 25 is included.
  • the width W 2 of the first pad 22 is 0.4 mm or less.
  • the width W 3 of the second pad 24 is 0.4 mm or less. Therefore, cracks can be suppressed in the ceramic capacitor 30 having a size of 0603 or less regardless of the arrangement direction of the ceramic capacitor 30 having a size of 0603 or less with respect to the printed wiring board 2 (double-sided metal-clad laminate 1). ..
  • the first lead-out wiring 23 is drawn out from the first edge of the first pad 22 distal to the second pad 24.
  • the second lead-out wire 25 is drawn out from the second edge of the second pad 24 distal to the first pad 22. Therefore, while simplifying the drawer structure of the wiring (first drawer wiring 23, second drawer wiring 25) from the first pad 22 and the second pad 24, 0603 with respect to the printed wiring board 2 (double-sided metal-clad laminate 1). Regardless of the arrangement direction of the ceramic capacitor 30 having the following size, it is possible to suppress the occurrence of cracks in the ceramic capacitor 30 having the size of 0603 or less.
  • the printed wiring device 3 of the present embodiment includes a printed wiring board 2 and a ceramic capacitor 30 joined to the first pad 22 and the second pad 24.
  • the ceramic capacitor 30 has a length L 1 of 0.6 mm or less and a width W 1 of 0.3 mm or less. Therefore, cracks can be suppressed in the ceramic capacitor 30 having a size of 0603 or less regardless of the arrangement direction of the ceramic capacitor 30 having a size of 0603 or less with respect to the printed wiring board 2 (double-sided metal-clad laminate 1). ..
  • Embodiment 2 The multilayer metal-clad laminate 1b of the second embodiment will be described with reference to FIG. 7.
  • the multilayer metal-clad laminate 1b of the present embodiment has the same configuration as the double-sided metal-clad laminate 1 of the first embodiment, but differs mainly in the following points.
  • the multilayer metal-clad laminate 1b further includes internal metal layers 51 and 52 provided inside the laminate 10.
  • the multilayer metal-clad laminate 1b means a metal-clad laminate having three or more metal layers (metal layers 21, 28 and internal metal layers 51, 52).
  • the metal-clad laminate having two metal layers is not the multilayer metal-clad laminate 1b.
  • the number of internal metal layers 51 and 52 is one or more.
  • the number of inner metal layers 51 and 52 may be an even number.
  • the inner metal layers 51 and 52 are formed of, for example, a metal foil such as a copper foil.
  • the laminated body 10 including the internal metal layers 51 and 52 may have a layer structure that is line-symmetrical in the thickness direction of the laminated body 10.
  • the printed wiring board 2 and the printed wiring device 3 of the second embodiment will be described with reference to FIGS. 4 and 5.
  • the printed wiring board 2 and the printed wiring device 3 of the present embodiment have the same configurations as the printed wiring board 2 and the printed wiring device 3 of the first embodiment, but instead of the double-sided metal-clad laminate 1, It differs in that it is provided with a multilayer metal-clad laminate 1b.
  • the printed wiring board 2 is a multilayer printed wiring board.
  • the multilayer printed wiring board means a printed wiring board having three or more metal layers (metal layers 21, 28 and internal metal layers 51, 52). In other words, a printed wiring board having two or less metal layers is not the multilayer printed wiring board of the present specification.
  • the multilayer metal-clad laminate 1b, the printed wiring board 2, and the printed wiring device 3 of the present embodiment have the same effects as the double-sided metal-clad laminate 1, the printed wiring board 2, and the printed wiring device 3 of the first embodiment. ..
  • the printed wiring board 2 of the present embodiment is laminated with a laminate 10 in which a plurality of central insulating layers 11 and outer insulating layers 12 arranged on both sides of the plurality of central insulating layers 11 are laminated to each other.
  • the metal layers 21 and 28 provided on both sides of the body 10 and the internal metal layers 51 and 52 provided inside the laminated body 10 are provided.
  • the outer insulating layer 12 includes a first glass cloth 6 and a first insulating resin member 7 impregnated in the first glass cloth 6 and covering the first glass cloth 6, respectively.
  • Each of the plurality of central insulating layers 11 includes a second glass cloth 8 and a second insulating resin member 9 which is impregnated in the second glass cloth 8 and covers the second glass cloth 8.
  • the first longitudinal glass occupancy of each of the outer insulating layers 12 is 20% or less.
  • the first lateral glass occupancy of each of the outer insulating layers 12 is 20% or less.
  • the first longitudinal glass occupancy and the first transverse glass occupancy are both smaller than the larger of the second longitudinal glass occupancy and the second transverse glass occupancy of each of the plurality of central insulating layers 11. ..
  • the first warp glass occupancy is the area ratio of the warp 6a of the first glass cloth 6 in the cross section (xz plane) perpendicular to the extending direction (longitudinal direction, y direction) of the warp 6a of the first glass cloth 6. is there.
  • the first weft glass occupancy is the area ratio of the weft 6b of the first glass cloth 6 in the cross section (yz plane) perpendicular to the extending direction (horizontal direction, x direction) of the weft 6b of the first glass cloth 6. is there.
  • the second warp glass occupancy is the area ratio of the warp 8a of the second glass cloth 8 in the cross section (xz plane) perpendicular to the extending direction (longitudinal direction, y direction) of the warp 8a of the second glass cloth 8. is there.
  • the second weft glass occupancy is the area ratio of the weft 8b of the second glass cloth 8 in the cross section (xz plane) perpendicular to the extending direction (horizontal direction, x direction) of the weft 8b of the second glass cloth 8. is there.
  • the thickness of the laminate 10 is 1.0 mm or more.
  • the metal layers 21 and 28 are connected to the first pad 22, the second pad 24 separated from the first pad 22, the first lead wiring 23 connected to the first pad 22, and the second pad 24.
  • the second lead-out wiring 25 is included.
  • the width W 2 of the first pad 22 is 0.4 mm or less.
  • the width W 3 of the second pad 24 is 0.4 mm or less.
  • the ceramic capacitor 30 is formed.
  • the applied stress can be reduced. In this way, cracks in the ceramic capacitor 30 can be suppressed regardless of the arrangement direction of the ceramic capacitor 30 with respect to the printed wiring board 2.
  • the warp threads 6a and weft threads 6b of the first glass cloth 6 are formed of E glass, S glass, T glass or NE glass having an alkaline component content of 1% or less.
  • the warp 8a and the weft 8b of the second glass cloth 8 are made of E glass, S glass, T glass or NE glass having an alkaline component content of 1% or less. Therefore, it is possible to suppress the occurrence of cracks in the ceramic capacitor 30 regardless of the arrangement direction of the ceramic capacitor 30 with respect to the printed wiring board 2.
  • the warp 8a and the weft 8b of the second glass cloth 8 are the same as the warp 6a and the weft 6b of the first glass cloth 6 in the type of glass fiber.
  • the second insulating resin member 9 is the same as the first insulating resin member 7 in the type of resin. Therefore, the printed wiring board 2 has a structure that can be manufactured more easily and at a lower cost.

Abstract

The two-sided metal-clad layered plate (1) comprises: a layered body (10) obtained by layering a plurality of center insulation layers (11) and outer insulation layers (12) disposed on the two sides of the plurality of center insulation layers (11); and metal layers (14, 15) provided on the two sides of the layered body (10). Each of the outer insulation layers (12) has a first vertical direction glass occupancy of 20% or lower. Each of the outer insulation layers (12) has a first horizontal direction glass occupancy of 20% or lower.

Description

両面金属張積層板、プリント配線板、プリント配線装置Double-sided metal-clad laminate, printed wiring board, printed wiring device
 本開示は、両面金属張積層板、プリント配線板及びプリント配線装置に関する。 This disclosure relates to a double-sided metal-clad laminate, a printed wiring board, and a printed wiring device.
 特開2003-347729号公報(特許文献1)は、多層プリント配線板に供する金属張積層板を開示している。 Japanese Unexamined Patent Publication No. 2003-347729 (Patent Document 1) discloses a metal-clad laminate used for a multilayer printed wiring board.
特開2003-347729号公報Japanese Unexamined Patent Publication No. 2003-347729
 0603以下のサイズを有するセラミックコンデンサが搭載された金属張積層板について曲げ試験を行うと、金属張積層板に対するセラミックコンデンサの配置方向によっては、セラミックコンデンサにクラックが発生することがあった。本開示は、上記の課題を鑑みてなされたものであり、その目的は、金属張積層板に対するセラミックコンデンサの配置方向にかかわらず、セラミックコンデンサにクラックが発生することを抑制することができる両面金属張積層板、プリント配線板及びプリント配線装置を提供することである。 When a bending test was performed on a metal-clad laminate equipped with a ceramic capacitor having a size of 0603 or less, cracks might occur in the ceramic capacitor depending on the arrangement direction of the ceramic capacitor with respect to the metal-clad laminate. The present disclosure has been made in view of the above problems, and an object thereof is a double-sided metal capable of suppressing the occurrence of cracks in the ceramic capacitor regardless of the arrangement direction of the ceramic capacitor with respect to the metal-clad laminate. It is to provide a tension laminated board, a printed wiring board and a printed wiring device.
 本開示の両面金属張積層板は、複数の中央絶縁層と、複数の中央絶縁層の両側に配置された外側絶縁層とが互いに積層されている積層体と、積層体の両側に設けられている金属層とを備えている。外側絶縁層は、各々、第1ガラスクロスと、第1ガラスクロスに含浸されておりかつ第1ガラスクロスを覆っている第1絶縁樹脂部材とを含む。複数の中央絶縁層は、各々、第2ガラスクロスと、第2ガラスクロスに含浸されておりかつ第2ガラスクロスを覆っている第2絶縁樹脂部材とを含む。外側絶縁層の各々の第1縦方向ガラス占有率は、20%以下である。外側絶縁層の各々の第1横方向ガラス占有率は、20%以下である。第1縦方向ガラス占有率及び第1横方向ガラス占有率は、ともに、複数の中央絶縁層の各々の第2縦方向ガラス占有率及び第2横方向ガラス占有率のうち大きい方よりも小さい。第1縦方向ガラス占有率は、第1ガラスクロスの縦糸の延在方向に垂直な断面における、第1ガラスクロスの縦糸の面積割合である。第1横方向ガラス占有率は、第1ガラスクロスの横糸の延在方向に垂直な断面における、第1ガラスクロスの横糸の面積割合である。第2縦方向ガラス占有率は、第2ガラスクロスの縦糸の延在方向に垂直な断面における、第2ガラスクロスの縦糸の面積割合である。第2横方向ガラス占有率は、第2ガラスクロスの横糸の延在方向に垂直な断面における、第2ガラスクロスの横糸の面積割合である。 The double-sided metal-clad laminate of the present disclosure is provided on both sides of a laminate in which a plurality of central insulating layers and outer insulating layers arranged on both sides of the plurality of central insulating layers are laminated to each other. It has a metal layer. The outer insulating layer includes a first glass cloth and a first insulating resin member impregnated in the first glass cloth and covering the first glass cloth, respectively. Each of the plurality of central insulating layers includes a second glass cloth and a second insulating resin member impregnated in the second glass cloth and covering the second glass cloth. The first longitudinal glass occupancy of each of the outer insulating layers is 20% or less. The first lateral glass occupancy of each of the outer insulating layers is 20% or less. The first longitudinal glass occupancy and the first transverse glass occupancy are both smaller than the larger of the second longitudinal glass occupancy and the second transverse glass occupancy of each of the plurality of central insulating layers. The first warp glass occupancy rate is the area ratio of the warp threads of the first glass cloth in the cross section perpendicular to the extending direction of the warp threads of the first glass cloth. The first weft glass occupancy is the area ratio of the weft of the first glass cloth in the cross section perpendicular to the extending direction of the weft of the first glass cloth. The second warp glass occupancy rate is the area ratio of the warp threads of the second glass cloth in the cross section perpendicular to the extending direction of the warp threads of the second glass cloth. The second weft glass occupancy is the area ratio of the weft of the second glass cloth in the cross section perpendicular to the extending direction of the weft of the second glass cloth.
 本開示のプリント配線板は、本開示の両面金属張積層板を備える。金属層は、第1パッドと、第1パッドから離間された第2パッドと、第1パッドに接続されている第1引出配線と、第2パッドに接続されている第2引出配線とを含む。第1パッドの幅は、0.4mm以下である。第2パッドの幅は、0.4mm以下である。 The printed wiring board of the present disclosure includes the double-sided metal-clad laminate of the present disclosure. The metal layer includes a first pad, a second pad separated from the first pad, a first lead-out wire connected to the first pad, and a second lead-out wire connected to the second pad. .. The width of the first pad is 0.4 mm or less. The width of the second pad is 0.4 mm or less.
 本開示のプリント配線装置は、本開示のプリント配線板と、第1パッド及び第2パッドに接合されているセラミックコンデンサとを備える。セラミックコンデンサは、0.6mm以下の長さと、0.3mm以下の幅とを有している。 The printed wiring device of the present disclosure includes a printed wiring board of the present disclosure and a ceramic capacitor bonded to the first pad and the second pad. The ceramic capacitor has a length of 0.6 mm or less and a width of 0.3 mm or less.
 本開示のプリント配線板は、複数の中央絶縁層と、複数の中央絶縁層の両側に配置された外側絶縁層とが互いに積層されている積層体と、積層体の両側に設けられている金属層と、積層体の内部に設けられている内部金属層とを備える。外側絶縁層は、各々、第1ガラスクロスと、第1ガラスクロスに含浸されておりかつ第1ガラスクロスを覆っている第1絶縁樹脂部材とを含む。複数の中央絶縁層は、各々、第2ガラスクロスと、第2ガラスクロスに含浸されておりかつ第2ガラスクロスを覆っている第2絶縁樹脂部材とを含む。外側絶縁層の各々の第1縦方向ガラス占有率は、20%以下である。外側絶縁層の各々の第1横方向ガラス占有率は、20%以下である。第1縦方向ガラス占有率及び第1横方向ガラス占有率は、ともに、複数の中央絶縁層の各々の第2縦方向ガラス占有率及び第2横方向ガラス占有率のうち大きい方よりも小さい。第1縦方向ガラス占有率は、第1ガラスクロスの縦糸の延在方向に垂直な断面における、第1ガラスクロスの縦糸の面積割合である。第1横方向ガラス占有率は、第1ガラスクロスの横糸の延在方向に垂直な断面における、第1ガラスクロスの横糸の面積割合である。第2縦方向ガラス占有率は、第2ガラスクロスの縦糸の延在方向に垂直な断面における、第2ガラスクロスの縦糸の面積割合である。第2横方向ガラス占有率は、第2ガラスクロスの横糸の延在方向に垂直な断面における、第2ガラスクロスの横糸の面積割合である。積層体の厚さは、1.0mm以上である。金属層は、第1パッドと、第1パッドから離間された第2パッドと、第1パッドに接続されている第1引出配線と、第2パッドに接続されている第2引出配線とを含む。第1パッドの幅は、0.4mm以下である。第2パッドの幅は、0.4mm以下である。 The printed wiring board of the present disclosure includes a laminate in which a plurality of central insulating layers and outer insulating layers arranged on both sides of the plurality of central insulating layers are laminated to each other, and a metal provided on both sides of the laminate. It includes a layer and an internal metal layer provided inside the laminate. The outer insulating layer includes a first glass cloth and a first insulating resin member impregnated in the first glass cloth and covering the first glass cloth, respectively. Each of the plurality of central insulating layers includes a second glass cloth and a second insulating resin member impregnated in the second glass cloth and covering the second glass cloth. The first longitudinal glass occupancy of each of the outer insulating layers is 20% or less. The first lateral glass occupancy of each of the outer insulating layers is 20% or less. The first longitudinal glass occupancy and the first transverse glass occupancy are both smaller than the larger of the second longitudinal glass occupancy and the second transverse glass occupancy of each of the plurality of central insulating layers. The first warp glass occupancy is the area ratio of the warp of the first glass cloth in the cross section perpendicular to the extending direction of the warp of the first glass cloth. The first weft glass occupancy is the area ratio of the weft of the first glass cloth in the cross section perpendicular to the extending direction of the weft of the first glass cloth. The second warp glass occupancy rate is the area ratio of the warp threads of the second glass cloth in the cross section perpendicular to the extending direction of the warp threads of the second glass cloth. The second weft glass occupancy is the area ratio of the weft of the second glass cloth in the cross section perpendicular to the extending direction of the weft of the second glass cloth. The thickness of the laminate is 1.0 mm or more. The metal layer includes a first pad, a second pad separated from the first pad, a first lead-out wire connected to the first pad, and a second lead-out wire connected to the second pad. .. The width of the first pad is 0.4 mm or less. The width of the second pad is 0.4 mm or less.
 金属層に接触する外側絶縁層の第1縦方向ガラス占有率及び第1横方向ガラス占有率を20%以下に減少させることによって、両面金属張積層板を曲げたときに、セラミックコンデンサに印加される応力を減少させることができる。そのため、両面金属張積層板に対するセラミックコンデンサの配置方向にかかわらず、セラミックコンデンサにクラックが発生することが抑制され得る。 By reducing the first longitudinal glass occupancy and the first lateral glass occupancy of the outer insulating layer in contact with the metal layer to 20% or less, it is applied to the ceramic capacitor when the double-sided metal-clad laminate is bent. Stress can be reduced. Therefore, it is possible to suppress the occurrence of cracks in the ceramic capacitor regardless of the arrangement direction of the ceramic capacitor with respect to the double-sided metal-clad laminate.
実施の形態1の両面金属張積層板の概略部分拡大断面図である。It is the schematic partial enlarged sectional view of the double-sided metal-clad laminate of Embodiment 1. FIG. 実施の形態1の両面金属張積層板に含まれる第1ガラスクロス及び第2ガラスクロスの概略部分拡大平面図である。It is a schematic partial enlarged plan view of the 1st glass cloth and the 2nd glass cloth included in the double-sided metal-clad laminate of Embodiment 1. FIG. 実施の形態1の両面金属張積層板の製造方法の一工程を示す概略部分拡大断面図である。FIG. 5 is a schematic partially enlarged cross-sectional view showing one step of the method for manufacturing a double-sided metal-clad laminate according to the first embodiment. 実施の形態1及び実施の形態2のプリント配線板及びプリント配線装置の一例を示す概略部分拡大平面図である。It is a schematic partial enlarged plan view which shows an example of the printed wiring board and the printed wiring apparatus of Embodiment 1 and Embodiment 2. 実施の形態1及び実施の形態2のプリント配線板及びプリント配線装置の別の例を示す概略部分拡大平面図である。FIG. 5 is a schematic partially enlarged plan view showing another example of the printed wiring board and the printed wiring device of the first embodiment and the second embodiment. 実施例及び比較例の結果を示す図である。It is a figure which shows the result of an Example and a comparative example. 実施の形態2の多層金属張積層板の概略部分拡大断面図である。It is a schematic partial enlarged sectional view of the multilayer metal-clad laminate of the second embodiment.
 以下、本開示の実施の形態を説明する。なお、同一の構成には同一の参照番号を付し、その説明は繰り返さない。 Hereinafter, embodiments of the present disclosure will be described. The same reference number will be assigned to the same configuration, and the description will not be repeated.
 実施の形態1.
 図1及び図2を参照して、実施の形態1の両面金属張積層板1を説明する。両面金属張積層板1は、積層体10と、金属層21,28とを備えている。本明細書において、両面金属張積層板1は、二層の金属層21,28を有する金属張積層板を意味する。三層以上の金属層を含む金属張積層板は、両面金属張積層板1ではない。
Embodiment 1.
The double-sided metal-clad laminate 1 of the first embodiment will be described with reference to FIGS. 1 and 2. The double-sided metal-clad laminate 1 includes a laminate 10 and metal layers 21 and 28. In the present specification, the double-sided metal-clad laminate 1 means a metal-clad laminate having two metal layers 21 and 28. The metal-clad laminate containing three or more metal layers is not the double-sided metal-clad laminate 1.
 積層体10は、複数の中央絶縁層11と、複数の中央絶縁層11の両側に配置された外側絶縁層12とを含む。複数の中央絶縁層11と外側絶縁層12とは互いに積層されている。 The laminate 10 includes a plurality of central insulating layers 11 and outer insulating layers 12 arranged on both sides of the plurality of central insulating layers 11. The plurality of central insulating layers 11 and the outer insulating layer 12 are laminated on each other.
 外側絶縁層12の層数は、二以上である。具体的には、積層体10の頂面14側に、少なくとも一つの外側絶縁層12が配置されている。積層体10の底面15側に、少なくとも一つの外側絶縁層12が配置されている。積層体10の頂面14側に配置されている外側絶縁層12の層数は、積層体10の底面15側に配置されている外側絶縁層12の層数に等しくてもよい。積層体10は、積層体10の厚さ方向(z方向)において線対称な層構造を有してもよい。 The number of outer insulating layers 12 is two or more. Specifically, at least one outer insulating layer 12 is arranged on the top surface 14 side of the laminated body 10. At least one outer insulating layer 12 is arranged on the bottom surface 15 side of the laminated body 10. The number of layers of the outer insulating layer 12 arranged on the top surface 14 side of the laminated body 10 may be equal to the number of layers of the outer insulating layer 12 arranged on the bottom surface 15 side of the laminated body 10. The laminated body 10 may have a layer structure that is line-symmetrical in the thickness direction (z direction) of the laminated body 10.
 外側絶縁層12は、各々、第1ガラスクロス6と、第1ガラスクロス6に含浸されておりかつ第1ガラスクロス6を覆っている第1絶縁樹脂部材7とを含む。図2に示されるように、第1ガラスクロス6は、x方向とy方向とに延在している。第1ガラスクロス6の第1厚さは、第2ガラスクロス8の第2厚さよりも小さい。第1ガラスクロス6は、縦糸6aと横糸6bとを互いに織ることによって形成されている。例えば、縦糸6aはy方向に延在しており、横糸6bはx方向に延在している。第1ガラスクロス6の織り方は、特に限定されないが、例えば、平織である。 The outer insulating layer 12 includes a first glass cloth 6 and a first insulating resin member 7 impregnated in the first glass cloth 6 and covering the first glass cloth 6, respectively. As shown in FIG. 2, the first glass cloth 6 extends in the x direction and the y direction. The first thickness of the first glass cloth 6 is smaller than the second thickness of the second glass cloth 8. The first glass cloth 6 is formed by weaving warp threads 6a and weft threads 6b together. For example, the warp threads 6a extend in the y direction and the weft threads 6b extend in the x direction. The weaving method of the first glass cloth 6 is not particularly limited, but is, for example, a plain weave.
 第1ガラスクロス6の縦糸6a及び横糸6bは、各々、第1ガラスフィラメントを束ねることによって形成されている。第1ガラスクロス6の縦糸6a及び横糸6bに含まれる第1ガラスフィラメントの第1径は、第2ガラスクロス8の縦糸8a及び横糸8bに含まれる第2ガラスフィラメントの第2径よりも小さい。第1ガラスクロス6は、例えば、IPCスタイル番号2116のガラスクロス、IPCスタイル番号3313のガラスクロス、IPCスタイル番号1080のガラスクロスまたはIPCスタイル番号1501のガラスクロスである。 The warp threads 6a and weft threads 6b of the first glass cloth 6 are each formed by bundling the first glass filaments. The first diameter of the first glass filament contained in the warp 6a and the weft 6b of the first glass cloth 6 is smaller than the second diameter of the second glass filament contained in the warp 8a and the weft 8b of the second glass cloth 8. The first glass cloth 6 is, for example, a glass cloth of IPC style number 2116, a glass cloth of IPC style number 3313, a glass cloth of IPC style number 1080, or a glass cloth of IPC style number 1501.
 第1ガラスクロス6(縦糸6a及び横糸6b)は、アルカリ成分の含有率が1%以下であるEガラスで形成されてもよいし、Sガラス、TガラスまたはNEガラスで形成されてもよい。Eガラスは、電気絶縁性、対候性及びコストパフォーマンスに優れている。Sガラスは、Eガラスより高い引張強度及び高い引張弾性率を有している。Tガラスは、Eガラスより低い熱膨張係数及び高い引張り弾性率を有している。NEガラスは、Eガラスより低い誘電率及び低い誘電正接を有しており、Eガラスより低い伝送損失を有している。 The first glass cloth 6 (warp 6a and weft 6b) may be formed of E glass having an alkaline component content of 1% or less, or may be formed of S glass, T glass or NE glass. E-glass is excellent in electrical insulation, weather resistance and cost performance. S glass has higher tensile strength and higher tensile elastic modulus than E glass. T-glass has a lower coefficient of thermal expansion and higher tensile elastic modulus than E-glass. NE glass has a lower dielectric constant and lower dielectric loss tangent than E glass, and has a lower transmission loss than E glass.
 第1絶縁樹脂部材7は、例えば、エポキシ樹脂のような熱硬化性樹脂で主に形成されている。第1絶縁樹脂部材7は、硬化促進剤、充填材または難燃剤などをさらに含んでもよい。 The first insulating resin member 7 is mainly formed of a thermosetting resin such as an epoxy resin. The first insulating resin member 7 may further contain a curing accelerator, a filler, a flame retardant, and the like.
 外側絶縁層12の各々の第1縦方向ガラス占有率は、20%以下である。第1縦方向ガラス占有率は、第1ガラスクロス6の縦糸6aの延在方向(縦方向、y方向)に垂直な断面(xz面)における、第1ガラスクロス6の縦糸6aの面積割合である。第1ガラスクロス6の縦糸6aの面積割合は、この断面(xz面)における第1ガラスクロス6の縦糸6aの面積を、この断面(xz面)における外側絶縁層12の各々の面積で割った値として定義される。 The first longitudinal glass occupancy of each of the outer insulating layers 12 is 20% or less. The first warp glass occupancy is the area ratio of the warp 6a of the first glass cloth 6 in the cross section (xz plane) perpendicular to the extending direction (longitudinal direction, y direction) of the warp 6a of the first glass cloth 6. is there. The area ratio of the warp 6a of the first glass cloth 6 is obtained by dividing the area of the warp 6a of the first glass cloth 6 in this cross section (xz plane) by the area of each of the outer insulating layers 12 in this cross section (xz plane). Defined as a value.
 外側絶縁層12の各々の第1横方向ガラス占有率は、20%以下である。第1横方向ガラス占有率は、第1ガラスクロス6の横糸6bの延在方向(横方向、x方向)に垂直な断面(yz面)における、第1ガラスクロス6の横糸6bの面積割合である。第1ガラスクロス6の横糸6bの面積割合は、この断面(xz面)における第1ガラスクロス6の横糸6bの面積を、この断面(yz面)における外側絶縁層12の各々の面積で割った値として定義される。 The first lateral glass occupancy of each of the outer insulating layers 12 is 20% or less. The first weft glass occupancy is the area ratio of the weft 6b of the first glass cloth 6 in the cross section (yz plane) perpendicular to the extending direction (horizontal direction, x direction) of the weft 6b of the first glass cloth 6. is there. The area ratio of the weft 6b of the first glass cloth 6 is obtained by dividing the area of the weft 6b of the first glass cloth 6 in this cross section (xz plane) by the area of each of the outer insulating layers 12 in this cross section (yz plane). Defined as a value.
 第1ガラスクロス6のヤーン(縦糸6aまたは横糸6b)の面積割合は、第1ガラスクロス6の仕様から算出されるヤーン(縦糸6aまたは横糸6b)の面積を、第1プリプレグ42の断面積で割ることによって得られる。なお、外側絶縁層12の各々の厚さは、第1ガラスクロス6に応じて規格化されている第1プリプレグ42の公称厚さによって与えられる。ヤーン(縦糸6aまたは横糸6b)の面積は、例えば、以下の式(1)によって、第1ガラスクロス6の仕様から求められる。第1ガラスクロス6の仕様は、フィラメント径、ヤーン一本当たりのフィラメントの本数及びヤーン密度(ヤーンの配列方向(例えば、縦糸6aの配列方向はx方向であり、横糸6bの配列方向はy方向)におけるガラスクロスの単位長さ(例えば、1インチ(2.54cm))当たりのヤーンの本数)を含む。 The area ratio of the yarn (warp 6a or weft 6b) of the first glass cloth 6 is the area of the yarn (warp 6a or weft 6b) calculated from the specifications of the first glass cloth 6 in the cross-sectional area of the first prepreg 42. Obtained by dividing. The thickness of each of the outer insulating layers 12 is given by the nominal thickness of the first prepreg 42, which is standardized according to the first glass cloth 6. The area of the yarn (warp 6a or weft 6b) is determined from the specifications of the first glass cloth 6 by, for example, the following formula (1). The specifications of the first glass cloth 6 are the filament diameter, the number of filaments per yarn, and the yarn density (yarn arrangement direction (for example, the arrangement direction of the warp threads 6a is the x direction, and the arrangement direction of the weft threads 6b is the y direction). ) Includes the unit length of the glass cloth (eg, the number of yarns per inch (2.54 cm)).
 ヤーンの面積=(フィラメント径/2)2×π×(ヤーン一本当たりのフィラメントの本数)×ヤーン密度  (1)
 複数の中央絶縁層11の層数は、例えば、三以上である。中央絶縁層11の層数は、例えば、四以上であってもよく、五以上であってもよく、六以上であってもよい。中央絶縁層11の層数は、偶数であってもよいし、奇数であってもよい。
Yarn area = (filament diameter / 2) 2 x π x (number of filaments per yarn) x yarn density (1)
The number of layers of the plurality of central insulating layers 11 is, for example, three or more. The number of layers of the central insulating layer 11 may be, for example, four or more, five or more, or six or more. The number of layers of the central insulating layer 11 may be an even number or an odd number.
 複数の中央絶縁層11は、各々、第2ガラスクロス8と、第2ガラスクロス8に含浸されておりかつ第2ガラスクロス8を覆っている第2絶縁樹脂部材9とを含む。図2に示されるように、第2ガラスクロス8は、x方向とy方向とに延在している。第2ガラスクロス8は、縦糸8aと横糸8bとを互いに織ることによって形成されている。例えば、縦糸8aはy方向に延在しており、横糸8bはx方向に延在している。第2ガラスクロス8の織り方は、特に限定されないが、例えば、平織である。第2ガラスクロス8の縦糸8a及び横糸8bは、各々、第2ガラスフィラメントを束ねることによって形成されている。第2ガラスクロス8は、例えば、IPCスタイル番号7628のガラスクロスまたはIPCスタイル番号7629のガラスクロスである。 Each of the plurality of central insulating layers 11 includes a second glass cloth 8 and a second insulating resin member 9 impregnated in the second glass cloth 8 and covering the second glass cloth 8. As shown in FIG. 2, the second glass cloth 8 extends in the x direction and the y direction. The second glass cloth 8 is formed by weaving warp threads 8a and weft threads 8b together. For example, the warp 8a extends in the y direction and the weft 8b extends in the x direction. The weaving method of the second glass cloth 8 is not particularly limited, but is, for example, a plain weave. The warp threads 8a and the weft threads 8b of the second glass cloth 8 are each formed by bundling the second glass filaments. The second glass cloth 8 is, for example, a glass cloth having IPC style number 7628 or a glass cloth having IPC style number 7629.
 第2ガラスクロス8(縦糸8a及び横糸8b)は、アルカリ成分の含有率が1%以下であるEガラスで形成されてもよいし、Sガラス、TガラスまたはNEガラスで形成されてもよい。第2ガラスクロス8の縦糸8a及び横糸8bは、第1ガラスクロス6の縦糸6a及び横糸6bと同じ組成を有する材料で形成されてもよい。すなわち、第2ガラスクロス8の縦糸8a及び横糸8bは、ガラス繊維の種類において、第1ガラスクロス6の縦糸6a及び横糸6bと同じであってもよい。第2ガラスクロス8の縦糸8a及び横糸8bは、第1ガラスクロス6の縦糸6a及び横糸6bとは異なる組成を有する材料で形成されてもよい。すなわち、第2ガラスクロス8の縦糸8a及び横糸8bは、ガラス繊維の種類において、第1ガラスクロス6の縦糸6a及び横糸6bと異なってもよい。 The second glass cloth 8 (warp 8a and weft 8b) may be formed of E glass having an alkaline component content of 1% or less, or may be formed of S glass, T glass or NE glass. The warp 8a and the weft 8b of the second glass cloth 8 may be formed of a material having the same composition as the warp 6a and the weft 6b of the first glass cloth 6. That is, the warp 8a and the weft 8b of the second glass cloth 8 may be the same as the warp 6a and the weft 6b of the first glass cloth 6 in the type of glass fiber. The warp 8a and the weft 8b of the second glass cloth 8 may be formed of a material having a composition different from that of the warp 6a and the weft 6b of the first glass cloth 6. That is, the warp 8a and the weft 8b of the second glass cloth 8 may be different from the warp 6a and the weft 6b of the first glass cloth 6 in the type of glass fiber.
 第2絶縁樹脂部材9は、例えば、エポキシ樹脂のような熱硬化性樹脂で主に形成されている。第2絶縁樹脂部材9は、硬化促進剤、充填材または難燃剤などをさらに含んでもよい。第2絶縁樹脂部材9は、第1絶縁樹脂部材7と同じ組成を有してもよいし、第1絶縁樹脂部材7とは異なる組成を有してもよい。 The second insulating resin member 9 is mainly formed of a thermosetting resin such as an epoxy resin. The second insulating resin member 9 may further contain a curing accelerator, a filler, a flame retardant, and the like. The second insulating resin member 9 may have the same composition as the first insulating resin member 7, or may have a composition different from that of the first insulating resin member 7.
 外側絶縁層12の各々の第1縦方向ガラス占有率及び第1横方向ガラス占有率は、ともに、複数の中央絶縁層11の各々の第2縦方向ガラス占有率及び第2横方向ガラス占有率のうち大きい方より小さい。第2縦方向ガラス占有率は、第2ガラスクロス8の縦糸8aの延在方向(縦方向、y方向)に垂直な断面(xz面)における、第2ガラスクロス8の縦糸8aの面積割合である。第2ガラスクロス8の縦糸8aの面積割合は、この断面(xz面)における第2ガラスクロス8の縦糸8aの面積を、この断面(xz面)における中央絶縁層11の各々の面積で割った値として定義される。第2横方向ガラス占有率は、第2ガラスクロス8の横糸8bの延在方向(横方向、x方向)に垂直な断面(yz面)における、第2ガラスクロス8の横糸8bの面積割合である。第2ガラスクロス8の横糸8bの面積割合は、この断面(yz面)における第2ガラスクロス8の横糸8bの面積を、この断面(yz面)における中央絶縁層11の各々の面積で割った値として定義される。 The first longitudinal glass occupancy rate and the first horizontal glass occupancy rate of each of the outer insulating layers 12 are the second longitudinal glass occupancy rate and the second horizontal glass occupancy rate of each of the plurality of central insulating layers 11. Is smaller than the larger one. The second warp glass occupancy is the area ratio of the warp 8a of the second glass cloth 8 in the cross section (xz plane) perpendicular to the extending direction (longitudinal direction, y direction) of the warp 8a of the second glass cloth 8. is there. The area ratio of the warp 8a of the second glass cloth 8 is obtained by dividing the area of the warp 8a of the second glass cloth 8 in this cross section (xz plane) by the area of each of the central insulating layers 11 in this cross section (xz plane). Defined as a value. The second weft glass occupancy is the area ratio of the weft 8b of the second glass cloth 8 in the cross section (yz plane) perpendicular to the extending direction (horizontal direction, x direction) of the weft 8b of the second glass cloth 8. is there. The area ratio of the weft 8b of the second glass cloth 8 is obtained by dividing the area of the weft 8b of the second glass cloth 8 in this cross section (yz plane) by the area of each of the central insulating layers 11 in this cross section (yz plane). Defined as a value.
 第2ガラスクロス8のヤーン(縦糸8aまたは横糸8b)の面積割合は、第2ガラスクロス8の仕様から算出されるヤーン(縦糸8aまたは横糸8b)の面積を、第2プリプレグ41の断面積で割ることによって得られる。なお、中央絶縁層11の各々の厚さは、第2ガラスクロス8に応じて規格化されている第2プリプレグ41の公称厚さによって与えられる。ヤーン(縦糸8aまたは横糸8b)の面積は、例えば、既に記載した式(1)によって、第2ガラスクロス8の仕様から求められる。第2ガラスクロス8の仕様は、フィラメント径、ヤーン一本当たりのフィラメントの本数及びヤーン密度(ヤーンの配列方向(例えば、縦糸8aの配列方向はx方向であり、横糸8bの配列方向はy方向)におけるガラスクロスの単位長さ(例えば、1インチ(2,54cm))当たりのヤーンの本数)を含む。 The area ratio of the yarn (warp 8a or weft 8b) of the second glass cloth 8 is the area of the yarn (warp 8a or weft 8b) calculated from the specifications of the second glass cloth 8 in the cross-sectional area of the second prepreg 41. Obtained by dividing. The thickness of each of the central insulating layers 11 is given by the nominal thickness of the second prepreg 41, which is standardized according to the second glass cloth 8. The area of the yarn (warp 8a or weft 8b) is determined from the specifications of the second glass cloth 8 by, for example, the already described formula (1). The specifications of the second glass cloth 8 are the filament diameter, the number of filaments per yarn, and the yarn density (yarn arrangement direction (for example, the arrangement direction of the warp 8a is the x direction, and the arrangement direction of the weft 8b is the y direction). ) Includes the unit length of the glass cloth (eg, the number of yarns per inch (2,54 cm)).
 外側絶縁層12の一層の厚さt1は、中央絶縁層11の一層の厚さt2よりも小さい。複数の中央絶縁層11の一方側(頂面14側)に配置されている外側絶縁層12の層数は、複数の中央絶縁層11の層数よりも少なくてもよい。複数の中央絶縁層11の他方側(底面15側)に配置されている外側絶縁層12の層数は、複数の中央絶縁層11の層数よりも少なくてもよい。複数の中央絶縁層11の一方側(頂面14側)に配置されている外側絶縁層12の層数は、複数の中央絶縁層11の他方側(底面15側)に配置されている外側絶縁層12の層数に等しくてもよい。 The thickness t 1 of one layer of the outer insulating layer 12 is smaller than the thickness t 2 of one layer of the central insulating layer 11. The number of layers of the outer insulating layer 12 arranged on one side (top surface 14 side) of the plurality of central insulating layers 11 may be smaller than the number of layers of the plurality of central insulating layers 11. The number of layers of the outer insulating layer 12 arranged on the other side (bottom surface 15 side) of the plurality of central insulating layers 11 may be smaller than the number of layers of the plurality of central insulating layers 11. The number of layers of the outer insulating layer 12 arranged on one side (top surface 14 side) of the plurality of central insulating layers 11 is the outer insulation arranged on the other side (bottom surface 15 side) of the plurality of central insulating layers 11. It may be equal to the number of layers of the layer 12.
 積層体10の厚さtは、1.0mm以上である。積層体10の厚さtは、1.2mm以上であってもよく、1.4mm以上であってもよい。両面金属張積層板1は、例えば、列車用機器、映像システム、変電システムもしくは昇降機のような重電システム、FA機器もしくは自動車機器のような産業メカトロニクス、または、空調機器、冷熱機器、液晶テレビもしくは太陽光発電システムのような家電機器(ただし、スマートフォンのような携帯端末を除く)に適用される。 The thickness t of the laminated body 10 is 1.0 mm or more. The thickness t of the laminate 10 may be 1.2 mm or more, or 1.4 mm or more. The double-sided metal-clad laminate 1 is, for example, train equipment, video system, heavy electric system such as substation system or elevator, industrial mechatronics such as FA equipment or automobile equipment, or air conditioning equipment, cooling equipment, LCD TV or It is applied to home appliances such as solar power generation systems (excluding mobile terminals such as smartphones).
 金属層21,28は、積層体10の両側に設けられている。金属層21は、積層体10の頂面14に設けられている。金属層28は、積層体10の底面15に設けられている。金属層21,28は、例えば、銅箔のような金属箔で形成されている。 The metal layers 21 and 28 are provided on both sides of the laminated body 10. The metal layer 21 is provided on the top surface 14 of the laminated body 10. The metal layer 28 is provided on the bottom surface 15 of the laminated body 10. The metal layers 21 and 28 are formed of, for example, a metal foil such as a copper foil.
 図3を参照して、本実施の形態の両面金属張積層板1の製造方法を説明する。
 熱硬化性樹脂を第1ガラスクロス6に含浸させるとともに、第1ガラスクロス6を熱硬化性樹脂で覆う。熱硬化性樹脂を加熱して乾燥させて、半硬化状態とする。こうして、第1プリプレグ42を得る。熱硬化性樹脂を第2ガラスクロス8に含浸させるとともに、第2ガラスクロス8を熱硬化性樹脂で覆う。熱硬化性樹脂を加熱して乾燥させて、半硬化状態とする。こうして、第2プリプレグ41を得る。
A method for manufacturing the double-sided metal-clad laminate 1 according to the present embodiment will be described with reference to FIG.
The first glass cloth 6 is impregnated with the thermosetting resin, and the first glass cloth 6 is covered with the thermosetting resin. The thermosetting resin is heated and dried to make it semi-cured. In this way, the first prepreg 42 is obtained. The second glass cloth 8 is impregnated with the thermosetting resin, and the second glass cloth 8 is covered with the thermosetting resin. The thermosetting resin is heated and dried to make it semi-cured. In this way, the second prepreg 41 is obtained.
 第2プリプレグ41の両側に第1プリプレグ42を重ね、さらに、第1プリプレグ42の外側に金属箔のような金属層21,28を重ねる。第1プリプレグ42、第2プリプレグ41及び金属層21,28を、熱及び圧力を印加しながら成形する。第1プリプレグ42の熱硬化性樹脂及び第2プリプレグ41の熱硬化性樹脂は硬化する。第1プリプレグ42、第2プリプレグ41及び金属層21,28は一体化される。こうして、両面金属張積層板1が得られる。外側絶縁層12の一層の厚さt1は、実質的に、第1プリプレグ42の公称厚さに等しい。中央絶縁層11の一層の厚さt2は、実質的に、第2プリプレグ41の公称厚さに等しい。両面金属張積層板1は、プリント配線板2(図4及び図5を参照)の製造に供される。 The first prepreg 42 is superposed on both sides of the second prepreg 41, and the metal layers 21 and 28 such as metal foils are superposed on the outside of the first prepreg 42. The first prepreg 42, the second prepreg 41, and the metal layers 21, 28 are molded while applying heat and pressure. The thermosetting resin of the first prepreg 42 and the thermosetting resin of the second prepreg 41 are cured. The first prepreg 42, the second prepreg 41, and the metal layers 21, 28 are integrated. In this way, the double-sided metal-clad laminate 1 is obtained. The thickness t 1 of one layer of the outer insulating layer 12 is substantially equal to the nominal thickness of the first prepreg 42. The thickness t 2 of one layer of the central insulating layer 11 is substantially equal to the nominal thickness of the second prepreg 41. The double-sided metal-clad laminate 1 is used for manufacturing a printed wiring board 2 (see FIGS. 4 and 5).
 第2絶縁樹脂部材9は第1絶縁樹脂部材7と同じ組成を有する材料で形成されており、かつ、第2ガラスクロス8は第1ガラスクロス6と同じ組成を有する材料で形成されてもよい。すなわち、第2絶縁樹脂部材9は、樹脂の種類において、第1絶縁樹脂部材7と同じであり、かつ、第2ガラスクロス8の縦糸8a及び横糸8bは、ガラス繊維の種類において、第1ガラスクロス6の縦糸6a及び横糸6bと同じであってもよい。この場合、第1プリプレグ42と第2プリプレグ41とを同時に成形及び硬化することが容易になる。 The second insulating resin member 9 may be formed of a material having the same composition as the first insulating resin member 7, and the second glass cloth 8 may be formed of a material having the same composition as the first glass cloth 6. .. That is, the second insulating resin member 9 is the same as the first insulating resin member 7 in the type of resin, and the warp 8a and the weft 8b of the second glass cloth 8 are the first glass in the type of glass fiber. It may be the same as the warp 6a and the weft 6b of the cloth 6. In this case, it becomes easy to mold and cure the first prepreg 42 and the second prepreg 41 at the same time.
 図4及び図5を参照して、プリント配線板2及びプリント配線装置3を説明する。
 プリント配線板2は、両面金属張積層板1を備える。プリント配線板2は、両面プリント配線板である。本明細書において、両面プリント配線板は、二層の金属層21,28を有するプリント配線板2を意味する。三層以上の金属層を含むプリント配線板は、両面プリント配線板ではない。
The printed wiring board 2 and the printed wiring device 3 will be described with reference to FIGS. 4 and 5.
The printed wiring board 2 includes a double-sided metal-clad laminate 1. The printed wiring board 2 is a double-sided printed wiring board. In the present specification, the double-sided printed wiring board means a printed wiring board 2 having two metal layers 21 and 28. A printed wiring board containing three or more metal layers is not a double-sided printed wiring board.
 金属層21,28の少なくとも一つは、第1パッド22と、第1パッド22から離間された第2パッド24と、第1引出配線23と、第2引出配線25とを含む。本実施の形態では、金属層21が、第1パッド22と、第2パッド24と、第1引出配線23と、第2引出配線25とを含んでいる。 At least one of the metal layers 21 and 28 includes a first pad 22, a second pad 24 separated from the first pad 22, a first lead-out wire 23, and a second lead-out wire 25. In the present embodiment, the metal layer 21 includes a first pad 22, a second pad 24, a first lead-out wire 23, and a second lead-out wire 25.
 図4に示されるように、第2パッド24は、第1ガラスクロス6及び第2ガラスクロス8の縦糸6a,8aが延在する方向(縦方向、y方向)に、第1パッド22から離間してもよい。図5に示されるように、第2パッド24は、第1ガラスクロス6及び第2ガラスクロス8の横糸6b,8bが延在する方向(横方向、x方向)に、第1パッド22から離間してもよい。 As shown in FIG. 4, the second pad 24 is separated from the first pad 22 in the direction (longitudinal direction, y direction) in which the warp threads 6a and 8a of the first glass cloth 6 and the second glass cloth 8 extend. You may. As shown in FIG. 5, the second pad 24 is separated from the first pad 22 in the direction (horizontal direction, x direction) in which the weft threads 6b and 8b of the first glass cloth 6 and the second glass cloth 8 extend. You may.
 第1パッド22及び第2パッド24は、0603以下のサイズを有するセラミックコンデンサ30に適したサイズを有している。なお、0603以下のサイズを有するセラミックコンデンサ30は、0.6mm以下の長さL1と0.3mm以下の幅W1とを有している。セラミックコンデンサ30の長さL1は、セラミックコンデンサ30の一対の電極32,33が互いに離間している方向におけるセラミックコンデンサ30の長さである。セラミックコンデンサ30の幅W1は、セラミックコンデンサ30の一対の電極32,33が互いに離間している方向に垂直な方向におけるセラミックコンデンサ30の長さである。本明細書において、セラミックコンデンサ30の長さL1及び幅W1は、両方とも、TYP値として表されている。 The first pad 22 and the second pad 24 have a size suitable for a ceramic capacitor 30 having a size of 0603 or less. The ceramic capacitor 30 having a size of 0603 or less has a length L 1 of 0.6 mm or less and a width W 1 of 0.3 mm or less. The length L 1 of the ceramic capacitor 30 is the length of the ceramic capacitor 30 in the direction in which the pair of electrodes 32 and 33 of the ceramic capacitor 30 are separated from each other. The width W 1 of the ceramic capacitor 30 is the length of the ceramic capacitor 30 in the direction perpendicular to the direction in which the pair of electrodes 32, 33 of the ceramic capacitor 30 are separated from each other. In the present specification, the length L 1 and the width W 1 of the ceramic capacitor 30 are both expressed as TYPE values.
 第1パッド22の幅W2は、例えば、0.4mm以下である。第2パッド24の幅W3は、例えば、0.4mm以下である。パッド(第1パッド22、第2パッド24)の幅は、セラミックコンデンサ30の一対の電極32,33が互いに離間している方向に垂直な方向におけるパッド(第1パッド22、第2パッド24)の長さである。第1パッド22の長さL2は、例えば、0.3mm以下である。第2パッド24の長さL3は、例えば、0.3mm以下である。パッド(第1パッド22、第2パッド24)の長さは、セラミックコンデンサ30の一対の電極32,33が互いに離間している方向におけるパッド(第1パッド22、第2パッド24)の長さである。第1パッド22と第2パッド24との間の間隔Gは、例えば、0.3mm以下である。 The width W 2 of the first pad 22 is, for example, 0.4 mm or less. The width W 3 of the second pad 24 is, for example, 0.4 mm or less. The width of the pads (first pad 22, second pad 24) is the pad in the direction perpendicular to the direction in which the pair of electrodes 32, 33 of the ceramic capacitor 30 are separated from each other (first pad 22, second pad 24). Is the length of. The length L 2 of the first pad 22 is, for example, 0.3 mm or less. The length L 3 of the second pad 24 is, for example, 0.3 mm or less. The length of the pads (first pad 22, second pad 24) is the length of the pads (first pad 22, second pad 24) in the direction in which the pair of electrodes 32, 33 of the ceramic capacitor 30 are separated from each other. Is. The distance G between the first pad 22 and the second pad 24 is, for example, 0.3 mm or less.
 第1引出配線23は、第1パッド22に接続されている。第1引出配線23は、例えば、第2パッド24から遠位する第1パッド22の第1縁から引き出されている。第2引出配線25は、第2パッド24に接続されている。第2引出配線25は、例えば、第1パッド22から遠位する第2パッド24の第2縁から引き出されている。プリント配線板2は、両面金属張積層板1に含まれる金属層21をエッチングしてパターニングすることによって得られる。 The first lead-out wiring 23 is connected to the first pad 22. The first lead-out wiring 23 is drawn out from, for example, the first edge of the first pad 22 distal to the second pad 24. The second lead-out wiring 25 is connected to the second pad 24. The second lead-out wire 25 is drawn out from, for example, the second edge of the second pad 24 distal to the first pad 22. The printed wiring board 2 is obtained by etching and patterning the metal layer 21 included in the double-sided metal-clad laminate 1.
 図4及び図5に示されるように、プリント配線板2は、絶縁保護膜26をさらに備えている。絶縁保護膜26は、積層体10の頂面14及び金属層21上に設けられている。絶縁保護膜26には、第1開口26aと第2開口26bとが設けられている。第1パッド22は、第1開口26aにおいて、絶縁保護膜26から露出している。第2パッド24は、第2開口26bにおいて、絶縁保護膜26から露出している。絶縁保護膜26は、特に限定されないが、ソルダーレジストのような樹脂材料で形成されている。 As shown in FIGS. 4 and 5, the printed wiring board 2 further includes an insulating protective film 26. The insulating protective film 26 is provided on the top surface 14 and the metal layer 21 of the laminated body 10. The insulating protective film 26 is provided with a first opening 26a and a second opening 26b. The first pad 22 is exposed from the insulating protective film 26 at the first opening 26a. The second pad 24 is exposed from the insulating protective film 26 at the second opening 26b. The insulating protective film 26 is not particularly limited, but is made of a resin material such as a solder resist.
 プリント配線装置3は、プリント配線板2と、第1パッド22及び第2パッド24に接合されているセラミックコンデンサ30とを備える。セラミックコンデンサ30は、0603以下のサイズを有している。プリント配線装置3は、セラミックコンデンサ30の一対の電極32,33を、はんだのような導電接合部材(図示せず)を用いて、プリント配線板2の第1パッド22及び第2パッド24に接合することによって得られる。導電接合部材(図示せず)は、絶縁保護膜26の第1開口26a及び第2開口26b内に設けられている。 The printed wiring device 3 includes a printed wiring board 2 and a ceramic capacitor 30 joined to the first pad 22 and the second pad 24. The ceramic capacitor 30 has a size of 0603 or less. The printed wiring device 3 joins the pair of electrodes 32 and 33 of the ceramic capacitor 30 to the first pad 22 and the second pad 24 of the printed wiring board 2 by using a conductive joining member (not shown) such as solder. Obtained by doing. The conductive bonding member (not shown) is provided in the first opening 26a and the second opening 26b of the insulating protective film 26.
 実施例.
 表1に示される実施例の両面金属張積層板1を作成した。なお、ガラスクロスの仕様を表2に示す。実施例の両面金属張積層板1に含まれる金属層21,28をパターニングして、図4に示される第1パッド22と、第2パッド24と、第1引出配線23と、第2引出配線25とを形成する。0603のサイズを有するセラミックコンデンサ30を、第1パッド22及び第2パッド24にはんだ付けする。こうして、サンプル1が得られた。サンプル1では、セラミックコンデンサ30は、縦糸6aの延在方向(縦方向、y方向)に配置されている。
Example.
The double-sided metal-clad laminate 1 of the examples shown in Table 1 was prepared. The specifications of the glass cloth are shown in Table 2. The metal layers 21 and 28 included in the double-sided metal-clad laminate 1 of the embodiment are patterned, and the first pad 22, the second pad 24, the first drawer wiring 23, and the second drawer wiring shown in FIG. 4 are patterned. 25 and form. A ceramic capacitor 30 having a size of 0603 is soldered to the first pad 22 and the second pad 24. In this way, sample 1 was obtained. In sample 1, the ceramic capacitor 30 is arranged in the extending direction (longitudinal direction, y direction) of the warp threads 6a.
 実施例の両面金属張積層板1に含まれる金属層21,28をパターニングして、図5に示される第1パッド22と、第2パッド24と、第1引出配線23と、第2引出配線25とを形成する。0603のサイズを有するセラミックコンデンサ30を、第1パッド22及び第2パッド24にはんだ付けする。こうして、サンプル2が得られた。サンプル2では、セラミックコンデンサ30は、横糸6bの延在方向(横方向、x方向)に配置されている。 The metal layers 21 and 28 included in the double-sided metal-clad laminate 1 of the embodiment are patterned, and the first pad 22, the second pad 24, the first drawer wiring 23, and the second drawer wiring shown in FIG. 5 are patterned. 25 and form. A ceramic capacitor 30 having a size of 0603 is soldered to the first pad 22 and the second pad 24. In this way, sample 2 was obtained. In sample 2, the ceramic capacitor 30 is arranged in the extending direction (horizontal direction, x direction) of the weft thread 6b.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示される比較例の両面金属張積層板を作成した。なお、ガラスクロスの仕様を表2に示す。比較例の両面金属張積層板に含まれる金属層21,28をパターニングして、図4に示される第1パッド22と、第2パッド24と、第1引出配線23と、第2引出配線25とを形成する。0603のサイズを有するセラミックコンデンサ30を、第1パッド22及び第2パッド24にはんだ付けする。こうして、サンプル3が得られた。サンプル3では、セラミックコンデンサ30は、縦糸6aの延在方向(縦方向、y方向)に配置されている。 A double-sided metal-clad laminate of the comparative example shown in Table 1 was prepared. The specifications of the glass cloth are shown in Table 2. The metal layers 21 and 28 included in the double-sided metal-clad laminate of the comparative example are patterned, and the first pad 22, the second pad 24, the first lead wiring 23, and the second lead wiring 25 shown in FIG. 4 are patterned. And form. A ceramic capacitor 30 having a size of 0603 is soldered to the first pad 22 and the second pad 24. In this way, sample 3 was obtained. In sample 3, the ceramic capacitor 30 is arranged in the extending direction (longitudinal direction, y direction) of the warp threads 6a.
 比較例の両面金属張積層板に含まれる金属層21,28をパターニングして、図5に示される第1パッド22と、第2パッド24と、第1引出配線23と、第2引出配線25とを形成する。0603のサイズを有するセラミックコンデンサ30を、第1パッド22及び第2パッド24にはんだ付けする。こうして、サンプル4が得られた。サンプル4では、セラミックコンデンサ30は、横糸6bの延在方向(横方向、x方向)に配置されている。 The metal layers 21 and 28 included in the double-sided metal-clad laminate of the comparative example are patterned, and the first pad 22, the second pad 24, the first lead wiring 23, and the second lead wiring 25 shown in FIG. 5 are patterned. And form. A ceramic capacitor 30 having a size of 0603 is soldered to the first pad 22 and the second pad 24. In this way, sample 4 was obtained. In sample 4, the ceramic capacitor 30 is arranged in the extending direction (horizontal direction, x direction) of the weft thread 6b.
 サンプル1からサンプル4について、JIS C 5101-1の4.35に規定されている曲げ試験を行った。サンプル1及びサンプル2では、セラミックコンデンサ30にクラックは発生しなかった。また、サンプル4では、セラミックコンデンサ30にクラックは発生しなかったが、サンプル3では、セラミックコンデンサ30にクラックが発生した。 The bending test specified in 4.35 of JIS C 5101-1 was performed on Samples 1 to 4. In Sample 1 and Sample 2, no crack was generated in the ceramic capacitor 30. Further, in sample 4, cracks did not occur in the ceramic capacitor 30, but in sample 3, cracks occurred in the ceramic capacitor 30.
 図6から、フィラメントの径の公差(0.25μm)を考慮しても、外側絶縁層12の各々の第1縦方向ガラス占有率が、20%以下であり、かつ、外側絶縁層12の各々の第1横方向ガラス占有率が、20%以下である場合には、両面金属張積層板1(プリント配線板2)に対するセラミックコンデンサ30の配置方向にかかわらず、セラミックコンデンサ30にクラックが発生することが抑制されることが分かる。 From FIG. 6, even considering the filament diameter tolerance (0.25 μm), the first longitudinal glass occupancy of each of the outer insulating layers 12 is 20% or less, and each of the outer insulating layers 12 When the first lateral glass occupancy rate is 20% or less, cracks occur in the ceramic capacitor 30 regardless of the arrangement direction of the ceramic capacitor 30 with respect to the double-sided metal-clad laminate 1 (printed wiring board 2). It turns out that this is suppressed.
 両面金属張積層板1(プリント配線板2)を曲げたときにセラミックコンデンサ30にクラックが発生し難くなる理由は、以下のように推測される。セラミックコンデンサ30が接合される金属層21に接触する外側絶縁層12は、第1ガラスクロス6と第1絶縁樹脂部材7とを含んでいる。第1ガラスクロス6は、第1絶縁樹脂部材7よりも固い材料で形成されている。そのため、両面金属張積層板1(プリント配線板2)を曲げたときに、第1ガラスクロス6は、0603以下のサイズを有するセラミックコンデンサ30に印加される応力に大きな影響を及ぼす。セラミックコンデンサ30が接合される金属層21に接触する外側絶縁層12の第1縦方向ガラス占有率及び第1横方向ガラス占有率を20%以下に減少させることによって、両面金属張積層板1(プリント配線板2)を曲げたときに、セラミックコンデンサ30に印加される応力を減少させることができる。こうして、両面金属張積層板1に対するセラミックコンデンサ30の配置方向にかかわらず、セラミックコンデンサ30にクラックが発生することが抑制される。 The reason why cracks are less likely to occur in the ceramic capacitor 30 when the double-sided metal-clad laminate 1 (printed wiring board 2) is bent is presumed as follows. The outer insulating layer 12 in contact with the metal layer 21 to which the ceramic capacitor 30 is bonded includes the first glass cloth 6 and the first insulating resin member 7. The first glass cloth 6 is made of a material harder than the first insulating resin member 7. Therefore, when the double-sided metal-clad laminate 1 (printed wiring board 2) is bent, the first glass cloth 6 has a great influence on the stress applied to the ceramic capacitor 30 having a size of 0603 or less. By reducing the first longitudinal glass occupancy and the first lateral glass occupancy of the outer insulating layer 12 in contact with the metal layer 21 to which the ceramic capacitor 30 is bonded to 20% or less, the double-sided metal-clad laminate 1 ( The stress applied to the ceramic capacitor 30 when the printed wiring board 2) is bent can be reduced. In this way, cracks are suppressed in the ceramic capacitor 30 regardless of the arrangement direction of the ceramic capacitor 30 with respect to the double-sided metal-clad laminate 1.
 変形例.
 表3及び表4に、外側絶縁層12の各々の第1縦方向ガラス占有率が、20%以下であり、かつ、外側絶縁層12の各々の第1横方向ガラス占有率が、20%以下である両面金属張積層板1の変形例を示す。変形例で用いられているガラスクロスの仕様を表2に示す。
Modification example.
In Tables 3 and 4, the first longitudinal glass occupancy of each of the outer insulating layers 12 is 20% or less, and the first lateral glass occupancy of each of the outer insulating layers 12 is 20% or less. A modified example of the double-sided metal-clad laminate 1 is shown. Table 2 shows the specifications of the glass cloth used in the modified example.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本実施の形態の両面金属張積層板1、プリント配線板2及びプリント配線装置3の効果を説明する。 The effects of the double-sided metal-clad laminate 1, the printed wiring board 2, and the printed wiring device 3 of the present embodiment will be described.
 本実施の形態の両面金属張積層板1は、複数の中央絶縁層11と、複数の中央絶縁層11の両側に配置された外側絶縁層12とが互いに積層されている積層体10と、積層体10の両側に設けられている金属層21,28とを備えている。外側絶縁層12は、各々、第1ガラスクロス6と、第1ガラスクロス6に含浸されておりかつ第1ガラスクロス6を覆っている第1絶縁樹脂部材7とを含む。複数の中央絶縁層11は、各々、第2ガラスクロス8と、第2ガラスクロス8に含浸されておりかつ第2ガラスクロス8を覆っている第2絶縁樹脂部材9とを含む。外側絶縁層12の各々の第1縦方向ガラス占有率は、20%以下である。外側絶縁層12の各々の第1横方向ガラス占有率は、20%以下である。第1縦方向ガラス占有率及び第1横方向ガラス占有率は、ともに、複数の中央絶縁層11の各々の第2縦方向ガラス占有率及び第2横方向ガラス占有率のうち大きい方よりも小さい。第1縦方向ガラス占有率は、第1ガラスクロス6の縦糸6aの延在方向(縦方向、y方向)に垂直な断面(xz面)における、第1ガラスクロス6の縦糸6aの面積割合である。第1横方向ガラス占有率は、第1ガラスクロス6の横糸6bの延在方向(横方向、x方向)に垂直な断面(yz面)における、第1ガラスクロス6の横糸6bの面積割合である。第2縦方向ガラス占有率は、第2ガラスクロス8の縦糸8aの延在方向(縦方向、y方向)に垂直な断面(xz面)における、第2ガラスクロス8の縦糸8aの面積割合である。第2横方向ガラス占有率は、第2ガラスクロス8の横糸8bの延在方向(横方向、x方向)に垂直な断面(yz面)における、第2ガラスクロス8の横糸8bの面積割合である。 The double-sided metal-clad laminate 1 of the present embodiment is laminated with a laminate 10 in which a plurality of central insulating layers 11 and outer insulating layers 12 arranged on both sides of the plurality of central insulating layers 11 are laminated to each other. It includes metal layers 21 and 28 provided on both sides of the body 10. The outer insulating layer 12 includes a first glass cloth 6 and a first insulating resin member 7 impregnated in the first glass cloth 6 and covering the first glass cloth 6, respectively. Each of the plurality of central insulating layers 11 includes a second glass cloth 8 and a second insulating resin member 9 which is impregnated in the second glass cloth 8 and covers the second glass cloth 8. The first longitudinal glass occupancy of each of the outer insulating layers 12 is 20% or less. The first lateral glass occupancy of each of the outer insulating layers 12 is 20% or less. The first longitudinal glass occupancy and the first transverse glass occupancy are both smaller than the larger of the second longitudinal glass occupancy and the second transverse glass occupancy of each of the plurality of central insulating layers 11. .. The first warp glass occupancy is the area ratio of the warp 6a of the first glass cloth 6 in the cross section (xz plane) perpendicular to the extending direction (longitudinal direction, y direction) of the warp 6a of the first glass cloth 6. is there. The first weft glass occupancy is the area ratio of the weft 6b of the first glass cloth 6 in the cross section (yz plane) perpendicular to the extending direction (horizontal direction, x direction) of the weft 6b of the first glass cloth 6. is there. The second warp glass occupancy is the area ratio of the warp 8a of the second glass cloth 8 in the cross section (xz plane) perpendicular to the extending direction (longitudinal direction, y direction) of the warp 8a of the second glass cloth 8. is there. The second weft glass occupancy is the area ratio of the weft 8b of the second glass cloth 8 in the cross section (yz plane) perpendicular to the extending direction (horizontal direction, x direction) of the weft 8b of the second glass cloth 8. is there.
 金属層21に接触する外側絶縁層12の第1縦方向ガラス占有率及び第1横方向ガラス占有率を20%以下に減少させることによって、両面金属張積層板1を曲げたときに、セラミックコンデンサ30に印加される応力を減少させることができる。こうして、両面金属張積層板1に対するセラミックコンデンサ30の配置方向にかかわらず、セラミックコンデンサ30にクラックが発生することが抑制され得る。 By reducing the first longitudinal glass occupancy and the first lateral glass occupancy of the outer insulating layer 12 in contact with the metal layer 21 to 20% or less, the ceramic capacitor when the double-sided metal-clad laminate 1 is bent. The stress applied to 30 can be reduced. In this way, cracks in the ceramic capacitor 30 can be suppressed regardless of the arrangement direction of the ceramic capacitor 30 with respect to the double-sided metal-clad laminate 1.
 また、第1縦方向ガラス占有率及び第1横方向ガラス占有率は、ともに、複数の中央絶縁層11の各々の第2縦方向ガラス占有率及び第2横方向ガラス占有率のうち大きい方よりも小さい。すなわち、複数の中央絶縁層11の各々の第2縦方向ガラス占有率及び第2横方向ガラス占有率のうち大きい方が、外側絶縁層12の各々の第1縦方向ガラス占有率及び第1横方向ガラス占有率並びに複数の中央絶縁層11の各々の第2縦方向ガラス占有率及び第2横方向ガラス占有率のうちで最も大きい。そのため、両面金属張積層板1は、向上された寸法安定性を有している。また、複数の中央絶縁層11として、プリント配線板2に広く用いられているガラスクロスを含む絶縁層を利用できるため、両面金属張積層板1のコストの増加が少なくすむ。 Further, both the first vertical glass occupancy rate and the first horizontal glass occupancy rate are larger than the larger of the second vertical glass occupancy rate and the second horizontal glass occupancy rate of each of the plurality of central insulating layers 11. Is also small. That is, the larger of the second longitudinal glass occupancy and the second horizontal glass occupancy of each of the plurality of central insulating layers 11 is the first longitudinal glass occupancy and the first lateral glass occupancy of each of the outer insulating layers 12. It is the largest of the directional glass occupancy and the second longitudinal glass occupancy and the second horizontal glass occupancy of each of the plurality of central insulating layers 11. Therefore, the double-sided metal-clad laminate 1 has improved dimensional stability. Further, as the plurality of central insulating layers 11, an insulating layer including a glass cloth widely used for the printed wiring board 2 can be used, so that the cost increase of the double-sided metal-clad laminate 1 can be reduced.
 本実施の形態の両面金属張積層板1では、積層体10の厚さtは、1.0mm以上である。積層体10の厚さtが増加するにつれて、両面金属張積層板1を曲げたときに、セラミックコンデンサ30に印加される応力は増加する。金属層21に接触する外側絶縁層12の第1縦方向ガラス占有率及び第1横方向ガラス占有率が20%以下であるため、積層体10の厚さtが1.0mm以上であっても、両面金属張積層板1に対するセラミックコンデンサ30の配置方向にかかわらず、セラミックコンデンサ30にクラックが発生することが抑制され得る。 In the double-sided metal-clad laminate 1 of the present embodiment, the thickness t of the laminate 10 is 1.0 mm or more. As the thickness t of the laminate 10 increases, the stress applied to the ceramic capacitor 30 increases when the double-sided metal-clad laminate 1 is bent. Since the first longitudinal glass occupancy rate and the first horizontal glass occupancy rate of the outer insulating layer 12 in contact with the metal layer 21 are 20% or less, even if the thickness t of the laminated body 10 is 1.0 mm or more. Regardless of the arrangement direction of the ceramic capacitor 30 with respect to the double-sided metal-clad laminate 1, cracks in the ceramic capacitor 30 can be suppressed.
 本実施の形態の両面金属張積層板1では、第1ガラスクロス6の縦糸6a及び横糸6bに含まれる第1ガラスフィラメントの第1径は、第2ガラスクロス8の縦糸8a及び横糸8bに含まれる第2ガラスフィラメントの第2径よりも小さい。そのため、外側絶縁層12の各々の第1縦方向ガラス占有率を、複数の中央絶縁層11の各々の第2縦方向ガラス占有率より小さくすることができ、かつ、外側絶縁層12の各々の第1横方向ガラス占有率を、複数の中央絶縁層11の各々の第2横方向ガラス占有率より小さくすることができる。両面金属張積層板1に対するセラミックコンデンサ30の配置方向にかかわらず、セラミックコンデンサ30にクラックが発生することが抑制され得る。 In the double-sided metal-clad laminate 1 of the present embodiment, the first diameter of the first glass filament contained in the warp 6a and the weft 6b of the first glass cloth 6 is included in the warp 8a and the weft 8b of the second glass cloth 8. It is smaller than the second diameter of the second glass filament. Therefore, the first longitudinal glass occupancy of each of the outer insulating layers 12 can be made smaller than the second longitudinal glass occupancy of each of the plurality of central insulating layers 11, and each of the outer insulating layers 12 can be made smaller. The occupancy of the first lateral glass can be made smaller than the occupancy of the second lateral glass of each of the plurality of central insulating layers 11. It is possible to suppress the occurrence of cracks in the ceramic capacitor 30 regardless of the arrangement direction of the ceramic capacitor 30 with respect to the double-sided metal-clad laminate 1.
 本実施の形態の両面金属張積層板1では、第1ガラスクロス6の第1厚さは、第2ガラスクロス8の第2厚さよりも小さい。そのため、外側絶縁層12の各々の第1縦方向ガラス占有率を、複数の中央絶縁層11の各々の第2縦方向ガラス占有率より小さくすることができ、かつ、外側絶縁層12の各々の第1横方向ガラス占有率を、複数の中央絶縁層11の各々の第2横方向ガラス占有率より小さくすることができる。両面金属張積層板1に対するセラミックコンデンサ30の配置方向にかかわらず、セラミックコンデンサ30にクラックが発生することが抑制され得る。 In the double-sided metal-clad laminate 1 of the present embodiment, the first thickness of the first glass cloth 6 is smaller than the second thickness of the second glass cloth 8. Therefore, the first longitudinal glass occupancy of each of the outer insulating layers 12 can be made smaller than the second longitudinal glass occupancy of each of the plurality of central insulating layers 11, and each of the outer insulating layers 12 can be made smaller. The occupancy of the first lateral glass can be made smaller than the occupancy of the second lateral glass of each of the plurality of central insulating layers 11. It is possible to suppress the occurrence of cracks in the ceramic capacitor 30 regardless of the arrangement direction of the ceramic capacitor 30 with respect to the double-sided metal-clad laminate 1.
 第2ガラスクロス8の第2厚さは第1ガラスクロス6の第1厚さよりも大きいため、両面金属張積層板1は、向上された寸法安定性を有している。複数の中央絶縁層11として、プリント配線板2に広く用いられているガラスクロスを含む絶縁層を利用できるため、両面金属張積層板1のコストの増加が少なくすむ。 Since the second thickness of the second glass cloth 8 is larger than the first thickness of the first glass cloth 6, the double-sided metal-clad laminate 1 has improved dimensional stability. Since an insulating layer including a glass cloth widely used for the printed wiring board 2 can be used as the plurality of central insulating layers 11, the cost increase of the double-sided metal-clad laminate 1 can be reduced.
 本実施の形態の両面金属張積層板1では、第2ガラスクロス8は、IPCスタイル番号7628のガラスクロスまたはIPCスタイル番号7629のガラスクロスである。第1ガラスクロス6は、IPCスタイル番号2116のガラスクロス、IPCスタイル番号3313のガラスクロス、IPCスタイル番号1080のガラスクロスまたはIPCスタイル番号1501のガラスクロスである。そのため、両面金属張積層板1に対するセラミックコンデンサ30の配置方向にかかわらず、セラミックコンデンサ30にクラックが発生することが抑制され得る。 In the double-sided metal-clad laminate 1 of the present embodiment, the second glass cloth 8 is a glass cloth of IPC style number 7628 or a glass cloth of IPC style number 7629. The first glass cloth 6 is a glass cloth of IPC style number 2116, a glass cloth of IPC style number 3313, a glass cloth of IPC style number 1080, or a glass cloth of IPC style number 1501. Therefore, it is possible to suppress the occurrence of cracks in the ceramic capacitor 30 regardless of the arrangement direction of the ceramic capacitor 30 with respect to the double-sided metal-clad laminate 1.
 本実施の形態の両面金属張積層板1では、第1ガラスクロス6の縦糸6a及び横糸6bは、アルカリ成分の含有率が1%以下であるEガラス、Sガラス、TガラスまたはNEガラスで形成されている。第2ガラスクロス8の縦糸8a及び横糸8bは、アルカリ成分の含有率が1%以下であるEガラス、Sガラス、TガラスまたはNEガラスで形成されている。そのため、両面金属張積層板1に対するセラミックコンデンサ30の配置方向にかかわらず、セラミックコンデンサ30にクラックが発生することが抑制され得る。 In the double-sided metal-clad laminate 1 of the present embodiment, the warp threads 6a and weft threads 6b of the first glass cloth 6 are formed of E glass, S glass, T glass or NE glass having an alkaline component content of 1% or less. Has been done. The warp 8a and the weft 8b of the second glass cloth 8 are made of E glass, S glass, T glass or NE glass having an alkaline component content of 1% or less. Therefore, it is possible to suppress the occurrence of cracks in the ceramic capacitor 30 regardless of the arrangement direction of the ceramic capacitor 30 with respect to the double-sided metal-clad laminate 1.
 本実施の形態の両面金属張積層板1では、第2ガラスクロス8の縦糸8a及び横糸8bは、ガラス繊維の種類において、第1ガラスクロス6の縦糸6a及び横糸6bと同じである。第2絶縁樹脂部材9は、樹脂の種類において、第1絶縁樹脂部材7と同じである。そのため、両面金属張積層板1は、より容易にかつより低コストで製造され得る構造を備えている。 In the double-sided metal-clad laminate 1 of the present embodiment, the warp 8a and the weft 8b of the second glass cloth 8 are the same as the warp 6a and the weft 6b of the first glass cloth 6 in the type of glass fiber. The second insulating resin member 9 is the same as the first insulating resin member 7 in the type of resin. Therefore, the double-sided metal-clad laminate 1 has a structure that can be manufactured more easily and at a lower cost.
 本実施の形態のプリント配線板2は、両面金属張積層板1を備える。金属層21,28は、第1パッド22と、第1パッド22から離間された第2パッド24と、第1パッド22に接続されている第1引出配線23と、第2パッド24に接続されている第2引出配線25とを含む。第1パッド22の幅W2は、0.4mm以下である。第2パッド24の幅W3は、0.4mm以下である。そのため、プリント配線板2(両面金属張積層板1)に対する0603以下のサイズを有するセラミックコンデンサ30の配置方向にかかわらず、0603以下のサイズを有するセラミックコンデンサ30にクラックが発生することが抑制され得る。 The printed wiring board 2 of the present embodiment includes a double-sided metal-clad laminate 1. The metal layers 21 and 28 are connected to the first pad 22, the second pad 24 separated from the first pad 22, the first lead wiring 23 connected to the first pad 22, and the second pad 24. The second lead-out wiring 25 is included. The width W 2 of the first pad 22 is 0.4 mm or less. The width W 3 of the second pad 24 is 0.4 mm or less. Therefore, cracks can be suppressed in the ceramic capacitor 30 having a size of 0603 or less regardless of the arrangement direction of the ceramic capacitor 30 having a size of 0603 or less with respect to the printed wiring board 2 (double-sided metal-clad laminate 1). ..
 本実施の形態のプリント配線板2では、第1引出配線23は、第2パッド24から遠位する第1パッド22の第1縁から引き出されている。第2引出配線25は、第1パッド22から遠位する第2パッド24の第2縁から引き出されている。そのため、第1パッド22及び第2パッド24からの配線(第1引出配線23、第2引出配線25)の引出構造が単純化されつつ、プリント配線板2(両面金属張積層板1)に対する0603以下のサイズを有するセラミックコンデンサ30の配置方向にかかわらず、0603以下のサイズを有するセラミックコンデンサ30にクラックが発生することが抑制され得る。 In the printed wiring board 2 of the present embodiment, the first lead-out wiring 23 is drawn out from the first edge of the first pad 22 distal to the second pad 24. The second lead-out wire 25 is drawn out from the second edge of the second pad 24 distal to the first pad 22. Therefore, while simplifying the drawer structure of the wiring (first drawer wiring 23, second drawer wiring 25) from the first pad 22 and the second pad 24, 0603 with respect to the printed wiring board 2 (double-sided metal-clad laminate 1). Regardless of the arrangement direction of the ceramic capacitor 30 having the following size, it is possible to suppress the occurrence of cracks in the ceramic capacitor 30 having the size of 0603 or less.
 本実施の形態のプリント配線装置3は、プリント配線板2と、第1パッド22及び第2パッド24に接合されているセラミックコンデンサ30とを備える。セラミックコンデンサ30は、0.6mm以下の長さL1と、0.3mm以下の幅W1とを有している。そのため、プリント配線板2(両面金属張積層板1)に対する0603以下のサイズを有するセラミックコンデンサ30の配置方向にかかわらず、0603以下のサイズを有するセラミックコンデンサ30にクラックが発生することが抑制され得る。 The printed wiring device 3 of the present embodiment includes a printed wiring board 2 and a ceramic capacitor 30 joined to the first pad 22 and the second pad 24. The ceramic capacitor 30 has a length L 1 of 0.6 mm or less and a width W 1 of 0.3 mm or less. Therefore, cracks can be suppressed in the ceramic capacitor 30 having a size of 0603 or less regardless of the arrangement direction of the ceramic capacitor 30 having a size of 0603 or less with respect to the printed wiring board 2 (double-sided metal-clad laminate 1). ..
 実施の形態2.
 図7を参照して、実施の形態2の多層金属張積層板1bを説明する。本実施の形態の多層金属張積層板1bは、実施の形態1の両面金属張積層板1と同様の構成を備えるが、主に以下の点で異なる。
Embodiment 2.
The multilayer metal-clad laminate 1b of the second embodiment will be described with reference to FIG. 7. The multilayer metal-clad laminate 1b of the present embodiment has the same configuration as the double-sided metal-clad laminate 1 of the first embodiment, but differs mainly in the following points.
 多層金属張積層板1bは、積層体10の内部に設けられている内部金属層51,52をさらに備える。本明細書において、多層金属張積層板1bは、三層以上の金属層(金属層21,28及び内部金属層51,52)を有する金属張積層板を意味する。二層の金属層を有する金属張積層板は、多層金属張積層板1bではない。 The multilayer metal-clad laminate 1b further includes internal metal layers 51 and 52 provided inside the laminate 10. In the present specification, the multilayer metal-clad laminate 1b means a metal-clad laminate having three or more metal layers (metal layers 21, 28 and internal metal layers 51, 52). The metal-clad laminate having two metal layers is not the multilayer metal-clad laminate 1b.
 内部金属層51,52の層数は、一以上である。内部金属層51,52の層数は、偶数であってもよい。内部金属層51,52は、例えば、銅箔のような金属箔で形成されている。内部金属層51,52を含む積層体10は、積層体10の厚さ方向において線対称な層構造を有してもよい。 The number of internal metal layers 51 and 52 is one or more. The number of inner metal layers 51 and 52 may be an even number. The inner metal layers 51 and 52 are formed of, for example, a metal foil such as a copper foil. The laminated body 10 including the internal metal layers 51 and 52 may have a layer structure that is line-symmetrical in the thickness direction of the laminated body 10.
 図4及び図5を参照して、実施の形態2のプリント配線板2及びプリント配線装置3を説明する。本実施の形態のプリント配線板2及びプリント配線装置3は、実施の形態1のプリント配線板2及びプリント配線装置3と同様の構成を備えているが、両面金属張積層板1に代えて、多層金属張積層板1bを備えている点で異なっている。プリント配線板2は、多層プリント配線板である。本明細書において、多層プリント配線板は、三層以上の金属層(金属層21,28及び内部金属層51,52)を有するプリント配線板を意味する。言い換えると、二層以下の金属層を有するプリント配線板は、本明細書の多層プリント配線板ではない。 The printed wiring board 2 and the printed wiring device 3 of the second embodiment will be described with reference to FIGS. 4 and 5. The printed wiring board 2 and the printed wiring device 3 of the present embodiment have the same configurations as the printed wiring board 2 and the printed wiring device 3 of the first embodiment, but instead of the double-sided metal-clad laminate 1, It differs in that it is provided with a multilayer metal-clad laminate 1b. The printed wiring board 2 is a multilayer printed wiring board. In the present specification, the multilayer printed wiring board means a printed wiring board having three or more metal layers (metal layers 21, 28 and internal metal layers 51, 52). In other words, a printed wiring board having two or less metal layers is not the multilayer printed wiring board of the present specification.
 本実施の形態の多層金属張積層板1b、プリント配線板2及びプリント配線装置3は、実施の形態1の両面金属張積層板1、プリント配線板2及びプリント配線装置3と同様の効果を有する。 The multilayer metal-clad laminate 1b, the printed wiring board 2, and the printed wiring device 3 of the present embodiment have the same effects as the double-sided metal-clad laminate 1, the printed wiring board 2, and the printed wiring device 3 of the first embodiment. ..
 例えば、本実施の形態のプリント配線板2は、複数の中央絶縁層11と、複数の中央絶縁層11の両側に配置された外側絶縁層12とが互いに積層されている積層体10と、積層体10の両側に設けられている金属層21,28と、積層体10の内部に設けられている内部金属層51,52とを備える。外側絶縁層12は、各々、第1ガラスクロス6と、第1ガラスクロス6に含浸されておりかつ第1ガラスクロス6を覆っている第1絶縁樹脂部材7とを含む。複数の中央絶縁層11は、各々、第2ガラスクロス8と、第2ガラスクロス8に含浸されておりかつ第2ガラスクロス8を覆っている第2絶縁樹脂部材9とを含む。外側絶縁層12の各々の第1縦方向ガラス占有率は、20%以下である。外側絶縁層12の各々の第1横方向ガラス占有率は、20%以下である。第1縦方向ガラス占有率及び第1横方向ガラス占有率は、ともに、複数の中央絶縁層11の各々の第2縦方向ガラス占有率及び第2横方向ガラス占有率のうち大きい方よりも小さい。第1縦方向ガラス占有率は、第1ガラスクロス6の縦糸6aの延在方向(縦方向、y方向)に垂直な断面(xz面)における、第1ガラスクロス6の縦糸6aの面積割合である。第1横方向ガラス占有率は、第1ガラスクロス6の横糸6bの延在方向(横方向、x方向)に垂直な断面(yz面)における、第1ガラスクロス6の横糸6bの面積割合である。第2縦方向ガラス占有率は、第2ガラスクロス8の縦糸8aの延在方向(縦方向、y方向)に垂直な断面(xz面)における、第2ガラスクロス8の縦糸8aの面積割合である。第2横方向ガラス占有率は、第2ガラスクロス8の横糸8bの延在方向(横方向、x方向)に垂直な断面(xz面)における、第2ガラスクロス8の横糸8bの面積割合である。積層体10の厚さは、1.0mm以上である。金属層21,28は、第1パッド22と、第1パッド22から離間された第2パッド24と、第1パッド22に接続されている第1引出配線23と、第2パッド24に接続されている第2引出配線25とを含む。第1パッド22の幅W2は、0.4mm以下である。第2パッド24の幅W3は、0.4mm以下である。 For example, the printed wiring board 2 of the present embodiment is laminated with a laminate 10 in which a plurality of central insulating layers 11 and outer insulating layers 12 arranged on both sides of the plurality of central insulating layers 11 are laminated to each other. The metal layers 21 and 28 provided on both sides of the body 10 and the internal metal layers 51 and 52 provided inside the laminated body 10 are provided. The outer insulating layer 12 includes a first glass cloth 6 and a first insulating resin member 7 impregnated in the first glass cloth 6 and covering the first glass cloth 6, respectively. Each of the plurality of central insulating layers 11 includes a second glass cloth 8 and a second insulating resin member 9 which is impregnated in the second glass cloth 8 and covers the second glass cloth 8. The first longitudinal glass occupancy of each of the outer insulating layers 12 is 20% or less. The first lateral glass occupancy of each of the outer insulating layers 12 is 20% or less. The first longitudinal glass occupancy and the first transverse glass occupancy are both smaller than the larger of the second longitudinal glass occupancy and the second transverse glass occupancy of each of the plurality of central insulating layers 11. .. The first warp glass occupancy is the area ratio of the warp 6a of the first glass cloth 6 in the cross section (xz plane) perpendicular to the extending direction (longitudinal direction, y direction) of the warp 6a of the first glass cloth 6. is there. The first weft glass occupancy is the area ratio of the weft 6b of the first glass cloth 6 in the cross section (yz plane) perpendicular to the extending direction (horizontal direction, x direction) of the weft 6b of the first glass cloth 6. is there. The second warp glass occupancy is the area ratio of the warp 8a of the second glass cloth 8 in the cross section (xz plane) perpendicular to the extending direction (longitudinal direction, y direction) of the warp 8a of the second glass cloth 8. is there. The second weft glass occupancy is the area ratio of the weft 8b of the second glass cloth 8 in the cross section (xz plane) perpendicular to the extending direction (horizontal direction, x direction) of the weft 8b of the second glass cloth 8. is there. The thickness of the laminate 10 is 1.0 mm or more. The metal layers 21 and 28 are connected to the first pad 22, the second pad 24 separated from the first pad 22, the first lead wiring 23 connected to the first pad 22, and the second pad 24. The second lead-out wiring 25 is included. The width W 2 of the first pad 22 is 0.4 mm or less. The width W 3 of the second pad 24 is 0.4 mm or less.
 金属層21に接触する外側絶縁層12の第1縦方向ガラス占有率及び第1横方向ガラス占有率を20%以下に減少させることによって、プリント配線板2を曲げたときに、セラミックコンデンサ30に印加される応力を減少させることができる。こうして、プリント配線板2に対するセラミックコンデンサ30の配置方向にかかわらず、セラミックコンデンサ30にクラックが発生することが抑制され得る。 By reducing the first longitudinal glass occupancy and the first lateral glass occupancy of the outer insulating layer 12 in contact with the metal layer 21 to 20% or less, when the printed wiring board 2 is bent, the ceramic capacitor 30 is formed. The applied stress can be reduced. In this way, cracks in the ceramic capacitor 30 can be suppressed regardless of the arrangement direction of the ceramic capacitor 30 with respect to the printed wiring board 2.
 本実施の形態のプリント配線板2では、第1ガラスクロス6の縦糸6a及び横糸6bは、アルカリ成分の含有率が1%以下であるEガラス、Sガラス、TガラスまたはNEガラスで形成されている。第2ガラスクロス8の縦糸8a及び横糸8bは、アルカリ成分の含有率が1%以下であるEガラス、Sガラス、TガラスまたはNEガラスで形成されている。そのため、プリント配線板2に対するセラミックコンデンサ30の配置方向にかかわらず、セラミックコンデンサ30にクラックが発生することが抑制され得る。 In the printed wiring board 2 of the present embodiment, the warp threads 6a and weft threads 6b of the first glass cloth 6 are formed of E glass, S glass, T glass or NE glass having an alkaline component content of 1% or less. There is. The warp 8a and the weft 8b of the second glass cloth 8 are made of E glass, S glass, T glass or NE glass having an alkaline component content of 1% or less. Therefore, it is possible to suppress the occurrence of cracks in the ceramic capacitor 30 regardless of the arrangement direction of the ceramic capacitor 30 with respect to the printed wiring board 2.
 本実施の形態のプリント配線板2では、第2ガラスクロス8の縦糸8a及び横糸8bは、ガラス繊維の種類において、第1ガラスクロス6の縦糸6a及び横糸6bと同じである。第2絶縁樹脂部材9は、樹脂の種類において、第1絶縁樹脂部材7と同じである。そのため、プリント配線板2は、より容易にかつより低コストで製造され得る構造を備えている。 In the printed wiring board 2 of the present embodiment, the warp 8a and the weft 8b of the second glass cloth 8 are the same as the warp 6a and the weft 6b of the first glass cloth 6 in the type of glass fiber. The second insulating resin member 9 is the same as the first insulating resin member 7 in the type of resin. Therefore, the printed wiring board 2 has a structure that can be manufactured more easily and at a lower cost.
 今回開示された実施の形態1及び実施の形態2はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した説明ではなく請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることを意図される。 It should be considered that the first and second embodiments disclosed this time are exemplary in all respects and not restrictive. The scope of the present disclosure is shown by the scope of claims rather than the above description, and is intended to include all modifications within the meaning and scope of the claims.
 1 両面金属張積層板、1b 多層金属張積層板、2 プリント配線板、3 プリント配線装置、6 第1ガラスクロス、6a,8a 縦糸、6b,8b 横糸、7 第1絶縁樹脂部材、8 第2ガラスクロス、9 第2絶縁樹脂部材、10 積層体、11 中央絶縁層、12 外側絶縁層、14 頂面、15 底面、21,28 金属層、22 第1パッド、23 第1引出配線、24 第2パッド、25 第2引出配線、26 絶縁保護膜、26a 第1開口、26b 第2開口、30 セラミックコンデンサ、32,33 電極、41 第2プリプレグ、42 第1プリプレグ、51,52 内部金属層。
 
1 Double-sided metal-clad laminate, 1b Multi-layer metal-clad laminate, 2 Printed wiring board, 3 Printed wiring device, 6 First glass cloth, 6a, 8a warp, 6b, 8b Weft, 7 First insulating resin member, 8 Second Glass cloth, 9 second insulating resin member, 10 laminated body, 11 central insulating layer, 12 outer insulating layer, 14 top surface, 15 bottom surface, 21,28 metal layer, 22 first pad, 23 first drawer wiring, 24th 2 pads, 25 2nd lead wiring, 26 insulation protective film, 26a 1st opening, 26b 2nd opening, 30 ceramic capacitors, 32, 33 electrodes, 41 2nd prepreg, 42 1st prepreg, 51, 52 internal metal layers.

Claims (13)

  1.  複数の中央絶縁層と、前記複数の中央絶縁層の両側に配置された外側絶縁層とが互いに積層されている積層体と、
     前記積層体の両側に設けられている金属層とを備え、
     前記外側絶縁層は、各々、第1ガラスクロスと、前記第1ガラスクロスに含浸されておりかつ前記第1ガラスクロスを覆っている第1絶縁樹脂部材とを含み、
     前記複数の中央絶縁層は、各々、第2ガラスクロスと、前記第2ガラスクロスに含浸されておりかつ前記第2ガラスクロスを覆っている第2絶縁樹脂部材とを含み、
     前記外側絶縁層の各々の第1縦方向ガラス占有率は、20%以下であり、
     前記外側絶縁層の各々の第1横方向ガラス占有率は、20%以下であり、
     前記第1縦方向ガラス占有率及び前記第1横方向ガラス占有率は、ともに、前記複数の中央絶縁層の各々の第2縦方向ガラス占有率及び第2横方向ガラス占有率のうち大きい方よりも小さく、
     前記第1縦方向ガラス占有率は、前記第1ガラスクロスの縦糸の延在方向に垂直な断面における、前記第1ガラスクロスの前記縦糸の面積割合であり、
     前記第1横方向ガラス占有率は、前記第1ガラスクロスの横糸の延在方向に垂直な断面における、前記第1ガラスクロスの前記横糸の面積割合であり、
     前記第2縦方向ガラス占有率は、前記第2ガラスクロスの縦糸の延在方向に垂直な断面における、前記第2ガラスクロスの前記縦糸の面積割合であり、
     前記第2横方向ガラス占有率は、前記第2ガラスクロスの横糸の延在方向に垂直な断面における、前記第2ガラスクロスの前記横糸の面積割合である、両面金属張積層板。
    A laminate in which a plurality of central insulating layers and outer insulating layers arranged on both sides of the plurality of central insulating layers are laminated to each other.
    It is provided with metal layers provided on both sides of the laminate.
    Each of the outer insulating layers includes a first glass cloth and a first insulating resin member impregnated in the first glass cloth and covering the first glass cloth.
    Each of the plurality of central insulating layers includes a second glass cloth and a second insulating resin member impregnated in the second glass cloth and covering the second glass cloth.
    The first longitudinal glass occupancy of each of the outer insulating layers is 20% or less.
    The first lateral glass occupancy of each of the outer insulating layers is 20% or less.
    Both the first longitudinal glass occupancy rate and the first lateral glass occupancy rate are larger than the larger of the second longitudinal glass occupancy rate and the second lateral glass occupancy rate of each of the plurality of central insulating layers. Also small
    The first warp glass occupancy is the area ratio of the warp of the first glass cloth in the cross section perpendicular to the extending direction of the warp of the first glass cloth.
    The first weft glass occupancy is the area ratio of the weft of the first glass cloth in the cross section perpendicular to the extending direction of the weft of the first glass cloth.
    The second warp glass occupancy is the area ratio of the warp of the second glass cloth in the cross section perpendicular to the extending direction of the warp of the second glass cloth.
    The double-sided metal-clad laminate, wherein the second transverse glass occupancy is the area ratio of the weft of the second glass cloth in a cross section perpendicular to the extending direction of the weft of the second glass cloth.
  2.  前記積層体の厚さは、1.0mm以上である、請求項1に記載の両面金属張積層板。 The double-sided metal-clad laminate according to claim 1, wherein the thickness of the laminate is 1.0 mm or more.
  3.  前記第1ガラスクロスの前記縦糸及び前記横糸に含まれる第1ガラスフィラメントの第1径は、前記第2ガラスクロスの前記縦糸及び前記横糸に含まれる第2ガラスフィラメントの第2径よりも小さい、請求項1または請求項2に記載の両面金属張積層板。 The first diameter of the warp and the first glass filament contained in the weft of the first glass cloth is smaller than the second diameter of the second glass filament contained in the warp and the weft of the second glass cloth. The double-sided metal-clad laminate according to claim 1 or 2.
  4.  前記第1ガラスクロスの第1厚さは、前記第2ガラスクロスの第2厚さよりも小さい、請求項1から請求項3のいずれか一項に記載の両面金属張積層板。 The double-sided metal-clad laminate according to any one of claims 1 to 3, wherein the first thickness of the first glass cloth is smaller than the second thickness of the second glass cloth.
  5.  前記第2ガラスクロスは、IPCスタイル番号7628のガラスクロスまたはIPCスタイル番号7629のガラスクロスであり、
     前記第1ガラスクロスは、IPCスタイル番号2116のガラスクロス、IPCスタイル番号3313のガラスクロス、IPCスタイル番号1080のガラスクロスまたはIPCスタイル番号1501のガラスクロスである、請求項1から請求項4のいずれか一項に記載の両面金属張積層板。
    The second glass cloth is a glass cloth of IPC style number 7628 or a glass cloth of IPC style number 7629.
    The first glass cloth is any of claims 1 to 4, wherein the first glass cloth is a glass cloth of IPC style number 2116, a glass cloth of IPC style number 3313, a glass cloth of IPC style number 1080, or a glass cloth of IPC style number 1501. The double-sided metal-clad laminate according to item 1.
  6.  前記第1ガラスクロスの前記縦糸及び前記横糸は、アルカリ成分の含有率が1%以下であるEガラス、Sガラス、TガラスまたはNEガラスで形成されており、
     前記第2ガラスクロスの前記縦糸及び前記横糸は、アルカリ成分の含有率が1%以下であるEガラス、Sガラス、TガラスまたはNEガラスで形成されている、請求項1から請求項5のいずれか一項に記載の両面金属張積層板。
    The warp and weft of the first glass cloth are made of E glass, S glass, T glass or NE glass having an alkaline component content of 1% or less.
    Any of claims 1 to 5, wherein the warp and weft of the second glass cloth are made of E glass, S glass, T glass or NE glass having an alkaline component content of 1% or less. The double-sided metal-clad laminate described in item 1.
  7.  前記第2ガラスクロスの前記縦糸及び前記横糸は、ガラス繊維の種類において、前記第1ガラスクロスの前記縦糸及び前記横糸と同じであり、
     前記第2絶縁樹脂部材は、樹脂の種類において、前記第1絶縁樹脂部材と同じである、請求項1から請求項6のいずれか一項に記載の両面金属張積層板。
    The warp and weft of the second glass cloth are the same as the warp and weft of the first glass cloth in the type of glass fiber.
    The double-sided metal-clad laminate according to any one of claims 1 to 6, wherein the second insulating resin member is the same as the first insulating resin member in the type of resin.
  8.  請求項1から請求項7のいずれか一項に記載の前記両面金属張積層板を備え、
     前記金属層は、第1パッドと、前記第1パッドから離間された第2パッドと、前記第1パッドに接続されている第1引出配線と、前記第2パッドに接続されている第2引出配線とを含み、
     前記第1パッドの幅は、0.4mm以下であり、
     前記第2パッドの幅は、0.4mm以下である、プリント配線板。
    The double-sided metal-clad laminate according to any one of claims 1 to 7 is provided.
    The metal layer includes a first pad, a second pad separated from the first pad, a first lead-out wiring connected to the first pad, and a second drawer connected to the second pad. Including wiring
    The width of the first pad is 0.4 mm or less.
    A printed wiring board having a width of 0.4 mm or less of the second pad.
  9.  前記第1引出配線は、前記第2パッドから遠位する前記第1パッドの第1縁から引き出されており、
     前記第2引出配線は、前記第1パッドから遠位する前記第2パッドの第2縁から引き出されている、請求項8に記載のプリント配線板。
    The first lead-out wiring is drawn out from the first edge of the first pad distal to the second pad.
    The printed wiring board according to claim 8, wherein the second lead-out wiring is drawn out from the second edge of the second pad distal to the first pad.
  10.  請求項8または請求項9に記載の前記プリント配線板と、
     前記第1パッド及び前記第2パッドに接合されているセラミックコンデンサとを備え、
     前記セラミックコンデンサは、0.6mm以下の長さと、0.3mm以下の幅を有している、プリント配線装置。
    The printed wiring board according to claim 8 or 9.
    A ceramic capacitor bonded to the first pad and the second pad is provided.
    The ceramic capacitor is a printed wiring device having a length of 0.6 mm or less and a width of 0.3 mm or less.
  11.  複数の中央絶縁層と、前記複数の中央絶縁層の両側に配置された外側絶縁層とが互いに積層されている積層体と、
     前記積層体の両側に設けられている金属層と、
     前記積層体の内部に設けられている内部金属層とを備え、
     前記外側絶縁層は、各々、第1ガラスクロスと、前記第1ガラスクロスに含浸されておりかつ前記第1ガラスクロスを覆っている第1絶縁樹脂部材とを含み、
     前記複数の中央絶縁層は、各々、第2ガラスクロスと、前記第2ガラスクロスに含浸されておりかつ前記第2ガラスクロスを覆っている第2絶縁樹脂部材とを含み、
     前記外側絶縁層の各々の第1縦方向ガラス占有率は、20%以下であり、
     前記外側絶縁層の各々の第1横方向ガラス占有率は、20%以下であり、
     前記第1縦方向ガラス占有率及び前記第1横方向ガラス占有率は、ともに、前記複数の中央絶縁層の各々の第2縦方向ガラス占有率及び第2横方向ガラス占有率のうち大きい方よりも小さく、
     前記第1縦方向ガラス占有率は、前記第1ガラスクロスの縦糸の延在方向に垂直な断面における、前記第1ガラスクロスの前記縦糸の面積割合であり、
     前記第1横方向ガラス占有率は、前記第1ガラスクロスの横糸の延在方向に垂直な断面における、前記第1ガラスクロスの前記横糸の面積割合であり、
     前記第2縦方向ガラス占有率は、前記第2ガラスクロスの縦糸の延在方向に垂直な断面における、前記第2ガラスクロスの前記縦糸の面積割合であり、
     前記第2横方向ガラス占有率は、前記第2ガラスクロスの横糸の延在方向に垂直な断面における、前記第2ガラスクロスの前記横糸の面積割合である、
     前記積層体の厚さは、1.0mm以上であり、
     前記金属層は、第1パッドと、前記第1パッドから離間された第2パッドと、前記第1パッドに接続されている第1引出配線と、前記第2パッドに接続されている第2引出配線とを含み、
     前記第1パッドの幅は、0.4mm以下であり、
     前記第2パッドの幅は、0.4mm以下である、プリント配線板。
    A laminate in which a plurality of central insulating layers and outer insulating layers arranged on both sides of the plurality of central insulating layers are laminated to each other.
    Metal layers provided on both sides of the laminate and
    It is provided with an internal metal layer provided inside the laminate.
    Each of the outer insulating layers includes a first glass cloth and a first insulating resin member impregnated in the first glass cloth and covering the first glass cloth.
    Each of the plurality of central insulating layers includes a second glass cloth and a second insulating resin member impregnated in the second glass cloth and covering the second glass cloth.
    The first longitudinal glass occupancy of each of the outer insulating layers is 20% or less.
    The first lateral glass occupancy of each of the outer insulating layers is 20% or less.
    Both the first longitudinal glass occupancy rate and the first lateral glass occupancy rate are larger than the larger of the second longitudinal glass occupancy rate and the second lateral glass occupancy rate of each of the plurality of central insulating layers. Also small
    The first warp glass occupancy is the area ratio of the warp of the first glass cloth in the cross section perpendicular to the extending direction of the warp of the first glass cloth.
    The first weft glass occupancy is the area ratio of the weft of the first glass cloth in the cross section perpendicular to the extending direction of the weft of the first glass cloth.
    The second warp glass occupancy is the area ratio of the warp of the second glass cloth in the cross section perpendicular to the extending direction of the warp of the second glass cloth.
    The second weft glass occupancy is the area ratio of the weft of the second glass cloth in the cross section perpendicular to the extending direction of the weft of the second glass cloth.
    The thickness of the laminate is 1.0 mm or more, and
    The metal layer includes a first pad, a second pad separated from the first pad, a first lead-out wiring connected to the first pad, and a second drawer connected to the second pad. Including wiring
    The width of the first pad is 0.4 mm or less.
    A printed wiring board having a width of 0.4 mm or less of the second pad.
  12.  前記第1ガラスクロスの前記縦糸及び前記横糸は、アルカリ成分の含有率が1%以下であるEガラス、Sガラス、TガラスまたはNEガラスで形成されており、
     前記第2ガラスクロスの前記縦糸及び前記横糸は、アルカリ成分の含有率が1%以下であるEガラス、Sガラス、TガラスまたはNEガラスで形成されている、請求項11に記載のプリント配線板。
    The warp and weft of the first glass cloth are made of E glass, S glass, T glass or NE glass having an alkaline component content of 1% or less.
    The printed wiring board according to claim 11, wherein the warp and weft of the second glass cloth are made of E glass, S glass, T glass or NE glass having an alkaline component content of 1% or less. ..
  13.  前記第2ガラスクロスの前記縦糸及び前記横糸は、ガラス繊維の種類において、前記第1ガラスクロスの前記縦糸及び前記横糸と同じであり、
     前記第2絶縁樹脂部材は、樹脂の種類において、前記第1絶縁樹脂部材と同じである、請求項11または請求項12に記載のプリント配線板。
    The warp and weft of the second glass cloth are the same as the warp and weft of the first glass cloth in the type of glass fiber.
    The printed wiring board according to claim 11, wherein the second insulating resin member is the same as the first insulating resin member in the type of resin.
PCT/JP2020/029683 2019-08-26 2020-08-03 Two-sided metal-clad layered plate, printed wiring substrate, and printed wiring device WO2021039299A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021542678A JP7250149B2 (en) 2019-08-26 2020-08-03 Double-sided metal-clad laminates, printed wiring boards, printed wiring devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-153521 2019-08-26
JP2019153521 2019-08-26

Publications (1)

Publication Number Publication Date
WO2021039299A1 true WO2021039299A1 (en) 2021-03-04

Family

ID=74684543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/029683 WO2021039299A1 (en) 2019-08-26 2020-08-03 Two-sided metal-clad layered plate, printed wiring substrate, and printed wiring device

Country Status (2)

Country Link
JP (1) JP7250149B2 (en)
WO (1) WO2021039299A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5911244A (en) * 1982-07-10 1984-01-20 旭シユエ−ベル株式会社 Laminated board containing glass textile
JP2001073249A (en) * 1999-08-31 2001-03-21 Unitika Glass Fiber Co Ltd Glass cloth for printed circuit board
JP2003211568A (en) * 2002-01-22 2003-07-29 Asahi Schwebel Co Ltd Glass cloth formed with conductor pattern, prepreg and multilayer board
JP2015023134A (en) * 2013-07-18 2015-02-02 キヤノン株式会社 Printed circuit board
JP2015099815A (en) * 2013-11-18 2015-05-28 株式会社東芝 Electronic apparatus
WO2015079820A1 (en) * 2013-11-29 2015-06-04 日東紡績株式会社 Glass fiber fabric-resin composition laminate
WO2016117320A1 (en) * 2015-01-21 2016-07-28 日本電気株式会社 Wiring board and method for designing same
CN205546197U (en) * 2016-01-31 2016-08-31 深圳市博敏兴电子有限公司 High thick copper circuit board of multilayer
CN208962621U (en) * 2018-07-11 2019-06-11 金安国纪科技(珠海)有限公司 A kind of richness resin copper-clad plate

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5911244A (en) * 1982-07-10 1984-01-20 旭シユエ−ベル株式会社 Laminated board containing glass textile
JP2001073249A (en) * 1999-08-31 2001-03-21 Unitika Glass Fiber Co Ltd Glass cloth for printed circuit board
JP2003211568A (en) * 2002-01-22 2003-07-29 Asahi Schwebel Co Ltd Glass cloth formed with conductor pattern, prepreg and multilayer board
JP2015023134A (en) * 2013-07-18 2015-02-02 キヤノン株式会社 Printed circuit board
JP2015099815A (en) * 2013-11-18 2015-05-28 株式会社東芝 Electronic apparatus
WO2015079820A1 (en) * 2013-11-29 2015-06-04 日東紡績株式会社 Glass fiber fabric-resin composition laminate
WO2016117320A1 (en) * 2015-01-21 2016-07-28 日本電気株式会社 Wiring board and method for designing same
CN205546197U (en) * 2016-01-31 2016-08-31 深圳市博敏兴电子有限公司 High thick copper circuit board of multilayer
CN208962621U (en) * 2018-07-11 2019-06-11 金安国纪科技(珠海)有限公司 A kind of richness resin copper-clad plate

Also Published As

Publication number Publication date
JP7250149B2 (en) 2023-03-31
JPWO2021039299A1 (en) 2021-03-04

Similar Documents

Publication Publication Date Title
JP3324916B2 (en) Glass cloth, prepreg, laminated board and multilayer printed wiring board
JP5048307B2 (en) Composite fabric and printed wiring board
JP4536010B2 (en) Double woven glass cloth, and prepreg and printed wiring board substrate using the glass cloth
KR20090108834A (en) Method of manufacturing insulating sheet and laminated plate clad with metal foil and printed circuit board and printed circuit board thereof using the same
JP5399995B2 (en) Multilayer printed wiring board and multilayer metal-clad laminate
CN106231810A (en) A kind of novel busbar and preparation method thereof
WO2019022101A1 (en) Manufacturing method for multilayer printed wiring board
KR101056898B1 (en) Multilayer printed circuit board and its manufacturing method
WO2021039299A1 (en) Two-sided metal-clad layered plate, printed wiring substrate, and printed wiring device
JP2744866B2 (en) Laminates for printed circuit boards
JPH11298153A (en) Multilayered printed circuit board
CN111696930A (en) Embedded element packaging structure, embedded surface packaging substrate and manufacturing method thereof
JP4467449B2 (en) Substrate reinforcing fiber fabric, prepreg using the reinforcing fiber fabric, and printed wiring board substrate
KR102149793B1 (en) Printed circuit board and control method of warpage of printed circuit board
KR102419891B1 (en) Circuit board and semiconductor package using the same
JP6497625B2 (en) Wiring board manufacturing method
JP2006348225A (en) Composite, prepreg, metallic foil clad laminate and printed wiring substrate using the same, and method for manufacturing printed wiring substrate
US11285700B2 (en) Multilayer laminate and method for producing multilayer printed wiring board using same
JP5100429B2 (en) Manufacturing method of multilayer printed wiring board
WO2023171403A1 (en) Printed circuit board having built-in thick conductor and method for manufacturing same
JPH08216340A (en) Highly rigid copper-clad laminated plate and manufacture thereof
WO2018047613A1 (en) Printed wiring board, printed circuit board, prepreg
JP6334363B2 (en) Wiring board and manufacturing method thereof
JP3272437B2 (en) Glass fiber woven fabric and method for producing the same
JP2012129445A (en) Print wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20858637

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021542678

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20858637

Country of ref document: EP

Kind code of ref document: A1