WO2021039131A1 - レーザモジュール及びファイバレーザ装置 - Google Patents
レーザモジュール及びファイバレーザ装置 Download PDFInfo
- Publication number
- WO2021039131A1 WO2021039131A1 PCT/JP2020/026433 JP2020026433W WO2021039131A1 WO 2021039131 A1 WO2021039131 A1 WO 2021039131A1 JP 2020026433 W JP2020026433 W JP 2020026433W WO 2021039131 A1 WO2021039131 A1 WO 2021039131A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- semiconductor laser
- elements
- laser
- wavelength
- light emitted
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/094—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
- H01S3/0941—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/14—External cavity lasers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/40—Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
Definitions
- the present invention relates to a laser module and a fiber laser device, and particularly relates to a laser module that collects and outputs laser light emitted from a plurality of semiconductor laser elements.
- a laser module that collects laser light emitted from a plurality of semiconductor laser elements and outputs a high-power laser light has been known. Since the oscillation wavelength of the semiconductor laser element used in such a laser module fluctuates due to manufacturing variations and has temperature dependence, in order to stably output laser light of a desired wavelength, each of them is used. It is necessary to lock the wavelength of the laser beam output from the semiconductor laser element of the above to a specific wavelength.
- a specific wavelength stabilizing element called Volume Bragg Grating (VBG) whose refractive index changes periodically at a predetermined lattice interval is used.
- VBG Volume Bragg Grating
- a method of selectively reflecting a wavelength is known (see, for example, Patent Document 1).
- FIG. 1A is a diagram schematically showing an example of the configuration of a conventional laser module using such a VBG.
- laser light B is emitted from a plurality of semiconductor laser elements 510 on submounts 500 arranged at different heights.
- the laser beam B is collimated by the fast-axis collimating lens 520 and the slow-axis collimating lens 530, and its propagation direction is changed by 90 degrees by the mirror 540.
- the direction-changed laser beam B is condensed by the fast-axis condensing lens 550 and the slow-axis condensing lens 560 and coupled to the optical fiber 570.
- a wavelength stabilizing element (VBG) 590 is arranged between the mirror 540A located closest to the first-axis condensing lens 550, the first-axis condensing lens, and the 550.
- the wavelength stabilizing element 590 is configured to reflect a specific wavelength of the laser beam B from the mirror 540.
- an external resonator is formed between the reflecting surface of the wavelength stabilizing element 590 and the reflecting end surface of the active layer of the semiconductor laser element 510, and the narrowed wavelength laser light B'is the wavelength stabilizing element 590. Is output toward the first-axis condenser lens 550.
- the optical path lengths from the respective semiconductor laser elements 510 to the wavelength stabilizing element 590 are different.
- the optical path length from the semiconductor laser element 510A to the wavelength stabilizing element 590 is the shortest, and the optical path length from the semiconductor laser element 510F to the wavelength stabilizing element 590 is the longest.
- the difference between these optical path lengths is D max .
- Such a difference in the optical path length can cause a decrease in the coupling efficiency of the laser beam B'to the optical fiber 570.
- the long optical path length that is, the long resonator length tends to increase the waveguide loss of the external resonator and deteriorate the efficiency of the resonator.
- the present invention has been made in view of such problems of the prior art, and a first object of the present invention is to provide an inexpensive laser module capable of stably outputting a laser beam having a desired wavelength. ..
- a second object of the present invention is to provide an inexpensive fiber laser apparatus capable of stably outputting a laser beam having a desired wavelength.
- an inexpensive laser module capable of stably outputting a laser beam having a desired wavelength.
- This laser module includes an optical fiber, a plurality of semiconductor laser elements, a condenser lens that collects laser light emitted from the plurality of semiconductor laser elements and couples them to the optical fiber, and the plurality of semiconductor laser elements.
- a plurality of mirrors that reflect the laser light emitted from the corresponding semiconductor laser element and direct it toward the condenser lens, and a plurality of wavelengths that narrow the wavelength of the laser light emitted from the plurality of semiconductor laser elements. It is equipped with a stabilizing element.
- Each of the plurality of wavelength stabilizing elements is configured to narrow the wavelength of the laser light emitted from two or more different semiconductor laser elements among the plurality of semiconductor laser elements.
- an inexpensive laser module capable of stably outputting a laser beam having a desired wavelength.
- This laser module is emitted from an optical fiber, a plurality of first semiconductor laser elements, a plurality of corresponding second semiconductor laser elements among the plurality of first semiconductor laser elements, and the plurality of first semiconductor laser elements.
- a condensing lens that condenses the laser light and the laser light emitted from the plurality of second semiconductor laser elements and couples them to the optical fiber, and the laser light emitted from the plurality of first semiconductor laser elements and the above.
- a photosynthesis unit that synthesizes laser light emitted from a plurality of second semiconductor laser elements and directs them toward the condenser lens, and a photosynthesis unit that reflects laser light emitted from the plurality of second semiconductor laser elements and directs the light to the photosynthesis unit.
- a plurality of second mirrors that reflect laser light emitted from a corresponding second semiconductor laser element among the laser elements and direct them toward the auxiliary mirror, the plurality of first semiconductor laser elements, and the plurality of second semiconductor laser elements.
- Each of the plurality of wavelength stabilizing elements includes laser light emitted from one or more of the first semiconductor laser elements of the plurality of first semiconductor laser elements, and one or more of the plurality of second semiconductor laser elements. The wavelength of the laser light emitted from one or more second semiconductor laser elements corresponding to the first semiconductor laser element is narrowed.
- an inexpensive fiber laser apparatus capable of stably outputting a laser beam having a desired wavelength.
- This fiber laser apparatus includes an excitation light source including the above-mentioned laser module, and an amplification optical fiber connected to the above-mentioned optical fiber of the above-mentioned laser module and having a core to which rare earth element ions are added.
- FIG. 1A is a diagram schematically showing an example of the configuration of a conventional laser module.
- FIG. 1B is a diagram schematically showing another example of the configuration of a conventional laser module.
- FIG. 2 is a partial cross-sectional plan view schematically showing the laser module according to the first embodiment of the present invention.
- FIG. 3 is a cross-sectional view taken along the line AA of FIG.
- FIG. 4 is a graph showing the relationship between the optical path length between the wavelength stabilizing element and the semiconductor laser element and the beam width in the slow axis direction.
- FIG. 5 is a partial cross-sectional plan view schematically showing the laser module according to the second embodiment of the present invention.
- FIG. 6 is a schematic view showing an example of a fiber laser apparatus using the laser module according to the present invention.
- FIGS. 2 to 6 the same or corresponding components are designated by the same reference numerals, and duplicate description will be omitted. Further, in FIGS. 2 to 6, the scale and dimensions of each component may be exaggerated or some components may be omitted.
- FIG. 2 is a partial cross-sectional plan view schematically showing the laser module 1 according to the first embodiment of the present invention
- FIG. 3 is a cross-sectional view taken along the line AA of FIG.
- the laser module 1 includes a housing 10, a stepped pedestal 12 arranged inside the housing 10, an optical fiber 14 extending inside the housing 10, and light.
- a fiber mount 16 for fixing the fiber 14 and a cylindrical fiber holding portion 18 for holding the optical fiber 14 are included.
- the optical fiber 14 is fixed on the fiber mount 16 by an adhesive 19 or the like.
- a lid (not shown) is arranged on the upper part of the housing 10, and the internal space of the housing is sealed by the lid.
- the pedestal 12 has six step portions 12A to 12F having different heights in the Z direction, and in the present embodiment, the step portions are gradually raised from the first step portion 12A in the ⁇ X direction. 12A to 12F are formed. Each stepped portions 12A ⁇ 12F are arranged submount 20, over each of the sub-mount 20, + Y direction the semiconductor laser device 22A ⁇ 22F which emits a laser beam L A ⁇ L F is placed on the ing.
- the direction in which the laser beam is emitted from each of the semiconductor laser elements 22A to 22F toward the optical fiber 14 is referred to as the "downstream side", and the direction opposite to that. Is referred to as the "upstream side".
- a mirror 28 that changes the propagation direction of F by 90 degrees is arranged.
- the laser beam L A ⁇ L F reflected by the mirror 28 in the fast axis direction a first-axis condenser lens 32, the laser beam L a ⁇ slow axis converging lens 34 which condenses the slow axis direction is attached to the end face of the optical fiber 14 L F is disposed.
- the laser module 1 in the present embodiment has wavelength stabilizing elements (VBG) 41 to 43 whose refractive index changes periodically at predetermined lattice intervals.
- VBG wavelength stabilizing elements
- These wavelength stabilizing elements 41 to 43 are configured to reflect a specific wavelength (for example, 976 nm).
- the wavelength stabilizing element 41 is arranged on the + X direction side of the mirror 28 of the first stage portion 12A of the pedestal 12, and is arranged on the optical path of the two laser beams, that is, on the first stage portion 12A. It was located on the optical path of the laser beam L B emitted from the laser light L a and second stage of the semiconductor laser device 22B arranged in the stepped portion 12B is emitted from the semiconductor laser element 22A.
- the wavelength stabilizing element 41 is disposed on the downstream side of the slow axis collimating lens 26 and the mirror 28 on the optical path of the optical path and the laser beam L B of the laser light L A.
- the wavelength stabilizing element 42 is arranged on the + X direction side of the mirror 28 of the third stage portion 12C of the pedestal 12, and is arranged on the optical path of the two laser beams, that is, on the third stage portion 12C. It was located on the optical path of the laser beam L D emitted from the laser light L C and the semiconductor laser element 22D disposed in the stepped portion 12D of the fourth stage is emitted from the semiconductor laser device 22C. In other words, the wavelength stabilizing element 42 is disposed on the downstream side of the slow axis collimating lens 26 and the mirror 28 on the optical path of the optical path and the laser light L D of the laser beam L C.
- the wavelength stabilizing element 43 is arranged on the + X direction side of the mirror 28 of the fifth stage portion 12E of the pedestal 12, and is arranged on the optical path of the two laser beams, that is, on the fifth stage portion 12E. It was located on the optical path of the laser beam L F emitted from the laser beam emitted L E and arranged semiconductor laser device 22F on the step portion 12F of the sixth-stage from the semiconductor laser device 22E. In other words, the wavelength stabilizing element 43 is disposed on the downstream side of the slow axis collimating lens 26 and the mirror 28 on the optical path of the optical path and the laser beam L F of the laser beam L E.
- the semiconductor laser device 22A laser light L A emitted in the + Y direction from is collimated in the fast axis direction and slow axis direction by fast axis collimating lens 24 and the slow axis collimating lens 26, the mirror 28 It is turned 90 degrees and propagates in the + X direction.
- the laser light L A back toward the semiconductor laser element 22A is reflected by the wavelength stabilizing element 41, an external resonator between the reflecting end face of the active layer of the reflecting surface and the semiconductor laser device 22A having a wavelength stabilizing element 41 Is formed.
- the wavelength is narrowed laser beam L A 'is output from the wavelength stabilizing element 41 in the + X direction.
- the laser beam L B emitted from the semiconductor laser element 22B in the + Y direction propagates through the fast axis collimating lens 24 and the slow axis collimating lens 26 after passing through, by the mirror 28 in the direction of 90 degrees turning has been the + X direction, It is reflected by the wavelength stabilizing element 41.
- the laser beam L F emitted from the semiconductor laser element 22E + Y direction emitted from the laser beam L E and the semiconductor laser device 22F in the + Y direction respectively passed through the fast axis collimating lens 24 and the slow axis collimating lens 26 , 90 degrees turned by the mirror 28, propagated in the + X direction, reflected by the wavelength stabilizing element 43, and between the reflecting surface of the wavelength stabilizing element 43 and the reflecting end surface of the active layer of the semiconductor laser elements 22E and 22F.
- An external resonator is formed.
- the laser beam L E wavelength is narrowed '
- L F' is outputted from the wavelength stabilizing element 43 in the + X direction.
- the wavelength stabilizing element 41 in this embodiment is configured to narrowing the wavelength of the laser light L A, L B emitted from two different semiconductor laser device 22A, 22B
- wavelength stabilizing element 42 is configured to narrowing the wavelength of the laser light L C, L D emitted from two different semiconductor laser device 22C, 22D
- the wavelength stabilizing element 43 is configured to narrowing the wavelength of the laser beam L E, L F emitted different two semiconductor laser elements 22E, from 22F to each other.
- These wavelength stabilization laser beam wavelength is narrowed by reduction elements 41 ⁇ 43 L A ' ⁇ L F' is condensed in fast axis by fast axis converging lens 32, further by the slow axis converging lens 34 It is focused on the slow axis.
- these laser light L A ' ⁇ L F' are optically coupled to the end face of the optical fiber 14.
- FIG. 4 is a graph showing the relationship between the optical path length of the laser beam between the semiconductor laser element 510 and the wavelength stabilizing element 590 and the beam width in the slow axis direction at a distance. As shown in FIG. 4, the beam width at a distance changes depending on the optical path length between the semiconductor laser element 510 and the wavelength stabilizing element 590. As described above, in the conventional configuration shown in FIG.
- the wavelength is stable as compared with the conventional laser module shown in FIG. 1A.
- the difference in optical path length between the chemical elements 41 to 43 and the semiconductor laser elements 22A to 22F can be reduced.
- the optical path length between the wavelength stabilizing element 41 and the semiconductor laser element 22B is d 1 longer than the optical path length between the wavelength stabilizing element 41 and the semiconductor laser element 22A.
- D max the maximum value of the difference in optical path length in the conventional laser module shown in FIG. 1A.
- the wavelength stabilizing element 41 and the semiconductor laser element 22A adjacent to each other in the X direction It is preferable that the wavelength of the laser light emitted from the semiconductor laser element 22B is narrowed.
- the wavelength stabilizing element 42 is preferably configured to narrow the wavelength of the laser light emitted from the semiconductor laser element 22C and the semiconductor laser element 22D that are adjacent to each other in the X direction.
- the stabilizing element 43 is preferably configured to narrow the wavelength of the laser light emitted from the semiconductor laser element 22E and the semiconductor laser element 22F adjacent to each other in the X direction.
- each of the plurality of wavelength stabilizing elements 41-43 since each of the plurality of wavelength stabilizing elements 41-43, the wavelength of the laser beam L A ⁇ L F emitted from two different semiconductor laser elements 22A ⁇ 22F are narrowed,
- the number of wavelength stabilizing elements required can be reduced to half of the total number of semiconductor laser elements 22A to 22F, that is, three. Therefore, according to the present embodiment, the man-hours for installing the wavelength stabilizing element are reduced, so that the manufacturing cost of the laser module 1 can be suppressed.
- each of the wavelength stabilizing elements 41 to 43 is arranged on the downstream side of the slow axis collimating lens 26, the laser light reflected by the respective wavelength stabilizing elements 41 to 43 is generated.
- the slow-axis collimating lens 26 returns to the focal position of the slow-axis collimating lens 26, that is, the active layers of the semiconductor laser devices 22A to 22F. Therefore, the amount of laser light returning to the outside of the active layer of the semiconductor laser elements 22A to 22F is reduced, and an efficient external resonator can be formed.
- FIG. 5 is a partial cross-sectional plan view schematically showing the laser module 101 according to the second embodiment of the present invention.
- the laser module 101 has semiconductor laser elements 122A to 122F (second semiconductor laser element) in addition to the semiconductor laser elements 22A to 22F (first semiconductor laser element) in the first embodiment described above. That is, as shown in FIG. 5, each of the stepped portions 12A ⁇ 12F of the base 12 is disposed submount 120, on each of the sub-mount 120, the laser beam M A ⁇ M F in the -Y direction
- the semiconductor laser elements 122A to 122F that emit light are mounted.
- the semiconductor laser element 122A is arranged so as to face the semiconductor laser element 22A at the same height as the semiconductor laser element 22A, and the semiconductor laser element 122B faces the semiconductor laser element 22B at the same height as the semiconductor laser element 22B. It is arranged to do. Further, the semiconductor laser element 122C is arranged so as to face the semiconductor laser element 22C at the same height as the semiconductor laser element 22C, and the semiconductor laser element 122D is arranged at the same height as the semiconductor laser element 22D. It is arranged so as to face the. Further, the semiconductor laser element 122E is arranged so as to face the semiconductor laser element 22E at the same height as the semiconductor laser element 22E, and the semiconductor laser element 122F is arranged at the same height as the semiconductor laser element 22F. It is arranged so as to face the.
- a mirror 128 that changes the propagation direction of F by 90 degrees is arranged.
- a beam splitter 150 is arranged as a photosynthesizing unit for synthesizing and directing to the first axis condensing lens 32, and a semiconductor laser element is placed on the + X direction side of the mirror 128 on the first stage portion 12A of the pedestal 12.
- auxiliary mirror 152 which directs the beam splitter 150 reflects the laser beam emitted by M a ⁇ M F from 122A ⁇ 122F are arranged.
- a 1/2 wave plate (not shown) is arranged between the beam splitter 150 and the auxiliary mirror 152.
- an optical component such as a dichroic mirror can be used instead of the beam splitter 150 shown in the present embodiment.
- the laser module 101 in this embodiment has wavelength stabilizing elements 141 to 143 configured to reflect a specific wavelength (for example, 976 nm).
- the wavelength stabilizing element 141 is arranged on the + X direction side of the mirror 28 (first mirror) and the mirror 128 (second mirror) of the first stage portion 12A of the pedestal 12, and extends in the Y direction.
- the wavelength stabilizing element 141 four laser beam on the optical path, i.e., the laser light L A emitted from the semiconductor laser device 22A arranged in the first stage of the step portion 12A, facing the semiconductor laser device 22A the semiconductor laser element 122A laser beam L B emitted from the laser beam M a, arranged in the second stage of the stepped portion 12B the semiconductor laser device 22B emitted from the semiconductor laser element 122B that faces the semiconductor laser device 22B It is located on the optical path of the laser beam M B emitted.
- the wavelength stabilizing element 141 the optical path of the laser beam L A, the optical path of the laser beam M A, the laser beam L B of the optical path, and corresponding slow axis collimating lens in the optical path of the laser beam M B It is located downstream of 26,126 and the corresponding mirrors 28,128.
- the wavelength stabilizing element 142 is arranged on the + X direction side of the mirror 28 and the mirror 128 of the third stage portion 12C of the pedestal 12, and extends in the Y direction.
- the wavelength stabilizing element 142 four laser beam on the optical path, i.e., the laser light L C emitted from the semiconductor laser device 22C which is disposed on the step portion 12C of the third stage, facing the semiconductor laser device 22C the semiconductor laser element 122C laser light L D emitted from the semiconductor laser element 22D disposed in the laser beam M C, 4-stage stepped portion 12D which is emitted from the semiconductor laser element 122D that faces the semiconductor laser element 22D It is located on the optical path of the laser beam M D emitted.
- the wavelength stabilizing element 142, the optical path of the laser beam L C, the optical path of the laser beam M C, the optical path of the laser beam L D, and corresponding slow axis collimating lens in the optical path of the laser beam M D It is located downstream of 26,126 and the corresponding mirrors 28,128.
- the wavelength stabilizing element 143 is arranged on the + X direction side of the mirror 28 and the mirror 128 of the fifth stage portion 12E of the pedestal 12, and extends in the Y direction.
- the wavelength stabilizing element 143 four laser beam on the optical path, i.e., the laser beam L E emitted from the semiconductor laser element 22E disposed in the stepped portion 12E of the fifth stage, facing the semiconductor laser element 22E the semiconductor laser element laser beam M E emitted from 122E, 6-stage step portions 12F on the laser light L F emitted from the positioned semiconductor laser element 22F, the semiconductor laser element 122F opposite to the semiconductor laser device 22F It is located on the optical path of the laser beam M F emitted.
- the wavelength stabilizing element 143 an optical path of the laser beam L E, the optical path of the laser beam M E, the laser beam L F of the optical path, and corresponding slow axis collimating lens in the optical path of the laser beam M F It is located downstream of 26,126 and the corresponding mirrors 28,128.
- the semiconductor laser element 122B laser beam M B emitted in the -Y direction from propagates fast axis collimating lens 124 and the slow-axis collimating lens 126 after passing by the mirror 128 in the 90-degree direction change has been the + X direction
- wavelength is narrowed laser beam M B 'by the wavelength stabilizing element 141.
- the semiconductor laser element laser beam M E emitted in the -Y direction from 122E and a semiconductor laser element laser beam M F emitted in the -Y direction from 122F after passing through the first axis collimating lens 124 and the slow-axis collimating lens 126, respectively , by the mirror 128 propagates in the 90-degree direction change has been the + X direction, the laser beam M E wavelength by the wavelength stabilizing element 143 is narrowed ', M F' becomes.
- Wavelength narrowed laser beam M A ' ⁇ M F' is 90 degrees diverted by the auxiliary mirror 152 propagates in the -Y direction, after being polarized by 1/2-wave plate, the beam splitter 150 is polarization combining the laser light L a ' ⁇ L F' is outputted to the fast axis condenser lens 32 by.
- These laser light L A ' ⁇ L F' and M A ' ⁇ M F' in fast axis converging lens 32 is converged on the first axis, is focused on the slow axis further by the slow axis converging lens 34.
- these laser light L A ' ⁇ L F' and M A ' ⁇ M F' are optically coupled to the end face of the optical fiber 14.
- the wavelength stabilizing element 142 includes a laser light L C, L D emitted from the two semiconductor laser elements 22C, 22D adjacent to each other, these two semiconductor laser elements 22C, disposed 22D respectively same height two semiconductor laser elements 122C is, the laser beam M C emitted from 122D, is configured to narrowing the wavelength of M D, wavelength stabilizing element 143, two semiconductor laser elements adjacent to each other 22E, the laser beam L E emitted from 22F, L F and, the two semiconductor laser elements 22E, two semiconductor laser elements 122E disposed respectively 22F same height, the laser beam M emitted from 122F E, is configured to narrowing the wavelength of the M F.
- the wavelength is stable as compared with the conventional laser module shown in FIG. 1A.
- the difference in optical path length between the chemical elements 141 to 143 and the semiconductor laser elements 22A to 22F and 122A to 122F can be reduced. Therefore, it is possible to reduce the fluctuation of the beam width in the slow axis direction that may occur due to the difference in the optical path length of the laser beam, and as a result, it is possible to suppress the decrease in the coupling efficiency of the laser beam to the optical fiber 14. Can be done.
- each of the plurality of wavelength stabilizing elements 141 to 143 narrows the wavelength of the laser light emitted from the four different semiconductor laser elements, so that the wavelength stabilizing element is required.
- the laser beam M A is emitted from the semiconductor laser element 22A ⁇ laser light L A ' ⁇ L F' emitted from 22F from the semiconductor laser element 122A ⁇ 122F ' ⁇ M F' Is synthesized by the beam splitter 150, so that it is possible to output a laser beam having a higher power than the laser module 1 of the first embodiment described above.
- FIG. 6 is a schematic view showing an example of a fiber laser apparatus using the laser module according to the present invention.
- the fiber laser apparatus 401 shown in FIG. 6 includes an optical resonator 410, a plurality of forward excitation light sources 420A for introducing excitation light into the optical resonator 410 from the front of the optical resonator 410, and the front of the optical resonator 410 via the optical fiber 421A.
- the laser module 1 or 101 described above can be used as the forward excitation light source 420A and the rear excitation light source 420B.
- the optical resonator 410 includes an amplification optical fiber 412 having a core to which rare earth element ions such as itterbium (Yb), erbium (Er), turium (Tr), and neodymium (Nd) are added, and an amplification optical fiber 412. It is composed of a high-reflection fiber bragg grading (high-reflection FBG) 414 connected to the front in-line combiner 422A and a low-reflection fiber bragg grading (low-reflection FBG) 416 connected to the amplification optical fiber 412 and the rear in-line combiner 422B.
- the amplification optical fiber 412 is composed of a double clad fiber having an inner clad formed around the core and an outer clad formed around the inner clad.
- the fiber laser apparatus 401 further includes a delivery fiber 430 extending from the rear in-line combiner 422B, and the end portion of the delivery fiber 430 on the wake side is, for example, covered with laser oscillation light from the amplification optical fiber 412.
- a laser output unit 460 that emits light toward the processed object is provided.
- the front in-line combiner 422A and the rear in-line combiner 422B combine the excitation lights output from the front excitation light source 420A and the rear excitation light source 420B, respectively, and introduce them into the inner cladding of the above-mentioned amplification optical fiber 412. As a result, the excitation light propagates inside the inner cladding of the amplification optical fiber 412.
- the high-reflection FBG414 is formed by periodically changing the refractive index of the optical fiber, and reflects light in a predetermined wavelength band with a reflectance close to 100%.
- the low-reflection FBG416 is formed by periodically changing the refractive index of the optical fiber, and allows a part of the light in the wavelength band reflected by the high-reflection FBG414 to pass through and the rest. It is a reflection.
- the high-reflection FBG414, the amplification optical fiber 412, and the low-reflection FBG416 recursively amplify the light in a specific wavelength band between the high-reflection FBG414 and the low-reflection FBG416 to generate laser oscillation.
- the resonator 410 is configured.
- excitation light sources 420A and 420B and combiners 422A and 422B are provided on both the high-reflection FBG414 side and the low-reflection FBG416 side, which is a bidirectional excitation type fiber laser apparatus, but is high.
- the excitation light source and the combiner may be installed only on either the reflection FBG414 side or the low reflection FBG416 side.
- a mirror can be used instead of the FBG as a reflection means for oscillating the laser in the optical resonator 410.
- a MOPA fiber laser device that amplifies seed light from a seed light source by using excitation light from an excitation light source is also known, and the above-mentioned laser module is a MOPA fiber laser device such as the above. It can also be used as an excitation light source.
- an inexpensive laser module capable of stably outputting a laser beam having a desired wavelength.
- This laser module includes an optical fiber, a plurality of semiconductor laser elements, a condenser lens that collects laser light emitted from the plurality of semiconductor laser elements and couples them to the optical fiber, and the plurality of semiconductor laser elements.
- a plurality of mirrors that reflect the laser light emitted from the corresponding semiconductor laser element and direct it toward the condenser lens, and a plurality of wavelengths that narrow the wavelength of the laser light emitted from the plurality of semiconductor laser elements. It is equipped with a stabilizing element.
- Each of the plurality of wavelength stabilizing elements is configured to narrow the wavelength of the laser light emitted from two or more different semiconductor laser elements among the plurality of semiconductor laser elements.
- the wavelength stabilizing element and the semiconductor laser element can be used as compared with the case where a single wavelength stabilizing element is used.
- the difference in the optical path lengths of the laser beams between them can be reduced. Therefore, it is suppressed that the coupling efficiency of the laser beam to the optical fiber is lowered due to the difference in the optical path length.
- the required number of wavelength stabilizing elements can be determined by the semiconductor laser element. It can be suppressed to less than half of the total number. Therefore, the man-hours for installing the wavelength stabilizing element are reduced, and the manufacturing cost of the laser module can be suppressed.
- the laser module may further include a plurality of collimating lenses that collimate the laser light emitted from the corresponding semiconductor laser element among the plurality of semiconductor laser elements.
- a plurality of collimating lenses that collimate the laser light emitted from the corresponding semiconductor laser element among the plurality of semiconductor laser elements.
- the two or more semiconductor laser elements are two or more semiconductor laser elements adjacent to each other.
- an inexpensive laser module capable of stably outputting a laser beam having a desired wavelength.
- This laser module is emitted from an optical fiber, a plurality of first semiconductor laser elements, a plurality of corresponding second semiconductor laser elements among the plurality of first semiconductor laser elements, and the plurality of first semiconductor laser elements.
- a condensing lens that condenses the laser light and the laser light emitted from the plurality of second semiconductor laser elements and couples them to the optical fiber, and the laser light emitted from the plurality of first semiconductor laser elements and the above.
- a photosynthesis unit that synthesizes laser light emitted from a plurality of second semiconductor laser elements and directs them toward the condenser lens, and a photosynthesis unit that reflects laser light emitted from the plurality of second semiconductor laser elements and directs the light to the photosynthesis unit.
- a plurality of second mirrors that reflect laser light emitted from a corresponding second semiconductor laser element among the laser elements and direct them toward the auxiliary mirror, the plurality of first semiconductor laser elements, and the plurality of second semiconductor laser elements.
- Each of the plurality of wavelength stabilizing elements includes laser light emitted from one or more of the first semiconductor laser elements of the plurality of first semiconductor laser elements, and one or more of the plurality of second semiconductor laser elements. The wavelength of the laser light emitted from one or more second semiconductor laser elements corresponding to the first semiconductor laser element is narrowed.
- each of the plurality of wavelength stabilizing elements has a wavelength of laser light emitted from one or more first semiconductor laser elements and one or more second semiconductor laser elements corresponding to the one or more first semiconductor laser elements.
- the wavelength of the laser light emitted from the LED is narrowed, positioning work is required and an increase in the number of wavelength stabilizing elements, which are also expensive parts, can be suppressed, so that the manufacturing cost of the laser module can be suppressed. be able to. Further, since the laser light emitted from the first semiconductor laser element and the laser light emitted from the second semiconductor laser element are combined by the photosynthesis unit, it is possible to output a higher power laser light. ..
- the first semiconductor laser element of 1 or more and the second semiconductor laser element of 1 or more are arranged at the same height. In this case, since the surface on which the wavelength stabilizing element is installed can be made flat, the installation work of the wavelength stabilizing element becomes easy.
- the laser module corresponds to a plurality of first collimating lenses that collimate the laser light emitted from the corresponding first semiconductor laser element among the plurality of first semiconductor laser elements, and the plurality of second semiconductor laser elements.
- a plurality of second collimating lenses that collimate the laser light emitted from the second semiconductor laser element may be further provided.
- Each of the plurality of wavelength stabilizing elements is on the downstream side of the corresponding first collimating lens and the corresponding first mirror in the optical path from the one or more first semiconductor laser elements to the optical fiber.
- it may be arranged on the downstream side of the corresponding second collimating lens and the corresponding second mirror.
- the first semiconductor laser elements of 1 or more are adjacent to each other. It is preferable that the two or more first semiconductor laser elements, and the one or more second semiconductor laser elements are two or more second semiconductor laser elements adjacent to each other.
- an inexpensive fiber laser apparatus capable of stably outputting a laser beam having a desired wavelength.
- This fiber laser apparatus includes an excitation light source including the above-mentioned laser module, and an amplification optical fiber connected to the above-mentioned optical fiber of the above-mentioned laser module and having a core to which rare earth element ions are added.
- an inexpensive laser module capable of stably outputting a laser beam having a desired wavelength can be obtained.
- the present invention is suitably used for a laser module that collects and outputs laser light emitted from a plurality of semiconductor laser elements.
- Laser module 10 Housing 12 Pedestal 12A-12F Step 14 Optical fiber 20 Submount 22A-22F Semiconductor laser element (first semiconductor laser element) 24 First axis collimating lens 26 Slow axis collimating lens 28 Mirror (1st mirror) 32 First-axis condensing lens 34 Slow-axis condensing lens 41 to 43 Wavelength stabilizing element 101 Laser module 120 Submount 122A to 122F Semiconductor laser element (second semiconductor laser element) 124 First axis collimating lens 126 Slow axis collimating lens 128 Mirror (second mirror) 141-143 Wavelength stabilizing element 150 Beam splitter (photosynthesis unit) 152 Auxiliary mirror 401 Fiber laser device 410 Optical resonator 412 Amplification optical fiber 414 High reflection FBG 416 Low reflection FBG 420A, 420B Excitation light source 421A, 421B Optical fiber 422A, 422B In-line combiner 430 Delivery fiber 460 Laser output unit
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Semiconductor Lasers (AREA)
- Lasers (AREA)
- Optical Couplings Of Light Guides (AREA)
Abstract
所望の波長のレーザ光を安定して出力することができる安価なレーザモジュールを提供する。レーザモジュール1は、光ファイバ14と、異なる高さに配置される複数の半導体レーザ素子22A~22Fと、半導体レーザ素子22A~22Fから出射されるレーザ光LA'~LF'を集光して光ファイバ14に結合させる集光レンズ32,34と、半導体レーザ素子22A~22Fから出射されるレーザ光LA~LFを反射して集光レンズ32に向けるミラー28と、半導体レーザ素子22A~22Fから出射されるレーザ光LA~LFの波長を狭帯域化する複数の波長安定化素子41~43とを備える。波長安定化素子41~43のそれぞれは、半導体レーザ素子22A~22Fのうち互いに異なる2以上の半導体レーザ素子から出射されるレーザ光の波長を狭帯域化するように構成される。
Description
本発明は、レーザモジュール及びファイバレーザ装置に係り、特に複数の半導体レーザ素子から出射されたレーザ光を集光して出力するレーザモジュールに関するものである。
従来から、複数の半導体レーザ素子から出射されたレーザ光を集光し、高パワーのレーザ光を出力するレーザモジュールが知られている。このようなレーザモジュールに用いられる半導体レーザ素子の発振波長は、製造上のばらつきによって変動し、また温度依存性を有することから、所望の波長のレーザ光を安定して出力するためには、それぞれの半導体レーザ素子から出力されるレーザ光の波長を特定の波長にロックする必要がある。複数の半導体レーザ素子の出力レーザ光の波長をロックする方法の1つとして、所定の格子間隔で屈折率が周期的に変化するVolume Bragg Grating(VBG)と呼ばれる波長安定化素子を用いて特定の波長を選択的に反射させる方法が知られている(例えば、特許文献1参照)。
図1Aは、このようなVBGを用いた従来のレーザモジュールの構成の一例を模式的に示す図である。図1Aに示す従来のレーザモジュールにおいては、異なる高さに配置されたサブマウント500上の複数の半導体レーザ素子510からそれぞれレーザ光Bが出射される。このレーザ光Bは、ファースト軸コリメートレンズ520及びスロー軸コリメートレンズ530によってコリメートされ、ミラー540によってその伝搬方向が90度転換される。この方向転換されたレーザ光Bは、ファースト軸集光レンズ550及びスロー軸集光レンズ560によって集光されて光ファイバ570に結合される。
ここで、ファースト軸集光レンズ550に最も近い位置にあるミラー540Aとファースト軸集光レンズと550との間には波長安定化素子(VBG)590が配置されている。この波長安定化素子590は、ミラー540からのレーザ光Bのうち特定の波長を反射するように構成されている。これにより、波長安定化素子590の反射面と半導体レーザ素子510の活性層の反射端面との間で外部共振器が形成され、狭帯域化された波長のレーザ光B’が波長安定化素子590からファースト軸集光レンズ550に向けて出力される。
ここで、図1Aに示す構成では、それぞれの半導体レーザ素子510から波長安定化素子590までの光路長が異なっている。例えば、半導体レーザ素子510Aから波長安定化素子590までの光路長が最も短く、半導体レーザ素子510Fから波長安定化素子590までの光路長が最も長い。図1Aに示すように、これらの光路長の差はDmaxとなる。このような光路長の差は、レーザ光B’の光ファイバ570への結合効率の低下を引き起こし得る。さらに、光路長が長いこと、すなわち共振器長が長いことで外部共振器の導波ロスが増大し、共振器の効率も悪化する傾向にある。このような光路長の差が生じないようにするために、図1Bに示すように、半導体レーザ素子510ごとに波長安定化素子590を設けることも考えられるが、波長安定化素子は高価なものであるため、図1Bに示す構成では、多数の波長安定化素子590によるレーザモジュールの製造コストの増大が問題となる。例えば、それぞれの波長安定化素子590を半導体レーザ素子510に対して正確に位置決めする必要が生じ、波長安定化素子590の設置作業の工数が増大する。
本発明は、このような従来技術の問題点に鑑みてなされたもので、所望の波長のレーザ光を安定して出力することができる安価なレーザモジュールを提供することを第1の目的とする。
また、本発明は、所望の波長のレーザ光を安定して出力することができる安価なファイバレーザ装置を提供することを第2の目的とする。
本発明の第1の態様によれば、所望の波長のレーザ光を安定して出力することができる安価なレーザモジュールが提供される。このレーザモジュールは、光ファイバと、複数の半導体レーザ素子と、上記複数の半導体レーザ素子から出射されるレーザ光を集光して上記光ファイバに結合させる集光レンズと、上記複数の半導体レーザ素子のうち対応する半導体レーザ素子から出射されるレーザ光を反射して上記集光レンズに向ける複数のミラーと、上記複数の半導体レーザ素子から出射されるレーザ光の波長を狭帯域化する複数の波長安定化素子とを備える。上記複数の波長安定化素子のそれぞれは、上記複数の半導体レーザ素子のうち互いに異なる2以上の半導体レーザ素子から出射されるレーザ光の波長を狭帯域化するように構成される。
本発明の第2の態様によれば、所望の波長のレーザ光を安定して出力することができる安価なレーザモジュールが提供される。このレーザモジュールは、光ファイバと、複数の第1半導体レーザ素子と、上記複数の第1半導体レーザ素子のうち対応する複数の第2半導体レーザ素子と、上記複数の第1半導体レーザ素子から出射されるレーザ光及び上記複数の第2半導体レーザ素子から出射されるレーザ光を集光して上記光ファイバに結合させる集光レンズと、上記複数の第1半導体レーザ素子から出射されるレーザ光と上記複数の第2半導体レーザ素子から出射されるレーザ光とを合成して上記集光レンズに向ける光合成部と、上記複数の第2半導体レーザ素子から出射されるレーザ光を反射して上記光合成部に向ける補助ミラーと、上記複数の第1半導体レーザ素子のうち対応する第1半導体レーザ素子から出射されるレーザ光を反射して上記光合成部に向ける複数の第1ミラーと、上記複数の第2半導体レーザ素子のうち対応する第2半導体レーザ素子から出射されるレーザ光を反射して上記補助ミラーに向ける複数の第2ミラーと、上記複数の第1半導体レーザ素子及び上記複数の第2半導体レーザ素子から出射されるレーザ光の波長を狭帯域化する複数の波長安定化素子とを備える。上記複数の波長安定化素子のそれぞれは、上記複数の第1半導体レーザ素子のうち1以上の第1半導体レーザ素子から出射されるレーザ光と、上記複数の第2半導体レーザ素子のうち上記1以上の第1半導体レーザ素子に対応する1以上の第2半導体レーザ素子から出射されるレーザ光の波長を狭帯域化するように構成される。
本発明の第3の態様によれば、所望の波長のレーザ光を安定して出力することができる安価なファイバレーザ装置が提供される。このファイバレーザ装置は、上述したレーザモジュールを含む励起光源と、上記レーザモジュールの上記光ファイバに接続され、希土類元素イオンが添加されたコアを有する増幅用光ファイバとを備える。
以下、本発明に係るレーザモジュール及びファイバレーザ装置の実施形態について図2から図6を参照して詳細に説明する。なお、図2から図6において、同一又は相当する構成要素には、同一の符号を付して重複した説明を省略する。また、図2から図6においては、各構成要素の縮尺や寸法が誇張されて示されている場合や一部の構成要素が省略されている場合がある。
図2は、本発明の第1の実施形態におけるレーザモジュール1を模式的に示す部分断面平面図、図3は図2のA-A線断面図である。図2及び図3に示すように、このレーザモジュール1は、筐体10と、筐体10の内部に配置された階段状の台座12と、筐体10の内部に延びる光ファイバ14と、光ファイバ14を固定するためのファイバマウント16と、光ファイバ14を保持する円筒状のファイバ保持部18とを含んでいる。光ファイバ14は接着材19などによりファイバマウント16上に固定されている。なお、筐体10の上部には図示しない蓋体が配置されており、この蓋体により筐体の内部空間が封止される。
台座12は、Z方向の高さが異なる6つの段部12A~12Fを有しており、本実施形態では、1段目の段部12Aから-X方向に向かって次第に高くなるように段部12A~12Fが形成されている。それぞれの段部12A~12Fにはサブマウント20が配置されており、それぞれのサブマウント20上には、+Y方向にレーザ光LA~LFを出射する半導体レーザ素子22A~22Fが載置されている。なお、本明細書では、特に言及がない場合には、半導体レーザ素子22A~22Fのそれぞれから光ファイバ14に向かってレーザ光が出射される方向を「下流側」といい、それとは逆の方向を「上流側」ということとする。
また、台座12のそれぞれの段部12A~12Fには、半導体レーザ素子22A~22Fに対応して、半導体レーザ素子22A~22Fから出射されたレーザ光LA~LFをファースト軸方向にコリメートするファースト軸コリメートレンズ24と、ファースト軸コリメートレンズ24を透過したレーザ光LA~LFをスロー軸方向にコリメートするスロー軸コリメートレンズ26と、スロー軸コリメートレンズ26を透過したレーザ光LA~LFの伝搬方向を90度転換するミラー28とが配置されている。
また、筐体10の内部に延びる光ファイバ14の端面と台座12の1段目の段部12Aとの間には、ミラー28で反射したレーザ光LA~LFをファースト軸方向に集光するファースト軸集光レンズ32と、レーザ光LA~LFをスロー軸方向に集光して光ファイバ14の端面に結合させるスロー軸集光レンズ34とが配置されている。
ここで、本実施形態におけるレーザモジュール1は、所定の格子間隔で屈折率が周期的に変化する波長安定化素子(VBG)41~43を有している。これらの波長安定化素子41~43は、特定の波長(例えば976nm)を反射するように構成されている。
波長安定化素子41は、台座12の1段目の段部12Aのミラー28の+X方向側に配置されており、2つのレーザ光の光路上、すなわち、1段目の段部12Aに配置された半導体レーザ素子22Aから出射されるレーザ光LA及び2段目の段部12Bに配置された半導体レーザ素子22Bから出射されるレーザ光LBの光路上に位置している。換言すれば、波長安定化素子41は、レーザ光LAの光路上及びレーザ光LBの光路上でスロー軸コリメートレンズ26及びミラー28の下流側に配置されている。
波長安定化素子42は、台座12の3段目の段部12Cのミラー28の+X方向側に配置されており、2つのレーザ光の光路上、すなわち、3段目の段部12Cに配置された半導体レーザ素子22Cから出射されるレーザ光LC及び4段目の段部12Dに配置された半導体レーザ素子22Dから出射されるレーザ光LDの光路上に位置している。換言すれば、波長安定化素子42は、レーザ光LCの光路上及びレーザ光LDの光路上でスロー軸コリメートレンズ26及びミラー28の下流側に配置されている。
波長安定化素子43は、台座12の5段目の段部12Eのミラー28の+X方向側に配置されており、2つのレーザ光の光路上、すなわち、5段目の段部12Eに配置された半導体レーザ素子22Eから出射されるレーザ光LEと6段目の段部12Fに配置された半導体レーザ素子22Fから出射されるレーザ光LFの光路上に位置している。換言すれば、波長安定化素子43は、レーザ光LEの光路上及びレーザ光LFの光路上でスロー軸コリメートレンズ26及びミラー28の下流側に配置されている。
このような構成において、半導体レーザ素子22Aから+Y方向に出射されたレーザ光LAは、ファースト軸コリメートレンズ24及びスロー軸コリメートレンズ26によりそれぞれファースト軸方向及びスロー軸方向にコリメートされ、ミラー28により90度方向転換されて+X方向に伝搬する。このレーザ光LAは波長安定化素子41で反射して半導体レーザ素子22Aに向かって戻り、波長安定化素子41の反射面と半導体レーザ素子22Aの活性層の反射端面との間で外部共振器が形成される。これによって、波長が狭帯域化されたレーザ光LA’が波長安定化素子41から+X方向に出力される。
同様に、半導体レーザ素子22Bから+Y方向に出射されたレーザ光LBは、ファースト軸コリメートレンズ24及びスロー軸コリメートレンズ26を通過後、ミラー28により90度方向転換されて+X方向に伝搬し、波長安定化素子41で反射する。これにより、波長安定化素子41の反射面と半導体レーザ素子22Bの活性層の反射端面との間で外部共振器が形成され、波長が狭帯域化されたレーザ光LB’が波長安定化素子41から+X方向に出力される。
また、半導体レーザ素子22Cから+Y方向に出射されたレーザ光LC及び半導体レーザ素子22Dから+Y方向に出射されたレーザ光LDは、それぞれファースト軸コリメートレンズ24及びスロー軸コリメートレンズ26を通過後、ミラー28により90度方向転換されて+X方向に伝搬し、波長安定化素子42で反射して波長安定化素子42の反射面と半導体レーザ素子22C,22Dの活性層の反射端面との間で外部共振器が形成される。これにより、波長が狭帯域化されたレーザ光LC’,LD’が波長安定化素子42から+X方向に出力される。さらに、半導体レーザ素子22Eから+Y方向に出射されたレーザ光LE及び半導体レーザ素子22Fから+Y方向に出射されたレーザ光LFは、それぞれファースト軸コリメートレンズ24及びスロー軸コリメートレンズ26を通過後、ミラー28により90度方向転換されて+X方向に伝搬し、波長安定化素子43で反射して波長安定化素子43の反射面と半導体レーザ素子22E,22Fの活性層の反射端面との間で外部共振器が形成される。これにより、波長が狭帯域化されたレーザ光LE’,LF’が波長安定化素子43から+X方向に出力される。
このように、本実施形態における波長安定化素子41は、互いに異なる2つの半導体レーザ素子22A,22Bから出射されるレーザ光LA,LBの波長を狭帯域化するように構成されており、波長安定化素子42は、互いに異なる2つの半導体レーザ素子22C,22Dから出射されるレーザ光LC,LDの波長を狭帯域化するように構成されている。また、波長安定化素子43は、互いに異なる2つの半導体レーザ素子22E,22Fから出射されるレーザ光LE,LFの波長を狭帯域化するように構成されている。
これらの波長安定化素子41~43で波長が狭帯域化されたレーザ光LA’~LF’は、ファースト軸集光レンズ32によってファースト軸に集光され、さらにスロー軸集光レンズ34によってスロー軸に集光される。これによって、これらのレーザ光LA’~LF’が光ファイバ14の端面に光学的に結合される。
ところで、最近では、従来の図1Aに示す構成において、それぞれの半導体レーザ素子510から波長安定化素子590までの光路長が異なることにより、レーザ光B’の光ファイバ570への結合効率が低下することが分かってきている。例えば、図4は、半導体レーザ素子510と波長安定化素子590との間のレーザ光の光路長と遠方におけるスロー軸方向のビーム幅との関係を示すグラフである。図4に示すように、遠方におけるビーム幅は、半導体レーザ素子510と波長安定化素子590との間の光路長によって変化する。このように、図1Aに示す従来の構成では、波長安定化素子590とそれぞれの半導体レーザ素子510との間の光路長の差が大きいため、光ファイバ570に結合するレーザ光B’のビーム幅の変動も大きくなる。この結果、レーザ光B’の光ファイバ570への結合効率が低下してしまう。
これに対して、本実施形態では、6つの半導体レーザ素子22A~22Fに対して3つの波長安定化素子41~43を用いているため、図1Aに示す従来のレーザモジュールに比べて、波長安定化素子41~43と半導体レーザ素子22A~22Fとの間の光路長の差を小さくすることができる。例えば、波長安定化素子41について言えば、波長安定化素子41と半導体レーザ素子22Bとの間の光路長は、波長安定化素子41と半導体レーザ素子22Aとの間の光路長よりもd1長いだけであり、図1Aに示す従来のレーザモジュールにおける光路長の差の最大値Dmaxに比べて非常に小さい。したがって、レーザ光の光路長の差により生じ得るスロー軸方向のビーム幅の変動を小さくすることができ、この結果、光ファイバ14へのレーザ光の結合効率が低下してしまうことを抑制することができる。
ここで、波長安定化素子と半導体レーザ素子との間の光路長の差を小さくする上では、本実施形態のように、波長安定化素子41が、互いにX方向に隣接する半導体レーザ素子22Aと半導体レーザ素子22Bとから出射されるレーザ光の波長を狭帯域化するように構成されていることが好ましい。同様に、波長安定化素子42は、互いにX方向に隣接する半導体レーザ素子22Cと半導体レーザ素子22Dとから出射されるレーザ光の波長を狭帯域化するように構成されていることが好ましく、波長安定化素子43は、互いにX方向に隣接する半導体レーザ素子22Eと半導体レーザ素子22Fとから出射されるレーザ光の波長を狭帯域化するように構成されていることが好ましい。
また、本実施形態では、複数の波長安定化素子41~43のそれぞれが、2つの異なる半導体レーザ素子22A~22Fから出射されるレーザ光LA~LFの波長を狭帯域化しているため、必要とされる波長安定化素子の数を半導体レーザ素子22A~22Fの総数の半分、すなわち3個にすることができる。したがって、本実施形態によれば、波長安定化素子の設置作業の工数が減るので、レーザモジュール1の製造コストを抑えることができる。
また、本実施形態では、波長安定化素子41~43のそれぞれは、スロー軸コリメートレンズ26の下流側に配置されているため、それぞれの波長安定化素子41~43によって反射されたレーザ光は、スロー軸コリメートレンズ26によってスロー軸コリメートレンズ26の焦点位置、すなわち半導体レーザ素子22A~22Fのそれぞれの活性層に戻ることとなる。このため、半導体レーザ素子22A~22Fの活性層外に戻るレーザ光の量が減少し、効率の良い外部共振器を形成することができる。
図5は、本発明の第2の実施形態におけるレーザモジュール101を模式的に示す部分断面平面図である。このレーザモジュール101は、上述した第1の実施形態における半導体レーザ素子22A~22F(第1半導体レーザ素子)に加えて、半導体レーザ素子122A~122F(第2半導体レーザ素子)を有している。すなわち、図5に示すように、台座12のそれぞれの段部12A~12Fにはサブマウント120が配置されており、それぞれのサブマウント120上に、-Y方向にレーザ光MA~MFを出射する半導体レーザ素子122A~122Fが載置されている。
半導体レーザ素子122Aは、半導体レーザ素子22Aと同一の高さで半導体レーザ素子22Aと対向するように配置され、半導体レーザ素子122Bは、半導体レーザ素子22Bと同一の高さで半導体レーザ素子22Bと対向するように配置されている。また、半導体レーザ素子122Cは、半導体レーザ素子22Cと同一の高さで半導体レーザ素子22Cと対向するように配置され、半導体レーザ素子122Dは、半導体レーザ素子22Dと同一の高さで半導体レーザ素子22Dと対向するように配置されている。さらに、半導体レーザ素子122Eは、半導体レーザ素子22Eと同一の高さで半導体レーザ素子22Eと対向するように配置され、半導体レーザ素子122Fは、半導体レーザ素子22Fと同一の高さで半導体レーザ素子22Fと対向するように配置されている。
また、台座12のそれぞれの段部12A~12Fには、半導体レーザ素子122A~122Fに対応して、半導体レーザ素子122A~122Fから出射されたレーザ光MA~MFをファースト軸方向にコリメートするファースト軸コリメートレンズ124と、ファースト軸コリメートレンズ124を透過したレーザ光MA~MFをスロー軸方向にコリメートするスロー軸コリメートレンズ126と、スロー軸コリメートレンズ126を透過したレーザ光MA~MFの伝搬方向を90度転換するミラー128とが配置されている。
また、台座12の1段目の段部12A上のミラー28とファースト軸集光レンズ32との間には、半導体レーザ素子22A~22Fからのレーザ光と半導体レーザ素子122A~122Fからのレーザ光とを合成してファースト軸集光レンズ32に向ける光合成部としてのビームスプリッタ150が配置されており、台座12の1段目の段部12A上のミラー128の+X方向側には、半導体レーザ素子122A~122Fから出射されたレーザ光MA~MFを反射してビームスプリッタ150に向ける補助ミラー152が配置されている。ビームスプリッタ150と補助ミラー152との間には1/2波長板(図示せず)が配置される。なお、上述した光合成部として、本実施形態に示すビームスプリッタ150に代えて、例えばダイクロイックミラーのような光学部品を用いることもできる。
本実施形態におけるレーザモジュール101は、特定の波長(例えば976nm)を反射するように構成された波長安定化素子141~143を有している。波長安定化素子141は、台座12の1段目の段部12Aのミラー28(第1ミラー)及びミラー128(第2ミラー)の+X方向側に配置されており、Y方向に延びている。この波長安定化素子141は、4つのレーザ光の光路上、すなわち、1段目の段部12Aに配置された半導体レーザ素子22Aから出射されるレーザ光LA、この半導体レーザ素子22Aに対向する半導体レーザ素子122Aから出射されるレーザ光MA、2段目の段部12Bに配置された半導体レーザ素子22Bから出射されるレーザ光LB、この半導体レーザ素子22Bに対向する半導体レーザ素子122Bから出射されるレーザ光MBの光路上に位置している。換言すれば、波長安定化素子141は、レーザ光LAの光路上、レーザ光MAの光路上、レーザ光LBの光路上、及びレーザ光MBの光路上で対応するスロー軸コリメートレンズ26,126及び対応するミラー28,128の下流側に配置されている。
波長安定化素子142は、台座12の3段目の段部12Cのミラー28及びミラー128の+X方向側に配置されており、Y方向に延びている。この波長安定化素子142は、4つのレーザ光の光路上、すなわち、3段目の段部12Cに配置された半導体レーザ素子22Cから出射されるレーザ光LC、この半導体レーザ素子22Cに対向する半導体レーザ素子122Cから出射されるレーザ光MC、4段目の段部12Dに配置された半導体レーザ素子22Dから出射されるレーザ光LD、この半導体レーザ素子22Dに対向する半導体レーザ素子122Dから出射されるレーザ光MDの光路上に位置している。換言すれば、波長安定化素子142は、レーザ光LCの光路上、レーザ光MCの光路上、レーザ光LDの光路上、及びレーザ光MDの光路上で対応するスロー軸コリメートレンズ26,126及び対応するミラー28,128の下流側に配置されている。
波長安定化素子143は、台座12の5段目の段部12Eのミラー28及びミラー128の+X方向側に配置されており、Y方向に延びている。この波長安定化素子143は、4つのレーザ光の光路上、すなわち、5段目の段部12Eに配置された半導体レーザ素子22Eから出射されるレーザ光LE、この半導体レーザ素子22Eに対向する半導体レーザ素子122Eから出射されるレーザ光ME、6段目の段部12Fに配置された半導体レーザ素子22Fから出射されるレーザ光LF、この半導体レーザ素子22Fに対向する半導体レーザ素子122Fから出射されるレーザ光MFの光路上に位置している。換言すれば、波長安定化素子143は、レーザ光LEの光路上、レーザ光MEの光路上、レーザ光LFの光路上、及びレーザ光MFの光路上で対応するスロー軸コリメートレンズ26,126及び対応するミラー28,128の下流側に配置されている。
また、上述した第1の実施形態と同様に、半導体レーザ素子22A~22Fから出射されたレーザ光LA~LFは、それぞれファースト軸コリメートレンズ24及びスロー軸コリメートレンズ26を通過後、ミラー28により90度方向転換されて+X方向に伝搬し、波長安定化素子141~143によって波長が狭帯域化されたレーザ光LA’~LF’となる。
半導体レーザ素子122Aから-Y方向に出射されたレーザ光MAは、ファースト軸コリメートレンズ124及びスロー軸コリメートレンズ126を通過後、ミラー128により90度方向転換されて+X方向に伝搬し、波長安定化素子141によって波長が狭帯域化されたレーザ光MA’となる。同様に、半導体レーザ素子122Bから-Y方向に出射されたレーザ光MBは、ファースト軸コリメートレンズ124及びスロー軸コリメートレンズ126を通過後、ミラー128により90度方向転換されて+X方向に伝搬し、波長安定化素子141によって波長が狭帯域化されたレーザ光MB’となる。
また、半導体レーザ素子122Cから-Y方向に出射されたレーザ光MC及び半導体レーザ素子122Dから-Y方向に出射されたレーザ光MDは、それぞれファースト軸コリメートレンズ124及びスロー軸コリメートレンズ126を通過後、ミラー128により90度方向転換されて+X方向に伝搬し、波長安定化素子142によって波長が狭帯域化されたレーザ光MC’,MD’となる。
半導体レーザ素子122Eから-Y方向に出射されたレーザ光ME及び半導体レーザ素子122Fから-Y方向に出射されたレーザ光MFは、それぞれファースト軸コリメートレンズ124及びスロー軸コリメートレンズ126を通過後、ミラー128により90度方向転換されて+X方向に伝搬し、波長安定化素子143によって波長が狭帯域化されたレーザ光ME’,MF’となる。
波長が狭帯域化されたレーザ光MA’~MF’は、補助ミラー152により90度方向転換されて-Y方向に伝搬し、1/2波長板によって偏波された後、ビームスプリッタ150によってレーザ光LA’~LF’と偏波合成されてファースト軸集光レンズ32に出力される。ファースト軸集光レンズ32でこれらのレーザ光LA’~LF’及びMA’~MF’はファースト軸に集光され、さらにスロー軸集光レンズ34によってスロー軸に集光される。これによって、これらのレーザ光LA’~LF’及びMA’~MF’が光ファイバ14の端面に光学的に結合される。
また、本実施形態における波長安定化素子141は、互いに隣接する2つの半導体レーザ素子22A,22Bから出射されるレーザ光LA,LBと、これら2つの半導体レーザ素子22A,22Bとそれぞれ同一の高さに配置される2つの半導体レーザ素子122A,122Bから出射されるレーザ光MA,MBの波長を狭帯域化するように構成されている。また、波長安定化素子142は、互いに隣接する2つの半導体レーザ素子22C,22Dから出射されるレーザ光LC,LDと、これら2つの半導体レーザ素子22C,22Dとそれぞれ同一の高さに配置される2つの半導体レーザ素子122C,122Dから出射されるレーザ光MC,MDの波長を狭帯域化するように構成されており、波長安定化素子143は、互いに隣接する2つの半導体レーザ素子22E,22Fから出射されるレーザ光LE,LFと、これら2つの半導体レーザ素子22E,22Fとそれぞれ同一の高さに配置される2つの半導体レーザ素子122E,122Fから出射されるレーザ光ME,MFの波長を狭帯域化するように構成されている。
本実施形態では、12個の半導体レーザ素子22A~22F,122A~122Fに対して3つの波長安定化素子141~143を用いているため、図1Aに示す従来のレーザモジュールに比べて、波長安定化素子141~143と半導体レーザ素子22A~22F,122A~122Fとの間の光路長の差を小さくすることができる。したがって、レーザ光の光路長の差により生じ得るスロー軸方向のビーム幅の変動を小さくすることができ、この結果、光ファイバ14へのレーザ光の結合効率が低下してしまうことを抑制することができる。
また、本実施形態では、複数の波長安定化素子141~143のそれぞれが、4つの異なる半導体レーザ素子から出射されるレーザ光の波長を狭帯域化しているため、必要とされる波長安定化素子の数を半導体レーザ素子22A~22F,122A~122Fの総数の1/4、すなわち3個にすることができる。したがって、本実施形態によれば、波長安定化素子の設置作業の工数が減るので、レーザモジュール101の製造コストを抑えることができる。
また、本実施形態のレーザモジュール101では、半導体レーザ素子22A~22Fから出射されるレーザ光LA’~LF’と半導体レーザ素子122A~122Fから出射されるレーザ光MA’~MF’とをビームスプリッタ150により合成しているため、上述した第1の実施形態のレーザモジュール1よりも高パワーのレーザ光を出力することができる。
上述したレーザモジュール1又は101は、例えばファイバレーザ装置などに用いることができる。図6は、本発明に係るレーザモジュールを用いたファイバレーザ装置の一例を示す模式図である。図6に示すファイバレーザ装置401は、光共振器410と、光共振器410の前方から光共振器410に励起光を導入する複数の前方励起光源420Aと、光ファイバ421Aを介してこれらの前方励起光源420Aが接続される前方インラインコンバイナ422Aと、光共振器410の後方から光共振器410に励起光を導入する複数の後方励起光源420Bと、光ファイバ421Bを介してこれらの後方励起光源420Bが接続される後方インラインコンバイナ422Bとを備えている。上述したレーザモジュール1又は101は、前方励起光源420A及び後方励起光源420Bとして用いることができる。
光共振器410は、例えばイッテルビウム(Yb)やエルビウム(Er)、ツリウム(Tr)、ネオジム(Nd)などの希土類元素イオンが添加されたコアを有する増幅用光ファイバ412と、増幅用光ファイバ412及び前方インラインコンバイナ422Aと接続される高反射ファイバブラッググレーディング(高反射FBG)414と、増幅用光ファイバ412及び後方インラインコンバイナ422Bと接続される低反射ファイバブラッググレーディング(低反射FBG)416とから構成されている。例えば、増幅用光ファイバ412は、コアの周囲に形成された内側クラッドと、内側クラッドの周囲に形成された外側クラッドとを有するダブルクラッドファイバによって構成される。
また、ファイバレーザ装置401は、後方インラインコンバイナ422Bから延びるデリバリファイバ430をさらに有しており、このデリバリファイバ430の後流側の端部には増幅用光ファイバ412からのレーザ発振光を例えば被処理物に向けて出射するレーザ出力部460が設けられている。
前方インラインコンバイナ422A及び後方インラインコンバイナ422Bは、それぞれ前方励起光源420A及び後方励起光源420Bから出力される励起光を結合して上述した増幅用光ファイバ412の内側クラッドに導入するものである。これにより、増幅用光ファイバ412の内側クラッドの内部を励起光が伝搬する。
高反射FBG414は、周期的に光ファイバの屈折率を変化させて形成されるもので、所定の波長帯の光を100%に近い反射率で反射するものである。低反射FBG416は、高反射FBG414と同様に、周期的に光ファイバの屈折率を変化させて形成されるもので、高反射FBG414で反射される波長帯の光の一部を通過させ、残りを反射するものである。このように、高反射FBG414と増幅用光ファイバ412と低反射FBG416とによって、高反射FBG414と低反射FBG416との間で特定の波長帯の光を再帰的に増幅してレーザ発振を生じさせる光共振器410が構成される。
図6に示す例では、高反射FBG414側と低反射FBG416側の双方に励起光源420A,420Bとコンバイナ422A,422Bが設けられており、双方向励起型のファイバレーザ装置となっているが、高反射FBG414側と低反射FBG416側のいずれか一方にのみ励起光源とコンバイナを設置することとしてもよい。また、光共振器410内でレーザ発振させるための反射手段としてFBGに代えてミラーを用いることもできる。
また、ファイバレーザ装置としては、シード光源からのシード光を励起光源からの励起光を用いて増幅するMOPAファイバレーザ装置も知られているが、上述したレーザモジュールはこのようなMOPAファイバレーザ装置の励起光源としても用いることも可能である。
これまで本発明の好ましい実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは言うまでもない。
以上述べたように、本発明の第1の態様によれば、所望の波長のレーザ光を安定して出力することができる安価なレーザモジュールが提供される。このレーザモジュールは、光ファイバと、複数の半導体レーザ素子と、上記複数の半導体レーザ素子から出射されるレーザ光を集光して上記光ファイバに結合させる集光レンズと、上記複数の半導体レーザ素子のうち対応する半導体レーザ素子から出射されるレーザ光を反射して上記集光レンズに向ける複数のミラーと、上記複数の半導体レーザ素子から出射されるレーザ光の波長を狭帯域化する複数の波長安定化素子とを備える。上記複数の波長安定化素子のそれぞれは、上記複数の半導体レーザ素子のうち互いに異なる2以上の半導体レーザ素子から出射されるレーザ光の波長を狭帯域化するように構成される。
このような構成によれば、複数の半導体レーザ素子に対して複数の波長安定化素子を用いているため、単一の波長安定化素子を用いる場合よりも、波長安定化素子と半導体レーザ素子との間のレーザ光の光路長の差を小さくすることができる。このため、この光路長の差により光ファイバへのレーザ光の結合効率が低下することが抑制される。また、複数の波長安定化素子のそれぞれが、2以上の異なる半導体レーザ素子から出射されるレーザ光の波長を狭帯域化しているため、必要とされる波長安定化素子の数を半導体レーザ素子の総数の半分以下に抑えることができる。したがって、波長安定化素子の設置作業の工数が減るので、レーザモジュールの製造コストを抑えることができる。
上記レーザモジュールは、上記複数の半導体レーザ素子のうち対応する半導体レーザ素子から出射されるレーザ光をコリメートする複数のコリメートレンズをさらに備えていてもよい。この場合において、上記複数の波長安定化素子は、上記2以上の半導体レーザ素子のそれぞれから上記光ファイバに至る光路において、対応する上記コリメートレンズ及び対応する上記ミラーの下流側に配置されていてもよい。この場合には、それぞれの波長安定化素子によって反射されたレーザ光は、対応するコリメートレンズによってコリメートレンズの焦点位置、すなわち対応する半導体レーザ素子のそれぞれの活性層に戻ることとなる。このため、半導体レーザ素子の活性層外に戻るレーザ光の量が減少し、効率の良い外部共振器を形成することができる。
波長安定化素子と半導体レーザ素子との間の光路長の差を効果的に小さくするためには、上記2以上の半導体レーザ素子は、互いに隣接する2以上の半導体レーザ素子であることが好ましい。
本発明の第2の態様によれば、所望の波長のレーザ光を安定して出力することができる安価なレーザモジュールが提供される。このレーザモジュールは、光ファイバと、複数の第1半導体レーザ素子と、上記複数の第1半導体レーザ素子のうち対応する複数の第2半導体レーザ素子と、上記複数の第1半導体レーザ素子から出射されるレーザ光及び上記複数の第2半導体レーザ素子から出射されるレーザ光を集光して上記光ファイバに結合させる集光レンズと、上記複数の第1半導体レーザ素子から出射されるレーザ光と上記複数の第2半導体レーザ素子から出射されるレーザ光とを合成して上記集光レンズに向ける光合成部と、上記複数の第2半導体レーザ素子から出射されるレーザ光を反射して上記光合成部に向ける補助ミラーと、上記複数の第1半導体レーザ素子のうち対応する第1半導体レーザ素子から出射されるレーザ光を反射して上記光合成部に向ける複数の第1ミラーと、上記複数の第2半導体レーザ素子のうち対応する第2半導体レーザ素子から出射されるレーザ光を反射して上記補助ミラーに向ける複数の第2ミラーと、上記複数の第1半導体レーザ素子及び上記複数の第2半導体レーザ素子から出射されるレーザ光の波長を狭帯域化する複数の波長安定化素子とを備える。上記複数の波長安定化素子のそれぞれは、上記複数の第1半導体レーザ素子のうち1以上の第1半導体レーザ素子から出射されるレーザ光と、上記複数の第2半導体レーザ素子のうち上記1以上の第1半導体レーザ素子に対応する1以上の第2半導体レーザ素子から出射されるレーザ光の波長を狭帯域化するように構成される。
このような構成によれば、複数の半導体レーザ素子に対して複数の波長安定化素子を用いているため、単一の波長安定化素子を用いる場合よりも、波長安定化素子と半導体レーザ素子との間のレーザ光の光路長の差を小さくすることができる。このため、この光路長の差により光ファイバへのレーザ光の結合効率が低下することが抑制される。また、複数の波長安定化素子のそれぞれが、1以上の第1半導体レーザ素子から出射されるレーザ光の波長と、この1以上の第1半導体レーザ素子に対応する1以上の第2半導体レーザ素子から出射されるレーザ光の波長とを狭帯域化しているため、位置決め作業を必要とし、高価な部品でもある波長安定化素子の個数の増加を抑えることができるので、レーザモジュールの製造コストを抑えることができる。また、第1半導体レーザ素子から出射されるレーザ光と第2半導体レーザ素子から出射されるレーザ光とを光合成部により合成しているため、より高パワーのレーザ光を出力することが可能となる。
効率的な配置のためには、上記1以上の第1半導体レーザ素子と上記1以上の第2半導体レーザ素子とは同一の高さに配置されることが好ましい。この場合には、波長安定化素子を設置する面を平面にすることができるので、波長安定化素子の設置作業が容易になる。
上記レーザモジュールは、上記複数の第1半導体レーザ素子のうち対応する第1半導体レーザ素子から出射されるレーザ光をコリメートする複数の第1コリメートレンズと、上記複数の第2半導体レーザ素子のうち対応する第2半導体レーザ素子から出射されるレーザ光をコリメートする複数の第2コリメートレンズとをさらに備えていてもよい。上記複数の波長安定化素子のそれぞれは、上記1以上の第1半導体レーザ素子から上記光ファイバに至る光路において、対応する上記第1コリメートレンズ及び対応する上記第1ミラーの下流側であって、かつ、上記1以上の第2半導体レーザ素子から上記光ファイバに至る光路において、対応する上記第2コリメートレンズ及び対応する上記第2ミラーの下流側に配置されていてもよい。
波長安定化素子と半導体レーザ素子との間の光路長の差を効果的に小さくするとともに、波長安定化素子の個数を削減するためには、上記1以上の第1半導体レーザ素子は、互いに隣接する2以上の第1半導体レーザ素子であり、上記1以上の第2半導体レーザ素子は、互いに隣接する2以上の第2半導体レーザ素子であることが好ましい。
本発明の第3の態様によれば、所望の波長のレーザ光を安定して出力することができる安価なファイバレーザ装置が提供される。このファイバレーザ装置は、上述したレーザモジュールを含む励起光源と、上記レーザモジュールの上記光ファイバに接続され、希土類元素イオンが添加されたコアを有する増幅用光ファイバとを備える。
本発明の一態様によれば、所望の波長のレーザ光を安定して出力することができる安価なレーザモジュールが得られる。
本出願は、2019年8月23日に提出された日本国特許出願特願2019-152464号に基づくものであり、当該出願の優先権を主張するものである。当該出願の開示は参照によりその全体が本明細書に組み込まれる。
本発明は、複数の半導体レーザ素子から出射されたレーザ光を集光して出力するレーザモジュールに好適に用いられる。
1 レーザモジュール
10 筐体
12 台座
12A~12F 段部
14 光ファイバ
20 サブマウント
22A~22F 半導体レーザ素子(第1半導体レーザ素子)
24 ファースト軸コリメートレンズ
26 スロー軸コリメートレンズ
28 ミラー(第1ミラー)
32 ファースト軸集光レンズ
34 スロー軸集光レンズ
41~43 波長安定化素子
101 レーザモジュール
120 サブマウント
122A~122F 半導体レーザ素子(第2半導体レーザ素子)
124 ファースト軸コリメートレンズ
126 スロー軸コリメートレンズ
128 ミラー(第2ミラー)
141~143 波長安定化素子
150 ビームスプリッタ(光合成部)
152 補助ミラー
401 ファイバレーザ装置
410 光共振器
412 増幅用光ファイバ
414 高反射FBG
416 低反射FBG
420A,420B 励起光源
421A,421B 光ファイバ
422A,422B インラインコンバイナ
430 デリバリファイバ
460 レーザ出力部
10 筐体
12 台座
12A~12F 段部
14 光ファイバ
20 サブマウント
22A~22F 半導体レーザ素子(第1半導体レーザ素子)
24 ファースト軸コリメートレンズ
26 スロー軸コリメートレンズ
28 ミラー(第1ミラー)
32 ファースト軸集光レンズ
34 スロー軸集光レンズ
41~43 波長安定化素子
101 レーザモジュール
120 サブマウント
122A~122F 半導体レーザ素子(第2半導体レーザ素子)
124 ファースト軸コリメートレンズ
126 スロー軸コリメートレンズ
128 ミラー(第2ミラー)
141~143 波長安定化素子
150 ビームスプリッタ(光合成部)
152 補助ミラー
401 ファイバレーザ装置
410 光共振器
412 増幅用光ファイバ
414 高反射FBG
416 低反射FBG
420A,420B 励起光源
421A,421B 光ファイバ
422A,422B インラインコンバイナ
430 デリバリファイバ
460 レーザ出力部
Claims (8)
- 光ファイバと、
複数の半導体レーザ素子と、
前記複数の半導体レーザ素子から出射されるレーザ光を集光して前記光ファイバに結合させる集光レンズと、
前記複数の半導体レーザ素子のうち対応する半導体レーザ素子から出射されるレーザ光を反射して前記集光レンズに向ける複数のミラーと、
前記複数の半導体レーザ素子から出射されるレーザ光の波長を狭帯域化する複数の波長安定化素子と
を備え、
前記複数の波長安定化素子のそれぞれは、前記複数の半導体レーザ素子のうち互いに異なる2以上の半導体レーザ素子から出射されるレーザ光の波長を狭帯域化するように構成される、
レーザモジュール。 - 前記複数の半導体レーザ素子のうち対応する半導体レーザ素子から出射されるレーザ光をコリメートする複数のコリメートレンズをさらに備え、
前記複数の波長安定化素子は、前記2以上の半導体レーザ素子のそれぞれから前記光ファイバに至る光路において、対応する前記コリメートレンズ及び対応する前記ミラーの下流側に配置される、
請求項1に記載のレーザモジュール。 - 前記2以上の半導体レーザ素子は、互いに隣接する2以上の半導体レーザ素子である、請求項1又は2に記載のレーザモジュール。
- 光ファイバと、
複数の第1半導体レーザ素子と、
前記複数の第1半導体レーザ素子に対応する複数の第2半導体レーザ素子と、
前記複数の第1半導体レーザ素子から出射されるレーザ光及び前記複数の第2半導体レーザ素子から出射されるレーザ光を集光して前記光ファイバに結合させる集光レンズと、
前記複数の第1半導体レーザ素子から出射されるレーザ光と前記複数の第2半導体レーザ素子から出射されるレーザ光とを合成して前記集光レンズに向ける光合成部と、
前記複数の第2半導体レーザ素子から出射されるレーザ光を反射して前記光合成部に向ける補助ミラーと、
前記複数の第1半導体レーザ素子のうち対応する第1半導体レーザ素子から出射されるレーザ光を反射して前記光合成部に向ける複数の第1ミラーと、
前記複数の第2半導体レーザ素子のうち対応する第2半導体レーザ素子から出射されるレーザ光を反射して前記補助ミラーに向ける複数の第2ミラーと、
前記複数の第1半導体レーザ素子及び前記複数の第2半導体レーザ素子から出射されるレーザ光の波長を狭帯域化する複数の波長安定化素子と
を備え、
前記複数の波長安定化素子のそれぞれは、前記複数の第1半導体レーザ素子のうち1以上の第1半導体レーザ素子から出射されるレーザ光と、前記複数の第2半導体レーザ素子のうち前記1以上の第1半導体レーザ素子に対応する1以上の第2半導体レーザ素子から出射されるレーザ光の波長を狭帯域化するように構成される、
レーザモジュール。 - 前記1以上の第1半導体レーザ素子と前記1以上の第2半導体レーザ素子とは同一の高さに配置される、請求項4に記載のレーザモジュール。
- 前記複数の第1半導体レーザ素子のうち対応する第1半導体レーザ素子から出射されるレーザ光をコリメートする複数の第1コリメートレンズと、
前記複数の第2半導体レーザ素子のうち対応する第2半導体レーザ素子から出射されるレーザ光をコリメートする複数の第2コリメートレンズと
をさらに備え、
前記複数の波長安定化素子のそれぞれは、前記1以上の第1半導体レーザ素子から前記光ファイバに至る光路において、対応する前記第1コリメートレンズ及び対応する前記第1ミラーの下流側であって、かつ、前記1以上の第2半導体レーザ素子から前記光ファイバに至る光路において、対応する前記第2コリメートレンズ及び対応する前記第2ミラーの下流側に配置される、
請求項4又は5に記載のレーザモジュール。 - 前記1以上の第1半導体レーザ素子は、互いに隣接する2以上の第1半導体レーザ素子であり、
前記1以上の第2半導体レーザ素子は、互いに隣接する2以上の第2半導体レーザ素子である、
請求項4から6のいずれか一項に記載のレーザモジュール。 - 請求項1から7のいずれか一項に記載のレーザモジュールを含む励起光源と、
前記レーザモジュールの前記光ファイバに接続され、希土類元素イオンが添加されたコアを有する増幅用光ファイバと
を備える、ファイバレーザ装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-152464 | 2019-08-23 | ||
JP2019152464A JP2021034530A (ja) | 2019-08-23 | 2019-08-23 | レーザモジュール及びファイバレーザ装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021039131A1 true WO2021039131A1 (ja) | 2021-03-04 |
Family
ID=74677671
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/026433 WO2021039131A1 (ja) | 2019-08-23 | 2020-07-06 | レーザモジュール及びファイバレーザ装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2021034530A (ja) |
WO (1) | WO2021039131A1 (ja) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120002395A1 (en) * | 2010-06-30 | 2012-01-05 | Jds Uniphase Corporation | Beam combining light source |
JP2014120621A (ja) * | 2012-12-17 | 2014-06-30 | Mitsubishi Electric Corp | 半導体レーザ装置 |
US20150295386A1 (en) * | 2013-04-09 | 2015-10-15 | Nlight Photonics Corporation | Diode laser packages with flared laser oscillator waveguides |
US20160119063A1 (en) * | 2014-10-24 | 2016-04-28 | Lumentum Operations Llc | Wavelength locking and multiplexing of high-power semiconductor lasers |
WO2016203998A1 (ja) * | 2015-06-19 | 2016-12-22 | 株式会社アマダミヤチ | レーザユニット及びレーザ装置 |
WO2017026358A1 (ja) * | 2015-08-07 | 2017-02-16 | カナレ電気株式会社 | 波長ロックされたビーム結合型半導体レーザ光源 |
WO2019078431A1 (ko) * | 2017-10-17 | 2019-04-25 | (주)이오테크닉스 | 고출력 광원 장치 |
WO2019089983A1 (en) * | 2017-11-01 | 2019-05-09 | Nuburu, Inc. | Multi kw class blue laser system |
WO2019124204A1 (ja) * | 2017-12-22 | 2019-06-27 | 株式会社フジクラ | レーザモジュール及びレーザシステム |
-
2019
- 2019-08-23 JP JP2019152464A patent/JP2021034530A/ja active Pending
-
2020
- 2020-07-06 WO PCT/JP2020/026433 patent/WO2021039131A1/ja active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120002395A1 (en) * | 2010-06-30 | 2012-01-05 | Jds Uniphase Corporation | Beam combining light source |
JP2014120621A (ja) * | 2012-12-17 | 2014-06-30 | Mitsubishi Electric Corp | 半導体レーザ装置 |
US20150295386A1 (en) * | 2013-04-09 | 2015-10-15 | Nlight Photonics Corporation | Diode laser packages with flared laser oscillator waveguides |
US20160119063A1 (en) * | 2014-10-24 | 2016-04-28 | Lumentum Operations Llc | Wavelength locking and multiplexing of high-power semiconductor lasers |
WO2016203998A1 (ja) * | 2015-06-19 | 2016-12-22 | 株式会社アマダミヤチ | レーザユニット及びレーザ装置 |
WO2017026358A1 (ja) * | 2015-08-07 | 2017-02-16 | カナレ電気株式会社 | 波長ロックされたビーム結合型半導体レーザ光源 |
WO2019078431A1 (ko) * | 2017-10-17 | 2019-04-25 | (주)이오테크닉스 | 고출력 광원 장치 |
WO2019089983A1 (en) * | 2017-11-01 | 2019-05-09 | Nuburu, Inc. | Multi kw class blue laser system |
WO2019124204A1 (ja) * | 2017-12-22 | 2019-06-27 | 株式会社フジクラ | レーザモジュール及びレーザシステム |
Also Published As
Publication number | Publication date |
---|---|
JP2021034530A (ja) | 2021-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4226482B2 (ja) | レーザ光合波装置 | |
US6697192B1 (en) | High power, spectrally combined laser systems and related methods | |
US7764723B2 (en) | High brightness laser module | |
US7127139B2 (en) | Optical multiplexing method and optical multiplexer, and optical amplifier using same | |
JPH04230085A (ja) | レーザ装置 | |
JP2021034531A (ja) | レーザモジュール及びファイバレーザ装置 | |
WO2013115179A1 (ja) | 半導体光素子、集積型半導体光素子および半導体光素子モジュール | |
US7212554B2 (en) | Wavelength stabilized laser | |
JP2013516779A (ja) | 高線形出力のレーザシステム | |
JP2002141607A (ja) | 半導体レーザモジュールとそれを用いた光増幅器 | |
JP7504702B2 (ja) | 半導体レーザ装置及びレーザ装置 | |
JP3735064B2 (ja) | 半導体レーザモジュール及びその製造方法並びに光増幅器 | |
WO2021039131A1 (ja) | レーザモジュール及びファイバレーザ装置 | |
WO2020202757A1 (ja) | レーザモジュール及びファイバレーザ装置 | |
US9935425B2 (en) | Fiber coupled laser source pump with wavelength division multiplexer | |
JP7381404B2 (ja) | レーザモジュール及びファイバレーザ装置 | |
US20090059990A1 (en) | External Cavity semiconductor laser | |
WO2020203136A1 (ja) | ファイバレーザ装置 | |
JP2021136242A (ja) | ファイバレーザ装置 | |
WO2024202413A1 (ja) | レーザモジュール及びファイバレーザ装置 | |
JP2006073549A (ja) | 外部共振器型波長可変光源 | |
JP7465149B2 (ja) | レーザモジュール及びファイバレーザ装置 | |
WO2019172398A1 (ja) | 余剰光除去装置及びファイバレーザ | |
JP5084705B2 (ja) | 偏波合成型半導体レーザ光源,およびこれを備えたラマン増幅器 | |
US20230352913A1 (en) | Laser module and fiber laser device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20858386 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20858386 Country of ref document: EP Kind code of ref document: A1 |