WO2020202757A1 - レーザモジュール及びファイバレーザ装置 - Google Patents

レーザモジュール及びファイバレーザ装置 Download PDF

Info

Publication number
WO2020202757A1
WO2020202757A1 PCT/JP2020/003431 JP2020003431W WO2020202757A1 WO 2020202757 A1 WO2020202757 A1 WO 2020202757A1 JP 2020003431 W JP2020003431 W JP 2020003431W WO 2020202757 A1 WO2020202757 A1 WO 2020202757A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
optical fiber
wavelength
rare earth
earth element
Prior art date
Application number
PCT/JP2020/003431
Other languages
English (en)
French (fr)
Inventor
洋平 葛西
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Publication of WO2020202757A1 publication Critical patent/WO2020202757A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30

Definitions

  • the present invention relates to a laser module and a fiber laser apparatus, and particularly relates to a laser module that collects and outputs laser light emitted from a plurality of laser elements.
  • a laser module configured to collect laser light emitted from a plurality of semiconductor laser elements and combine it with the optical fiber.
  • the excitation light residual excitation light
  • the amplification optical fiber is connected to the wake side of the optical device (combiner or cladding).
  • These optical devices may reach (such as a mode stripper) and be absorbed, causing these optical devices to generate heat, reducing reliability and, in the worst case, burning.
  • the excitation light from one excitation light source may reach the other excitation light source and damage the semiconductor laser element.
  • the residual excitation light is a semiconductor laser. It is also conceivable that an element failure may occur if it enters the active layer of the element.
  • the present invention has been made in view of such problems of the prior art, and the first aspect of the present invention is to provide a laser module capable of reducing residual excitation light on the wake side of an amplification optical fiber. The purpose.
  • a second object of the present invention is to provide a highly reliable fiber laser apparatus capable of efficiently absorbing the laser light from the excitation light source with the amplification optical fiber to reduce the residual excitation light. To do.
  • a laser module capable of reducing residual excitation light on the wake side of the amplification optical fiber.
  • This laser module is composed of an optical fiber connected to an optical fiber for amplification having a core to which rare earth element ions are added, a plurality of laser emitting portions including a laser element that emits laser light, and the plurality of laser emitting portions. It is provided with a condensing lens that condenses the emitted laser light and couples it to the optical fiber.
  • the plurality of laser emitting units have a wavelength in which the first laser emitting unit that emits the first laser light and the absorption rate of the amplification optical fiber for the rare earth element ion are lower than the wavelength of the first laser light.
  • the first laser emitting portion is arranged so that the first laser light is incident on the optical fiber at the first incident angle, and the second laser emitting portion is such that the second laser light is incident on the optical fiber. It is arranged so as to enter the optical fiber at a second incident angle larger than the first incident angle.
  • a highly reliable fiber laser apparatus capable of efficiently absorbing the laser light from the excitation light source with the amplification optical fiber to reduce the residual excitation light.
  • This fiber laser apparatus includes an excitation light source including the above-mentioned laser module, and an amplification optical fiber connected to the above-mentioned optical fiber of the above-mentioned laser module and having a core to which the above-mentioned rare earth element ion is added.
  • FIG. 1 is a schematic view showing a configuration of a fiber laser device according to an embodiment of the present invention.
  • FIG. 2 is a partial cross-sectional plan view showing a laser module used as an excitation light source of the fiber laser apparatus shown in FIG.
  • FIG. 3 is a partial cross-sectional front view schematically showing the laser module shown in FIG.
  • FIG. 4 is a diagram schematically showing a focusing angle profile of laser light from each laser element at the incident end face of the optical fiber in the laser module shown in FIG.
  • FIG. 5 is a diagram showing an absorption spectrum of a Yb-added fiber.
  • FIG. 6 is a diagram schematically showing the excitation light propagating in the amplification optical fiber.
  • FIG. 7 is a partial cross-sectional plan view showing a laser module used as an excitation light source of the fiber laser apparatus according to another embodiment of the present invention.
  • FIGS. 1 to 6 the same or corresponding components are designated by the same reference numerals, and duplicate description will be omitted. Further, in FIGS. 1 to 6, the scale and dimensions of each component may be exaggerated or some components may be omitted.
  • FIG. 1 is a schematic view showing the configuration of the fiber laser device 501 according to the embodiment of the present invention.
  • the fiber laser apparatus 501 in the present embodiment includes an optical resonator 510, a plurality of forward excitation light sources 520A for introducing excitation light into the optical resonator 510 from the front of the optical resonator 510, and the front of the optical resonator 521A.
  • a front in-line combiner 522A to which the excitation light source 520A is connected a plurality of rear excitation light sources 520B for introducing excitation light into the optical resonator 510 from behind the optical resonator 510, and these rear excitation light sources 520B via an optical fiber 521B.
  • connection in the present specification includes not only a physical connection but also an optical connection.
  • the optical resonator 510 includes an amplification optical fiber 512 having a core to which rare earth element ions such as itterbium (Yb), elbium (Er), turium (Tr), and neodymium (Nd) are added, and an amplification optical fiber 512.
  • High Reflectivity Fiber Bragg Grating (HR-FBG) 514 connected to the front inline combiner 522A, and low reflection fiber Bragg grading (Output) connected to the amplification optical fiber 512 and the rear inline combiner 522B. It is composed of Coupler Fiber Bragg Grating (OC-FBG)) 516.
  • the amplification optical fiber 512 is composed of a double clad fiber having an inner clad formed around the core and an outer clad formed around the inner clad.
  • the fiber laser apparatus 501 further includes a delivery fiber 530 extending from the rear in-line combiner 522B, and the end portion of the delivery fiber 530 on the wake side is, for example, covered with laser oscillation light from the amplification optical fiber 512.
  • a laser output unit 560 that emits light toward the processed object is provided.
  • the front excitation light source 520A and the rear excitation light source 520B a laser module described later is used.
  • the front in-line combiner 522A and the rear in-line combiner 522B combine the excitation lights output from the front excitation light source 520A and the rear excitation light source 520B and introduce them into the inner cladding of the amplification optical fiber 512 described above, respectively. As a result, the excitation light propagates inside the inner cladding of the amplification optical fiber 512.
  • the HR-FBG514 is formed by periodically changing the refractive index of the optical fiber, and reflects light in a predetermined wavelength band with a reflectance close to 100%.
  • the OC-FBG516 is formed by periodically changing the refractive index of the optical fiber, and partially (for example, 10%) of the light in the wavelength band reflected by the HR-FBG514. It passes through and reflects the rest. In this way, the HR-FBG514, the amplification optical fiber 512, and the OC-FBG516 recursively amplify the light in a specific wavelength band between the HR-FBG514 and the OC-FBG516 to cause laser oscillation.
  • the resonator 510 is configured.
  • excitation light sources 520A and 520B and combiners 522A and 522B are provided on both the HR-FBG514 side and the OC-FBG516 side, and the bidirectional excitation type fiber laser apparatus is provided.
  • the excitation light source and the combiner may be installed only on either the -FBG514 side or the OC-FBG516 side.
  • a mirror can be used instead of the FBG as a reflection means for oscillating the laser in the optical resonator 510.
  • FIG. 2 is a partial cross-sectional plan view showing the laser module 1 used as the above-mentioned excitation light sources 520A and 520B
  • FIG. 3 is a partial cross-sectional front view.
  • the laser module 1 in the present embodiment includes a rectangular housing 10, a stepped pedestal 12 arranged inside the housing 10, and steps 121 to the pedestal 12 of the pedestal 12.
  • the optical fiber 521 (521A or 521B) to be connected and the condensing lens 16 for condensing the laser beams B1 to B8 emitted from the laser elements 141 to 148 and coupling them to the optical fiber 521 are provided.
  • the laser module 1 includes a fiber mount 17 for fixing the optical fiber 521 and a cylindrical fiber holding portion 18 for holding the optical fiber 521 and introducing the optical fiber 521 into the housing 10.
  • the optical fiber 521 is fixed on the fiber mount 17 by an adhesive 19 or the like.
  • a lid (not shown) is arranged on the upper part of the housing 10, and the internal space of the housing is sealed by the lid.
  • Each step portion 121 to 128 of the pedestal 12 is a first-axis collimated lens that makes laser light B1 to B8 emitted from the laser elements 141 to 148 parallel light in the first axis direction corresponding to the laser elements 141 to 148.
  • the 20 and the slow-axis collimated lens 22 that makes the laser light transmitted through the fast-axis collimated lens 20 parallel to the slow-axis direction, and the mirror 24 that changes the propagation direction of the light transmitted through the slow-axis collimated lens 22 by 90 degrees. Have been placed.
  • the above-mentioned condensing lens 16 is arranged between the optical fiber 521 and the mirror 24, and as shown in FIG. 3, the condensing lens 16 condenses the laser beams B1 to B8 from the respective mirrors 24. And coupled to the end face of the optical fiber 521.
  • the laser module 1 is provided with a pair of lead terminals 30 for supplying a drive current to the laser elements 141 to 148 so as to penetrate the side wall of the housing 10.
  • Laser elements 141 to 148 are connected in series between the pair of lead terminals 30 by a metal wire 32.
  • These lead terminals 30 are connected to a current supply driver (not shown), and the current supply driver supplies a drive current to the lead terminals 30 to drive the laser elements 141 to 148.
  • the laser beams B1 to B8 are emitted from the laser elements 141 to 148 in the + Y direction.
  • the laser beams B1 to B8 pass through the fast-axis collimating lens 20 and the slow-axis collimating lens 22 to become substantially parallel light, and then are turned 90 degrees in the + X direction by the mirror 24.
  • the laser beams B1 to B8 since the heights (in the Z direction) of the step portions 121 to 128 of the pedestal 12 are different, the laser beams B1 to B8 whose direction is changed by the mirror 24 are parallel to each other at different heights. Propagate in the + X direction. Then, these laser beams B1 to B8 are condensed by the condenser lens 16 and coupled to the end face of the optical fiber 521.
  • the condensing lens 16 is formed from the laser emitting surface of each of the laser elements 141 to 148.
  • the optical path length up to the incident surface 16A differs between the laser elements 141 to 148.
  • the optical path length of the laser beam B1 from the laser emitting surface of the laser element 141 to the incident surface 16A of the condenser lens 16 is the longest, and the incident surface of the condenser lens 16 from the laser emitting surface of the laser element 148.
  • the optical path length of the laser beam B8 reaching 16A is the shortest.
  • FIG. 4 is a diagram schematically showing the focusing angle profiles of the laser beams B1 to B8 from the laser elements 141 to 148 on the incident end face of the optical fiber 521.
  • the horizontal direction of FIG. 4 corresponds to the slow axis direction, and the vertical direction corresponds to the fast axis direction.
  • the point O represents a point where the focusing angle of the optical fiber 521 with respect to the optical axis is zero, and the farther away from the point O, the larger the focusing angle of the laser light.
  • S1 to S8 represent the focusing angles of the laser beams B1 to B8 from the laser elements 141 to 148, respectively.
  • R1 represents the maximum angle of the laser beam B5 from the laser element 145
  • R2 represents the maximum angle of the laser beam B1 from the laser element 141.
  • FIG. 4 shows the focusing angle profiles of the laser beams B1 to B8 after being focused by the condenser lens 16, the laser element incident on the condenser lens 16 at the highest position in FIG. 3 is shown.
  • the profile S1 of the laser light B1 from 141 is located at the lowest position in FIG. 4, and the profile S8 of the laser light B8 from the laser element 148 incident on the condenser lens 16 at the lowest position in FIG. 3 is the highest in FIG. Is located in.
  • the laser beam propagating at a position closer to the optical axis of the optical fiber 521 has a smaller focusing angle. That is, as shown in FIG. 3, the laser beams B4 and B5 from the laser elements 144 and 145 arranged in the central step portions 124 and 125 propagate at a position close to the optical axis of the optical fiber 521, so that the optical fiber The focusing angle with respect to 521 is small.
  • the laser beams B1 and B8 from the laser elements 141 and 148 arranged at the stepped portions 121 and 128 at both ends propagate at a position distant from the optical axis of the optical fiber 521 in the Z direction, so that they are collected with respect to the optical fiber 521.
  • the light angle is large.
  • the laser beams B1 to B8 emitted from the laser elements 141 to 148 are made substantially parallel light by the collimated lenses 20 and 22, but the laser light transmitted through the collimated lenses 20 and 22 becomes completely parallel light. It does not have a slight spread angle due to aberration or the like. Therefore, the longer the optical path length of the laser beam to the incident surface 16A of the condensing lens 16, the wider the width of the laser light during propagation, and when the condensing lens 16 condenses the light on the incident end surface of the optical fiber 521.
  • the focusing angle of is increased. For example, in FIG.
  • the focusing angle of the laser beam B1 having a longer optical path length is higher. It is wider than the focusing angle of the laser beam B8.
  • the excitation light absorption rate of the amplification optical fiber to which the rare earth element ion is added is A (dB / m)
  • the length of the amplification optical fiber is B (m)
  • the power of the excitation light is PIN (W).
  • the power of the residual excitation light transmitted through the amplification optical fiber is represented by the following equation (2). From this equation (2), it can be seen that the power of the residual excitation light can be reduced by increasing the excitation light absorption rate A or increasing the length B of the amplification optical fiber.
  • the peak wavelength (976 nm) band of the absorption spectrum of Yb is narrow, and the excitation of all laser elements is performed.
  • the wavelength of light it is necessary to select semiconductor laser elements, which deteriorates the yield and increases the cost.
  • the length B of the amplification optical fiber is increased, the induced Raman light due to the nonlinear optical effect increases, and the stability of the output of the fiber laser device is impaired.
  • the present inventor has a relationship between the incident angle and the absorption amount of the excitation light on the optical fiber and the wavelength and absorption of the excitation light. We focused on the relationship with the rate. That is, the amount of absorption of the laser beams B1 to B8 in the amplification optical fiber 512 of the fiber laser apparatus 501 described above also depends on the incident angle of the laser beams B1 to B8. As shown in FIG.
  • the excitation lights 601, 602 are totally reflected and propagated at the interface between the inner clad 610 and the outer clad 620 of the amplification optical fiber 512, but the incident angle is larger than that of the excitation light 601 having a smaller incident angle.
  • the larger excitation light 602 passes through the core 630 to which the rare earth element ion is added more times, so that the amount of absorption per unit length is larger than that of the excitation light 601.
  • the absorption amount of the laser light in the amplification optical fiber 512 decreases.
  • a laser element that emits a laser beam having a wavelength deviated from the peak wavelength of the absorption spectrum of the rare earth element ion of the amplification optical fiber 512 is subjected to a laser beam having a large incident angle on the optical fiber 521 (for example, the laser beam B1).
  • laser elements 141 and 148 are used as laser elements (for example, laser elements 141 and 148), and laser elements that emit laser light with a wavelength that matches or is close to the peak wavelength of the absorption spectrum are used as laser light with a small incident angle (for example). It is used as a laser element (for example, laser element 144 or 145) that emits laser light B4 or B5).
  • the wavelengths ⁇ 1 to ⁇ 8 of the laser beams B1 to B8 emitted from the laser elements 141 to 148 are determined.
  • the laser elements 141 to 148 are configured so as to be.
  • the laser element 145 by using a laser element that emits a laser beam having a wavelength of 976 nm, which has the highest absorption rate, as the laser element 145, a wavelength ⁇ 5 having the highest absorption rate ( ⁇ 5 ) among the laser beams B1 to B8.
  • the laser light having a relatively low absorption rate for rare earth element ions of the amplification optical fiber 512 is incident on the optical fiber 521 at a relatively large incident angle (amplification optical fiber 512).
  • the laser elements 141 to 148 are configured (so that the laser light having a relatively high absorption rate for rare earth element ions is incident on the optical fiber 521 at a relatively small incident angle). Therefore, the number of times that the laser light having a wavelength having a relatively low absorption rate for the rare earth element ion of the amplification optical fiber 512 passes through the core 630 (see FIG. 6) to which the rare earth element ion of the amplification optical fiber 512 is added.
  • the amount of this laser light absorbed by the amplification optical fiber 512 can be increased.
  • the absorption amount of the laser beams B1 to B8 to the amplification optical fiber 512 can be made uniform at a high level, and the laser light in the amplification optical fiber 512 can be made uniform.
  • B1 to B8 can be efficiently absorbed. Therefore, the residual excitation light can be reduced without increasing the addition concentration of the rare earth element ion or lengthening the amplification optical fiber 512, and the waveguide loss in the amplification optical fiber 512 is increased or induced. The problem of increased Raman scattered light does not occur.
  • the laser light emitted from the semiconductor laser element has a wavelength deviated from the peak wavelength of the absorption spectrum of the rare earth element ion due to the manufacturing variation of the laser element, such a laser element can be effectively used. Therefore, the residual excitation light can be reduced, so that the manufacturing cost of the laser module 1 and the fiber laser apparatus 501 can also be reduced.
  • the laser elements 141 to 148 by configuring the laser elements 141 to 148 so that the laser light having a wavelength having a relatively low absorption rate for rare earth element ions of the amplification optical fiber 512 is incident on the optical fiber 521 at a relatively large incident angle.
  • the amount of absorption per unit length of the rare earth element ion of the amplification optical fiber 512 may be the same for all the laser beams B1 to B8.
  • the absorption amount of the laser beams B1 to B8 to the amplification optical fiber 512 can be made uniform at a higher level, the absorption of the laser beams B1 to B8 to the amplification optical fiber 512 can be made more efficient. It is possible to effectively reduce the residual excitation light on the wake side of the amplification optical fiber 512. This enhances the reliability of the fiber laser apparatus 501.
  • the laser beam having the lowest absorption rate for the rare earth element ion of the amplification optical fiber 512 (in the above example, the laser beam having a wavelength ⁇ 1 ).
  • the laser beam having the highest absorption rate for the rare earth element ion of the amplification optical fiber 512 in the above example, the laser beam having a wavelength ⁇ 5 ).
  • the amplification optical fiber 512 has the lowest absorption rate for rare earth element ions.
  • the optical path length from the laser emitting surface of the laser element that emits the laser light of the wavelength (the laser light of the wavelength ⁇ 1 in the above example) to the incident surface 16A of the condenser lens 16 is the longest among the laser elements 141 to 148. It is preferable to do so.
  • the laser element of the laser element that emits the laser beam having the highest absorption rate for the rare earth element ion of the amplification optical fiber 512 (the laser beam having the wavelength ⁇ 5 in the above example) is emitted. It is preferable that the optical path length from the surface to the incident surface 16A of the condenser lens 16 is the shortest among the laser elements 141 to 148.
  • the laser emitting unit may be configured by using a wavelength stabilizing element capable of narrowing the wavelength of the transmitted light.
  • the wavelength stabilizing elements 211 to 218 may be arranged on the optical path of the laser beams B1 to B8 emitted from the respective laser elements 141 to 148.
  • the wavelength stabilizing elements 211 to 218 have a refractive index that changes periodically at predetermined lattice intervals, and are called Volume Bragg Gating (VBG).
  • VBG Volume Bragg Gating
  • the wavelength stabilizing elements 211 to 218 form an external resonator between the emission end faces of the respective laser elements 141 to 148 and the wavelength stabilizing elements 211 to 218, and the wavelength stabilizing elements 211 to 218 of the respective wavelength stabilizing elements 211 to 218.
  • Laser beams B1 to B8 narrowed to a wavelength band corresponding to the lattice spacing are emitted from the wavelength stabilizing elements 211 to 218.
  • the wavelengths ⁇ 1 to ⁇ 8 of the laser beams B1 to B8 emitted from the wavelength stabilizing elements 211 to 218 are the same as in the above-mentioned example.
  • the laser light having a wavelength having a relatively low absorption rate for rare earth element ions of the amplification optical fiber 512 is incident on the optical fiber 521 at a relatively large incident angle.
  • the laser light having a wavelength with a relatively low absorption rate for rare earth element ions of the amplification optical fiber 512 is an optical fiber at a relatively large incident angle. It may be configured to be incident on 521.
  • the wavelengths ⁇ 1 to ⁇ 8 of the laser beams B1 to B8 emitted from the laser elements 141 to 148 are 976 nm or less of the peak wavelength of the absorption spectrum of the Yb-added fiber.
  • the wavelengths ⁇ 1 to ⁇ 8 of the laser beams B1 to B8 may be equal to or higher than the peak wavelength of the Yb-added fiber (for example, 977 nm).
  • a part of the wavelengths ⁇ 1 to ⁇ 8 of the laser beams B1 to B8 may be equal to or less than the peak wavelength, and other wavelengths may be equal to or more than the peak wavelength.
  • the laser beam of 976 nm which has the larger absorption rate for Yb among the two peak wavelengths, is configured to enter the optical fiber at the smallest incident angle among the laser beams B1 to B8.
  • the difference in wavelength of the laser light emitted from these laser elements 141 to 148 may be set to 5 nm or more.
  • the "peak wavelength band" in the present specification means a wavelength band having a width of ⁇ 3 nm from the wavelength showing the highest absorption rate.
  • the wavelength of the laser light emitted from the plurality of laser elements may be included in one peak wavelength band.
  • the laser light from the plurality of laser elements is propagated by a plurality of paths by using the stepped pedestal 12, but the propagation form of the laser light from the plurality of laser elements is this. It is not limited to.
  • the present invention can be applied to a laser module that employs various propagation modes as disclosed in Patent Document 1 described above.
  • a laser module capable of reducing residual excitation light on the wake side of the amplification optical fiber.
  • This laser module is composed of an optical fiber connected to an optical fiber for amplification having a core to which rare earth element ions are added, a plurality of laser emitting portions including a laser element that emits laser light, and the plurality of laser emitting portions. It is provided with a condensing lens that condenses the emitted laser light and couples it to the optical fiber.
  • the plurality of laser emitting units have a wavelength in which the first laser emitting unit that emits the first laser light and the absorption rate of the amplification optical fiber for the rare earth element ion are lower than the wavelength of the first laser light.
  • the first laser emitting portion is arranged so that the first laser light is incident on the optical fiber at the first incident angle, and the second laser emitting portion is such that the second laser light is incident on the optical fiber. It is arranged so as to enter the optical fiber at a second incident angle larger than the first incident angle.
  • the rare earth element may be ytterbium, erbium, thulium, or neodymium.
  • the second laser beam having a wavelength lower than the wavelength of the first laser beam whose absorption rate for rare earth element ions of the amplification optical fiber is larger than the incident angle of the first laser beam. It is incident on the optical fiber at the second incident angle. Therefore, since the number of times the second laser light passes through the core region to which the rare earth element ion of the amplification optical fiber is added increases, the absorption amount of the second laser light in the amplification optical fiber can be increased. Therefore, the absorption amounts of the first laser beam and the second laser beam to the amplification optical fiber can be made uniform at a high level, so that the addition concentration of rare earth element ions can be increased or the amplification optical fiber can be used. It is possible to effectively reduce the residual excitation light on the wake side of the amplification optical fiber without lengthening the light.
  • the plurality of laser emitting units include a third laser emitting unit that emits a third laser beam having a wavelength lower than the wavelength of the second laser beam, which has an absorption rate of the rare earth element ion of the amplification optical fiber. It may be further included. In this case, it is preferable that the third laser emitting portion is arranged so that the third laser beam is incident on the optical fiber at a third incident angle larger than the second incident angle. This makes it possible to homogenize the absorption amounts of the first laser beam, the second laser beam, and the third laser beam to the amplification optical fiber at a high level, and thus is later than the amplification optical fiber. The residual excitation light on the flow side can be reduced more effectively.
  • the laser light having the lowest absorption rate for the rare earth element ions of the amplification optical fiber is the all laser light. It is preferable that the light beam is arranged so as to be incident on the optical fiber at the largest incident angle. Further, among all the laser lights emitted from the plurality of laser emitting parts by the plurality of laser emitting parts, the laser light having the highest absorption rate for the rare earth element ions of the amplification optical fiber is the above-mentioned all. It is preferable that the laser beam is arranged so as to enter the optical fiber at the smallest incident angle.
  • the laser light having a wavelength having a relatively low absorption rate for the rare earth element ion of the amplification optical fiber is the light at a relatively large incident angle. It is preferable that all the laser emitting portions of the plurality of laser emitting portions are arranged so as to be incident on the fiber. In addition, all of the plurality of laser emitting portions so that the laser light having a wavelength having a relatively high absorption rate for the rare earth element ion of the amplification optical fiber is incident on the optical fiber at a relatively small incident angle. It is preferable that the laser emitting portion of the above is arranged.
  • the absorption rate of the amplification optical fiber for the rare earth element ion in all the laser beams emitted from the plurality of laser emitting portions is the longest among the plurality of laser emitting portions.
  • the laser emitting surface of the laser emitting portion that emits the laser light having the highest absorption rate for the rare earth element ions of the amplification optical fiber is described above. It is preferable that the optical path length to the incident surface of the condenser lens is the shortest among the plurality of laser emitting portions.
  • the wavelength of the laser light emitted from the plurality of laser emitting portions and the incident angle with respect to the optical fiber are such that the absorption amount per unit length of the rare earth element ion of the amplification optical fiber is emitted from the plurality of laser emitting portions. It may be set to be the same for all the laser beams to be generated. In this case, since it is possible to homogenize the absorption amount of all laser light to the amplification optical fiber at a high level, the residual excitation light on the wake side of the amplification optical fiber can be more effectively reduced. be able to.
  • At least one laser emitting unit among the plurality of laser emitting units may emit laser light having a wavelength in the peak wavelength band of the absorption spectrum of the rare earth element ion of the amplification optical fiber.
  • the laser light having the highest absorption rate for the rare earth element ion of the amplification optical fiber is emitted from the plurality of laser emitting units. It is preferable that the laser beam is arranged so as to enter the optical fiber at the smallest incident angle.
  • each of the plurality of laser emitting units may further include a wavelength stabilizing element that narrows the wavelength of the laser light emitted from the laser element.
  • a highly reliable fiber laser apparatus capable of efficiently absorbing the laser light from the excitation light source with the amplification optical fiber to reduce the residual excitation light.
  • This fiber laser apparatus includes an excitation light source including the above-mentioned laser module, and an amplification optical fiber connected to the above-mentioned optical fiber of the above-mentioned laser module and having a core to which the above-mentioned rare earth element ion is added.
  • the second laser beam having a wavelength lower than the wavelength of the first laser beam, which has an absorption rate for rare earth element ions of the amplification optical fiber is larger than the incident angle of the first laser beam. It is incident on the optical fiber at the incident angle of. Therefore, since the number of times the second laser light passes through the core region to which the rare earth element ion of the amplification optical fiber is added increases, the absorption amount of the second laser light in the amplification optical fiber can be increased. Therefore, the absorption amounts of the first laser beam and the second laser beam to the amplification optical fiber can be made uniform at a high level, so that the addition concentration of rare earth element ions can be increased or the amplification optical fiber can be used. It is possible to effectively reduce the residual excitation light on the wake side of the amplification optical fiber without lengthening the light.
  • the present invention is suitably used for a laser module that collects and outputs laser light emitted from a plurality of laser elements.
  • Laser module 10 Housing 12 Pedestal 13 Submount 16 Condensing lens 16A Incident surface 20 First axis collimating lens 22 Slow axis collimating lens 24 Mirror 30 Lead terminal 32 Metal wire 121 to 128 Steps 141 to 148 Semiconductor laser element 211 to 218 Wavelength stabilizer 501
  • Fiber laser device 510 Optical resonator 512 Amplification optical fiber 520A, 520B Excitation light source 521 (521A, 521B)
  • Laser output unit 601,602 Excitation light 610 Inner cladding 620 Outer clad 630 core B1-B8 laser beam

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Lasers (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)

Abstract

増幅用光ファイバよりも後流側での残留励起光を低減することができるレーザモジュールを提供する。レーザモジュール1は、希土類元素イオンが添加されたコア630を有する増幅用光ファイバ512に接続される光ファイバ521と、レーザ光B1~B8を出射するレーザ素子141~148と、レーザ光B1~B8を集光して光ファイバ521に結合させる集光レンズ16とを備える。レーザ素子141~148は、増幅用光ファイバ512の希土類元素イオンに対する吸収率が相対的に低い波長のレーザ光が、相対的に大きい入射角度で光ファイバ521に入射するように構成される。増幅用光ファイバ521の希土類元素イオンの吸収スペクトルのピーク波長帯域の波長を有するレーザ光がレーザ素子145から出射され、レーザ光B1~B8の中で最も小さな入射角度で光ファイバ521に入射する。

Description

レーザモジュール及びファイバレーザ装置
 本発明は、レーザモジュール及びファイバレーザ装置に係り、特に複数のレーザ素子から出射されたレーザ光を集光して出力するレーザモジュールに関するものである。
 従来から、高パワーの励起光をファイバレーザ装置の増幅用光ファイバに出力するために、複数の半導体レーザ素子から出射されたレーザ光を集光して光ファイバに結合するように構成したレーザモジュールが知られている(例えば、特許文献1参照)。このような高パワーのレーザモジュールを励起光源として用いた場合には、増幅用光ファイバで吸収されなかった励起光(残留励起光)が、後流側に接続されている光デバイス(コンバイナやクラッドモードストリッパなど)に到達して吸収され、これらの光デバイスが発熱して信頼性が低下し、最悪の場合には焼損してしまうおそれがある。また、双方向励起型のファイバレーザ装置の場合には、一方の励起光源からの励起光が他方の励起光源に到達して半導体レーザ素子を故障させるおそれがあり、例えば、残留励起光が半導体レーザ素子の活性層に入射すると素子故障が生じることも考えられる。
特許第5767684号公報
 本発明は、このような従来技術の問題点に鑑みてなされたもので、増幅用光ファイバよりも後流側での残留励起光を低減することができるレーザモジュールを提供することを第1の目的とする。
 また、本発明は、励起光源からのレーザ光を増幅用光ファイバで効率的に吸収させて残留励起光を低減することができる信頼性の高いファイバレーザ装置を提供することを第2の目的とする。
 本発明の第1の態様によれば、増幅用光ファイバよりも後流側での残留励起光を低減することができるレーザモジュールが提供される。このレーザモジュールは、希土類元素イオンが添加されたコアを有する増幅用光ファイバに接続される光ファイバと、レーザ光を出射するレーザ素子を含む複数のレーザ出射部と、上記複数のレーザ出射部から出射される上記レーザ光を集光して上記光ファイバに結合させる集光レンズとを備える。上記複数のレーザ出射部は、第1のレーザ光を出射する第1のレーザ出射部と、上記増幅用光ファイバの上記希土類元素イオンに対する吸収率が上記第1のレーザ光の波長よりも低い波長の第2のレーザ光を出射する第2のレーザ出射部とを含む。上記第1のレーザ出射部は、上記第1のレーザ光が上記光ファイバに第1の入射角度で入射するように配置され、上記第2のレーザ出射部は、上記第2のレーザ光が上記光ファイバに上記第1の入射角度よりも大きい第2の入射角度で入射するように配置される。
 本発明の第2の態様によれば、励起光源からのレーザ光を増幅用光ファイバで効率的に吸収させて残留励起光を低減することができる信頼性の高いファイバレーザ装置が提供される。このファイバレーザ装置は、上述したレーザモジュールを含む励起光源と、上記レーザモジュールの上記光ファイバに接続され、上記希土類元素イオンが添加されたコアを有する増幅用光ファイバとを備える。
図1は、本発明の一実施形態におけるファイバレーザ装置の構成を示す模式図である。 図2は、図1に示すファイバレーザ装置の励起光源として用いられるレーザモジュールを示す部分断面平面図である。 図3は、図2に示すレーザモジュールを模式的に示す部分断面正面図である。 図4は、図2に示すレーザモジュールにおける光ファイバの入射端面における各レーザ素子からのレーザ光の集光角度プロファイルを模式的に示す図である。 図5は、Yb添加ファイバの吸収スペクトルを示す図である。 図6は、増幅用光ファイバを伝搬する励起光を模式的に示す図である。 図7は、本発明の他の実施形態におけるファイバレーザ装置の励起光源として用いられるレーザモジュールを示す部分断面平面図である。
 以下、本発明に係るファイバレーザ装置及びレーザモジュールの実施形態について図1から図6を参照して詳細に説明する。なお、図1から図6において、同一又は相当する構成要素には、同一の符号を付して重複した説明を省略する。また、図1から図6においては、各構成要素の縮尺や寸法が誇張されて示されている場合や一部の構成要素が省略されている場合がある。
 図1は、本発明の一実施形態におけるファイバレーザ装置501の構成を示す模式図である。本実施形態におけるファイバレーザ装置501は、光共振器510と、光共振器510の前方から光共振器510に励起光を導入する複数の前方励起光源520Aと、光ファイバ521Aを介してこれらの前方励起光源520Aが接続される前方インラインコンバイナ522Aと、光共振器510の後方から光共振器510に励起光を導入する複数の後方励起光源520Bと、光ファイバ521Bを介してこれらの後方励起光源520Bが接続される後方インラインコンバイナ522Bとを備えている。なお、本明細書における「接続」は、物理的な接続だけではなく、光学的な接続をも含むものとする。
 光共振器510は、例えばイッテルビウム(Yb)やエルビウム(Er)、ツリウム(Tr)、ネオジム(Nd)などの希土類元素イオンが添加されたコアを有する増幅用光ファイバ512と、増幅用光ファイバ512及び前方インラインコンバイナ522Aと接続される高反射ファイバブラッググレーディング(High Reflectivity Fiber Bragg Grating(HR-FBG))514と、増幅用光ファイバ512及び後方インラインコンバイナ522Bと接続される低反射ファイバブラッググレーディング(Output Coupler Fiber Bragg Grating(OC-FBG))516とから構成されている。例えば、増幅用光ファイバ512は、コアの周囲に形成された内側クラッドと、内側クラッドの周囲に形成された外側クラッドとを有するダブルクラッドファイバによって構成される。
 また、ファイバレーザ装置501は、後方インラインコンバイナ522Bから延びるデリバリファイバ530をさらに有しており、このデリバリファイバ530の後流側の端部には増幅用光ファイバ512からのレーザ発振光を例えば被処理物に向けて出射するレーザ出力部560が設けられている。
 前方励起光源520A及び後方励起光源520Bとしては、後述するレーザモジュールが用いられる。前方インラインコンバイナ522A及び後方インラインコンバイナ522Bは、それぞれ前方励起光源520A及び後方励起光源520Bから出力される励起光を結合して上述した増幅用光ファイバ512の内側クラッドに導入するものである。これにより、増幅用光ファイバ512の内側クラッドの内部を励起光が伝搬する。
 HR-FBG514は、周期的に光ファイバの屈折率を変化させて形成されるもので、所定の波長帯の光を100%に近い反射率で反射するものである。OC-FBG516は、HR-FBG514と同様に、周期的に光ファイバの屈折率を変化させて形成されるもので、HR-FBG514で反射される波長帯の光の一部(例えば10%)を通過させ、残りを反射するものである。このように、HR-FBG514と増幅用光ファイバ512とOC-FBG516とによって、HR-FBG514とOC-FBG516との間で特定の波長帯の光を再帰的に増幅してレーザ発振を生じさせる光共振器510が構成される。
 図1に示す例では、HR-FBG514側とOC-FBG516側の双方に励起光源520A,520Bとコンバイナ522A,522Bが設けられており、双方向励起型のファイバレーザ装置となっているが、HR-FBG514側とOC-FBG516側のいずれか一方にのみ励起光源とコンバイナを設置することとしてもよい。また、光共振器510内でレーザ発振させるための反射手段としてFBGに代えてミラーを用いることもできる。
 図2は、上述した励起光源520A,520Bとして用いられるレーザモジュール1を示す部分断面平面図、図3は、部分断面正面図である。図2及び図3に示すように、本実施形態におけるレーザモジュール1は、直方体状の筐体10と、筐体10の内部に配置された階段状の台座12と、台座12の段部121~128に配置された複数のサブマウント13と、サブマウント13上に載置されたレーザ出射部としての半導体レーザ素子141~148と、ファイバレーザ装置501のインラインコンバイナ522A又は522B(図1参照)に接続される光ファイバ521(521A又は521B)と、レーザ素子141~148から出射されるレーザ光B1~B8を集光して光ファイバ521に結合させる集光レンズ16とを備えている。
 また、レーザモジュール1は、光ファイバ521を固定するためのファイバマウント17と、光ファイバ521を保持するとともに筐体10の内部に導入するための円筒状のファイバ保持部18とを含んでいる。光ファイバ521は接着材19などによりファイバマウント17上に固定されている。なお、筐体10の上部には図示しない蓋体が配置されており、この蓋体により筐体の内部空間が封止される。
 台座12のそれぞれの段部121~128には、レーザ素子141~148に対応して、レーザ素子141~148から出射されたレーザ光B1~B8をファースト軸方向に関して平行光にするファースト軸コリメートレンズ20と、ファースト軸コリメートレンズ20を透過したレーザ光をスロー軸方向に関して平行光にするスロー軸コリメートレンズ22と、スロー軸コリメートレンズ22を透過した光の伝搬方向を90度転換するミラー24とが配置されている。上述した集光レンズ16は、光ファイバ521とミラー24との間に配置されており、図3に示すように、この集光レンズ16によりそれぞれのミラー24からのレーザ光B1~B8が集光され、光ファイバ521の端面に結合される。
 レーザモジュール1には、レーザ素子141~148に駆動電流を供給するための1対のリード端子30が、筐体10の側壁を貫通するように設けられている。1対のリード端子30の間には、金属ワイヤ32によりレーザ素子141~148が直列に接続されている。これらのリード端子30は電流供給ドライバ(図示せず)に接続され、この電流供給ドライバがリード端子30に駆動電流を供給してレーザ素子141~148を駆動するようになっている。
 このような構成において、レーザ素子141~148に駆動電流を供給すると、レーザ素子141~148から+Y方向に向かってレーザ光B1~B8が出射される。このレーザ光B1~B8は、ファースト軸コリメートレンズ20及びスロー軸コリメートレンズ22を透過して略平行光となった後、ミラー24で+X方向に90度方向転換される。このとき、図3に示すように、台座12の段部121~128の(Z方向の)高さが異なるため、ミラー24で方向転換されたレーザ光B1~B8は異なる高さで互いに平行に+X方向に伝搬する。そして、これらのレーザ光B1~B8は、集光レンズ16によって集光されて光ファイバ521の端面に結合される。
 本実施形態では、レーザ素子141~148が配置されている台座12の段部121~128のX方向の位置が異なっているため、それぞれのレーザ素子141~148のレーザ出射面から集光レンズ16の入射面16Aに至るまでの光路長は、レーザ素子141~148の間で異なっている。図3に示す例では、レーザ素子141のレーザ出射面から集光レンズ16の入射面16Aに至るレーザ光B1の光路長が最も長く、レーザ素子148のレーザ出射面から集光レンズ16の入射面16Aに至るレーザ光B8の光路長が最も短い。
 図4は、光ファイバ521の入射端面における各レーザ素子141~148からのレーザ光B1~B8の集光角度プロファイルを模式的に示す図である。図4の横方向はスロー軸方向に対応し、縦方向はファースト軸方向に対応している。図4において、点Oは、光ファイバ521の光軸に対する集光角度がゼロの点を表しており、点Oから離れれば離れるほど、レーザ光の集光角度が大きくなる。S1~S8は、それぞれレーザ素子141~148からのレーザ光B1~B8の集光角度を表している。また、R1は、レーザ素子145からのレーザ光B5の最大角度、R2は、レーザ素子141からのレーザ光B1の最大角度を表している。なお、図4は、集光レンズ16により集光された後のレーザ光B1~B8の集光角度プロファイルを示すものであるため、図3において最も高い位置で集光レンズ16に入射するレーザ素子141からのレーザ光B1のプロファイルS1が図4では最も下方に位置し、図3において最も低い位置で集光レンズ16に入射するレーザ素子148からのレーザ光B8のプロファイルS8が図4では最も上方に位置している。
 図4において、レーザ光B1~B8のうち、光ファイバ521の光軸により近い位置で伝搬するレーザ光ほど集光角度が小さくなる。すなわち、図3に示すように、中央の段部124,125に配置されたレーザ素子144,145からのレーザ光B4,B5は、光ファイバ521の光軸に近い位置を伝搬するため、光ファイバ521に対する集光角度が小さい。一方、両端の段部121,128に配置されたレーザ素子141,148からのレーザ光B1,B8は、光ファイバ521の光軸からZ方向に離れた位置を伝搬するため、光ファイバ521に対する集光角度が大きい。
 また、レーザ素子141~148から出射されたレーザ光B1~B8はコリメートレンズ20,22により略平行光にされるが、コリメートレンズ20,22を透過したレーザ光は完全な平行光にはなっておらず、収差などにより若干の広がり角を有する。したがって、集光レンズ16の入射面16Aまでのレーザ光の光路長が長くなればなるほど、伝搬する間にレーザ光の幅が広がり、集光レンズ16によって光ファイバ521の入射端面に集光する際の集光角度が大きくなる。例えば、図4において、両端の段部121,128に配置されたレーザ素子141,148からのレーザ光B1,B8を比較すると、より長い光路長を有するレーザ光B1の集光角度の方が、レーザ光B8の集光角度よりも広がっている。
 図4に示す例では、レーザ光B1~B8の集光角度(入射角度)をそれぞれα1~α8とすると、以下の関係(1)が成立している。
  α5<α4<α6<α3<α7<α2<α8<α1 ・・・(1)
 ところで、希土類元素イオンが添加された増幅用光ファイバの励起光吸収率をA(dB/m)、増幅用光ファイバの長さをB(m)、励起光のパワーをPIn(W)とすると、増幅用光ファイバを透過する残留励起光のパワーは、以下の式(2)で表される。
Figure JPOXMLDOC01-appb-M000001

 この式(2)から、励起光吸収率Aを高めるか、増幅用光ファイバの長さBを長くすると残留励起光のパワーを低減できることがわかる。
 励起光吸収率Aを高めるためには、添加する希土類元素イオンの濃度を高める、あるいは励起光の波長を希土類元素イオンの吸収スペクトルのピーク波長に合わせることが考えられるが、添加する希土類元素イオンの濃度を高め過ぎると、光ファイバの導波損失が上昇してファイバレーザ装置の出力が低下するため、希土類元素イオンの添加濃度を高めるのには限界がある。また、半導体レーザ素子の製造上のバラツキにより、すべての半導体レーザ素子の励起光の波長を希土類元素イオンの吸収スペクトルのピーク波長に合わせることは困難である。例えば、イッテルビウム(Yb)を添加した光ファイバの場合には、図5に示すように、Yb添加ファイバの場合、Ybの吸収スペクトルのピーク波長(976nm)の帯域が狭く、すべてのレーザ素子の励起光の波長をこの帯域に合わせるためには、半導体レーザ素子の選別が必要となり、歩留まりが悪化してコストが上昇する。また、増幅用光ファイバの長さBを長くすると、非線形光学効果による誘導ラマン光が増大してファイバレーザ装置の出力の安定性が損なわれてしまう。
 本発明者は、より効率的に増幅用光ファイバに励起光を吸収させて残留励起光を低減するために、光ファイバに対する励起光の入射角度と吸収量との関係及び励起光の波長と吸収率との関係に着目した。すなわち、上述したファイバレーザ装置501の増幅用光ファイバ512におけるレーザ光B1~B8の吸収量は、レーザ光B1~B8の入射角度にも依存している。図6に示すように、励起光601,602は、増幅用光ファイバ512の内側クラッド610と外側クラッド620との界面で全反射して伝搬するが、入射角度の小さい励起光601よりも入射角度の大きな励起光602の方が、希土類元素イオンが添加されたコア630を通過する回数が多くなるため、励起光601よりも単位長さ当たりの吸収量が増える。
 レーザ素子141~148から出射されるレーザ光の波長が、増幅用光ファイバ512の希土類元素イオンの吸収スペクトルのピーク波長からずれると、増幅用光ファイバ512におけるレーザ光の吸収量が少なくなるが、そのようなレーザ光の光ファイバ521への入射角度を大きくすれば、波長のずれにより低下した吸収量を増やすことが可能である。本実施形態では、増幅用光ファイバ512の希土類元素イオンの吸収スペクトルのピーク波長からずれた波長のレーザ光を出射するレーザ素子を、光ファイバ521への入射角度が大きいレーザ光(例えばレーザ光B1やB8)を出射するレーザ素子(例えばレーザ素子141や148)として用い、吸収スペクトルのピーク波長に一致する又はこれに近い波長のレーザ光を出射するレーザ素子を、入射角度が小さいレーザ光(例えばレーザ光B4やB5)を出射するレーザ素子(例えばレーザ素子144や145)として用いている。
 例えば、増幅用光ファイバ512として図5に示すような吸収スペクトルを有するYb添加ファイバを用いた場合、レーザ素子141~148から出射されるレーザ光B1~B8の波長λ1~λ8が、
  λ1=916nm
  λ2=971nm
  λ3=973nm
  λ4=975nm
  λ5=976nm
  λ6=974nm
  λ7=972nm
  λ8=915nm
となるように、レーザ素子141~148を構成する。図5に示す吸収スペクトルのピーク波長は976nmと915nmであり、915nmよりも976nmの波長の方が高い吸収率を示している。上記波長λ1~λ8における増幅用光ファイバ512の希土類元素イオンに対する吸収率をそれぞれμ1~μ8とすると、以下の関係(3)が成立している。
  μ5>μ4>μ6>μ3>μ7>μ2>μ8>μ1 ・・・(3)
 上記の例では、最も吸収率が高い976nmの波長のレーザ光を出射するレーザ素子をレーザ素子145として用いることで、レーザ光B1~B8の中で最も高い吸収率(μ5)の波長λ5(=976nm)を有するレーザ光B5が最も小さな入射角度α5で光ファイバ521に入射するように構成している。また、吸収スペクトルのピーク波長から少しずれ、波長λ5のレーザ光よりも低い吸収率(μ4)の波長λ4(=975nm)を有するレーザ光B4が入射角度α5よりも大きな入射角度α4で入射するように構成している。さらに、波長λ4のレーザ光よりも低い吸収率(μ6)の波長λ6(=974nm)を有するレーザ光B6が入射角度α4よりも大きな入射角度α6で入射するように構成している。また、波長λ6のレーザ光よりも低い吸収率(μ3)の波長λ3(=973nm)を有するレーザ光B3が入射角度α6よりも大きな入射角度α3で入射するように構成している。
 また、波長λ3のレーザ光よりも低い吸収率(μ7)の波長λ7(=972nm)を有するレーザ光B7が入射角度α3よりも大きな入射角度α7で入射するように構成している。さらに、波長λ7のレーザ光よりも低い吸収率(μ2)の波長λ2(=971nm)を有するレーザ光B2が入射角度α7よりも大きな入射角度α2で入射するように構成している。また、波長λ2のレーザ光よりも低い吸収率(μ8)の波長λ8(=915nm)を有するレーザ光B8が入射角度α2よりも大きな入射角度α8で入射するように構成している。さらに、波長λ8のレーザ光よりも低い吸収率(μ1)の波長λ1(=916nm)を有するレーザ光B1が入射角度α8よりも大きな入射角度α1で入射するように構成している。
 このように、本実施形態では、増幅用光ファイバ512の希土類元素イオンに対する吸収率が相対的に低いレーザ光が相対的に大きい入射角度で光ファイバ521に入射するように(増幅用光ファイバ512の希土類元素イオンに対する吸収率が相対的に高いレーザ光が相対的に小さい入射角度で光ファイバ521に入射するように)レーザ素子141~148が構成されている。したがって、増幅用光ファイバ512の希土類元素イオンに対する吸収率が相対的に低い波長のレーザ光が、増幅用光ファイバ512の希土類元素イオンが添加されたコア630(図6参照)を通過する回数が増えるため、増幅用光ファイバ512におけるこのレーザ光の吸収量を増やすことができる。この結果、レーザ光B1~B8の波長が異なっていても、増幅用光ファイバ512に対するレーザ光B1~B8の吸収量を高いレベルで均一化することが可能となり、増幅用光ファイバ512におけるレーザ光B1~B8の吸収を効率的に行うことができる。このため、希土類元素イオンの添加濃度を増加したり、増幅用光ファイバ512を長くしたりすることなく、残留励起光を低減することができ、増幅用光ファイバ512における導波損失の増加や誘導ラマン散乱光の増大という問題が生じない。さらに、半導体レーザ素子から出射されるレーザ光が、レーザ素子の製造上のバラツキによって希土類元素イオンの吸収スペクトルのピーク波長からずれた波長を有していても、そのようなレーザ素子を有効に利用して残留励起光を低減することができるので、レーザモジュール1及びファイバレーザ装置501の製造コストを低減することもできる。
 また、増幅用光ファイバ512の希土類元素イオンに対する吸収率が相対的に低い波長
のレーザ光が相対的に大きい入射角度で光ファイバ521に入射するようにレーザ素子141~148を構成することで、増幅用光ファイバ512の希土類元素イオンに対する単位長さ当たりの吸収量がすべてのレーザ光B1~B8で同一になるようにしてもよい。この場合には、増幅用光ファイバ512に対するレーザ光B1~B8の吸収量をより高いレベルで均一化することが可能となるので、増幅用光ファイバ512におけるレーザ光B1~B8の吸収をより効率的に行うことができ、増幅用光ファイバ512よりも後流側での残留励起光を効果的に低減することができる。これによって、ファイバレーザ装置501の信頼性が高まる。
 また、レーザ素子141~148から出射される全レーザ光B1~B8の中で増幅用光ファイバ512の希土類元素イオンに対する吸収率が最も低い波長のレーザ光(上記の例では波長λ1のレーザ光)が、全レーザ光B1~B8の中で最も大きな入射角度(上記の例ではα1)で光ファイバ521に入射するように構成することが好ましい。また、レーザ素子141~148から出射される全レーザ光B1~B8の中で増幅用光ファイバ512の希土類元素イオンに対する吸収率が最も高い波長のレーザ光(上記の例では波長λ5のレーザ光)が、全レーザ光B1~B8の中で最も小さい入射角度(上記の例ではα5)で光ファイバ521に入射するように構成することが好ましい。
 さらに、上述したように、レーザ光の光路長が長くなればレーザ光の集光角度が広がるので、全レーザ光B1~B8の中で増幅用光ファイバ512の希土類元素イオンに対する吸収率が最も低い波長のレーザ光(上記の例では波長λ1のレーザ光)を出射するレーザ素子のレーザ出射面から集光レンズ16の入射面16Aまでの光路長がレーザ素子141~148の中で最も長くなるようにすることが好ましい。また、全レーザ光B1~B8の中で増幅用光ファイバ512の希土類元素イオンに対する吸収率が最も高い波長のレーザ光(上記の例では波長λ5のレーザ光)を出射するレーザ素子のレーザ出射面から集光レンズ16の入射面16Aまでの光路長がレーザ素子141~148の中で最も短くなるようにすることが好ましい。
 また、上述したレーザ素子141~148に加えて、透過する光の波長を狭帯域化可能な波長安定化素子を用いてレーザ出射部を構成してもよい。例えば、図7に示すように、波長安定化素子211~218をそれぞれのレーザ素子141~148から出射されるレーザ光B1~B8の光路上に配置してもよい。波長安定化素子211~218は、所定の格子間隔で屈折率が周期的に変化するもので、Volume Bragg Gating(VBG)と呼ばれるものである。このような波長安定化素子211~218を用いることにより、それぞれのレーザ素子141~148から出射されるレーザ光の波長を調整することができる。すなわち、波長安定化素子211~218によって、それぞれのレーザ素子141~148の出射端面と波長安定化素子211~218との間に外部共振器が形成され、それぞれの波長安定化素子211~218の格子間隔に応じた波長帯域に狭帯域化されたレーザ光B1~B8が波長安定化素子211~218から出射される。
 したがって、例えば、波長安定化素子211~218から出射されるレーザ光B1~B8の波長λ1~λ8が、上述した例と同様に、
  λ1=916nm
  λ2=971nm
  λ3=973nm
  λ4=975nm
  λ5=976nm
  λ6=974nm
  λ7=972nm
  λ8=915nm
となるように、それぞれの波長安定化素子211~218の格子間隔を調整することで、上述の例と同様に残留励起光を低減することができる。
 上述した実施形態では、すべてのレーザ素子141~148について、増幅用光ファイバ512の希土類元素イオンに対する吸収率が相対的に低い波長のレーザ光が相対的に大きい入射角度で光ファイバ521に入射するように構成されているが、レーザ素子141~148の一部についてのみ、増幅用光ファイバ512の希土類元素イオンに対する吸収率が相対的に低い波長のレーザ光が相対的に大きい入射角度で光ファイバ521に入射するように構成されていてもよい。
 また、上述の実施形態では、レーザ素子141~148から出射されるレーザ光B1~B8の波長λ1~λ8のすべてが、Yb添加ファイバの吸収スペクトルのピーク波長の976nm以下である例を説明したが、レーザ光B1~B8の波長λ1~λ8がYb添加ファイバのピーク波長以上(例えば977nmなど)であってもよい。さらに、レーザ光B1~B8の波長λ1~λ8の一部がピーク波長以下であって、他の波長がピーク波長以上であってもよい。また、上述の実施形態では、Yb添加ファイバの吸収スペクトルのピーク波長として976nmを用いた例を説明したが、976nmのピーク波長に代えて915nmのピーク波長を用いることもできる。また、これら2つのピーク波長を組み合わせて用いることもできる。この場合において、2つのピーク波長のうちYbに対する吸収率がより大きい976nmのレーザ光が、レーザ光B1~B8の中で最も小さな入射角度で光ファイバに入射するように構成されることが好ましい。また、これらのレーザ素子141~148から出射されるレーザ光の波長の差を5nm以上設けてもよい。ここで、本明細書における「ピーク波長帯域」は、最も高い吸収率を示す波長から±3nmの幅を有する波長帯域を意味するものである。なお、複数のレーザ素子から出射されるレーザ光の波長が1つのピーク波長帯域に入っていてもよい。
 上述の実施形態では、8個のレーザ素子141~148を用いた例を説明したが、レーザ素子の数はこれに限られるものではなく、2個以上であればいくつであってもよい。
 また、上述した実施形態では、階段状の台座12を用いることによって、複数のレーザ素子からのレーザ光を複数の経路で伝搬させているが、複数のレーザ素子からのレーザ光の伝搬形態はこれに限られるものではない。例えば、上述した特許文献1に開示されているような種々の伝搬形態を採用するレーザモジュールにも本発明を適用できることは言うまでもない。
 これまで本発明の好ましい実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々の異なる形態にて実施されてよいことは言うまでもない。
 以上述べたように、本発明の第1の態様によれば、増幅用光ファイバよりも後流側での残留励起光を低減することができるレーザモジュールが提供される。このレーザモジュールは、希土類元素イオンが添加されたコアを有する増幅用光ファイバに接続される光ファイバと、レーザ光を出射するレーザ素子を含む複数のレーザ出射部と、上記複数のレーザ出射部から出射される上記レーザ光を集光して上記光ファイバに結合させる集光レンズとを備える。上記複数のレーザ出射部は、第1のレーザ光を出射する第1のレーザ出射部と、上記増幅用光ファイバの上記希土類元素イオンに対する吸収率が上記第1のレーザ光の波長よりも低い波長の第2のレーザ光を出射する第2のレーザ出射部とを含む。上記第1のレーザ出射部は、上記第1のレーザ光が上記光ファイバに第1の入射角度で入射するように配置され、上記第2のレーザ出射部は、上記第2のレーザ光が上記光ファイバに上記第1の入射角度よりも大きい第2の入射角度で入射するように配置される。上記希土類元素は、イッテルビウム、エルビウム、ツリウム、又はネオジムであってもよい。
 このような構成によれば、増幅用光ファイバの希土類元素イオンに対する吸収率が第1のレーザ光の波長よりも低い波長の第2のレーザ光が、第1のレーザ光の入射角度よりも大きい第2の入射角度で光ファイバに入射する。このため、第2のレーザ光が増幅用光ファイバの希土類元素イオンが添加されたコア領域を通過する回数が増えるので、増幅用光ファイバにおける第2のレーザ光の吸収量を増やすことができる。したがって、増幅用光ファイバに対する第1のレーザ光と第2のレーザ光の吸収量を高いレベルで均一化することが可能となるので、希土類元素イオンの添加濃度を増加したり、増幅用光ファイバを長くしたりすることなく、増幅用光ファイバよりも後流側での残留励起光を効果的に低減することができる。
 上記複数のレーザ出射部は、上記増幅用光ファイバの上記希土類元素イオンに対する吸収率が上記第2のレーザ光の波長よりも低い波長の第3のレーザ光を出射する第3のレーザ出射部をさらに含んでいてもよい。この場合に、上記第3のレーザ出射部は、上記第3のレーザ光が上記光ファイバに上記第2の入射角度よりも大きい第3の入射角度で入射するように配置されることが好ましい。これにより、増幅用光ファイバに対する第1のレーザ光、第2のレーザ光、及び第3のレーザ光の吸収量を高いレベルで均一化することが可能となるので、増幅用光ファイバよりも後流側での残留励起光をより効果的に低減することができる。
 上記複数のレーザ出射部が、上記複数のレーザ出射部から出射される全レーザ光の中で上記増幅用光ファイバの上記希土類元素イオンに対する吸収率が最も低い波長のレーザ光が、上記全レーザ光の中で最も大きな入射角度で上記光ファイバに入射するように配置されることが好ましい。また、上記複数のレーザ出射部が、上記複数のレーザ出射部から出射される全レーザ光の中で上記増幅用光ファイバの上記希土類元素イオンに対する吸収率が最も高い波長のレーザ光が、上記全レーザ光の中で最も小さな入射角度で上記光ファイバに入射するように配置されることが好ましい。
 増幅用光ファイバにおいてより効果的にレーザ光を吸収させるために、上記増幅用光ファイバの上記希土類元素イオンに対する吸収率が相対的に低い波長のレーザ光が、相対的に大きい入射角度で上記光ファイバに入射するように、上記複数のレーザ出射部のすべてのレーザ出射部が配置されていることが好ましい。また、上記増幅用光ファイバの上記希土類元素イオンに対する吸収率が相対的に高い波長のレーザ光が、相対的に小さい入射角度で上記光ファイバに入射するように、上記複数のレーザ出射部のすべてのレーザ出射部が配置されていることが好ましい。
 また、レーザ光の光路長が長くなればレーザ光の集光角度が広がるので、上記複数のレーザ出射部から出射される全レーザ光の中で上記増幅用光ファイバの上記希土類元素イオンに対する吸収率が最も低い波長のレーザ光を出射するレーザ出射部のレーザ出射面から上記集光レンズの入射面までの光路長が上記複数のレーザ出射部の中で最も長いことが好ましい。また、上記複数のレーザ出射部から出射される全レーザ光の中で上記増幅用光ファイバの上記希土類元素イオンに対する吸収率が最も高い波長のレーザ光を出射するレーザ出射部のレーザ出射面から上記集光レンズの入射面までの光路長が上記複数のレーザ出射部の中で最も短いことが好ましい。
 上記複数のレーザ出射部から出射されるレーザ光の波長及び上記光ファイバに対する入射角度は、上記増幅用光ファイバの上記希土類元素イオンに対する単位長さ当たりの吸収量が上記複数のレーザ出射部から出射される全レーザ光で同一になるように設定されていてもよい。この場合には、増幅用光ファイバに対する全レーザ光の吸収量を高いレベルで均一化することが可能となるので、増幅用光ファイバの後流側での残留励起光をより効果的に低減することができる。
 上記複数のレーザ出射部のうち少なくとも1つのレーザ出射部は、上記増幅用光ファイバの上記希土類元素イオンの吸収スペクトルのピーク波長帯域の波長を有するレーザ光を出射するものであってもよい。この場合において、上記少なくとも1つのレーザ出射部から出射されるレーザ光の中で、上記増幅用光ファイバの上記希土類元素イオンに対する吸収率が最も大きいレーザ光は、上記複数のレーザ出射部から出射されるレーザ光の中で最も小さな入射角度で上記光ファイバに入射するように配置されることが好ましい。
 上記第1のレーザ光の波長と上記第2のレーザ光の波長との差は5nmよりも大きくてもよい。また、上記複数のレーザ出射部のそれぞれは、上記レーザ素子から出射されるレーザ光の波長を狭帯域化する波長安定化素子をさらに含んでいてもよい。
 本発明の第2の態様によれば、励起光源からのレーザ光を増幅用光ファイバで効率的に吸収させて残留励起光を低減することができる信頼性の高いファイバレーザ装置が提供される。このファイバレーザ装置は、上述したレーザモジュールを含む励起光源と、上記レーザモジュールの上記光ファイバに接続され、上記希土類元素イオンが添加されたコアを有する増幅用光ファイバとを備える。
 本発明によれば、増幅用光ファイバの希土類元素イオンに対する吸収率が第1のレーザ光の波長よりも低い波長の第2のレーザ光が、第1のレーザ光の入射角度よりも大きい第2の入射角度で光ファイバに入射する。このため、第2のレーザ光が増幅用光ファイバの希土類元素イオンが添加されたコア領域を通過する回数が増えるので、増幅用光ファイバにおける第2のレーザ光の吸収量を増やすことができる。したがって、増幅用光ファイバに対する第1のレーザ光と第2のレーザ光の吸収量を高いレベルで均一化することが可能となるので、希土類元素イオンの添加濃度を増加したり、増幅用光ファイバを長くしたりすることなく、増幅用光ファイバよりも後流側での残留励起光を効果的に低減することができる。
 本出願は、2019年3月29日に提出された日本国特許出願特願2019-066928に基づくものであり、当該出願の優先権を主張するものである。当該出願の開示は参照によりその全体が本明細書に組み込まれる。
 本発明は、複数のレーザ素子から出射されたレーザ光を集光して出力するレーザモジュールに好適に用いられる。
  1   レーザモジュール
 10   筐体
 12   台座
 13   サブマウント
 16   集光レンズ
 16A  入射面
 20   ファースト軸コリメートレンズ
 22   スロー軸コリメートレンズ
 24   ミラー
 30   リード端子
 32   金属ワイヤ
121~128   段部
141~148   半導体レーザ素子
211~218   波長安定化素子
501   ファイバレーザ装置
510   光共振器
512   増幅用光ファイバ
520A,520B  励起光源
521(521A,521B)   光ファイバ
522A,522B  インラインコンバイナ
530   デリバリファイバ
560   レーザ出力部
601,602   励起光
610   内側クラッド
620   外側クラッド
630   コア
 B1~B8   レーザ光

Claims (12)

  1.  希土類元素イオンが添加されたコアを有する増幅用光ファイバに接続される光ファイバと、
     レーザ光を出射するレーザ素子を含む複数のレーザ出射部と、
     前記複数のレーザ出射部から出射される前記レーザ光を集光して前記光ファイバに結合させる集光レンズと
    を備え、
     前記複数のレーザ出射部は、
      第1のレーザ光を出射する第1のレーザ出射部と、
      前記増幅用光ファイバの前記希土類元素イオンに対する吸収率が前記第1のレーザ光の波長よりも低い波長の第2のレーザ光を出射する第2のレーザ出射部と
    を含み、
     前記第1のレーザ出射部は、前記第1のレーザ光が前記光ファイバに第1の入射角度で入射するように配置され、
     前記第2のレーザ出射部は、前記第2のレーザ光が前記光ファイバに前記第1の入射角度よりも大きい第2の入射角度で入射するように配置される、
    レーザモジュール。
  2.  前記複数のレーザ出射部は、前記増幅用光ファイバの前記希土類元素イオンに対する吸収率が前記第2のレーザ光の波長よりも低い波長の第3のレーザ光を出射する第3のレーザ出射部をさらに含み、
     前記第3のレーザ出射部は、前記第3のレーザ光が前記光ファイバに前記第2の入射角度よりも大きい第3の入射角度で入射するように配置される、
    請求項1に記載のレーザモジュール。
  3.  前記複数のレーザ出射部から出射される全レーザ光の中で前記増幅用光ファイバの前記希土類元素イオンに対する吸収率が最も低い波長のレーザ光が、前記全レーザ光の中で最も大きな入射角度で前記光ファイバに入射するように、前記複数のレーザ出射部が配置される、請求項1又は2に記載のレーザモジュール。
  4.  前記複数のレーザ出射部から出射される全レーザ光の中で前記増幅用光ファイバの前記希土類元素イオンに対する吸収率が最も高い波長のレーザ光が、前記全レーザ光の中で最も小さい入射角度で前記光ファイバに入射するように、前記複数のレーザ出射部が配置される、請求項1から3のいずれか一項に記載のレーザモジュール。
  5.  前記複数のレーザ出射部から出射される全レーザ光の中で前記増幅用光ファイバの前記希土類元素イオンに対する吸収率が最も低い波長のレーザ光を出射するレーザ出射部のレーザ出射面から前記集光レンズの入射面までの光路長が前記複数のレーザ出射部の中で最も長い、請求項1から4のいずれか一項に記載のレーザモジュール。
  6.  前記複数のレーザ出射部のすべてのレーザ出射部は、前記増幅用光ファイバの前記希土類元素イオンに対する吸収率が相対的に低い波長のレーザ光が、相対的に大きい入射角度で前記光ファイバに入射するように配置される、請求項1から5のいずれか一項に記載のレーザモジュール。
  7.  前記複数のレーザ出射部から出射されるレーザ光の波長及び前記光ファイバに対する入射角度は、前記増幅用光ファイバの前記希土類元素イオンに対する単位長さ当たりの吸収量が前記複数のレーザ出射部から出射される全レーザ光で同一になるように設定される、請求項1から6のいずれか一項に記載のレーザモジュール。
  8.  前記複数のレーザ出射部のうち少なくとも1つのレーザ出射部は、前記増幅用光ファイバの前記希土類元素イオンの吸収スペクトルのピーク波長帯域の波長を有するレーザ光を出射し、
     前記少なくとも1つのレーザ出射部から出射される前記ピーク波長帯域の波長を有するレーザ光の中で、前記増幅用光ファイバの前記希土類元素イオンに対する吸収率が最も大きいレーザ光は、前記複数のレーザ出射部から出射されるレーザ光の中で最も小さな入射角度で前記光ファイバに入射するように構成される、
    請求項1から7のいずれか一項に記載のレーザモジュール。
  9.  前記第1のレーザ光の波長と前記第2のレーザ光の波長との差は5nmよりも大きい、請求項1から8のいずれか一項に記載のレーザモジュール。
  10.  前記複数のレーザ出射部のそれぞれは、前記レーザ素子から出射されるレーザ光の波長を狭帯域化可能な波長安定化素子をさらに含む、請求項1から9のいずれか一項に記載のレーザモジュール。
  11.  前記希土類元素はイッテルビウムである、請求項1から10のいずれか一項に記載のレーザモジュール。
  12.  請求項1から11のいずれか一項に記載のレーザモジュールを含む励起光源と、
     前記レーザモジュールの前記光ファイバに接続され、前記希土類元素イオンが添加されたコアを有する増幅用光ファイバと
    を備える、ファイバレーザ装置。
PCT/JP2020/003431 2019-03-29 2020-01-30 レーザモジュール及びファイバレーザ装置 WO2020202757A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-066928 2019-03-29
JP2019066928A JP2020166128A (ja) 2019-03-29 2019-03-29 レーザモジュール及びファイバレーザ装置

Publications (1)

Publication Number Publication Date
WO2020202757A1 true WO2020202757A1 (ja) 2020-10-08

Family

ID=72668662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/003431 WO2020202757A1 (ja) 2019-03-29 2020-01-30 レーザモジュール及びファイバレーザ装置

Country Status (2)

Country Link
JP (1) JP2020166128A (ja)
WO (1) WO2020202757A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022091959A1 (ja) * 2020-10-26 2022-05-05 株式会社フジクラ レーザモジュール及びファイバレーザ装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60115274A (ja) * 1983-09-30 1985-06-21 ザ・ボ−ド・オブ・トラステイ−ズ・オブ・ザ・レランド・スタンフオ−ド・ジユニア・ユニバ−シテイ フアイバ光学装置
US5053930A (en) * 1988-11-03 1991-10-01 Butch Benavides Phosphorescent vehicle part identification system
WO2011115275A1 (ja) * 2010-03-19 2011-09-22 株式会社フジクラ 光ファイバ増幅器、及び、それを用いたファイバレーザ装置
JP2012054349A (ja) * 2010-08-31 2012-03-15 Toshiba Corp ファイバレーザ発振装置
JP2012238781A (ja) * 2011-05-13 2012-12-06 Mitsubishi Electric Corp Yb添加ガラスファイバを用いるファイバレーザ発振器およびファイバレーザ増幅器
WO2017134911A1 (ja) * 2016-02-03 2017-08-10 古河電気工業株式会社 レーザ装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5058980A (en) * 1990-02-21 1991-10-22 Sfa, Inc. Multimode optical fiber interconnect for pumping Nd:YAG rod with semiconductor lasers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60115274A (ja) * 1983-09-30 1985-06-21 ザ・ボ−ド・オブ・トラステイ−ズ・オブ・ザ・レランド・スタンフオ−ド・ジユニア・ユニバ−シテイ フアイバ光学装置
US5053930A (en) * 1988-11-03 1991-10-01 Butch Benavides Phosphorescent vehicle part identification system
WO2011115275A1 (ja) * 2010-03-19 2011-09-22 株式会社フジクラ 光ファイバ増幅器、及び、それを用いたファイバレーザ装置
JP2012054349A (ja) * 2010-08-31 2012-03-15 Toshiba Corp ファイバレーザ発振装置
JP2012238781A (ja) * 2011-05-13 2012-12-06 Mitsubishi Electric Corp Yb添加ガラスファイバを用いるファイバレーザ発振器およびファイバレーザ増幅器
WO2017134911A1 (ja) * 2016-02-03 2017-08-10 古河電気工業株式会社 レーザ装置

Also Published As

Publication number Publication date
JP2020166128A (ja) 2020-10-08

Similar Documents

Publication Publication Date Title
US6661819B1 (en) Fiber grating stabilized diode laser
EP0767979B1 (en) Fibre grating stabilized diode laser
US6370180B2 (en) Semiconductor-solid state laser optical waveguide pump
US7764723B2 (en) High brightness laser module
US20020118715A1 (en) Semiconductor laser module and Raman amplifier using the module
US9331451B2 (en) Pump radiation arrangement and method for pumping a laser-active medium
US20080267227A1 (en) Gain-clamped optical amplifier using double-clad fiber
US8526103B2 (en) Laser system with highly linear output
US9001850B2 (en) Excitation unit for a fiber laser
KR20190039698A (ko) 기생 광 손실을 유도하기 위한 기구를 갖는 섬유 레이저 시스템
US6618405B2 (en) Semiconductor laser module and amplifier using the module
JP2021034531A (ja) レーザモジュール及びファイバレーザ装置
WO2020202757A1 (ja) レーザモジュール及びファイバレーザ装置
JP4712178B2 (ja) 半導体レーザモジュール、レーザユニット、ラマン増幅器、及びラマン増幅器に用いられる光半導体レーザモジュールのブリリュアン散乱抑制および偏光度低減方法
JP4544014B2 (ja) レーザ装置およびファイバカップリングモジュール
US9728932B2 (en) Fiber coupled modular laser system
WO2020203136A1 (ja) ファイバレーザ装置
CN107851953B (zh) 平面波导型激光装置
JP2021136242A (ja) ファイバレーザ装置
JP7465149B2 (ja) レーザモジュール及びファイバレーザ装置
JP2002131590A (ja) 半導体レーザモジュール、その製造方法及びラマン増幅器
JP7381404B2 (ja) レーザモジュール及びファイバレーザ装置
WO2021039131A1 (ja) レーザモジュール及びファイバレーザ装置
JP2010034280A (ja) 外部共振器型半導体レーザ
KR100248059B1 (ko) 광섬유증폭을위한고전력펌핑장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20784964

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20784964

Country of ref document: EP

Kind code of ref document: A1