WO2021036996A1 - 天线装置及电子设备 - Google Patents

天线装置及电子设备 Download PDF

Info

Publication number
WO2021036996A1
WO2021036996A1 PCT/CN2020/110840 CN2020110840W WO2021036996A1 WO 2021036996 A1 WO2021036996 A1 WO 2021036996A1 CN 2020110840 W CN2020110840 W CN 2020110840W WO 2021036996 A1 WO2021036996 A1 WO 2021036996A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
field communication
conductor structure
near field
feeding
Prior art date
Application number
PCT/CN2020/110840
Other languages
English (en)
French (fr)
Inventor
李偲
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP20855975.7A priority Critical patent/EP3979414A4/en
Publication of WO2021036996A1 publication Critical patent/WO2021036996A1/zh
Priority to US17/559,639 priority patent/US11949152B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/335Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors at the feed, e.g. for impedance matching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/44Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes

Definitions

  • This application relates to the field of communication technology, and in particular to an antenna device and electronic equipment.
  • NFC Near Field Communication
  • the embodiments of the present application provide an antenna device and an electronic device, which can save the space occupied by the NFC antenna in the electronic device, and the layout of the NFC antenna can be more flexible.
  • an antenna device including:
  • the near field communication chip includes a first differential signal terminal and a second differential signal terminal, the first differential signal terminal and the second differential signal terminal are used to provide a differential excitation current;
  • the ground plane includes a first ground point and a second ground point that are arranged at intervals, and the ground plane forms a conductive path between the first ground point and the second ground point;
  • the first conductor structure includes a first feeding end and a first grounding end that are spaced apart, the first feeding end is electrically connected to the first differential signal end, and the first grounding end is connected to the first grounding end. Location electrical connection;
  • the second conductor structure includes a second power feeding terminal and a second ground terminal that are arranged at intervals.
  • the second power feeding terminal is electrically connected to the second differential signal terminal, and the second ground terminal is connected to the second ground terminal. Location electrical connection;
  • first conductor structure, the conductive path, and the second conductor structure jointly form a conductive loop for the transmission of the differential excitation current.
  • an embodiment of the present application further provides an electronic device, including an antenna device, and the antenna device includes:
  • the near field communication chip includes a first differential signal terminal and a second differential signal terminal, the first differential signal terminal and the second differential signal terminal are used to provide a differential excitation current;
  • the ground plane includes a first ground point and a second ground point that are arranged at intervals, and the ground plane forms a conductive path between the first ground point and the second ground point;
  • the first conductor structure includes a first feeding end and a first grounding end that are spaced apart, the first feeding end is electrically connected to the first differential signal end, and the first grounding end is connected to the first grounding end. Location electrical connection;
  • the second conductor structure includes a second power feeding terminal and a second ground terminal that are arranged at intervals.
  • the second power feeding terminal is electrically connected to the second differential signal terminal, and the second ground terminal is connected to the second ground terminal. Location electrical connection;
  • first conductor structure, the conductive path, and the second conductor structure jointly form a conductive loop for the transmission of the differential excitation current.
  • FIG. 1 is a schematic diagram of the structure of an electronic device provided by an embodiment of the application.
  • FIG. 2 is a schematic diagram of the first structure of an antenna device provided by an embodiment of the application.
  • FIG. 3 is a schematic structural diagram of a circuit board of an electronic device provided by an embodiment of the application.
  • FIG. 4 is a schematic structural diagram of a flexible circuit board of an electronic device provided by an embodiment of the application.
  • FIG. 5 is a schematic structural diagram of a middle frame of an electronic device provided by an embodiment of the application.
  • Fig. 6 is a schematic diagram of the arrangement of the antenna device shown in Fig. 2 in an electronic device.
  • FIG. 7 is a schematic diagram of a second structure of an antenna device provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram of a third structure of an antenna device provided by an embodiment of the application.
  • FIG. 9 is a schematic diagram of a fourth structure of an antenna device provided by an embodiment of the application.
  • FIG. 10 is a schematic diagram of a fifth structure of an antenna device provided by an embodiment of the application.
  • the embodiment of the present application provides an electronic device.
  • the electronic device can be a smart phone, a tablet computer, etc., or a game device, AR (Augmented Reality) device, automobile device, data storage device, audio playback device, video playback device, notebook computer, desktop computing Equipment, etc.
  • AR Augmented Reality
  • FIG. 1 is a schematic structural diagram of an electronic device 100 provided by an embodiment of the application.
  • the electronic device 100 includes a display screen 10, a housing 20, a circuit board 30 and a battery 40.
  • the display screen 10 is arranged on the housing 20 to form a display surface of the electronic device 100 for displaying information such as images and text.
  • the display screen 10 may include a liquid crystal display (Liquid Crystal Display, LCD) or an Organic Light-Emitting Diode (OLED) display screen.
  • the display screen 10 may include a display surface and a non-display surface opposite to the display surface.
  • the display surface is the surface of the display screen 10 facing the user, that is, the surface of the display screen 10 visible to the user on the electronic device 100.
  • the non-display surface is the surface of the display screen 10 facing the inside of the electronic device 100. Wherein, the display surface is used to display information, and the non-display surface does not display information.
  • a cover plate can also be provided on the display screen 10 to protect the display screen 10 from being scratched or damaged by water.
  • the cover plate may be a transparent glass cover plate, so that the user can observe the content displayed on the display screen 10 through the cover plate.
  • the cover plate may be a glass cover plate made of sapphire.
  • the housing 20 is used to form the outer contour of the electronic device 100 so as to accommodate the electronic devices and functional components of the electronic device 100, and at the same time form a sealing and protective effect on the electronic devices and functional components inside the electronic device.
  • all functional components of the camera, circuit board, and vibration motor of the electronic device 100 can be arranged inside the housing 20.
  • the housing 20 may include a middle frame and a battery cover.
  • the middle frame may have a thin plate or sheet-like structure, or a hollow frame structure.
  • the middle frame is used to provide support for the electronic devices or functional components in the electronic device 100 so as to install the electronic devices and functional components of the electronic device 100 together.
  • structures such as grooves, protrusions, and through holes may be provided on the middle frame to facilitate the installation of electronic devices or functional components of the electronic device 100.
  • the material of the middle frame may include metal or plastic.
  • the battery cover is connected with the middle frame.
  • the battery cover may be attached to the middle frame through an adhesive such as double-sided tape to realize the connection with the middle frame.
  • the battery cover is used to seal the electronic devices and functional components of the electronic device 100 inside the electronic device 100 together with the middle frame and the display screen 10 to protect the electronic devices and functional components of the electronic device 100.
  • the battery cover can be integrally formed. During the molding process of the battery cover, a rear camera mounting hole and other structures can be formed on the battery cover. It is understandable that the material of the battery cover may also include metal or plastic.
  • the circuit board 30 is arranged inside the housing 20.
  • the circuit board 30 may be installed on the middle frame of the housing 20 for fixing, and the circuit board 30 may be sealed inside the electronic device through a battery cover.
  • the circuit board 30 may be the main board of the electronic device 100.
  • the circuit board 30 may also be integrated with one or more of functional components such as a processor, a camera, an earphone interface, an acceleration sensor, a gyroscope, and a motor.
  • the display screen 10 may be electrically connected to the circuit board 30 to control the display of the display screen 10 through a processor on the circuit board 30.
  • the battery 40 is provided inside the housing 20.
  • the battery 40 may be installed on the middle frame of the housing 20 for fixing, and the battery 40 may be sealed inside the electronic device through a battery cover.
  • the battery 40 is electrically connected to the circuit board 30 so that the battery 40 can supply power to the electronic device 100.
  • the circuit board 30 may be provided with a power management circuit.
  • the power management circuit is used to distribute the voltage provided by the battery 40 to various electronic devices in the electronic device 100.
  • the electronic device 100 is also provided with an antenna device 200.
  • the antenna device 200 is used to implement the wireless communication function of the electronic device 100.
  • the antenna device 200 may be used to implement near field communication (NFC communication).
  • the antenna device 200 is arranged inside the housing 20 of the electronic device 100. It is understandable that part of the components of the antenna device 200 can be integrated on the circuit board 30 inside the housing 20.
  • the signal processing chip and the signal processing circuit in the antenna device 200 can be integrated on the circuit board. Board 30.
  • part of the components of the antenna device 200 may also be directly arranged inside the housing 20.
  • the radiator or conductor structure of the antenna device 200 for radiating signals may be directly arranged inside the housing 20.
  • FIG. 2 is a schematic diagram of a first structure of an antenna device 200 according to an embodiment of the application.
  • the antenna device 200 includes a near field communication chip 21, a ground plane 22, a first conductor structure 23 and a second conductor structure 24.
  • the near field communication chip (NFC chip) 21 can be used to provide a differential excitation current.
  • the differential excitation current includes two current signals.
  • the two current signals have the same amplitude and opposite phases, or it is understood that the phases of the two current signals differ by 180 degrees.
  • the differential excitation current is a balanced signal. It is understandable that if the analog signal is directly transmitted during the transmission process, it is an unbalanced signal; if the original analog signal is inverted, then the inverted analog signal and the original analog signal are simultaneously transmitted, and the inverted analog signal and the original The analog signal is called a balanced signal.
  • the balanced signal passes through the differential amplifier during the transmission process.
  • the original analog signal and the inverted analog signal are subtracted to obtain an enhanced original analog signal. Since the two transmission lines are subject to the same interference during the transmission process, the subtraction is In the process, the same interference signal is subtracted, so the anti-interference performance of the balanced signal is better.
  • the NFC chip 21 includes a first differential signal terminal 211 and a second differential signal terminal 212.
  • the first differential signal terminal 211 may be a positive (+) port of the NFC chip 21
  • the second differential signal terminal 212 may be a negative (-) port of the NFC chip 21.
  • the first differential signal terminal 211 and the second differential signal terminal 212 are used to provide the differential excitation current.
  • the differential excitation current provided by the NFC chip 21 may be output to the antenna device 200 through the first differential signal terminal 211, and flow back to the NFC chip 21 through the second differential signal terminal 212, Thereby forming a current loop.
  • the NFC chip 21 can be arranged on the circuit board 30 of the electronic device 100, or a smaller independent circuit board can also be arranged in the electronic device 100, and the NFC chip 21 can be integrated into the electronic device 100.
  • the independent circuit board may be a small board in the electronic device 100, for example.
  • the ground plane 22 is used to form a common ground.
  • the ground plane 22 may be formed by a conductor, a printed circuit, or a metal printed layer in the electronic device 100.
  • the ground plane 22 may be provided on the circuit board 30 of the electronic device 100.
  • the ground plane 22 may also be formed on the housing 20 of the electronic device 100.
  • the ground plane 22 may be formed by the middle frame of the housing 20, or the ground plane 22 may also be formed by the battery cover of the housing 20. Mentioned ground plane 22.
  • the ground plane 22 includes a first ground point 221 and a second ground point 222 arranged at intervals.
  • the first ground point 221 and the second ground point 222 may be, for example, the end of the ground plane 22, or may also be a convex structure on the ground plane 22, or may also be the ground plane
  • the pad formed on 22 may also be an area of a certain area on the ground plane 22, and so on.
  • the ground plane 22 forms a conductive path between the first ground point 221 and the second ground point 222, and the conductive path may be used to conduct current. That is, when a voltage signal is applied to the first ground point 221 and the second ground point 222, a current can be generated between the first ground point 221 and the second ground point 222, thereby forming a current loop . It can be understood that when the NFC chip 21 provides a differential excitation current, the conductive path between the first ground point 221 and the second ground point 222 can be used to transmit the differential excitation current.
  • the first conductor structure 23 includes a first feed end 231 and a first ground end 232 that are arranged at intervals.
  • the first power feeding terminal 231 is electrically connected to the first differential signal terminal 211 of the NFC chip 21, so that the first differential signal terminal 211 can feed power to the first power feeding terminal 231.
  • the differential excitation current provided by the NFC chip 21 may be transmitted to the first power feeding terminal 231 via the first differential signal terminal 211 to realize power feeding to the first conductor structure 23.
  • the first ground terminal 232 is electrically connected to the first ground point 221 of the ground plane 22 so as to realize the ground return of the first conductor structure 23.
  • the second conductor structure 24 includes a second feeding end 241 and a second grounding end 242 arranged at intervals.
  • the second power feeding terminal 241 is electrically connected to the second differential signal terminal 212 of the NFC chip 21, so that the second differential signal terminal 212 can feed power to the second power feeding terminal 241.
  • the differential excitation current provided by the NFC chip 21 may be transmitted to the second differential signal terminal 212 via the second feeding terminal 241 to realize the feeding of the second conductor structure 24.
  • the second ground terminal 242 is electrically connected to the second ground point 222 of the ground plane 22 so as to realize the return of the second conductor structure 24 to the ground.
  • first conductor structure 23 and the second conductor structure 24 may both be metal structures in the electronic device 100 or metal traces on the circuit board 30 and other structures. It should be noted that the second conductor structure 24 and the first conductor structure 23 are different conductor structures.
  • FIG. 3 is a schematic structural diagram of a circuit board 30 of an electronic device provided by an embodiment of the application.
  • the circuit board 30 of the electronic device 100 is provided with a printed circuit 31.
  • the first conductor structure 23 may be the printed circuit 31 or the second conductor structure 24 may be the printed circuit 31.
  • FIG. 4 is a schematic structural diagram of a flexible circuit board 50 of an electronic device provided by an embodiment of the application.
  • the electronic device 100 includes a flexible printed circuit (FPC) 50, and the FPC 50 is electrically connected to the circuit board 30.
  • the FPC 50 may be, for example, an FPC of a display screen, an FPC of a camera, an FPC of a motor, etc., or the FPC 50 may be an independent FPC used to implement an NFC conductor structure, which can be fixed to the 100 of an electronic device. In the shell.
  • the FPC 50 is provided with a metal wiring 51, and the metal wiring 51 is used to transmit signals, for example, it may be used to transmit a control signal of a display screen, a control signal of a camera, a control signal of a motor, and the like.
  • the first conductor structure 23 may include the metal trace 51 or the second conductor structure 24 may include the metal trace 51.
  • FIG. 5 is a schematic structural diagram of a middle frame 201 of an electronic device provided by an embodiment of the application.
  • the housing 20 of the electronic device 100 includes a middle frame 201, and the circuit board 30 can be disposed on the middle frame 201.
  • the middle frame 201 includes first metal branches 2011 and second metal branches 2012 arranged at intervals.
  • a plurality of slits may be opened on the middle frame, and the first metal stub 2011 and the second metal stub 2012 are formed through the plurality of slits.
  • the first conductor structure 23 includes the first metal stub 2011, and the second conductor structure 24 includes the second metal stub 2012.
  • the electronic device 100 may include a front camera and a rear camera, and a metal decorative ring may be provided around the front camera and the rear camera.
  • the first conductor structure 23 may include a decorative ring of a front camera
  • the second conductor structure 24 may include a decorative ring of a rear camera.
  • the first conductor structure 23, the conductive path on the ground plane 22, and the second conductor structure 24 jointly form a conductive loop for the transmission of the differential excitation current. That is, the differential excitation current is output from a signal terminal of the NFC chip 21, for example, output from the first differential signal terminal 211, and then fed into the first conductor structure 23 through the first conductor The structure 23 is transmitted to the conductive path on the ground plane 22, and then transmitted to the second conductor structure 24 via the conductive path, and finally flows back to the second differential of the NFC chip 21 through the second conductor structure 24.
  • the signal terminal 212 thus forms a complete current loop.
  • the first conductor structure 23, the conductive path on the ground plane 22, and the second conductor structure 24 can jointly generate an alternating electromagnetic field, thereby The NFC signal is radiated outward to realize the NFC communication of the electronic device 100.
  • the first conductor structure 23 when the conductive loop transmits the differential excitation current, the first conductor structure 23 generates a first near field communication radiation field (first NFC radiation field).
  • the first NFC radiation field may cover a certain space area around the electronic device 100.
  • the second conductor structure 24 generates a second near field communication radiation field (second NFC radiation field).
  • the second NFC radiation field may also cover a certain space area around the electronic device 100.
  • the second NFC radiation field and the first NFC radiation field at least partially overlap, so that the area of the NFC radiation field around the electronic device 100 can be enhanced, and the field strength of the overlapping area can be enhanced. Therefore, the effective reading and writing (card swiping) area of the NFC antenna of the electronic device 100 can be increased, and the stability of the NFC antenna of the electronic device 100 during reading and writing (card swiping) can be improved.
  • the ground plane 22 can generate a third near field communication radiation field (third NFC radiation field).
  • the third NFC radiation field may also cover a certain space area around the electronic device 100. Wherein, the third NFC radiation field at least partially overlaps with the first NFC radiation field, and the third NFC radiation field at least partially overlaps with the second NFC radiation field. Therefore, the area of the NFC radiation field around the electronic device 100 can be further enhanced, and the field strength of the overlapping area can be enhanced.
  • the first NFC radiation field formed by the first conductor structure 23 serves as the main Radiation field
  • the second NFC radiation field formed by the second conductor structure 24 and the third NFC radiation field formed by the ground plane 22 can both compensate for the main radiation field, so that the main radiation can be compensated.
  • the position in the field where the field strength is weaker is compensated to enhance the field strength of the entire area of the main radiation field.
  • the second NFC radiation field formed by the second conductor structure 24 serves as the main radiation field, and the first NFC radiation field ,
  • the third NFC radiation field can compensate the main radiation field.
  • the antenna device 200 of the present application can ensure that in the electronic device 100, any position of the NFC radiation field formed by the first conductor structure 23, the second conductor structure 24, and the ground plane 22 can be realized.
  • the transmission and reception of NFC signals realizes the NFC communication between the electronic device 100 and other electronic devices.
  • FIG. 6 is a schematic diagram of the arrangement of the antenna device shown in FIG. 2 in an electronic device.
  • the near field communication chip can be integrated on the circuit board of the electronic device, the first conductor structure can be arranged at one end of the electronic device, for example, the first conductor structure can be arranged on the top of the electronic device, and the ground plane can be formed
  • the second conductor structure may be arranged on one side of the electronic device, for example, the second conductor structure may be arranged on the right side of the electronic device. Therefore, the differential excitation current provided by the NFC chip can be transmitted from the NFC chip to the first conductor structure on the top of the electronic device, and then transmitted from the first conductor structure to the ground plane on the circuit board of the electronic device, and then from the first conductor structure on the circuit board of the electronic device.
  • the ground plane is transmitted to the second conductor structure on the right side of the electronic device, and finally flows back from the second conductor structure to the NFC chip.
  • the arrangement of the first conductor structure on the top of the electronic device and the arrangement of the second conductor structure on the right side of the electronic device is merely an example, and is not intended to limit the embodiments of the present application. It is understandable that the first conductor structure can also be arranged in other parts of the electronic device, and the second conductor structure can also be arranged in other parts of the electronic device, so that different parts of the electronic device can be connected to other parts.
  • NFC communication between electronic devices for example, NFC communication can be realized through the front of the electronic device (that is, the side where the display screen of the electronic device is located), and through the back of the electronic device (that is, where the battery cover of the electronic device is located). One side) NFC communication can also be realized.
  • the NFC chip in the electronic device can actively provide a differential excitation current.
  • the antenna device in the electronic device can generate induced current, which can also be understood as the differential excitation current provided by the NFC chip , Or understood as the differential excitation current passively provided by the NFC chip. That is, whether the electronic device acts as an NFC transmitter to radiate NFC signals outward or acts as an NFC receiver to receive NFC signals radiated by other electronic devices, the NFC chip in the electronic device can provide differential excitation current.
  • the antenna device provided by the embodiment of the present application has two conductor structures in the antenna device, and connects the two conductor structures to two different ground points on the same ground plane, and uses the gap between the two ground points.
  • the ground plane forms a conductive path, so that a conductive loop for NFC differential excitation current transmission can be formed through the two conductor structures and the conductive path.
  • the two conductor structures can be arranged in different parts of the electronic equipment according to the requirements of the internal space design of the electronic equipment, and then connected through the conductive path formed on the ground plane to form a loop, the conductors in different parts of the electronic equipment can be passed through
  • the structure cooperates with the ground plane to realize the design of the NFC antenna, which can save the space occupied by the NFC antenna, and the layout of the NFC antenna can be more flexible.
  • FIG. 7 is a schematic diagram of the second structure of the antenna device 200 according to an embodiment of the application.
  • the antenna device 200 further includes a first non-near field communication chip 25 and a second non-near field communication chip 26. It can be understood that both the first non-near field communication chip 25 and the second non-near field communication chip 26 can be integrated on the circuit board 30 of the electronic device 100.
  • the first non-near field communication chip 25 is used to provide a first non-near field communication excitation signal.
  • the first non-near field communication excitation signal is an unbalanced signal.
  • the first non-near field communication excitation signal may include one of a cellular network signal, a Wi-Fi signal, a GPS signal, and a BT signal.
  • the first non-near field communication chip 25 may be a cellular communication chip for providing the cellular network signal; the first non-near field communication chip 25 may be a Wi-Fi chip for providing the Wi-Fi signal; the first non-near field communication chip 25 may be a GPS chip for providing the GPS signal; the first non-near field communication chip 25 may also be a BT chip for providing the BT signal.
  • the first conductor structure 23 further includes a third feeding end 233.
  • the third power feeding terminal 233 is spaced apart from the first power feeding terminal 231 and the first ground terminal 232.
  • the third feeding terminal 233 is electrically connected to the first non-near field communication chip 25, and the first non-near field communication chip 25 is grounded. Therefore, the first non-near field communication chip 25 can feed the first non-near field communication excitation signal to the first conductor structure 23 through the third feeding end 233. Therefore, the first conductor structure 23 can also be used to transmit the first non-near field communication excitation signal.
  • the first conductor structure 23 can be used to transmit the differential excitation current provided by the NFC chip 21, and can also be used to transmit the first non-near field communication provided by the first non-near field communication chip 25.
  • the excitation signal can thereby realize the multiplexing of the first conductor structure 23, which can reduce the number of conductor structures used for transmitting wireless signals in the electronic device 100, thereby saving the internal space of the electronic device 100.
  • the frequency of the NFC signal is usually 13.56MHz (megahertz)
  • the frequency of the cellular network signal is usually above 700MHz
  • the frequency of the Wi-Fi signal is usually 2.4GHz (gigahertz) or 5GHz
  • the frequency of the GPS signal The frequency usually includes multiple frequency bands such as 1.575GHz, 1.227GHz, 1.381GHz, 1.841GHz, etc.
  • the frequency of the BT signal is usually 2.4GHz. Therefore, with respect to cellular network signals, Wi-Fi signals, GPS signals, and BT signals, NFC signals are low-frequency signals, while cellular network signals, Wi-Fi signals, GPS signals, and BT signals are all high-frequency signals. Or it can be understood that the NFC signal is a low-frequency signal, the first non-near field communication excitation signal is a high-frequency signal, and the frequency of the NFC signal is less than the frequency of the first non-near field communication excitation signal.
  • the lower the frequency of the wireless signal the longer the required radiator length; and the higher the frequency of the wireless signal, the shorter the required radiator length. That is, the length of the radiator required to transmit the NFC signal is greater than the length of the radiator required to transmit the first non-near field communication excitation signal.
  • the distance between the first feeding terminal 231 and the first ground terminal 232 is greater than the distance between the third feeding terminal 233 and the first ground terminal 232. Therefore, in the first conductor structure 23, the length of the radiator for transmitting the NFC signal is greater than the length of the radiator for transmitting the first non-near field communication excitation signal.
  • the third feeding end 233 and the first feeding end 231 may be located on the same side of the first grounding end 232. That is, the third power feeding terminal 233 is located between the first power feeding terminal 231 and the first ground terminal 232. Compared with the third feeding end 233 and the first feeding end 231 located on different sides of the first grounding end 232, the third feeding end 233 and the first feeding end 231 located on the same side of the first ground terminal 232 can reuse the part between the third feed terminal 233 and the first ground terminal 232, so that the overall length of the first conductor structure 23 can be reduced.
  • the second non-near field communication chip 26 is used to provide a second non-near field communication excitation signal.
  • the second non-near field communication excitation signal is an unbalanced signal.
  • the second non-near field communication excitation signal may include one of a cellular network signal, a wireless fidelity signal (Wi-Fi signal), a global positioning system signal (GPS signal), and a Bluetooth signal (BT signal).
  • the second non-near field communication chip 26 may be a cellular communication chip for providing the cellular network signal; the second non-near field communication chip 26 may be a Wi-Fi chip for providing the Wi-Fi signal; the second non-near field communication chip 26 may be a GPS chip for providing the GPS signal; the second non-near field communication chip 26 may also be a BT chip for providing the BT signal.
  • the second non-near field communication excitation signal and the first non-near field communication excitation signal may be signals of the same communication type or signals of different communication types.
  • the second non-near field communication chip 26 and the first non-near field communication chip 25 may be the same type of chips or different types of chips.
  • the second conductor structure 24 further includes a fourth feeding end 243.
  • the fourth power feeding terminal 243 is spaced apart from the second power feeding terminal 241 and the second ground terminal 242.
  • the fourth feeding terminal 243 is electrically connected to the second non-near field communication chip 26, and the second non-near field communication chip 26 is grounded. Therefore, the second non-near field communication chip 26 can feed the second non-near field communication excitation signal to the second conductor structure 24 through the fourth feeding end 243. Therefore, the second conductor structure 24 can also be used to transmit the second non-near field communication excitation signal.
  • the second conductor structure 24 can be used to transmit the differential excitation current provided by the NFC chip 21, and can also be used to transmit the second non-near field communication provided by the second non-near field communication chip 26.
  • the excitation signal can thereby realize the multiplexing of the second conductor structure 24, which can further reduce the number of conductor structures used for transmitting wireless signals in the electronic device 100, thereby further saving the internal space of the electronic device 100.
  • the distance between the second feed end 241 and the second ground end 242 is greater than the distance between the fourth feed end 243 and the second ground end 242 . Therefore, in the second conductor structure 24, the length of the radiator for transmitting the NFC signal is greater than the length of the radiator for transmitting the second non-near field communication excitation signal.
  • the fourth feeding end 243 and the second feeding end 241 may be located on the same side of the second grounding end 242. That is, the fourth power feeding terminal 243 is located between the second power feeding terminal 241 and the second ground terminal 242. Compared with the fourth feeding end 243 and the second feeding end 241 being located on different sides of the second grounding end 242, the fourth feeding end 243 and the second feeding end 241 Located on the same side of the second ground terminal 242 can reuse the part between the fourth feed terminal 243 and the second ground terminal 242, so that the overall length of the second conductor structure 24 can be reduced.
  • FIG. 8 is a schematic diagram of a third structure of the antenna device 200 according to an embodiment of the application.
  • the first conductor structure 23 includes a first resonant arm 234 and a first feeding path 235.
  • the first resonant arm 234 may be formed by a metal structure in the electronic device 100.
  • a gap may be opened on the middle frame of the housing 20, a metal stub is formed through the gap, and the first resonant arm 234 is formed by the metal stub. Therefore, forming the first resonant arm 234 through the middle frame of the electronic device 100 can ensure that the NFC antenna has sufficient headroom in the electronic device 100 to improve the stability of the NFC signal.
  • the conductor structures at different positions of the middle frame are connected through the conductive paths on the ground plane 22, the length of the entire conductive loop can be extended, thereby increasing the effective radiation range of the entire NFC antenna.
  • the first resonant arm 234 may be formed by a decorative ring of a camera in the electronic device 100.
  • the first resonant arm 234 may also be formed by metal traces on the FPC in the electronic device 100.
  • the FPC may be, for example, a display screen FPC, a camera FPC, a motor FPC, or the like.
  • the first resonant arm 234 includes a first end 234a and a second end 234b opposite to each other.
  • the first grounding terminal 232 is arranged at the first end 234a to realize the grounding of the first conductor structure 23.
  • the third feeding end 233 is arranged at the second end 234b, so that the first non-near field communication chip 25 feeds the first non-near field communication excitation signal to the first conductor structure 23 .
  • the first feeding path 235 may be formed by a metal circuit in the electronic device 100.
  • the first feeding path 235 may be formed by a printed circuit on the circuit board 30 in the electronic device 100.
  • the first feeding path 235 may also be formed by a metal wire in the electronic device 100.
  • the first feeding path 235 is electrically connected to the second end 234b of the first resonant arm 234.
  • the first feeding terminal 231 is arranged on the first feeding path 235.
  • the first feeding end 231 may be arranged at an end of the first feeding path 235 away from the second end 234b.
  • the second conductor structure 24 includes a second resonant arm 244 and a second feeding path 245.
  • the second resonant arm 244 may be formed by a metal structure in the electronic device 100.
  • a gap may be opened on the middle frame of the housing 20, a metal stub is formed through the gap, and the second resonant arm 244 is formed by the metal stub.
  • forming the second resonant arm 244 through the middle frame of the electronic device 100 can also ensure that the NFC antenna has enough headroom in the electronic device 100 to improve the stability of the NFC signal.
  • the conductor structures at different positions of the middle frame are connected through the conductive paths on the ground plane 22, the length of the entire conductive loop can be extended, thereby increasing the effective radiation range of the entire NFC antenna.
  • the second resonance arm 244 may be formed by a decorative ring of a camera in the electronic device 100.
  • the second resonant arm 244 can also be formed by metal traces on the FPC in the electronic device 100.
  • the FPC can be, for example, a display screen FPC, a camera FPC, a motor FPC, or the like.
  • the second resonant arm 244 includes a third end 244a and a fourth end 244b opposite to each other.
  • the second grounding end 242 is disposed at the third end 244a to realize the grounding of the second conductor structure 24.
  • the fourth feeding end 243 is arranged at the fourth end 244b, so as to realize that the second non-near field communication chip 26 feeds the second non-near field communication excitation signal to the second conductor structure 24 .
  • the second feeding path 245 may be formed by a metal circuit in the electronic device 100.
  • the second feeding path 245 may be formed by a printed circuit on the circuit board 30 in the electronic device 100.
  • the second feeding path 245 may also be formed by a metal wire in the electronic device 100.
  • the second feeding path 245 is electrically connected to the fourth end 244b of the second resonant arm 244.
  • the second feeding end 241 is arranged on the second feeding path 245.
  • the second feeding end 241 may be provided at an end of the second feeding path 245 away from the fourth end 244b.
  • FIG. 9 is a schematic diagram of the fourth structure of the antenna device 200 according to an embodiment of the application.
  • the antenna device 200 further includes a first matching circuit 271, a second matching circuit 272, a third matching circuit 273, a first filter circuit 281, a second filter circuit 282, a third filter circuit 283, and a fourth filter circuit 284 .
  • the matching circuit may also be referred to as a matching network, a tuning circuit, a tuning network, and so on.
  • the filter circuit can also be called a filter network.
  • the first matching circuit 271 and the first differential signal terminal 211 of the NFC chip 21, the second differential signal terminal 212 of the NFC chip 21, the first feeding terminal 231 of the first conductor structure 23, and the The second feeding end 241 of the second conductor structure 24 is electrically connected.
  • the first matching circuit 271 is used to match the impedance when the conductive loop transmits the differential excitation current.
  • the conductive loop is a conductive loop formed by the first conductor structure 23, the conductive path on the ground plane 22, and the second conductor structure 24.
  • the first matching circuit 271 includes a first input terminal 271a, a second input terminal 271b, a first output terminal 271c, and a second output terminal 271d.
  • the first input terminal 271a is electrically connected to the first differential signal terminal 211 of the NFC chip 21
  • the second input terminal 271b is electrically connected to the second differential signal terminal 212 of the NFC chip 21
  • the first The output end 271c is electrically connected to the first feeding end 231 of the first conductor structure 23
  • the second output end 271d is electrically connected to the second feeding end 241 of the second conductor structure 24.
  • the first filter circuit 281 is arranged between the first differential signal terminal 211 of the NFC chip 21 and the first input terminal 271 a of the first matching network 271.
  • the first filter circuit 281 is used to filter out the first interference signal between the first differential signal terminal 211 and the first input terminal 271a.
  • the first interference signal is an electrical signal other than the differential excitation current provided by the NFC chip 21.
  • the second filter circuit 282 is arranged between the second differential signal terminal 212 of the NFC chip 21 and the second input terminal 271 b of the first matching circuit 271.
  • the second filter circuit 282 is used to filter the second interference signal between the second differential signal terminal 212 and the second input terminal 271b.
  • the second interference signal is an electrical signal other than the differential excitation current provided by the NFC chip 21.
  • the second matching circuit 272 is electrically connected to the first non-near field communication chip 25 and the third feeding end 233 of the first conductor structure 23.
  • the second matching circuit 272 is used to match the impedance when the first conductor structure 23 transmits the first non-near field communication excitation signal.
  • the third filter circuit 283 is arranged between the first non-near field communication chip 25 and the second matching circuit 272.
  • the third filter circuit 283 is used to filter out the third interference signal between the first non-near field communication chip 25 and the second matching circuit 272.
  • the third interference signal is an electrical signal other than the first non-near field communication excitation signal provided by the first non-near field communication chip 25.
  • the third matching circuit 273 is electrically connected to the second non-near field communication chip 26 and the fourth feeding end 243 of the second conductor structure 24.
  • the third matching circuit 273 is used to match the impedance when the second conductor structure 24 transmits the second non-near field communication excitation signal.
  • the fourth filter circuit 284 is disposed between the second non-near field communication chip 26 and the third matching circuit 273.
  • the fourth filter circuit 284 is used to filter the fourth interference signal between the second non-near field communication chip 26 and the third matching circuit 273.
  • the fourth interference signal is an electrical signal other than the second non-near field communication excitation signal provided by the second non-near field communication chip 26.
  • first matching circuit 271, the second matching circuit 272, and the third matching circuit 273 may all include a circuit composed of any series or parallel connection of capacitors and inductors.
  • the first filter circuit 281, the second filter circuit 282, the third filter circuit 283, and the fourth filter circuit 284 may also include circuits composed of capacitors and inductors in any series or in parallel.
  • FIG. 10 is a schematic diagram of the fifth structure of the antenna device 200 according to an embodiment of the application.
  • the first matching circuit 271 may include four capacitors C1, C2, C3, and C4, for example.
  • the capacitor C1 is connected in series with the first differential signal terminal 211 of the NFC chip 21, and the capacitor C2 is connected in series with the second differential signal terminal 212 of the NFC chip 21.
  • the capacitor C3 is connected in series with the capacitor C4, and after the series is connected in parallel with the NFC chip 21, the capacitor C3 and the capacitor C4 are grounded. It can be understood that the capacitance values of the capacitors C1, C2, C3, and C4 can be set according to actual needs.
  • the first filter circuit 281 may include, for example, an inductor L1 and a capacitor C5. Wherein, the inductor L1 is connected in series between the first differential signal terminal 211 and the first matching circuit 271, and the capacitor C5 is connected in parallel with the NFC chip 21 and grounded. It can be understood that the inductance value of the inductor L1 and the capacitance value of the capacitor C5 can be set according to actual needs.
  • the second filter circuit 282 may include, for example, an inductor L2 and a capacitor C6.
  • the inductor L2 is connected in series between the second differential signal terminal 212 and the first matching circuit 271, and the capacitor C6 is connected in parallel with the NFC chip 21 and grounded. It can be understood that the inductance value of the inductor L2 and the capacitance value of the capacitor C6 can be set according to actual needs.
  • the second matching circuit 272 may include capacitors C7 and C8, for example.
  • the capacitor C7 is connected in series between the third feeding end 233 of the first conductor structure 23 and the first non-near field communication chip 25, and the capacitor C8 is connected in parallel with the first non-near field communication chip 25 and grounded. It can be understood that the capacitance values of the capacitors C7 and C8 can be set according to actual needs.
  • the third filter circuit 283 may include, for example, an inductor L3 and a capacitor C9.
  • the inductor L3 is connected in series between the first non-near field communication chip 25 and the second matching circuit 272, and the capacitor C9 is connected in parallel with the first non-near field communication chip 25 and grounded. It can be understood that the inductance value of the inductor L3 and the capacitance value of the capacitor C9 can be set according to actual needs.
  • the third matching circuit 273 may include capacitors C10 and C11, for example.
  • the capacitor C10 is connected in series between the fourth feeding end 243 of the second conductor structure 24 and the second non-near field communication chip 26, and the capacitor C11 is connected in parallel with the second non-near field communication chip 26 and grounded. It can be understood that the capacitance values of the capacitors C10 and C11 can be set according to actual needs.
  • the fourth filter circuit 284 may include, for example, an inductor L4 and a capacitor C12. Wherein, the inductor L4 is connected in series between the second non-near field communication chip 26 and the third matching circuit 273, and the capacitor C12 is connected in parallel with the second non-near field communication chip 26 and grounded. It can be understood that the inductance value of the inductor L4 and the capacitance value of the capacitor C12 can be set according to actual needs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Support Of Aerials (AREA)
  • Details Of Aerials (AREA)

Abstract

一种天线装置及电子设备,所述天线装置包括:近场通信芯片,用于提供差分激励电流;接地平面,形成有导电路径;第一导体结构;第二导体结构;所述第一导体结构、所述导电路径以及所述第二导体结构共同形成供所述差分激励电流传输的导电回路。

Description

天线装置及电子设备
本申请要求于2019年08月30日提交中国专利局、申请号为201910818037.8、发明名称为“天线装置及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别涉及一种天线装置及电子设备。
背景技术
随着通信技术的发展,诸如智能手机等电子设备能够实现的功能越来越多,电子设备的通信模式也更加多样化。例如,通常的电子设备可以支持蜂窝网络通信、无线保真(Wireless Fidelity,Wi-Fi)通信、全球定位系统(Global Positioning System,GPS)通信、蓝牙(Bluetooth,BT)通信等多种通信模式。此外,随着通信技术的进步,近来电子设备逐渐可以实现近场通信(Near Field Communication,NFC)。
发明内容
本申请实施例提供一种天线装置及电子设备,可以节省电子设备中NFC天线的占用空间,并且NFC天线的布局可以更灵活。
第一方面,本申请实施例提供一种天线装置,包括:
近场通信芯片,包括第一差分信号端和第二差分信号端,所述第一差分信号端和所述第二差分信号端用于提供差分激励电流;
接地平面,包括间隔设置的第一接地点和第二接地点,所述接地平面在所述第一接地点和所述第二接地点之间形成导电路径;
第一导体结构,包括间隔设置的第一馈电端和第一接地端,所述第一馈电端与所述第一差分信号端电连接,所述第一接地端与所述第一接地点电连接;
第二导体结构,包括间隔设置的第二馈电端和第二接地端,所述第二馈电端与所述第二差分信号端电连接,所述第二接地端与所述第二接地点电连接;
其中,所述第一导体结构、所述导电路径以及所述第二导体结构共同形成供所述差分激励电流传输的导电回路。
第二方面,本申请实施例还提供一种电子设备,包括天线装置,所述天线装置包括:
近场通信芯片,包括第一差分信号端和第二差分信号端,所述第一差分信号端和所述第二差分信号端用于提供差分激励电流;
接地平面,包括间隔设置的第一接地点和第二接地点,所述接地平面在所述第一接地点和所述第二接地点之间形成导电路径;
第一导体结构,包括间隔设置的第一馈电端和第一接地端,所述第一馈电端与所述第一差分信号端电连接,所述第一接地端与所述第一接地点电连接;
第二导体结构,包括间隔设置的第二馈电端和第二接地端,所述第二馈电端与所述第二差分信号端电连接,所述第二接地端与所述第二接地点电连接;
其中,所述第一导体结构、所述导电路径以及所述第二导体结构共同形成供所述差分激励电流传输的导电回路。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的电子设备的结构示意图。
图2为本申请实施例提供的天线装置的第一种结构示意图。
图3为本申请实施例提供的电子设备的电路板的结构示意图。
图4为本申请实施例提供的电子设备的柔性电路板的结构示意图。
图5为本申请实施例提供的电子设备的中框的结构示意图。
图6为图2所示天线装置在电子设备中的设置示意图。
图7为本申请实施例提供的天线装置的第二种结构示意图。
图8为本申请实施例提供的天线装置的第三种结构示意图。
图9为本申请实施例提供的天线装置的第四种结构示意图。
图10为本申请实施例提供的天线装置的第五种结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供一种电子设备。所述电子设备可以是智能手机、平板电脑等设备,还可以是游戏设备、AR(Augmented Reality,增强现实)设备、汽车装置、数据存储装置、音频播放装置、视频播放装置、笔记本电脑、桌面计算设备等。
参考图1,图1为本申请实施例提供的电子设备100的结构示意图。
电子设备100包括显示屏10、壳体20、电路板30以及电池40。
其中,显示屏10设置在壳体20上,以形成电子设备100的显示面,用于显示图像、文本等信息。其中,显示屏10可以包括液晶显示屏(Liquid Crystal Display,LCD)或有机发光二极管显示屏(Organic Light-Emitting Diode,OLED)等类型的显示屏。
可以理解的,显示屏10可以包括显示面以及与所述显示面相对的非显示面。所述显示面为所述显示屏10朝向用户的表面,也即所述显示屏10在电子设备100上用户可见的表面。所述非显示面为所述显示屏10朝向电子设备100内部的表面。其中,所述显示面用于显示信息,所述非显示面不显示信息。
可以理解的,显示屏10上还可以设置盖板,以对显示屏10进行保护,防止显示屏10被刮伤或者被水损坏。其中,所述盖板可以为透明玻璃盖板,从而用户可以透过盖板观察到显示屏10显示的内容。可以理解的,所述盖板可以为蓝宝石材质的玻璃盖板。
壳体20用于形成电子设备100的外部轮廓,以便于容纳电子设备100的电子器件、功能组件等,同时对电子设备内部的电子器件和功能组件形成密封和保护作用。例如,电子设备100的摄像头、电路板、振动马达都功能组件都可以设置在壳体20内部。可以理解的,所述壳体20可以包括中框和电池盖。
其中,所述中框可以为薄板状或薄片状的结构,也可以为中空的框体结构。中框用于为电子设备100中的电子器件或功能组件提供支撑作用,以将电子设备100的电子器件、功能组件安装到一起。例如,所述中框上可以设置凹槽、凸起、通孔等结构,以便于安装电子设备100的电子器件或功能组件。可以理解的,中框的材质可以包括金属或塑胶等。
所述电池盖与所述中框连接。例如,所述电池盖可以通过诸如双面胶等粘接剂贴合到中框上以实现与中框的连接。其中,电池盖用于与所述中框、所述显示屏10共同将电子设备100的电子器件和功能组件密封在电子设备100内部,以对电子设备100的电子器件和功能组件形成保护作用。可以理解的,电池盖可以一体成型。在电池盖的成型过程中,可以在电池盖上形成后置摄像头安装孔等结构。可以理解的,电池盖的材质也可以包括金属或塑胶等。
电路板30设置在所述壳体20内部。例如,电路板30可以安装在壳体20的中框上,以进 行固定,并通过电池盖将电路板30密封在电子设备内部。其中,电路板30可以为电子设备100的主板。其中,所述电路板30上还可以集成有处理器、摄像头、耳机接口、加速度传感器、陀螺仪、马达等功能组件中的一个或多个。同时,显示屏10可以电连接至电路板30,以通过电路板30上的处理器对显示屏10的显示进行控制。
电池40设置在壳体20内部。例如,电池40可以安装在壳体20的中框上,以进行固定,并通过电池盖将电池40密封在电子设备内部。同时,电池40电连接至所述电路板30,以实现电池40为电子设备100供电。其中,电路板30上可以设置有电源管理电路。所述电源管理电路用于将电池40提供的电压分配到电子设备100中的各个电子器件。
其中,所述电子设备100中还设置有天线装置200。所述天线装置200用于实现电子设备100的无线通信功能,例如所述天线装置200可以用于实现近场通信(NFC通信)。所述天线装置200设置在电子设备100的壳体20内部。其中,可以理解的,所述天线装置200的部分器件可以集成在所述壳体20内部的电路板30上,例如所述天线装置200中的信号处理芯片以及信号处理电路可以集成在所述电路板30上。此外,所述天线装置200的部分器件还可以直接设置在所述壳体20内部。例如所述天线装置200用于辐射信号的辐射体或者导体结构可以直接设置在所述壳体20内部。
参考图2,图2为本申请实施例提供的天线装置200的第一种结构示意图。其中,所述天线装置200包括近场通信芯片21、接地平面22、第一导体结构23以及第二导体结构24。
在本申请的描述中,需要理解的是,诸如“第一”、“第二”等术语仅用于区分类似的对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。
其中,近场通信芯片(NFC芯片)21可以用于提供差分激励电流。其中,所述差分激励电流包括两个电流信号。所述两个电流信号的振幅相同,并且相位相反,或者理解为所述两个电流信号的相位相差180度。此外,所述差分激励电流为平衡信号。可以理解的,模拟信号在传输过程中,如果被直接传送就是非平衡信号;如果把原始的模拟信号反相,然后同时传送反相的模拟信号和原始的模拟信号,反相的模拟信号和原始的模拟信号就叫做平衡信号。平衡信号在传送过程中经过差动放大器,原始的模拟信号和反相的模拟信号相减,得到加强的原始模拟信号,由于在传送过程中,两条传送线路受到相同的干扰,在相减的过程中,减掉了相同的干扰信号,因此平衡信号的抗干扰性能更好。
所述NFC芯片21包括第一差分信号端211和第二差分信号端212。例如,所述第一差分信号端211可以为所述NFC芯片21的正(+)端口,所述第二差分信号端212可以为所述NFC芯片21的负(-)端口。所述第一差分信号端211和所述第二差分信号端212用于提供所述差分激励电流。例如,所述NFC芯片21提供的差分激励电流可以经由所述第一差分信号端211输出到所述天线装置200中,并经由所述第二差分信号端212回流到所述NFC芯片21中,从而形成电流回路。
其中,可以理解的,所述NFC芯片21可以设置在电子设备100的电路板30上,或者也可以在电子设备100中设置一个较小的独立电路板,并将所述NFC芯片21集成到所述独立电路板上。所述独立电路板例如可以为电子设备100中的小板。
所述接地平面22用于形成公共地。其中,所述接地平面22可以通过电子设备100中的导体、印刷线路或者金属印刷层等形成。例如,所述接地平面22可以设置在电子设备100的电路板30上。所述接地平面22还可以形成在电子设备100的壳体20上,例如可以通过壳体20的中框来形成所述接地平面22,或者也可以通过所述壳体20的电池盖来形成所述接地平面22。
所述接地平面22包括间隔设置的第一接地点221和第二接地点222。所述第一接地点221、所述第二接地点222例如可以为所述接地平面22的端部,或者也可以为所述接地平面22上的凸起结构,或者也可以为所述接地平面22上形成的焊盘,或者还可以为所述接地平 面22上一定面积的区域,等等。
其中,所述接地平面22在所述第一接地点221和所述第二接地点222之间形成导电路径,所述导电路径可以用于传导电流。也即,当在所述第一接地点221与所述第二接地点222施加电压信号时,所述第一接地点221与所述第二接地点222之间可以产生电流,从而形成电流回路。可以理解的,当所述NFC芯片21提供差分激励电流时,所述第一接地点221和所述第二接地点222之间的导电路径可以用于传输所述差分激励电流。
所述第一导体结构23包括间隔设置的第一馈电端231和第一接地端232。所述第一馈电端231与所述NFC芯片21的第一差分信号端211电连接,从而实现所述第一差分信号端211向所述第一馈电端231馈电。例如,所述NFC芯片21提供的差分激励电流可以经由所述第一差分信号端211传输到所述第一馈电端231,以实现向所述第一导体结构23馈电。所述第一接地端232与所述接地平面22的第一接地点221电连接,从而实现所述第一导体结构23的回地。
所述第二导体结构24包括间隔设置的第二馈电端241和第二接地端242。所述第二馈电端241与所述NFC芯片21的第二差分信号端212电连接,从而实现所述第二差分信号端212向所述第二馈电端241馈电。例如,所述NFC芯片21提供的差分激励电流可以经由所述第二馈电端241传输到所述第二差分信号端212,以实现向所述第二导体结构24馈电。所述第二接地端242与所述接地平面22的第二接地点222电连接,从而实现所述第二导体结构24的回地。
其中,所述第一导体结构23、所述第二导体结构24可以都为电子设备100中的金属结构或者电路板30上的金属走线等结构。需要说明的是,所述第二导体结构24与所述第一导体结构23为不同的导体结构。
例如,如图3所示,图3为本申请实施例提供的电子设备的电路板30的结构示意图。电子设备100的电路板30上设置有印刷线路31。所述第一导体结构23可以为所述印刷线路31,或者所述第二导体结构24为所述印刷线路31。
再例如,如图4所示,图4为本申请实施例提供的电子设备的柔性电路板50的结构示意图。电子设备100包括柔性电路板(Flexible Printed Circuit,FPC)50,所述FPC 50与所述电路板30电连接。其中,所述FPC 50例如可以为显示屏的FPC、摄像头的FPC、马达的FPC等结构,或者所述FPC 50可以为用于实现NFC导体结构的独立的FPC,其可以固定于电子设备的100的壳体内。所述FPC 50上设置有金属走线51,所述金属走线51用于传输信号,例如可以用于传输显示屏的控制信号、摄像头的控制信号、马达的控制信号等。所述第一导体结构23可以包括所述金属走线51,或者所述第二导体结构24包括所述金属走线51。
再例如,如图5所示,图5为本申请实施例提供的电子设备的中框201的结构示意图。电子设备100的壳体20包括中框201,所述电路板30可以设置在所述中框201上。其中,所述中框201包括间隔设置的第一金属枝节2011和第二金属枝节2012。例如,可以在中框上开设多个缝隙,通过所述多个缝隙形成所述第一金属枝节2011和所述第二金属枝节2012。其中,所述第一导体结构23包括所述第一金属枝节2011,所述第二导体结构24包括所述第二金属枝节2012。
再例如,电子设备100可以包括前置摄像头和后置摄像头,所述前置摄像头、后置摄像头周围都可以设置有金属材质的装饰圈。所述第一导体结构23可以包括前置摄像头的装饰圈,所述第二导体结构24可以包括后置摄像头的装饰圈。
其中,所述第一导体结构23、所述接地平面22上的导电路径以及所述第二导体结构24共同形成供所述差分激励电流传输的导电回路。也即,所述差分激励电流从所述NFC芯片21的一个信号端输出,例如从所述第一差分信号端211输出,随后被馈入所述第一导体结构23,经由所述第一导体结构23传输到所述接地平面22上的导电路径,随后经由所述导电路径传输到所述第二导体结构24,最终通过所述第二导体结构24回流到所述NFC芯片21的第二差分信号端212,从而形成完整的电流回路。
可以理解的,所述导电回路在传输所述差分激励电流时,所述第一导体结构23、所述接地平面22上的导电路径、所述第二导体结构24可以共同产生交变电磁场,从而向外辐射NFC信号,以实现所述电子设备100的NFC通信。
其中,所述导电回路在传输所述差分激励电流时,所述第一导体结构23产生第一近场通信辐射场(第一NFC辐射场)。所述第一NFC辐射场可以覆盖电子设备100周围一定空间的区域。所述第二导体结构24产生第二近场通信辐射场(第二NFC辐射场)。所述第二NFC辐射场也可以覆盖电子设备100周围一定空间的区域。其中,所述第二NFC辐射场与所述第一NFC辐射场至少部分重叠,从而既可以增强电子设备100周围的NFC辐射场的区域,又可以增强重叠区域的场强。因此,既可以增加电子设备100的NFC天线的有效读写(刷卡)面积,又可以提高电子设备100的NFC天线在读写(刷卡)时的稳定性。
此外,所述导电回路在传输所述差分激励电流时,所述接地平面22可以产生第三近场通信辐射场(第三NFC辐射场)。所述第三NFC辐射场也可以覆盖电子设备100周围一定空间的区域。其中,所述第三NFC辐射场与所述第一NFC辐射场至少部分重叠,并且所述第三NFC辐射场与所述第二NFC辐射场至少部分重叠。因此,可以进一步增强电子设备100周围的NFC辐射场的区域,并且能够增强重叠区域的场强。
例如,在实际应用中,当NFC接收机(例如地铁刷卡机)靠近所述第一导体结构23的位置读取NFC信号时,所述第一导体结构23所形成的第一NFC辐射场作为主辐射场,所述第二导体结构24所形成的第二NFC辐射场、所述接地平面22所形成的第三NFC辐射场都可以对所述主辐射场进行补偿,从而可以对所述主辐射场中场强较弱的位置进行补偿,以增强所述主辐射场整个区域的场强。同样的,当NFC接收机靠近所述第二导体结构24的位置读取NFC信号时,所述第二导体结构24所形成的第二NFC辐射场作为主辐射场,所述第一NFC辐射场、所述第三NFC辐射场都可以对所述主辐射场进行补偿。
因此,本申请的天线装置200,可以保证在电子设备100中,所述第一导体结构23、所述第二导体结构24、所述接地平面22所形成的NFC辐射场的任意位置都可以实现NFC信号的收发,从而实现电子设备100与其它电子设备之间的NFC通信。
同时参考图6,图6为图2所示天线装置在电子设备中的设置示意图。
其中,近场通信芯片(NFC芯片)可以集成在电子设备的电路板上,第一导体结构可以设置在电子设备的一端部,例如第一导体结构可以设置在电子设备的顶端,接地平面可以形成在电子设备的电路板上,第二导体结构可以设置在电子设备的一个侧边,例如第二导体结构可以设置在电子设备的右侧。从而,所述NFC芯片提供的差分激励电流可以从NFC芯片传输到电子设备顶端的第一导体结构,再从第一导体结构传输到电子设备的电路板上的接地平面,再从电路板上的接地平面传输到电子设备右侧的第二导体结构,最后从第二导体结构回流到NFC芯片中。
需要说明的是,所述第一导体结构设置在电子设备顶端、所述第二导体结构设置在电子设备右侧仅仅是举例,而不是用于对本申请实施例的限定。可以理解的,所述第一导体结构还可以设置在电子设备的其它部位,所述第二导体结构也可以设置在电子设备的其它部位,从而实现通过所述电子设备的不同部位都可以与其它电子设备之间进行NFC通信,例如通过所述电子设备的正面(也即电子设备的显示屏所在的一面)可以实现NFC通信,通过所述电子设备的背面(也即电子设备的电池盖所在的一面)也可以实现NFC通信。
需要说明的是,当所述电子设备向外辐射NFC信号时,所述电子设备中的NFC芯片可以主动提供差分激励电流。而当所述电子设备作为NFC接收机接收其它电子设备辐射的NFC信号时,所述电子设备中的天线装置可以产生感应电流,所述感应电流也可以理解为所述NFC芯片提供的差分激励电流,或者理解为所述NFC芯片被动提供的差分激励电流。也即,无论所述电子设备作为NFC发射机向外辐射NFC信号,还是作为NFC接收机接收其 它电子设备辐射的NFC信号,所述电子设备中的NFC芯片都可以提供差分激励电流。
本申请实施例提供的天线装置,通过在天线装置中设置两个导体结构,并通过将所述两个导体结构连接到同一接地平面的两个不同接地点,并利用两个接地点之间的地平面形成导电路径,从而可以通过所述两个导体结构以及所述导电路径形成供NFC差分激励电流传输的导电回路。由于所述两个导体结构可以根据电子设备内部空间设计的需求,分别设置在电子设备的不同部位,进而通过所述接地平面上形成的导电路径连接形成回路,从而可以通过电子设备不同部位的导体结构配合接地平面来实现NFC天线的设计,从而可以节省NFC天线的占用空间,并且NFC天线的布局可以更灵活。
参考图7,图7为本申请实施例提供的天线装置200的第二种结构示意图。其中,所述天线装置200还包括第一非近场通信芯片25、第二非近场通信芯片26。可以理解的,所述第一非近场通信芯片25、所述第二非近场通信芯片26都可以集成在电子设备100的电路板30上。
所述第一非近场通信芯片25用于提供第一非近场通信激励信号。其中,所述第一非近场通信激励信号为非平衡信号。所述第一非近场通信激励信号可以包括蜂窝网络信号、Wi-Fi信号、GPS信号、BT信号中的一种。相应的,所述第一非近场通信芯片25可以为蜂窝通信芯片,用于提供所述蜂窝网络信号;所述第一非近场通信芯片25可以为Wi-Fi芯片,用于提供所述Wi-Fi信号;所述第一非近场通信芯片25可以为GPS芯片,用于提供所述GPS信号;所述第一非近场通信芯片25还可以为BT芯片,用于提供所述BT信号。
所述第一导体结构23还包括第三馈电端233。所述第三馈电端233与所述第一馈电端231、所述第一接地端232间隔设置。所述第三馈电端233与所述第一非近场通信芯片25电连接,并且所述第一非近场通信芯片25接地。从而,所述第一非近场通信芯片25可以通过所述第三馈电端233向所述第一导体结构23馈入所述第一非近场通信激励信号。因此,所述第一导体结构23还可以用于传输所述第一非近场通信激励信号。
可以理解的,所述第一导体结构23既可以用于传输所述NFC芯片21提供的差分激励电流,又可以用于传输所述第一非近场通信芯片25提供的第一非近场通信激励信号,从而可以实现所述第一导体结构23的复用,能够减少电子设备100中用于传输无线信号的导体结构的数量,从而可以节省电子设备100的内部空间。
其中,需要说明的是,NFC信号的频率通常为13.56MHz(兆赫兹),蜂窝网络信号的频率通常在700MHz以上,Wi-Fi信号的频率通常为2.4GHz(吉赫兹)或5GHz,GPS信号的频率通常包括1.575GHz、1.227GHz、1.381GHz、1.841GHz等多个频段,BT信号的频率通常为2.4GHz。因此,相对于蜂窝网络信号、Wi-Fi信号、GPS信号、BT信号而言,NFC信号为低频信号,而蜂窝网络信号、Wi-Fi信号、GPS信号、BT信号均为高频信号。或者也可以理解为,NFC信号为低频信号,所述第一非近场通信激励信号为高频信号,NFC信号的频率小于所述第一非近场通信激励信号的频率。
此外,需要说明的是,在传输无线信号时,无线信号的频率越低,所需的辐射体长度越长;而无线信号的频率越高,所需的辐射体长度越短。也即,传输所述NFC信号所需的辐射体的长度大于传输所述第一非近场通信激励信号所需的辐射体长度。
因此,在所述第一导体结构23中,所述第一馈电端231与所述第一接地端232的距离大于所述第三馈电端233与所述第一接地端232的距离。从而,即可使得在所述第一导体结构23中,传输所述NFC信号的辐射体的长度大于传输所述第一非近场通信激励信号的辐射体的长度。
此外,为了减小第一导体结构23的整体长度,可以设置为所述第三馈电端233与所述第一馈电端231位于所述第一接地端232的同一侧。也即,所述第三馈电端233位于所述第一馈电端231与所述第一接地端232之间。相较于所述第三馈电端233与所述第一馈电端231位 于所述第一接地端232的不同侧而言,所述第三馈电端233与所述第一馈电端231位于所述第一接地端232的同一侧可以复用所述第三馈电端233与所述第一接地端232之间的部分,从而可以减小第一导体结构23的整体长度。
所述第二非近场通信芯片26用于提供第二非近场通信激励信号。其中,所述第二非近场通信激励信号为非平衡信号。所述第二非近场通信激励信号可以包括蜂窝网络信号、无线保真信号(Wi-Fi信号)、全球定位系统信号(GPS信号)、蓝牙信号(BT信号)中的一种。相应的,所述第二非近场通信芯片26可以为蜂窝通信芯片,用于提供所述蜂窝网络信号;所述第二非近场通信芯片26可以为Wi-Fi芯片,用于提供所述Wi-Fi信号;所述第二非近场通信芯片26可以为GPS芯片,用于提供所述GPS信号;所述第二非近场通信芯片26还可以为BT芯片,用于提供所述BT信号。
其中,需要说明的是,所述第二非近场通信激励信号与所述第一非近场通信激励信号既可以相同通信类型的信号,也可以是不同通信类型的信号。相应的,所述第二非近场通信芯片26与所述第一非近场通信芯片25既可以是相同类型的芯片,也可以是不同类型的芯片。
所述第二导体结构24还包括第四馈电端243。所述第四馈电端243与所述第二馈电端241、所述第二接地端242间隔设置。所述第四馈电端243与所述第二非近场通信芯片26电连接,并且所述第二非近场通信芯片26接地。从而,所述第二非近场通信芯片26可以通过所述第四馈电端243向所述第二导体结构24馈入所述第二非近场通信激励信号。因此,所述第二导体结构24还可以用于传输所述第二非近场通信激励信号。
可以理解的,所述第二导体结构24既可以用于传输所述NFC芯片21提供的差分激励电流,又可以用于传输所述第二非近场通信芯片26提供的第二非近场通信激励信号,从而可以实现所述第二导体结构24的复用,能够进一步减少电子设备100中用于传输无线信号的导体结构的数量,从而可以进一步节省电子设备100的内部空间。
同样的,在所述第二导体结构24中,所述第二馈电端241与所述第二接地端242的距离大于所述第四馈电端243与所述第二接地端242的距离。从而,即可使得在所述第二导体结构24中,传输所述NFC信号的辐射体的长度大于传输所述第二非近场通信激励信号的辐射体的长度。
此外,为了减小第二导体结构24的整体长度,可以设置为所述第四馈电端243与所述第二馈电端241位于所述第二接地端242的同一侧。也即,所述第四馈电端243位于所述第二馈电端241与所述第二接地端242之间。相较于述第四馈电端243与所述第二馈电端241位于所述第二接地端242的不同侧而言,所述第四馈电端243与所述第二馈电端241位于所述第二接地端242的同一侧可以复用所述第四馈电端243与所述第二接地端242之间的部分,从而可以减小所述第二导体结构24的整体长度。
参考图8,图8为本申请实施例提供的天线装置200的第三种结构示意图。
其中,所述第一导体结构23包括第一谐振臂234和第一馈电路径235。
所述第一谐振臂234可以通过电子设备100中的金属结构形成。例如,可以在壳体20的中框上开设缝隙,通过所述缝隙形成金属枝节,并由所述金属枝节形成所述第一谐振臂234。从而,通过电子设备100的中框形成所述第一谐振臂234,可以保证NFC天线在电子设备100中有足够的净空空间,以提高NFC信号的稳定性。并且,通过接地平面22上的导电路径连接中框不同位置上的导体结构时,可以延长整个导电回路的长度,从而提升整个NFC天线的有效辐射范围。
再例如,可以通过电子设备100中的摄像头的装饰圈形成所述第一谐振臂234。再例如,还可以通过电子设备100中的FPC上的金属走线来形成所述第一谐振臂234,所述FPC例如可以为显示屏的FPC、摄像头的FPC、马达的FPC等结构。
所述第一谐振臂234包括相对的第一端部234a和第二端部234b。其中,所述第一接地端232设置在所述第一端部234a,以实现所述第一导体结构23接地。所述第三馈电端233设置在所述第二端部234b,以实现所述第一非近场通信芯片25向所述第一导体结构23馈入所述第一非近场通信激励信号。
所述第一馈电路径235可以通过电子设备100中的金属线路来形成。例如,所述第一馈电路径235可以通过电子设备100中的电路板30上的印刷线路来形成。再例如,所述第一馈电路径235还可以通过电子设备100中的金属导线来形成。
其中,所述第一馈电路径235与所述第一谐振臂234的第二端部234b电连接。所述第一馈电端231设置在所述第一馈电路径235上。例如,所述第一馈电端231可以设置在所述第一馈电路径235远离所述第二端部234b的一端。从而,实现所述NFC芯片21向所述第一导体结构23馈入所述差分激励电流。
所述第二导体结构24包括第二谐振臂244和第二馈电路径245。
所述第二谐振臂244可以通过电子设备100中的金属结构形成。例如,可以在壳体20的中框上开设缝隙,通过所述缝隙形成金属枝节,并由所述金属枝节形成所述第二谐振臂244。同样的,通过电子设备100的中框形成所述第二谐振臂244,也可以保证NFC天线在电子设备100中有足够的净空空间,以提高NFC信号的稳定性。并且,通过接地平面22上的导电路径连接中框不同位置上的导体结构时,可以延长整个导电回路的长度,从而提升整个NFC天线的有效辐射范围。
再例如,可以通过电子设备100中的摄像头的装饰圈形成所述第二谐振臂244。再例如,还可以通过电子设备100中的FPC上的金属走线来形成所述第二谐振臂244,所述FPC例如可以为显示屏的FPC、摄像头的FPC、马达的FPC等结构。
所述第二谐振臂244包括相对的第三端部244a和第四端部244b。其中,所述第二接地端242设置在所述第三端部244a,以实现所述第二导体结构24接地。所述第四馈电端243设置在所述第四端部244b,以实现所述第二非近场通信芯片26向所述第二导体结构24馈入所述第二非近场通信激励信号。
所述第二馈电路径245可以通过电子设备100中的金属线路来形成。例如,所述第二馈电路径245可以通过电子设备100中的电路板30上的印刷线路来形成。再例如,所述第二馈电路径245还可以通过电子设备100中的金属导线来形成。
其中,所述第二馈电路径245与所述第二谐振臂244的第四端部244b电连接。所述第二馈电端241设置在所述第二馈电路径245上。例如,所述第二馈电端241可以设置在所述第二馈电路径245远离所述第四端部244b的一端。从而,实现所述NFC芯片21向所述第二导体结构24馈入所述差分激励电流。
参考图9,图9为本申请实施例提供的天线装置200的第四种结构示意图。其中,所述天线装置200还包括第一匹配电路271、第二匹配电路272、第三匹配电路273、第一滤波电路281、第二滤波电路282、第三滤波电路283以及第四滤波电路284。可以理解的,匹配电路也可以称为匹配网络、调谐电路、调谐网络等。滤波电路也可以称为滤波网络。
所述第一匹配电路271与所述NFC芯片21的第一差分信号端211、所述NFC芯片21的第二差分信号端212、所述第一导体结构23的第一馈电端231、所述第二导体结构24的第二馈电端241电连接。所述第一匹配电路271用于对所述导电回路传输所述差分激励电流时的阻抗进行匹配。其中,所述导电回路即为所述第一导体结构23、所述接地平面22上的导电路径以及所述第二导体结构24共同形成的导电回路。
其中,所述第一匹配电路271包括第一输入端271a、第二输入端271b、第一输出端271c、第二输出端271d。所述第一输入端271a与所述NFC芯片21的第一差分信号端211电连接,所述第二输入端271b与所述NFC芯片21的第二差分信号端212电连接,所述第一输出端 271c与所述第一导体结构23的第一馈电端231电连接,所述第二输出端271d与所述第二导体结构24的第二馈电端241电连接。
所述第一滤波电路281设置在所述NFC芯片21的第一差分信号端211与所述第一匹配网络271的第一输入端271a之间。所述第一滤波电路281用于滤除所述第一差分信号端211与所述第一输入端271a之间的第一干扰信号。所述第一干扰信号即为所述NFC芯片21提供的差分激励电流之外的电信号。
所述第二滤波电路282设置在所述NFC芯片21的第二差分信号端212与所述第一匹配电路271的第二输入端271b之间。所述第二滤波电路282用于滤除所述第二差分信号端212与所述第二输入端271b之间的第二干扰信号。所述第二干扰信号即为所述NFC芯片21提供的差分激励电流之外的电信号。
所述第二匹配电路272与所述第一非近场通信芯片25、所述第一导体结构23的第三馈电端233电连接。所述第二匹配电路272用于对所述第一导体结构23传输所述第一非近场通信激励信号时的阻抗进行匹配。
所述第三滤波电路283设置在所述第一非近场通信芯片25与所述第二匹配电路272之间。所述第三滤波电路283用于滤除所述第一非近场通信芯片25与所述第二匹配电路272之间的第三干扰信号。所述第三干扰信号即为所述第一非近场通信芯片25提供的第一非近场通信激励信号之外的电信号。
所述第三匹配电路273与所述第二非近场通信芯片26、所述第二导体结构24的第四馈电端243电连接。所述第三匹配电路273用于对所述第二导体结构24传输所述第二非近场通信激励信号时的阻抗进行匹配。
所述第四滤波电路284设置在所述第二非近场通信芯片26与所述第三匹配电路273之间。所述第四滤波电路284用于滤除所述第二非近场通信芯片26与所述第三匹配电路273之间的第四干扰信号。所述第四干扰信号即为所述第二非近场通信芯片26提供的第二非近场通信激励信号之外的电信号。
其中,可以理解的,所述第一匹配电路271、所述第二匹配电路272、所述第三匹配电路273都可以包括由电容、电感的任意串联或者任意并联所组成的电路。所述第一滤波电路281、所述第二滤波电路282、所述第三滤波电路283、所述第四滤波电路284也可以包括由电容、电感的任意串联或者任意并联所组成的电路。
参考图10,图10为本申请实施例提供的天线装置200的第五种结构示意图。
所述第一匹配电路271例如可以包括四个电容C1、C2、C3、C4。其中,电容C1与NFC芯片21的第一差分信号端211串联,电容C2与NFC芯片21的第二差分信号端212串联。电容C3与电容C4串联,并且串联之后与所述NFC芯片21并联,并且电容C3与电容C4之间接地。可以理解的,电容C1、C2、C3、C4的电容值可以根据实际需要进行设置。
所述第一滤波电路281例如可以包括电感L1和电容C5。其中,电感L1串联在所述第一差分信号端211与所述第一匹配电路271之间,电容C5与所述NFC芯片21并联并接地。可以理解的,电感L1的电感值、电容C5的电容值都可以根据实际需要进行设置。
所述第二滤波电路282例如可以包括电感L2和电容C6。其中,电感L2串联在所述第二差分信号端212与所述第一匹配电路271之间,电容C6与所述NFC芯片21并联并接地。可以理解的,电感L2的电感值、电容C6的电容值都可以根据实际需要进行设置。
所述第二匹配电路272例如可以包括电容C7、C8。其中,电容C7串联在第一导体结构23的第三馈电端233与第一非近场通信芯片25之间,电容C8与所述第一非近场通信芯片25并联并接地。可以理解的,电容C7、C8的电容值可以根据实际需要进行设置。
所述第三滤波电路283例如可以包括电感L3和电容C9。其中,电感L3串联在第一非 近场通信芯片25与所述第二匹配电路272之间,电容C9与所述第一非近场通信芯片25并联并接地。可以理解的,电感L3的电感值、电容C9的电容值都可以根据实际需要进行设置。
所述第三匹配电路273例如可以包括电容C10、C11。其中,电容C10串联在第二导体结构24的第四馈电端243与第二非近场通信芯片26之间,电容C11与所述第二非近场通信芯片26并联并接地。可以理解的,电容C10、C11的电容值可以根据实际需要进行设置。
所述第四滤波电路284例如可以包括电感L4和电容C12。其中,电感L4串联在第二非近场通信芯片26与所述第三匹配电路273之间,电容C12与所述第二非近场通信芯片26并联并接地。可以理解的,电感L4的电感值、电容C12的电容值都可以根据实际需要进行设置。
以上对本申请实施例提供的天线装置及电子设备进行了详细介绍。本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请。同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (21)

  1. 一种天线装置,包括:
    近场通信芯片,包括第一差分信号端和第二差分信号端,所述第一差分信号端和所述第二差分信号端用于提供差分激励电流;
    接地平面,包括间隔设置的第一接地点和第二接地点,所述接地平面在所述第一接地点和所述第二接地点之间形成导电路径;
    第一导体结构,包括间隔设置的第一馈电端和第一接地端,所述第一馈电端与所述第一差分信号端电连接,所述第一接地端与所述第一接地点电连接;
    第二导体结构,包括间隔设置的第二馈电端和第二接地端,所述第二馈电端与所述第二差分信号端电连接,所述第二接地端与所述第二接地点电连接;
    其中,所述第一导体结构、所述导电路径以及所述第二导体结构共同形成供所述差分激励电流传输的导电回路。
  2. 根据权利要求1所述的天线装置,其中,所述导电回路在传输所述差分激励电流时,所述第一导体结构产生第一近场通信辐射场,所述第二导体结构产生第二近场通信辐射场,所述第二近场通信辐射场与所述第一近场通信辐射场至少部分重叠。
  3. 根据权利要求2所述的天线装置,其中,所述接地平面产生第三近场通信辐射场,所述第三近场通信辐射场与所述第一近场通信辐射场至少部分重叠,并且所述第三近场通信辐射场与所述第二近场通信辐射场至少部分重叠。
  4. 根据权利要求1所述的天线装置,其中,还包括:
    第一非近场通信芯片,用于提供第一非近场通信激励信号;
    所述第一导体结构还包括第三馈电端,所述第三馈电端与所述第一非近场通信芯片电连接,所述第一导体结构还用于传输所述第一非近场通信激励信号。
  5. 根据权利要求4所述的天线装置,其中,所述第三馈电端与所述第一馈电端位于所述第一接地端的同一侧,所述第一馈电端与所述第一接地端的距离大于所述第三馈电端与所述第一接地端的距离。
  6. 根据权利要求5所述的天线装置,其中,所述第一导体结构包括:
    第一谐振臂,包括相对的第一端部和第二端部,所述第一接地端设置在所述第一端部,所述第三馈电端设置在所述第二端部;
    第一馈电路径,与所述第一谐振臂的第二端部电连接,所述第一馈电端设置在所述第一馈电路径上。
  7. 根据权利要求1所述的天线装置,其中,还包括:
    第二非近场通信芯片,用于提供第二非近场通信激励信号;
    所述第二导体结构还包括第四馈电端,所述第四馈电端与所述第二非近场通信芯片电连接,所述第二导体结构还用于传输所述第二非近场通信激励信号。
  8. 根据权利要求7所述的天线装置,其中,所述第四馈电端与所述第二馈电端位于所述第二接地端的同一侧,所述第二馈电端与所述第二接地端的距离大于所述第四馈电端与所述第二接地端的距离。
  9. 根据权利要求8所述的天线装置,其中,所述第二导体结构包括:
    第二谐振臂,包括相对的第三端部和第四端部,所述第二接地端设置在所述第三端部,所述第四馈电端设置在所述第四端部;
    第二馈电路径,与所述第二谐振臂的第四端部电连接,所述第二馈电端设置在所述第二馈电路径上。
  10. 根据权利要求1所述的天线装置,其中,还包括第一匹配电路,所述第一匹配电路与所述第一差分信号端、所述第二差分信号端、所述第一馈电端、所述第二馈电端电连 接,所述第一匹配电路用于对所述导电回路传输所述差分激励电流时的阻抗进行匹配。
  11. 根据权利要求10所述的天线装置,其中:
    所述第一匹配电路包括第一输入端、第二输入端、第一输出端、第二输出端;
    所述第一输入端与所述第一差分信号端电连接,所述第二输入端与所述第二差分信号端电连接,所述第一输出端与所述第一馈电端电连接,所述第二输出端与所述第二馈电端电连接。
  12. 根据权利要求11所述的天线装置,其中,还包括:
    第一滤波电路,设置在所述第一差分信号端与所述第一输入端之间;
    第二滤波电路,设置在所述第二差分信号端与所述第二输入端之间。
  13. 根据权利要求4所述的天线装置,其中,还包括第二匹配电路,所述第二匹配电路与所述第一非近场通信芯片、所述第三馈电端电连接,所述第二匹配电路用于对所述第一导体结构传输所述第一非近场通信激励信号时的阻抗进行匹配。
  14. 根据权利要求13所述的天线装置,其中,还包括第三滤波电路,设置在所述第一非近场通信芯片与所述第二匹配电路之间。
  15. 根据权利要求7所述的天线装置,其中,还包括第三匹配电路,所述第三匹配电路与所述第二非近场通信芯片、所述第四馈电端电连接,所述第三匹配电路用于对所述第二导体结构传输所述第二非近场通信激励信号时的阻抗进行匹配。
  16. 根据权利要求15所述的天线装置,其中,还包括第四滤波电路,设置在所述第二非近场通信芯片与所述第三匹配电路之间。
  17. 一种电子设备,包括天线装置,所述天线装置包括:
    近场通信芯片,包括第一差分信号端和第二差分信号端,所述第一差分信号端和所述第二差分信号端用于提供差分激励电流;
    接地平面,包括间隔设置的第一接地点和第二接地点,所述接地平面在所述第一接地点和所述第二接地点之间形成导电路径;
    第一导体结构,包括间隔设置的第一馈电端和第一接地端,所述第一馈电端与所述第一差分信号端电连接,所述第一接地端与所述第一接地点电连接;
    第二导体结构,包括间隔设置的第二馈电端和第二接地端,所述第二馈电端与所述第二差分信号端电连接,所述第二接地端与所述第二接地点电连接;
    其中,所述第一导体结构、所述导电路径以及所述第二导体结构共同形成供所述差分激励电流传输的导电回路。
  18. 根据权利要求17所述的电子设备,其中,还包括电路板,所述近场通信芯片、所述接地平面均设置在所述电路板上。
  19. 根据权利要求18所述的电子设备,其中,所述电路板上设置有印刷线路,所述第一导体结构包括所述印刷线路,或者所述第二导体结构包括所述印刷线路。
  20. 根据权利要求18所述的电子设备,其中,还包括柔性电路板,所述柔性电路板与所述电路板电连接,所述柔性电路板上设置有金属走线,所述第一导体结构包括所述金属走线,或者所述第二导体结构包括所述金属走线。
  21. 根据权利要求18所述的电子设备,其中,还包括中框,所述电路板设置在所述中框上,所述中框包括间隔的第一金属枝节和第二金属枝节,所述第一导体结构包括所述第一金属枝节,所述第二导体结构包括所述第二金属枝节。
PCT/CN2020/110840 2019-08-30 2020-08-24 天线装置及电子设备 WO2021036996A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20855975.7A EP3979414A4 (en) 2019-08-30 2020-08-24 ANTENNA APPARATUS AND ELECTRONIC DEVICE
US17/559,639 US11949152B2 (en) 2019-08-30 2021-12-22 Antenna device and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910818037.8A CN112448141A (zh) 2019-08-30 2019-08-30 天线装置及电子设备
CN201910818037.8 2019-08-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/559,639 Continuation US11949152B2 (en) 2019-08-30 2021-12-22 Antenna device and electronic device

Publications (1)

Publication Number Publication Date
WO2021036996A1 true WO2021036996A1 (zh) 2021-03-04

Family

ID=74683788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/110840 WO2021036996A1 (zh) 2019-08-30 2020-08-24 天线装置及电子设备

Country Status (4)

Country Link
US (1) US11949152B2 (zh)
EP (1) EP3979414A4 (zh)
CN (1) CN112448141A (zh)
WO (1) WO2021036996A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114883782A (zh) * 2022-06-06 2022-08-09 Oppo广东移动通信有限公司 电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106099327A (zh) * 2016-06-28 2016-11-09 惠州硕贝德无线科技股份有限公司 近场天线装置及其设备
CN108496278A (zh) * 2017-01-16 2018-09-04 华为技术有限公司 一种天线结构及通信终端
US20190081398A1 (en) * 2017-09-11 2019-03-14 Apple Inc. Electronic Device Antennas Having Shared Structures for Near-Field Communications and Non-Near Field Communications
CN110176670A (zh) * 2018-02-20 2019-08-27 苹果公司 具有用于处理近场通信和非近场通信的隙缝的电子设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104143683A (zh) 2013-05-10 2014-11-12 华为终端有限公司 终端设备
US9608709B1 (en) 2013-10-19 2017-03-28 GoNet Systems, Ltd. Methods and systems for beamforming and antenna synthesis
US9325080B2 (en) 2014-03-03 2016-04-26 Apple Inc. Electronic device with shared antenna structures and balun
CN107403995B (zh) * 2016-05-18 2020-04-28 华硕电脑股份有限公司 电子装置
DE102016213689B4 (de) 2016-07-26 2024-02-29 Volkswagen Aktiengesellschaft Vorrichtung, Verfahren und Computerprogramm zum Charakterisieren von Antenneneinheiten in einem vordefinierten Raum
CN107123861A (zh) * 2017-03-27 2017-09-01 联想(北京)有限公司 一种在终端上实现nfc天线的天线结构
US10720695B2 (en) * 2017-05-15 2020-07-21 Speedlink Technology Inc. Near field communication antenna modules for devices with metal frame
US10200092B1 (en) * 2017-09-28 2019-02-05 Apple Inc. Electronic device having multiple antennas with shared structures for near-field communications and non-near-field communications

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106099327A (zh) * 2016-06-28 2016-11-09 惠州硕贝德无线科技股份有限公司 近场天线装置及其设备
CN108496278A (zh) * 2017-01-16 2018-09-04 华为技术有限公司 一种天线结构及通信终端
US20190081398A1 (en) * 2017-09-11 2019-03-14 Apple Inc. Electronic Device Antennas Having Shared Structures for Near-Field Communications and Non-Near Field Communications
CN110176670A (zh) * 2018-02-20 2019-08-27 苹果公司 具有用于处理近场通信和非近场通信的隙缝的电子设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3979414A4 *

Also Published As

Publication number Publication date
EP3979414A4 (en) 2022-08-24
US20220115778A1 (en) 2022-04-14
CN112448141A (zh) 2021-03-05
US11949152B2 (en) 2024-04-02
EP3979414A1 (en) 2022-04-06

Similar Documents

Publication Publication Date Title
CN210805996U (zh) 天线装置及电子设备
CN210838090U (zh) 天线装置及电子设备
WO2021036540A1 (en) Antenna device, electronic apparatus and method for antenna switching
EP4152516A1 (en) Antenna apparatus and electronic device
CN113131196A (zh) 天线装置及电子设备
CN211929698U (zh) 天线装置及电子设备
WO2021036986A1 (zh) 天线装置及电子设备
CN112448145B (zh) 电子设备
WO2022121435A1 (zh) 电子设备
CN212874761U (zh) 天线装置及电子设备
CN212874752U (zh) 电子设备
WO2021036996A1 (zh) 天线装置及电子设备
US11848506B2 (en) Antenna apparatus and electronic device
CN113054406A (zh) 天线装置及电子设备
WO2022048342A1 (zh) 电子设备
CN112993541B (zh) 天线装置及电子设备
CN112449035B (zh) 电子设备
CN112448126B (zh) 天线装置及电子设备
CN111740210B (zh) 天线组件及电子设备
CN112448726B (zh) 电子设备及工作模式切换方法
US20220336952A1 (en) Antenna device and electronic device
US11251517B2 (en) Antenna assembly and electronic device
CN112751179A (zh) 电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20855975

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020855975

Country of ref document: EP

Effective date: 20211230

NENP Non-entry into the national phase

Ref country code: DE