WO2021036500A1 - 一种拼接显示系统及其信号控制方法 - Google Patents

一种拼接显示系统及其信号控制方法 Download PDF

Info

Publication number
WO2021036500A1
WO2021036500A1 PCT/CN2020/099796 CN2020099796W WO2021036500A1 WO 2021036500 A1 WO2021036500 A1 WO 2021036500A1 CN 2020099796 W CN2020099796 W CN 2020099796W WO 2021036500 A1 WO2021036500 A1 WO 2021036500A1
Authority
WO
WIPO (PCT)
Prior art keywords
led display
signal
unit
display unit
display screen
Prior art date
Application number
PCT/CN2020/099796
Other languages
English (en)
French (fr)
Inventor
王朝
王爱武
李全波
汪志南
Original Assignee
深圳蓝普科技有限公司
深圳市上隆智控科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳蓝普科技有限公司, 深圳市上隆智控科技有限公司 filed Critical 深圳蓝普科技有限公司
Publication of WO2021036500A1 publication Critical patent/WO2021036500A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/14Digital output to display device ; Cooperation and interconnection of the display device with other functional units
    • G06F3/1423Digital output to display device ; Cooperation and interconnection of the display device with other functional units controlling a plurality of local displays, e.g. CRT and flat panel display
    • G06F3/1446Digital output to display device ; Cooperation and interconnection of the display device with other functional units controlling a plurality of local displays, e.g. CRT and flat panel display display composed of modules, e.g. video walls
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/436Interfacing a local distribution network, e.g. communicating with another STB or one or more peripheral devices inside the home
    • H04N21/4363Adapting the video stream to a specific local network, e.g. a Bluetooth® network
    • H04N21/43637Adapting the video stream to a specific local network, e.g. a Bluetooth® network involving a wireless protocol, e.g. Bluetooth, RF or wireless LAN [IEEE 802.11]

Definitions

  • the invention relates to the technical field of LED display screens, in particular to a splicing display system and a signal transmission method thereof.
  • the transmission of data between the cabinets is usually carried out through wires (such as network cables, aviation patch cables, HDMI cables, and BNC cables, etc.). After the wires are manually connected, the data transmission path between the boxes generally forms a "Z" or "N" shape on the display screen.
  • wires such as network cables, aviation patch cables, HDMI cables, and BNC cables, etc.
  • the data transmission path between the boxes generally forms a "Z" or "N" shape on the display screen.
  • the above methods have the following shortcomings: 1. The manual wiring operation is more complicated and inefficient; 2. When a certain cabinet or a certain wire of the display fails, it will often cause a row or column of cabinets or even the entire display to fail to display normally. ; 3. The data transmission of the display screen is easily affected by a certain wire or connector, and the display screen that needs data signal backup needs two receiving cards for each cabinet, which is costly.
  • the main purpose of the present invention is to propose a splicing display system and its signal control method, which aims to solve the cumbersome wiring of the existing LED display screen, low manual operation efficiency and the display of the display screen is vulnerable to a single box, wire, connector, etc. Problems such as low reliability caused by failure.
  • the present invention provides a spliced display system, which includes a display screen array, the display screen array includes a number of LED display units spliced together, each of the LED display unit includes a number of wireless transmission modules, two by two The adjacent LED display units perform two-way signal transmission through a group of adjacent paired wireless transmission modules to form a grid-type signal transmission network in the display screen array.
  • each side of the LED display unit is provided with a wireless transmission module, and the two adjacent wireless transmission modules of the adjacent sides of the LED display unit form a group of adjacent pairs of the wireless transmission module.
  • the wireless transmission module is provided.
  • the LED display unit is an LED box.
  • the LED display unit is an LED module.
  • the splicing display system further includes a signal source module, and the signal source module performs a wireless data connection with the wireless transmission module of any of the LED display units.
  • the signal source module includes a main signal source unit, and the main signal source unit performs a wireless data connection with the wireless transmission module of the LED display unit to realize the main signal input of the display screen array .
  • the signal source module includes a standby signal source unit, and the standby signal source unit performs a wireless data connection with the wireless transmission module of another LED display unit to realize the standby signal of the display screen array enter.
  • the wireless transmission module includes a sending unit and a receiving unit, and the sending unit and the receiving unit wirelessly transmit signals and data point-to-point over a short distance.
  • the present invention also proposes a signal control method, which includes: two-way signal transmission between two adjacent LED display units through a set of adjacent paired wireless transmission modules; according to the current display screen array The signal input and the working condition of each LED display unit automatically adjust the signal optimal transmission path of each LED display unit.
  • the method further includes: according to the main signal source The working condition of the unit automatically switches the signal input of the display screen array.
  • the step of automatically switching the signal input of the display screen array according to the working condition of the main signal source unit specifically includes: if the main signal source unit works normally, cutting off the signal input of the backup signal source unit to The main signal source unit performs signal input to the display screen array; if the main signal source unit does not work normally, the signal input of the main signal source unit is cut off, and the standby signal source unit is used to display the display The screen array performs signal input.
  • the step of automatically adjusting the signal optimal transmission path of each LED display unit according to the signal input of the current display screen array specifically includes: if the main signal source unit is used for signal input to the display screen array, Then, the LED display unit connected to the main signal source unit is used as a path calculation reference, and the signal optimal transmission path of each LED display unit is automatically adjusted; if the backup signal source unit is used for the display screen array For signal input, the LED display unit connected to the backup signal source unit is used as a path calculation reference, and the signal optimal transmission path of each LED display unit is automatically adjusted.
  • the step of automatically adjusting the optimal signal transmission path of each LED display unit according to the working condition of each LED display unit specifically includes: if any one of the LED display units does not work normally, then The LED display unit that is not working properly is bypassed, and the signal optimal transmission path of each LED display unit is automatically adjusted.
  • the signal control method further includes: if the display screen array performs multiple signal inputs at the same time, automatically assigning each signal input the address of the LED display unit for the corresponding screen display, and determining each The signal optimal transmission path of the LED display unit is used to control the corresponding LED display unit to perform screen display.
  • the splicing display system includes a display screen array.
  • the display screen array includes a number of LED display units spliced together.
  • Each LED display unit includes a number of wireless transmission modules, which are adjacent to each other.
  • the two-way signal transmission is carried out between the LED display units through a group of adjacent paired wireless transmission modules to form a grid-type signal transmission network in the display screen array. In this way, there is no need to manually connect the data lines between the LED display units of the display array, and the screen installation efficiency is greatly improved.
  • the signal transmission path between the LED display units is changed from one-way or two-way to multi-way multi-path transmission.
  • Grid-type signal transmission network multiple data transmission ports, high redundancy, fast response speed, can quickly light up the display array, and the failure of a single LED display unit will not affect the display of the entire display.
  • a failure occurs Automatically adjust the optimal signal transmission path with high reliability. It can be seen that this technical solution can effectively solve the problems of cumbersome wiring of the existing LED display screen, low manual operation efficiency and low reliability caused by the display of the display screen being easily affected by the failure of a single cabinet, wire, connector, etc.
  • FIG. 1 is a schematic structural diagram of a display screen array of a splicing display system according to an embodiment of the present invention.
  • Fig. 2 is a schematic structural diagram of another splicing state of the display screen array shown in Fig. 1.
  • FIG. 3 is a schematic structural diagram of another splicing state of the display screen array shown in FIG. 1.
  • FIG. 4 is a flowchart of a signal control method according to Embodiment 2 of the present invention.
  • Fig. 5 is a schematic diagram of the working state of the display screen array shown in Fig. 1.
  • FIG. 6 is a specific flowchart of step S120 of the signal control method shown in FIG. 4.
  • FIG. 7 is a specific flowchart of step S130 of the signal control method shown in FIG. 4.
  • the first embodiment of the present invention provides a spliced display system.
  • the spliced display system includes a display screen array 100.
  • the display screen array 100 includes a plurality of LED display units 110 spliced together, and each LED display unit 110 includes There are several wireless transmission modules 111, and two adjacent LED display units 110 perform two-way signal transmission through a group of adjacent paired wireless transmission modules 111 to form a grid-type signal transmission network in the display screen array 100.
  • the wireless transmission module 111 specifically includes a sending unit and a receiving unit.
  • the sending unit and the receiving unit can transmit signals and data in a short-distance point-to-point wireless transmission, and the short-distance point-to-point wireless transmission can be electromagnetic transmission or optical transmission.
  • the wireless transmission module 111 includes but is not limited to any one of a Bluetooth module, a 2.4G communication module, an NFC module, and a WIFI module.
  • the LED display unit 110 is a rectangular LED box, that is, the LED display unit 110 may have a rectangular structure, and each side of the rectangular LED box (including the rectangular LED box frame 112) is provided with a wireless transmission Module 111, two wireless transmission modules 111 on the adjacent sides of two adjacent LED display units 110 form a group of adjacent paired wireless transmission modules 111. In this way, every two adjacent (either longitudinally adjacent or horizontally adjacent) LED display units 110 can perform bidirectional signal transmission.
  • the rectangular LED box also includes a control module placed in the rectangular LED box frame 112 and an LED module installed on the surface of the rectangular LED box frame 112.
  • the control module includes power supply, receiving card, HUB board (adapter board), etc.; both the power supply and wireless transmission module 111 are connected to the HUB board, and the receiving card is connected to the HUB board.
  • the receiving card receives the data from the wireless transmission module 111.
  • the signal and data, and then the power, signal and data are sent to the LED module through the FPC flexible cable (or pin header and female connector) to control the LED module to display the corresponding screen.
  • the LED display unit 110 can also be in the form of a boxless frame. At this time, the LED display unit 110 is a rectangular LED module. Each side of the rectangular LED module is provided with a wireless transmission module 111.
  • the two wireless transmission modules 111 on the adjacent sides of the LED display unit 110 form a group of adjacent paired wireless transmission modules 111.
  • the LED display unit 110 can be a rectangular structure capable of infinite splicing in this embodiment, and wireless transmission modules 111 are provided on all four sides, or as shown in FIG. 2, it can be infinite splicing. That is, the LED display unit 210 is a triangular LED box (including a triangular box frame 212) or a triangular LED module, and three sides are equipped with wireless transmission modules 211, or other regular polygons that can be infinitely spliced
  • the LED display unit 310 is a regular hexagonal LED box (including a regular hexagonal LED box frame 312) or a regular hexagonal LED module, and the six sides are equipped with wireless transmission Module 311. In this way, the LED display unit can also be spliced into special-shaped screens, and the problems of cumbersome wiring of the existing special-shaped screens and impact on appearance can be avoided.
  • the spliced display system further includes a signal source module (not shown), and the signal source module is wirelessly connected to the wireless transmission module 111 of any LED display unit 110.
  • any LED display unit 110 can be used as the signal input device of the display screen array 100, but based on the layout of the display screen array 100, it is preferable to use the LED display units 110 located on each edge of the display screen array 100 as the display screen array 100 The signal input device is good. This is because the four wireless transmission modules 111 of the LED display unit 110 in the middle are paired with the wireless transmission module 111 of the adjacent LED display unit 110.
  • the device requires an additional wireless transmission module 111, which is likely to increase the cost.
  • the display screen array 100 of this embodiment can be connected to multiple signal sources, and the multiple signal sources can come from one signal source module or multiple signal source modules.
  • Each LED display unit 110 of the display screen array 100 can output data for monitoring the working status of the display screen.
  • the signal source module may specifically include a main signal source unit and a backup signal source unit.
  • the main signal source unit is wirelessly connected to the wireless transmission module 111 of an LED display unit 110 to realize the main signal input of the display screen array 100.
  • the standby signal source unit is wirelessly connected to the wireless transmission module 111 of another LED display unit 110 to realize the standby signal input of the display screen array 100.
  • the display screen array 100 of this embodiment can automatically realize rapid detection, positioning and rapid change of the display signal transmission path ,
  • the high redundancy brought by multiple wireless transmission modules greatly improves the reliability of display data transmission.
  • the second embodiment of the present invention proposes a signal control method. Based on the splicing display system 100 of the first embodiment, the signal control method specifically includes the following steps:
  • Step S110 Two-way signal transmission is performed between two adjacent LED display units through a group of adjacent paired wireless transmission modules.
  • a plurality of LED display units 110 are spliced into a 3*3 display screen array 100, signal A is the main signal, and signal B is the standby signal.
  • a pair of adjacent LED display units 110 perform two-way signal transmission through a group of adjacent paired wireless transmission modules 111 to form a grid-type signal transmission network in the display screen array 100.
  • the system automatically assigns a corresponding address to each LED display unit 110 based on the location of each LED display unit 110.
  • Step S120 Automatically switch the signal input of the display screen array according to the working condition of the main signal source unit.
  • the specific process of performing this step “automatically switch the signal input of the display screen array according to the working status of the main signal source unit” includes:
  • Step S121 If the main signal source unit works normally, the signal input of the backup signal source unit is cut off, and the main signal source unit is used to input the signal to the display screen array.
  • Step S122 If the main signal source unit works abnormally, the signal input of the main signal source unit is cut off, and the standby signal source unit is used to input signals to the display screen array.
  • the signal A when the signal A is normal, the signal B is in a cut-off state, and the signal A is used as the signal input of the display screen array 100.
  • the signal B is automatically switched as the signal input of the display screen array 100.
  • Step S130 According to the signal input of the current display screen array and the working condition of each LED display unit, automatically adjust the signal optimal transmission path of each LED display unit to control the corresponding LED display unit to perform screen display.
  • the specific process of performing the step "automatically adjust the signal optimal transmission path of each LED display unit according to the signal input of the current display screen array” includes:
  • Step S131 If the main signal source unit is used for signal input to the display screen array, the LED display unit connected to the main signal source unit is used as a path calculation reference, and the signal optimal transmission path of each LED display unit is automatically adjusted.
  • Step S132 If the standby signal source unit is used for signal input to the display screen array, the LED display unit connected to the standby signal source unit is used as a path calculation reference, and the signal optimal transmission path of each LED display unit is automatically adjusted.
  • the optimal signal transmission path of each LED display unit 110 needs to be adjusted accordingly, when a certain LED display unit 110 such as (2, 2) appears In order not to affect the normal display of other LED display units 110 during maintenance, it is necessary to bypass the faulty LED display unit 110 when setting the optimal signal transmission path of each of the remaining LED display units 110, that is, perform the step "
  • the specific process of automatically adjusting the signal optimal transmission path of each LED display unit according to the working condition of each LED display unit includes: if any LED display unit is abnormally working, bypass the abnormally working LED display unit and automatically Adjust the signal optimal transmission path of each LED display unit. After the maintenance of the (2, 2) LED display unit 110 is completed, the optimal signal transmission path of each LED display unit can be adjusted again according to actual needs to restore the entire screen display.
  • the multi-path (specifically four-way in this embodiment) wireless transmission of the signal of the display screen array 100 in the present application
  • the transmission reliability is greatly improved, and multiple signal transmission ports also determine the high redundancy of the transmission path of the display screen array 100.
  • Step S140 If the display screen array performs multiple signal input at the same time, each signal input is automatically assigned the address of the LED display unit for the corresponding screen display, and the signal optimal transmission path of each LED display unit is determined to control the corresponding LED display unit for screen display.
  • the display screen array 100 in this embodiment needs to display multiple signals, that is, multiple signal inputs are performed at the same time. To ensure that each signal input can be displayed normally, it needs to be automatically allocated for each signal input. Corresponding to the address of the LED display unit 100 displayed on the screen, determine the address of the LED display unit 100 connected to each signal input, and then intelligently determine the maximum signal of each LED display unit 100 according to the positional relationship between each LED display unit 100 Optimize the transmission path to control the corresponding LED display unit to display the screen and quickly connect the screen. When a certain LED display unit 100 or a certain wireless transmission module 111 fails, the optimal signal transmission path of each LED display unit 100 can be readjusted intelligently. It can be seen that the display screen array 100 in this embodiment can transmit multiple signals to realize the simultaneous display of multiple signal sources and regions on the screen, and the matrix function can be realized without a matrix switcher device.
  • the spliced display system includes a display screen array, the display screen array includes a number of LED display units spliced together, each LED display unit includes a number of wireless transmission modules, two-phase
  • the adjacent LED display units carry out two-way signal transmission through a group of adjacent paired wireless transmission modules to form a grid-type signal transmission network in the display screen array. In this way, there is no need to manually connect the data lines between the LED display units of the display array, and the screen installation efficiency is greatly improved.
  • the signal transmission path between the LED display units is changed from one-way or two-way to multi-way multi-path transmission.
  • Grid-type signal transmission network multiple data transmission ports, high redundancy, fast response speed, can quickly light up the display array, and the failure of a single LED display unit will not affect the display of the entire display.
  • a failure occurs Automatically adjust the optimal signal transmission path with high reliability. It can be seen that this technical solution can effectively solve the problems of cumbersome wiring of the existing LED display screen, low manual operation efficiency and low reliability caused by the display of the display screen being easily affected by the failure of a single cabinet, wire, connector, etc. Therefore, it has industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Control Of El Displays (AREA)

Abstract

一种拼接显示系统及其信号控制方法,该拼接显示系统包括显示屏阵列(100),显示屏阵列(100)包括若干拼接在一起的LED显示单元(110),每一LED显示单元(110)包括若干无线传输模块(111),两两相邻的LED显示单元(110)之间通过一组相邻配对的无线传输模块(111)进行信号双向传输,以在显示屏阵列(100)中形成网格型信号传输网络。

Description

一种拼接显示系统及其信号控制方法 技术领域
本发明涉及LED显示屏技术领域,特别涉及一种拼接显示系统及其信号传输方法。
背景技术
在当前LED显示屏中,箱体间数据的传输通常通过线材(如网线、航插线、HDMI线及BNC线等)来进行。人工接好线后,箱体间数据传输路径在显示屏上一般形成“Z”字型或“N”字型。但上述方式有如下不足:1、人工接线操作较为复杂,效率低下;2、显示屏某个箱体或某根线材出现故障时,往往会使一排或一列箱体甚至整个显示屏无法正常显示;3、显示屏的数据传输容易受到某根线材或接插件的影响,需要数据信号备份的显示屏每个箱体需要两个接收卡,成本较高。
技术问题
本发明的主要目的在于提出一种拼接显示系统及其信号控制方法,其旨在解决现有LED显示屏接线繁琐、人工操作效率低下以及显示屏的显示容易受到单一箱体、线材、接插件等故障影响导致的低可靠性等问题。
技术解决方案
为实现上述目的,本发明提供的一种拼接显示系统,包括显示屏阵列,所述显示屏阵列包括若干拼接在一起的LED显示单元,每一所述LED显示单元包括若干无线传输模块,两两相邻的所述LED显示单元之间通过一组相邻配对的所述无线传输模块进行信号双向传输,以在所述显示屏阵列中形成网格型信号传输网络。
可选地,所述LED显示单元的每一边均设置一所述无线传输模块,两两相邻的所述LED显示单元的相接边的两所述无线传输模块形成一组相邻配对的所述无线传输模块。
可选地,所述LED显示单元为LED箱体。
可选地,所述LED显示单元为LED模组。
可选地,所述拼接显示系统还包括信号源模块,所述信号源模块与任一所述LED显示单元的所述无线传输模块进行无线数据连接。
可选地,所述信号源模块包括主信号源单元,所述主信号源单元与一所述LED显示单元的所述无线传输模块进行无线数据连接,以实现所述显示屏阵列的主信号输入。
可选地,所述信号源模块包括备用信号源单元,所述备用信号源单元与另一所述LED显示单元的所述无线传输模块进行无线数据连接,以实现所述显示屏阵列的备用信号输入。
可选地,所述无线传输模块包括发送单元和接收单元,所述发送单元和所述接收单元短距离点对点无线传输信号及数据。
此外,为实现上述目的,本发明还提出一种信号控制方法,包括:两两相邻的LED显示单元之间通过一组相邻配对的无线传输模块进行信号双向传输;根据当前显示屏阵列的信号输入以及每一LED显示单元的工作状况,自动调整每一所述LED显示单元的信号最优传输路径。
可选地,所述根据当前显示屏阵列的信号输入以及每一LED显示单元的工作状况,自动调整每一所述LED显示单元的信号最优传输路径的步骤之前,还包括:根据主信号源单元的工作状况自动切换所述显示屏阵列的信号输入。
可选地,所述根据主信号源单元的工作状况自动切换所述显示屏阵列的信号输入的步骤具体包括:若所述主信号源单元正常工作,则切断备用信号源单元的信号输入,以所述主信号源单元对所述显示屏阵列进行信号输入;若所述主信号源单元非正常工作,则切断所述主信号源单元的信号输入,以所述备用信号源单元对所述显示屏阵列进行信号输入。
可选地,所述根据当前显示屏阵列的信号输入自动调整每一LED显示单元的信号最优传输路径的步骤具体包括:若以所述主信号源单元对所述显示屏阵列进行信号输入,则以连接所述主信号源单元的所述LED显示单元作为路径计算基准,自动调整每一所述LED显示单元的信号最优传输路径;若以所述备用信号源单元对所述显示屏阵列进行信号输入,则以连接所述备用信号源单元的所述LED显示单元作为路径计算基准,自动调整每一所述LED显示单元的信号最优传输路径。
可选地,所述根据每一所述LED显示单元的工作状况自动调整每一所述LED显示单元的信号最优传输路径的步骤具体包括:若任一所述LED显示单元非正常工作,则绕开非正常工作的所述LED显示单元,自动调整每一所述LED显示单元的信号最优传输路径。
可选地,所述信号控制方法还包括:若所述显示屏阵列同时进行多路信号输入时,自动为每一路信号输入分配用于相应画面显示的所述LED显示单元的地址,确定每一所述LED显示单元的信号最优传输路径,以控制相应的所述LED显示单元进行画面显示。
有益效果
本发明提供的拼接显示系统及其信号控制方法,其拼接显示系统包括显示屏阵列,显示屏阵列包括若干拼接在一起的LED显示单元,每一LED显示单元包括若干无线传输模块,两两相邻的LED显示单元之间通过一组相邻配对的无线传输模块进行信号双向传输,以在显示屏阵列中形成网格型信号传输网络。这样一来,显示屏阵列的LED显示单元之间无需人工连接数据线,装屏效率得到大大提升,同时,LED显示单元之间的信号传输路径从单向或双向变成多向多路径传输的网格型信号传输网络,多个数据传输端口、高冗余度、响应速度快,可快速点亮显示屏阵列,且单个LED显示单元的故障不会影响整个显示屏的画面显示,发生故障时自动调整信号最优传输路径、可靠性高。可见,本技术方案,其可有效解决现有LED显示屏接线繁琐、人工操作效率低下以及显示屏的显示容易受到单一箱体、线材、接插件等故障影响导致的低可靠性等问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例一拼接显示系统的显示屏阵列的结构示意图。
图2为图1所示显示屏阵列的另一拼接状态的结构示意图。
图3为图1所示显示屏阵列的再一拼接状态的结构示意图。
图4为本发明实施例二信号控制方法的流程框图。
图5为图1所示显示屏阵列的工作状态示意图。
图6为图4所示信号控制方法的步骤S120的具体流程框图。
图7为图4所示信号控制方法的步骤S130的具体流程框图。
本发明的实施方式
下面结合附图对本发明的具体实施方式作进一步说明。在此需要说明的是,对于这些实施方式的说明用于帮助理解本发明,但并不构成对本发明的限定。此外,下面所描述的本发明各个实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互组合。
实施例一
如图1所示,本发明实施例一提供一种拼接显示系统,该拼接显示系统包括显示屏阵列100,显示屏阵列100包括若干拼接在一起的LED显示单元110,每一LED显示单元110包括若干无线传输模块111,两两相邻的LED显示单元110之间通过一组相邻配对的无线传输模块111进行信号双向传输,以在显示屏阵列100中形成网格型信号传输网络。
在本实施例中,无线传输模块111具体包括发送单元和接收单元,发送单元和接收单元可以短距离点对点无线传输信号及数据,短距离点对点无线传输可以为电磁传输或光传输。无线传输模块111包括但不仅限于蓝牙模块、2.4G通讯模块、NFC模块、WIFI模块中的任意一种。
如图1所示,该LED显示单元110为矩形LED箱体,即LED显示单元110具体可以是矩形结构,该矩形LED箱体(包括矩形LED箱体框架112)的每一边均设置一无线传输模块111,两两相邻的LED显示单元110的相接边的两无线传输模块111形成一组相邻配对的无线传输模块111。这样一来,每两个相邻(无论是纵向相邻还是横向相邻)的LED显示单元110间都可进行信号双向传输。除此之外,该矩形LED箱体还包括置于矩形LED箱体框架112内的控制模块以及安设于矩形LED箱体框架112表面的LED模组。控制模块包含电源、接收卡、HUB板(转接板)等;电源和无线传输模块111都连接到HUB板上,HUB板上连接有接收卡,接收卡接收到从无线传输模块111传来的信号及数据,再将电源、信号及数据通过FPC软排线(或排针排母对插)输送给LED模组,以控制LED模组进行相应的画面显示。该LED显示单元110亦可采用无箱体框架形式,此时,该LED显示单元110即为矩形LED模组,该矩形LED模组的每一边均设置一无线传输模块111,两两相邻的LED显示单元110的相接边的两无线传输模块111形成一组相邻配对的无线传输模块111。
对于本领域技术人员而言,LED显示单元110可以是本实施例中的可以进行无限拼接的矩形结构,其四边均设置有无线传输模块111,亦可如图2所示,为可以进行无限拼接的三角形结构,即该LED显示单元210为三角形LED箱体(包括三角形箱体框架212)或三角形LED模组,且三边均设置有无线传输模块211,或者为其它可以进行无限拼接的正多边形箱体结构,即如图3所示,该LED显示单元310为正六边形LED箱体(包括正六边形LED箱体框架312)或正六边形LED模组,且六边均设置有无线传输模块311。这样使得本LED显示单元也可拼接成异形屏,且可避免现有异形屏接线繁琐、影响美观的问题。
另外,为满足本拼接显示屏的显示需求,拼接显示系统还包括信号源模块(未图示),信号源模块与任一LED显示单元110的无线传输模块111进行无线数据连接。理论上,任一LED显示单元110都可作为显示屏阵列100的信号输入装置,但基于显示屏阵列100的布局,优选采用位于显示屏阵列100的各个边沿的LED显示单元110作为显示屏阵列100的信号输入装置为好,这是因为,位于中间的LED显示单元110其上下左右四个无线传输模块111均与相邻的LED显示单元110的无线传输模块111进行配对了,如果要作为信号输入装置,则需额外增设一个无线传输模块111,容易造成成本增加。同时,本实施例的显示屏阵列100可接入多个信号源,多个信号源可来自一个信号源模块或多个信号源模块。显示屏阵列100的各个LED显示单元110皆可输出数据用于监控显示屏工作状态。信号源模块具体可包括主信号源单元与备用信号源单元,主信号源单元与一LED显示单元110的无线传输模块111进行无线数据连接,以实现显示屏阵列100的主信号输入。备用信号源单元与另一LED显示单元110的无线传输模块111进行无线数据连接,以实现显示屏阵列100的备用信号输入。这样一来,当主信号源单元、某一LED显示单元110、某一无线传输模块111等发生故障时,本实施例的显示屏阵列100可自动实现快速检测、定位并快速更改显示屏信号传输路径,通过多个无线传输模块带来的高冗余度,大幅提高了显示屏数据传输的可靠性。
实施例二
如图4所示,本发明实施例二提出一种信号控制方法,基于上述实施例一的拼接显示系统100,该信号控制方法具体包括以下步骤:
步骤S110:两两相邻的LED显示单元之间通过一组相邻配对的无线传输模块进行信号双向传输。
具体地,如图5所示,将多个LED显示单元110拼接成3*3的显示屏阵列100,信号A为主信号,信号B作为备用信号。两两相邻的LED显示单元110之间通过一组相邻配对的无线传输模块111进行信号双向传输,以在显示屏阵列100中形成网格型信号传输网络。系统基于每一LED显示单元110的位置自动为每一LED显示单元110分配相应的地址。
步骤S120:根据主信号源单元的工作状况自动切换显示屏阵列的信号输入。
具体地,如图6所示,执行本步骤“根据主信号源单元的工作状况自动切换显示屏阵列的信号输入”的具体过程包括:
步骤S121:若主信号源单元正常工作,则切断备用信号源单元的信号输入,以主信号源单元对显示屏阵列进行信号输入。
步骤S122:若主信号源单元非正常工作,则切断主信号源单元的信号输入,以备用信号源单元对显示屏阵列进行信号输入。
即如图5所示,信号A正常时,信号B处于切断状态,信号A作为显示屏阵列100的信号输入。而当信号A出现故障时,自动切换信号B作为显示屏阵列100的信号输入。
步骤S130:根据当前显示屏阵列的信号输入以及每一LED显示单元的工作状况,自动调整每一LED显示单元的信号最优传输路径,以控制相应的LED显示单元进行画面显示。
具体地,由于接入主信号源单元的LED显示单元110并非接入备用信号源单元的LED显示单元110,因而,当显示屏阵列100的当前信号输入发生改变时,其每一LED显示单元的信号最优传输路径亦会发生相应的调整,具体为如图7所示,执行步骤“根据当前显示屏阵列的信号输入自动调整每一LED显示单元的信号最优传输路径”的具体过程包括:
步骤S131:若以主信号源单元对显示屏阵列进行信号输入,则以连接主信号源单元的LED显示单元作为路径计算基准,自动调整每一LED显示单元的信号最优传输路径。
步骤S132:若以备用信号源单元对显示屏阵列进行信号输入,则以连接备用信号源单元的LED显示单元作为路径计算基准,自动调整每一LED显示单元的信号最优传输路径。
另外,除了当显示屏阵列100的当前信号输入发生改变时,其每一LED显示单元110的信号最优传输路径需要发生相应的调整外,当某个LED显示单元110如(2,2) 出现故障进行维护时,为了不影响其他LED显示单元110的正常显示,需在设置其余的每一LED显示单元110的信号最优传输路径时,绕开该故障的LED显示单元110,即执行步骤“根据每一LED显示单元的工作状况自动调整每一LED显示单元的信号最优传输路径”的具体过程包括:若任一LED显示单元非正常工作,则绕开非正常工作的LED显示单元,自动调整每一LED显示单元的信号最优传输路径。当(2,2)LED显示单元110维护完成后,可根据实际需要再一次调整每一LED显示单元的信号最优传输路径,以恢复整屏显示。
可见,常规显示屏在出现上述故障就会一排或一列箱体完全不亮甚至整屏不亮,而本申请的多路径(本实施例具体为四向)无线传输的显示屏阵列100的信号传输可靠性大幅提高,多个信号传输端口也决定了显示屏阵列100的传输路径的高冗余度。
步骤S140:若显示屏阵列同时进行多路信号输入时,自动为每一路信号输入分配用于相应画面显示的LED显示单元的地址,确定每一LED显示单元的信号最优传输路径,以控制相应的LED显示单元进行画面显示。
具体地,当本实施例中的显示屏阵列100需要显示多路信号时,即同时进行多路信号输入,为确保每一路信号输入均可正常显示,其需自动为每一路信号输入分配用于相应画面显示的LED显示单元100的地址,确定接入每一路信号输入的LED显示单元100的地址,进而在根据各个LED显示单元100之间的位置关系智能确定每一LED显示单元100的信号最优传输路径,以控制相应的LED显示单元进行画面显示,快速连屏。当某个LED显示单元100或某个无线传输模块111出现故障时,可智能重新调整每一LED显示单元100的信号最优传输路径。可见,本实施例中的显示屏阵列100可输送多路信号实现屏体多信号源分区域同时显示,无需矩阵切换器设备便可实现矩阵的功能。
以上结合附图对本发明的实施方式作了详细说明,但本发明不限于所描述的实施方式。对于本领域的技术人员而言,在不脱离本发明原理和精神的情况下,对这些实施方式进行多种变化、修改、替换和变型,仍落入本发明的保护范围内。
工业实用性
本发明实施例中的拼接显示系统及其控制方法,其拼接显示系统包括显示屏阵列,显示屏阵列包括若干拼接在一起的LED显示单元,每一LED显示单元包括若干无线传输模块,两两相邻的LED显示单元之间通过一组相邻配对的无线传输模块进行信号双向传输,以在显示屏阵列中形成网格型信号传输网络。这样一来,显示屏阵列的LED显示单元之间无需人工连接数据线,装屏效率得到大大提升,同时,LED显示单元之间的信号传输路径从单向或双向变成多向多路径传输的网格型信号传输网络,多个数据传输端口、高冗余度、响应速度快,可快速点亮显示屏阵列,且单个LED显示单元的故障不会影响整个显示屏的画面显示,发生故障时自动调整信号最优传输路径、可靠性高。可见,本技术方案,其可有效解决现有LED显示屏接线繁琐、人工操作效率低下以及显示屏的显示容易受到单一箱体、线材、接插件等故障影响导致的低可靠性等问题。因此,具有工业实用性。

Claims (14)

  1. 一种拼接显示系统,包括显示屏阵列,所述显示屏阵列包括若干拼接在一起的LED显示单元,每一所述LED显示单元包括若干无线传输模块,两两相邻的所述LED显示单元之间通过一组相邻配对的所述无线传输模块进行信号双向传输,以在所述显示屏阵列中形成网格型信号传输网络。
  2. 根据权利要求1所述的拼接显示系统,其中,所述LED显示单元的每一边均设置一所述无线传输模块,两两相邻的所述LED显示单元的相接边的两所述无线传输模块形成一组相邻配对的所述无线传输模块。
  3. 根据权利要求1所述的拼接显示系统,其中,所述LED显示单元为LED箱体。
  4. 根据权利要求1所述的拼接显示系统,其中,所述LED显示单元为LED模组。
  5. 根据权利要求1-3任一项所述的拼接显示系统,其中,所述拼接显示系统还包括信号源模块,所述信号源模块与任一所述LED显示单元的所述无线传输模块进行无线数据连接。
  6. 根据权利要求5所述的拼接显示系统,其中,所述信号源模块包括主信号源单元,所述主信号源单元与一所述LED显示单元的所述无线传输模块进行无线数据连接,以实现所述显示屏阵列的主信号输入。
  7. 根据权利要求5所述的拼接显示系统,其中,所述信号源模块包括备用信号源单元,所述备用信号源单元与另一所述LED显示单元的所述无线传输模块进行无线数据连接,以实现所述显示屏阵列的备用信号输入。
  8. 根据权利要求1所述的拼接显示系统,其中,所述无线传输模块包括发送单元和接收单元,所述发送单元和所述接收单元短距离点对点无线传输信号及数据。
  9. 一种LED显示屏信号控制方法,包括:
    两两相邻的LED显示单元之间通过一组相邻配对的无线传输模块进行信号双向传输;
    根据当前显示屏阵列的信号输入以及每一LED显示单元的工作状况,自动调整每一所述LED显示单元的信号最优传输路径。
  10. 根据权利要求9所述的信号控制方法,其中,所述根据当前显示屏阵列的信号输入以及每一LED显示单元的工作状况,自动调整每一所述LED显示单元的信号最优传输路径的步骤之前,还包括:根据主信号源单元的工作状况自动切换所述显示屏阵列的信号输入。
  11. 根据权利要求10所述的信号控制方法,其中,所述根据主信号源单元的工作状况自动切换所述显示屏阵列的信号输入的步骤具体包括:
    若所述主信号源单元正常工作,则切断备用信号源单元的信号输入,以所述主信号源单元对所述显示屏阵列进行信号输入;
    若所述主信号源单元非正常工作,则切断所述主信号源单元的信号输入,以所述备用信号源单元对所述显示屏阵列进行信号输入。
  12. 根据权利要求11所述的信号控制方法,其中,所述根据当前显示屏阵列的信号输入自动调整每一LED显示单元的信号最优传输路径的步骤具体包括:
    若以所述主信号源单元对所述显示屏阵列进行信号输入,则以连接所述主信号源单元的所述LED显示单元作为路径计算基准,自动调整每一所述LED显示单元的信号最优传输路径;
    若以所述备用信号源单元对所述显示屏阵列进行信号输入,则以连接所述备用信号源单元的所述LED显示单元作为路径计算基准,自动调整每一所述LED显示单元的信号最优传输路径。
  13. 根据权利要求9所述的信号控制方法,其中,所述根据每一所述LED显示单元的工作状况自动调整每一所述LED显示单元的信号最优传输路径的步骤具体包括:
    若任一所述LED显示单元非正常工作,则绕开非正常工作的所述LED显示单元,自动调整每一所述LED显示单元的信号最优传输路径。
  14. 根据权利要求9所述的信号控制方法,其中,所述信号控制方法还包括:
    若所述显示屏阵列同时进行多路信号输入时,自动为每一路信号输入分配用于相应画面显示的所述LED显示单元的地址,确定每一所述LED显示单元的信号最优传输路径,以控制相应的所述LED显示单元进行画面显示。
PCT/CN2020/099796 2019-08-26 2020-07-01 一种拼接显示系统及其信号控制方法 WO2021036500A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910791357.9 2019-08-26
CN201910791357.9A CN110502204A (zh) 2019-08-26 2019-08-26 一种拼接显示系统及其信号控制方法

Publications (1)

Publication Number Publication Date
WO2021036500A1 true WO2021036500A1 (zh) 2021-03-04

Family

ID=68589663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099796 WO2021036500A1 (zh) 2019-08-26 2020-07-01 一种拼接显示系统及其信号控制方法

Country Status (2)

Country Link
CN (1) CN110502204A (zh)
WO (1) WO2021036500A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208477852U (zh) * 2018-02-06 2019-02-05 深圳市雷迪奥视觉技术有限公司 一种拼接式框架装置
CN110502204A (zh) * 2019-08-26 2019-11-26 深圳蓝普科技有限公司 一种拼接显示系统及其信号控制方法
CN113450664A (zh) * 2020-03-26 2021-09-28 深圳蓝普科技有限公司 一种显示屏系统及其信号传输方法
CN111510653A (zh) * 2020-04-21 2020-08-07 康佳集团股份有限公司 一种MicroLED电视显示屏及MicroLED电视机
CN111462683A (zh) * 2020-05-12 2020-07-28 浙江大华技术股份有限公司 一种led显示屏及其控制方法
TWI731691B (zh) * 2020-05-21 2021-06-21 緯創資通股份有限公司 發光二極體顯示系統及模組
CN111583813A (zh) * 2020-06-10 2020-08-25 安徽优谱电子科技有限公司 一种显示单元及显示单元自动定位的装置和方法
CN113393776B (zh) * 2021-06-24 2022-11-08 深圳市华星光电半导体显示技术有限公司 拼接显示装置
CN113724588B (zh) * 2021-08-16 2024-03-08 武汉华星光电技术有限公司 显示系统
CN113986166B (zh) * 2021-10-11 2023-10-13 惠州视维新技术有限公司 拼接显示控制方法、拼接显示系统及计算机可读存储介质
CN116110350B (zh) * 2023-02-14 2023-08-11 北京显芯科技有限公司 一种led控制系统、电子设备及数据处理方法
CN117789616B (zh) * 2024-02-27 2024-05-10 德氪微电子(深圳)有限公司 Led箱体的连接方法、显示屏、装置及计算机可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101877207A (zh) * 2009-11-18 2010-11-03 北京巨数数字技术开发有限公司 一种led显示屏系统和控制方法
CN102542986A (zh) * 2011-12-29 2012-07-04 深圳市奥拓电子股份有限公司 一种led显示系统及其数据传输方法
CN205451036U (zh) * 2016-03-28 2016-08-10 京东方科技集团股份有限公司 拼接显示系统
CN109922288A (zh) * 2019-04-10 2019-06-21 深圳市奥拓电子股份有限公司 Led电视机
CN110502204A (zh) * 2019-08-26 2019-11-26 深圳蓝普科技有限公司 一种拼接显示系统及其信号控制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102157141B (zh) * 2010-08-09 2013-09-11 深圳市大象视界科技有限公司 Led大屏幕显示控制系统及方法
CN203966520U (zh) * 2014-05-20 2014-11-26 河北科技大学 一种多路信号多屏拼接处理系统
CN204204385U (zh) * 2014-11-05 2015-03-11 北京百度网讯科技有限公司 大屏幕显示系统
CN107958577A (zh) * 2017-12-26 2018-04-24 深圳市零壹创新科技有限公司 一种拼接式提醒装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101877207A (zh) * 2009-11-18 2010-11-03 北京巨数数字技术开发有限公司 一种led显示屏系统和控制方法
CN102542986A (zh) * 2011-12-29 2012-07-04 深圳市奥拓电子股份有限公司 一种led显示系统及其数据传输方法
CN205451036U (zh) * 2016-03-28 2016-08-10 京东方科技集团股份有限公司 拼接显示系统
CN109922288A (zh) * 2019-04-10 2019-06-21 深圳市奥拓电子股份有限公司 Led电视机
CN110502204A (zh) * 2019-08-26 2019-11-26 深圳蓝普科技有限公司 一种拼接显示系统及其信号控制方法

Also Published As

Publication number Publication date
CN110502204A (zh) 2019-11-26

Similar Documents

Publication Publication Date Title
WO2021036500A1 (zh) 一种拼接显示系统及其信号控制方法
US12046171B2 (en) Electronic display board system with modified ethernet network for a plurality of display units
US8677176B2 (en) Cable redundancy and failover for multi-lane PCI express IO interconnections
US8645746B2 (en) Cable redundancy and failover for multi-lane PCI express IO interconnections
CN102299846B (zh) 一种bfd报文传输方法和设备
CN107592187B (zh) 一种基于双通道表决系统的表决方法
CN207541916U (zh) Led拼接显示系统
US10484732B2 (en) Data processing backplane with serial bus communication loop
CN105007307A (zh) 一种存储控制方法和系统
CN115762396A (zh) 一种拼接式led显示屏的显示控制方法与装置
CN102763087B (zh) Cpu间互联容错的实现方法及系统
KR101152225B1 (ko) Can 통신방식을 이용한 전관방송 시스템
CN109981353B (zh) 一种机框式网络通信设备中的邻站冗余保护方法及系统
CN111462683A (zh) 一种led显示屏及其控制方法
CN109842445A (zh) 光背板系统、交换系统及其升级方法
US8824342B2 (en) Field communication apparatus and process control system
CN203120027U (zh) 一种大容量的高清视频矩阵
WO2015131670A1 (zh) 基于交换网实现机架堆叠的设备、方法和系统
CN110806810A (zh) 一种基于kvm的数据控制系统
WO2023083126A1 (zh) 一种光背板的倒换方法及光通信设备
CN104618053A (zh) 基于wdm的信号互连方法及基带单元
CN221806991U (zh) 具有不间断、同步运行双系统的会议系统
CN221240378U (zh) 通信系统
JP2004257639A (ja) 空気調和機の制御方法
EP4440141A1 (en) Centralized light supply apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20858786

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20858786

Country of ref document: EP

Kind code of ref document: A1