WO2021036279A1 - 适用于电磁暂态仿真的电动机负荷暂态过程计算方法 - Google Patents

适用于电磁暂态仿真的电动机负荷暂态过程计算方法 Download PDF

Info

Publication number
WO2021036279A1
WO2021036279A1 PCT/CN2020/084698 CN2020084698W WO2021036279A1 WO 2021036279 A1 WO2021036279 A1 WO 2021036279A1 CN 2020084698 W CN2020084698 W CN 2020084698W WO 2021036279 A1 WO2021036279 A1 WO 2021036279A1
Authority
WO
WIPO (PCT)
Prior art keywords
transient
motor
formula
induction motor
rotor
Prior art date
Application number
PCT/CN2020/084698
Other languages
English (en)
French (fr)
Inventor
廖卫平
伍建炜
张艳
温健锋
黄练栋
麦炳灿
颜金佑
刘海光
周锐
谢锟
Original Assignee
广东电网有限责任公司
广东电网有限责任公司江门供电局
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东电网有限责任公司, 广东电网有限责任公司江门供电局 filed Critical 广东电网有限责任公司
Publication of WO2021036279A1 publication Critical patent/WO2021036279A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/088Aspects of digital computing

Definitions

  • the present invention relates to the technical field of power grid transient simulation calculation, and more specifically, to a calculation method of electric motor load transient process suitable for electromagnetic transient simulation.
  • the test method uses the voltage sag generator to generate various types of voltage sag waveforms, records the output response of the motor, and then analyzes the mutual influence of the voltage sag and the motor.
  • the time-domain simulation method uses the power system electromagnetic transient or electromechanical transient simulation program, considers a more accurate motor transient model, and discusses the problem through numerical calculation. The advantage of the two is that the results are true and credible, but in order to reveal the influence of a certain factor, multiple experiments or simulations are required. In addition to cumbersome and time-consuming, it is beyond the ability to analyze and explain the experimental and simulation phenomena.
  • the analytical method requires the use of circuit and motor analysis theory to explicitly solve the interaction between the transient response of the motor and the system voltage. It is the most fundamental and thorough research method, but it is more difficult and cannot accurately obtain the disturbed motor. All the operation and state variables of the system; only the constant torque mechanical load can be considered, which will also cause the voltage stability analysis results to be pessimistic.
  • the purpose of the present invention is to overcome the shortcomings of the prior art and provide a method for calculating the transient process of electric motor load suitable for electromagnetic transient simulation.
  • a method for calculating the transient process of electric motor load suitable for electromagnetic transient simulation.
  • an asymmetric fault voltage is proposed.
  • the analytical calculation method for accurately calculating the transient response of induction motors under falling has good validity and accuracy.
  • a method for calculating the transient process of electric motor load suitable for electromagnetic transient simulation is provided.
  • the electric motor is an induction motor and is installed in a power supply system; the method is characterized in that the calculation method includes the following steps:
  • ⁇ m is the rotation speed of the induction motor
  • T e and T m are the electromagnetic torque and mechanical load torque of the induction motor, respectively
  • T j is the motor inertia time constant
  • ⁇ s is the synchronous speed of the induction motor, and s is the slip
  • step S20 According to the change of the rotation speed ⁇ m and slip s of the induction motor obtained in step S10, the transient electric potential differential equation in the form of the induction motor rotor vector is solved to obtain the change of the transient electric potential;
  • the first-order mechanical transient model of the induction motor rotor is a transient equivalent circuit model ignoring stator windings and rotor windings, and the transient equivalent circuit includes a stator resistance R s and a stator reactance connected in series.
  • X s and the excitation reactance X m , the two ends of the excitation reactance X m are connected in parallel with a single-cage model rotor reactance X r and a single-cage model rotor resistance R r .
  • step S10 Preferably, in step S10:
  • K 1 and K 2 are constants;
  • V s1 and V s2 represent the positive and negative sequence components of the applied stator voltage, respectively;
  • the rotor motion equation does not include the negative sequence electromagnetic torque Te2 , and the induction motor rotor motion equation is expressed as:
  • the initial rotational speed of the induction motor ⁇ n the voltage drop from the time of occurrence t 0 starts declining, the fault clearing time point t 1, the induction motor speed down ⁇ 'm; cleared after the voltage drop, the rise speed of the induction motor Return to the initial rotation speed ⁇ n of the induction motor.
  • the rotation speed of the induction motor ⁇ m-dur during the fault is solved according to formula (3):
  • t is the working time of the induction motor
  • step S20 is performed as follows:
  • R s is the stator resistance
  • V s10 represents the initial value of the positive sequence component of the applied stator voltage
  • I s10 represents the initial value of the positive sequence component of the applied stator current
  • step S30 is performed as follows:
  • P d1 , P d2 are positive and negative sequence active powers
  • Q d1 , Q d2 are positive and negative sequence reactive powers
  • the direction of power generated by negative sequence current is opposite to that of positive sequence current
  • the calculation method and calculation model of the present invention are all algebraic expressions, which have obvious advantages in calculation speed compared with the simultaneous solution of differential-algebraic equations in power system electromechanical and electromagnetic transient simulation;
  • the calculation method of the present invention takes into account the influence of the negative sequence component on the transient response of the motor when the asymmetric fault occurs, and the calculation accuracy is higher than that of the electromechanical transient simulation that only considers the positive sequence fundamental wave component;
  • the calculation method of the present invention explicitly calculates the mechanical and electrical parameters of the motor, and is easy to analyze and interpret the results and phenomena.
  • Figure 1 is a flow chart of the calculation method of the motor load transient process suitable for electromagnetic transient simulation
  • Fig. 2 is a schematic diagram of a transient equivalent circuit of the first embodiment
  • Figure 3 is a schematic diagram of a power supply system for a single machine to drive an induction motor in the first embodiment
  • Figure 4 is a schematic diagram of the rotation speed of the induction motor when the voltage drops
  • Figure 5 is a schematic diagram of the power supply system used in the first embodiment of the comparative test
  • Fig. 6 is a comparative analysis diagram of the A-phase terminal voltage of the comprehensive load in the first embodiment
  • Fig. 7 is a comparative analysis diagram of the B-phase terminal voltage of the integrated load in the first embodiment
  • Fig. 8 is a comparative analysis diagram of the C-phase terminal voltage of the integrated load in the first embodiment
  • Fig. 9 is a comparative analysis diagram of the comprehensive load active power in the first embodiment
  • Figure 10 is a comparative analysis diagram of the comprehensive load reactive power in the first embodiment.
  • FIGS 1 to 3 show an embodiment of the calculation method of the motor load transient process suitable for electromagnetic transient simulation of the present invention.
  • the motor is an induction motor and is installed in the power supply system; the calculation method includes the following steps:
  • ⁇ m is the rotation speed of the induction motor
  • T e and T m are the electromagnetic torque and mechanical load torque of the induction motor, respectively
  • T j is the motor inertia time constant
  • ⁇ s is the synchronous speed of the induction motor, and s is the slip
  • step S20 According to the change of the rotation speed ⁇ m and slip s of the induction motor obtained in step S10, the transient electric potential differential equation in the form of the induction motor rotor vector is solved to obtain the change of the transient electric potential;
  • the first-order mechanical transient model of the induction motor rotor is a transient equivalent circuit model ignoring stator windings and rotor windings.
  • the transient equivalent circuit includes a stator resistance R s , a stator reactance X s and Excitation reactance X m , both ends of the excitation reactance X m are connected in parallel with a single-cage model rotor reactance X r and a single-cage model rotor resistance R r , as shown in FIG. 2.
  • step S10
  • K 1 and K 2 are constants;
  • V s1 and V s2 represent the positive and negative sequence components of the applied stator voltage, respectively;
  • the rotor motion equation does not include the negative sequence electromagnetic torque Te2 , and the induction motor rotor motion equation is expressed as:
  • the initial rotational speed of the induction motor according to the present embodiment is ⁇ n, the voltage drop from the time of occurrence t 0 starts declining, the fault clearing time point t 1, the induction motor speed down ⁇ 'm; clear drop in voltage After that, the rotation speed of the induction motor continues to rise and returns to the initial rotation speed ⁇ n of the induction motor.
  • t is the working time of the induction motor
  • Step S20 is performed as follows:
  • R s is the stator resistance
  • V s10 represents the initial value of the positive sequence component of the applied stator voltage
  • I s10 represents the initial value of the positive sequence component of the applied stator current
  • Step S30 is performed as follows:
  • P d1 , P d2 are positive and negative sequence active powers
  • Q d1 , Q d2 are positive and negative sequence reactive powers
  • the direction of power generated by negative sequence current is opposite to that of positive sequence current
  • PSD/BPA and PSCAD/EMTDC are used to build a 110kV single machine with integrated load power supply system simulation model.
  • the calculation results of this embodiment are compared with the simulation results of the two simulation models.
  • the motor load Tm is 1.0pu, and the rest of the load is considered as a constant impedance load model.
  • the following calculations are carried out: the load busbar has a short circuit between the two phases of BC and the ground at 0.2s, and the fault is cleared at 0.4s.
  • the sequence voltage components of the load bus can be calculated according to the method of the above-mentioned embodiment.
  • the calculation results of the method of the present invention, BPA and PSCAD are compared as shown in Fig. 6-10.
  • the solid line, the dashed line and the dotted line are the calculation results of the method of the present invention, BPA and PSCAD respectively.
  • Figure 6 shows the change diagram of the phase A terminal voltage of the integrated load
  • Figure 7 shows the phase B terminal of the integrated load
  • Fig. 8 shows the change diagram of the C-phase terminal voltage of the comprehensive load
  • Fig. 9 shows the change diagram of the active power of the comprehensive load
  • Fig. 10 shows the change map of the reactive power of the comprehensive load.
  • the BPA electromechanical transient simulation software ignores the influence of negative sequence voltage during an asymmetric fault, and the calculation accuracy is not good.
  • the influence of the error is worth evaluating.
  • the method of the present invention is in good agreement with the calculation results of PSCAD, indicating that the method has the potential to be applied to stability analysis of power systems.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

本发明涉及电网暂态仿真计算的技术领域,更具体地,涉及适用于电磁暂态仿真的电动机负荷暂态过程计算方法,快速计算电力系统对称和不对称故障电压跌落下感应电动机负荷暂态特性:(1)先求解转子的一阶机械暂态方程,得到扰动后转子的转速和滑差变化;(2)求解转子相量形式的暂态电势微分方程,得到暂态电势的变化;(3)获得扰动后电动机的电流和功率响应。本发明与PSCAD/EMTDC电磁暂态仿真结果的比较,验证了算法的有效性。与PSD/BPA机电暂态仿真结果的比较,体现了算法在不对称电压跌落下的计算优势。解析法显式给出了受扰后感应电动机各机械、电气参量的计算表达式,除可用于快速评估感应电动机与电压跌落的相互影响、还可应用于电力系统稳定性分析中。

Description

适用于电磁暂态仿真的电动机负荷暂态过程计算方法 技术领域
本发明涉及电网暂态仿真计算的技术领域,更具体地,涉及适用于电磁暂态仿真的电动机负荷暂态过程计算方法。
背景技术
随着“西电东送”战略的实施和深化,我国在“长三角”和“珠三角”等负荷中心均已形成典型的受端系统结构。受端系统负荷重、感应电动机负荷比例高,电网发生故障及恢复过程中,感应电动机由于电磁转矩下降,滑差增大,常会吸收大量的暂态功率,导致系统暂态电压难以恢复。而各项研究均表明电动机暂态特性和电压跌落相互影响的重要性,并先后提出有试验法、时域仿真法与解析法等三类研究方法。
试验法借助电压跌落发生器产生各种类别的电压跌落波形,记录电动机的输出响应,进而分析电压跌落与电动机的相互影响。时域仿真法借助电力系统电磁暂态或机电暂态仿真程序,考虑较为精确的电动机暂态模型,通过数值计算对问题进行探讨。二者的优点在于结果真实可信,但为揭示某一因素的影响,需要多次试验或仿真,除繁琐、费时外,在分析和解释试验和仿真现象时,都显得力所不及。而解析法需要借助电路和电机分析理论,显式求解电动机暂态响应和系统电压间的交互作用,是最根本、最透彻的研究方法,但难度较大,且不能准确求得受扰后电动机的全部运行和状态变量;仅能考虑恒转矩机械负载,也会造成电压稳定性分析结果偏悲观。
发明内容
本发明的目的在于克服现有技术的不足,提供一种适用于电磁暂态仿真的电动机负荷暂态过程计算方法,在将外部网络等效为简单两节点系统的基础上,提出不对称故障电压跌落下精确计算感应电动机暂态响应的解析计算方法,具有较好的有效性和准确性。
为解决上述技术问题,本发明采用的技术方案是:
提供适用于电磁暂态仿真的电动机负荷暂态过程计算方法,电动机为感应电动机并设于供电系统中;其特征在于,所述计算方法包括以下步骤:
S10.建立感应电动机转子的一阶机械暂态模型并求解,得到电源发生对称 或不对称故障电压跌落时感应电动机的转速ω m和滑差s变化;感应电动机转子的一阶机械暂态模型表示为下式:
Figure PCTCN2020084698-appb-000001
式(1)中,ω m为感应电动机的转速,T e和T m分别是感应电动机的电磁转矩和机械负载转矩,T j为电动机惯性时间常数;
Figure PCTCN2020084698-appb-000002
式(2)中,ω s为感应电动机的同步转速,s为滑差;
S20.根据步骤S10求得的感应电动机的转速ω m和滑差s变化,求解感应电动机转子向量形式的暂态电势微分方程得到暂态电势的变化;
S30.根据步骤S20中求得的暂态电势的变化获得扰动后感应电动机的电流相应和功率响应。
本发明的适用于电磁暂态仿真的电动机负荷暂态过程计算方法,
优选地,步骤S10中,感应电动机转子的一阶机械暂态模型为忽略定子绕组和转子绕组的暂态等值电路模型,所述暂态等值电路包括串联连接的定子电阻R s、定子电抗X s以及激磁电抗X m,所述激磁电抗X m的两端并联连接有单笼模型转子电抗X r以及单笼模型转子电阻R r
优选地,步骤S10中:
不对称故障电压跌落期间,感应电动机转子的运动方程表示为:
Figure PCTCN2020084698-appb-000003
式(3)中,
Figure PCTCN2020084698-appb-000004
K 1、K 2为常数;V s1、V s2分别表示外施定子电压的正序分量、负序分量;
电压跌落清除后,转子的运动方程不包含负序电磁转矩T e2,感应电动机转子运动方程表示为:
Figure PCTCN2020084698-appb-000005
优选地,感应电动机的初始转速为ω n,从电压跌落发生时刻t 0开始不断下降, 到故障清除时刻t 1,感应电动机转速降至ω' m;在电压跌落清除后,感应电动机转速不断上升恢复至感应电动机初始转速ω n
优选地,根据式(3)求解故障期间感应电动机转速ω m-dur
Figure PCTCN2020084698-appb-000006
式中,t为感应电动机工作时刻;
电压跌落清除后,根据式(4)求解感应电动机转速度ω m-after
Figure PCTCN2020084698-appb-000007
优选地,步骤S20按以下步骤进行:
S21.当电动机定子端施加正序电压
Figure PCTCN2020084698-appb-000008
时,以向量形式表示外施定子电压如下式:
Figure PCTCN2020084698-appb-000009
式(7)中,
Figure PCTCN2020084698-appb-000010
Figure PCTCN2020084698-appb-000011
分别为转子正序暂态电势和定子正序电流相量,X为转子开路电抗,X'表示转子短路电抗,
Figure PCTCN2020084698-appb-000012
表示定子开路、转子回路暂态时间常数;
以向量形式表示外施定子电流如下式:
Figure PCTCN2020084698-appb-000013
式(9)中,R s为定子电阻;
将式(8)代入式(7)中,得到下式:
Figure PCTCN2020084698-appb-000014
S22.当电动机定子端施加负序电压
Figure PCTCN2020084698-appb-000015
时,流过负序电流
Figure PCTCN2020084698-appb-000016
建立负向旋转 磁场,所述负向旋转磁场与转子旋转方向相反,负序转差率为(2-s),转子负序暂态电势微分方程的相量形式可表示为:
Figure PCTCN2020084698-appb-000017
式(10)中,
Figure PCTCN2020084698-appb-000018
为转子负序暂态电势;
S23.整理式(9)和(10)后,得:
Figure PCTCN2020084698-appb-000019
令:
Figure PCTCN2020084698-appb-000020
S24.将步骤S10计算得到的滑差s代入,则K E1、K E2和B E均为已知量,可将式(12)简化为:
Figure PCTCN2020084698-appb-000021
S25.求解式(13),不对称故障期间电动机转子暂态电势的解析表达式为:
Figure PCTCN2020084698-appb-000022
式(14)中,
Figure PCTCN2020084698-appb-000023
Figure PCTCN2020084698-appb-000024
为感应电动机正、负序暂态电势初值,计算表达式为:
Figure PCTCN2020084698-appb-000025
式(15)中V s10表示外施定子电压正序分量的初始值,I s10表示外施定子电流正序分量的初始值;
S26.电压跌落清除后恢复过程中,定子电压中不含负序电压分量,电动机的暂态电势仅含正序分量,解析表达式为:
Figure PCTCN2020084698-appb-000026
式(16)中,
Figure PCTCN2020084698-appb-000027
为电压跌落清除时刻电动机的正序暂态电势。
优选地,步骤S30按以下步骤进行:
S31.将步骤S25中计算得到的故障期间电动机转子暂态电势
Figure PCTCN2020084698-appb-000028
Figure PCTCN2020084698-appb-000029
的d轴分量E' d1-dur、E' d2-dur和q轴分量E′ q1-dur、E′ q2-dur分别代入式(17),得电压跌落期间电动机d、q轴的正序定子电流I ds1、I qs1和负序定子电流I ds2、I qs2
Figure PCTCN2020084698-appb-000030
S32.电压跌落期间,感应电动机消耗的有功P d和无功Q d计算如式(18):
Figure PCTCN2020084698-appb-000031
式中,P d1、P d2为正、负序有功功率,Q d1、Q d2为正、负序无功功率,负序电流产生的功率与正序电流产生的功率方向相反;
S33.电压跌落清除后,暂态电势
Figure PCTCN2020084698-appb-000032
的d轴分量E' d1-after和q轴分量E' q1-after分别代入式(17),可得电压跌落期间电动机d、q轴的正序定子电流I ds1、I qs1,电动机消耗的有功P d和无功Q d计算如式(19):
Figure PCTCN2020084698-appb-000033
求得电动机的功率消耗(P d+jQ d)后,定子电流正序分量
Figure PCTCN2020084698-appb-000034
负序分量
Figure PCTCN2020084698-appb-000035
计算如式(20):
Figure PCTCN2020084698-appb-000036
与现有技术相比,本发明的有益效果是:
本发明的计算方法,计算模型均为代数表达式,与电力系统机电和电磁暂态仿真联立求解微分-代数方程组相比,在计算速度上具有明显优势;
本发明的计算方法,计入了不对称故障时负序分量对电动机暂态响应的影响,计算精度高于只考虑正序基波分量的机电暂态仿真;
本发明的计算方法,显式计算电动机机械和电气参量,易于分析和解释结果与现象。
附图说明
图1为适用于电磁暂态仿真的电动机负荷暂态过程计算方法的流程图;
图2为实施例一的暂态等值电路的示意图;
图3为实施例一的单机带动感应电动机的供电系统示意图;
图4为电压跌落时感应电动机转速变化的示意图;
图5为实施例一实施对比试验时采用的供电系统示意图;
图6为实施例一综合负荷A相端电压的对比分析图;
图7为实施例一综合负荷B相端电压的对比分析图;
图8为实施例一综合负荷C相端电压的对比分析图;
图9为实施例一综合负荷有功功率的对比分析图;
图10为实施例一综合负荷无功功率的对比分析图。
具体实施方式
下面结合具体实施方式对本发明作进一步的说明。
实施例一
如图1至图3所示为本发明的适用于电磁暂态仿真的电动机负荷暂态过程计 算方法的实施例,电动机为感应电动机并设于供电系统中;所述计算方法包括以下步骤:
S10.建立感应电动机转子的一阶机械暂态模型并求解,得到电源发生对称或不对称故障电压跌落时感应电动机的转速ω m和滑差s变化;感应电动机转子的一阶机械暂态模型表示为下式:
Figure PCTCN2020084698-appb-000037
式(1)中,ω m为感应电动机的转速,T e和T m分别是感应电动机的电磁转矩和机械负载转矩,T j为电动机惯性时间常数;
Figure PCTCN2020084698-appb-000038
式(2)中,ω s为感应电动机的同步转速,s为滑差;
S20.根据步骤S10求得的感应电动机的转速ω m和滑差s变化,求解感应电动机转子向量形式的暂态电势微分方程得到暂态电势的变化;
S30.根据步骤S20中求得的暂态电势的变化获得扰动后感应电动机的电流相应和功率响应。
步骤S10中,感应电动机转子的一阶机械暂态模型为忽略定子绕组和转子绕组的暂态等值电路模型,所述暂态等值电路包括串联连接的定子电阻R s、定子电抗X s以及激磁电抗X m,所述激磁电抗X m的两端并联连接有单笼模型转子电抗X r以及单笼模型转子电阻R r,如图2所示。在本实施例的供电系统中,电源通过阻抗为Z eq=R eq+jX eq的供电网络向感应电动机IM供电,如图3所示:送端发电机功率(P eq+jQ eq)与受端电动机功率(P d+jQ d)满足下式:
Figure PCTCN2020084698-appb-000039
感应电动机正、负序电压按下式计算:
Figure PCTCN2020084698-appb-000040
步骤S10中:
不对称故障电压跌落期间,感应电动机转子的运动方程表示为:
Figure PCTCN2020084698-appb-000041
式(3)中,
Figure PCTCN2020084698-appb-000042
K 1、K 2为常数;V s1、V s2分别表示外施定子电压的正序分量、负序分量;
电压跌落清除后,转子的运动方程不包含负序电磁转矩T e2,感应电动机转子运动方程表示为:
Figure PCTCN2020084698-appb-000043
如图4所示,本实施例的感应电动机的初始转速为ω n,从电压跌落发生时刻t 0开始不断下降,到故障清除时刻t 1,感应电动机转速降至ω' m;在电压跌落清除后,感应电动机转速不断上升恢复至感应电动机初始转速ω n
根据式(3)求解故障期间感应电动机转速ω m-dur
Figure PCTCN2020084698-appb-000044
式中,t为感应电动机工作时刻;
电压跌落清除后,根据式(4)求解感应电动机转速度ω m-after
Figure PCTCN2020084698-appb-000045
步骤S20按以下步骤进行:
S21.当电动机定子端施加正序电压
Figure PCTCN2020084698-appb-000046
时,以向量形式表示外施定子电压如下式:
Figure PCTCN2020084698-appb-000047
式(7)中,
Figure PCTCN2020084698-appb-000048
Figure PCTCN2020084698-appb-000049
分别为转子正序暂态电势和定子正序电流相量,X为转子开路电抗,X'表示转子短路电抗,
Figure PCTCN2020084698-appb-000050
表示定子开路、转子回路暂态时间常数;
以向量形式表示外施定子电流如下式:
Figure PCTCN2020084698-appb-000051
式(9)中,R s为定子电阻;
将式(8)代入式(7)中,得到下式:
Figure PCTCN2020084698-appb-000052
S22.当电动机定子端施加负序电压
Figure PCTCN2020084698-appb-000053
时,流过负序电流
Figure PCTCN2020084698-appb-000054
建立负向旋转磁场,所述负向旋转磁场与转子旋转方向相反,负序转差率为(2-s),转子负序暂态电势微分方程的相量形式可表示为:
Figure PCTCN2020084698-appb-000055
式(10)中,
Figure PCTCN2020084698-appb-000056
为转子负序暂态电势;
S23.整理式(9)和(10)后,得:
Figure PCTCN2020084698-appb-000057
令:
Figure PCTCN2020084698-appb-000058
S24.将步骤S10计算得到的滑差s代入,则K E1、K E2和B E均为已知量,可将式(12)简化为:
Figure PCTCN2020084698-appb-000059
S25.求解式(13),不对称故障期间电动机转子暂态电势的解析表达式为:
Figure PCTCN2020084698-appb-000060
式(14)中,
Figure PCTCN2020084698-appb-000061
Figure PCTCN2020084698-appb-000062
为感应电动机正、负序暂态电势初值,计算表达式为:
Figure PCTCN2020084698-appb-000063
式(15)中V s10表示外施定子电压正序分量的初始值,I s10表示外施定子电流正序分量的初始值;
S26.电压跌落清除后恢复过程中,定子电压中不含负序电压分量,电动机的暂态电势仅含正序分量,解析表达式为:
Figure PCTCN2020084698-appb-000064
式(16)中,
Figure PCTCN2020084698-appb-000065
为电压跌落清除时刻电动机的正序暂态电势。
步骤S30按以下步骤进行:
S31.将步骤S25中计算得到的故障期间电动机转子暂态电势
Figure PCTCN2020084698-appb-000066
Figure PCTCN2020084698-appb-000067
的d轴分量E' d1-dur、E' d2-dur和q轴分量E′ q1-dur、E′ q2-dur分别代入式(17),得电压跌落期间电动机d、q轴的正序定子电流I ds1、I qs1和负序定子电流I ds2、I qs2
Figure PCTCN2020084698-appb-000068
S32.电压跌落期间,感应电动机消耗的有功P d和无功Q d计算如式(18):
Figure PCTCN2020084698-appb-000069
式中,P d1、P d2为正、负序有功功率,Q d1、Q d2为正、负序无功功率,负序电流产生的功率与正序电流产生的功率方向相反;
S33.电压跌落清除后,暂态电势
Figure PCTCN2020084698-appb-000070
的d轴分量E' d1-after和q轴分量E' q1-after分别代入式(17),可得电压跌落期间电动机d、q轴的正序定子电流I ds1、I qs1,电动机消耗的有功P d和无功Q d计算如式(19):
Figure PCTCN2020084698-appb-000071
求得电动机的功率消耗(P d+jQ d)后,定子电流正序分量
Figure PCTCN2020084698-appb-000072
负序分量
Figure PCTCN2020084698-appb-000073
计算如式(20):
Figure PCTCN2020084698-appb-000074
为验证本实施例感应电动机暂态特性解析计算方法应用于大电网时域暂态仿真计算中的可行性和准确性,采用PSD/BPA和PSCAD/EMTDC搭建110kV单机带综合负荷供电系统仿真模型,并将本实施例的计算结果与两种仿真模型的仿真结果进行比较,三者采用的供电系统的参数为:等值阻抗Zeq=(1.6+j7.2)Ω,综合负荷功率为PL0+jQL0=(50+j20)MVA,感应电动机负荷占比50%,采用IEEE-2型工业电动机模型参数,如图5所示,PSD/BPA仿真步长为0.01s,PSCAD/EMTDC仿真步长为100us,解析计算方法计算步长为0.01s。电动机负载Tm取1.0pu,负荷其余部分考虑为恒阻抗负荷模型。进行了以下情形的计算:0.2s时负荷母线发生BC两相接地短路,0.4s时故障清除。根据电力系统短路计算理论,求得负荷母线各序电压分量即可按照上述实施例的方法进行计算。本发明方法、BPA和PSCAD的计算结果比较见图6~图10。
图6~图10中,实线、虚线和点线分别为本发明方法、BPA和PSCAD的计算结果,其中:图6表示综合负荷A相端电压的变化图,图7表示综合负荷B相端电压的变化图,图8表示综合负荷C相端电压的变化图,图9表示综合负 荷有功功率的变化图,图10表示综合负荷无功功率的变化图。可见,BPA机电暂态仿真软件在不对称故障期间忽略了负序电压的影响,计算精度欠佳。当大量负荷节点均采用综合负荷暂态模型时,误差的影响值得评估。本发明方法与PSCAD的计算结果吻合良好,表明方法有潜力应用于电力系统稳定性分析中。
本实施例与PSD/BPA机电暂态仿真结果的比较,体现了算法在不对称电压跌落下的计算优势:给出了受扰后感应电动机各机械、电气参量的计算表达式,除可用于快速评估感应电动机与电压跌落的相互影响外,也有潜力应用于电力系统稳定性分析中。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (7)

  1. 适用于电磁暂态仿真的电动机负荷暂态过程计算方法,所述电动机为感应电动机并设于供电系统中;其特征在于,所述计算方法包括以下步骤:
    S10.建立感应电动机转子的一阶机械暂态模型并求解,得到电源发生对称或不对称故障电压跌落时感应电动机的转速ω m和滑差s变化;感应电动机转子的一阶机械暂态模型表示为下式:
    Figure PCTCN2020084698-appb-100001
    式(1)中,ω m为感应电动机的转速,T e和T m分别是感应电动机的电磁转矩和机械负载转矩,T j为电动机惯性时间常数;
    Figure PCTCN2020084698-appb-100002
    式(2)中,ω s为感应电动机的同步转速,s为滑差;
    S20.根据步骤S10求得的感应电动机的转速ω m和滑差s变化,求解感应电动机转子向量形式的暂态电势微分方程得到暂态电势的变化;
    S30.根据步骤S20中求得的暂态电势的变化获得扰动后感应电动机的电流相应和功率响应。
  2. 根据权利要求1所述的适用于电磁暂态仿真的电动机负荷暂态过程计算方法,其特征在于,步骤S10中,感应电动机转子的一阶机械暂态模型为忽略定子绕组和转子绕组的暂态等值电路模型,所述暂态等值电路包括串联连接的定子电阻R s、定子电抗X s以及激磁电抗X m,所述激磁电抗X m的两端并联连接有单笼模型转子电抗X r以及单笼模型转子电阻R r
  3. 根据权利要求2所述的适用于电磁暂态仿真的电动机负荷暂态过程计算方法,其特征在于,步骤S10中:
    不对称故障电压跌落期间,感应电动机转子的运动方程表示为:
    Figure PCTCN2020084698-appb-100003
    式(3)中,
    Figure PCTCN2020084698-appb-100004
    K 1、K 2为常数;V s1、V s2分别表示外施定子电压的正序分量、负序分量;
    电压跌落清除后,转子的运动方程不包含负序电磁转矩T e2,感应电动机转子运动方程表示为:
    Figure PCTCN2020084698-appb-100005
  4. 根据权利要求3所述的适用于电磁暂态仿真的电动机负荷暂态过程计算方法,其特征在于,感应电动机的初始转速为ω n,从电压跌落发生时刻t 0开始不断下降,到故障清除时刻t 1,感应电动机转速降至ω' m;在电压跌落清除后,感应电动机转速不断上升恢复至感应电动机初始转速ω n
  5. 根据权利要求4所述的适用于电磁暂态仿真的电动机负荷暂态过程计算方法,其特征在于,根据式(3)求解故障期间感应电动机转速ω m-dur
    Figure PCTCN2020084698-appb-100006
    式中,t为感应电动机工作时刻;
    电压跌落清除后,根据式(4)求解感应电动机转速度ω m-after
    Figure PCTCN2020084698-appb-100007
  6. 根据权利要求1至5任一项所述的适用于电磁暂态仿真的电动机负荷暂态过程计算方法,其特征在于,步骤S20按以下步骤进行:
    S21.当电动机定子端施加正序电压
    Figure PCTCN2020084698-appb-100008
    时,以向量形式表示外施定子电压如下式:
    Figure PCTCN2020084698-appb-100009
    式(7)中,
    Figure PCTCN2020084698-appb-100010
    Figure PCTCN2020084698-appb-100011
    分别为转子正序暂态电势和定子正序电流相量,X为转子开路电抗,X'表示转子短路电抗,
    Figure PCTCN2020084698-appb-100012
    表示定子开路、转子回路暂态时间常数;
    以向量形式表示外施定子电流如下式:
    Figure PCTCN2020084698-appb-100013
    式(9)中,R s为定子电阻;
    将式(8)代入式(7)中,得到下式:
    Figure PCTCN2020084698-appb-100014
    S22.当电动机定子端施加负序电压
    Figure PCTCN2020084698-appb-100015
    时,流过负序电流
    Figure PCTCN2020084698-appb-100016
    建立负向旋转磁场,所述负向旋转磁场与转子旋转方向相反,负序转差率为(2-s),转子负序暂态电势微分方程的相量形式可表示为:
    Figure PCTCN2020084698-appb-100017
    式(10)中,
    Figure PCTCN2020084698-appb-100018
    为转子负序暂态电势;
    S23.整理式(9)和(10)后,得:
    Figure PCTCN2020084698-appb-100019
    令:
    Figure PCTCN2020084698-appb-100020
    S24.将步骤S10计算得到的滑差s代入,则K E1、K E2和B E均为已知量,可将式(12)简化为:
    Figure PCTCN2020084698-appb-100021
    S25.求解式(13),不对称故障期间电动机转子暂态电势的解析表达式为:
    Figure PCTCN2020084698-appb-100022
    式(14)中,
    Figure PCTCN2020084698-appb-100023
    Figure PCTCN2020084698-appb-100024
    为感应电动机正、负序暂态电势初值,计算表达式为:
    Figure PCTCN2020084698-appb-100025
    式(15)中V s10表示外施定子电压正序分量的初始值,I s10表示外施定子电流正序分量的初始值;
    S26.电压跌落清除后恢复过程中,定子电压中不含负序电压分量,电动机的暂态电势仅含正序分量,解析表达式为:
    Figure PCTCN2020084698-appb-100026
    式(16)中,
    Figure PCTCN2020084698-appb-100027
    为电压跌落清除时刻电动机的正序暂态电势。
  7. 根据权利要求6所述的适用于电磁暂态仿真的电动机负荷暂态过程计算方法,其特征在于,步骤S30按以下步骤进行:
    S31.将步骤S25中计算得到的故障期间电动机转子暂态电势
    Figure PCTCN2020084698-appb-100028
    Figure PCTCN2020084698-appb-100029
    的d轴分量E' d1-dur、E' d2-dur和q轴分量E′ q1-dur、E′ q2-dur分别代入式(17),得电压跌落期间电动机d、q轴的正序定子电流I ds1、I qs1和负序定子电流I ds2、I qs2
    Figure PCTCN2020084698-appb-100030
    S32.电压跌落期间,感应电动机消耗的有功P d和无功Q d计算如式(18):
    Figure PCTCN2020084698-appb-100031
    式中,P d1、P d2为正、负序有功功率,Q d1、Q d2为正、负序无功功率,负序电流产生的功率与正序电流产生的功率方向相反;
    S33.电压跌落清除后,暂态电势
    Figure PCTCN2020084698-appb-100032
    的d轴分量E' d1-after和q轴分量E' q1-after分别代入式(17),可得电压跌落期间电动机d、q轴的正序定子电流I ds1、I qs1,电动机消耗的有功P d和无功Q d计算如式(19):
    Figure PCTCN2020084698-appb-100033
    求得电动机的功率消耗(P d+jQ d)后,定子电流正序分量
    Figure PCTCN2020084698-appb-100034
    负序分量
    Figure PCTCN2020084698-appb-100035
    计算如式(20):
    Figure PCTCN2020084698-appb-100036
PCT/CN2020/084698 2019-08-31 2020-04-14 适用于电磁暂态仿真的电动机负荷暂态过程计算方法 WO2021036279A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910819354.1A CN110501614A (zh) 2019-08-31 2019-08-31 适用于电磁暂态仿真的电动机负荷暂态过程计算方法
CN201910819354.1 2019-08-31

Publications (1)

Publication Number Publication Date
WO2021036279A1 true WO2021036279A1 (zh) 2021-03-04

Family

ID=68590801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/084698 WO2021036279A1 (zh) 2019-08-31 2020-04-14 适用于电磁暂态仿真的电动机负荷暂态过程计算方法

Country Status (2)

Country Link
CN (1) CN110501614A (zh)
WO (1) WO2021036279A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110501614A (zh) * 2019-08-31 2019-11-26 广东电网有限责任公司 适用于电磁暂态仿真的电动机负荷暂态过程计算方法
CN111969924B (zh) * 2020-08-18 2022-03-29 四川大学 一种交流接触器自适应动作控制方法
CN114547833A (zh) * 2020-11-26 2022-05-27 广东电网有限责任公司江门供电局 一种基于变机械负载转矩的感应电动机转子滑差计算方法
CN115296587B (zh) * 2022-07-01 2023-09-22 兰州理工大学 一种电机保护器的绝对安全电压暂降计算方法及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108595798A (zh) * 2018-04-11 2018-09-28 广东电网有限责任公司 一种适用于机电暂态仿真的负荷模型参数计算方法
CN110501614A (zh) * 2019-08-31 2019-11-26 广东电网有限责任公司 适用于电磁暂态仿真的电动机负荷暂态过程计算方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1255602B (it) * 1992-09-18 1995-11-09 Alcatel Italia Apparecchio ricetrasmettitore portatile a bassa irradiazione dell'utente, utilizzante una antenna avente diagramma di irradiazione asimmetrico.
US7130807B1 (en) * 1999-11-22 2006-10-31 Accenture Llp Technology sharing during demand and supply planning in a network-based supply chain environment
CN101727522B (zh) * 2009-12-11 2012-08-01 中国电力科学研究院 一种基于出厂数据的电动机机电暂态仿真模型参数获取方法
CN101968525B (zh) * 2010-10-09 2013-05-08 杭州市电力局 一种仿真计算与实时监测相结合的配电网故障定位方法
CN102355000B (zh) * 2011-10-24 2013-10-09 国电南京自动化股份有限公司 网压非对称条件下双馈风电系统的综合控制方法
CN102841962B (zh) * 2012-07-23 2015-02-11 南方电网科学研究院有限责任公司 基于超前计算的电磁机电暂态混合实时仿真接口交互方法
CN104809265B (zh) * 2015-02-09 2018-04-10 华北电力大学 计及撬棒保护的双馈发电机仿真系统及方法
CN104734537B (zh) * 2015-03-18 2017-03-01 国网上海市电力公司 一种基于正负序电流内环控制的风电换流器控制方法
WO2016205085A1 (en) * 2015-06-15 2016-12-22 Sikorsky Aircraft Corporation Power drive transistor resonance sensor
CN105512367B (zh) * 2015-11-26 2019-02-15 广东电网有限责任公司电力科学研究院 并网火电机组一次调频转速不等率的临界稳定值确定方法
CN106096282B (zh) * 2016-06-13 2018-09-14 河海大学 一种双馈风力发电机单相接地短路电流计算方法
CN109359266B (zh) * 2018-10-25 2023-03-28 广东工业大学 感应电动机暂态响应的求解方法、系统、设备及存储介质
CN110135089A (zh) * 2019-05-21 2019-08-16 渤海大学 三相鼠笼型异步电动机数学模型集成系统的构建方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108595798A (zh) * 2018-04-11 2018-09-28 广东电网有限责任公司 一种适用于机电暂态仿真的负荷模型参数计算方法
CN110501614A (zh) * 2019-08-31 2019-11-26 广东电网有限责任公司 适用于电磁暂态仿真的电动机负荷暂态过程计算方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIAO, WEIPING: "Research on Identification of Induction Motor Load Parameters and Analytical Method for Its Dynamic Performances", CHINESE MASTER’S THESES FULL-TEXT DATABASE, ENGINEERING SCIENCE &TECHNOLOGY II, no. 8, 29 May 2016 (2016-05-29), pages 1 - 94, XP055787655, ISSN: 1000-8241 *

Also Published As

Publication number Publication date
CN110501614A (zh) 2019-11-26

Similar Documents

Publication Publication Date Title
WO2021036279A1 (zh) 适用于电磁暂态仿真的电动机负荷暂态过程计算方法
CN102867085B (zh) 含双馈风电机组的电力系统短路电流计算方法
Islam et al. Neuro fuzzy logic controlled parallel resonance type fault current limiter to improve the fault ride through capability of DFIG based wind farm
CN103199526B (zh) 含双馈风电机组的电力系统短路工频电气量计算方法
Kheshti et al. Modeling and fault analysis of doubly fed induction generators for gansu wind farm application
CN101944840A (zh) 双馈风力发电机网侧变流器消除直流谐波电压的控制方法
CN104699996B (zh) 基于双馈风电机组等值的电力系统非对称短路工频电气量计算方法
WO2019007354A1 (zh) 一种考虑不同转差的双馈风力发电系统短路电流计算方法
CN104852652B (zh) 同步风力发电机闭环矢量控制方法和系统
CN104820895B (zh) 电压源-阻抗形式的双馈风力发电机等效模型
CN105576651B (zh) 一种中小水电机群混合并行动态等值法
Dhouib et al. Dynamic behavior of grid-connected fixed speed wind turbine based on proportional-integral pitch controller and fault analysis
CN106849175A (zh) 一种双馈风电机组撬棒阻值整定方法
WO2022110290A1 (zh) 一种基于变机械负载转矩的感应电动机转子滑差计算方法
CN115663824A (zh) 一种新型高压直流输电系统紧急电压控制策略的计算方法
CN103944170A (zh) 一种基于电力系统响应信息的自适应紧急切负荷的方法
Wang et al. Dynamic behavior of DFIG during asymmetrical voltage dips in a coupled simulation
CN109149645B (zh) 一种含有双馈感应式风电机组电网的暂态稳定计算方法
CN112803488A (zh) 一种基于能量函数法的直驱风机暂态同步稳定域构建方法
Zabaiou et al. Time-delay compensation of a wide-area measurements-based hierarchical voltage and speed regulator
Ma et al. Short circuit current calculation of doubly fed induction generator
Ding et al. Analysis of ultra-low frequency oscillation in southwest power grid based on measurement data
CN106842021B (zh) 一种暂态电压稳定性的判别方法和装置
Wang et al. Electromagnetic transient modelling approach for the Doubly-fed Induction Generator
Fang et al. Research on Network Voltage Analysis Algorithm for Power System Transient Stability

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20859600

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20859600

Country of ref document: EP

Kind code of ref document: A1