WO2021036188A1 - 电机、送风装置和家用电器 - Google Patents
电机、送风装置和家用电器 Download PDFInfo
- Publication number
- WO2021036188A1 WO2021036188A1 PCT/CN2020/072146 CN2020072146W WO2021036188A1 WO 2021036188 A1 WO2021036188 A1 WO 2021036188A1 CN 2020072146 W CN2020072146 W CN 2020072146W WO 2021036188 A1 WO2021036188 A1 WO 2021036188A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- stator
- rotor structure
- fan blade
- motor
- rotor
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/14—Structural association with mechanical loads, e.g. with hand-held machine tools or fans
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D25/00—Pumping installations or systems
- F04D25/02—Units comprising pumps and their driving means
- F04D25/08—Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/32—Rotors specially for elastic fluids for axial flow pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/32—Rotors specially for elastic fluids for axial flow pumps
- F04D29/325—Rotors specially for elastic fluids for axial flow pumps for axial flow fans
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/70—Suction grids; Strainers; Dust separation; Cleaning
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/70—Suction grids; Strainers; Dust separation; Cleaning
- F04D29/701—Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps
- F04D29/703—Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps specially for fans, e.g. fan guards
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/12—Stationary parts of the magnetic circuit
- H02K1/16—Stator cores with slots for windings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/12—Stationary parts of the magnetic circuit
- H02K1/16—Stator cores with slots for windings
- H02K1/165—Shape, form or location of the slots
Definitions
- This application relates to the technical field of motors, and specifically to a motor, an air supply device and a household appliance.
- a commonly used fan motor is composed of a stator and a rotor that are sleeved inside and outside.
- the stator drives the rotor and then drives the rotation of the motor shaft to achieve fan blades or other loads.
- the stator and the rotor are coaxially arranged , And need to form a closed structure in the circumferential direction, the shaft will extend outward in the axial direction, so that due to the limitation of the structure of the motor itself, the size of the entire product in the axial direction will be increased, and the mutual position of the stator and the rotor Inflexible, it is not conducive to the lightweight design of the product.
- This application aims to solve at least one of the technical problems existing in the prior art or related technologies.
- an object of the present application is to provide a motor.
- Another object of the present application is to provide an air blowing device.
- Another object of this application is to provide a household appliance.
- a motor including: a rotor structure; a stator structure, which is detachably connected to the rotor structure, and the stator structure is arranged on the inner side of the rotor structure in the radial direction for driving The rotor structure rotates.
- the motor includes a rotor structure and a stator structure.
- the drive shaft of the traditional motor is eliminated to form a coreless motor.
- the setting method of the motor and the load is changed, so that the motor does not need to be axially aligned with the load.
- the configuration can reduce the size of the motor in the axial direction, effectively reduce the space occupation, and facilitate the realization of lightweight and miniaturized designs.
- the stator structure is arranged on the inner side of the rotor structure in the radial direction, which changes the position of the stator structure in the existing traditional motor.
- the stator structure does not need to form a ring-shaped closed structure or a symmetrical structure in the circumferential direction inside or outside the rotor structure. It only needs to be installed on the inner side of the rotor structure in the radial direction to drive the rotor structure to rotate, thereby driving the load to move; at the same time, by improving the position of the stator structure, the overall volume and weight of the motor can be further reduced, especially Reduce the space occupation of the motor in the axial direction.
- the motor installation position behind the fan blade can be eliminated, which is conducive to flattening and lightening the fan, reducing the weight and weight of the fan head part.
- the effect of eccentricity can reduce unnecessary counterweight settings and help improve the overall stability.
- stator structure and the rotor structure are detachable, when the motor is used to drive the load, the load and the rotor structure can be separately removed for cleaning or replacement, which is convenient for operation.
- the stator structure is arranged on the inner side of the rotor structure according to the setting position of the rotor structure.
- the motor forms an eccentric structure as a whole, and the setting position of the stator structure is more flexible, so that the motor can be applied to loads of different structures.
- the stator structure is hidden in the rotor structure, reducing the overall space occupation of the motor.
- the outer boundary is only the area enclosed by the rotor structure. The stator structure does not occupy additional space and can be further reduced.
- the size of the motor as a whole in the radial direction.
- the rotor structure as a whole can be circular ring, square ring, elliptical ring or other closed ring.
- the motor includes a driving area, the driving area includes at least one stator core, and a part of the rotor structure that is directly opposite to the stator structure.
- the motor includes a drive area, and further, the drive area includes at least one stator core and a part of the rotor structure that is opposite to the stator structure, that is, the stator core in the drive area faces the rotor structure and the stator core.
- the right part generates driving force to drive the rotor structure to rotate.
- the number of drive areas can be one or more.
- the stator structure has a first curved surface, the first curved surface faces the rotor structure, the first curved surface is arc-shaped, the rotor structure is circular, and at least part of the stator structure faces the curvature of the side surface of the rotor structure and the curvature of the rotor structure the same.
- the stator structure has a first curved surface that faces the arc of the rotor structure, and the curvature of at least part of the first curved surface is the same as the curvature of the rotor structure, so that at least part of the first curved surface It is equally spaced with the rotor structure, so that at least part of the stator structure maintains a balance of the driving force formed by the rotor structure, which is beneficial to improve the stability of the rotor structure during rotation.
- the first curved surface is in the shape of a circular arc
- the rotor structure is in a circular ring shape
- the curvature of the first curved surface is the same as the curvature of the rotor structure.
- the first curved surface is an arc shape, and the curvature of the first curved surface is the same as the curvature of the rotor structure, so that the entire stator structure and the rotor structure are arranged at equal intervals, so that The driving force formed by the stator structure on the rotor structure is always constant during the rotation of the rotor structure, which can further improve the stability of the rotation process of the rotor structure. It can be understood that if the driving force of the stator structure on the rotor structure changes, it is easy to change the rotation rate of the rotor structure and affect the rotation stability of the rotor structure.
- the arc surface of the first curved surface is always parallel to the arc surface of the rotor structure.
- the maximum distance between the rotor structure and the stator structure is not more than 4 mm.
- the gap between the rotor structure and the stator structure can be maintained to prevent the stator structure from interfering with the rotation of the rotor structure, and it can also make the stator structure interfere with the rotor structure.
- the driving force is as large as possible to improve the rotation efficiency of the rotor structure.
- the driving effect is the best when there is no obstruction between the stator structure and the rotor structure.
- the rotor structure specifically includes at least one magnetic member.
- the rotor structure includes at least one magnetic component, and the magnetic component is generated by the magnetic field of the stator winding on the stator iron core corresponding to the magnetic component, and the force received by the multiple magnetic components is in the same direction , So as to drive the magnetic part to rotate and realize the movement of the load.
- the longer the length of the magnetic part in the circumferential direction the longer the time it will be subjected to the magnetic force of the stator structure.
- the rotor structure Even if the rotor structure only includes one magnetic part, as long as the length of the magnetic part in the circumferential direction is long enough, it can still act on the stator structure. To achieve continuous rotation.
- the stator structure includes at least two stator teeth arranged on at least one stator core and facing the rotor structure.
- stator teeth are provided on the stator core, and at least two stator teeth provided with stator windings are provided on the stator core by defining at least one stator core facing the rotor structure, so as to form a pair of stator teeth for the rotor structure.
- the force of the magnetic field drives the rotor structure to rotate, which in turn drives the load to run.
- stator structure includes at least two stator teeth.
- the at least two stator teeth can be provided on one stator core or on multiple stator cores, that is, the number of stator cores is one or more, The total number of stator teeth on all stator cores is at least two.
- the number of stator teeth is at least two, and the stator windings on any two stator teeth are energized sequentially and have the same polarity; or the number of stator teeth is at least two, and the stator windings on any two stator teeth Simultaneously energize with different polarities, and the magnetic poles of the stator windings on any two stator teeth alternate.
- the stator core is provided with stator teeth.
- the rotor structure is subjected to the action of the stator windings on the two stator teeth in turn to generate the force in the same direction, so that the rotor structure continues to rotate in the same direction; in addition, the stator windings on any two stator teeth can also be energized and polarized at the same time. The difference is that through the alternating magnetic poles of the stator windings on any two stator teeth, a continuous force in the same direction is generated on the rotor structure, and the rotor structure is driven to continuously rotate in the same direction.
- stator teeth can be provided on the same stator core or on different stator cores.
- the end surface of the stator tooth shoe of each stator tooth is arranged along the radial direction of the rotor structure, and the end surface of the stator tooth shoe is arranged away from the rotation axis of the rotor structure in the radial direction of the rotor structure.
- the end surface of the stator tooth shoe defining each stator tooth is arranged along the radial direction of the rotor structure, and the end surface of the stator tooth shoe is arranged away from the rotation axis of the rotor structure in the radial direction of the rotor structure, so that each The stator teeth are arranged corresponding to the rotor structure, so that each stator core can generate a tangential force on the rotor structure to drive the rotor structure to rotate in the same direction.
- the stator structure includes a stator iron core with three stator teeth, and the end faces of the stator teeth shoes of the three stator teeth are at the same distance from the rotation center of the rotor structure.
- the stator teeth shoes of the three stator teeth The end surface forms a convex arc shape.
- the rotation center of the rotor structure is equal to each other.
- the end faces of the stator tooth shoes of the stator teeth are kept at the same distance to ensure that the magnetic field force received by the rotor structure during the rotation is balanced, thereby improving the stability of the motor during operation.
- the end surface of the stator tooth shoe that defines the three stator teeth forms a convex arc shape, so that the end surface of the stator tooth shoe is adapted to the annular shape of the rotor structure, so as to prevent the stator tooth shoe from interacting with the rotor provided on the load. Structure interference.
- the number of stator iron cores with three stator teeth may be one or multiple, and multiple stator iron cores may be arranged evenly or asymmetrically.
- the number of stator teeth is at least three, and the stator windings on any two stator teeth are energized sequentially and have the same polarity; or the number of stator teeth is at least three, and the number of stator teeth on any two stator teeth is at least three.
- the stator windings are energized at the same time with different polarities, and the magnetic poles of the stator windings on any two stator teeth are alternated.
- the rotor structure can be subjected to two stator teeth in sequence.
- the action of the stator windings on the stator teeth produces the force in the same direction, so that the rotor structure continues to rotate in the same direction; in addition, the stator windings on any two stator teeth can also be energized at the same time with different polarities.
- the magnetic poles of the stator windings alternate to produce a continuous force in the same direction on the rotor structure, driving the rotor structure to continuously rotate in the same direction.
- the number of stator teeth of the stator structure is three, and two adjacent ones of the three stator windings are energized at the same time. Furthermore, the first stator winding and the second stator winding are energized first, and then the second stator winding is energized. And the third stator winding are energized, where the first stator winding generates an N pole magnetic field to attract the S pole of the magnetic part in the rotor structure, and the second stator winding generates an S pole magnetic field to attract the N pole of the magnetic part in the rotor structure, and to the rotor The whole structure forms a tangential force. Then, the second stator winding and the third stator winding are energized.
- the second stator winding generates an N-pole magnetic field to repel the N-pole of the magnetic part
- the third stator winding generates an S-pole magnetic field to the magnetism.
- the S pole of the component repels, so that the rotor assembly continues to rotate, and in accordance with this cycle, the rotor assembly continues to rotate.
- the motor of the present application can also realize reverse operation by adjusting the energization sequence of the three stator windings.
- the third stator winding and the second stator winding are energized first, and then the second stator winding and the first stator winding are energized.
- the stator winding can be energized to achieve reverse rotation.
- the motor further includes a magnetism judging device, which is arranged along the circumference of the rotor structure to obtain the rotation direction of the rotor structure relative to the stator structure.
- the magnetic determination device arranged in the circumferential direction of the rotor structure is used to obtain the rotation direction of the rotor structure relative to the stator structure, so that the rotor structure rotates in a certain direction, such as clockwise rotation or Turn counterclockwise.
- the magnetism judging device may be a Hall element or other sensors for detecting magnetism to determine the direction of rotation of the rotor structure and reduce the occurrence of abnormal rotation such as stalling or reversal.
- the rotor structure can be driven by energizing the windings on the two stator teeth separately or at the same time. Furthermore, when the stator structure is separately energized, the first stator winding is connected first. N pole, attracting the S pole magnetic part on the rotor structure to move to the first stator winding. At this time, the polarity of the magnetic part corresponding to the second stator winding is N pole. Then, the second stator winding passes the N pole through the repulsive force. When the rotor is driven to rotate, the two stator windings can be energized in turn to achieve rotation; when energized at the same time, the magnetic poles of the two stator windings are opposite. At the corresponding position, adjust the magnetic pole SN of the stator winding to generate repulsive force to the current rotor to form rotation.
- the number of stator cores is multiple, and the multiple stator cores are arranged along the circumferential direction of the rotor structure.
- each stator core is provided with at least one stator tooth, so that the rotor structure corresponding to the stator structure is between the stator structure and the stator structure. Keep the same distance between them, which is beneficial to the force balance of the rotor structure in the radial direction.
- the multiple stator cores are evenly arranged along the circumference of the rotor structure, it helps to balance the force of the rotor structure in the circumferential direction, reduces the vibration generated during the rotation of the rotor assembly, and keeps the rotor structure rotating.
- the stability in the process reduces the noise generated by the motor in the working process and prolongs the service life of the motor.
- increasing the number of stator teeth can increase the overall magnetic field force of the stator structure, thereby accelerating the rotation rate of the rotor structure. Therefore, a corresponding number of stator teeth can be set according to the speed requirements of the load, thereby expanding the use range of the motor.
- the motor further includes a supporting structure, and the rotor structure is rotatably arranged on the supporting structure.
- the rotor structure is rotatably arranged on the support structure to limit the radial displacement or axial displacement of the rotor structure through the support structure, so that the axis of the rotor structure when it rotates under the action of the magnetic force of the stator structure is different.
- the deviation occurs, so as to perform stable power output to the load, which is beneficial to maintain the stability of the motor.
- the stator structure is arranged on one side of the rotor structure, and the overall force of the rotor structure is not balanced, and a supporting structure is required to limit the rotor structure.
- the specific form of the supporting structure includes, but is not limited to, a fixed shaft, a bearing, a fixed turntable, and a magnetic levitation device.
- the supporting structure is a supporting shaft
- the motor further includes a housing on which a supporting shaft is provided, and the stator structure is fixed on the housing to drive the rotor to rotate around the supporting shaft through the stator structure.
- the motor further includes a housing, and the support structure is specifically a support shaft provided on the housing, which is rotatably provided on the support shaft through the rotor structure, so that the rotor structure rotates around the support shaft and prevents the occurrence of the rotor structure.
- the magnetic member is continuously arranged along the circumferential direction.
- the rotor structure is formed into an annular belt-like structure by arranging the magnetic parts on the side surface of the rotor structure continuously in the circumferential direction, so that the rotor structure is subjected to a balanced magnetic force during the rotation process, which is beneficial to maintain the rotor structure Stability during rotation.
- the magnetic pieces are uniformly arranged along the circumferential direction, and there is a circumferential gap between any two adjacent magnetic pieces.
- the rotor structure is formed into a discontinuous structure, and a plurality of magnetic parts, etc. They are arranged at intervals along the circumferential direction, so that the magnitude and direction of the magnetic force received by each magnetic member are the same, so as to maintain the stability of the rotor structure during rotation.
- the magnetic member is an integral structure.
- the magnetic parts by arranging the magnetic parts as an integral structure to facilitate the installation and limitation of the magnetic parts, the gap between the multiple magnetic parts and the shaking caused thereby are reduced, which helps to reduce the movement of the magnetic parts. possibility.
- the technical solution of the second aspect of the present application provides an air blowing device, which includes the motor in the technical solution of the first aspect; the fan blade, the end surface of the fan blade is provided with a cavity, the stator structure is arranged in the cavity, and the motor
- the rotor structure including a plurality of magnetic parts is arranged outside and/or inside the fan blade to drive the fan blade to rotate with the rotor structure under the action of the stator structure.
- the air supply device in the technical solution according to the second aspect of the present application includes the motor in the above-mentioned first aspect technical solution, so the air supply device has all the beneficial effects of the motor in the above-mentioned first aspect technical solution, and will not be repeated here.
- the air supply device also includes fan blades.
- the end surface of the fan blade is provided with a cavity, the stator structure is arranged in the cavity, and the rotor structure of the motor is arranged outside and/or inside the fan blade, that is, the load of the motor is the fan blade.
- the stator structure arranged in the cavity of the fan blade corresponding to the rotor structure generates a magnetic force on the rotor structure, thereby driving the fan blade to be driven to rotate together with the rotor structure to realize the operation of the air supply device.
- the rotor structure can be separately provided on the outer side wall surface or the inner side wall surface of the fan blade, or the rotor structure can be provided on the outer side wall surface and the inner side wall surface of the fan blade at the same time. It can be understood that by providing multiple rotor structures, the driving force for the fan blades can be enhanced.
- the rotor structure is arranged on the outer wall surface of the fan blade.
- the stator core of the stator structure is arranged opposite to the rotor structure in the radial direction of the rotor structure. And generate the corresponding magnetic force to drive the rotation of the rotor structure.
- the rotor structure is arranged on the outer wall surface of the fan blade, which is beneficial to increase the force arm of the fan blade and improve the rotation efficiency on the one hand, and is beneficial to the installation of the rotor structure on the other hand.
- the rotor structure will generate force in the tangential direction after receiving the magnetic force of the stator structure to drive the rotor structure to drive the fan blade to rotate. If the rotor structure is too close to the rotation center of the fan blade, it will cause the force point of the fan blade. The moment arm is shortened, and under the same magnetic force, the work is reduced, resulting in a decrease in the rotation efficiency of the fan blade.
- the rotor structure is provided on the inner wall surface of the fan blade.
- the stator core of the stator structure is arranged opposite to the rotor structure in the radial direction of the rotor structure, and corresponding
- the action of the magnetic force drives the rotation of the rotor structure.
- the rotor structure is arranged on the inner wall surface of the fan blade, which is beneficial to reduce the distance between the rotor structure and the stator structure, enhance the magnetic force, and increase the driving force.
- the fan blade specifically includes: a first fan blade support and a plurality of first fan blades, and the plurality of first fan blades are arranged on the outer wall surface of the first fan blade support along the circumferential direction of the fan blade.
- the fan blade specifically includes a first fan blade support and a plurality of first fan blades.
- the first fan blades are arranged on the outer wall surface of the first fan blade support along the circumferential direction of the fan blade so that the first fan blade
- the fan blade support rotates under the drive of the rotor structure, so that the plurality of first fan blades arranged on the outer side wall surface of the first fan blade support disturb the air, generate air flow, and realize the air supply operation of the air supply device.
- the fan blade further includes: a second fan blade support, which is arranged coaxially with the first fan blade support, and the second fan blade support is sleeved outside the first fan blade.
- the first fan blade can pass through the first fan blade support on the inner side and the second fan blade on the outer side.
- the blade bracket is fixed at the same time, which is beneficial to improve the stability and service life of the fan blade when it rotates.
- the fan blade further includes: a plurality of second fan blades arranged on the outer wall surface of the fan blade along the circumferential direction of the fan blade.
- the fan blade can be formed into two circles of wind blades inside and outside, thereby increasing the airflow.
- the first wind blade and the second wind blade may be wind blades of the same shape or different shapes, for example, the first wind blade and the second wind blade have different shapes or sizes, or The angle of inclination is different.
- the multiple first wind blades and multiple second wind blades arranged on the inner and outer circles of the fan blades are also conducive to the spreading movement of the air flow sent by the fan blades, making the air flow softer, and improving the air supply device. The comfort of the air supply.
- the rotor structure is provided on the inner side wall surface of the first fan blade support; and/or the rotor structure is provided on the inner side wall surface of the second fan blade support.
- the fan blade structure includes a first fan blade support and a second fan blade support coaxially arranged.
- the first fan blade support is provided on the inner side of the second fan blade support.
- the rotor structure may be provided on the first fan blade support.
- the inner wall surface of a fan blade support can reduce the distance between the rotor structure and the stator structure, which is beneficial to enhance the effect of magnetic force and increase the driving force; the rotor structure can also be arranged on the inner wall surface of the second fan blade support, which is beneficial to extend the fan The force arm of the blade improves the rotation efficiency.
- a rotor structure can also be provided on the inner side wall surface of the first fan blade support and the inner side wall surface of the second fan blade support at the same time, so as to further increase the driving force of the stator structure to the rotor structure through a plurality of rotor structures.
- the air supply device further includes: a first wind hood and a second wind hood that are detachably connected, and after the second wind hood is connected to the first wind hood, an accommodating cavity capable of accommodating at least the rotor structure is formed inside, wherein, the stator structure is arranged in the containing cavity, and/or the stator structure is arranged outside the containing cavity.
- the air supply device further includes a first wind hood and a second wind hood.
- the first wind hood and the second wind hood are detachably connected to form a containing cavity inside, and the rotor structure is accommodated together with the fan blades.
- the stator structure can be correspondingly arranged in multiple positions, wherein when the stator structure is arranged in the accommodating cavity, the motor can be placed in the accommodating cavity as a whole, and the first wind hood and the second wind hood are paired with each other.
- the motor and the fan blades play a protective role to avoid interference with external objects during the rotation of the motor driving the fan blades; when the stator structure is arranged outside the containing cavity, it is beneficial to reduce the space occupation and facilitate the disassembly and assembly of the stator structure; When the structure includes multiple stator cores, stator cores can also be provided inside and outside the containing cavity at the same time. In addition, the first wind hood and the second wind hood are detachable to maintain or clean the motor and the fan blades.
- the support structure of the motor is provided on the side of the first wind shield facing the second wind shield.
- the supporting structure is provided on the side of the first wind hood facing the second wind hood, that is, the supporting structure is installed on the first wind hood, and supports after the first wind hood is connected to the second wind hood.
- the structure is in the containing space, and the fan blade provided with the rotor structure is supported by the supporting structure to prevent the fan blade from shifting during the rotation.
- a ventilation grille is provided on the first wind hood and/or the second wind hood.
- a ventilation grille is provided on the first wind hood and/or the second wind hood, so that when the fan blades rotate, the airflow can pass through the first wind hood and/or the second wind hood.
- the ventilation grille flows to realize the air supply operation of the air supply device.
- the ventilation grille can be arranged along the axial direction of the fan blade, and can also be arranged along the axial direction and the radial direction of the fan blade at the same time.
- the support structure of the motor is in the shape of a hollow shaft, and the fan blades are sleeved on the support structure.
- the support structure is arranged in the shape of a hollow shaft, and the fan blades are sleeved on the support structure, so that the hollow structure of the support structure can form an air passage during the rotation of the fan blades driven by the motor, so that the air It can flow from one end of the fan blade to the other end through the air passage, thereby increasing the air flow of the air supply device, which is beneficial to maintaining the stability of the air flow of the air. It can be understood that when there is no air passage at the position of the rotation axis of the fan blade, the airflow will be blocked locally, and the airflow on the air outlet side of the air supply device is likely to generate cyclones, causing airflow turbulence.
- the support structure of the motor is in the shape of a solid shaft
- the air supply device further includes: a shaft sleeve sleeved on the support structure, and the fan blade is sleeved on the shaft sleeve.
- the support structure of the motor is in the shape of a solid shaft.
- a shaft sleeve is sleeved on the support structure, and the fan blade is sleeved on the shaft sleeve to reduce the gap between the fan blade and the support structure through the shaft sleeve. Friction, thereby reducing the wear of the fan blades, improving the rotation efficiency of the fan blades, while facilitating maintenance and replacement, and helping to reduce the cost of use.
- the air supply device further includes a base, the stator structure is arranged on the base, and the base and the fan blade are detachably connected.
- a base that is detachably connected to the fan blade is provided to facilitate the use of the air supply device for cleaning and maintenance of the fan blade; and the stator structure is provided on the base, that is, the stator structure can be independent of the rotor structure Disassembly also facilitates the cleaning and maintenance of the stator structure and the rotor structure respectively.
- the stator and the rotor of a commonly used motor are usually installed in one piece, and the interior of the motor cannot be cleaned, and impurities such as dust attached to the interior can easily affect the normal operation of the motor.
- the third aspect of the technical solution of the present application provides a household appliance, including the motor in the above-mentioned first aspect of the technical solution; a rotating assembly, the rotor structure of the motor is arranged on the rotating assembly, and the stator structure of the motor and the rotor structure are arranged correspondingly, Under the action of the stator structure, the rotating assembly is driven to rotate with the rotor structure.
- the household appliance according to the third aspect of the technical solution of the present application includes the motor and the rotating component in the first aspect of the technical solution.
- the rotor structure of the motor is provided on the rotating component, so that the stator structure corresponding to the rotor structure is provided.
- the driving rotating component rotates with the rotor structure to realize the operation of the household appliance, thus having all the beneficial effects of the motor in the above-mentioned first aspect of the technical solution, which will not be repeated here.
- the household appliances are table fans, ceiling fans, wall fans, tower fans, cooling fans, heaters, purifiers, air conditioners, washing machines, range hoods, bread machines or wall breakers.
- household appliances can be in many forms. Further, household appliances are table fans, ceiling fans, wall fans, tower fans, cooling fans, heaters, purifiers, air conditioners, washing machines, range hoods, bread machines or
- the wall breaker can all be driven by the motor in the above-mentioned first aspect of the technical solution, and therefore has all the beneficial effects of the above-mentioned motor in the first aspect of the technical solution, and will not be repeated here.
- Fig. 1 shows a schematic structural diagram of a motor according to an embodiment of the present application
- Figure 2 shows a schematic structural diagram of a stator core according to an embodiment of the present application
- Fig. 3 shows a schematic structural diagram of a motor according to an embodiment of the present application
- Fig. 4 shows a schematic diagram of a rotor structure according to an embodiment of the present application
- Figure 5 shows a schematic structural diagram of a motor according to an embodiment of the present application
- Figure 6 shows a schematic structural diagram of an air supply device according to an embodiment of the present application.
- Fig. 7 shows a schematic structural diagram of a fan blade according to an embodiment of the present application.
- Fig. 8 shows a schematic cross-sectional structure diagram of an air supply device according to an embodiment of the present application
- Fig. 9 shows a schematic structural diagram of an air supply device according to an embodiment of the present application.
- Fig. 10 shows a schematic cross-sectional structure diagram of an air blowing device according to an embodiment of the present application.
- the present application provides an embodiment of the air supply device 2, wherein the air supply device 2 includes an eccentric motor 1 formed by a combination of a stator structure 14 and a rotor structure 12, and a fan blade 22 directly in contact with the rotor structure 12, Among them, the rotor structure 12 includes a plurality of magnetic elements 122 forming a closed pattern, and the stator structure 14 is provided at one or more positions of the inner side, outer side, inner end, and outer end of the ring structure formed by the plurality of magnetic elements 122. When the current direction of the stator windings wound on the stator teeth 144 in the stator structure 14 is controlled, magnetic fields of different polarities can be generated. At this time, the rotor structure 12 can be driven by at least two stator windings with different polarities. , So that the rotor structure 12 drives the load to achieve rotation.
- the plurality of magnetic members 122 are enclosed to form a ring shape. Furthermore, there are gaps between the plurality of magnetic members 122 to form an intermittent ring shape.
- the eccentric motor 1 specifies that the sub-structure 14 is on one side or one end of the rotor structure 12, and it can be one end in the axial direction or one side in the radial direction, so that the stator structure 14 is discontinuous. Magnetic field.
- the fan blade 22 is only a manifestation of the load.
- the form of the load also changes.
- the load may be the internal rotation of the washing machine.
- the load can be a blade.
- the load can also be a table fan, a ceiling fan, a wall fan, a tower fan, a cooling fan, a heater, a purifier, an air conditioner, a washing machine, a range hood, a toaster or a rotating component in a wall breaker.
- an embodiment of the present application proposes a motor 1, which includes a rotor structure 12 and a stator structure 14 that are detachably connected.
- the rotor structure 12 has a circular ring shape
- the stator structure 14 is arranged inside the rotor structure 12 and there is a gap between the rotor structure 12, and the stator structure 14 includes at least one stator core 142 arranged in the circumferential direction of the rotor structure 12 to The stator core 142 forms a driving force on the rotor structure 12, and then drives the rotor structure 12 to rotate.
- the motor 1 is provided with a driving area, which includes a stator core 142 and the portion of the rotor structure 12 and the stator structure 14 that are directly opposite, so that the stator structure 14 in the driving area interacts with the rotor structure 12 to produce a driving rotor structure 12
- the opposite parts of the structure 14 are all subjected to the same driving force, thereby driving the rotor structure 12 to continuously rotate in the same direction.
- stator structure 14 may include three stator teeth 144, wherein the sides of the stator teeth 144 on both sides facing the rotor structure 12 are arc-shaped surfaces, and the curvature of the arc-shaped surface is the same as the curvature of the rotor structure 12, and the stator teeth in the middle
- the side of 144 facing the rotor structure 12 is a plane.
- stator structure 14 may include three stator teeth 144, each stator tooth 144 facing the rotor structure 12 is a circular arc surface, and the curvature of the circular arc surface is the same as the curvature of the rotor structure 12.
- the maximum gap h between the rotor structure 12 and the stator structure 14 is not greater than 4 mm.
- the gap between the rotor structure 12 and the stator structure 14 is 1 mm, 2 mm, 3 mm, and 4 mm.
- a motor 1 which includes a detachably connected rotor structure 12 and a stator structure 14, wherein the rotor structure 12 has a circular ring shape, and the stator structure 14 is arranged on the inner side of the rotor structure 12 and is connected to the rotor structure.
- the stator structure 14 includes at least one stator core 142 arranged in the circumferential direction of the rotor structure 12 to form a driving force on the rotor structure 12 through the stator core 142 to drive the rotor structure 12 to rotate.
- the stator structure 14 includes a stator core 142 provided with three stator teeth 144, and windings are provided on the stator teeth 144.
- stator windings are energized at the same time, so that the stator structure 14 generates a magnetic field to drive the rotor structure 12 to rotate. Further, the first stator winding and the second stator winding are energized first, so that the first stator winding generates an N-pole magnetic field to the rotor structure 12
- the S pole of the middle magnetic member 122 is attracted, and the S pole magnetic field generated by the second stator winding attracts the N pole of the magnetic member 122 in the rotor structure 12, thereby forming a tangential force on the rotor structure 12 as a whole.
- the second stator winding and the third stator winding are energized, so that the second stator winding generates an N pole magnetic field to repel the N pole of the magnetic member 122, and the third stator winding generates an S pole magnetic field to the magnetism.
- the S pole of the piece 122 repels, so that the rotor assembly continues to rotate, and according to this cycle, the rotor assembly continues to rotate.
- the reverse rotation of the rotor structure 12 can also be achieved.
- stator tooth shoes 1442 of the three stator teeth 144 are all circular arc surfaces, and the distance between the end surfaces of each stator tooth shoe 1442 and the rotor structure 12 is the same.
- a motor 1 including a rotor structure 12 and a stator structure 14.
- the rotor structure 12 and the rotor structure 12 are detachably connected.
- the rotor structure 12 has a circular ring shape
- the stator structure 14 is arranged on one side of the rotor structure 12 and there is a gap between the rotor structure 12, and the stator structure 14 includes at least one stator core 142 arranged in the circumferential direction of the rotor structure 12,
- the stator core 142 generates a driving force on the rotor structure 12 to drive the rotor structure 12 to rotate.
- the rotor structure 12 includes a plurality of magnetic parts 122, and the stator structure 14 and the magnetic parts 122 are arranged correspondingly. Wherein, a plurality of magnetic members 122 are continuously arranged along the circumferential direction.
- the magnetic member 122 is a magnetic sheet, and a plurality of magnetic sheets form a ring structure.
- the plurality of magnetic elements 122 are uniformly arranged along the circumferential direction, and there is a circumferential gap between any two adjacent magnetic elements 122.
- the air supply device 2 includes an eccentric motor 1 formed by a combination of a stator structure 14 and a rotor structure 12, and is directly connected to the rotor structure 12
- magnetic fields of different polarities can be generated.
- the rotor structure 12 can be driven by at least two stator windings with different polarities, so that the rotor structure 12 can drive the load to rotate.
- the magnetic parts in the rotor structure can be made of strong magnetic materials to ensure that the stator structure can drive the rotor structure through the distance h. It can be understood that there are fan blades in the radial direction of the two in this embodiment. , The fan blades can be made of materials with less influence on the magnetic field to reduce the influence on the drive of the stator structure.
- the air supply device 2 includes an eccentric motor 1 formed by a combination of a stator structure 14 and a rotor structure 12, and is directly connected to the rotor structure 12
- the current direction of the stator windings on the stator teeth 144 is controlled, magnetic fields of different polarities can be generated.
- the air supply device 2 also includes a first wind hood 24 and a second wind hood 26 that are detachably connected.
- the second wind hood 26 is connected to the first wind hood 24 to form a containing cavity inside.
- the rotor structure 12 and the stator structure 14 are arranged in In the accommodating cavity, of course, the stator structure 14 can also be correspondingly arranged outside the accommodating cavity, or multiple stator cores 142 of the stator structure 14 are simultaneously arranged in or outside the accommodating cavity.
- the fan blade is annular as a whole, and the inner wall is provided with a plurality of grooves for accommodating the magnetic parts.
- Each magnetic part of the rotor structure is installed in the grooves to realize a ring-shaped rotor. structure.
- the supporting structure 16 is provided on the side of the first wind hood 24 facing the second wind hood 26, so that when the first wind hood 24 and the second wind hood 26 are connected, the supporting structure 16 is placed Hold the cavity.
- first wind hood 24 and the second wind hood 26 are each provided with a ventilation grille 28, and the ventilation grille 28 extends radially outward to the side of the first wind hood 24 and the first wind hood 24, respectively.
- the side of the second windshield 26 is provided.
- the support structure 16 is a solid shaft, the support structure 16 is sleeved with a sleeve 30, the fan blade 22 is sleeved on the sleeve 30, and the fan blade 22 can pass through the sleeve 30 and the support structure 16 Rotatingly connected.
- FIG. 9 shows another form of the support structure 16, that is, the support structure 16 is a hollow shaft.
- the fan blade 22 is sleeved on the support structure 16, and the hollow part of the support structure 16 forms an air passage 21, so that air can flow from one end of the fan blade 22 through the air passage 21 to the other end.
- FIG. 10 Another embodiment of the present application provides an air blowing device 2, as shown in FIG. 10, comprising a stator structure 14 and a rotor structure 12 combined to form an eccentric motor 1, and a fan blade directly in contact with the rotor structure 12 22.
- the rotor structure 12 includes a plurality of magnetic elements 122 forming a closed pattern, and the stator structure 14 is arranged corresponding to the annular structure formed by the plurality of magnetic elements 122 so as to be wound on the stator teeth 144 in the counter-stator structure 14
- magnetic fields of different polarities can be generated.
- the air blowing device 2 further includes a base 32 that is detachably connected to the fan blade 22.
- the stator structure 14 is provided on the base 32, and the stator structure 14 can be separated from the rotor structure 12 along with the base 32.
- the shape of the side of the stator structure 14 facing the rotor structure 12 is adapted to the shape of the side surface of the rotor structure 12, that is, the stator structure 14 forms a convex structure, which is beneficial to the stator structure 14 on the one hand.
- the distance between each stator tooth and the rotor structure 12 is kept the same, which is beneficial to the force balance of the rotor structure 12.
- the distance between the stator structure 14 and the rotor structure 12 can be reduced by eliminating the special-shaped structure of the stator structure 14 , Which is beneficial to enhance the force received by the rotor structure 12.
- stator structure 14 facing the rotor structure 12 is provided with special-shaped structures, such as protrusions, grooves, steps, etc., the distance between the stator structure 14 and the rotor structure 12 needs to be increased to prevent the rotation of the rotor structure 12 from being affected. Interference, so that the magnetic effect of the stator structure 14 on the rotor structure 12 is weakened.
- the motor 1 also includes a housing.
- the support structure is specifically a support shaft provided on the housing.
- the rotor structure 12 is rotatably provided on the support shaft so that the rotor structure 12 rotates around the support shaft and prevents the rotor structure 12 from rotating. Radial displacement; and by fixing the stator structure 14 on the housing, the relative distance between the rotor structure 12 and the stator structure 14 remains unchanged, so as to prevent the stator structure 14 from being displaced by the reaction force of the rotor structure 12 , So as not to affect the stability of the rotation of the rotor structure 12.
- the rotor structure 12 can rotate clockwise or counterclockwise relative to the stator structure 14. Further, it can rotate in both positive and negative directions according to the rotation requirements of the load, which can meet different load requirements and has high flexibility.
- the load and the rotor structure can be separately removed for cleaning or replacement, which is convenient for operation.
- the stator core is arranged on the rotor structure.
- the circumferential direction on the one hand, can reduce the size of the motor as a whole in the axial direction, and on the other hand, it can drive the rotor structure in the circumferential direction to drive the load directly connected to the rotor to rotate.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
Abstract
本申请提供了一种电机、送风装置和家用电器,其中,电机包括:转子结构;定子结构,与转子结构可拆卸连接,定子结构设于转子结构沿径向方向的内侧,用于驱动转子结构转动。通过本申请的技术方案,在应用上述电机驱动负载运动时,可单独将负载连同转子结构一起拆下进行清洗或更换,便于操作,此外,定子铁芯设于转子结构的周向,一方面可减少电机整体在轴向方向的尺寸,另一方面可在周向方向对转子结构实现驱动,以带动转子所直接连接的负载进行转动。
Description
本申请要求于2019年08月23日提交中国国家知识产权局、申请号为“2019107867015”、申请名称为“电机、送风装置和家用电器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及电机技术领域,具体而言,涉及一种电机、一种送风装置和一种家用电器。
目前,常用的风扇电机由内外相互套设的定子和转子构成,在电机对外驱动时,通过定子驱动转子进而带动电机的转轴转动实现扇叶或其他负载的运转,其中,定子和转子同轴设置,且需在周向方向形成封闭结构,转轴会沿轴向向外伸出,从而使得由于电机自身的结构的限制,会增加整个产品在轴向方向上的尺寸,同时定子与转子的相互位置不灵活,不利于产品的轻量化设计。
发明内容
本申请旨在至少解决现有技术或相关技术中存在的技术问题之一。
为此,本申请的一个目的在于提供一种电机。
本申请的另一个目的在于提供一种送风装置。
本申请的再一个目的在于提供一种家用电器。
为了实现上述目的,本申请的第一方面技术方案提供了一种电机,包括:转子结构;定子结构,与转子结构可拆卸连接,定子结构设于转子结构沿径向方向的内侧,用于驱动转子结构转动。
根据本申请的第一方面技术方案中的电机,包括转子结构和定子结构,取消了传统电机的驱动轴,形成无芯电机,改变了电机与负载的设置方式,使电机无需与负载沿轴向设置,从而可减小电机在轴向方向上的尺寸,有效降低对空间的占用,有利于实现轻量化和小型化的设计。此外,定子结构设于转子结 构沿径向方向的内侧,改变了现有传统电机中定子的结构的设置位置,即定子结构无需在转子结构内或外沿周向形成环状封闭结构或对称结构,仅需设置于转子结构沿径向方向的内侧即可驱动转子结构转动,从而带动负载运动;同时,通过对定子结构的设置位置的改进还可进一步减小电机的整体体积和重量,尤其可以缩减电机的轴向方向的空间占用,例如在风扇中使用本申请的电机,可取消扇叶后方的电机安装位,有利于实现风扇的扁平化和轻量化,减小风扇机头部分的重量以及偏心影响,减少不必要的配重设置,有利于提高整体稳定性。
其中,由于定子结构和转子结构之间可拆卸,故而在应用上述电机驱动负载运动时,可单独将负载连同转子结构一起拆下进行清洗或更换,便于操作。
需要强调的是,定子结构根据转子结构的设置位置对应设置于转子结构的内侧,一方面使电机整体形成偏心结构,定子结构的设置位置更加灵活,使得电机可适用于多种不同结构的负载,另一方面定子结构隐藏设置于转子结构内,减少电机整体的空间占据,对于电机整体而言,外边界仅为转子结构所围成的区域,定子结构并不占据额外的空间,还可进一步缩减电机整体沿径向方向的尺寸。
其中,转子结构整体可以为圆环状、方形环状、椭圆环状或其它封闭环状。
另外,本申请提供的上述技术方案中的电机还可以具有如下附加技术特征:
在上述技术方案中,电机包括驱动区,驱动区包括至少一个定子铁芯,及转子结构中与定子结构正对部分。
在该技术方案中,电机包括驱动区,进一步地,驱动区包括至少一个定子铁芯以及转子结构中与定子结构正对的部分,即通过驱动区中定子铁芯对转子结构与定子铁芯正对的部分产生驱动力,驱动转子结构转动。其中,由于定子铁芯的位置固定,在转子结构的转动时,在驱动区中与定子结构正对的转子结构的部分随之改变,但转子结构整体所受到的切向驱动力不变,进而驱动转子结构持续进行转动,实现电机的运行。
其中,驱动区的数量可以为一个,也可以为多个。
在上述技术方案中,定子结构具有第一曲面,第一曲面朝向转子结构,第一曲面为弧形,转子结构呈圆环形,至少部分定子结构朝向转子结构的侧面的 曲率与转子结构的曲率相同。
在该技术方案中,通过限定转子结构呈圆环形,定子结构具有朝向转子结构弧形的第一曲面,且至少部分第一曲面的曲率与转子结构的曲率相同,以使至少部分第一曲面与转子结构形成等间距,从而使至少部分定子结构对转子结构形成的驱动力保持均衡,有利于提高转子结构转动过程中的稳定性。
可以理解,第一曲面的至少部分弧面与转子结构的弧面相平行。
在上述技术方案中,第一曲面为圆弧形,转子结构呈圆环形,第一曲面的曲率与转子结构的曲率相同。
在该技术方案中,通过限定转子结构呈圆环形,第一曲面为圆弧形,且第一曲面的曲率与转子结构的曲率相同,使得定子结构整体与转子结构形成等间距设置,从而使定子结构对转子结构形成的驱动力在转子结构转动过程中始终保持恒定,可进一步提高转子结构转动过程的稳定性。可以理解,若定子结构对转子结构的驱动力大小发生变化,容易造成转子结构转动速率的改变,影响转子结构的转动稳定性。
其中,第一曲面的弧面与转子结构的弧面始终平行。
在上述技术方案中,转子结构与定子结构的最大距离不大于4mm。
通过设定转子结构与定子结构的最大距离不大于4mm,既可满足转子结构与定子结构之间保持间隙,以防止定子结构对转子结构的转动产生干涉,又可以使得定子结构对转子结构产生的驱动力尽可能大,从而提高转子结构的转动效率。
进一步地,定子结构和转子结构之间不设置遮挡物时的驱动效果最佳。
在上述技术方案中,转子结构具体包括至少一个磁性件。
在该技术方案中,转子结构包括至少一个磁性件,通过与磁性件对应设置的定子铁芯上的定子绕组的磁场,对磁性件产生作用力,且多个磁性件所受到的作用力方向相同,从而驱动磁性件转动,实现负载的运动。可以理解,磁性件沿周向的长度越长,受到定子结构的磁力作用时间越长,即使转子结构仅包括一个磁性件,只要磁性件沿周向的长度足够长,仍能够在定子结构在作用下实现持续转动。
在上述技术方案中,定子结构包括设于至少一个定子铁芯上且朝向转子结 构设置的至少两个定子齿。
在该技术方案中,定子铁芯上设有定子齿,通过限定至少一个定子铁芯上朝向转子结构设置有至少两个设有定子绕组的定子齿,以通过两个定子齿形成对转子结构的磁场作用力,驱动转子结构发生转动,进而带动负载运行。
其中,可以理解,定子结构包括至少两个定子齿,至少两个定子齿可以设于一个定子铁芯上,或设于多个定子铁芯上,即定子铁芯的数量为一个或多个,所有定子铁芯上的定子齿的总数至少为两个。
在上述技术方案中,定子齿的数量至少为两个,任意两个定子齿上的定子绕组依次通电且极性相同;或定子齿的数量至少为两个,任意两个定子齿上的定子绕组同时通电且极性不同,并且,任意两个定子齿上的定子绕组的磁极交替。
在该技术方案中,定子铁芯上设有定子齿,通过限定定子铁芯上的定子齿的数量为至少两个,通过对任意两个定子齿上的定子绕组依次通电且极性相同,可使转子结构依次受到两个定子齿上的定子绕组的作用,产生同一方向的作用力,使转子结构向同一方向持续转动;此外,也可以对任意两个定子齿上定子绕组同时通电且极性不同,通过任意两个定子齿上的定子绕组的磁极交替,对转子结构产生相同方向的持续的作用力,驱动转子结构向同一方向持续转动。
可以理解,至少两个定子齿可以设于同一个定子铁芯,也可以设于不同的定子铁芯上。
在上述技术方案中,每个定子齿的定子齿靴的端面沿转子结构的径向设置,且定子齿靴的端面沿转子结构的径向方向远离转子结构的旋转轴设置。
在该技术方案中,通过限定每个定子齿的定子齿靴的端面沿转子结构的径向设置,且定子齿靴的端面沿转子结构的径向方向远离转子结构的旋转轴设置,以使每个定子齿与转子结构对应设置,从而使每个定子铁芯均可对转子结构产生沿切向方向的作用力,以驱动转子结构沿相同方向转动。
在上述技术方案中,定子结构包括具有三个定子齿的定子铁芯,三个定子齿的定子齿靴的端面距转子结构的旋转中心的距离均相等,其中,三个定子齿的定子齿靴的端面形成外凸的弧线形状。
在该技术方案中,通过限定定子结构包括三个定子齿的定子铁芯,且三个定子齿的定子齿靴的端面距转子结构的旋转中心的距离均相等,使转子结构的旋转中心与每个定子齿的定子齿靴的端面保持相同的间距,以确保转子结构在转动过程中所受到的磁场作用力的大小保持均衡,从而提高电机运转过程中的稳定性。
其中,限定三个定子齿的定子齿靴的端面形成外凸的弧线形状,以使定子齿靴的端面与转子结构的圆环形状相适配,以免定子齿靴与设于负载上的转子结构发生干涉。
其中,具有三个定子齿的定子铁芯的数量可以为一个,也可以为多个,多个定子铁芯可以均布设置,也可以非对称设置。
在上述技术方案中,定子齿的数量至少为三个,且任意两个定子齿上的定子绕组依次通电且极性相同;或定子齿的数量至少为三个,且任意两个定子齿上的定子绕组同时通电且极性不同,并且,任意两个定子齿上的定子绕组的磁极交替。
在该技术方案中,通过限定定子铁芯上的定子齿的数量为至少三个,通过对任意两个定子齿上的定子绕组依次通电且极性相同,可使转子结构依次受到两个定子齿上的定子绕组的作用,产生同一方向的作用力,使转子结构向同一方向持续转动;此外,也可以对任意两个定子齿上定子绕组同时通电且极性不同,通过两个定子齿上的定子绕组的磁极交替,对转子结构产生相同方向的持续的作用力,驱动转子结构向同一方向持续转动。
例如,定子结构的定子齿的数量为三个,对三个定子绕组中相邻的两个同时通电,进一步地,先对第一定子绕组和第二定子绕组通电,再对第二定子绕组和第三定子绕组通电,其中,第一定子绕组产生N极磁场对转子结构中磁性件的S极吸引,第二定子绕组产生S极磁场对转子结构中磁性件的N极吸引,对转子结构整体形成一个切向的作用力,然后,对第二定子绕组和第三定子绕组通电,第二定子绕组产生N极磁场对磁性件的N极排斥,第三定子绕组产生S极磁场对磁性件的S极排斥,使转子组件继续转动,依此循环,使转子组件不断旋转。
特别地,本申请的电机通过调整三个定子绕组的通电顺序,还可实现 反向运行,简言之,先对第三定子绕组和第二定子绕组通电,而后对第二定子绕组和第一定子绕组通电即可实现反向旋转。
在上述技术方案中,电机还包括一个磁性判断装置,磁性判断装置沿转子结构的周向设置,用于获取转子结构相对于定子结构的转动方向。
在该技术方案中,通过演转子结构的周向设置的磁性判断装置,用于获取转子结构相对于定子结构的转动方向,以使转子结构沿某一确定的方向进行转动,例如顺时针转动或逆时针转动。
其中,磁性判断装置可以为霍尔元件,还可以为其它用于检测磁性的传感器,以确定转子结构的转动方向,减少出现停转或反转等转动异常的情况发生。
进一步地,在定子结构包括两个定子齿时,可通过对两个定子齿上的绕组分别通电或同时通电实现对转子结构的驱动,进一步地,在分别通电时,第一定子绕组先通N极,吸引转子结构上S极的磁性件向第一定子绕组移动,此时第二定子绕组对应的磁性件的极性为N极,随后,第二定子绕组通N极,通过排斥力驱动转子旋转,两个定子绕组依次通电即可实现转动;在同时通电时,两个定子绕组通电后的磁极相反,例如第一次通电,两个定子绕组的磁极分别为N-S,等转子转动至对应位置时,再调整定子绕组的磁极为S-N,从而对当前转子产生斥力,形成转动。
在上述技术方案中,定子铁芯的数量为多个,多个定子铁芯沿转子结构的周向设置。
在该技术方案中,通过限定多个定子铁芯沿转子结构的周向设置,且每个定子铁芯上设有至少一个定子齿,以使与定子结构相对应的转子结构部分与定子结构之间的距离保持一致,有利于转子结构在径向方向的受力均衡。进一步地,在多个定子铁芯沿转子结构的周向均匀设置时,有助于转子结构在周向方向的受力均衡,减轻了转子组件在转动过程中产生的振动,以保持转子结构转动过程中的稳定性,进而减小了电机在工作过程中产生的噪音,延长了电机的使用寿命。此外,增加定子齿的数量,可以增大定子结构整体的磁场作用力,从而加快转子结构的转动速率,因此,可根据负载的转速需求,设置相应数量的定子齿,从而扩大电机的使用范围。
在上述技术方案中,电机还包括:支撑结构,转子结构可转动地设于支撑结构上。
在该技术方案中,通过将转子结构可转动地设于支撑结构上,以通过支撑结构限制转子结构的径向位移或轴向位移,使得转子结构在定子结构的磁力作用下转动时的轴线不发生偏移,从而对负载进行稳定的动力输出,有利于保持电机的稳定性。可以理解,定子结构设于转子结构的一侧,转子结构整体的受力并不平衡,需要支撑结构对转子结构进行限位。
支撑结构具体形式包括但不限于固定轴、轴承、固定转盘、磁悬浮装置。
在上述技术方案中,支撑结构为支撑轴,电机还包括:壳体,壳体上设有支撑轴,且定子结构固设于壳体上,以通过定子结构驱动转子绕支撑轴转动。
在该技术方案中,电机还包括壳体,支撑结构具体为设于壳体上的支撑轴,通过转子结构可转动地设于支撑轴上,以使转子结构绕支撑轴转动,防止转子结构发生径向位移;而通过将定子结构固定设于壳体上,以使得转子结构与定子结构之间的相对距离保持不变,以防止定子结构受到转子结构的反作用力而发生位移,以免影响转子结构转动的稳定性。
在上述技术方案中,磁性件沿周向连续设置。
在该技术方案中,通过将磁性件在转子结构的侧面上沿周向连续设置,使转子结构形成环形带状结构,从而使转子结构在转动过程中受到均衡的磁力作用,有利于保持转子结构转动过程中的稳定性。
在上述技术方案中,磁性件沿周向均匀设置,且任两个相邻的磁性件之间存在周向间隙。
在该技术方案中,通过将磁性件在转子结构的侧面上沿周向均匀布置,且任两个相邻的磁性件直接存在周向间隙,使转子结构形成间断结构,且多个磁性件等沿周向间隔排列,使得每个磁性件受到的磁力的大小和方向相同,从而保持转子结构转动过程中的稳定性。
在上述技术方案中,磁性件为一体结构。
在该技术方案中,通过设置磁性件为一体结构,以便于磁性件的安装和限位,减少了多个磁性件之间的间隙以及因此而导致的晃动,有助于减少磁性件发生移动的可能性。
本申请的第二方面技术方案中提供了一种送风装置,包括上述第一方面技术方案中的电机;扇叶,扇叶的端面上设有凹腔,定子结构设于凹腔内,电机的包括多个磁性件的转子结构设于扇叶外和/或内,以在定子结构的作用下,驱动扇叶随转子结构转动。
根据本申请的第二方面技术方案中的送风装置,包括上述第一方面技术方案中的电机,因而送风装置具有上述第一方面技术方案中的电机的全部有益效果,在此不再赘述。此外,送风装置还包括扇叶,扇叶的端面设有凹腔,定子结构设于凹腔内,电机的转子结构设于扇叶外和/或内,即电机的负载为扇叶,通过与转子结构对应设置于扇叶的凹腔内的定子结构,对转子结构产生磁力作用,从而带动扇叶随转子结构一起被驱动进行转动,实现送风装置的运行。通过将定子结构设于扇叶的凹腔内,可实现定子结构的隐藏式设置,同时缩减送风装置径向方向和轴向方向的尺寸,有利于送风装置的轻量化设计。
需要说明的是,转子结构可以单独设于扇叶的外侧壁面或内侧壁面,也可在在扇叶的外侧壁面和内侧壁面同时设置转子结构。可以理解,通过设置多个转子结构可以增强对扇叶的驱动力。
在上述技术方案中,转子结构设于扇叶的外侧壁面上。
在该技术方案中,通过将转子结构设于扇叶的外侧壁面,定子结构设于扇叶的凹腔内,以使定子结构的定子铁芯沿转子结构的径向方向与转子结构相对设置,并产生相应的磁力作用,驱动转子结构的转动。转子结构设于扇叶的外侧壁面上,一方面有利于增大扇叶受力的力臂,提高转动效率,另一方面有利于转子结构的安装。
可以理解,转子结构收到定子结构的磁力作用后会产生沿切向方向的力,以驱动转子结构带动扇叶转动,若转子结构过于靠近扇叶的旋转中心,会造成扇叶的受力点的力臂缩短,在同样的磁力作用下,做功下降,导致扇叶的转动效率降低。
在上述技术方案中,转子结构设于扇叶的内侧壁面。
在该技术方案中,通过将转子结构设于扇叶的内侧壁面,定子结构设于凹腔内,以使定子结构的定子铁芯沿转子结构的径向方向与转子结构相对设置,并产生相应的磁力作用,驱动转子结构的转动。转子结构设于扇叶的内侧壁面, 有利于缩减转子结构与定子结构之间的间距,增强磁力作用,增大驱动力。
在上述技术方案中,扇叶具体包括:第一风叶支架,以及多个第一风叶,多个第一风叶沿扇叶的周向设于第一风叶支架的外侧壁面上。
在该技术方案中,扇叶具体包括第一风叶支架和多个第一风叶,通过多个第一风叶沿扇叶的周向设于第一风叶支架的外侧壁面上,以使第一风叶支架在转子结构的带动下进行转动,从而使设于第一风叶支架的外侧壁面上的多个第一风叶扰动空气,产生气流,实现送风装置的送风运行。
进一步地,扇叶还包括:第二风叶支架,与第一风叶支架同轴设置,且第二风叶支架套设于第一风叶外。
在该技术方案中,通过在第一风叶外设有与第一风叶支架同轴的第二风叶支架,使得第一风叶可通过内侧的第一风叶支架以及外侧的第二风叶支架同时进行固定,有利于提高扇叶转动时的稳定性和使用寿命。
进一步地,扇叶还包括:多个第二风叶,沿扇叶的周向设于扇叶的外侧壁面上。
在该技术方案中,通过在扇叶的外侧壁面上沿周向设有多个第二风叶,可使扇叶形成内外两圈风叶,从而增大气流。需要说明的是,第一风叶和第二风叶可以是相同形态的风叶,也可以是不同形态的风叶,例如第一风叶与第二风叶的形状不同,或者尺寸不同,或者倾斜角度不同。此外,通过设于扇叶内外两圈的多个第一风叶和多个第二风叶,还有利于对经过扇叶送出的气流的扩散运动,使得气流更加柔和,有利于提高送风装置的送风舒适度。
在上述技术方案中,转子结构设于第一风叶支架的内侧壁面上;和/或转子结构设于第二风叶支架的内侧壁面上。
在该技术方案中,扇叶结构包括同轴设置的第一风叶支架和第二风叶支架,第一风叶支架设于第二风叶支架的内侧,此时,转子结构可以设于第一风叶支架的内侧壁面,可以缩减转子结构与定子结构之间的间距,有利于增强磁力作用,增大驱动力;转子结构也可以设于第二风叶支架的内侧壁面,有利于延长扇叶受力的力臂,提高转动效率。当然,也可以在第一风叶支架的内侧壁面和第二风叶支架的内侧壁面上同时设有转子结构,以通过多个转子结构进一步增大定子结构对转子结构的驱动力。
在上述技术方案中,送风装置还包括:可拆卸连接的第一风罩和第二风罩,第二风罩与第一风罩连接后内部形成至少可容置转子结构的容纳空腔,其中,定子结构设于容纳空腔内,和/或定子结构设于容纳空腔外。
在该技术方案中,送风装置还包括第一风罩和第二风罩,通过第一风罩与第二风罩可拆卸地连接后内部形成容纳空腔,转子结构随扇叶一同容置于容纳空腔内,定子结构可以对应设于多个位置,其中,定子结构设于容纳空腔内时,可使电机整体置于容纳空腔内,通过第一风罩与第二风罩对电机以及扇叶起到保护作用,以免在电机驱动扇叶转动过程中与外界物体发生干涉;定子结构设于容纳空腔外时,有利于减小空间占用,便于定子结构的拆装;在定子结构包括多个定子铁芯时,也可以同时在容纳空腔内和外设有定子铁芯。此外,通过第一风罩与第二风罩可拆卸,以便对电机以及扇叶进行维护或清洗。
在上述技术方案中,电机的支撑结构设于第一风罩朝向第二风罩的一侧。
在该技术方案中,通过将支撑结构设于第一风罩朝向第二风罩的一侧,即支撑结构设于第一风罩上,且在第一风罩与第二风罩连接后支撑结构处于容纳空间内,通过支撑结构对设有转子结构的扇叶进行支撑,以防止扇叶在转动过程中发生偏移。
在上述技术方案中,第一风罩和/或第二风罩上设有通风格栅。
在该技术方案中,通过在第一风罩和/或第二风罩上设有通风格栅,以在扇叶转动时,使气流穿过第一风罩和/或第二风罩上的通风格栅进行流动,以实现送风装置的送风运行。进一步地,通风格栅可以沿扇叶的轴向方向设置,也可以同时沿扇叶的轴向方向和径向方向设置。
在上述技术方案中,电机的支撑结构呈空心轴状,扇叶套设于支撑结构上。
在该技术方案中,通过设置支撑结构呈空心轴状,扇叶套设于支撑结构上,以在通过电机驱动扇叶转动的过程中,支撑结构的空心结构可形成过风通道,以使空气能够由扇叶的一端通过过风通道流向另一端,从而增大送风装置的出风气流,有利于保持出风气流的稳定性。可以理解,在扇叶的转动轴的位置无过风通道时,会在局部对气流产生阻挡,送风装置出风侧的气流容易产生气旋,造成气流紊乱。
在上述技术方案中,电机的支撑结构呈实心轴状,送风装置还包括:轴套, 套设于支撑结构上,扇叶套设于轴套上。
在该技术方案中,电机的支撑结构呈实心轴状,通过在支撑结构上套设有轴套,且扇叶套设于轴套上,以通过轴套减小扇叶与支撑结构之间的摩擦力,从而降低扇叶的磨损,提高扇叶的转动效率,同时方便维修和更换,有利于降低使用成本。可以理解,若扇叶直接与支撑结构转动连接,则在磨损达到一定程度时需将扇叶进行整体更换,而扇叶通过轴套与支撑结构转动连接,仅需对轴套进行更换即可。
在上述技术方案中,送风装置还包括底座,定子结构设于底座上,且底座与扇叶可拆卸连接。
在该技术方案中,通过设有与扇叶可拆卸连接的底座,以便于送风装置的使用,以便在扇叶进行清洗维护;而定子结构设于底座上,即定子结构可与转子结构独立拆卸,也便于定子结构和转子结构分别进行清理和维护。可以理解,常用的电机的定子与转子通常为一体安装,无法对电机内部进行清理,内部附着的灰尘等杂质容易对电机的正常运转造成影响。
本申请的第三方面技术方案中提供了一种家用电器,包括上述第一方面技术方案中的电机;旋转组件,电机的转子结构设于旋转组件上,电机的定子结构与转子结构对应设置,以在定子结构的作用下,旋转组件被驱动以随转子结构转动。
根据本申请第三方面技术方案中的家用电器,包括上述第一方面技术方案中的电机和旋转组件,通过在旋转组件上设有上述电机的转子结构,以在与转子结构对应设置的定子结构的作用下,驱动旋转组件随转子结构转动,以实现家用电器的运行,因而具有上述第一方面技术方案中的电机的全部有益效果,在此不再赘述。
在上述技术方案中,家用电器是台地扇、吊扇、壁扇、塔扇、冷风扇、暖风机、净化器、空调、洗衣机、油烟机、面包机或破壁机。
在该技术方案中,家用电器可以为多中形式,进一步地,家用电器是台地扇、吊扇、壁扇、塔扇、冷风扇、暖风机、净化器、空调、洗衣机、油烟机、面包机或破壁机,均可通过上述第一方面技术方案中的电机驱动运行,因而具有上述第一方面技术方案中的电机的全部有益效果,在此不再赘述。
本申请的附加方面和优点将在下面的描述部分中变得明显,或通过本申请的实践了解到。
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出了根据本申请的一个实施例的电机的结构示意图;
图2示出了根据本申请的一个实施例的定子铁芯的结构示意图;
图3示出了根据本申请的一个实施例的电机的结构示意图;
图4示出了根据本申请的一个实施例的转子结构的示意图;
图5示出了根据本申请的一个实施例的电机的结构示意图;
图6示出了根据本申请的一个实施例的送风装置的结构示意图;
图7示出了根据本申请的一个实施例的扇叶的结构示意图;
图8示出了根据本申请的一个实施例的送风装置的剖面结构示意图;
图9示出了根据本申请的一个实施例的送风装置的结构示意图;
图10示出了根据本申请的一个实施例的送风装置的剖面结构示意图。
其中,图1至图10中附图标记与部件名称之间的对应关系为:
1电机,12转子结构,122磁性件,14定子结构,142定子铁芯,144定子齿,1442定子齿靴,16支撑结构,2送风装置,21过风通道,22扇叶,24第一风罩,26第二风罩,28通风格栅,30轴套,32底座。
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
本申请提供了一种送风装置2的实施例,其中,送风装置2包括有由定子 结构14和转子结构12组合形成偏心的电机1,以及直接与转子结构12相接触的扇叶22,其中,转子结构12包括多个形成封闭图形的磁性件122,定子结构14设于多个磁性件122所形成的环形结构的内侧、外侧、内端、外端中的一个或多个位置,在对定子结构14中绕设于定子齿144上的定子绕组的电流方向进行控制时,可产生不同极性的磁场,此时通过至少两个极性不同的定子绕组,可对转子结构12实现驱动,使得转子结构12带动负载实现转动。
进一步地,多个磁性件122合围形成环形,还进一步地,多个磁性件122之间存在间隙,形成间断的环形。
需要说明的是,偏心的电机1是指定子结构14处于转子结构12的一侧或一端,可以是轴向方向的一端,也可以是径向方向的一侧,以使定子结构14形成不连续的磁场。
可以理解的,扇叶22仅为负载的一种表现形式,当电机1应用于不同产品上时,负载的形态也发生改变,例如,在应用到滚筒洗衣机上时,负载可为洗衣机内部的转筒,在应用到破壁机或榨汁机上时,负载可为刀片。除此之外,负载还可以是台地扇、吊扇、壁扇、塔扇、冷风扇、暖风机、净化器、空调、洗衣机、油烟机、面包机或破壁机中的旋转组件。
下面参照图1至图10描述本申请一些实施例的电机和送风装置。
实施例一
如图1至图4所示,本申请的一个实施例提出了一种电机1,包括可拆卸连接的转子结构12和定子结构14。其中,转子结构12呈圆环形,定子结构14设于转子结构12的内侧且与转子结构12之间存在间隙,定子结构14包括至少一个沿转子结构12周向设置的定子铁芯142,以通过定子铁芯142对转子结构12形成驱动力,进而驱动转子结构12转动。电机1上设有驱动区,驱动区包括一个定子铁芯142以及转子结构12与定子结构14正对的部分,以在驱动区内的定子结构14与转子结构12相互作用,产生驱动转子结构12转动的驱动力;在驱动区中,定子结构14位置保持固定,转子结构12与定子结构14正对的部分随着转子结构12的转动而发生变化,但处于驱动区内的转子结构12与定子结构14正对的部分均受到相同的驱动力的作用,进而带动转子结构12沿相同方向持续转动。
进一步地,定子结构14可以包括三个定子齿144,其中两侧的定子齿144朝向转子结构12的侧面为弧形面,且弧形面的曲率与转子结构12的曲率相同,中间的定子齿144朝向转子结构12的侧面为平面。
进一步地,定子结构14可以包括三个定子齿144,每个定子齿144朝向转子结构12的侧面均为圆弧面,且圆弧面的曲率与转子结构12的曲率相同。
进一步地,如图3所示,转子结构12与定子结构14之间的最大间隙h不大于4mm。
进一步地,转子结构12和定子结构14之间的间隙为1mm、2mm、3mm、4mm。
实施例二
本申请的另一个实施例提供了一种电机1,包括可拆卸连接的转子结构12和定子结构14,其中,转子结构12呈圆环形,定子结构14设于转子结构12的内侧且与转子结构12之间存在间隙,定子结构14包括至少一个沿转子结构12周向设置的定子铁芯142,以通过定子铁芯142对转子结构12形成驱动力,进而驱动转子结构12转动。如图2所示,定子结构14包括设有三个定子齿144的定子铁芯142,且在定子齿144上设有绕组,相邻的两个定子绕组的极性不同,通过对相邻的两个定子绕组同时通电,以使定子结构14产生磁场驱动转子结构12转动,进一步地,先对第一定子绕组和第二定子绕组通电,使第一定子绕组产生N极磁场对转子结构12中磁性件122的S极吸引,第二定子绕组产生S极磁场对转子结构12中磁性件122的N极吸引,从而形成对转子结构12整体形成切向方向的作用力,转子结构12在该作用力作用下转动一段距离后,再对第二定子绕组和第三定子绕组通电,使第二定子绕组产生N极磁场对磁性件122的N极排斥,第三定子绕组产生S极磁场对磁性件122的S极排斥,使转子组件继续转动,依此循环,使转子组件持续旋转。此外,通过改变三个定子绕组的通电顺序,还可实现转子结构12的反向转动。
进一步地,三个定子齿144的定子齿靴1442的端面均为圆弧面,且每个定子齿靴1442的端面距转子结构12的距离均相等。
实施例三
本申请的另一个实施例提供了一种电机1,包括转子结构12和定子结构14,转子结构12与转子结构12可拆卸连接。其中,转子结构12呈圆环形,定子结构14设于转子结构12的一侧且与转子结构12之间存在间隙,定子结构14包括至少一个沿转子结构12周向设置的定子铁芯142,以通过定子铁芯142对转子结构12形成驱动力,进而驱动转子结构12转动。
如图4所示,转子结构12包括多个磁性件122,定子结构14与磁性件122对应设置。其中,多个磁性件122沿周向连续设置。
进一步地,如图4所示,磁性件122为磁性片,且多个磁性片组成环形结构。
在另一个实施例中,多个磁性件122沿周向均匀设置,且任意两个相邻的磁性件122之间存在周向间隙。
实施例四
本申请的另一个实施例提供了一种送风装置2,如图5所示,送风装置2包括有由定子结构14和转子结构12组合形成偏心的电机1,以及直接与转子结构12相接触的扇叶22,其中,多个磁性件122设于外侧壁面上,定子结构14设于多个磁性件122所形成的环形结构的内侧,在对定子结构14中绕设于定子齿144上的定子绕组的电流方向进行控制时,可产生不同极性的磁场,此时通过至少两个极性不同的定子绕组,可对转子结构12实现驱动,使得转子结构12带动负载实现转动。
本实施例中,转子结构中的磁性件可以选择强磁类材料,以保证定子结构可通过间距h对转子结构产生驱动作用,可以理解,本实施例中二者的径向方向上存在扇叶,可选用对磁场影响较小的材料制成扇叶,以减少对定子结构的驱动的影响。
实施例五
本申请的另一个实施例提供了一种送风装置2,如图6所示,送风装置2包括有由定子结构14和转子结构12组合形成偏心的电机1,以及直接与转子结构12相接触的扇叶22,其中,转子结构12包括多个形成封闭图形的磁性件122,定子结构14设于多个磁性件122所形成的环形结构对应设置,以在对定子结构14中绕设于定子齿144上的定子绕组的电流方向进行控制时, 可产生不同极性的磁场,此时通过至少两个极性不同的定子绕组,可对转子结构12实现驱动,使得转子结构12带动负载实现转动。送风装置2还包括可拆卸连接的第一风罩24和第二风罩26,第二风罩26与第一风罩24连接后内部形成容纳空腔,转子结构12与定子结构14设于容纳空腔内,当然,定子结构14也可以对应设于容纳空腔外,或者定子结构14的多个定子铁芯142同时设于容纳空腔内或外。
其中,扇叶的结构如图7所示,扇叶整体呈环形,内壁上设有多个容纳磁性件的凹槽,转子结构的每个磁性件分别安装于凹槽内,以实现环形的转子结构。
进一步地,如图8所示,支撑结构16设于第一风罩24朝向第二风罩26的一侧,以在第一风罩24与第二风罩26连接时,支撑结构16置于容纳空腔内。
进一步地,如图6所示,第一风罩24和第二风罩26上均设有通风格栅28,通风格栅28沿径向分别向外延伸至第一风罩24的侧面和第二风罩26的侧面。
进一步地,如图8所示,支撑结构16为实心轴,支撑结构16上套设有轴套30,扇叶22套设在轴套30上,扇叶22通过轴套30与支撑结构16可转动地连接。
图9示出了支撑结构16的另一种形式,即支撑结构16为空心轴。扇叶22套设于支撑结构16上,支撑结构16的空心部分形成一个过风通道21,可使空气能够由扇叶22的一端通过过风通道21流向另一端。
实施例六
本申请的另一个实施例提供了一种送风装置2,如图10所示,包括有由定子结构14和转子结构12组合形成偏心的电机1,以及直接与转子结构12相接触的扇叶22,其中,转子结构12包括多个形成封闭图形的磁性件122,定子结构14设于多个磁性件122所形成的环形结构对应设置,以在对定子结构14中绕设于定子齿144上的定子绕组的电流方向进行控制时,可产生不同极性的磁场,此时通过至少两个极性不同的定子绕组,可对转子结构12实现驱动,使得转子结构12带动负载实现转动。送风装置2还包括有底座32, 底座32与扇叶22可拆卸的连接,定子结构14设于底座32上,定子结构14可随底座32一起与转子结构12分离。
在上述任一实施例的基础上,定子结构14朝向转子结构12的一侧的形状与转子结构12的侧面的形状相适配,即定子结构14形成外凸结构,一方面有利于定子结构14每个定子齿与转子结构12之间的距离保持相同,有利于转子结构12的受力均衡,另一方面可以通过消除定子结构14的异形结构减小定子结构14与转子结构12之间的间距,有利于增强转子结构12所受到的作用力。
可以理解,若定子结构14朝向转子结构12的一侧设有异形结构,例如凸起、凹槽、台阶等,需增大定子结构14与转子结构12之间的间距以免转子结构12的转动受到干涉,从而使得定子结构14对转子结构12的磁力作用受到削弱。
此外,电机1还包括壳体,支撑结构具体为设于壳体上的支撑轴,通过转子结构12可转动地设于支撑轴上,以使转子结构12绕支撑轴转动,防止转子结构12发生径向位移;而通过将定子结构14固定设于壳体上,以使得转子结构12与定子结构14之间的相对距离保持不变,以防止定子结构14受到转子结构12的反作用力而发生位移,以免影响转子结构12转动的稳定性。
其中,转子结构12可相对于定子结构14顺时针转动或逆时针转动,进一步地,可根据负载的转动需要实现正反两个方向的转动,可满足不同的负载需求,灵活性高。
以上结合附图详细说明了本申请的技术方案,在应用上述电机驱动负载运动时,可单独将负载连同转子结构一起拆下进行清洗或更换,便于操作,此外,定子铁芯设于转子结构的周向,一方面可减少电机整体在轴向方向的尺寸,另一方面可在周向方向对转子结构实现驱动,以带动转子所直接连接的负载进行转动。
在本申请中,术语“第一”、“第二”、“第三”仅用于描述的目的,而不能理解为指示或暗示相对重要性;术语“多个”则指两个或两个以上,除非另有明确的限定。术语“安装”、“相连”、“连接”、“固定”等术语均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;“相连”可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言, 可以根据具体情况理解上述术语在本申请中的具体含义。
本申请的描述中,需要理解的是,术语“上”、“下”、“左”、“右”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或单元必须具有特定的方向、以特定的方位构造和操作,因此,不能理解为对本申请的限制。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
Claims (32)
- 一种电机,其中,包括:转子结构;定子结构,与所述转子结构可拆卸连接,所述定子结构设于所述转子结构沿径向方向的内侧,用于驱动所述转子结构转动。
- 根据权利要求1所述的电机,其中,所述电机包括驱动区,所述驱动区包括至少一个所述定子铁芯,及所述转子结构中与所述定子结构正对部分。
- 根据权利要求1所述的电机,其中,所述定子结构具有第一曲面,所述第一曲面朝向所述转子结构,所述第一曲面为弧形,所述转子结构呈圆环形,至少部分第一曲面的曲率与所述转子结构的曲率相同。
- 根据权利要求3所述的电机,其中,所述第一曲面为圆弧形,所述转子结构呈圆环形,所述第一曲面的曲率与所述转子结构的曲率相同。
- 根据权利要求1所述的电机,其中,所述转子结构与所述定子结构的最大距离小于4mm。
- 根据权利要求1所述的电机,其中,所述转子结构具体包括至少一个磁性件。
- 根据权利要求6所述的电机,其中,所述定子结构包括至少一个定子铁芯,以及设于所述定子铁芯上且朝向所述转子结构设置的至少两个定子齿。
- 根据权利要求6所述的电机,其中,所述定子齿的数量至少为两个,任意两个所述定子齿上的定子绕组依次通电且极性相同;或所述定子齿的数量至少为两个,任意两个所述定子齿上的定子绕组同时通电且极性不同,并且,任意两个所述定子齿上的定子绕组的磁极交替。
- 根据权利要求7所述的电机,其中,每个所述定子齿的定子齿靴的端面沿所述转子结构的径向方向远离所述转子结构的旋转轴设置。
- 根据权利要求3所述的电机,其中,所述定子结构包括具有三个所述定子齿的定子铁芯,三个所述定子齿的定子齿靴的端面距所述转子结构的旋转中心的距离均相等,其中,三个所述定子齿的定子齿靴的端面形成外凸的弧线形状。
- 根据权利要求8所述的电机,其中,所述定子齿的数量至少为三个,且任意两个所述定子齿上的定子绕组依次通电且极性相同;或所述定子齿的数量至少为三个,且任意两个所述定子齿上的定子绕组同时通电且极性不同,并且,任意两个所述定子齿上的定子绕组的磁极交替。
- 根据权利要求8所述的电机,其中,所述电机还包括一个磁性判断装置,所述磁性判断装置沿所述转子结构的周向设置,用于获取所述转子结构相对于所述定子结构的转动方向。
- 根据权利要求11或12所述的电机,其中,所述定子铁芯的数量为多个,多个所述定子铁芯沿所述转子结构的周向设置。
- 根据权利要求6所述的电机,其中,还包括:支撑结构,所述转子结构可转动地设于所述支撑结构上。
- 根据权利要求6至9或14中任一项所述的电机,其中,所述磁性件沿周向连续设置。
- 根据权利要求6至9或14中任一项所述的电机,其中,所述磁性件沿周向均匀设置,且任意两个相邻的所述磁性件之间存在周向间隙。
- 根据权利要求6至9或14中任一项所述的电机,其中,所述磁性件为一体结构。
- 一种送风装置,其中,包括:如权利要求1至17中任一项所述的电机;扇叶,所述扇叶的端面上设有凹腔,所述定子结构设于所述凹腔内,所述电机的转子结构设于所述扇叶外和/或内,以在所述电机的定子结构的作用下,驱动所述扇叶随所述转子结构转动。
- 根据权利要求18所述送风装置,其中,所述转子结构设于所述扇叶的外侧壁面上。
- 根据权利要求18所述送风装置,其中,所述转子结构设于所述扇叶的内侧壁面上。
- 根据权利要求20所述的送风装置,其中,所述扇叶包括:第一风叶支架,以及多个第一风叶,多个所述第一风叶沿所述扇叶的周向设于所述第一风叶支架的外侧壁面上。
- 根据权利要求21所述的送风装置,其中,所述扇叶还包括:第二风叶支架,与所述第一风叶支架同轴设置,且所述第二风叶支架套设于所述第一风叶外。
- 根据权利要求22所述的送风装置,其中,所述扇叶还包括:多个第二风叶,沿所述扇叶的周向设于所述扇叶的外侧壁面上。
- 根据权利要求23所述的送风装置,其中,所述转子结构设于所述第一风叶支架的内侧壁面上;和/或所述转子结构设于所述第二风叶支架的内侧壁面上。
- 根据权利要求18所述的送风装置,其中,还包括:可拆卸连接的第一风罩和第二风罩,所述第二风罩与所述第一风罩连接后内部形成至少可容置所述转子结构的容纳空腔,其中,所述定子结构设于所述容纳空腔内,和/或所述定子结构设于所述容纳空腔外。
- 根据权利要求25所述的送风装置,其中,所述电机的支撑结构设于第一风罩朝向所述第二风罩的一侧。
- 根据权利要求25所述的送风装置,其中,所述第一风罩和/或所述第二风罩上设有通风格栅。
- 根据权利要求18至27中任一项所述的送风装置,其中,所述电机的支撑结构呈空心轴状,所述转子套设于所述支撑结构上。
- 根据权利要求18至27中任一项所述的送风装置,其中,所述电机的支撑结构呈空心轴状,所述送风装置还包括:轴套,套设于所述支撑结构上,所述扇叶套设于所述轴套上。
- 根据权利要求18至27中任一项所述的送风装置,其中,还包括底座,所述定子结构设于所述底座上,且所述电机与所述底座可拆卸连接。
- 一种家用电器,其中,包括:权利要求1至17中任一项所述的电机;旋转组件,所述电机的转子结构设于所述旋转组件上,所述电机的定子结构与所述转子结构对应设置,以在所述定子结构的作用下,所述旋转组件被驱动以随所述转子结构转动。
- 根据权利要求31所述的家用电器,其中,所述家用电器是台地扇、吊扇、壁扇、塔扇、冷风扇、暖风机、净化器、空调、洗衣机、油烟机、面包机或破壁机。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910786701.5A CN112421877B (zh) | 2019-08-23 | 2019-08-23 | 送风装置和家用电器 |
CN201910786701.5 | 2019-08-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021036188A1 true WO2021036188A1 (zh) | 2021-03-04 |
Family
ID=74683999
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/072146 WO2021036188A1 (zh) | 2019-08-23 | 2020-01-15 | 电机、送风装置和家用电器 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112421877B (zh) |
WO (1) | WO2021036188A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1659765A (zh) * | 2002-06-04 | 2005-08-24 | 波峰实验室责任有限公司 | 具有变化尺寸的定子极靴的旋转式永磁体电动机 |
CN202612143U (zh) * | 2012-05-16 | 2012-12-19 | 深圳市润达电子有限公司 | 直流驱动风机 |
JP2014090545A (ja) * | 2012-10-29 | 2014-05-15 | Toshiba Home Technology Corp | ファンモータ |
CN107237772A (zh) * | 2017-07-28 | 2017-10-10 | 广东美的环境电器制造有限公司 | 扇头组件及风扇 |
CN109058131A (zh) * | 2018-08-06 | 2018-12-21 | 珠海格力电器股份有限公司 | 一种风扇供电装置、风扇及风扇操作装置的供电方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003284306A (ja) * | 2002-03-20 | 2003-10-03 | Minebea Co Ltd | 薄型ブラシレスdcモータ |
JP2005143248A (ja) * | 2003-11-07 | 2005-06-02 | Aisin Seiki Co Ltd | 回転電機のロータ |
WO2011042975A1 (ja) * | 2009-10-08 | 2011-04-14 | 三菱電機株式会社 | ファンモーター及びこれを備えた空気調和機 |
IT1397782B1 (it) * | 2010-01-15 | 2013-01-24 | Gate Srl | Rotore a magneti permanenti per un motore elettrico brushless in corrente continua |
EP3232549B1 (de) * | 2016-04-14 | 2020-12-16 | Levitronix GmbH | Elektromagnetischer drehantrieb und rotationsvorrichtung |
CN205503565U (zh) * | 2016-04-18 | 2016-08-24 | 广东美的环境电器制造有限公司 | 风叶网罩和风扇 |
CN206102483U (zh) * | 2016-07-28 | 2017-04-19 | 广东美的生活电器制造有限公司 | 散热风扇、散热结构及破壁料理机 |
CN106374707B (zh) * | 2016-10-31 | 2018-12-04 | 广东威灵电机制造有限公司 | 电机 |
JP2018102091A (ja) * | 2016-12-21 | 2018-06-28 | キヤノンプレシジョン株式会社 | モータ |
-
2019
- 2019-08-23 CN CN201910786701.5A patent/CN112421877B/zh active Active
-
2020
- 2020-01-15 WO PCT/CN2020/072146 patent/WO2021036188A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1659765A (zh) * | 2002-06-04 | 2005-08-24 | 波峰实验室责任有限公司 | 具有变化尺寸的定子极靴的旋转式永磁体电动机 |
CN202612143U (zh) * | 2012-05-16 | 2012-12-19 | 深圳市润达电子有限公司 | 直流驱动风机 |
JP2014090545A (ja) * | 2012-10-29 | 2014-05-15 | Toshiba Home Technology Corp | ファンモータ |
CN107237772A (zh) * | 2017-07-28 | 2017-10-10 | 广东美的环境电器制造有限公司 | 扇头组件及风扇 |
CN109058131A (zh) * | 2018-08-06 | 2018-12-21 | 珠海格力电器股份有限公司 | 一种风扇供电装置、风扇及风扇操作装置的供电方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112421877A (zh) | 2021-02-26 |
CN112421877B (zh) | 2022-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3147510B1 (en) | Coreless donut-type motor fan for ventilation and cooling | |
CN210568878U (zh) | 空调室外机及空调设备 | |
CN108799195A (zh) | 一种叶轮组件及其空调器 | |
WO2021057001A1 (zh) | 空调室外机及空调设备 | |
KR101312720B1 (ko) | 모터 내부로 에어 유로를 형성한 모터 장치 | |
WO2021036188A1 (zh) | 电机、送风装置和家用电器 | |
WO2021036187A1 (zh) | 电机、送风装置和家用电器 | |
CN107332389B (zh) | 一种吹风机电机及吹风机 | |
CN112421876B (zh) | 送风装置和家用电器 | |
CN210273723U (zh) | 食物处理装置 | |
CN112421806A (zh) | 电机、送风装置和家用电器 | |
CN210118265U (zh) | 无轴风机和空调器 | |
CN112412841B (zh) | 送风装置 | |
CN107147265B (zh) | 一种服务器散热风扇 | |
CN112412843B (zh) | 送风装置 | |
CN112412839B (zh) | 送风装置 | |
CN210769416U (zh) | 风扇 | |
CN112421808A (zh) | 电机、送风装置和家用电器 | |
CN108060550A (zh) | 洗衣筒机构、洗衣机及洗衣机驱动方法 | |
CN112412844A (zh) | 送风装置 | |
WO2021035985A1 (zh) | 转子、电机、电机组件、食物处理机及送风装置 | |
WO2021036690A1 (zh) | 食物处理装置 | |
CN112577126A (zh) | 空调室外机及空调设备 | |
CN112577125A (zh) | 空调室外机及空调设备 | |
CN210806880U (zh) | 转子、电机、食物处理机、送风装置、家用电器、电动车辆及发电装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20856075 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20856075 Country of ref document: EP Kind code of ref document: A1 |