WO2021036061A1 - 利用自持气浮强化产沼气的厌氧消化装置 - Google Patents

利用自持气浮强化产沼气的厌氧消化装置 Download PDF

Info

Publication number
WO2021036061A1
WO2021036061A1 PCT/CN2019/121601 CN2019121601W WO2021036061A1 WO 2021036061 A1 WO2021036061 A1 WO 2021036061A1 CN 2019121601 W CN2019121601 W CN 2019121601W WO 2021036061 A1 WO2021036061 A1 WO 2021036061A1
Authority
WO
WIPO (PCT)
Prior art keywords
air flotation
anaerobic digestion
self
unit
biogas
Prior art date
Application number
PCT/CN2019/121601
Other languages
English (en)
French (fr)
Inventor
戴晓虎
张悦
华煜
蔡辰
Original Assignee
同济大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同济大学 filed Critical 同济大学
Publication of WO2021036061A1 publication Critical patent/WO2021036061A1/zh
Priority to US17/566,809 priority Critical patent/US11618872B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/04Bioreactors or fermenters specially adapted for specific uses for producing gas, e.g. biogas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/16Solid state fermenters, e.g. for koji production
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/34Internal compartments or partitions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/36Means for collection or storage of gas; Gas holders
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/56Floating elements
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/02Stirrer or mobile mixing elements
    • C12M27/06Stirrer or mobile mixing elements with horizontal or inclined stirrer shaft or axis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/02Percolation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/04Filters; Permeable or porous membranes or plates, e.g. dialysis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/26Conditioning fluids entering or exiting the reaction vessel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • C12M41/18Heat exchange systems, e.g. heat jackets or outer envelopes
    • C12M41/22Heat exchange systems, e.g. heat jackets or outer envelopes in contact with the bioreactor walls
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/26Means for regulation, monitoring, measurement or control, e.g. flow regulation of pH
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/44Means for regulation, monitoring, measurement or control, e.g. flow regulation of volume or liquid level
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/48Automatic or computerized control
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/10Separation or concentration of fermentation products
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/18Gas cleaning, e.g. scrubbers; Separation of different gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the invention belongs to the technical field of anaerobic digestion of organic solid wastes, and specifically relates to an anaerobic digestion device that uses self-sustained air flotation to intensify biogas production.
  • organic solid waste mainly includes: domestic sources (urban sludge, domestic waste, garden waste, etc.), agricultural sources (agricultural straw, mulch film, livestock and poultry manure, etc.) and industrial sources (oil sludge, bacterial residue, industrial organic solids, etc.). Waste, etc.)
  • domestic sources urban sludge, domestic waste, garden waste, etc.
  • agricultural sources agricultural straw, mulch film, livestock and poultry manure, etc.
  • industrial sources oil sludge, bacterial residue, industrial organic solids, etc.
  • Waste, etc. The third category, with an annual output of more than 6 billion tons, accounting for more than 60% of the total amount of solid waste generated, but a scientific and reasonable management and safe disposal technology system has not yet been formed.
  • Organic solid waste has typical pollution properties, with complex components and many harmful media. It occupies a multi-phase compound cross-contamination with the surrounding environment. The control is extremely complicated, mass incidents occur frequently, and the nerves of the society and the media are highly affected.
  • the utilization methods of organic solid waste mainly include curing molding, thermochemical conversion, anaerobic digestion and other technologies.
  • the anaerobic digestion technology mainly uses anaerobic microorganisms to convert it into CH 4 , CO 2 or H 2 .
  • CH 4 has a high combustion heat value (802.3kJ/mol), which is an ideal energy material. Because it can produce clean energy while purifying the environment, and the digested residue can also be used as an organic fertilizer, which has the benefits of energy, environmental protection and ecology, anaerobic digestion is a sustainable environmental protection technology.
  • the advantages of anaerobic digestion technology also include the reduction of waste odors and pathogens. At the same time, organic matter, plant nutrients and valuable nutrients that can be recycled are concentrated in the digestion residues and can be used continuously.
  • the anaerobic treatment of sewage has increased to 50kg COD(m 3 ⁇ d) -1 or even more than 100kg COD(m 3 ⁇ d) -1 .
  • OLR organic load
  • Anaerobic technology has made great achievements in the field of sewage treatment, and anaerobic theory is also relatively increasing. Perfect, but the progress of anaerobic technology in the field of organic solid waste is still slow.
  • the ruminant digestion system is an efficient anaerobic reactor that exists in nature, and its organic load can reach 100kg.
  • DM(m 3 ⁇ d) -1 the production rate of VFA per unit volume is about 18g(L ⁇ d) -1 , which is much higher than that of traditional anaerobic reactors.
  • the purpose of the present invention is to provide an anaerobic digestion device that uses self-sustained air flotation to enhance biogas production.
  • the solution of the present invention is:
  • An anaerobic digestion device that uses self-sustained air flotation to intensify the production of biogas, which includes a main tank unit for anaerobic digestion, a self-sustained air flotation screening unit, and a biogas metering collection unit.
  • the self-sustained air flotation screening unit and the main tank unit for anaerobic digestion pass The sampling pump and the reflux pump form a two-way connection, and the biogas metering collection unit is connected to the gas outlet of the self-sustained air flotation screening unit and the main tank unit for anaerobic digestion.
  • the self-sustaining air flotation screening unit includes an air flotation screening part, a material precipitation part, an active reflux part, and a three-phase separation part connected in sequence from bottom to top.
  • the air flotation screening part and the material precipitation part are arranged side by side at the bottom of the self-sustaining air flotation screening unit. Separated by a middle partition, the bottom of the air flotation screening part and the material sedimentation part are equipped with emptying ports.
  • the active reflux part is located in the middle and upper part of the self-sustaining air flotation screening unit.
  • the reflux valve is connected with the reflux pump; the biogas outlet of the three-phase separation part is connected with the biogas metering and collection unit.
  • the digested material in the main anaerobic digestion tank is pumped from the bottom up by the sampling pump and pushed into the air flotation screening part.
  • the liquid level in the air flotation screening part reaches the height of the middle partition
  • the digested material overflows into the material sedimentation part
  • the liquid level of the material sedimentation part reaches the height of the middle partition and communicates with the liquid level of the air flotation screening part, along with the self-supporting air flotation screening unit
  • Continuous feeding the liquid level of the air flotation screening part and the material sedimentation part are raised to the upper end of the active reflux part
  • the digested material overflows into the active reflux part
  • the digested material collected in the active reflux part is returned to the main anaerobic digestion tank by the reflux pump
  • the gas components passing through the three-phase separation part and the gas produced by the anaerobic digestion main tank unit enter the biogas metering collection unit.
  • the height-to-diameter ratio of the air flotation screening part and the material sedimentation part is greater than or equal to 6.
  • a diversion baffle or a gas diversion tube is arranged inside the air flotation screening part and the material precipitation part.
  • sampling valves are provided at different heights on the sides of the air flotation screening part and the material sedimentation part.
  • the main tank body unit for anaerobic digestion includes a main tank body, a heating system and a stirring system.
  • the inner center of the main tank body is provided with a stirring system, and the outer side of the main tank body surrounds the heating system;
  • the side of the main tank body is provided with a circulating feed
  • the circulation outlet the circulation inlet is connected with the lower end of the air flotation screening part, and the circulation outlet is connected with the lower end of the active reflux part;
  • the top of the main tank body is provided with a biogas outlet, solid inlet, acid Liquid inlet, lye inlet, pH or temperature detector and stirring motor, the bottom of the main tank body is provided with an emptying port.
  • the heating system is selected from more than one of a water bath jacket or coil heating.
  • the stirring system is selected from at least one of central axis stirring, horizontal stirring, side inclined stirring or internal submersible stirring.
  • the residence time of the digested material in the main tank unit of the anaerobic digestion is 20-40 days.
  • the residence time of the digested material in the self-sustained air flotation screening unit is 5-10 days.
  • the temperature of the anaerobic digestion device that uses self-sustained air flotation to enhance biogas production is selected from more than one of 35-39°C, 41-45°C, or 53-57°C.
  • the biogas measurement collection unit includes a gas flow meter and a biogas collection device.
  • the anaerobic digestion device of the present invention is based on the phenomenon that organic matter is degraded to produce biogas in the anaerobic process.
  • optimizing the structure of the device that is, adding a self-supporting air flotation screening unit, it plays a role of self-supporting air flotation-screening-backflow of highly active microorganisms and discharge
  • the role of materials that are more difficult to degrade thereby effectively avoiding the problem of insufficient degradation of materials caused by short flow of materials in the process of anaerobic digestion of organic solid waste.
  • the anaerobic digestion device of the present invention has the characteristics of simple structure, convenient operation and maintenance, and high degree of automation. It can be used in the design of new organic solid waste anaerobic digestion and biogas production projects, and can also be used in completed anaerobic digestion.
  • the transformation and optimization of the project have realized high-efficiency screening, high-efficiency hydrolysis and high-efficiency gas production.
  • Fig. 1 is a schematic structural diagram of an anaerobic digestion device using self-sustained air flotation to enhance biogas production of the present invention.
  • Figure 2 is a schematic longitudinal section view of the self-sustained air flotation screening unit A-A of the present invention.
  • Figure 3 is a schematic cross-sectional view of the self-sustained air flotation screening unit of the present invention.
  • Fig. 4 is a top view of the main tank body in the main tank body unit for anaerobic digestion of the present invention.
  • Anaerobic digestion main tank unit I air flotation screening part II, material precipitation part III, active reflux part IV, three-phase separation part V, biogas metering collection unit VI, acid liquid inlet 1, gas outlet 2, The lye inlet 3, the heating system 4, the stirring system 5, the solid feed inlet 6, the pH or temperature detector 7 and the stirring motor 8.
  • the invention provides an anaerobic digestion device that utilizes self-sustained air flotation to strengthen the production of biogas.
  • the anaerobic digestion device using self-sustained air flotation to enhance biogas production of the present invention includes an anaerobic digestion main tank unit I, a self-sustained air flotation screening unit and a biogas metering collection unit VI, a self-sustaining air flotation screening unit and an anaerobic digestion main tank unit I through the sampling pump and the reflux pump to form a two-way connection, the biogas metering collection unit VI is respectively connected with the self-sustained air flotation screening unit and the anaerobic digestion main tank unit I outlet.
  • the self-sustained air flotation screening unit includes an air flotation screening part II, a material precipitation part III, an active reflux part IV and a three-phase separation part V which are connected in sequence from bottom to top.
  • the air flotation screening part II and the material precipitation part III are arranged side by side.
  • the bottom of the self-sustaining air flotation screening unit is separated by a central partition, or the air flotation screening part II and the material sedimentation part III are provided with two independent tanks, and the bottom of the air flotation screening part II and the material sedimentation part III are both equipped with emptying ports.
  • the material sedimentation part III regularly discharges sludge from the bottom to replace the sludge from the main tank unit I of anaerobic digestion.
  • the active reflux part IV is located in the middle and upper part of the self-sustained air flotation screening unit, and its upper end is higher than the air flotation screening part II and the material precipitation part III, so as to ensure the light activity of the air flotation screening part II and the material precipitation part III in the air flotation process
  • the material overflows into the active reflux part IV; the lower end is connected with a reflux valve and communicated with a reflux pump.
  • the three-phase separation part V is arranged at the top of the air flotation screening part II, the material precipitation part III and the active reflux part IV.
  • the three-phase separation parts are respectively set on the top V;
  • the biogas outlet of the three-phase separation part V is connected with the biogas measurement and collection unit VI.
  • the digested material in the anaerobic digestion main tank unit I is pumped from bottom to top to flow into the air flotation screening part II.
  • the overflow enters the material precipitation part III
  • the liquid level in the material sedimentation part III reaches the height of the middle partition, it communicates with the liquid surface of the air flotation screening part II.
  • the biogas measurement and collection unit VI includes a gas flow meter and a biogas collection device.
  • the height-to-diameter ratio of the air flotation screening part II and the material precipitation part III is greater than or equal to 6.
  • the air flotation screening part II and the material precipitation part III are provided with diversion baffles or gas diversion tubes to facilitate the separation of light active materials and heavy inert materials during the air flotation process.
  • the main tank body unit I of anaerobic digestion includes a main tank body, a heating system and a stirring system.
  • the inner center of the main tank body is provided with a stirring system, and the outside of the main tank body surrounds the heating system.
  • the side of the main tank body is provided with a circulating feed port and a circulating discharge port.
  • the circulating feed port is connected to the lower end of the air flotation screening part II, and the circulating discharge port is connected to the lower end of the active reflux part IV, thus passing through the air flotation screening part Part II and material precipitation part III screen out light-weight and highly active microorganisms to fill the active reflux part IV, and then return to the anaerobic digestion main tank unit I through the reflux pump.
  • the top of the main tank body is provided with a biogas outlet 2, a funnel-type solid feed inlet 6, an acid inlet 1, an lye inlet 3, a pH or temperature detector 7 (or an ORP detector) and a stirring motor 8, among which
  • the gas outlet 2 of the biogas is communicated with the biogas measurement and collection unit VI, and an emptying port is provided at the bottom of the main tank body.
  • the heating system is selected from more than one of a water bath jacket or coil heating.
  • the mixing system is selected from more than one of central axis mixing, horizontal mixing, side inclined mixing or internal submersible mixing.
  • the residence time of the digested materials in the anaerobic digestion main tank unit I is 20-40 days.
  • the residence time of the digested materials in the self-sustained air flotation screening unit is 5-10 days.
  • the temperature of the anaerobic digestion device that uses self-sustained air flotation to enhance biogas production is maintained at 35-39°C, 41-45°C or 53-57°C.
  • the anaerobic digestion device using self-sustained air flotation to enhance biogas production in this embodiment includes a main tank unit I for anaerobic digestion taking a fully mixed anaerobic reactor (CSTR) as an example, and a self-sustained air flotation screening unit And the biogas metering collection unit VI, in which the self-sustained air flotation screening unit is a four-part integrated type, specifically including the air flotation screening part II, the material precipitation part III, the active reflux part IV and the three-phase separation part V.
  • the digested material in the main tank unit I of anaerobic digestion is selected from municipal sludge, which is pumped by the peristaltic sampling pump into the air flotation screening part II.
  • the anaerobic digestion main tank unit I and the self-sustained air flotation screening unit realize automatic control of various components through the electric control cabinet and PLC program, thereby greatly reducing the difficulty of reactor operation and control.
  • Both the main tank unit I of anaerobic digestion and the self-sustained air flotation screening unit are equipped with an external water bath jacket, and the internal heating of the anaerobic digestion device that uses self-sustained air flotation to enhance biogas production is realized through the external circulation of hot water.
  • the air flotation screening part II and the material precipitation part III are arranged side by side at the bottom of the self-sustaining air flotation screening unit and separated by a central partition, thereby facilitating the separation of light active materials and heavy inert materials during the air flotation process.
  • the height-to-diameter ratio of the air flotation screening part II and the material sedimentation part III is 6.5, and the bottom of the air flotation screening part II and the material sedimentation part III are both equipped with emptying ports.
  • the material sedimentation part III is discharged from the bottom every day to replace anaerobic Digest the sludge from the main tank unit I.
  • the active reflux part IV is located in the middle and upper part of the self-sustained air flotation screening unit, and its upper end is higher than the air flotation screening part II and the material precipitation part III, so as to ensure the light activity of the air flotation screening part II and the material precipitation part III in the air flotation process
  • the material overflows into the active reflux section IV.
  • the three-phase separation part V is arranged at the top of the air flotation screening part II, the material precipitation part III and the active reflux part IV.
  • the biogas measurement and collection unit VI includes a gas flow meter and a biogas collection device.
  • the air flotation screening part II and the material precipitation part III are provided with gas flow pipes to facilitate the separation of light active materials and heavy inert materials during the air flotation process.
  • the main tank body unit I for anaerobic digestion includes a main tank body, a heating system and a stirring system.
  • the inner center of the main tank body is provided with a stirring system, and the outside of the main tank body surrounds the heating system.
  • the mixing system adopts a central axis mixing system.
  • the side of the main tank body is provided with a circulating feed port and a circulating discharge port.
  • the circulating feed port is connected to the lower end of the air flotation screening part II, and the circulating discharge port is connected to the lower end of the active reflux part IV, so it passes through the air flotation screening part Part II and material precipitation part III screen out light-weight and highly active microorganisms to fill the active reflux part IV, and then return to the anaerobic digestion main tank unit I through the reflux pump.
  • the top of the main tank body is provided with a biogas outlet 2, a funnel-shaped solid feed inlet 6, an acid inlet 1, an lye inlet 3, a pH or temperature detector 7 (or an ORP detector) and a stirring motor 8, among which ,
  • the sludge is replenished from the solid feed inlet every day in a half-day continuous operation, the gas outlet 2 of the biogas is connected with the biogas measurement and collection unit VI, and the bottom of the main tank body is provided with an emptying port.
  • the temperature of the anaerobic digestion unit that uses self-sustained air flotation to enhance biogas production is 37 ⁇ 1°C.
  • the biogas produced by the anaerobic digestion main tank unit I and the self-sustained air flotation screening unit will be collected and counted by the biogas measurement collection unit VI taking the wet gas flowmeter as an example;
  • the anaerobic digestion device using self-sustained air flotation to enhance biogas production in this embodiment effectively increases the gas production rate per sludge organic matter by 20-30% compared with the conventional CSTR anaerobic reactor.

Abstract

本发明提供了一种利用自持气浮强化产沼气的厌氧消化装置,包括厌氧消化主罐体单元、自持气浮筛选单元和沼气计量收集单元,自持气浮筛选单元包括自下而上依次连接的气浮筛选部分、物料沉淀部分、活性回流部分和三相分离部分,厌氧消化主罐体单元内的消化物料泵送进入气浮筛选部分,溢流进入物料沉淀部分,之后提升至活性回流部分,经过三相分离部分的气体组分与厌氧消化主罐体单元的产气进入沼气计量收集单元;本发明的厌氧消化装置基于厌氧过程有机物被降解产沼气的现象,通过增加自持气浮筛选单元,起到了自持气浮-筛选-回流高活性微生物、排出更难降解物料的作用,从而有效避免有机固体废弃物厌氧消化过程中物料短流导致的降解不充分的问题。

Description

利用自持气浮强化产沼气的厌氧消化装置 技术领域
本发明属于有机固体废弃物厌氧消化的技术领域,具体涉及一种利用自持气浮强化产沼气的厌氧消化装置。
背景技术
现阶段我国有机固体废弃物主要包括:生活源(城市污泥、生活垃圾、园林垃圾等)、农业源(农业秸秆、地膜、畜禽粪便等)与工业源(油泥、菌渣、工业有机固废等)三类,年产量超过60亿吨,占固体废物总产生量的60%以上,但科学合理的管理与安全处置技术体系尚未形成。有机固废具有典型的污染属性,成分复杂且有害介质多,占地堆存与周边环境形成多相复合型交叉污染,控制极为复杂,群体性事件频发,高度触及社会及媒体神经。
有机固体废弃物利用方式主要包括固化成型、热化学转化、厌氧消化等多种技术,其中厌氧消化技术主要是利用厌氧微生物将其转化为CH 4、CO 2或者H 2。CH 4有较高的燃烧热值(802.3kJ/mol),是理想的能源物质。由于可以在生产清洁能源的同时实现环境的净化,并且消化剩余物还可以作为有机肥料,兼具能源、环保和生态三方面的收益,所以厌氧消化是一项可持续的环保技术。厌氧消化技术的优点还包括减少废物气味、病原体,同时,有机质、植物营养成分以及可以回收的有价值营养成分集中于消化残渣中,可以继续加以利用。
随着以上流式厌氧污泥床(UASB)为代表的第二代厌氧反应器以及以膨胀颗粒污泥床(EGSB)为代表的第三代厌氧反应器的出现,污水厌氧处理的有机负荷(OLR)提高到了50kg COD(m 3·d) -1甚至100kg COD(m 3·d) -1以上,厌氧技术在污水处理领域取得了巨大的成就,厌氧理论也相对日趋完善,但是厌氧技术在有机固体废弃物领域进展依然缓慢。有机固体废弃物由于其结构复杂,在厌氧发酵过程中存在许多技术难题,针对有机固体废弃物的反应器发展相对滞后。以木质纤维素类生物质为例,如果将木质纤维素生物质分解的容积产率以测量的挥发性脂肪酸(VFA)的产生速率(COD(V·t) -1)表示,传统的厌氧沼气池只有6g(L·d) -1。为了进一步有机固体废弃物厌氧发酵效率,需要开发出适用于有机固体废弃物的高负荷厌氧工艺,反刍动物消化系统是自然界中存在的一个高效的厌氧反应器,其有机负荷可达100kg DM(m 3·d) -1,单位容积VFA产生速率大约为18g(L·d) -1,皆远高于传统厌氧反应器。
发明内容
针对现有技术中的不足,本发明的目的是提供一种利用自持气浮强化产沼气的厌氧消化装置。
为达到上述目的,本发明的解决方案是:
一种利用自持气浮强化产沼气的厌氧消化装置,其包括厌氧消化主罐体单元、自持气浮筛选单元和沼气计量收集单元,自持气浮筛选单元和厌氧消化主罐体单元通过进样泵与回流泵构成双向连接,沼气计量收集单元分别与自持气浮筛选单元和厌氧消化主罐体单元的出气口相连。
自持气浮筛选单元包括自下而上依次连接的气浮筛选部分、物料沉淀部分、活性回流部分和三相分离部分,气浮筛选部分和物料沉淀部分并排设置在自持气浮筛选单元的底部且由中隔板分开,气浮筛选部分和物料沉淀部分的底部均设置排空口,活性回流部分位于自持气浮筛选单元的中上部,其上端高于气浮筛选部分与物料沉淀部分,下端连接回流阀并与回流泵连通;三相分离部分的沼气出口和沼气计量收集单元相连通,厌氧消化主罐体内的消化物料由进样泵泵送自下而上推流进入气浮筛选部分,气浮筛选部分内液面到达中隔板高度后,消化物料溢流进入物料沉淀部分,物料沉淀部分液面到达中隔板高度后与气浮筛选部分液面相通,随着自持气浮筛选单元持续进料,气浮筛选部分与物料沉淀部分的液面共同提升至活性回流部分上端,消化物料溢流进入活性回流部分,活性回流部分收集的消化物料经回流泵返回到厌氧消化主罐体单元内,经过三相分离部分的气体组分与厌氧消化主罐体单元的产气进入沼气计量收集单元。
优选地,气浮筛选部分和物料沉淀部分的高径比大于等于6。
优选地,气浮筛选部分和物料沉淀部分的内部设置导流挡板或气体导流管。
优选地,气浮筛选部分和物料沉淀部分的侧面不同高度设有若干取样阀。
优选地,厌氧消化主罐体单元包括主罐本体、加热系统和搅拌系统,主罐本体的内部中心设有搅拌系统,主罐本体的外侧环绕加热系统;主罐本体的侧面设置循环进料口和循环出料口,循环进料口和气浮筛选部分的下端相连通,循环出料口和活性回流部分的下端相连通;主罐本体的顶部设置沼气的出气口、固体进料口、酸液进口、碱液进口、pH或温度检测器和搅拌电机,主罐本体的底部设置排空口。
优选地,加热系统选自水浴夹套或盘管加热中的一种以上。
优选地,搅拌系统选自中心轴式搅拌、卧式搅拌、侧面斜搅拌或内部潜水搅拌中的一种以上。
优选地,消化物料在厌氧消化主罐体单元的停留时间为20-40天。
优选地,消化物料在自持气浮筛选单元的停留时间为5-10天。
优选地,利用自持气浮强化产沼气的厌氧消化装置的温度选自35-39℃、41-45℃或53-57℃中的一种以上。
优选地,沼气计量收集单元包括气体流量计和沼气收集装置。
由于采用上述方案,本发明的有益效果是:
第一、本发明的厌氧消化装置基于厌氧过程有机物被降解产沼气的现象,通过优化装置的构造,即增加自持气浮筛选单元,起到了自持气浮-筛选-回流高活性微生物、排出更难降解物料的作用,从而有效避免了有机固体废弃物厌氧消化过程中物料短流导致的降解不充分的问题。
第二、本发明的厌氧消化装置具有结构简单、运行维护方便和自动化程度高等特点,既能用于新建有机固体废弃物厌氧消化产沼气工程的设计,又能用于已建成厌氧消化工程的改造优化,从而实现了高效筛分、高效水解和高效产气。
附图说明
图1为本发明的利用自持气浮强化产沼气的厌氧消化装置的结构示意图。
图2为本发明的自持气浮筛选单元A-A的纵切面示意图。
图3为本发明的自持气浮筛选单元的横切面示意图。
图4为本发明的厌氧消化主罐体单元中主罐本体的俯视图。
附图标记:厌氧消化主罐体单元I、气浮筛选部分II、物料沉淀部分III、活性回流部分IV、三相分离部分V、沼气计量收集单元VI、酸液进口1、出气口2、碱液进口3、加热系统4、搅拌系统5、固体进料口6、pH或温度检测器7和搅拌电机8。
具体实施方式
本发明提供了一种利用自持气浮强化产沼气的厌氧消化装置。
本发明的利用自持气浮强化产沼气的厌氧消化装置包括厌氧消化主罐体单元I、自持气浮筛选单元和沼气计量收集单元VI,自持气浮筛选单元和厌氧消化主罐体单元I通过进样泵与回流泵构成双向连接,沼气计量收集单元VI分别与自持气浮筛选单元和厌氧消化主罐体单元I的出气口相连。
其中,自持气浮筛选单元包括自下而上依次连接的气浮筛选部分II、物料沉淀部分III、活性回流部分IV和三相分离部分V,气浮筛选部分II和物料沉淀部分III并排设置在自持气浮筛选单元的底部且由中隔板分开,或者气浮筛选部分II和物料沉淀部分III独立设置两个罐体,气浮筛选部分II和物料沉淀部分III的底部均设置排空口,物料沉淀部分III定期从底部排泥,从而代替厌氧消化主罐体单元I出泥。活性回流部分IV位于自持气浮筛选单元的中上部,其上端高于气浮筛选部分II与物料沉淀部分III,从而保证气浮筛选部分II和物料沉淀部分III在气浮过程中的轻质活性物料溢流进入活性回流部分IV;下端连接回流阀并与回流泵连通。三相分离部分V设置于气浮筛选部分II、物料沉淀部分III和活性回流部分IV的顶 部,气浮筛选部分II和物料沉淀部分III若分体独立设置,则在顶部分别设置三相分离部分V;三相分离部分V的沼气出口和沼气计量收集单元VI相连通。厌氧消化主罐体单元I内的消化物料泵送自下而上推流进入气浮筛选部分II,气浮筛选部分II内液面上升越过中隔板高度后,溢流进入物料沉淀部分III,物料沉淀部分III内液面到达中隔板高度后与气浮筛选部分II液面相通,随着自持气浮筛选单元持续进料,气浮筛选部分II与物料沉淀部分III的液面共同提升至活性回流部分IV上端,消化物料溢流进入活性回流部分IV,活性回流部分IV收集的消化物料经回流泵返回到厌氧消化主罐体单元I内,经过三相分离部分V的气体组分与厌氧消化主罐体单元I的产气进入沼气计量收集单元VI。沼气计量收集单元VI包括气体流量计和沼气收集装置。
具体地,气浮筛选部分II和物料沉淀部分III的高径比大于等于6。气浮筛选部分II和物料沉淀部分III的内部设置导流挡板或气体导流管,从而利于气浮过程中轻质活性物料与重质惰性物料分离。气浮筛选部分II和物料沉淀部分III的侧面不同高度设有若干取样阀。
厌氧消化主罐体单元I包括主罐本体、加热系统和搅拌系统,主罐本体的内部中心设有搅拌系统,主罐本体的外侧环绕加热系统。主罐本体的侧面设置循环进料口和循环出料口,循环进料口和气浮筛选部分II的下端相连通,循环出料口和活性回流部分IV的下端相连通,因此经过气浮筛选部分II和物料沉淀部分III筛选出轻质高活性微生物填满活性回流部分IV,然后经过回流泵送回厌氧消化主罐体单元I内。主罐本体的顶部设置沼气的出气口2、漏斗式的固体进料口6、酸液进口1、碱液进口3、pH或温度检测器7(或增设ORP检测器)和搅拌电机8,其中沼气的出气口2与沼气计量收集单元VI相连通,主罐本体的底部设置排空口。
其中,加热系统选自水浴夹套或盘管加热中的一种以上。
搅拌系统选自中心轴式搅拌、卧式搅拌、侧面斜搅拌或内部潜水搅拌中的一种以上。
消化物料在厌氧消化主罐体单元I的停留时间为20-40天。消化物料在自持气浮筛选单元的停留时间为5-10天。
利用自持气浮强化产沼气的厌氧消化装置的温度保持在35-39℃、41-45℃或53-57℃。
以下结合实施例对本发明作进一步的说明。
实施例:
如图1所示,本实施例的利用自持气浮强化产沼气的厌氧消化装置包括以全混合厌氧反应器(CSTR)为例的厌氧消化主罐体单元I、自持气浮筛选单元和沼气计量收集单元VI,其中,自持气浮筛选单元为四部分一体式,具体包括气浮筛选部分II、物料沉淀部分III、活性回流部分IV和三相分离部分V。厌氧消化主罐体单元I内的消化物料选取市政污泥,由蠕动进样泵泵送进入气浮筛选部分II,液面上升越过中隔板,溢流进入物料沉淀部分III,随着自持气浮筛选单元持续进料,经过气浮筛选部分II和物料沉淀部分III筛选出轻质高活性微生物提升至中心筒的活性回流部分IV,再由蠕动回流泵将筛分后的高活性物料送回厌氧消化主 罐体单元I内,经过气浮筛选部分II、物料沉淀部分III、活性回流部分IV三部分顶端的三相分离部分V的气体组分与厌氧消化主罐体单元I的产气一起进入以湿式气体流量计为例的沼气计量收集单元VI。其中,厌氧消化主罐体单元I和自持气浮筛选单元通过电气控制柜以PLC程序对各部件实现自动控制,从而大大降低了反应器运行、控制的难度。厌氧消化主罐体单元I和自持气浮筛选单元均设置外置的水浴夹套,通过热水的外循环实现利用自持气浮强化产沼气的厌氧消化装置的内部加热。
如图2所示,气浮筛选部分II和物料沉淀部分III并排设置在自持气浮筛选单元的底部且由中隔板分开,从而利于气浮过程中轻质活性物料与重质惰性物料分离。气浮筛选部分II和物料沉淀部分III的高径比为6.5,气浮筛选部分II和物料沉淀部分III的底部均设置排空口,物料沉淀部分III每日从底部排泥,从而代替厌氧消化主罐体单元I的出泥。活性回流部分IV位于自持气浮筛选单元的中上部,其上端高于气浮筛选部分II与物料沉淀部分III,从而保证气浮筛选部分II和物料沉淀部分III在气浮过程中的轻质活性物料溢流进入活性回流部分IV。三相分离部分V设置于气浮筛选部分II、物料沉淀部分III和活性回流部分IV的顶部。沼气计量收集单元VI包括气体流量计和沼气收集装置。
如图3所示,气浮筛选部分II和物料沉淀部分III的内部设置气体导流管,从而利于气浮过程中轻质活性物料与重质惰性物料分离。气浮筛选部分II和物料沉淀部分III的侧面不同高度设有若干取样阀。
如图1和4所示,厌氧消化主罐体单元I包括主罐本体、加热系统和搅拌系统,主罐本体的内部中心设有搅拌系统,主罐本体的外侧环绕加热系统,本实施例的搅拌系统采用中心轴式搅拌系统。主罐本体的侧面设置循环进料口和循环出料口,循环进料口和气浮筛选部分II的下端相连通,循环出料口和活性回流部分IV的下端相连通,因此经过气浮筛选部分II和物料沉淀部分III筛选出轻质高活性微生物填满活性回流部分IV,然后经过回流泵送回厌氧消化主罐体单元I内。主罐本体的顶部设置沼气的出气口2、漏斗式的固体进料口6、酸液进口1、碱液进口3、pH或温度检测器7(或增设ORP检测器)和搅拌电机8,其中,以半天连续运行的方式每日从固体进料口补充污泥,沼气的出气口2与沼气计量收集单元VI相连通,主罐本体的底部设置排空口。
利用自持气浮强化产沼气的厌氧消化装置的温度为37±1℃。
总之,经过二十余天半连续运行的产甲烷反应,由厌氧消化主罐体单元I与自持气浮筛选单元产生的沼气由以湿式气体流量计为例的沼气计量收集单元VI收集计数;本实施例的利用自持气浮强化产沼气的厌氧消化装置,与常规CSTR厌氧反应器单位污泥有机质产气率相比有效提高20-30%。
上述对实施例的描述是为了便于该技术领域的普通技术人员能理解和使用本发明。熟悉本领域技术人员显然可以容易的对这些实施例做出各种修改,并把在此说明的一般原理应用 到其他实施例中,而不必经过创造性的劳动。因此,本发明不限于上述实施例。本领域技术人员根据本发明的原理,不脱离本发明的范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (10)

  1. 一种利用自持气浮强化产沼气的厌氧消化装置,其特征在于:其包括厌氧消化主罐体单元(I)、自持气浮筛选单元和沼气计量收集单元(VI),所述自持气浮筛选单元和厌氧消化主罐体单元(I)通过进样泵与回流泵构成双向连接,所述沼气计量收集单元(VI)分别与自持气浮筛选单元和厌氧消化主罐体单元(I)的出气口相连;
    所述自持气浮筛选单元包括自下而上依次连接的气浮筛选部分(II)、物料沉淀部分(III)、活性回流部分(IV)和三相分离部分(V),所述气浮筛选部分(II)和物料沉淀部分(III)并排设置在所述自持气浮筛选单元的底部且由中隔板分开,所述气浮筛选部分(II)和物料沉淀部分(III)的底部均设置排空口;所述活性回流部分(IV)位于自持气浮筛选单元的中上部,其上端高于气浮筛选部分(II)与物料沉淀部分(III),下端连接回流阀并与回流泵连通;所述三相分离部分(V)的沼气出口和沼气计量收集单元(VI)相连通;所述厌氧消化主罐体(I)内的消化物料由进样泵泵送自下而上推流进入气浮筛选部分(II),气浮筛选部分(II)内液面到达中隔板高度后,消化物料溢流进入所述物料沉淀部分(III),所述物料沉淀部分(III)内液面到达中隔板高度后与气浮筛选部分(II)液面相通,随着自持气浮筛选单元持续进料,气浮筛选部分(II)与物料沉淀部分(III)液面可共同提升至所述活性回流部分(IV)上端,消化物料溢流进入活性回流部分(IV),所述活性回流部分(IV)收集的消化物料经回流泵返回到厌氧消化主罐体单元(I)内,经过三相分离部分(V)的气体组分与厌氧消化主罐体单元(I)的产气进入所述沼气计量收集单元(VI)。
  2. 根据权利要求1所述的利用自持气浮强化产沼气的厌氧消化装置,其特征在于:所述气浮筛选部分(II)和物料沉淀部分(III)的高径比大于等于6。
  3. 根据权利要求1所述的利用自持气浮强化产沼气的厌氧消化装置,其特征在于:所述气浮筛选部分(II)和物料沉淀部分(III)的内部设置导流挡板或气体导流管;和/或,
    所述气浮筛选部分(II)和物料沉淀部分(III)的侧面不同高度设有若干取样阀。
  4. 根据权利要求1所述的利用自持气浮强化产沼气的厌氧消化装置,其特征在于:所述厌氧消化主罐体单元(I)包括主罐本体、加热系统和搅拌系统,所述主罐本体的内部中心设有搅拌系统,所述主罐本体的外侧环绕所述加热系统;
    所述主罐本体的侧面设置循环进料口和循环出料口,所述循环进料口和气浮筛选部分(II)的下端相连通,所述循环出料口和活性回流部分(IV)的下端相连通;所述主罐本体的顶部设置沼气的出气口(2)、固体进料口(6)、酸液进口(1)、碱液进口(3)、pH或温度检测器(7)和搅拌电机(8),所述主罐本体的底部设置排空口。
  5. 根据权利要求4所述的利用自持气浮强化产沼气的厌氧消化装置,其特征在于:所述 加热系统选自水浴夹套或盘管加热中的一种以上。
  6. 根据权利要求4所述的利用自持气浮强化产沼气的厌氧消化装置,其特征在于:所述搅拌系统选自中心轴式搅拌、卧式搅拌、侧面斜搅拌或内部潜水搅拌中的一种以上。
  7. 根据权利要求1所述的利用自持气浮强化产沼气的厌氧消化装置,其特征在于:所述消化物料在所述厌氧消化主罐体单元(I)的停留时间为20-40天。
  8. 根据权利要求1所述的利用自持气浮强化产沼气的厌氧消化装置,其特征在于:所述消化物料在所述自持气浮筛选单元的停留时间为5-10天。
  9. 根据权利要求1所述的利用自持气浮强化产沼气的厌氧消化装置,其特征在于:所述利用自持气浮强化产沼气的厌氧消化装置的温度选自35-39℃、41-45℃或53-57℃中的一种以上。
  10. 根据权利要求1所述的利用自持气浮强化产沼气的厌氧消化装置,其特征在于:所述沼气计量收集单元(VI)包括气体流量计和沼气收集装置。
PCT/CN2019/121601 2019-08-26 2019-11-28 利用自持气浮强化产沼气的厌氧消化装置 WO2021036061A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/566,809 US11618872B2 (en) 2019-08-26 2021-12-31 Anaerobic digestion device based on self-sustained air flotation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910789403.1A CN110468033B (zh) 2019-08-26 2019-08-26 利用自持气浮强化产沼气的厌氧消化装置
CN201910789403.1 2019-08-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/566,809 Continuation US11618872B2 (en) 2019-08-26 2021-12-31 Anaerobic digestion device based on self-sustained air flotation

Publications (1)

Publication Number Publication Date
WO2021036061A1 true WO2021036061A1 (zh) 2021-03-04

Family

ID=68512234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/121601 WO2021036061A1 (zh) 2019-08-26 2019-11-28 利用自持气浮强化产沼气的厌氧消化装置

Country Status (4)

Country Link
US (1) US11618872B2 (zh)
CN (1) CN110468033B (zh)
AU (1) AU2020100952A4 (zh)
WO (1) WO2021036061A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110468033B (zh) * 2019-08-26 2020-12-08 同济大学 利用自持气浮强化产沼气的厌氧消化装置
CN111762885A (zh) * 2020-07-13 2020-10-13 同济大学 一种基于自持气浮筛选的厌氧消化方法
CN111748451B (zh) * 2020-07-14 2021-03-05 同济大学 一种基于自持气浮筛选的厌氧消化反应装置
CN111733059B (zh) * 2020-07-14 2021-03-05 同济大学 一种用在厌氧消化反应装置上的自持气浮筛选装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101092268A (zh) * 2007-06-22 2007-12-26 浙江大学 气液混合提升生物流化床反应器
CN201339033Y (zh) * 2009-01-04 2009-11-04 上海大学 一种新型产氢产甲烷装置
CN103803770A (zh) * 2014-02-26 2014-05-21 江苏理工学院 有机污泥高温微好氧-厌氧消化装置和方法
CN205473795U (zh) * 2016-01-12 2016-08-17 青岛科技大学 厌氧产沼气一体化装置
CN105886393A (zh) * 2014-09-09 2016-08-24 北京建筑大学 一种序批式餐厨垃圾干式厌氧消化装置
CN110468033A (zh) * 2019-08-26 2019-11-19 同济大学 利用自持气浮强化产沼气的厌氧消化装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI790165A (fi) * 1978-02-06 1979-08-07 Itt Foerfarande foer sekundaer behandling av avfallsvatten
JPH10202281A (ja) * 1997-01-28 1998-08-04 Maezawa Ind Inc 排水処理装置
CN2515186Y (zh) * 2001-12-08 2002-10-09 宜兴市亚洲环保有限公司 一种高效加气浮选器
JP4962633B2 (ja) * 2005-11-07 2012-06-27 栗田工業株式会社 生物反応器
CN202508941U (zh) * 2012-04-10 2012-10-31 潍坊大明生物科技有限公司 用于厌氧生化处理后污水脱泥脱臭的气浮装置
US20180320963A1 (en) * 2017-05-04 2018-11-08 Larry Baxter Process for Gas/Vapor Separation by Cryogenic Froth Flotation
WO2019102364A1 (en) * 2017-11-23 2019-05-31 Patil Piyush High rate anaerobic digestion system for solid organic wastes

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101092268A (zh) * 2007-06-22 2007-12-26 浙江大学 气液混合提升生物流化床反应器
CN201339033Y (zh) * 2009-01-04 2009-11-04 上海大学 一种新型产氢产甲烷装置
CN103803770A (zh) * 2014-02-26 2014-05-21 江苏理工学院 有机污泥高温微好氧-厌氧消化装置和方法
CN105886393A (zh) * 2014-09-09 2016-08-24 北京建筑大学 一种序批式餐厨垃圾干式厌氧消化装置
CN205473795U (zh) * 2016-01-12 2016-08-17 青岛科技大学 厌氧产沼气一体化装置
CN110468033A (zh) * 2019-08-26 2019-11-19 同济大学 利用自持气浮强化产沼气的厌氧消化装置

Also Published As

Publication number Publication date
AU2020100952A4 (en) 2020-07-16
US20220119746A1 (en) 2022-04-21
CN110468033A (zh) 2019-11-19
US11618872B2 (en) 2023-04-04
CN110468033B (zh) 2020-12-08

Similar Documents

Publication Publication Date Title
WO2021036061A1 (zh) 利用自持气浮强化产沼气的厌氧消化装置
CN102321675B (zh) 一种有机废弃物生产生物燃气的方法及设备
CN104445608B (zh) 高浓度有机废水内循环厌氧膜生物反应器处理方法及设备
CN101434450A (zh) 沼气生产过程中的厌氧消化处理方法及设备
CN201400622Y (zh) 多点回流式ic厌氧生物处理反应器
CN103922471B (zh) 一种用于燃料乙醇废水二级厌氧处理的高效厌氧反应器
CN205576158U (zh) 一种固液两阶段厌氧发酵装置
CN201080460Y (zh) 一种垂直运行的干式厌氧消化装置
CN101597561A (zh) 一种沼气提升式强化厌氧反应器及其应用
CN101007694A (zh) 酒精废水的处理方法
CN100596303C (zh) 太阳能仿生沼气反应器
CN204125315U (zh) 一种养殖场沼气发酵装置
CN201321456Y (zh) 一种高效厌氧发酵罐
CN106883984B (zh) 一种木质纤维素物料高效产甲烷装置及方法
CN102897909A (zh) 自循环厌氧反应器
CN214142052U (zh) 一种高效畜禽粪污厌氧资源化处理装置
CN201785246U (zh) 用于污水处理的caft高效厌氧生物反应器
CN203904067U (zh) 一种用于燃料乙醇废水二级厌氧处理的高效厌氧反应器
CN101974410B (zh) 五级厌氧甲烷反应器
DE202020105740U1 (de) Anaerobes Aufschlussgerät mit autarker Luftflotation zur Stärkung der Biogasproduktion
CN108314182A (zh) 一种新型uasb联合abr颗粒污泥反应器和使用方法
CN211056798U (zh) 一种同心套筒式mfbr农村污水处理装置
CN208471824U (zh) 一种兼具化粪功能的分散式户用型污水处理装置
CN201433210Y (zh) 一种沼气提升式强化厌氧反应器
CN205035213U (zh) 生物废水处理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19943707

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19943707

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC