WO2021034049A1 - 사운딩 참조 신호를 송신하는 방법 및 이를 위한 장치 - Google Patents

사운딩 참조 신호를 송신하는 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2021034049A1
WO2021034049A1 PCT/KR2020/010890 KR2020010890W WO2021034049A1 WO 2021034049 A1 WO2021034049 A1 WO 2021034049A1 KR 2020010890 W KR2020010890 W KR 2020010890W WO 2021034049 A1 WO2021034049 A1 WO 2021034049A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
resource
srs
path loss
transmission
Prior art date
Application number
PCT/KR2020/010890
Other languages
English (en)
French (fr)
Inventor
차현수
윤석현
고현수
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2021034049A1 publication Critical patent/WO2021034049A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity

Definitions

  • the present invention relates to a method for transmitting a sounding reference signal (SRS) and an apparatus therefor, and more particularly, a method for transmitting a sounding reference signal by determining a transmission power for a sounding reference signal And an apparatus therefor.
  • SRS sounding reference signal
  • next-generation 5G system which is a wireless broadband communication improved over the existing LTE system
  • NewRAT communication scenarios are classified into Enhanced Mobile BroadBand (eMBB)/Ultra-reliability and low-latency communication (URLLC)/Massive Machine-Type Communications (mMTC).
  • eMBB Enhanced Mobile BroadBand
  • URLLC low-latency communication
  • mMTC Massive Machine-Type Communications
  • eMBB is a next-generation mobile communication scenario with features such as High Spectrum Efficiency, High User Experienced Data Rate, and High Peak Data Rate
  • URLLC is a next-generation mobile communication scenario with features such as Ultra Reliable, Ultra Low Latency, and Ultra High Availability.
  • mMTC is a next-generation mobile communication scenario with characteristics of Low Cost, Low Energy, Short Packet, and Massive Connectivity. (e.g., IoT).
  • An object of the present invention is to provide a method and apparatus for transmitting a sounding reference signal.
  • a terminal to transmit a sounding reference signal (SRS) in a wireless communication system In a method for a terminal to transmit a sounding reference signal (SRS) in a wireless communication system according to an embodiment of the present invention, information on a downlink (DL) RS resource related to transmission of the SRS is received. And determining transmission power for transmitting the SRS based on whether a path loss according to information on the DL RS resource is measured, and transmitting the SRS according to the transmission power. And, the DL RS resource is related to a neighbor cell, and based on the successful measurement of the path loss according to the information on the DL RS resource, the measured value of the path loss is the determination of the transmission power. And, based on the failure to measure the path loss according to the information on the DL RS resource, information related to power setting obtained from a serving cell may be used to determine the transmission power.
  • SRS sounding reference signal
  • the SRS may not be transmitted.
  • the transmission power may be determined by applying a power offset to the SRS transmission power for the serving cell.
  • the SRS may be related to the positioning of the terminal.
  • the method may further include receiving spatial relation information related to the DL RS resource, and the spatial relation information may include information on the neighboring cell.
  • the information on the neighboring cell included in the spatial relationship information can be used to determine the transmission beam of the SRS. have.
  • a terminal for transmitting a sounding reference signal (SRS) in a wireless communication system comprising: at least one transceiver; At least one processor; And at least one memory that is operatively connected to the at least one processor and stores instructions for causing the at least one processor to perform a specific operation when executed, wherein the specific operation includes: SRS For receiving information on a downlink (DL) RS resource related to transmission of, and transmitting the SRS based on whether a path loss is measured according to the information on the DL RS resource. Determining transmission power, and transmitting the SRS according to the transmission power, the DL RS resource is related to a neighbor cell, and the path loss is measured according to the information on the DL RS resource.
  • DL downlink
  • the measurement value of the path loss is used to determine the transmission power, and based on the failure to measure the path loss according to the information on the DL RS resource, it is obtained from a serving cell.
  • Information related to the power setting to be used may be used to determine the transmission power.
  • the SRS may not be transmitted.
  • the transmission power may be determined by applying a power offset to the SRS transmission power for the serving cell.
  • the SRS may be related to the positioning of the terminal.
  • the specific operation may further include receiving spatial relation information related to the DL RS resource, and the spatial relation information may include information on the neighboring cell.
  • the information on the neighboring cell included in the spatial relationship information can be used to determine the transmission beam of the SRS. have.
  • An apparatus for transmitting a sounding reference signal (SRS) in a wireless communication system comprising: at least one transceiver; At least one processor; And at least one memory that is operatively connected to the at least one processor and stores instructions for causing the at least one processor to perform a specific operation when executed, wherein the specific operation includes: SRS For receiving information on a downlink (DL) RS resource related to transmission of, and transmitting the SRS based on whether a path loss is measured according to the information on the DL RS resource. Determining transmission power, and transmitting the SRS according to the transmission power, the DL RS resource is related to a neighbor cell, and the path loss is measured according to the information on the DL RS resource.
  • DL downlink
  • the measurement value of the path loss is used to determine the transmission power, and based on the failure to measure the path loss according to the information on the DL RS resource, it is obtained from a serving cell.
  • Information related to the power setting to be used may be used to determine the transmission power.
  • a network node to receive a sounding reference signal (SRS) in a wireless communication system
  • SRS sounding reference signal
  • information on a downlink (DL) RS resource related to transmission of an SRS is provided.
  • the DL RS resource is related to a neighbor cell
  • the DL RS resource is used for path loss measurement
  • the information on the DL RS resource The transmission power of the SRS is determined according to the measurement value of the path loss based on the success of the measurement of the path loss according to the fact that the measurement of the path loss according to the information on the DL RS resource fails. Based on this, the transmission power of the SRS may be determined according to information related to power setting for a serving cell.
  • a network node for receiving a sounding reference signal (SRS) in a wireless communication system comprising: at least one transceiver; At least one processor; And at least one memory that is operatively connected to the at least one processor and stores instructions for causing the at least one processor to perform a specific operation when executed, wherein the specific operation includes: SRS Transmits information on a downlink (DL) RS resource related to transmission of the terminal to the terminal, receives the SRS from the terminal, the DL RS resource is related to a neighbor cell, and the DL RS resource Is used to measure path loss, and based on the fact that the path loss measurement succeeds according to the information on the DL RS resource, the transmission power of the SRS is determined according to the measured value of the path loss, and the DL Based on the failure to measure the path loss according to the information on the RS resource, the transmission power of the SRS may be determined according to information related to power setting for a serving cell.
  • DL downlink
  • the transmission power of the SRS may be
  • a computer readable storage medium comprises instructions for causing the at least one processor to perform operations for a user device when executed by at least one processor.
  • One computer program is stored, and the operations include receiving information on downlink (DL) RS resources related to transmission of SRS, and measuring path loss according to information on the DL RS resources.
  • DL downlink
  • the transmission power for transmitting the SRS is determined based on whether (measurement) or not, and transmitting the SRS according to the transmission power, and the DL RS resource is related to a neighbor cell, and the DL Based on the successful measurement of the path loss according to the information on the RS resource, the measured value of the path loss is used to determine the transmission power, and the measurement of the path loss according to the information on the DL RS resource fails. Based on the point, information related to power setting obtained from a serving cell may be used to determine the transmission power.
  • the sounding reference signal can be transmitted by appropriately setting the power of the sounding reference signal.
  • FIG. 1 is a diagram showing the structure of a control plane and a user plane of a radio interface protocol between a terminal and an E-UTRAN based on a 3GPP radio access network standard.
  • FIG. 2 is a diagram illustrating physical channels used in a 3GPP system and a general signal transmission method using them.
  • FIG. 3 shows an example in which a PRS (Positioning Reference Signal) is mapped in an LTE system.
  • PRS Positioning Reference Signal
  • 4 to 5 are diagrams for explaining the architecture of a system for measuring the location of the UE and a procedure for measuring the location of the UE.
  • LTP LTE Positioning Protocol
  • FIG. 7 is a diagram showing an example of a protocol layer for supporting NRPPa (NR Positioning Protocol A) PDU (Protocol Data Unit) transmission.
  • NRPPa NR Positioning Protocol A
  • PDU Protocol Data Unit
  • FIG. 8 is a diagram for explaining an embodiment of an OTDOA (Observed Time Difference Of Arrival) positioning method.
  • OTDOA Observed Time Difference Of Arrival
  • FIG. 9 is a diagram for explaining an embodiment of a multi-RTT (round trip time) positioning method.
  • 10 is a diagram for describing an embodiment of a procedure for controlling uplink transmission power.
  • 11 to 12 are diagrams for explaining an example of implementing operations of a terminal and a network node according to an embodiment of the present invention.
  • FIG. 13 shows an example of a communication system to which embodiments of the present disclosure are applied.
  • FIG. 18 shows an example of a location server to which embodiments of the present disclosure are applied.
  • the name of the base station may be used as a generic term including a remote radio head (RRH), an eNB, a transmission point (TP), a reception point (RP), a relay, and the like.
  • RRH remote radio head
  • TP transmission point
  • RP reception point
  • relay a relay
  • 3GPP-based communication standards include downlink physical channels corresponding to resource elements carrying information originating from higher layers, and downlink corresponding to resource elements used by the physical layer but not carrying information originating from higher layers.
  • Physical signals are defined.
  • PBCH physical broadcast channel
  • PMCH physical multicast channel
  • PHICH physical control format indicator channel
  • PHICH physical hybrid ARQ indicator channel
  • a reference signal also referred to as a pilot, refers to a signal of a predefined special waveform that the gNB and the UE know each other, for example, cell specific RS (RS), UE- Specific RS (UE-specific RS, UE-RS), positioning RS (positioning RS, PRS), and channel state information RS (channel state information RS, CSI-RS) are defined as downlink reference signals.
  • RS cell specific RS
  • UE-specific RS UE-specific RS
  • UE-RS positioning RS
  • channel state information RS channel state information RS
  • CSI-RS channel state information RS
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • PRACH physical random access channel
  • DMRS demodulation reference signal
  • SRS sounding reference signal
  • PDCCH Physical Downlink Control CHannel
  • PCFICH Physical Control Format Indicator CHannel
  • PHICH Physical Hybrid automatic retransmit request Indicator CHannel
  • PDSCH Physical Downlink Shared CHannel
  • DCI Downlink Control Information
  • CFI Control Format Indicator
  • Downlink ACK / NACK ACKnowlegement / Negative ACK
  • PUCCH Physical Uplink Control CHannel
  • PUSCH Physical Uplink Shared CHannel
  • PRACH Physical Random Access CHannel
  • UCI uplink control information
  • PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH allocated to or belonging to a time-frequency resource or resource element (RE), respectively, PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH RE or PDCCH It is referred to as /PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH resource
  • the expression that the user equipment transmits PUCCH/PUSCH/PRACH is, respectively, uplink control information/uplink data on or through PUSCH/PUCCH/PRACH.
  • /It is used in the same meaning as that of transmitting a random access signal.
  • the expression that gNB transmits PDCCH/PCFICH/PHICH/PDSCH is on the PDCCH/PCFICH/PHICH/PDSCH, respectively. It is used in the same meaning as transmitting downlink data/control information through or through.
  • CRS/DMRS/CSI-RS/SRS/UE-RS are allocated or configured OFDM symbols/subcarriers/REs are CRS/DMRS/CSI-RS/SRS/UE-RS symbols/carriers. It is called /subcarrier/RE.
  • an OFDM symbol to which a tracking RS (TRS) is allocated or configured is referred to as a TRS symbol
  • a subcarrier to which a TRS is allocated or configured is referred to as a TRS subcarrier
  • a TRS is allocated.
  • the configured RE is referred to as TRS RE.
  • a subframe configured for TRS transmission is referred to as a TRS subframe.
  • a subframe in which a broadcast signal is transmitted is referred to as a broadcast subframe or a PBCH subframe
  • a subframe in which a synchronization signal (eg, PSS and/or SSS) is transmitted is a synchronization signal subframe or a PSS/SSS subframe. It is called.
  • An OFDM symbol/subcarrier/RE to which PSS/SSS is assigned or configured is referred to as PSS/SSS symbol/subcarrier/RE, respectively.
  • a CRS port, a UE-RS port, a CSI-RS port, and a TRS port respectively refer to an antenna port configured to transmit a CRS, an antenna port configured to transmit a UE-RS, Refers to an antenna port configured to transmit CSI-RS and an antenna port configured to transmit TRS.
  • the antenna ports configured to transmit CRSs can be distinguished from each other by the positions of the REs occupied by the CRS according to the CRS ports, and the antenna ports configured to transmit UE-RSs are UE -According to the RS ports, the positions of the REs occupied by the UE-RS can be divided, and the antenna ports configured to transmit CSI-RSs are occupied by the CSI-RS according to the CSI-RS ports.
  • CRS/UE-RS/CSI-RS/TRS port is also used as a term to mean a pattern of REs occupied by CRS/UE-RS/CSI-RS/TRS within a certain resource area.
  • Machine learning refers to the field of researching methodologies to define and solve various problems dealt with in the field of artificial intelligence. do.
  • Machine learning is also defined as an algorithm that improves the performance of a task through continuous experience.
  • An artificial neural network is a model used in machine learning, and may refer to an overall model with problem-solving capabilities, composed of artificial neurons (nodes) that form a network by combining synapses.
  • the artificial neural network may be defined by a connection pattern between neurons of different layers, a learning process for updating model parameters, and an activation function for generating an output value.
  • the artificial neural network may include an input layer, an output layer, and optionally one or more hidden layers. Each layer includes one or more neurons, and the artificial neural network may include neurons and synapses connecting neurons. In an artificial neural network, each neuron can output a function of an activation function for input signals, weights, and biases input through synapses.
  • Model parameters refer to parameters determined through learning, and include weights of synaptic connections and biases of neurons.
  • hyperparameters refer to parameters that must be set before learning in a machine learning algorithm, and include a learning rate, iteration count, mini-batch size, and initialization function.
  • the purpose of learning artificial neural networks can be seen as determining model parameters that minimize the loss function.
  • the loss function can be used as an index to determine an optimal model parameter in the learning process of the artificial neural network.
  • Machine learning can be classified into supervised learning, unsupervised learning, and reinforcement learning according to the learning method.
  • Supervised learning refers to a method of training an artificial neural network when a label for training data is given, and a label indicates the correct answer (or result value) that the artificial neural network should infer when training data is input to the artificial neural network. It can mean.
  • Unsupervised learning may refer to a method of training an artificial neural network in a state where a label for training data is not given.
  • Reinforcement learning may mean a learning method in which an agent defined in a certain environment learns to select an action or action sequence that maximizes the cumulative reward in each state.
  • machine learning implemented as a deep neural network (DNN) including a plurality of hidden layers is sometimes referred to as deep learning (deep learning), and deep learning is a part of machine learning.
  • DNN deep neural network
  • machine learning is used in the sense including deep learning.
  • a robot may refer to a machine that automatically processes or operates a task given by its own capabilities.
  • a robot having a function of recognizing the environment and performing an operation by self-determining may be referred to as an intelligent robot.
  • Robots can be classified into industrial, medical, household, military, etc. depending on the purpose or field of use.
  • the robot may be provided with a driving unit including an actuator or a motor to perform various physical operations such as moving a robot joint.
  • a driving unit including an actuator or a motor to perform various physical operations such as moving a robot joint.
  • the movable robot includes a wheel, a brake, a propeller, etc. in a driving unit, and can travel on the ground or fly in the air through the driving unit.
  • Autonomous driving refers to self-driving technology
  • autonomous driving vehicle refers to a vehicle that is driven without a user's manipulation or with a user's minimal manipulation.
  • a technology that maintains a driving lane a technology that automatically adjusts the speed such as adaptive cruise control, a technology that automatically drives along a specified route, and a technology that automatically sets a route when a destination is set, etc. All of these can be included.
  • the vehicle includes all vehicles including only an internal combustion engine, a hybrid vehicle including an internal combustion engine and an electric motor, and an electric vehicle including only an electric motor, and may include a train, a motorcycle, etc.
  • the autonomous vehicle can be viewed as a robot having an autonomous driving function.
  • Extended reality is a generic term for virtual reality (VR), augmented reality (AR), and mixed reality (MR).
  • VR technology provides only CG images of real world objects or backgrounds
  • AR technology provides virtually created CG images on top of real object images
  • MR technology is a computer that mixes and combines virtual objects in the real world. It is a graphic technology.
  • MR technology is similar to AR technology in that it shows real and virtual objects together.
  • virtual objects are used in a form that complements real objects
  • MR technology virtual objects and real objects are used with equal characteristics.
  • XR technology can be applied to HMD (Head-Mount Display), HUD (Head-Up Display), mobile phones, tablet PCs, laptops, desktops, TVs, digital signage, etc., and devices applied with XR technology are XR devices. It can be called as.
  • HMD Head-Mount Display
  • HUD Head-Up Display
  • mobile phones tablet PCs, laptops, desktops, TVs, digital signage, etc.
  • devices applied with XR technology are XR devices. It can be called as.
  • the three main requirements areas for 5G are (1) Enhanced Mobile Broadband (eMBB) area, (2) Massive Machine Type Communication (mMTC) area, and (3) ultra-reliability and It includes a low-latency communication (Ultra-reliable and Low Latency Communications, URLLC) area.
  • eMBB Enhanced Mobile Broadband
  • mMTC Massive Machine Type Communication
  • URLLC Low Latency Communications
  • KPI key performance indicator
  • eMBB goes far beyond basic mobile Internet access, covering rich interactive work, media and entertainment applications in the cloud or augmented reality.
  • Data is one of the key drivers of 5G, and it may not be possible to see dedicated voice services for the first time in the 5G era.
  • voice is expected to be processed as an application program simply using the data connection provided by the communication system.
  • the main reasons for the increased traffic volume are an increase in content size and an increase in the number of applications requiring high data rates.
  • Streaming services (audio and video), interactive video and mobile Internet connections will become more widely used as more devices connect to the Internet. Many of these applications require always-on connectivity to push real-time information and notifications to the user.
  • Cloud storage and applications are increasing rapidly in mobile communication platforms, which can be applied to both work and entertainment.
  • cloud storage is a special use case that drives the growth of the uplink data rate.
  • 5G is also used for remote work in the cloud, and requires much lower end-to-end delays to maintain a good user experience when tactile interfaces are used.
  • Entertainment For example, cloud gaming and video streaming is another key factor that is increasing the demand for mobile broadband capabilities. Entertainment is essential on smartphones and tablets anywhere, including high mobility environments such as trains, cars and airplanes.
  • Another use case is augmented reality and information retrieval for entertainment.
  • augmented reality requires very low latency and an instantaneous amount of data.
  • one of the most anticipated 5G use cases relates to the ability to seamlessly connect embedded sensors in all fields, i.e. mMTC.
  • mMTC massive machine type computer
  • Industrial IoT is one of the areas where 5G plays a major role in enabling smart cities, asset tracking, smart utilities, agriculture and security infrastructure.
  • URLLC includes new services that will transform the industry with ultra-reliable/low-latency links such as self-driving vehicles and remote control of critical infrastructure.
  • the level of reliability and delay is essential for smart grid control, industrial automation, robotics, drone control and coordination.
  • 5G can complement fiber-to-the-home (FTTH) and cable-based broadband (or DOCSIS) as a means of providing streams rated at hundreds of megabits per second to gigabits per second. This high speed is required to deliver TVs in 4K or higher (6K, 8K and higher) resolutions as well as virtual and augmented reality.
  • Virtual Reality (VR) and Augmented Reality (AR) applications involve almost immersive sports events. Certain application programs may require special network settings. In the case of VR games, for example, game companies may need to integrate core servers with network operators' edge network servers to minimize latency.
  • Automotive is expected to be an important new driving force in 5G, with many use cases for mobile communication to vehicles. For example, entertainment for passengers demands simultaneous high capacity and high mobility mobile broadband. The reason is that future users will continue to expect high-quality connections, regardless of their location and speed.
  • Another application example in the automotive field is an augmented reality dashboard. It identifies an object in the dark on top of what the driver is looking through the front window, and displays information that tells the driver about the distance and movement of the object overlaid.
  • wireless modules enable communication between vehicles, exchange of information between the vehicle and supporting infrastructure, and exchange of information between the vehicle and other connected devices (eg, devices carried by pedestrians).
  • the safety system allows the driver to lower the risk of accidents by guiding alternative courses of action to make driving safer.
  • the next step will be a remote controlled or self-driven vehicle. It is very reliable and requires very fast communication between different self-driving vehicles and between the vehicle and the infrastructure. In the future, self-driving vehicles will perform all driving activities, and drivers will be forced to focus only on traffic anomalies that the vehicle itself cannot identify.
  • the technical requirements of self-driving vehicles call for ultra-low latency and ultra-fast reliability to increase traffic safety to levels unachievable by humans.
  • Smart cities and smart homes referred to as smart society, will be embedded with high-density wireless sensor networks.
  • a distributed network of intelligent sensors will identify the conditions for cost and energy-efficient maintenance of a city or home.
  • a similar setup can be done for each household.
  • Temperature sensors, window and heating controllers, burglar alarms and appliances are all wirelessly connected. Many of these sensors are typically low data rates, low power and low cost. However, for example, real-time HD video may be required in certain types of devices for surveillance.
  • the smart grid interconnects these sensors using digital information and communication technologies to collect information and act accordingly. This information can include the behavior of suppliers and consumers, allowing smart grids to improve efficiency, reliability, economics, sustainability of production and the distribution of fuels such as electricity in an automated way.
  • the smart grid can also be viewed as another low-latency sensor network.
  • the health sector has many applications that can benefit from mobile communications.
  • the communication system can support telemedicine providing clinical care from remote locations. This can help reduce barriers to distance and improve access to medical services that are not consistently available in remote rural areas. It is also used to save lives in critical care and emergencies.
  • a wireless sensor network based on mobile communication may provide remote monitoring and sensors for parameters such as heart rate and blood pressure.
  • Wireless and mobile communications are becoming increasingly important in industrial applications. Wiring is expensive to install and maintain. Thus, the possibility of replacing cables with reconfigurable wireless links is an attractive opportunity for many industries. However, achieving this requires that the wireless connection operates with a delay, reliability and capacity similar to that of the cable, and its management is simplified. Low latency and very low error probability are new requirements that need to be connected to 5G.
  • Logistics and freight tracking are important use cases for mobile communications that enable tracking of inventory and packages from anywhere using location-based information systems. Logistics and freight tracking use cases typically require low data rates, but require a wide range and reliable location information.
  • the control plane refers to a path through which control messages used by a user equipment (UE) and a network to manage a call are transmitted.
  • the user plane refers to a path through which data generated in the application layer, for example, voice data or Internet packet data, is transmitted.
  • the first layer provides an information transfer service to an upper layer using a physical channel.
  • the physical layer is connected to the upper medium access control layer through a transmission channel (transport channel). Data is transferred between the medium access control layer and the physical layer through the transmission channel. Data moves between the physical layers of the transmitting side and the receiving side through a physical channel.
  • the physical channel uses time and frequency as radio resources. Specifically, a physical channel is modulated in an Orthogonal Frequency Division Multiple Access (OFDMA) scheme in downlink and a single carrier frequency division multiple access (SC-FDMA) scheme in uplink.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA single carrier frequency division multiple access
  • the medium access control (MAC) layer of the second layer provides a service to an upper layer, the Radio Link Control (RLC) layer, through a logical channel.
  • the RLC layer of the second layer supports reliable data transmission.
  • the function of the RLC layer may be implemented as a functional block inside the MAC.
  • the PDCP (Packet Data Convergence Protocol) layer of the second layer performs a header compression function that reduces unnecessary control information in order to efficiently transmit IP packets such as IPv4 or IPv6 over a narrow bandwidth wireless interface.
  • the radio resource control (RRC) layer located at the bottom of the third layer is defined only in the control plane.
  • the RRC layer is in charge of controlling logical channels, transmission channels, and physical channels in relation to configuration, re-configuration, and release of radio bearers.
  • the radio bearer refers to a service provided by the second layer for data transmission between the terminal and the network.
  • the UE and the RRC layer of the network exchange RRC messages with each other. If there is an RRC connection (RRC Connected) between the terminal and the RRC layer of the network, the terminal is in an RRC connected state (Connected Mode), otherwise it is in the RRC idle state (Idle Mode).
  • the NAS (Non-Access Stratum) layer above the RRC layer performs functions such as session management and mobility management.
  • the downlink transmission channel for transmitting data from the network to the terminal includes a broadcast channel (BCH) that transmits system information, a paging channel (PCH) that transmits paging messages, and a downlink shared channel (SCH) that transmits user traffic or control messages. have.
  • BCH broadcast channel
  • PCH paging channel
  • SCH downlink shared channel
  • a downlink multicast or broadcast service traffic or control message it may be transmitted through a downlink SCH or a separate downlink multicast channel (MCH).
  • RACH random access channel
  • SCH uplink shared channel
  • BCCH Broadcast Control Channel
  • PCCH Paging Control Channel
  • CCCH Common Control Channel
  • MCCH Multicast Control Channel
  • MTCH Multicast. Traffic Channel
  • FIG. 2 is a diagram illustrating physical channels used in a 3GPP system and a general signal transmission method using them.
  • the terminal When the terminal is powered on or newly enters a cell, the terminal performs an initial cell search operation such as synchronizing with the base station (S201). To this end, the UE receives a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station to synchronize with the base station and obtain information such as cell ID. have. Thereafter, the terminal may receive a physical broadcast channel from the base station to obtain intra-cell broadcast information. Meanwhile, the UE may check the downlink channel state by receiving a downlink reference signal (DL RS) in the initial cell search step.
  • P-SCH Primary Synchronization Channel
  • S-SCH Secondary Synchronization Channel
  • the terminal may receive a physical broadcast channel from the base station to obtain intra-cell broadcast information. Meanwhile, the UE may check the downlink channel state by receiving a downlink reference signal (DL RS) in the initial cell search step.
  • DL RS downlink reference signal
  • the UE After completing the initial cell search, the UE acquires more detailed system information by receiving a Physical Downlink Control Channel (PDCCH) and a Physical Downlink Control Channel (PDSCH) according to the information carried on the PDCCH. It can be done (S202).
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Control Channel
  • the terminal may perform a random access procedure (RACH) for the base station (steps S203 to S206).
  • RACH random access procedure
  • the UE transmits a specific sequence as a preamble through a physical random access channel (PRACH) (S203 and S205), and may receive a response message for the preamble through a PDCCH and a corresponding PDSCH ( S204 and S206).
  • PRACH physical random access channel
  • a contention resolution procedure may be additionally performed.
  • the UE receives PDCCH/PDSCH (S207) and Physical Uplink Shared Channel (PUSCH)/Physical Uplink Control Channel as a general uplink/downlink signal transmission procedure.
  • Control Channel; PUCCH) transmission (S208) may be performed.
  • the terminal receives downlink control information (DCI) through the PDCCH.
  • DCI downlink control information
  • the DCI includes control information such as resource allocation information for the terminal, and the format is different according to the purpose of use.
  • the control information transmitted by the terminal to the base station through the uplink or received from the base station by the terminal is a downlink/uplink ACK/NACK signal, a channel quality indicator (CQI), a precoding matrix index (PMI), a rank indicator (RI). ), etc.
  • the terminal may transmit control information such as CQI/PMI/RI described above through PUSCH and/or PUCCH.
  • the NR system is considering a method of using a high ultra-high frequency band, that is, a millimeter frequency band of 6 GHz or higher to transmit data while maintaining a high transmission rate to a large number of users using a wide frequency band.
  • a high ultra-high frequency band that is, a millimeter frequency band of 6 GHz or higher
  • this is used under the name NR, and in the present invention, it will be referred to as an NR system.
  • Positioning may mean determining a geographic location and/or speed of a UE by measuring a radio signal.
  • the location information may be requested by a client (eg, an application) related to the UE and reported to the client.
  • the location information may be included in a core network or may be requested by a client connected to the core network.
  • the location information may be reported in a standard format such as cell-based or geographic coordinates, and in this case, an estimation error value for the location and speed of the UE and/or a positioning method used for positioning may be reported together. I can.
  • PRS Positioning Reference Signal
  • PRS is a reference signal used for location estimation of the UE.
  • the PRS may be transmitted only in a downlink subframe (hereinafter, referred to as'Positioning Subframe') configured for PRS transmission.
  • the MBSFN (Multimedia broadcast single frequency network) subframe and the non-MBSFN subframe are set as a positioning subframe
  • the Orthogonal Frequency Division Multiplexing (OFDM) symbols of the MBSFN subframe are the same as subframe #0 CP ( Cyclic Prefix).
  • OFDM symbols set for the PRS in the MBSFN subframe may have an extended CP.
  • n_s denotes a slot number within a radio frame
  • l denotes an OFDM symbol number within the slot.
  • c(i) is a Pseudo-Random sequence and may be initialized according to [Equation 2] below.
  • N_cp is 1 in the general CP (Cyclic Prefix) and 0 in the extended CP.
  • FIG. 3 shows an example of a pattern in which a PRS is mapped in a subframe. As shown in FIG. 3, the PRS may be transmitted through antenna port 6.
  • FIG. 3(a) shows an example in which a PRS is mapped in a general CP
  • FIG. 3(b) shows an example in which a PRS is mapped in an extended CP.
  • the PRS may be transmitted in consecutive subframes grouped for position estimation.
  • the grouped subframes for position estimation are referred to as Positioning Occasion.
  • This positioning opportunity may consist of 1, 2, 4 or 6 subframes.
  • such a positioning opportunity may occur periodically in a period of 160, 320, 640, or 1280 subframes.
  • a cell-specific subframe offset value for indicating a start subframe of PRS transmission may be defined, and the offset value and a period of a positioning opportunity for PRS transmission are as shown in Table 1 below, and a PRS configuration index ( Configuration Index).
  • the PRS included in each positioning opportunity is transmitted with a constant power.
  • a PRS may be transmitted with zero power at a specific positioning opportunity, which is referred to as PRS muting. For example, by muting the PRS transmitted from the serving cell, the UE can easily detect the PRS of the adjacent cell.
  • the PRS muting configuration for the cell may be defined by a periodic muting sequence consisting of 2, 4, 8 or 16 positioning opportunities. That is, the periodic muting sequence may be composed of 2, 4, 8, or 16 bits according to positioning opportunities corresponding to the PRS muting setting, and each bit may have a value of '0' or '1'. For example, PRS muting may be performed at a positioning opportunity in which the bit value is '0'.
  • the positioning subframe is designed as a low interference subframe, data is not transmitted in the positioning subframe. Therefore, although the PRS may be interfered by the PRS of another cell, it is not interfered by data transmission.
  • NG-RAN Next Generation-Radio Access Network
  • E-UTRAN E-UTRAN
  • AMF Core Access and Mobility Management Function
  • the LMF may process the location service request and return a processing result including the estimated location of the UE to the AMF.
  • the AMF may transmit the processing result received from the LMF to another entity.
  • ng-eNB new generation evolved-NB
  • gNB are network elements of NG-RAN that can provide measurement results for location estimation, and can measure radio signals for target UEs and deliver the results to LMF.
  • the ng-eNB may control several TPs (transmission points) such as remote radio heads or PRS-only TPs supporting a PRS-based beacon system for E-UTRA.
  • the LMF is connected to the E-SMLC (Enhanced Serving Mobile Location Center), and the E-SMLC may enable the LMF to access the E-UTRAN.
  • E-SMLC is OTDOA, one of the E-UTRAN positioning methods using downlink measurement obtained by the target UE through signals transmitted from the eNB and/or PRS-only TPs in the E-UTRAN by the LMF. (Observed Time Difference Of Arrival) can be supported.
  • the LMF may be connected to the SLP (SUPL Location Platform).
  • the LMF can support and manage different location services for target UEs.
  • the LMF may interact with a serving ng-eNB or a serving gNB for a target UE in order to obtain a location measurement of the UE.
  • the LMF uses a location service (LCS) client type, a required QoS (Quality of Service), a UE positioning capabilities, a gNB positioning capability, and a ng-eNB positioning capability. Determine and apply this positioning method to the serving gNB and/or serving ng-eNB.
  • the LMF may determine a location estimate for the target UE and additional information such as location estimation and speed accuracy.
  • SLP is a Secure User Plane Location (SUPL) entity that is responsible for positioning through a user plane.
  • SUPL Secure User Plane Location
  • the UE can measure downlink signals through sources such as NG-RAN and E-UTRAN, different GNSS (Global Navigation Satellite System), TBS (Terrestrial Beacon System), WLAN access point, Bluetooth beacon, and UE barometric pressure sensor.
  • sources such as NG-RAN and E-UTRAN, different GNSS (Global Navigation Satellite System), TBS (Terrestrial Beacon System), WLAN access point, Bluetooth beacon, and UE barometric pressure sensor.
  • the UE may include an LCS application, and may access the LCS application through communication with a network to which the UE is connected or other applications included in the UE.
  • the LCS application may include the measurement and calculation functions required to determine the location of the UE.
  • the UE may include an independent positioning function such as a Global Positioning System (GPS), and may report the location of the UE independently of NG-RAN transmission.
  • GPS Global Positioning System
  • Such independently obtained positioning information may be used as auxiliary information of positioning information obtained from a network.
  • FIG. 5 shows an example implementation of a network for measuring the location of a UE.
  • CM-IDLE Connection Management-IDLE
  • the AMF receives a location service request
  • the AMF establishes a signaling connection with the UE and provides a network trigger service to allocate a specific serving gNB or ng-eNB. Can be requested.
  • This operation process is omitted in FIG. 5. That is, in FIG. 5, it may be assumed that the UE is in a connected mode. However, for reasons such as signaling and data inactivity, the signaling connection may be released by the NG-RAN while the positioning process is in progress.
  • a 5GC entity such as GMLC may request a location service for measuring the location of the target UE with a serving AMF.
  • the serving AMF may determine that the location service for measuring the location of the target UE is required. For example, in order to measure the location of the UE for an emergency call, the serving AMF may directly determine to perform location service.
  • the AMF transmits a location service request to the LMF according to step 2, and according to step 3a, the LMF serves location procedures for obtaining location measurement data or location measurement assistance data ng-eNB, You can start with serving gNB.
  • the LMF may request location-related information related to one or more UEs from the NG-RAN, and may indicate a type of required location information and related QoS.
  • the NG-RAN may transmit location-related information to the LMF to the LMF in response to the request.
  • the location determination method according to the request is E-CID
  • the NG-RAN may transmit additional location-related information to the LMF through one or more NRPPa messages.
  • location-related information may mean actual location estimation information and all values used for location calculation, such as wireless measurement or location measurement.
  • the protocol used in step 3a may be the NRPPa protocol, which will be described later.
  • the LMF may initiate location procedures for downlink positioning together with the UE.
  • the LMF may transmit location assistance data to the UE or obtain a location estimate or location measurement.
  • a capability transfer process may be performed.
  • the LMF may request capability information from the UE, and the UE may transmit capability information to the LMF.
  • the capability information refers to various aspects of a specific location measurement method, such as information on a location measurement method that can be supported by LFM or UE, and various types of assistance data for A-GNSS.
  • the UE may provide capability information to the LMF.
  • an Assistance data transfer process may be performed in step 3b.
  • the UE may request location assistance data from the LMF, and may instruct the LMF of specific location assistance data required. Then, the LMF may transmit the location assistance data corresponding thereto to the UE, and additionally, may transmit additional assistance data to the UE through one or more additional LPP messages.
  • the location assistance data transmitted from the LMF to the UE may be transmitted through a unicast method, and in some cases, without the UE requesting the assistance data from the LMF, the LMF provides the location assistance data and/or Alternatively, additional auxiliary data may be transmitted to the UE.
  • a location information exchange process may be performed in step 3b.
  • the LMF may request the UE for location-related information related to the UE, and may indicate a type of required location information and related QoS. Then, the UE may transmit location-related information to the LMF to the LMF in response to the request. In this case, the UE may additionally transmit additional location-related information to the LMF through one or more LPP messages.
  • 'location-related information' may mean all values used for location calculation, such as actual location estimation information and radio measurement or location measurement, and is typically a UE from a plurality of NG-RANs and/or E-UTRANs.
  • RSTD Reference Signal Time Difference
  • step 3b is performed in the order of a capability transfer process, a location assistance data transfer process, and a location information transfer process, but is not limited to this sequence.
  • step 3b is independent of any specific order to improve the flexibility of the position measurement.
  • the UE may request location assistance data at any time to perform a location measurement request already requested by the LMF.
  • the LMF may request location information such as a location measurement value or a location estimate at any time.
  • the UE does not perform measurement for location estimation, it can transmit capability information to the LMF at any time.
  • an error message may be transmitted and received, and an Abort message for stopping position measurement may be transmitted and received.
  • the protocol used in step 3b may be an LPP protocol, which will be described later.
  • step 3b may be additionally performed after step 3a is performed, but may be performed instead of step 3a.
  • the LMF may provide a location service response to the AMF.
  • the location service response may include information on whether or not location estimation of the UE is successful and an estimate of the location of the UE.
  • the AMF may transmit a location service response to a 5GC entity such as GMLC, and if the procedure of FIG. 5 is initiated by step 1b, the AMF is In order to provide a service, a location service response may be used.
  • LTP LTE Positioning Protocol
  • the LPP PDU may be transmitted through a NAS PDU between the MAF and the UE.
  • the LPP is a target device (e.g., a UE in a control plane or a SET (SUPL Enabled Terminal) in a user plane) and a location server (e.g., LMF in the control plane or SLP in the user plane). ) Can be terminated.
  • the LPP message may be delivered in the form of a transparent PDU through an intermediate network interface using an appropriate protocol such as NGAP through the NG-C interface, LTE-Uu and NAS/RRC through the NR-Uu interface.
  • the LPP protocol enables positioning for NR and LTE using a variety of positioning methods.
  • the target device and the location server may exchange capability information, auxiliary data for positioning, and/or location information.
  • error information exchange and/or an instruction to stop the LPP procedure may be performed through the LPP message.
  • NRPPa can be used for information exchange between the NG-RAN node and the LMF. Specifically, NRPPa may exchange E-CID for measurement transmitted from ng-eNB to LMF, data to support OTDOA positioning method, Cell-ID and Cell location ID for NR Cell ID positioning method, and the like.
  • the AMF can route NRPPa PDUs based on the routing ID of the associated LMF through the NG-C interface, even if there is no information on the associated NRPPa transaction.
  • the procedures of the NRPPa protocol for location and data collection can be divided into two types.
  • the first type is a UE associated procedure for delivering information on a specific UE (eg, location measurement information, etc.)
  • the second type is information applicable to the NG-RAN node and related TPs ( For example, it is a non-UE associated procedure for delivering gNB/ng-eNG/TP timing information, etc.).
  • the above two types of procedures may be supported independently or may be supported simultaneously.
  • the positioning methods supported by NG-RAN include GNSS, OTDOA, E-CID (enhanced cell ID), barometric pressure sensor positioning, WLAN positioning, Bluetooth positioning, terrestrial beacon system (TBS), and Uplink Time Difference of Arrival (UTDOA).
  • GNSS Global System for Mobile Communications
  • OTDOA enhanced cell ID
  • E-CID enhanced cell ID
  • barometric pressure sensor positioning
  • WLAN positioning
  • Bluetooth positioning
  • TBS terrestrial beacon system
  • UTDOA Uplink Time Difference of Arrival
  • UTDOA Uplink Time Difference of Arrival
  • the OTDOA positioning method uses the timing of measurement of downlink signals received from a plurality of TPs including an eNB, an ng-eNB and a PRS dedicated TP by the UE.
  • the UE measures the timing of the received downlink signals by using the location assistance data received from the location server.
  • the location of the UE may be determined based on the measurement result and the geographical coordinates of neighboring TPs.
  • the UE connected to the gNB may request a measurement gap for OTDOA measurement from the TP. If the UE does not recognize the SFN for at least one TP in the OTDOA assistance data, the UE requests an OTDOA reference cell before requesting a measurement gap for performing RSTD (Reference Signal Time Difference) measurement.
  • RSTD Reference Signal Time Difference
  • An autonomous gap can be used to obtain the SFN of.
  • the RSTD may be defined based on the smallest relative time difference between the boundaries of the two subframes each received from the reference cell and the measurement cell. That is, it may be calculated based on a relative time difference between the start times of the subframes of the reference cell closest to the start times of the subframes received from the measurement cell. Meanwhile, the reference cell may be selected by the UE.
  • TOA time of arrival
  • RSTD time of arrival
  • TP 1-TP 2 and TP 3 measure TOA for each of TP 1, TP 2 and TP 3
  • RSTD for TP 1-TP 2 measure TOA for each of TP 1, TP 2 and TP 3
  • RSTD for TP 1-TP 2 measure TOA for each of TP 1, TP 2 and TP 3
  • TP 3-TP 1 RSTD for RSTD may be calculated
  • a geometric hyperbola may be determined based on this
  • a point at which such hyperbola intersect may be estimated as the location of the UE.
  • the estimated UE location may be known as a specific range according to measurement uncertainty.
  • the RSTD for two TPs may be calculated based on [Equation 3] below.
  • Is the (unknown) coordinate of the target UE Is the coordinates of the (known) TP, May be the coordinates of the reference TP (or other TP).
  • Is a transmission time offset between the two TPs and may be referred to as “Real Time Differences” (RTDs)
  • RTDs Real Time Differences
  • n_i and n_1 may indicate values for UE TOA measurement errors.
  • the location of the UE can be measured through geographic information of the serving ng-eNB, serving gNB and/or serving cell of the UE.
  • geographic information of a serving ng-eNB, a serving gNB and/or a serving cell may be obtained through paging, registration, or the like.
  • the E-CID positioning method may use additional UE measurement and/or NG-RAN radio resources to improve the UE position estimate in addition to the CID positioning method.
  • some of the same measurement methods as the RRC protocol measurement control system may be used, but in general, additional measurements are not performed only for the location measurement of the UE.
  • a separate measurement configuration or measurement control message may not be provided, and the UE does not expect that an additional measurement operation only for location measurement is requested.
  • the UE may report a measurement value obtained through generally measurable measurement methods.
  • the serving gNB may implement the E-CID positioning method using E-UTRA measurements provided from the UE.
  • measurement elements that can be used for E-CID positioning may be as follows.
  • E-UTRA RSRP Reference Signal Received Power
  • E-UTRA RSRQ Reference Signal Received Quality
  • UE E-UTRA Rx-Tx Time difference GERAN/WLAN RSSI (Reference Signal Strength) Indication
  • UTRAN CPICH Common Pilot Channel
  • RSCP Receiveived Signal Code Power
  • ng-eNB receive-transmit time difference (Rx-Tx Time difference), Timing Advance (T_ADV), Angle of Arrival (AoA)
  • T_ADV may be classified into Type 1 and Type 2 as follows.
  • T_ADV Type 1 (ng-eNB receive-transmit time difference)+(UE E-UTRA receive-transmit time difference)
  • T_ADV Type 2 ng-eNB receive-transmit time difference
  • AoA can be used to measure the direction of the UE.
  • AoA may be defined as an estimated angle for the location of the UE in a counterclockwise direction from the base station/TP. In this case, the geographical reference direction may be north.
  • the base station/TP may use an uplink signal such as a sounding reference signal (SRS) and/or a demodulation reference signal (DMRS) for AoA measurement.
  • SRS sounding reference signal
  • DMRS demodulation reference signal
  • the larger the array of antenna arrays the higher the measurement accuracy of AoA.
  • signals received from adjacent antenna elements may have a constant phase-rotate phase.
  • UTDOA is a method of determining the location of the UE by estimating the arrival time of the SRS.
  • the serving cell is used as a reference cell, and the location of the UE may be estimated through the difference in the arrival time from another cell (or base station/TP).
  • the E-SMLC may indicate a serving cell of the target UE in order to indicate SRS transmission to the target UE.
  • the E-SMLC may provide configurations such as periodic/aperiodic SRS, bandwidth and frequency/group/sequence hopping.
  • Multi-cell RTT Multi-cell RTT
  • RTT is based on TOA measurements, like OTDOA, but coarse TRP (e.g. , Base station) Only timing synchronization is required.
  • FIG. 9 is a diagram for explaining an embodiment of a multi-RTT (round trip time) positioning method.
  • an RTT process is illustrated in which TOA measurement is performed in an initiating device and a responding device, and the responding device provides TOA measurement to an initiating device for RTT measurement (calculation).
  • the initiating device may be a TRP and/or a terminal
  • the responding device may be a terminal and/or a TRP.
  • the initiating device transmits an RTT measurement request, and the responding device may receive it.
  • the initiating device may transmit the RTT measurement signal at t0, and the responding device may acquire the TOA measurement t1.
  • the responding device may transmit the RTT measurement signal at t2, and the initiating device may acquire the TOA measurement t3.
  • the responding device may transmit information on [t2-t1], and the initiating device may receive the information and calculate the RTT based on Equation 4 below.
  • the information may be transmitted/received based on a separate signal, or included in the RTT measurement signal of 905 to be transmitted/received.
  • the RTT may correspond to a double-range measurement between two devices. Positioning estimation may be performed from the corresponding information, and a multilateration technique may be used. Based on the measured RTT, d1, d2, d3 can be determined, and the target device location can be determined as the intersection point of the circumference centered on each BS1, BS2, BS3 (or TRP) and each d1, d2, d3 as the radius. have.
  • the transmission power control method is a requirement (e.g., Signal-to-Noise Ratio (SNR), Bit Error Ratio (BER)), Block Error Ratio (BLER) of a base station (e.g., gNB, eNB, etc.) Etc.).
  • SNR Signal-to-Noise Ratio
  • BER Bit Error Ratio
  • BLER Block Error Ratio
  • Power control as described above may be performed by an open-loop power control method and a closed-loop power control method.
  • the open-loop power control method is a method of controlling transmission power without feedback from a transmitting device (eg, a base station) to a receiving device (eg, a terminal, etc.) and/or feedback from the receiving device to the transmitting device.
  • a transmitting device eg, a base station
  • a receiving device eg, a terminal, etc.
  • the terminal may receive a specific channel/signal from the base station and estimate the strength of the received power by using this. Thereafter, the terminal may control the transmission power by using the estimated strength of the received power.
  • the closed loop power control method refers to a method of controlling transmission power based on feedback from a transmitting device to a receiving device and/or feedback from a receiving device to a transmitting device.
  • the base station receives a specific channel/signal from the terminal, and the optimal power level of the terminal based on the power level, SNR, BER, BLER, etc. measured by the received specific channel/signal. To decide.
  • the base station transmits information (ie, feedback) on the determined optimal power level to the terminal through a control channel or the like, and the terminal can control the transmission power using the feedback provided by the base station.
  • uplink data channel e.g., PUSCH (Physical Uplink Shared Channel)
  • uplink control channel e.g., PUCCH (Physical Uplink Control Channel)
  • SRS Sounding Reference Signal
  • PRACH Physical Random Access Channel
  • transmission occasion for PUSCH, PUCCH, SRS and/or PRACH (ie, transmission Time unit) (i) is the slot index (n_s) in the frame of the system frame number (SFN), the first symbol in the slot (S), the number of consecutive symbols (L), etc.
  • n_s slot index
  • SFN system frame number
  • S first symbol in the slot
  • L number of consecutive symbols
  • the power control method is described below based on a case in which the UE performs PUSCH transmission, but the power control method is not limited to PUCSH transmission. It goes without saying that it can be extended and applied to other uplink data channels supported by the wireless communication system.
  • the terminal In the case of PUSCH transmission in the active uplink bandwidth part (UL bandwidth part, UL BWP) of the carrier (f) of the serving cell (c), the terminal is determined by Equation 5 below. A linear power value of the determined transmission power may be calculated. Thereafter, the corresponding terminal may control the transmission power by considering the calculated linear power value in consideration of the number of antenna ports and/or the number of SRS ports.
  • the UE uses a parameter set configuration based on index j and a PUSCH power control adjustment state based on index l, and the carrier (f) of the serving cell (c) is activated.
  • the UE transmits PUSCH transmission power at the PUSCH transmission opportunity (i) based on Equation 5 below. (dBm) can be determined.
  • index j is an open-loop power control parameter (eg, P_o, alpha, ), etc.), and a maximum of 32 parameter sets can be set per cell.
  • Index q_d is the path loss (PL) measurement (e.g. Represents the index of the DL RS resource for ), and up to 4 measurements per cell can be set.
  • Index l represents an index for a closed loop power control process, and up to two processes may be set per cell.
  • P_o e.g. Is a parameter broadcast as part of system information, and may indicate target reception power at the receiving side.
  • the corresponding P_o value may be set in consideration of the throughput of the terminal, the capacity of the cell, noise and/or interference.
  • alpha e.g.
  • Alpha may be set to a value from 0 to 1, and full pathloss compensation or fractional pathloss compensation may be performed according to the set value.
  • the alpha value may be set in consideration of interference and/or data rate between terminals.
  • the set UE transmission power may be interpreted as'configured maximum UE output power' defined in 3GPP TS 38.101-1 and/or TS38.101-2.
  • Is the subcarrier spacing ( ) May indicate a bandwidth of PUSCH resource allocation expressed as the number of resource blocks (RBs) for a PUSCH transmission opportunity.
  • related to the PUSCH power control adjustment state May be set or indicated based on the TPC command field of DCI (eg, DCI format 0_0, DCI format 0_1, DCI format 2_2, DCI format2_3, etc.).
  • a specific Radio Resource Control (RRC) parameter e.g., SRI-PUSCHPowerControl-Mapping, etc.
  • RRC Radio Resource Control
  • SRI-PUSCHPowerControl-Mapping is the linkage between the SRS Resource Indicator (SRI) field of downlink control information (DCI) and the indexes j, q_d, and l ) Can be represented.
  • the aforementioned indexes j, l, q_d, etc. may be associated with a beam, a panel, and/or a spatial domain transmission filter, based on specific information.
  • PUSCH transmission power control in units of beams, panels, and/or spatial domain transmission filters may be performed.
  • parameters and/or information for PUSCH power control may be individually (ie, independently) set for each BWP.
  • the corresponding parameters and/or information may be set or indicated through higher layer signaling (eg, RRC signaling, Medium Access Control-Control Element (MAC-CE), etc.) and/or DCI.
  • RRC signaling e.g, RRC signaling, Medium Access Control-Control Element (MAC-CE), etc.
  • MAC-CE Medium Access Control-Control Element
  • parameters and/or information for PUSCH power control may be delivered through RRC signaling PUSCH-ConfigCommon, PUSCH-PowerControl, and the like, and PUSCH-ConfigCommon and PUSCH-PowerControl mentioned in 3GPP TS Rel.16 38.331 are as follows. .
  • the UE may determine or calculate the PUSCH transmission power through the above-described method, and may transmit the PUSCH using the determined or calculated PUSCH transmission power.
  • the power control method is described below based on the case where the UE performs PUCCH transmission, but the power control method is not limited to PUCCH transmission. It goes without saying that it can be extended and applied to other uplink data channels supported by the wireless communication system.
  • the UE uses the PUCCH power control adjustment state based on index l, the activated UL of the carrier f of the primary cell (or secondary cell) (c)
  • the UE transmits PUCCH transmission power at a PUCCH transmission opportunity (i) based on Equation 6 below. (dBm) can be determined.
  • q_u represents an index for an open-loop power control parameter (eg, P_o, etc.), and up to eight parameter values may be set per cell.
  • Index q_d is the path loss (PL) measure (e.g. Represents the index of the DL RS resource for ), and up to 4 measurements per cell can be set.
  • Index l represents an index for a closed loop power control process, and up to two processes may be set per cell.
  • P_o (for example: ) Is a parameter broadcast as part of system information, and may indicate a target reception power at the receiving side.
  • the Po value may be set in consideration of the throughput of the terminal, the capacity of the cell, noise, and/or interference.
  • the set UE transmission power may be interpreted as'configured maximum UE output power' defined in 3GPP TS 38.101-1 and/or TS38.101-2.
  • Is the subcarrier spacing ( ) May indicate the bandwidth of PUCCH resource allocation expressed as the number of resource blocks (RBs) for PUCCH transmission opportunities.
  • a delta function (e.g.
  • PUCCH format eg, PUCCH formats 0, 1, 2, 3, 4, etc.
  • related to the PUCCH power control adjustment state May be set or indicated based on a TPC command field of DCI (eg, DCI format 1_0, DCI format 1_1, DCI format 2_2, etc.) received or detected by the terminal.
  • DCI DCI format 1_0, DCI format 1_1, DCI format 2_2, etc.
  • a specific RRC parameter eg, PUCCH-SpatialRelationInfo, etc.
  • a specific MAC-CE command eg, PUCCH spatial relation Activation/Deactivation, etc.
  • PUCCH resource and the aforementioned indexes q_u, q_d It can be used to activate or deactivate the connection relationship between, and l.
  • the PUCCH spatial relation Activation/Deactivation command in MAC-CE may activate or deactivate a connection relationship between a PUCCH resource and the aforementioned indexes q_u, q_d, and l based on the RRC parameter PUCCH-SpatialRelationInfo.
  • the above-described indexes q_u, q_d, l, etc. may be associated with a beam, a panel, and/or a spatial domain transmission filter based on specific information.
  • PUCCH transmission power control in units of a beam, a panel, and/or a spatial domain transmission filter may be performed.
  • parameters and/or information for PUCCH power control may be set individually (ie, independently) for each BWP.
  • the corresponding parameters and/or information may be set or indicated through higher layer signaling (eg, RRC signaling, MAC-CE, etc.) and/or DCI.
  • parameters and/or information for PUCCH power control may be delivered through RRC signaling PUCCH-ConfigCommon, PUCCH-PowerControl, etc., and PUCCH-ConfigCommon and PUCCH-PowerControl mentioned in 3GPP TS Rel.16 38.331 are as follows. .
  • the terminal may determine or calculate the PUSCH transmission power through the above-described method, and transmit the PUCCH using the determined or calculated PUCCH transmission power.
  • the terminal may calculate a linear power value of the transmission power determined by Equation 7 below. Thereafter, the UE can control the transmission power by equally dividing the calculated linear power value for antenna port(s) set for the SRS.
  • the UE performs SRS transmission in the activated UL BWP (b) of the carrier (f) of the serving cell (c) using the SRS power control adjustment state based on the index l
  • the terminal SRS transmission power at the SRS transmission opportunity (i) based on Equation 7 below (dBm) can be determined.
  • q_s is an open-loop power control parameter (e.g., P_o, alpha, ), path loss (PL) measurement (e.g. ) Indicates an index for DL RS resources, etc.), and can be set for each SRS resource set.
  • the index l represents an index for the closed loop power control process, and the index may be set independently of the PUSCH or may be set in association with the PUSCH.
  • the maximum number of closed loop power control processes for SRS may be 1.
  • P_o Is a parameter broadcast as part of system information, and may indicate a target reception power at the receiving side.
  • the corresponding P_o value may be set in consideration of the throughput of the terminal, the capacity of the cell, noise and/or interference.
  • alpha e.g.
  • Alpha may be set to a value from 0 to 1, and full pathloss compensation or fractional pathloss compensation may be performed according to the set value.
  • the alpha value may be set in consideration of interference and/or data rate between terminals.
  • the set UE transmission power may be interpreted as'configured maximum UE output power' defined in 3GPP TS 38.101-1 and/or TS38.101-2.
  • Is the subcarrier spacing ( ) May indicate the bandwidth of SRS resource allocation expressed as the number of resource blocks (RBs) for SRS transmission opportunities.
  • related to the SRS power control adjustment state May be set or indicated based on a TPC command field and/or an RRC parameter (eg, srs-PowerControlAdjustmentStates, etc.) of a DCI (eg, DCI format 2_3, etc.) received or detected by the terminal.
  • an RRC parameter eg, srs-PowerControlAdjustmentStates, etc.
  • the resource for SRS transmission may be applied as a reference for the base station and/or the terminal to determine a beam, a panel, and/or a spatial domain transmission filter, and in consideration of this, SRS transmission power control , And/or a spatial domain transmission filter.
  • the parameters and/or information for the above-described SRS power control may be individually (ie, independently) set for each BWP.
  • the corresponding parameters and/or information may be set or indicated through higher layer signaling (eg, RRC signaling, MAC-CE, etc.) and/or DCI.
  • parameters and/or information for SRS power control may be delivered through RRC signaling SRS-Config, SRS-TPC-CommandConfig, and the like, and SRS-Config and SRS-TPC- mentioned in 3GPP TS Rel.16 38.331.
  • CommandConfig is as follows.
  • the terminal may determine or calculate the SRS transmission power through the method as described above, and may transmit the SRS using the determined or calculated SRS transmission power.
  • the terminal When the terminal performs PRACH transmission in the activated UL BWP (b) of the carrier (f) of the serving cell (c), the terminal is based on Equation 8 below PRACH transmission power at the PRACH transmission opportunity (i) (dBm) can be determined.
  • Equation 8 May represent the set terminal transmission power.
  • the set UE transmission power may be interpreted as'configured maximum UE output power' defined in 3GPP TS 38.101-1 and/or TS38.101-2.
  • PRACH target reception power provided through higher layer signaling (eg, RRC signaling, MAC-CE, etc.) for the activated UL BWP.
  • path loss for the activated UL BWP and may be determined based on the DL RS associated with PRACH transmission in the activated DL BWP of the serving cell c.
  • the UE may determine a path loss related to PRACH transmission based on a Synchronization Signal (SS)/Physical Broadcast Channel (PBCH) block related to PRACH transmission.
  • SS Synchronization Signal
  • PBCH Physical Broadcast Channel
  • parameters and/or information for PRACH power control may be individually (ie, independently) set for each BWP.
  • the corresponding parameters and/or information may be set or indicated through higher layer signaling (eg, RRC signaling, MAC-CE, etc.).
  • RRC signaling e.g., RRC signaling, MAC-CE, etc.
  • parameters and/or information for PRACH power control may be delivered through RRC signaling RACH-ConfigGeneric, and the like, and RACH-ConfigGeneric referred to in 3GPP TS Rel.16 38.331 is as follows.
  • the UE may determine or calculate the PRACH transmission power through the method as described above, and may transmit the PRACH using the determined or calculated PRACH transmission power.
  • the transmission power of the terminal is A method of controlling will be described below.
  • the UE for uplink transmissions (e.g., PUSCH, PUCCH, SRS, and/or PRACH transmissions in (1) to (4) described above) at each transmission occasion (i)
  • the linear value of the terminal transmit power for which the total UE transmit power is set (eg: ), the terminal may be configured to allocate power for the uplink transmissions according to a priority order.
  • the configured terminal transmission power is'configured maximum UE output power of the terminal' defined in 3GPP TS 38.101-1 and/or TS38.101-2 (eg: Can mean ).
  • the priority for transmission power control may be set or defined in the following order.
  • PCell Primary Cell
  • HARQ-ACK Hybrid Automatic Repeat and ReQuest-Acknowledgement
  • SR Service Request
  • aperiodic SRS has a higher priority than semi-persistent SRS and/or periodic SRS
  • PRACH in a serving cell other than a Pcell send
  • the terminal may control the total transmission power in each symbol of the transmission opportunity i to be less than or equal to a linear value of the set terminal transmission power.
  • the UE may be configured to scale and/or drop power for uplink transmission having a low priority. In this case, specific details on scaling and/or drop may be set or defined according to UE implementation.
  • the terminal may consider transmission in the Pcell as a higher priority than transmission in the Scell. And/or, in the case of transmissions having the same priority in a plurality of UL carriers (eg, two UL carriers), the UE may consider a carrier in which PUCCH transmission is configured as a high priority. In addition, when PUCCH transmission is not configured for any carrier, the UE may consider transmission on a non-supplementary UL carrier with high priority.
  • 10 is a diagram for describing an embodiment of a procedure for controlling uplink transmission power.
  • a user equipment may receive a parameter and/or information related to a transmission power (Tx power) from a base station (1005).
  • the terminal may receive corresponding parameters and/or information through higher layer signaling (eg, RRC signaling, MAC-CE, etc.).
  • RRC signaling e.g., RRC signaling, MAC-CE, etc.
  • the terminal may receive parameters and/or information related to the above-described transmission power control.
  • the terminal may receive a TPC command related to transmission power from the base station (1010).
  • the UE may receive the corresponding TPC command through lower layer signaling (eg, DCI).
  • DCI lower layer signaling
  • the terminal provides information on the TPC command to be used to determine the power control adjustment state, etc., as described above, through a TPC command field of a predefined DCI format. Can receive.
  • this step may be omitted.
  • the terminal may determine (or calculate) transmission power for uplink transmission based on parameters, information, and/or TPC commands received from the base station (1015).
  • the UE determines PUSCH transmission power, PUCCH transmission power, SRS transmission power, and/or PRACH transmission power based on the above-described method (eg, Equation 5, Equation 6, Equation 7, Equation 8, etc.) You can decide. And/or, when two or more uplink channels and/or signals need to be transmitted by overlapping, such as in a situation such as carrier aggregation, the terminal performs uplink transmission in consideration of the above-described priority order. It is also possible to determine the transmit power for.
  • the UE may transmit one or more uplink channels and/or signals (eg, PUSCH, PUCCH, SRS, PRACH, etc.) to the base station based on the determined (or calculated) transmission power.
  • uplink channels and/or signals eg, PUSCH, PUCCH, SRS, PRACH, etc.
  • FIG. 11 is a diagram for explaining an example of an operation implementation of a terminal according to the present disclosure.
  • information on a downlink (DL) RS resource related to transmission of an SRS may be received (S1101).
  • the terminal may determine the transmission power for transmitting the SRS based on whether or not the path loss according to the information on the DL RS resource is measured (S1103), and the SRS according to the transmission power Can be transmitted (S1105).
  • a specific method of transmitting the SRS by the terminal of S1101 to S1105 may be based on the embodiments and features described later.
  • the terminal of FIG. 11 may be any one of various wireless devices disclosed in FIGS. 14 to 17.
  • the terminal of FIG. 11 may be the first wireless device 100 of FIG. 14 or the wireless devices 100 and 200 of FIG. 15.
  • the operation process of FIG. 11 may be performed and executed by any one of various wireless devices disclosed in FIGS. 14 to 17.
  • FIG. 12 is a diagram illustrating an example of an operation implementation of a network node according to the present disclosure.
  • information on a downlink (DL) RS resource related to transmission of an SRS may be transmitted to a terminal (S1201). Thereafter, the SRS may be received from the terminal (S1203).
  • DL downlink
  • S1203 a specific method of receiving the SRS by the network nodes S1201 to S1203 may be based on embodiments and features described later.
  • the network node of FIG. 12 may be any one of various wireless devices disclosed in FIGS. 14 to 17.
  • the network node of FIG. 12 may be the second wireless device 200 of FIG. 14 or the wireless devices 100 and 200 of FIG. 15.
  • the operation process of FIG. 12 may be performed and executed by any one of various wireless devices disclosed in FIGS. 14 to 17.
  • step S1201 determining the transmission power for transmitting the SRS based on whether or not to measure the path loss by receiving information on the downlink (DL) RS resource related to the transmission of the SRS (S1101 to S1103
  • step S1201 a specific embodiment of determining SRS transmission power when a path-loss reference cannot be obtained based on information received by the terminal will be described.
  • a power control function for a sounding reference signal is introduced in consideration of not only the serving cell of the terminal but also other cells or adjacent cells.
  • SRS sounding reference signal
  • Support for configuration of a DL reference signal of a neighboring cell 2) A signaling method and procedure for configuration of a DL reference signal of a neighboring cell, 3) Fall-back when the UE fails to obtain a path-loss reference It includes a discussion of procedures and 4) setting the number of path loss measurements.
  • UL RS uplink reference signal
  • the base station or the location server transmits a downlink reference signal (DL RS) transmitted through one or more CSI-RS resources, one or more SSBs, or one or more PRS resources from a specific neighboring cell or another cell.
  • DL RS downlink reference signal
  • the terminal is instructed or configured to be used as a signal for a path loss reference, there may be a case in which the terminal does not properly receive the RS resource transmitted from the specific neighboring cell or another cell.
  • data and/or a reference signal from a serving cell may be transmitted to a time/frequency resource region in which a specific reference signal is set to be transmitted from a certain cell, and thus a corresponding specific reference signal may not be received.
  • reception strength such as Reference Signal Received Power (RSRP) of a specific reference signal to be received from a certain cell, or Signal to Noise Power Ratio (SNR)/Signal to Interference plus Noise Power Ratio (SINR) ) Is too low to detect the specific reference signal.
  • RSRP Reference Signal Received Power
  • SNR Signal to Noise Power Ratio
  • SINR Signal to Interference plus Noise Power Ratio
  • the UE since the UE cannot receive a specific DL RS to be received through a specific cell, it cannot use the specific DL RS as a signal for path loss reference.Therefore, a problem may occur in the calculation of the transmission power of the UE. There may be a need for a method of operating a terminal, a base station, and/or a location server that can compensate for this problem.
  • the terminal in particular, in relation to the SRS (Sounding Reference Signal) of the terminal, in setting the power control of the SRS in consideration of not only the serving cell but also other cells or neighboring cells, the terminal is transmitted from another cell or neighboring cell.
  • a cell referred to in the present disclosure below may be used as a concept of a meaning dealing with a base station, a transmission point (TP) and/or a transmission and reception point (TRP).
  • the terminal can operate as follows.
  • the terminal may not transmit the SRS resource to be transmitted. That is, the terminal may not transmit the SRS resource configured to transmit the specific neighboring cell or another cell to a target from the base station or the location server.
  • the UE does not transmit the SRS resource and reports to the base station or the location server that it has not properly received the DL RS resource transmitted from the specified neighboring cell or other cell, or transmitted from the specified neighboring cell or other cell It can be reported to the base station or the location server that the appropriate measurement (measurement) result for the DL RS has not been obtained.
  • the SRS non-transmission operation of the terminal and/or the reporting operation of the terminal to the base station or location server related thereto may be indicated or set in advance from the base station or the location server.
  • the amount of power required when the UE transmits the SRS resource is much smaller than the amount of power required when the base station/TP/location server transmits the DL RS resource.
  • the operation of the terminal as described above may be meaningful in terms of preventing power waste. That is, if the UE fails to receive the DL RS resource transmitted from a specific neighboring cell or another cell, even if the UE transmits the SRS resource, the target cell/gNG/TP to receive the SRS resource properly receives the corresponding SRS resource. There is a high probability of not being able to do so. In this situation, it may be helpful in terms of the performance of the overall wireless network that the UE does not transmit the SRS resource rather than having to transmit the SRS resource to cause interference to other cells.
  • the UE uses DL RS resources that can obtain a measurement result among DL RS resources transmitted from an adjacent cell or another cell other than the serving cell.
  • DL RS resources that can obtain a measurement result among DL RS resources transmitted from an adjacent cell or another cell other than the serving cell.
  • the average value of the path loss compensation value refer to the path loss for the DL RS resource that was originally the object of measurement but did not obtain the measurement result or the DL RS resource that was instructed to calculate the original path loss but was not received. Can be used as a value.
  • the UE may transmit the corresponding SRS resource using the maximum power that can be allocated by the UE without setting the SRS transmission power through path loss calculation.
  • the SRS transmission operation of the terminal through the maximum available power may be instructed or set in advance from the base station or the location server. Since the SRS resource to be transmitted by the UE is set for a specific neighboring cell or another cell, the UE uses the maximum transmission power for transmission of the SRS when considering the detectability of the SRS resource of the specific neighboring cell or other cell. This may be a suitable option.
  • the UE may transmit the corresponding SRS resource using the SRS transmission power currently indicated or set from its serving cell. That is, transmission power for the SRS resource to be transmitted to a specific adjacent cell or another cell may be set according to a power control setting used when transmitting the SRS resource by targeting the serving cell.
  • the UE receives a Synchronization Signal/Physical Broadcast Channel (SSB) block to obtain a Master Information Block (MIB). If the UE transmits the SRS, the path loss value for power control of the SRS If it is determined that is not accurately measured, the UE may calculate a path loss value for power control of the SRS using a reference resource obtained from the SSB block of the serving cell for receiving the MIB.
  • SSB Synchronization Signal/Physical Broadcast Channel
  • MIB Master Information Block
  • the transmission power of the SRS is determined according to the above formula, which represents the path loss measurement value among the factors of the formula.
  • the factor can be calculated using reference resources obtained from the SSB block of the serving cell for receiving the MIB.
  • the operation of the terminal performing SRS transmission for a specific neighboring cell or another cell by using the power setting of the serving cell may be instructed or configured in advance from the base station or the location server.
  • the UE applies a specific power offset to the transmission power used when transmitting the SRS resource by targeting the serving cell, and uses a specific neighboring cell through a transmission power higher by the specific offset.
  • SRS resources may be transmitted to other cells.
  • the specific offset value may be set from the base station to the terminal through signaling of various layers, such as radio resource control (RRC) signaling, medium access control-control element (MAC-CE) signaling, or downlink control information (DCI) signaling, or
  • the terminal may be configured to determine and apply a specific offset value as described above and report the offset value used by the terminal to the base station.
  • the offset value used for determining the transmission power may be a relative ratio of the amount of power that can be used when transmitting the SRS resource to a specific neighboring cell or another cell to the amount of power used when transmitting the SRS resource to the serving cell, and / Or may be an absolute value indicating the difference between the amount of power used when transmitting the SRS resource to the serving cell and the amount of power that can be used when transmitting the SRS resource to a specific adjacent cell or other cell.
  • the offset value used for determining the transmission power is not limited to a positive (+) value as in the above example, and is used when transmitting the SRS resource to a specific neighboring cell or another cell as the offset value has a negative (-) value.
  • the transmitted power may be lowered by an offset value than the transmit power used when transmitting the SRS resource by targeting the serving cell.
  • the UE may request that the base station directly indicate or set the transmission power for the SRS resource to be transmitted to a specific neighboring cell or another cell.
  • the base station receiving the request of the terminal instructs the terminal of an offset that can be applied to the transmission power used when transmitting the SRS resource by targeting the serving cell, or the transmission power used when transmitting the SRS resource to a specific neighboring cell or another cell. You can also indicate an absolute value.
  • the terminal can perform the following operations, which is described above in the first embodiment. It can be applied similarly to the operation examples.
  • the UE may not transmit the SRS resource to the neighboring cell targeted for transmission, and may inform the network that normal SRS resource transmission to the neighboring cell is impossible.
  • the UE may transmit the SRS resource by allocating the maximum transmit power available to the corresponding adjacent cell.
  • the UE may transmit the SRS resource to a corresponding neighboring cell according to the transmit power available for the serving cell.
  • the UE may receive an indication of power setting used for a corresponding neighboring cell through a serving cell, and may transmit an SRS resource to a corresponding neighboring cell by using transmission power allocated through the indicated power setting.
  • the indicated power setting may be a power offset that can be additionally applied to transmit power that can be used for the original serving cell.
  • the UE transmits the SRS resource with the maximum available power
  • the maximum power will be much lower than the base station transmission power of the adjacent cell. It may be difficult for the TP to detect the SRS resource transmitted from the terminal based on the maximum power. Therefore, in such a case, it may be most appropriate for the UE to not transmit the SRS resource to the adjacent cell as a transmission target to prevent power waste among the above operation examples.
  • the UE may be indicated or configured as a QCL resource of a Quasi Co-Located (QCL) type D of another DL RS resource, a DL RS resource transmitted in a specific neighboring cell or another cell other than the serving cell.
  • the UE may set or receive a DL RS resource transmitted in a specific neighboring cell or another cell other than the serving cell as a resource of spatial relation information for a specific UL SRS resource. Through this, the UE performs measurement on a DL RS resource transmitted from a specific neighboring cell or another cell, and may receive another DL RS resource or transmit a UL SRS resource in a direction in which the corresponding DL RS resource is received.
  • the UE transmits in a specific neighboring cell or another cell due to reasons such as interference from other resources and/or inability to detect due to excessively low signal strength. It may not be able to properly obtain a measurement result for the DL RS resource.
  • the UE reports to the base station that the DL RS resource of the measurement target transmitted from the specific neighboring cell or another cell is indicated or configured as a QCL type D resource, but the direction in which the corresponding DL RS resource is received cannot be accurately known, or Alternatively, feedback such as that the measurement quality for the DL RS resource of the corresponding measurement target is too low may be reported to the base station.
  • the UE A fall-back QCL resource that can be used when the measurement result for the measurement is not properly obtained due to the above-described reasons, etc. may be indicated or set by the base station to the terminal.
  • the fallback QCL resource may be set to QCL type D in the same way as the type of the initially set QCL resource, but is not limited thereto, and other types may also be set.
  • the UE may request an indication or setting of the fallback QCL resource from the base station.
  • the UE reports to the base station that a DL RS resource transmitted from a specific neighboring cell or another cell is configured or instructed as a resource of spatial relation information for a specific UL SRS resource, but the direction in which the corresponding DL RS resource is received cannot be accurately known.
  • feedback such as that the measurement quality for the corresponding DL RS resource is too low may be reported to the base station.
  • the UE when the UE is instructed or configured as a resource of spatial relation information for a specific UL SRS resource in the DL RS resource transmitted from the specific neighboring cell or another cell, the UE reports the measurement result for the DL RS resource.
  • Substitute spatial relation information that can be used when it is not properly obtained due to one reason or the like may be indicated or set by the base station to the terminal.
  • the alternative spatial relation information means spatial relation information for a resource that can be used as a fallback RS resource.
  • the UE may request an indication or configuration of the alternative spatial relation information and fallback from the base station.
  • the UE can be indicated or configured as a Quasi Co-Located (QCL) type D QCL resource of another DL RS resource for the DL RS resource transmitted from the serving cell, as well as transmitted in a specific neighbor cell/TP or another cell/TP.
  • the DL RS resource may be indicated or set as a QCL type D QCL resource of another DL RS resource.
  • the UE may set or receive a DL RS resource transmitted from a serving cell and/or a UL SRS resource to be used for SRS transmission as a resource of spatial relation information of a specific UL SRS resource, as well as a specific neighbor cell/TP or other
  • a DL RS resource transmitted in a cell/TP and/or a UL SRS resource to be used for SRS transmission may be configured or indicated as a resource of spatial relation information of a specific UL SRS resource.
  • the specific UL SRS resource indicated by the UE as a target of spatial relation information may be an SRS resource or a set of SRS resources set for UE positioning purposes.
  • the UE configures or receives an indication of the QCL resource of the QCL type D for the DL RS resource and the UL SRS resource that is the target of spatial relation information
  • the related cell and/or TP together with the information on the RS resource Information can be set together.
  • a configuration subject of a QCL type D QCL resource for a DL RS resource and a UL SRS resource that is a target of spatial relation information may be a location server or a base station.
  • the UE Through the configuration of the QCL type D QCL resource for the DL RS resource, the UE performs measurement on the DL RS resource transmitted from an adjacent cell or another cell, and receives another DL RS resource in the direction in which the corresponding DL RS resource is received. Or it can transmit UL SRS resources.
  • the UE is a DL RS resource transmitted from a specific neighboring cell or another cell other than the serving cell due to reasons such as interference effect of other resources and/or undetectable due to excessively low signal strength, that is, PRS resource, SSB And/or it may not be possible to obtain a measurement result of the CSI-RS resource for Radio Resource Management (RRM).
  • RRM Radio Resource Management
  • the UE uses a DL RS resource transmitted from a specific neighboring cell or another cell other than the serving cell, that is, a PRS resource, an SSB and/or a CSI-RS resource, as a resource of spatial relation information of a specific UL SRS resource. And/or it may be set or instructed from the location server/LMF.
  • the specific UL SRS resource as a target of spatial relation information may be set exclusively for the terminal for positioning of the terminal. In such a case, if the UE has not properly obtained or has not received the measurement result of the DL RS resource transmitted from a specific neighboring cell or other cell other than the serving cell, the UE may consider performing the following operations. have.
  • the terminal reports to the base station or the location server that it has not properly received the PRS resource, SSB and/or CSI-RS resource, which are resources of spatial relation information set or indicated by the base station or the location server, or It can report to the base station or the location server that it was not properly detected.
  • the UE may not transmit the SRS resource or may transmit the SRS resource as a Zero-Power SRS resource.
  • the terminal may request the base station or the location server to provide an angle offset.
  • the angle offset is an angle value that can indicate a certain direction such as clockwise or counterclockwise based on a specific transmission and/or reception beam of the terminal, and may be indicated or set to the terminal.
  • the angle offset may be indicated or set to the terminal as an angle value for a certain direction based on a specific position or direction of absolute/relative coordinates that the terminal and the base station or the location server know.
  • the terminal may request the base station or the location server to reset spatial relation information, or may request to set other spatial relation information.
  • the setting of spatial relation information may be understood as setting not only information on a DL RS resource or UL SRS resource transmitted for another cell/TP, but also information about a corresponding other cell/TP.
  • the UE may use only cell/TP information among resource configuration information through spatial relation information.
  • the terminal can determine the location of the cell/TP through the ID information of the cell/TP, and transmit a Tx beam directed to the cell/TP.
  • the terminal may decide.
  • the UE knows that the information on the cell/TP has been set, so other DL RS resources received from the cell/TP
  • the DL RS resource that has been successfully received in the middle can be used as an alternative for setting spatial relation information. That is, among information about the cell/TP and RS information set as spatial relation information resources of the SRS resource, only the information about the cell/TP is used to find the DL RS resource transmitted from the cell/TP and use it to determine the beam direction. I can.
  • the maximum power available when transmitting the SRS resource can be used.
  • such a fallback operation of the terminal can be set or instructed from the base station or the location server, and power control for setting the maximum power available for the terminal to transmit SRS resources can be used regardless of the transmission beam direction of the terminal.
  • the base station or the location server can instruct or configure the terminal to use a specific SRS resource ID of the terminal and/or a specific DL RS resource ID transmitted from the serving cell/TP as fallback configuration for the spatial relation information of the SRS resource. .
  • the SRS resource and/or SRS resource set mentioned below may be an SRS resource and/or an SRS resource set for the purpose of performing a location measurement of a terminal.
  • the SRS resource for performing the location of the terminal may be set or indicated to the terminal from the base station, or may be set or indicated to the terminal from the location server/LMF. Therefore, the operation of the terminal mentioned in the following disclosure is the base station This can be set or dictated, or the location server/LMF can dictate or set.
  • the path-loss reference dealt with in this embodiment is not only information on a specific DL RS resource, but also information on a specific cell/TP through which the corresponding DL RS resource is transmitted, such as physical cell ID(s)/TP ID(s), etc. It may be set or indicated as included in the form of. Therefore, the path-loss reference including information such as cell ID(s)/TP ID(s), etc. is for UE positioning in that the UE can transmit SRS not only to the serving cell/TP but also to the neighboring cell/TP. Can be used primarily.
  • the UE determines the transmission power for transmitting a specific SRS resource or a certain SRS resource within a specific SRS resource set, in the case of a DL RS resource set as a path-loss reference from a base station or a location server, the strength of the received signal is too small.
  • reception or detection fails for reasons such as failure to perform appropriate detection, and the reception or detection succeeds only for the DL RS resource set as spatial relation information for determining the direction of the transmission beam for the SRS resource to be transmitted. have.
  • the UE's transmission beam is configured in a direction in which several cells/TPs exist in a similar direction, and the transmit power of the SRS is the farthest cell among the several cells/TPs. If set or indicated to be determined based on /TP, the DL RS resource for path-loss reference set from the farthest cell/TP may not be detected by the UE because its reception strength is weak. In this case, the terminal or the base station/location server may perform the following operations.
  • the terminal has received the DL RS resource set as spatial relation information to the base station/location server without properly receiving or detecting the path-loss reference RS used to determine the transmission power for transmitting the SRS resource. I can tell.
  • the UE may request to reset or re-instruct the path-loss reference for the SRS resource, or may request to update the path-loss reference for the SRS resource.
  • the UE is a path-loss reference for determining transmission power for transmitting the SRS resource, information on the DL RS resource set as spatial relation information for the SRS resource and/or a cell in which the corresponding DL RS resource is transmitted Information about /TP is available. Additionally, the terminal may set or receive such an operation from the base station/location server.
  • the terminal itself has failed to receive or detect a path-loss reference for determining the transmission power for transmitting the SRS resource, but identifies one or more neighboring cells/TPs to which the SRS resource is to be transmitted and the direction of the transmission beam, and Therefore, the SRS resource can be transmitted using the maximum power available to the terminal.
  • the UE applies a specific power offset to the transmission power of the SRS resource determined based on the serving cell/TP or the reference cell/TP, and determines the SRS based on the serving cell/TP or the reference cell/TP.
  • the SRS resource may be transmitted with a power that is as high as a specific power offset value to the transmission power of the resource.
  • the value of the power offset used to determine the SRS transmission power is the above situation in which the terminal fails to receive or detect the path-loss reference, but knows the direction of the transmission beam and one or more adjacent cells/TPs to which the SRS resource is to be transmitted.
  • the base station/location server may set or instruct the terminal to be used by default.
  • the base station/location server You can also set or indicate an offset.
  • the base station/location server may set or instruct the terminal to use the power offset as described above for determining the SRS transmission power.
  • the UE may determine the direction of transmitting the SRS resource according to the setting of spatial relation information, but the transmission power for transmitting the SRS resource may be determined based on a specific RS such as the SSB of the serving cell, and the operation of the UE is
  • the base station/location server can set or instruct the terminal.
  • the terminal may not transmit the SRS resource. That is, the terminal may transmit the SRS resource as Zero-Power.
  • such an operation can be set or directed by the base station/location server to the terminal, and at this time, since the location server uses the SRS resource to measure RTOA, the terminal indicates that the SRS resource has not been transmitted. /You need to tell the location server.
  • the UE determines the transmission power for transmitting a specific SRS resource or a certain SRS resource in a specific SRS resource set, it succeeds in receiving or detecting the DL RS resource set as the path-loss reference, and the SRS resource to be transmitted.
  • reception or detection fails for a DL RS resource set as spatial relation information for determining a direction of a transmission beam for transmission.
  • the terminal may inform the base station/location server that the terminal itself has received a path-loss reference signal used for determining transmission power for transmitting the SRS resource without receiving the DL RS resource set as spatial relation information. .
  • the UE may request to reset or re-instruct spatial relation information for SRS resources, or request to update spatial relation information for SRS resources.
  • the UE is spatial relation information for SRS resources, information on DL RS resources set as a path-loss reference for determining transmission power for transmitting the SRS resources and/or corresponding DL RS resources are transmitted. Information about cell/TP can be used. Additionally, the terminal may set or receive such an operation from the base station/location server.
  • the terminal may determine the direction of transmitting the SRS resource based on a specific RS such as the SSB of the serving cell, and the operation of the terminal may be set or indicated by the base station/location server to the terminal.
  • a specific RS such as the SSB of the serving cell
  • the terminal may not transmit the SRS resource. That is, the terminal can transmit the SRS resource as Zero-Power, and similarly, such an operation can be set or directed by the base station/location server to the terminal. If the UE transmits the SRS resource to the neighboring cell/TP in the incorrect direction, the cell/TP that is the actual transmission target may not properly receive the SRS resource and may only generate unnecessary interference, depending on the situation. In this way, it may be reasonable to transmit the SRS resource to Zero-Power.
  • reception or detection of the DL RS resource set as a path-loss reference fails, and spatial relation information is used.
  • the reception or detection of the configured DL RS resource may also fail.
  • the terminal may not transmit the SRS resource, and the base station/location server may instruct the operation of the terminal. That is, if the UE fails to receive both the DL RS resource set as spatial relation information for the SRS resource and the DL RS resource used as a path-loss reference for the SRS resource, the UE does not transmit the SRS resource. Can be indicated or set. In addition, such an SRS non-transmission operation of the UE is performed by default when reception of both the DL RS resource set as spatial relation information and the DL RS resource used as a path-loss reference for the SRS resource fails. It may be defined, and the terminal may report to the base station/location server that the SRS resource has not been transmitted.
  • the terminal may transmit the SRS resource with the maximum transmission power available based on a specific direction selected by the terminal itself or by assuming a specific DL RS resource as a target resource of spatial relation information. .
  • the UE cannot obtain the path-loss reference configuration for the adjacent cell/TP, it is necessary for the UE to allocate a larger transmission power for transmission of the SRS resource for the adjacent cell/TP. It can be reasonable.
  • the SRS resource may be received from the terminal for a plurality of cells/TPs within a similar direction range.
  • the UE may be instructed to transmit the SRS resource intended for a plurality of cells/TPs, but all of the plurality of cells/TPs cannot detect the corresponding SRS resource.
  • the UE may be configured with a DL RS resource as a resource of spatial relation information for determining a transmission beam direction, and another DL RS resource as a path-loss reference for calculating a path loss may also be configured.
  • the UE even if the UE properly detects the DL RS resource as the resource of spatial relation information for transmitting the SRS resource from the neighboring cell/TP, the UE is used as a path loss reference for determining the transmission power of the SRS resource to be transmitted.
  • the path loss is calculated using the SSB received from the serving cell.
  • the UE can receive the DL RS resource as a resource of spatial relation information for transmitting the SRS resource from the neighboring cell/TP, the UE serves even if it cannot obtain the measurement result for the DL RS resource set as a path loss reference. Compared to transmitting the SRS resource to the cell, it is necessary to transmit the SRS resource by allocating a larger transmission power. Briefly, for example, the terminal can transmit the SRS resource with the maximum available transmission power.
  • the terminal may be a case where it is difficult to determine a transmission beam direction because the terminal cannot receive a DL RS resource as a resource of spatial relation information for transmitting an SRS resource from an adjacent cell/TP. If the SRS resource is transmitted in any direction while the transmission target cell/TP is highly likely not to receive it, it may be inappropriate to allow the UE to perform SRS transmission even in this case. Therefore, in such a situation, the terminal must inform the base station that it has not received the DL RS resource as a resource of spatial relation information for transmitting the SRS resource from the neighboring cell/TP, and the terminal has not properly obtained the spatial relation information.
  • the base station recognizing is may reset spatial relation information for the UE to transmit SRS resources.
  • the SRS mentioned in the present invention may be an SRS resource and/or an SRS resource set set or indicated for the purpose of UE positioning, and the setting or indication of an SRS resource or an SRS resource set may be received from a base station and/or a location server.
  • the content of spatial relation information as a configuration for the SRS resource can be confirmed in the above-described 3GPP TS 38.331 and 3GPP TS 38.214.
  • FIG. 13 illustrates a communication system 1 applied to the present invention.
  • a communication system 1 applied to the present invention includes a wireless device, a base station, and a network.
  • the wireless device refers to a device that performs communication using a wireless access technology (eg, 5G NR (New RAT), LTE (Long Term Evolution)), and may be referred to as a communication/wireless/5G device.
  • wireless devices include robots 100a, vehicles 100b-1 and 100b-2, eXtended Reality (XR) devices 100c, hand-held devices 100d, and home appliances 100e. ), an Internet of Thing (IoT) device 100f, and an AI device/server 400.
  • the vehicle may include a vehicle equipped with a wireless communication function, an autonomous vehicle, and a vehicle capable of performing inter-vehicle communication.
  • the vehicle may include an Unmanned Aerial Vehicle (UAV) (eg, a drone).
  • UAV Unmanned Aerial Vehicle
  • XR devices include AR (Augmented Reality) / VR (Virtual Reality) / MR (Mixed Reality) devices, including HMD (Head-Mounted Device), HUD (Head-Up Display), TV, smartphone, It can be implemented in the form of a computer, wearable device, home appliance, digital signage, vehicle, robot, and the like.
  • Portable devices may include smart phones, smart pads, wearable devices (eg, smart watches, smart glasses), computers (eg, notebook computers, etc.).
  • Home appliances may include TVs, refrigerators, and washing machines.
  • IoT devices may include sensors, smart meters, and the like.
  • the base station and the network may be implemented as a wireless device, and the specific wireless device 200a may operate as a base station/network node to another wireless device.
  • the wireless devices 100a to 100f may be connected to the network 300 through the base station 200.
  • AI Artificial Intelligence
  • the network 300 may be configured using a 3G network, a 4G (eg, LTE) network, or a 5G (eg, NR) network.
  • the wireless devices 100a to 100f may communicate with each other through the base station 200 / network 300, but may perform direct communication (e.g. sidelink communication) without going through the base station / network.
  • the vehicles 100b-1 and 100b-2 may perform direct communication (e.g.
  • V2V Vehicle to Vehicle
  • V2X Vehicle to Everything
  • the IoT device eg, sensor
  • the IoT device may directly communicate with other IoT devices (eg, sensors) or other wireless devices 100a to 100f.
  • Wireless communication/connections 150a, 150b, and 150c may be established between the wireless devices 100a to 100f / base station 200 and the base station 200 / base station 200.
  • the wireless communication/connection includes various wireless access such as uplink/downlink communication 150a, sidelink communication 150b (or D2D communication), base station communication 150c (eg relay, Integrated Access Backhaul). This can be achieved through technology (eg 5G NR)
  • wireless communication/connections 150a, 150b, 150c the wireless device and the base station/wireless device, and the base station and the base station can transmit/receive radio signals to each other.
  • the wireless communication/connection 150a, 150b, 150c can transmit/receive signals through various physical channels.
  • the first wireless device 100 and the second wireless device 200 may transmit and receive wireless signals through various wireless access technologies (eg, LTE and NR).
  • ⁇ the first wireless device 100, the second wireless device 200 ⁇ is the ⁇ wireless device 100x, the base station 200 ⁇ and/or ⁇ wireless device 100x, wireless device 100x) of FIG. ⁇ Can be matched.
  • the first wireless device 100 includes one or more processors 102 and one or more memories 104, and may further include one or more transceivers 106 and/or one or more antennas 108.
  • the processor 102 controls the memory 104 and/or the transceiver 106 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein.
  • the processor 102 may process information in the memory 104 to generate first information/signal, and then transmit a radio signal including the first information/signal through the transceiver 106.
  • the processor 102 may store information obtained from signal processing of the second information/signal in the memory 104 after receiving a radio signal including the second information/signal through the transceiver 106.
  • the memory 104 may be connected to the processor 102 and may store various information related to the operation of the processor 102.
  • the memory 104 may perform some or all of the processes controlled by the processor 102, or instructions for performing the descriptions, functions, procedures, suggestions, methods, and/or operational flow charts disclosed in this document. It can store software code including
  • the processor 102 and the memory 104 may be part of a communication modem/circuit/chip designed to implement wireless communication technology (eg, LTE, NR).
  • the transceiver 106 may be coupled with the processor 102 and may transmit and/or receive radio signals through one or more antennas 108.
  • the transceiver 106 may include a transmitter and/or a receiver.
  • the transceiver 106 may be mixed with an RF (Radio Frequency) unit.
  • the wireless device may mean a communication modem/circuit/chip.
  • the following operations are described based on the control operation of the processor 102 from the perspective of the processor 102, but may be stored in the memory 104 in software code or the like for performing these operations.
  • the processor 102 may control the transceiver 106 to receive information on downlink (DL) RS resources related to transmission of the SRS. In addition, the processor 102 may determine the transmission power for transmitting the SRS based on whether a path loss is measured according to information on the DL RS resource. In addition, the processor 102 may control the transceiver 106 to transmit the SRS according to the transmission power. At this time, the processor 102 controls the transceiver 106 to receive information on downlink (DL) RS resources related to transmission of the SRS, and the transceiver 106 transmits the SRS according to the transmission power. A specific method of controlling the may be based on the above-described embodiments.
  • the following operations are described based on the control operation of the processor 202 from the perspective of the processor 202, but may be stored in the memory 204, such as software code for performing these operations.
  • the processor 202 may control the transceiver 206 to transmit information on a downlink (DL) RS resource related to transmission of the SRS.
  • the processor 202 may control the transceiver 206 to receive the SRS.
  • a specific method of controlling the transceiver 206 to transmit information on a downlink (DL) RS resource related to transmission of the SRS by the processor 202 and controlling the transceiver 206 to receive the SRS May be based on the above-described embodiments.
  • one or more protocol layers may be implemented by one or more processors 102, 202.
  • one or more processors 102, 202 may implement one or more layers (eg, functional layers such as PHY, MAC, RLC, PDCP, RRC, SDAP).
  • One or more processors 102, 202 may be configured to generate one or more Protocol Data Units (PDUs) and/or one or more Service Data Units (SDUs) according to the description, functions, procedures, proposals, methods, and/or operational flow charts disclosed in this document. Can be generated.
  • PDUs Protocol Data Units
  • SDUs Service Data Units
  • One or more processors 102, 202 may generate messages, control information, data, or information according to the description, function, procedure, suggestion, method, and/or operational flow chart disclosed herein.
  • At least one processor (102, 202) generates a signal (e.g., a baseband signal) including PDU, SDU, message, control information, data or information according to the functions, procedures, proposals and/or methods disclosed herein. , It may be provided to one or more transceivers (106, 206).
  • One or more processors 102, 202 may receive signals (e.g., baseband signals) from one or more transceivers 106, 206, and the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed herein PDUs, SDUs, messages, control information, data, or information may be obtained according to the parameters.
  • signals e.g., baseband signals
  • One or more of the processors 102 and 202 may be referred to as a controller, microcontroller, microprocessor, or microcomputer.
  • One or more of the processors 102 and 202 may be implemented by hardware, firmware, software, or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs Field Programmable Gate Arrays
  • the description, functions, procedures, suggestions, methods, and/or operational flow charts disclosed in this document may be implemented using firmware or software, and firmware or software may be implemented to include modules, procedures, functions, and the like.
  • the description, functions, procedures, proposals, methods and/or operational flow charts disclosed in this document are included in one or more processors 102, 202, or stored in one or more memories 104, 204, and are It may be driven by the above processors 102 and 202.
  • the descriptions, functions, procedures, proposals, methods and/or operational flowcharts disclosed in this document may be implemented using firmware or software in the form of codes, instructions and/or a set of instructions.
  • One or more memories 104 and 204 may be connected to one or more processors 102 and 202 and may store various types of data, signals, messages, information, programs, codes, instructions and/or instructions.
  • One or more memories 104 and 204 may be composed of ROM, RAM, EPROM, flash memory, hard drive, register, cache memory, computer readable storage medium, and/or combinations thereof.
  • One or more memories 104 and 204 may be located inside and/or outside of one or more processors 102 and 202.
  • one or more memories 104, 204 may be connected to one or more processors 102, 202 through various technologies such as wired or wireless connection.
  • One or more transceivers 106 and 206 may transmit user data, control information, radio signals/channels, and the like mentioned in the methods and/or operational flow charts of this document to one or more other devices.
  • One or more transceivers (106, 206) may receive user data, control information, radio signals/channels, etc. mentioned in the description, functions, procedures, suggestions, methods and/or operation flow charts disclosed in this document from one or more other devices.
  • one or more transceivers 106 and 206 may be connected to one or more processors 102 and 202, and may transmit and receive wireless signals.
  • one or more processors 102, 202 may control one or more transceivers 106, 206 to transmit user data, control information, or radio signals to one or more other devices.
  • one or more processors 102, 202 may control one or more transceivers 106, 206 to receive user data, control information, or radio signals from one or more other devices.
  • one or more transceivers (106, 206) may be connected with one or more antennas (108, 208), and one or more transceivers (106, 206) through one or more antennas (108, 208), the description and functionality disclosed in this document. It may be set to transmit and receive user data, control information, radio signals/channels, and the like mentioned in a procedure, a proposal, a method, and/or an operation flowchart.
  • one or more antennas may be a plurality of physical antennas or a plurality of logical antennas (eg, antenna ports).
  • One or more transceivers (106, 206) in order to process the received user data, control information, radio signal / channel, etc. using one or more processors (102, 202), the received radio signal / channel, etc. in the RF band signal. It can be converted into a baseband signal.
  • One or more transceivers 106 and 206 may convert user data, control information, radio signals/channels, etc. processed using one or more processors 102 and 202 from a baseband signal to an RF band signal.
  • one or more of the transceivers 106 and 206 may include (analog) oscillators and/or filters.
  • the wireless device 15 shows another example of a wireless device applied to the present invention.
  • the wireless device may be implemented in various forms according to use-example/service (see FIG. 13).
  • the wireless devices 100 and 200 correspond to the wireless devices 100 and 200 of FIG. 14, and various elements, components, units/units, and/or modules ) Can be composed of.
  • the wireless devices 100 and 200 may include a communication unit 110, a control unit 120, a memory unit 130, and an additional element 140.
  • the communication unit may include a communication circuit 112 and a transceiver(s) 114.
  • the communication circuit 112 may include one or more processors 102 and 202 and/or one or more memories 104 and 204 of FIG. 14.
  • transceiver(s) 114 may include one or more transceivers 106,206 and/or one or more antennas 108,208 of FIG. 14.
  • the control unit 120 is electrically connected to the communication unit 110, the memory unit 130, and the additional element 140 and controls all operations of the wireless device.
  • the controller 120 may control the electrical/mechanical operation of the wireless device based on the program/code/command/information stored in the memory unit 130.
  • the control unit 120 transmits the information stored in the memory unit 130 to an external (eg, other communication device) through the communication unit 110 through a wireless/wired interface, or through the communication unit 110 to the outside (eg, Information received through a wireless/wired interface from another communication device) may be stored in the memory unit 130.
  • the specific operation process of the control unit 120 and the program/code/command/information stored in the memory unit 130 according to the present invention are at least one operation of the processors 102 and 202 of FIG. 14 and the memory 104 and 204. ) May correspond to at least one operation.
  • the additional element 140 may be variously configured according to the type of wireless device.
  • the additional element 140 may include at least one of a power unit/battery, an I/O unit, a driving unit, and a computing unit.
  • wireless devices include robots (Figs. 13, 100a), vehicles (Figs. 13, 100b-1, 100b-2), XR devices (Figs. 13, 100c), portable devices (Figs. (Figs. 13, 100e), IoT devices (Figs. 13, 100f), digital broadcasting terminals, hologram devices, public safety devices, MTC devices, medical devices, fintech devices (or financial devices), security devices, climate/environment devices, It may be implemented in the form of an AI server/device (FIGS. 13 and 400), a base station (FIGS. 13 and 200), and a network node.
  • the wireless device can be used in a mobile or fixed location depending on the use-example/service.
  • various elements, components, units/units, and/or modules within the wireless devices 100 and 200 may be connected to each other through a wired interface, or at least part of them may be wirelessly connected through the communication unit 110.
  • the control unit 120 and the communication unit 110 are connected by wire, and the control unit 120 and the first unit (eg, 130, 140) are connected through the communication unit 110.
  • the control unit 120 and the first unit eg, 130, 140
  • each element, component, unit/unit, and/or module in the wireless device 100 and 200 may further include one or more elements.
  • the controller 120 may be configured with one or more processor sets.
  • control unit 120 may be composed of a set of a communication control processor, an application processor, an electronic control unit (ECU), a graphic processing processor, and a memory control processor.
  • memory unit 130 includes random access memory (RAM), dynamic RAM (DRAM), read only memory (ROM), flash memory, volatile memory, and non-volatile memory. volatile memory) and/or a combination thereof.
  • FIG. 15 An implementation example of FIG. 15 will be described in more detail with reference to the drawings.
  • Portable devices may include smart phones, smart pads, wearable devices (eg, smart watches, smart glasses), and portable computers (eg, notebook computers).
  • the portable device may be referred to as a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), an advanced mobile station (AMS), or a wireless terminal (WT).
  • MS mobile station
  • UT user terminal
  • MSS mobile subscriber station
  • SS subscriber station
  • AMS advanced mobile station
  • WT wireless terminal
  • the portable device 100 includes an antenna unit 108, a communication unit 110, a control unit 120, a memory unit 130, a power supply unit 140a, an interface unit 140b, and an input/output unit 140c. ) Can be included.
  • the antenna unit 108 may be configured as a part of the communication unit 110.
  • Blocks 110 to 130/140a to 140c correspond to blocks 110 to 130/140 of FIG. 15, respectively.
  • the communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with other wireless devices and base stations.
  • the controller 120 may perform various operations by controlling components of the portable device 100.
  • the controller 120 may include an application processor (AP).
  • the memory unit 130 may store data/parameters/programs/codes/commands required for driving the portable device 100. Also, the memory unit 130 may store input/output data/information, and the like.
  • the power supply unit 140a supplies power to the portable device 100 and may include a wired/wireless charging circuit, a battery, and the like.
  • the interface unit 140b may support connection between the portable device 100 and other external devices.
  • the interface unit 140b may include various ports (eg, audio input/output ports, video input/output ports) for connection with external devices.
  • the input/output unit 140c may receive or output image information/signal, audio information/signal, data, and/or information input from a user.
  • the input/output unit 140c may include a camera, a microphone, a user input unit, a display unit 140d, a speaker, and/or a haptic module.
  • the input/output unit 140c acquires information/signals (eg, touch, text, voice, image, video) input from the user, and the obtained information/signals are stored in the memory unit 130. Can be saved.
  • the communication unit 110 may convert information/signals stored in the memory into wireless signals, and may directly transmit the converted wireless signals to other wireless devices or to a base station.
  • the communication unit 110 may restore the received radio signal to the original information/signal. After the restored information/signal is stored in the memory unit 130, it may be output in various forms (eg, text, voice, image, video, heptic) through the input/output unit 140c.
  • the vehicle or autonomous vehicle may be implemented as a mobile robot, a vehicle, a train, an aerial vehicle (AV), or a ship.
  • AV aerial vehicle
  • the vehicle or autonomous vehicle 100 includes an antenna unit 108, a communication unit 110, a control unit 120, a driving unit 140a, a power supply unit 140b, a sensor unit 140c, and autonomous driving. It may include a unit (140d).
  • the antenna unit 108 may be configured as a part of the communication unit 110.
  • Blocks 110/130/140a to 140d correspond to blocks 110/130/140 of FIG. 15, respectively.
  • the communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with external devices such as other vehicles, base stations (e.g. base stations, roadside base stations, etc.), and servers.
  • the controller 120 may perform various operations by controlling elements of the vehicle or the autonomous vehicle 100.
  • the control unit 120 may include an Electronic Control Unit (ECU).
  • the driving unit 140a may cause the vehicle or the autonomous vehicle 100 to travel on the ground.
  • the driving unit 140a may include an engine, a motor, a power train, a wheel, a brake, a steering device, and the like.
  • the power supply unit 140b supplies power to the vehicle or the autonomous vehicle 100, and may include a wired/wireless charging circuit, a battery, and the like.
  • the sensor unit 140c may obtain vehicle status, surrounding environment information, user information, and the like.
  • the sensor unit 140c is an IMU (inertial measurement unit) sensor, a collision sensor, a wheel sensor, a speed sensor, an inclination sensor, a weight detection sensor, a heading sensor, a position module, and a vehicle advancement. /Reverse sensor, battery sensor, fuel sensor, tire sensor, steering sensor, temperature sensor, humidity sensor, ultrasonic sensor, illumination sensor, pedal position sensor, etc. may be included.
  • the autonomous driving unit 140d is a technology for maintaining a driving lane, a technology for automatically adjusting the speed such as adaptive cruise control, a technology for automatically driving along a predetermined route, and for driving by automatically setting a route when a destination is set. Technology, etc. can be implemented.
  • the communication unit 110 may receive map data and traffic information data from an external server.
  • the autonomous driving unit 140d may generate an autonomous driving route and a driving plan based on the acquired data.
  • the controller 120 may control the driving unit 140a so that the vehicle or the autonomous driving vehicle 100 moves along the autonomous driving path according to the driving plan (eg, speed/direction adjustment).
  • the communication unit 110 asynchronously/periodically acquires the latest traffic information data from an external server, and may acquire surrounding traffic information data from surrounding vehicles.
  • the sensor unit 140c may acquire vehicle state and surrounding environment information.
  • the autonomous driving unit 140d may update the autonomous driving route and the driving plan based on newly acquired data/information.
  • the communication unit 110 may transmit information about a vehicle location, an autonomous driving route, and a driving plan to an external server.
  • the external server may predict traffic information data in advance using AI technology or the like based on information collected from the vehicle or autonomously driving vehicles, and may provide the predicted traffic information data to the vehicle or autonomously driving vehicles.
  • a location server 90 as shown in FIG. 18 may be included.
  • the location server 90 may be logically or physically connected to the wireless device 70 and/or the network node 80.
  • the wireless device 70 may be the first wireless device 100 of FIG. 14 and/or the wireless devices 100 and 200 of FIG. 15.
  • the network node 80 may be the second wireless device 100 of FIG. 14 and/or the wireless devices 100 and 200 of FIG. 15.
  • the location server 90 may be AMF, LMF, E-SMLC and/or SLP, but is not limited thereto, and may serve as the location server 90 in order to implement the embodiment of the present invention. If it is a communication device, any communication device may be utilized as the location server 90.
  • the name of the location server 90 is used for convenience of description, but may not be implemented in a server form, and may be implemented in a chip form, and such a chip form is implemented. May be implemented to perform all the functions of the location server 90 to be described later.
  • the location server 90 includes a transceiver 91 for communicating with one or more other wireless devices, network nodes, and/or other elements of the network.
  • the transceiver 91 may include one or more communication interfaces. It communicates with one or more other wireless devices, network nodes, and/or other elements of the network connected through the communication interface.
  • the location server 90 includes a processing chip 92.
  • the processing chip 92 may include at least one processor such as the processor 93 and at least one memory device such as the memory 94.
  • the processing chip 92 may control one or more processes in order to implement the methods described herein, and/or embodiments for a problem to be solved herein and a solution thereto.
  • the processing chip 92 may be configured to perform at least one or more embodiments described herein.
  • the processor 93 includes at least one processor for performing the function of the location server 90 described herein.
  • one or more processors may transmit and receive information by controlling one or more transceivers 91 of FIG. 18.
  • processing chip 92 includes a memory 94 configured to store data, programmable software code, and/or other information for performing the embodiments described herein.
  • the processor 93 when the memory 94 is executed by at least one processor such as the processor 93, the processor 93 is controlled by the processor 93 of FIG. It stores software code 95 including instructions for performing some or all of the processes to be performed, or for performing the embodiments described herein.
  • the wireless communication technology implemented in the wireless device of the present specification may include LTE, NR, and 6G, as well as NB-IoT (Narrowband Internet of Things) for low power communication.
  • the NB-IoT technology may be an example of a Low Power Wide Area Network (LPWAN) technology, and may be implemented in a standard such as LTE Cat (Category) NB1 and/or LTE Cat NB2. It is not limited.
  • the wireless communication technology implemented in the wireless device of the present specification may perform communication based on the LTE-M technology.
  • the LTE-M technology may be an example of an LPWAN technology, and may be referred to as various names such as eMTC (enhanced machine type communication).
  • LTE-M technology is 1) LTE CAT 0, 2) LTE Cat M1, 3) LTE Cat M2, 4) LTE non-Bandwidth Limited (BL), 5) LTE-MTC, 6) LTE Machine Type Communication, and/or 7) may be implemented in at least one of various standards such as LTE M, and is not limited to the above name.
  • the wireless communication technology implemented in the wireless device of the present specification includes at least one of ZigBee, Bluetooth, and Low Power Wide Area Network (LPWAN) considering low power communication. It can be, and is not limited to the above-described name.
  • ZigBee technology can generate personal area networks (PANs) related to small/low-power digital communication based on various standards such as IEEE 802.15.4, and may be called various names.
  • PANs personal area networks
  • a specific operation described as being performed by a base station in this document may be performed by its upper node in some cases. That is, it is obvious that various operations performed for communication with a terminal in a network comprising a plurality of network nodes including a base station may be performed by the base station or network nodes other than the base station.
  • the base station may be replaced by terms such as a fixed station, gNode B (gNB), Node B, eNode B (eNB), and access point.
  • a method for transmitting a sounding reference signal (SRS) and an apparatus therefor have been described mainly in an example applied to the 5th generation NewRAT system, but it can be applied to various wireless communication systems other than the 5th generation NewRAT system.
  • SRS sounding reference signal

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명은 무선 통신 시스템에서 단말이 사운딩 참조 신호 (Sounding Reference Signal; SRS)를 송신하는 방법을 개시한다. 특히, 상기 방법은, SRS의 송신과 관련된 하향링크(downlink; DL) RS 자원에 대한 정보를 수신하고, 상기 DL RS 자원에 대한 정보에 따른 경로 손실(path loss)의 측정(measurement) 여부를 기초로 상기 SRS를 송신하기 위한 전송 전력을 결정하며, 상기 전송 전력에 따라 상기 SRS를 송신하는 것을 포함하고, 상기 DL RS 자원은 인접 셀(neighbor cell)과 관련되며, 상기 DL RS 자원에 대한 정보에 따른 상기 경로 손실의 측정에 성공한 점에 기반하여, 상기 경로 손실의 측정 값이 상기 전송 전력의 결정에 사용되고, 상기 DL RS 자원에 대한 정보에 따른 상기 경로 손실의 측정에 실패한 점에 기반하여, 서빙 셀(serving cell)로부터 획득되는 전력 설정과 관련된 정보가 상기 전송 전력의 결정에 사용될 수 있다.

Description

사운딩 참조 신호를 송신하는 방법 및 이를 위한 장치
본 발명은 사운딩 참조 신호 (Sounding Reference Signal; SRS)를 송신하는 방법 및 이를 위한 장치에 관한 것으로서, 더욱 상세하게는, 사운딩 참조 신호에 대한 전송 전력을 결정하여 사운딩 참조 신호를 송신하는 방법 및 이를 위한 장치에 관한 것이다.
시대의 흐름에 따라 더욱 많은 통신 기기들이 더욱 큰 통신 트래픽을 요구하게 되면서, 기존 LTE 시스템보다 향상된 무선 광대역 통신인 차세대 5G 시스템이 요구되고 있다. NewRAT이라고 명칭되는, 이러한 차세대 5G 시스템에서는 Enhanced Mobile BroadBand (eMBB)/ Ultra-reliability and low-latency communication (URLLC)/Massive Machine-Type Communications (mMTC) 등으로 통신 시나리오가 구분된다.
여기서, eMBB는 High Spectrum Efficiency, High User Experienced Data Rate, High Peak Data Rate 등의 특성을 갖는 차세대 이동통신 시나리오이고, URLLC는 Ultra Reliable, Ultra Low Latency, Ultra High Availability 등의 특성을 갖는 차세대 이동통신 시나리오이며 (e.g., V2X, Emergency Service, Remote Control), mMTC는 Low Cost, Low Energy, Short Packet, Massive Connectivity 특성을 갖는 차세대 이동통신 시나리오이다. (e.g., IoT).
본 발명은 사운딩 참조 신호를 송신하는 방법 및 이를 위한 장치를 제공하고자 한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 실시 예에 따른 무선 통신 시스템에서 단말이 사운딩 참조 신호 (Sounding Reference Signal; SRS)를 송신하는 방법에 있어서, SRS의 송신과 관련된 하향링크(downlink; DL) RS 자원에 대한 정보를 수신하고, 상기 DL RS 자원에 대한 정보에 따른 경로 손실(path loss)의 측정(measurement) 여부를 기초로 상기 SRS를 송신하기 위한 전송 전력을 결정하며, 상기 전송 전력에 따라 상기 SRS를 송신하는 것을 포함하고, 상기 DL RS 자원은 인접 셀(neighbor cell)과 관련되며, 상기 DL RS 자원에 대한 정보에 따른 상기 경로 손실의 측정에 성공한 점에 기반하여, 상기 경로 손실의 측정 값이 상기 전송 전력의 결정에 사용되고, 상기 DL RS 자원에 대한 정보에 따른 상기 경로 손실의 측정에 실패한 점에 기반하여, 서빙 셀(serving cell)로부터 획득되는 전력 설정과 관련된 정보가 상기 전송 전력의 결정에 사용될 수 있다.
이 때, 상기 DL RS 자원에 대한 정보에 따른 상기 경로 손실의 측정에 실패한 점에 기반하여, 상기 SRS가 송신되지 않을 수 있다.
또한, 상기 DL RS 자원에 대한 정보에 따른 상기 경로 손실의 측정에 실패한 점에 기반하여, 상기 전송 전력은 상기 서빙 셀을 위한 SRS 전송 전력에 전력 오프셋(offset)을 적용하여 결정될 수 있다.
또한, 상기 SRS는 상기 단말의 측위(positioning)와 관련될 수 있다.
또한, 상기 방법은 상기 DL RS 자원과 관련된 공간 관계 정보(spatial relation information)을 수신하는 것을 더 포함하고, 상기 공간 관계 정보는 상기 인접 셀에 대한 정보를 포함할 수 있다.
또한, 상기 DL RS 자원에 대한 정보에 따른 상기 경로 손실의 측정에 실패한 점에 기반하여, 상기 공간 관계 정보에 포함된 상기 인접 셀에 대한 정보가 상기 SRS의 송신 빔(beam)의 결정에 사용될 수 있다.
본 발명에 따른 무선 통신 시스템에서 사운딩 참조 신호 (Sounding Reference Signal; SRS)를 전송하는 단말에 있어서, 적어도 하나의 트랜시버; 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리;를 포함하고, 상기 특정 동작은, SRS의 송신과 관련된 하향링크(downlink; DL) RS 자원에 대한 정보를 수신하고, 상기 DL RS 자원에 대한 정보에 따른 경로 손실(path loss)의 측정(measurement) 여부를 기초로 상기 SRS를 송신하기 위한 전송 전력을 결정하며, 상기 전송 전력에 따라 상기 SRS를 송신하는 것을 포함하고, 상기 DL RS 자원은 인접 셀(neighbor cell)과 관련되며, 상기 DL RS 자원에 대한 정보에 따른 상기 경로 손실의 측정에 성공한 점에 기반하여, 상기 경로 손실의 측정 값이 상기 전송 전력의 결정에 사용되고, 상기 DL RS 자원에 대한 정보에 따른 상기 경로 손실의 측정에 실패한 점에 기반하여, 서빙 셀(serving cell)로부터 획득되는 전력 설정과 관련된 정보가 상기 전송 전력의 결정에 사용될 수 있다.
이 때, 상기 DL RS 자원에 대한 정보에 따른 상기 경로 손실의 측정에 실패한 점에 기반하여, 상기 SRS가 송신되지 않을 수 있다.
또한, 상기 DL RS 자원에 대한 정보에 따른 상기 경로 손실의 측정에 실패한 점에 기반하여, 상기 전송 전력은 상기 서빙 셀을 위한 SRS 전송 전력에 전력 오프셋(offset)을 적용하여 결정될 수 있다.
또한, 상기 SRS는 상기 단말의 측위(positioning)와 관련될 수 있다.
또한, 상기 특정 동작은 상기 DL RS 자원과 관련된 공간 관계 정보(spatial relation information)을 수신하는 것을 더 포함하고, 상기 공간 관계 정보는 상기 인접 셀에 대한 정보를 포함할 수 있다.
또한, 상기 DL RS 자원에 대한 정보에 따른 상기 경로 손실의 측정에 실패한 점에 기반하여, 상기 공간 관계 정보에 포함된 상기 인접 셀에 대한 정보가 상기 SRS의 송신 빔(beam)의 결정에 사용될 수 있다.
본 발명에 따른 무선 통신 시스템에서 사운딩 참조 신호 (Sounding Reference Signal; SRS)를 송신하는 장치에 있어서, 적어도 하나의 트랜시버; 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리;를 포함하고, 상기 특정 동작은, SRS의 송신과 관련된 하향링크(downlink; DL) RS 자원에 대한 정보를 수신하고, 상기 DL RS 자원에 대한 정보에 따른 경로 손실(path loss)의 측정(measurement) 여부를 기초로 상기 SRS를 송신하기 위한 전송 전력을 결정하며, 상기 전송 전력에 따라 상기 SRS를 송신하는 것을 포함하고, 상기 DL RS 자원은 인접 셀(neighbor cell)과 관련되며, 상기 DL RS 자원에 대한 정보에 따른 상기 경로 손실의 측정에 성공한 점에 기반하여, 상기 경로 손실의 측정 값이 상기 전송 전력의 결정에 사용되고, 상기 DL RS 자원에 대한 정보에 따른 상기 경로 손실의 측정에 실패한 점에 기반하여, 서빙 셀(serving cell)로부터 획득되는 전력 설정과 관련된 정보가 상기 전송 전력의 결정에 사용될 수 있다.
본 발명의 실시 예에 따른 무선 통신 시스템에서 네트워크 노드가 사운딩 참조 신호 (Sounding Reference Signal; SRS)를 수신하는 방법에 있어서, SRS의 송신과 관련된 하향링크(downlink; DL) RS 자원에 대한 정보를 단말로 송신하고, 상기 SRS를 상기 단말로부터 수신하며, 상기 DL RS 자원은 인접 셀(neighbor cell)과 관련되고, 상기 DL RS 자원은 경로 손실의 측정에 사용되며, 상기 DL RS 자원에 대한 정보에 따른 상기 경로 손실의 측정이 성공되는 점에 기반하여, 상기 경로 손실의 측정 값에 따라 상기 SRS의 전송 전력이 결정되고, 상기 DL RS 자원에 대한 정보에 따른 상기 경로 손실의 측정에 실패하는 점에 기반하여, 서빙 셀(serving cell)에 대한 전력 설정과 관련된 정보에 따라 상기 SRS의 전송 전력이 결정될 수 있다.
본 발명에 따른 무선 통신 시스템에서 사운딩 참조 신호 (Sounding Reference Signal; SRS)를 수신하는 네트워크 노드에 있어서, 적어도 하나의 트랜시버; 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리;를 포함하고, 상기 특정 동작은, SRS의 송신과 관련된 하향링크(downlink; DL) RS 자원에 대한 정보를 단말로 송신하고, 상기 SRS를 상기 단말로부터 수신하며, 상기 DL RS 자원은 인접 셀(neighbor cell)과 관련되고, 상기 DL RS 자원은 경로 손실의 측정에 사용되며, 상기 DL RS 자원에 대한 정보에 따른 상기 경로 손실의 측정이 성공되는 점에 기반하여, 상기 경로 손실의 측정 값에 따라 상기 SRS의 전송 전력이 결정되고, 상기 DL RS 자원에 대한 정보에 따른 상기 경로 손실의 측정에 실패하는 점에 기반하여, 서빙 셀(serving cell)에 대한 전력 설정과 관련된 정보에 따라 상기 SRS의 전송 전력이 결정될 수 있다.
본 발명에 따른 컴퓨터 판독가능한 저장 매체에 있어서, 상기 컴퓨터 판독가능한 저장 매체는, 적어도 하나의 프로세서에 의해 실행될 때, 상기 적어도 하나의 프로세서로 하여금 사용자기기를 위한 동작들을 수행하도록 하는 지시들을 포함하는 적어도 하나의 컴퓨터 프로그램을 저장하며, 상기 동작들은, SRS의 송신과 관련된 하향링크(downlink; DL) RS 자원에 대한 정보를 수신하고, 상기 DL RS 자원에 대한 정보에 따른 경로 손실(path loss)의 측정(measurement) 여부를 기초로 상기 SRS를 송신하기 위한 전송 전력을 결정하며, 상기 전송 전력에 따라 상기 SRS를 송신하는 것을 포함하고, 상기 DL RS 자원은 인접 셀(neighbor cell)과 관련되며, 상기 DL RS 자원에 대한 정보에 따른 상기 경로 손실의 측정에 성공한 점에 기반하여, 상기 경로 손실의 측정 값이 상기 전송 전력의 결정에 사용되고, 상기 DL RS 자원에 대한 정보에 따른 상기 경로 손실의 측정에 실패한 점에 기반하여, 서빙 셀(serving cell)로부터 획득되는 전력 설정과 관련된 정보가 상기 전송 전력의 결정에 사용될 수 있다.
본 발명에 따르면, 단말이 인접 셀에 대한 경로 손실을 측정하지 못하더라도 사운딩 참조 신호의 전력을 적절하게 설정하여 사운딩 참조 신호를 송신할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면이다.
도 2는 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 송신 방법을 설명하기 위한 도면이다.
도 3은 LTE 시스템에서 PRS (Positioning Reference Signal)이 맵핑되는 예시를 나타낸다.
도 4 내지 도 5는 UE의 위치를 측정하기 위한 시스템의 아키텍쳐 및 UE의 위치를 측정하는 절차를 설명하기 위한 도면이다.
도 6는 LPP (LTE Positioning Protocol) 메시지 전송을 지원하기 위한 프로토콜 레이어의 예시를 나타낸 도면이다.
도 7은 NRPPa (NR Positioning Protocol A) PDU (Protocol Data Unit) 전송을 지원하기 위한 프로토콜 레이어의 예시를 나타낸 도면이다.
도 8은 OTDOA (Observed Time Difference Of Arrival) 측위 방법의 실시 예를 설명하기 위한 도면이다.
도 9는 Multi RTT (round trip time) 측위 방법의 실시 예를 설명하기 위한 도면이다.
도 10은 상향링크 전송 전력을 제어하는 절차의 실시 예를 설명하기 위한 도면이다.
도 11 내지 도 12는 본 발명의 실시 예에 따른 단말 및 네트워크 노드의 동작 구현 예를 설명하기 위한 도면이다.
도 13은 본 개시의 실시 예들이 적용되는 통신 시스템의 예시를 나타낸다.
도 14 내지 도 17은 본 개시의 실시 예들이 적용되는 다양한 무선 기기의 예시들을 나타낸다.
도 18은 본 개시의 실시 예들이 적용되는 위치 서버의 예시를 나타낸다.
이하에서 첨부된 도면을 참조하여 설명된 본 발명의 실시예들에 의해 본 발명의 구성, 작용 및 다른 특징들이 용이하게 이해될 수 있을 것이다. 이하에서 설명되는 실시예들은 본 발명의 기술적 특징들이 3GPP 시스템에 적용된 예들이다.
본 명세서는 LTE 시스템, LTE-A 시스템 및 NR 시스템을 사용하여 본 발명의 실시예를 설명하지만, 이는 예시로서 본 발명의 실시예는 상기 정의에 해당되는 어떤 통신 시스템에도 적용될 수 있다.
또한, 본 명세서는 기지국의 명칭은 RRH(remote radio head), eNB, TP(transmission point), RP(reception point), 중계기(relay) 등을 포함하는 포괄적인 용어로 사용될 수 있다.
3GPP 기반 통신 표준은 상위 계층으로부터 기원한 정보를 나르는 자원 요소들에 대응하는 하향링크 물리 채널들과, 물리 계층에 의해 사용되나 상위 계층으로부터 기원하는 정보를 나르지 않는 자원 요소들에 대응하는 하향링크 물리 신호들을 정의된다. 예를 들어, 물리 하향링크 공유 채널(physical downlink shared channel, PDSCH), 물리 브로드캐스트 채널(physical broadcast channel, PBCH), 물리 멀티캐스트 채널(physical multicast channel, PMCH), 물리 제어 포맷 지시자 채널(physical control format indicator channel, PCFICH), 물리 하향링크 제어 채널(physical downlink control channel, PDCCH) 및 물리 하이브리드 ARQ 지시자 채널(physical hybrid ARQ indicator channel, PHICH)들이 하향링크 물리 채널들로서 정의되어 있으며, 참조 신호와 동기 신호가 하향링크 물리 신호들로서 정의되어 있다. 파일럿(pilot)이라고도 지칭되는 참조 신호(reference signal, RS)는 gNB와 UE가 서로 알고 있는 기정의된 특별한 파형의 신호를 의미하는데, 예를 들어, 셀 특정적 RS(cell specific RS), UE-특정적 RS(UE-specific RS, UE-RS), 포지셔닝 RS(positioning RS, PRS) 및 채널 상태 정보 RS(channel state information RS, CSI-RS)가 하향링크 참조 신호로서 정의된다. 3GPP LTE/LTE-A 표준은 상위 계층으로부터 기원한 정보를 나르는 자원 요소들에 대응하는 상향링크 물리 채널들과, 물리 계층에 의해 사용되나 상위 계층으로부터 기원하는 정보를 나르지 않는 자원 요소들에 대응하는 상향링크 물리 신호들을 정의하고 있다. 예를 들어, 물리 상향링크 공유 채널(physical uplink shared channel, PUSCH), 물리 상향링크 제어 채널(physical uplink control channel, PUCCH), 물리 임의 접속 채널(physical random access channel, PRACH)가 상향링크 물리 채널로서 정의되며, 상향링크 제어/데이터 신호를 위한 복조 참조 신호(demodulation reference signal, DMRS)와 상향링크 채널 측정에 사용되는 사운딩 참조 신호(sounding reference signal, SRS)가 정의된다.
본 발명에서 PDCCH(Physical Downlink Control CHannel)/PCFICH(Physical Control Format Indicator CHannel)/PHICH((Physical Hybrid automatic retransmit request Indicator CHannel)/PDSCH(Physical Downlink Shared CHannel)은 각각 DCI(Downlink Control Information)/CFI(Control Format Indicator)/하향링크 ACK/NACK(ACKnowlegement/Negative ACK)/하향링크 데이터를 나르는 시간-주파수 자원의 집합 혹은 자원요소의 집합을 의미한다. 또한, PUCCH(Physical Uplink Control CHannel)/PUSCH(Physical Uplink Shared CHannel)/PRACH(Physical Random Access CHannel)는 각각 UCI(Uplink Control Information)/상향링크 데이터/랜덤 엑세스 신호를 나르는 시간-주파수 자원의 집합 혹은 자원요소의 집합을 의미한다. 본 발명에서는, 특히, PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH에 할당되거나 이에 속한 시간-주파수 자원 혹은 자원요소(Resource Element, RE)를 각각 PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH RE 또는 PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH 자원이라고 칭한다. 이하에서 사용자기기가 PUCCH/PUSCH/PRACH를 전송한다는 표현은, 각각, PUSCH/PUCCH/PRACH 상에서 혹은 통해서 상향링크 제어정보/상향링크 데이터/랜덤 엑세스 신호를 전송한다는 것과 동일한 의미로 사용된다. 또한, gNB가 PDCCH/PCFICH/PHICH/PDSCH를 전송한다는 표현은, 각각, PDCCH/PCFICH/PHICH/PDSCH 상에서 혹은 통해서 하향링크 데이터/제어정보를 전송한다는 것과 동일한 의미로 사용된다.
이하에서는 CRS/DMRS/CSI-RS/SRS/UE-RS가 할당된 혹은 설정(Configuration)된(configured) OFDM 심볼/부반송파/RE를 CRS/DMRS/CSI-RS/SRS/UE-RS 심볼/반송파/부반송파/RE라고 칭한다. 예를 들어, 트랙킹 RS(tracking RS, TRS)가 할당된 혹은 설정(Configuration)된 OFDM 심볼은 TRS 심볼이라고 칭하며, TRS가 할당된 혹은 설정(Configuration)된 부반송파는 TRS 부반송파라 칭하며, TRS가 할당된 혹은 설정(Configuration)된 RE 는 TRS RE라고 칭한다. 또한, TRS 전송을 위해 설정(Configuration)된(configured) 서브프레임을 TRS 서브프레임이라 칭한다. 또한 브로드캐스트 신호가 전송되는 서브프레임을 브로드캐스트 서브프레임 혹은 PBCH 서브프레임이라 칭하며, 동기 신호(예를 들어, PSS 및/또는 SSS)가 전송되는 서브프레임을 동기 신호 서브프레임 혹은 PSS/SSS 서브프레임이라고 칭한다. PSS/SSS가 할당된 혹은 설정(Configuration)된(configured) OFDM 심볼/부반송파/RE를 각각 PSS/SSS 심볼/부반송파/RE라 칭한다.
본 발명에서 CRS 포트, UE-RS 포트, CSI-RS 포트, TRS 포트라 함은 각각 CRS를 전송하도록 설정(Configuration)된(configured) 안테나 포트, UE-RS를 전송하도록 설정(Configuration)된 안테나 포트, CSI-RS를 전송하도록 설정(Configuration)된 안테나 포트, TRS를 전송하도록 설정(Configuration)된 안테나 포트를 의미한다. CRS들을 전송하도록 설정(Configuration)된 안테나 포트들은 CRS 포트들에 따라 CRS가 점유하는 RE들의 위치에 의해 상호 구분될 수 있으며, UE-RS들을 전송하도록 설정(Configuration)된(configured) 안테나 포트들은 UE-RS 포트들에 따라 UE-RS가 점유하는 RE들의 위치에 의해 상호 구분될 수 있으며, CSI-RS들을 전송하도록 설정(Configuration)된 안테나 포트들은 CSI-RS 포트들에 따라 CSI-RS가 점유하는 RE들의 위치에 의해 상호 구분될 수 있다. 따라서 CRS/UE-RS/CSI-RS/TRS 포트라는 용어가 일정 자원 영역 내에서 CRS/UE-RS/CSI-RS/TRS가 점유하는 RE들의 패턴을 의미하는 용어로서 사용되기도 한다.
<인공 지능(AI: Artificial Intelligence)>
인공 지능은 인공적인 지능 또는 이를 만들 수 있는 방법론을 연구하는 분야를 의미하며, 머신 러닝(기계 학습, Machine Learning)은 인공 지능 분야에서 다루는 다양한 문제를 정의하고 그것을 해결하는 방법론을 연구하는 분야를 의미한다. 머신 러닝은 어떠한 작업에 대하여 꾸준한 경험을 통해 그 작업에 대한 성능을 높이는 알고리즘으로 정의하기도 한다.
인공 신경망(ANN: Artificial Neural Network)은 머신 러닝에서 사용되는 모델로써, 시냅스의 결합으로 네트워크를 형성한 인공 뉴런(노드)들로 구성되는, 문제 해결 능력을 가지는 모델 전반을 의미할 수 있다. 인공 신경망은 다른 레이어의 뉴런들 사이의 연결 패턴, 모델 파라미터를 갱신하는 학습 과정, 출력값을 생성하는 활성화 함수(Activation Function)에 의해 정의될 수 있다.
인공 신경망은 입력층(Input Layer), 출력층(Output Layer), 그리고 선택적으로 하나 이상의 은닉층(Hidden Layer)를 포함할 수 있다. 각 층은 하나 이상의 뉴런을 포함하고, 인공 신경망은 뉴런과 뉴런을 연결하는 시냅스를 포함할 수 있다. 인공 신경망에서 각 뉴런은 시냅스를 통해 입력되는 입력 신호들, 가중치, 편향에 대한 활성 함수의 함숫값을 출력할 수 있다.
모델 파라미터는 학습을 통해 결정되는 파라미터를 의미하며, 시냅스 연결의 가중치와 뉴런의 편향 등이 포함된다. 그리고, 하이퍼파라미터는 머신 러닝 알고리즘에서 학습 전에 설정되어야 하는 파라미터를 의미하며, 학습률(Learning Rate), 반복 횟수, 미니 배치 크기, 초기화 함수 등이 포함된다.
인공 신경망의 학습의 목적은 손실 함수를 최소화하는 모델 파라미터를 결정하는 것으로 볼 수 있다. 손실 함수는 인공 신경망의 학습 과정에서 최적의 모델 파라미터를 결정하기 위한 지표로 이용될 수 있다.
머신 러닝은 학습 방식에 따라 지도 학습(Supervised Learning), 비지도 학습(Unsupervised Learning), 강화 학습(Reinforcement Learning)으로 분류할 수 있다.
지도 학습은 학습 데이터에 대한 레이블(label)이 주어진 상태에서 인공 신경망을 학습시키는 방법을 의미하며, 레이블이란 학습 데이터가 인공 신경망에 입력되는 경우 인공 신경망이 추론해 내야 하는 정답(또는 결과 값)을 의미할 수 있다. 비지도 학습은 학습 데이터에 대한 레이블이 주어지지 않는 상태에서 인공 신경망을 학습시키는 방법을 의미할 수 있다. 강화 학습은 어떤 환경 안에서 정의된 에이전트가 각 상태에서 누적 보상을 최대화하는 행동 혹은 행동 순서를 선택하도록 학습시키는 학습 방법을 의미할 수 있다.
인공 신경망 중에서 복수의 은닉층을 포함하는 심층 신경망(DNN: Deep Neural Network)으로 구현되는 머신 러닝을 딥 러닝(심층 학습, Deep Learning)이라 부르기도 하며, 딥 러닝은 머신 러닝의 일부이다. 이하에서, 머신 러닝은 딥 러닝을 포함하는 의미로 사용된다.
<로봇(Robot)>
로봇은 스스로 보유한 능력에 의해 주어진 일을 자동으로 처리하거나 작동하는 기계를 의미할 수 있다. 특히, 환경을 인식하고 스스로 판단하여 동작을 수행하는 기능을 갖는 로봇을 지능형 로봇이라 칭할 수 있다.
로봇은 사용 목적이나 분야에 따라 산업용, 의료용, 가정용, 군사용 등으로 분류할 수 있다.
로봇은 액츄에이터 또는 모터를 포함하는 구동부를 구비하여 로봇 관절을 움직이는 등의 다양한 물리적 동작을 수행할 수 있다. 또한, 이동 가능한 로봇은 구동부에 휠, 브레이크, 프로펠러 등이 포함되어, 구동부를 통해 지상에서 주행하거나 공중에서 비행할 수 있다.
<자율 주행(Self-Driving, Autonomous-Driving)>
자율 주행은 스스로 주행하는 기술을 의미하며, 자율 주행 차량은 사용자의 조작 없이 또는 사용자의 최소한의 조작으로 주행하는 차량(Vehicle)을 의미한다.
예컨대, 자율 주행에는 주행중인 차선을 유지하는 기술, 어댑티브 크루즈 컨트롤과 같이 속도를 자동으로 조절하는 기술, 정해진 경로를 따라 자동으로 주행하는 기술, 목적지가 설정되면 자동으로 경로를 설정하여 주행하는 기술 등이 모두 포함될 수 있다.
차량은 내연 기관만을 구비하는 차량, 내연 기관과 전기 모터를 함께 구비하는 하이브리드 차량, 그리고 전기 모터만을 구비하는 전기 차량을 모두 포괄하며, 자동차뿐만 아니라 기차, 오토바이 등을 포함할 수 있다.
이때, 자율 주행 차량은 자율 주행 기능을 가진 로봇으로 볼 수 있다.
<확장 현실(XR: eXtended Reality)>
확장 현실은 가상 현실(VR: Virtual Reality), 증강 현실(AR: Augmented Reality), 혼합 현실(MR: Mixed Reality)을 총칭한다. VR 기술은 현실 세계의 객체나 배경 등을 CG 영상으로만 제공하고, AR 기술은 실제 사물 영상 위에 가상으로 만들어진 CG 영상을 함께 제공하며, MR 기술은 현실 세계에 가상 객체들을 섞고 결합시켜서 제공하는 컴퓨터 그래픽 기술이다.
MR 기술은 현실 객체와 가상 객체를 함께 보여준다는 점에서 AR 기술과 유사하다. 그러나, AR 기술에서는 가상 객체가 현실 객체를 보완하는 형태로 사용되는 반면, MR 기술에서는 가상 객체와 현실 객체가 동등한 성격으로 사용된다는 점에서 차이점이 있다.
XR 기술은 HMD(Head-Mount Display), HUD(Head-Up Display), 휴대폰, 태블릿 PC, 랩탑, 데스크탑, TV, 디지털 사이니지 등에 적용될 수 있고, XR 기술이 적용된 장치를 XR 장치(XR Device)라 칭할 수 있다.
이제, NR 시스템을 포함한 5G 통신에 대해서 살펴보도록 한다.
5G의 세 가지 주요 요구 사항 영역은 (1) 개선된 모바일 광대역 (Enhanced Mobile Broadband, eMBB) 영역, (2) 다량의 머신 타입 통신 (massive Machine Type Communication, mMTC) 영역 및 (3) 초-신뢰 및 저 지연 통신 (Ultra-reliable and Low Latency Communications, URLLC) 영역을 포함한다.
일부 사용 예(Use Case)는 최적화를 위해 다수의 영역들이 요구될 수 있고, 다른 사용 예는 단지 하나의 핵심 성능 지표 (Key Performance Indicator, KPI)에만 포커싱될 수 있다. 5G는 이러한 다양한 사용 예들을 유연하고 신뢰할 수 있는 방법으로 지원하는 것이다.
eMBB는 기본적인 모바일 인터넷 액세스를 훨씬 능가하게 하며, 풍부한 양방향 작업, 클라우드 또는 증강 현실에서 미디어 및 엔터테인먼트 애플리케이션을 커버한다. 데이터는 5G의 핵심 동력 중 하나이며, 5G 시대에서 처음으로 전용 음성 서비스를 볼 수 없을 수 있다. 5G에서, 음성은 단순히 통신 시스템에 의해 제공되는 데이터 연결을 사용하여 응용 프로그램으로서 처리될 것이 기대된다. 증가된 트래픽 양(volume)을 위한 주요 원인들은 콘텐츠 크기의 증가 및 높은 데이터 전송률을 요구하는 애플리케이션 수의 증가이다. 스트리밍 서비스 (오디오 및 비디오), 대화형 비디오 및 모바일 인터넷 연결은 더 많은 장치가 인터넷에 연결될수록 더 널리 사용될 것이다. 이러한 많은 응용 프로그램들은 사용자에게 실시간 정보 및 알림을 푸쉬하기 위해 항상 켜져 있는 연결성이 필요하다. 클라우드 스토리지 및 애플리케이션은 모바일 통신 플랫폼에서 급속히 증가하고 있으며, 이것은 업무 및 엔터테인먼트 모두에 적용될 수 있다. 그리고, 클라우드 스토리지는 상향링크 데이터 전송률의 성장을 견인하는 특별한 사용 예이다. 5G는 또한 클라우드의 원격 업무에도 사용되며, 촉각 인터페이스가 사용될 때 우수한 사용자 경험을 유지하도록 훨씬 더 낮은 단-대-단(end-to-end) 지연을 요구한다. 엔터테인먼트 예를 들어, 클라우드 게임 및 비디오 스트리밍은 모바일 광대역 능력에 대한 요구를 증가시키는 또 다른 핵심 요소이다. 엔터테인먼트는 기차, 차 및 비행기와 같은 높은 이동성 환경을 포함하는 어떤 곳에서든지 스마트폰 및 태블릿에서 필수적이다. 또 다른 사용 예는 엔터테인먼트를 위한 증강 현실 및 정보 검색이다. 여기서, 증강 현실은 매우 낮은 지연과 순간적인 데이터 양을 필요로 한다.
또한, 가장 많이 예상되는 5G 사용 예 중 하나는 모든 분야에서 임베디드 센서를 원활하게 연결할 수 있는 기능 즉, mMTC에 관한 것이다. 2020년까지 잠재적인 IoT 장치들은 204 억 개에 이를 것으로 예측된다. 산업 IoT는 5G가 스마트 도시, 자산 추적(asset tracking), 스마트 유틸리티, 농업 및 보안 인프라를 가능하게 하는 주요 역할을 수행하는 영역 중 하나이다.
URLLC는 주요 인프라의 원격 제어 및 자체-구동 차량(self-driving vehicle)과 같은 초 신뢰 / 이용 가능한 지연이 적은 링크를 통해 산업을 변화시킬 새로운 서비스를 포함한다. 신뢰성과 지연의 수준은 스마트 그리드 제어, 산업 자동화, 로봇 공학, 드론 제어 및 조정에 필수적이다.
다음으로, NR 시스템을 포함한 5G 통신 시스템에서의 다수의 사용 예들에 대해 보다 구체적으로 살펴본다.
5G는 초당 수백 메가 비트에서 초당 기가 비트로 평가되는 스트림을 제공하는 수단으로 FTTH (fiber-to-the-home) 및 케이블 기반 광대역 (또는 DOCSIS)을 보완할 수 있다. 이러한 빠른 속도는 가상 현실과 증강 현실뿐 아니라 4K 이상(6K, 8K 및 그 이상)의 해상도로 TV를 전달하는데 요구된다. VR(Virtual Reality) 및 AR(Augmented Reality) 애플리케이션들은 거의 몰입형(immersive) 스포츠 경기를 포함한다. 특정 응용 프로그램은 특별한 네트워크 설정이 요구될 수 있다. 예를 들어, VR 게임의 경우, 게임 회사들이 지연을 최소화하기 위해 코어 서버를 네트워크 오퍼레이터의 에지 네트워크 서버와 통합해야 할 수 있다.
자동차(Automotive)는 차량에 대한 이동 통신을 위한 많은 사용 예들과 함께 5G에 있어 중요한 새로운 동력이 될 것으로 예상된다. 예를 들어, 승객을 위한 엔터테인먼트는 동시의 높은 용량과 높은 이동성 모바일 광대역을 요구한다. 그 이유는 미래의 사용자는 그들의 위치 및 속도와 관계 없이 고품질의 연결을 계속해서 기대하기 때문이다. 자동차 분야의 다른 활용 예는 증강 현실 대시보드이다. 이는 운전자가 앞면 창을 통해 보고 있는 것 위에 어둠 속에서 물체를 식별하고, 물체의 거리와 움직임에 대해 운전자에게 말해주는 정보를 겹쳐서 디스플레이 한다. 미래에, 무선 모듈은 차량들 간의 통신, 차량과 지원하는 인프라구조 사이에서 정보 교환 및 자동차와 다른 연결된 디바이스들(예를 들어, 보행자에 의해 수반되는 디바이스들) 사이에서 정보 교환을 가능하게 한다. 안전 시스템은 운전자가 보다 안전한 운전을 할 수 있도록 행동의 대체 코스들을 안내하여 사고의 위험을 낮출 수 있게 한다. 다음 단계는 원격 조종되거나 자체 운전 차량(self-driven vehicle)이 될 것이다. 이는 서로 다른 자체 운전 차량들 사이 및 자동차와 인프라 사이에서 매우 신뢰성이 있고, 매우 빠른 통신을 요구한다. 미래에, 자체 운전 차량이 모든 운전 활동을 수행하고, 운전자는 차량 자체가 식별할 수 없는 교통 이상에만 집중하도록 할 것이다. 자체 운전 차량의 기술적 요구 사항은 트래픽 안전을 사람이 달성할 수 없을 정도의 수준까지 증가하도록 초 저 지연과 초고속 신뢰성을 요구한다.
스마트 사회(smart society)로서 언급되는 스마트 도시와 스마트 홈은 고밀도 무선 센서 네트워크로 임베디드될 것이다. 지능형 센서의 분산 네트워크는 도시 또는 집의 비용 및 에너지-효율적인 유지에 대한 조건을 식별할 것이다. 유사한 설정이 각 가정을 위해 수행될 수 있다. 온도 센서, 창 및 난방 컨트롤러, 도난 경보기 및 가전 제품들은 모두 무선으로 연결된다. 이러한 센서들 중 많은 것들이 전형적으로 낮은 데이터 전송 속도, 저전력 및 저비용이다. 하지만, 예를 들어, 실시간 HD 비디오는 감시를 위해 특정 타입의 장치에서 요구될 수 있다.
열 또는 가스를 포함한 에너지의 소비 및 분배는 고도로 분산화되고 있어, 분산 센서 네트워크의 자동화된 제어가 요구된다. 스마트 그리드는 정보를 수집하고 이에 따라 행동하도록 디지털 정보 및 통신 기술을 사용하여 이런 센서들을 상호 연결한다. 이 정보는 공급 업체와 소비자의 행동을 포함할 수 있으므로, 스마트 그리드가 효율성, 신뢰성, 경제성, 생산의 지속 가능성 및 자동화된 방식으로 전기와 같은 연료들의 분배를 개선하도록 할 수 있다. 스마트 그리드는 지연이 적은 다른 센서 네트워크로 볼 수도 있다.
건강 부문은 이동 통신의 혜택을 누릴 수 있는 많은 응용 프로그램을 보유하고 있다. 통신 시스템은 멀리 떨어진 곳에서 임상 진료를 제공하는 원격 진료를 지원할 수 있다. 이는 거리에 대한 장벽을 줄이는데 도움을 주고, 거리가 먼 농촌에서 지속적으로 이용하지 못하는 의료 서비스들로의 접근을 개선시킬 수 있다. 이는 또한 중요한 진료 및 응급 상황에서 생명을 구하기 위해 사용된다. 이동 통신 기반의 무선 센서 네트워크는 심박수 및 혈압과 같은 파라미터들에 대한 원격 모니터링 및 센서들을 제공할 수 있다.
무선 및 모바일 통신은 산업 응용 분야에서 점차 중요해지고 있다. 배선은 설치 및 유지 비용이 높다. 따라서, 케이블을 재구성할 수 있는 무선 링크들로의 교체 가능성은 많은 산업 분야에서 매력적인 기회이다. 그러나, 이를 달성하는 것은 무선 연결이 케이블과 비슷한 지연, 신뢰성 및 용량으로 동작하는 것과, 그 관리가 단순화될 것이 요구된다. 낮은 지연과 매우 낮은 오류 확률은 5G로 연결될 필요가 있는 새로운 요구 사항이다.
물류(logistics) 및 화물 추적(freight tracking)은 위치 기반 정보 시스템을 사용하여 어디에서든지 인벤토리(inventory) 및 패키지의 추적을 가능하게 하는 이동 통신에 대한 중요한 사용 예이다. 물류 및 화물 추적의 사용 예는 전형적으로 낮은 데이터 속도를 요구하지만 넓은 범위와 신뢰성 있는 위치 정보가 필요하다.
도 1은 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면이다. 제어평면은 단말(User Equipment; UE)과 네트워크가 호를 관리하기 위해서 이용하는 제어 메시지들이 송신되는 통로를 의미한다. 사용자평면은 애플리케이션 계층에서 생성된 데이터, 예를 들어, 음성 데이터 또는 인터넷 패킷 데이터 등이 송신되는 통로를 의미한다.
제1계층인 물리계층은 물리채널(Physical Channel)을 이용하여 상위 계층에게 정보 송신 서비스(Information Transfer Service)를 제공한다. 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 송신채널(Trans포트 Channel)을 통해 연결되어 있다. 상기 송신채널을 통해 매체접속제어 계층과 물리계층 사이에 데이터가 이동한다. 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 시간과 주파수를 무선 자원으로 활용한다. 구체적으로, 물리채널은 하향링크에서 OFDMA(Orthogonal Frequency Division Multiple Access) 방식으로 변조되고, 상향링크에서 SC-FDMA(Single Carrier Frequency Division Multiple Access) 방식으로 변조된다.
제2계층의 매체접속제어(Medium Access Control; MAC) 계층은 논리채널(Logical Channel)을 통해 상위계층인 무선링크제어(Radio Link Control; RLC) 계층에 서비스를 제공한다. 제2계층의 RLC 계층은 신뢰성 있는 데이터 송신을 지원한다. RLC 계층의 기능은 MAC 내부의 기능 블록으로 구현될 수도 있다. 제2계층의 PDCP(Packet Data Convergence Protocol) 계층은 대역폭이 좁은 무선 인터페이스에서 IPv4나 IPv6와 같은 IP 패킷을 효율적으로 송신하기 위해 불필요한 제어정보를 줄여주는 헤더 압축(Header Compression) 기능을 수행한다.
제3계층의 최하부에 위치한 무선 자원제어(Radio Resource Control; RRC) 계층은 제어평면에서만 정의된다. RRC 계층은 무선베어러(Radio Bearer)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리채널, 송신채널 및 물리채널들의 제어를 담당한다. 무선 베어러는 단말과 네트워크 간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다. 이를 위해, 단말과 네트워크의 RRC 계층은 서로 RRC 메시지를 교환한다. 단말과 네트워크의 RRC 계층 사이에 RRC 연결(RRC Connected)이 있을 경우, 단말은 RRC 연결 상태(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC 휴지 상태(Idle Mode)에 있게 된다. RRC 계층의 상위에 있는 NAS(Non-Access Stratum) 계층은 세션 관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.
네트워크에서 단말로 데이터를 송신하는 하향 송신채널은 시스템 정보를 송신하는 BCH(Broadcast Channel), 페이징 메시지를 송신하는 PCH(Paging Channel), 사용자 트래픽이나 제어 메시지를 송신하는 하향 SCH(Shared Channel) 등이 있다. 하향 멀티캐스트 또는 방송 서비스의 트래픽 또는 제어 메시지의 경우 하향 SCH를 통해 송신될 수도 있고, 또는 별도의 하향 MCH(Multicast Channel)을 통해 송신될 수도 있다. 한편, 단말에서 네트워크로 데이터를 송신하는 상향 송신채널로는 초기 제어 메시지를 송신하는 RACH(Random Access Channel), 사용자 트래픽이나 제어 메시지를 송신하는 상향 SCH(Shared Channel)가 있다. 송신채널의 상위에 있으며, 송신채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
도 2는 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 송신 방법을 설명하기 위한 도면이다.
단말은 전원이 켜지거나 새로이 셀에 진입한 경우 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다(S201). 이를 위해, 단말은 기지국으로부터 주 동기 채널(Primary Synchronization Channel; P-SCH) 및 부 동기 채널(Secondary Synchronization Channel; S-SCH)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득할 수 있다. 그 후, 단말은 기지국으로부터 물리 방송 채널(Physical Broadcast Channel)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal; DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 물리 하향링크 제어 채널(Physical Downlink Control Channel; PDCCH) 및 상기 PDCCH에 실린 정보에 따라 물리 하향링크 공유 채널(Physical Downlink Control Channel; PDSCH)을 수신함으로써 좀더 구체적인 시스템 정보를 획득할 수 있다(S202).
한편, 기지국에 최초로 접속하거나 신호 송신을 위한 무선 자원이 없는 경우 단말은 기지국에 대해 임의 접속 과정(Random Access Procedure; RACH)을 수행할 수 있다(단계 S203 내지 단계 S206). 이를 위해, 단말은 물리 임의 접속 채널(Physical Random Access Channel; PRACH)을 통해 특정 시퀀스를 프리앰블로 송신하고(S203 및 S205), PDCCH 및 대응하는 PDSCH를 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S204 및 S206). 경쟁 기반 RACH의 경우, 추가적으로 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 송신 절차로서 PDCCH/PDSCH 수신(S207) 및 물리 상향링크 공유 채널(Physical Uplink Shared Channel; PUSCH)/물리 상향링크 제어 채널(Physical Uplink Control Channel; PUCCH) 송신(S208)을 수행할 수 있다. 특히 단말은 PDCCH를 통하여 하향링크 제어 정보(Downlink Control Information; DCI)를 수신한다. 여기서 DCI는 단말에 대한 자원 할당 정보와 같은 제어 정보를 포함하며, 그 사용 목적에 따라 포맷이 서로 다르다.
한편, 단말이 상향링크를 통해 기지국에 송신하는 또는 단말이 기지국으로부터 수신하는 제어 정보는 하향링크/상향링크 ACK/NACK 신호, CQI(Channel Quality Indicator), PMI(Precoding Matrix 인덱스), RI(Rank Indicator) 등을 포함한다. 3GPP LTE 시스템의 경우, 단말은 상술한 CQI/PMI/RI 등의 제어 정보를 PUSCH 및/또는 PUCCH를 통해 송신할 수 있다.
한편, NR 시스템은 넓은 주파수 대역을 이용하여 다수의 사용자에게 높은 전송율을 유지하면서 데이터 전송을 하기 위해 높은 초고주파 대역, 즉, 6GHz 이상의 밀리미터 주파수 대역을 이용하는 방안을 고려하고 있다. 3GPP에서는 이를 NR이라는 이름으로 사용하고 있으며, 본 발명에서는 앞으로 NR 시스템으로 칭한다.
<LTE 시스템에서의 PRS (Positioning Reference Signal)>
측위(Positioning)는 무선 신호를 측정하여 UE의 지리적 위치 및/또는 속도를 결정하는 것을 의미할 수 있다. 위치 정보는 UE와 관련된 클라이언트(예를 들어, 어플리케이션)에 의해 요청되어, 상기 클라이언트에 보고될 수 있다. 또한, 상기 위치 정보는 코어 네트워크(Core Network) 내에 포함되거나, 상기 코어 네트워크와 접속된 클라이언트에 의해 요청될 수도 있다. 상기 위치 정보는 셀 기반 또는 지리적 좌표와 같은 표준 형식(standard format)으로 보고될 수 있으며, 이 때, 상기 UE의 위치 및 속도에 대한 추정 오류치 및/또는 측위에 사용된 측위 방법을 함께 보고 할 수 있다.
이러한 측위를 위하여, PRS (Positioning Reference Signal)을 사용할 수 있다. PRS는 UE의 위치 추정을 위해 사용되는 참조신호이다. 예를 들어, LTE 시스템에서는, PRS는 PRS 전송을 위해 설정(Configuring)된 하향링크 서브프레임(이하, '포지셔닝 서브프레임 (Positioning Subframe)')에서만 전송될 수 있다. 또한, 만약, MBSFN (Multimedia broadcast single frequency network) 서브프레임과 non-MBSFN 서브프레임이 모두 포지셔닝 서브프레임으로 설정되면, MBSFN 서브프레임의 OFDM (Orthogonal Frequency Division Multiplexing) 심볼들은 서브프레임 #0과 동일한 CP (Cyclic Prefix)를 가져야 한다. 만약, 셀 내에서 포지셔닝 서브프레임이 MBSFM 서브프레임들만으로 설정된 경우, 상기 MBSFN 서브프레임 내에서 PRS를 위해 설정된 OFDM 심볼들은 확장 CP를 가질 수 있다.
이러한 PRS의 시퀀스는 아래의 [수학식 1]에 의해 정의될 수 있다.
[수학식 1]
Figure PCTKR2020010890-appb-img-000001
여기서, n_s는 무선 프레임 내에서의 슬롯 넘버를 의미하고, l은 상기 슬롯 내에서의 OFDM 심볼 넘버를 의미한다.
Figure PCTKR2020010890-appb-img-000002
은 하향링크 대역폭 설정 중 가장 큰 값으로서,
Figure PCTKR2020010890-appb-img-000003
의 정수배로 표현된다.
Figure PCTKR2020010890-appb-img-000004
는 주파수 도메인에서 RB (Resource Block)의 크기이며, 예를 들어, 12개의 부반송파로 구성될 수 있다.
c(i)는 Pseudo-Random 시퀀스로서, 아래의 [수학식 2]에 따라 초기화될 수 있다.
[수학식 2]
Figure PCTKR2020010890-appb-img-000005
상위 계층에서 별도의 설정이 없는 한,
Figure PCTKR2020010890-appb-img-000006
Figure PCTKR2020010890-appb-img-000007
과 동일하며, N_cp는 일반 CP(Cyclic Prefix)에서 1, 확장 CP에서 0이다.
도 3은 PRS가 서브프레임 내에서 맵핑되는 패턴에 대한 예시를 나타낸다. 도 3에서 보는 바와 같이, PRS는 안테나 포트 6을 통해서 전송될 수 있다. 도 3(a)는 일반 CP에서 PRS가 맵핑되는 예시를 나타내고, 도 3(b)는 확장 CP에서 PRS가 맵핑되는 예시를 나타낸다.
한편, LTE 시스템에서, PRS는 위치 추정을 위해 그룹핑된 연속된 서브프레임들에서 전송될 수 있는데, 이 때, 위치 추정을 위해 그룹핑된 서브프레임들을 포지셔닝 기회(Positioning Occasion)이라고 한다. 이러한 포지셔닝 기회는 1, 2, 4 또는 6 서브프레임들로 구성될 수 있다. 또한, 이러한 포지셔닝 기회는 160, 320, 640 또는 1280 서브프레임 주기로 주기적으로 발생할 수 있다. 또한, PRS 전송의 시작 서브프레임을 지시하기 위한 셀 특정 서브프레임 오프셋 값이 정의될 수 있으며, 상기 오프셋 값과 PRS 전송을 위한 포지셔닝 기회의 주기는 아래의 표 1에서 보는 바와 같이, PRS 설정 인덱스(Configuration Index)에 의해 유도될 수 있다.
Figure PCTKR2020010890-appb-img-000008
한편, 각각의 포지셔닝 기회(Occasion)에 포함된 PRS는 일정한 전력으로 전송된다. 이 때, 특정 포지셔닝 기회(Occasion)에서는 제로 파워로 PRS가 전송될 수 있는데, 이를 PRS 뮤팅(muting)이라고 한다. 예를 들어, 서빙 셀에서 전송되는 PRS를 뮤팅(muting)함으로써, 단말이 인접 셀의 PRS를 용이하게 검출할 수 있다.
셀에 대한 PRS 뮤팅 설정(Configuration)은 2, 4, 8 또는 16 개의 포지셔닝 기회(Occasion)로 구성되는 주기적 뮤팅 시퀀스에 의해 정의될 수 있다. 즉, 주기적 뮤팅 시퀀스는 PRS 뮤팅 설정에 대응하는 포지셔닝 기회들에 따라 2, 4, 8 또는 16비트로 구성될 수 있으며, 각각의 비트는 '0' 또는 '1'의 값을 가질 수 있다. 예를 들어, 비트 값이 '0'인 포지셔닝 기회(Occasion)에서 PRS 뮤팅이 수행될 수 있다.
한편, 포지셔닝 서브프레임은 저 간섭 서브프레임(low interference subframe)으로 설계되어, 상기 포지셔닝 서브프레임에서는 데이터가 전송되지 않는다. 그러므로, PRS는 다른 셀의 PRS에 의해서 간섭 받을 수는 있지만, 데이터 전송에 의해서는 간섭 받지 않는다.
<NR 시스템에서의 UE 포지셔닝 아키텍처 (UE Positioning Architecture)>
도 4는 NG-RAN (Next Generation-Radio Access Network) 또는 E-UTRAN에 접속되는 UE에 대한 측위가 가능한 5G 시스템에서의 아키텍처를 나타낸다.
도 4를 참조하면, AMF (Core Access and Mobility Management Function)은 특정 타겟 UE와 관련된 위치 서비스에 대한 요청을 GMLC (Gateway Mobile Location Center)와 같은 다른 엔티티(entity)로부터 수신하거나, AMF 자체에서 특정 타겟 UE를 대신하여 위치 서비스를 시작하기로 결정할 수 있다. 그러면, AMF는 LMF (Location Management Function) 에게 위치 서비스 요청을 전송한다. 상기 위치 서비스 요청을 수신한 LMF는 상기 위치 서비스 요청을 처리하여 UE의 추정된 위치 등을 포함하는 처리 결과를 AMF에 반환할 수 있다. 한편, 위치 서비스 요청이 AMF이 이외에 GMLC와 같은 다른 엔티티로부터 수신된 경우에 AMF는 LMF로부터 수신한 처리 결과를 다른 엔티티로 전달할 수 있다.
ng-eNB (new generation evolved-NB) 및 gNB는 위치 추엊을 위한 측정 결과를 제공할 수 있는 NG-RAN의 네트워크 요소이며, 타겟 UE에 대한 무선 신호를 측정하고 그 결과값을 LMF에 전달할 수 있다. 또한, ng-eNB는 원격 무선 헤드 (remote radio heads)와 같은 몇몇 TP (Transmission Point)들 또는 E-UTRA를 위한 PRS 기반 비콘 시스템을 지원하는 PRS 전용 TP들을 제어할 수 있다.
LMF는 E-SMLC (Enhanced Serving Mobile Location Centre)와 연결되고, E-SMLC는 LMF가 E-UTRAN에 접속 가능하게 할 수 있다. 예를 들어, E-SMLC는 LMF가 eNB 및/또는 E-UTRAN 내의 PRS 전용 TP들로부터 전송된 신호를 통해 타겟 UE가 획득한 하향링크 측정을 이용하여 E-UTRAN의 측위 방법들 중 하나인 OTDOA (Observed Time Difference Of Arrival)을 지원하도록 할 수 있다.
한편, LMF는 SLP (SUPL Location Platform)에 연결될 수 있다. LMF는 타겟 UE들에 대한 서로 상이한 위치 결정 서비스들을 지원하고 관리할 수 있다. LMF는 UE의 위치 측정을 획득하기 위하여, 타겟 UE를 위한 서빙 ng-eNB 또는 서빙 gNB와 상호 작용할 수 있다. 타겟 UE의 측위를 위하여, LMF는 LCS(Location Service) 클라이언트 유형, 요구되는 QoS (Quality of Service), UE 측위 능력(UE positioning capabilities), gNB 측위 능력 및 ng-eNB 측위 능력 등에 기반하여 측위 방법을 결정하고, 이러한 측위 방법을 서빙 gNB 및/또는 서빙 ng-eNB에게 적용할 수 있다. 그리고, LMF는 타겟 UE에 대한 위치 추정치와 위치 추정 및 속도의 정확도와 같은 추가 정보를 결정할 수 있다. SLP는 사용자 평면(user plane)을 통해 측위를 담당하는 SUPL (Secure User Plane Location) 엔티티이다.
UE는 NG-RAN 및 E-UTRAN, 서로 상이한 GNSS (Global Navigation Satellite System), TBS (Terrestrial Beacon System), WLAN 접속 포인트, 블루투스 비콘 및 UE 기압 센서등과 같은 소스 등을 통해 하향링크 신호를 측정할 수 있다. UE는 LCS 어플리케이션을 포함할 수도 있고, UE가 접속된 네트워크와의 통신 또는 UE에 포함된 다른 어플리케이션을 통해 LCS 어플리케이션에 접속할 수 있다. LCS 어플리케이션은 UE의 위치를 결정하는 데 필요한 측정 및 계산 기능을 포함할 수 있다. 예를 들어, UE는 GPS (Global Positioning System) 과 같은 독립적인 측위 기능을 포함할 수 있고, NG-RAN 전송과는 독립적으로 UE의 위치를 보고할 수 있다. 이러한 독립적으로 획득한 측위 정보는 네트워크로부터 획득한 측위 정보의 보조 정보로서 활용될 수도 있다.
<UE의 위치 측정을 위한 동작>
도 5는 UE의 위치를 측정하기 위한 네트워크의 구현 예를 나타낸다. UE가 CM-IDLE (Connection Management - IDLE)상태에 있을 때, AMF가 위치 서비스 요청을 수신하면, AMF는 UE와의 시그널링 연결을 수립하고, 특정 서빙 gNB 또는 ng-eNB를 할당하기 위해 네트워크 트리거 서비스를 요청할 수 있다. 이러한 동작 과정은 도 5에서는 생략되어 있다. 즉, 도 5에서는 UE가 연결 모드(connected mode)에 있는 것으로 가정할 수 있다. 하지만, 시그널링 및 데이터 비활성 등의 이유로 NG-RAN에 의해 시그널링 연결이 측위 과정이 진행되는 도중에 해제될 수도 있다.
도 5를 참조하여 구체적으로 UE의 위치를 측정하기 위한 네트워크의 동작 과정을 살펴보면, 단계 1a에서, GMLC와 같은 5GC 엔티티는 서빙 AMF로 타겟 UE의 위치를 측정하기 위한 위치 서비스를 요청할 수 있다. 다만, GMLC가 위치 서비스를 요청하지 않더라도, 단계 1b에 따라, 서빙 AMF가 타겟 UE의 위치를 측정하기 위한 위치 서비스가 필요하다고 결정할 수도 있다. 예를 들어, 긴급 호출(emergency call)을 위한 UE의 위치를 측정하기 위하여, 서빙 AMF가 직접 위치 서비스를 수행할 것을 결정할 수도 있다.
그 후, AMF는 단계 2에 따라, LMF로 위치 서비스 요청을 전송하고, 단계 3a에 따라, LMF는 위치 측정 데이터 또는 위치 측정 보조 데이터를 획득하기 위한 위치 절차(location procedures)를 서빙 ng-eNB, 서빙 gNB와 함께 시작할 수 있다. 예를 들어, LMF가 NG-RAN에 하나 이상의 UE와 관련된 위치 관련 정보를 요청하고, 필요한 위치 정보의 유형 및 관련 QoS를 지시할 수 있다. 그러면, NG-RAN은 요청에 응답하여, LMF에 위치 관련 정보를 LMF에 전송할 수 있다. 이 때, 상기 요청에 의한 위치 결정 방법이 E-CID인 경우, NG-RAN은 추가적인 위치 관련 정보를 LMF에 하나 이상의 NRPPa 메시지를 통해 전송할 수 있다. 여기서, '위치 관련 정보'란, 실제 위치 추정 정보 및 무선 측정 또는 위치 측정 등과 같이 위치 계산에 사용되는 모든 값들을 의미할 수 있다. 또한, 단계 3a에서 사용되는 프로토콜(Protocol)은 NRPPa 프로토콜일 수 있으며, 이에 대해서는 후술하도록 한다.
추가적으로, 단계 3b에 따라, LMF는 UE와 함께 하향링크 측위를 위한 위치 절차(location procedures) 시작할 수 있다. 예를 들어, LMF는 UE에게 위치 보조 데이터를 전송하거나, 위치 추정치 또는 위치 측정치를 획득할 수 있다. 예를 들어, 단계 3b에서 성능 정보 교환(Capability Transfer) 과정을 수행할 수 있다. 구체적으로 LMF는 UE에게 성능(Capability) 정보를 요청하고, UE는 LMF에게 성능(Capability) 정보를 전송할 수 있다. 이 때, 성능(Capability) 정보란, LFM 또는 UE가 지원할 수 있는 위치 측정 방법에 대한 정보, A-GNSS를 위한 보조 데이터(Assistance data)의 다양한 타입과 같이 특정 위치 측정 방법에 대한 다양한 측면(aspects)들에 대한 정보 및 다중 LPP 트랜젝션들을 핸들링(handle)할 수 있는 능력 등과 같이 어느 하나의 위치 측정 방법에 국한되지 않는 공통 특징에 대한 정보 등을 포함할 수 있다. 한편, 경우에 따라서 LMF가 UE에게 성능(Capability) 정보를 요청하지 않더라도, UE가 LMF에게 성능(Capability) 정보를 제공할 수 있다.
또 다른 예로, 단계 3b에서 위치 보조 데이터 교환(Assistance data transfer) 과정을 수행할 수 있다. 구체적으로, UE는 LMF에게 위치 보조 데이터(assistance data)를 요청할 수 있고, 필요로 하는 특정 위치 보조 데이터(assistance data)를 LMF에 지시할 수 있다. 그러면, LMF는 이에 대응하는 위치 보조 데이터(assistance data)를 UE에게 전달할 수 있고, 추가적으로, 하나 이상의 추가 LPP 메시지들을 통해 추가 보조 데이터(Additional assistance data)를 UE에게 전송할 수 있다. 한편, LMF에서 UE로 전송되는 위치 보조 데이터는 유니캐스트(unicast) 방식을 통해 전송될 수 있고, 경우에 따라, UE가 LMF에 보조 데이터를 요청하는 과정 없이, LMF가 UE에게 위치 보조 데이터 및/또는 추가 보조 데이터를 UE에게 전송할 수 있다.
또 다른 예로, 단계 3b에서 위치 정보 교환(Location Information Transfer) 과정을 수행할 수 있다. 구체적으로, LMF가 UE에게 해당 UE와 관련된 위치 관련 정보를 요청하고, 필요한 위치 정보의 유형 및 관련 QoS를 지시할 수 있다. 그러면, UE는 요청에 응답하여, LMF에 위치 관련 정보를 LMF에 전송할 수 있다. 이 때, 추가적으로 UE는 추가 위치 관련 정보를 LMF에 하나 이상의 LPP 메시지들을 통해 전송할 수 있다. 여기서, '위치 관련 정보'란, 실제 위치 추정 정보 및 무선 측정 또는 위치 측정 등과 같이 위치 계산에 사용되는 모든 값들을 의미할 수 있으며, 대표적으로는 복수의 NG-RAN 및/또는 E-UTRAN로부터 UE로 전송되는 하향링크 참조 신호(Downlink Reference Signal)들을 기반으로 UE가 측정하는RSTD(Reference Signal Time Difference) 값이 있을 수 있다. 상술한 바와 유사하게 UE 는 LMF로부터 요청이 없더라도 상기 위치 관련 정보를 LMF에 전송할 수 있다.
한편, 상술한 단계 3b에서 이루어지는 과정들은 단독으로 수행될 수도 있지만, 연속적으로 수행될 수 있다. 일반적으로, 성능 정보 교환(Capability Transfer) 과정, 위치 보조 데이터 교환(Assistance data transfer) 과정, 위치 정보 교환(Location Information Transfer) 과정 순서로 단계 3b가 수행되지만, 이러한 순서에 국한되지 않는다. 다시 말해, 단계 3b는 위치 측정의 유연성을 향상시키기 위해 특정 순서에 구애 받지 않는다. 예를 들어, UE는 LMF가 이미 요청한 위치 측정 요청을 수행하기 위해 언제든지 위치 보조 데이터를 요청할 수 있다. 또한, LMF도 UE가 전달해준 위치 정보가 요구하는 QoS를 만족하지 못하는 경우, 언제든지 위치 측정치 또는 위치 추정치 등의 위치 정보를 요청할 수 있다. 이와 유사하게 UE가 위치 추정을 위한 측정을 수행하지 않은 경우에는 언제든지 LMF로 성능(Capability) 정보를 전송할 수 있다.
또한, 단계 3b에서 LMF와 UE 간에 교환하는 정보 또는 요청에 Error가 발생한 경우, Error 메시지가 송수신될 수 있으며, 위치 측정을 중단하기 위한 중단(Abort)메시지가 송수신될 수도 있다.
한편, 단계 3b 에서 사용되는 프로토콜(Protocol)은 LPP 프로토콜일 수 있으며, 이에 대해서는 후술하도록 한다.
한편, 단계 3b는 단계 3a가 수행된 이후 추가적으로 수행될 수도 있으나, 단계 3a에 대신하여 수행될 수도 있다.
단계 4에서 LMF는 AMF에 위치 서비스 응답을 제공할 수 있다. 또한, 위치 서비스 응답에는 UE의 위치추정이 성공했는지 여부에 대한 정보 및 UE의 위치 추정치가 포함될 수 있다. 그 후, 단계 1a에 의해 도 5의 절차가 개시되었다면, AMF는 GMLC와 같은 5GC 엔티티에 위치 서비스 응답을 전달할 수 있으며, 단계 1b에 의해 도 5의 절차가 개시되었다면, AMF는 긴급 호출 등에 관련된 위치 서비스 제공을 위하여, 위치 서비스 응답을 이용할 수 있다.
<위치 측정을 위한 프로토콜>
(1) LTE Positioning Protocol (LPP)
도 6은 LMF와 UE 간의 LPP 메시지 전송을 지원하기 위해 사용되는 프로토콜 레이어의 예시를 나타낸다. LPP PDU는 MAF와 UE 간의 NAS PDU를 통해 전송될 수 있다. 도 6을 참조하면, LPP는 타겟 장치(예들 들어, 제어 평면에서의 UE 또는 사용자 평면에서의 SET(SUPL Enabled Terminal))와 위치 서버(예를 들어, 제어 평면에서의 LMF 또는 사용자 평면에서의 SLP) 사이를 연결(terminated)할 수 있다. LPP 메시지는 NG-C 인터페이스를 통한 NGAP, LTE-Uu 및 NR-Uu 인터페이스를 통한 NAS/RRC 등의 적절한 프로토콜을 사용하여 중간 네트워크 인터페이스를 통해 트랜스패런트 (Transparent) PDU 형태로 전달될 수 있다. LPP 프로토콜은 다양항 측위 방법을 사용하여 NR 및 LTE를 위한 측위가 가능하도록 한다.
예를 들어, LPP 프로토콜을 통하여 타겟 장치 및 위치 서버는 상호 간의 성능(capability) 정보 교환, 측위를 위한 보조 데이터 교환 및/또는 위치 정보를 교환할 수 있다. 또한, LPP 메시지를 통해 에러 정보 교환 및/또는 LPP 절차의 중단 지시 등을 수행할 수도 있다.
(2) NR Positioning Protocol A (NRPPa)
도 7은 LMF와 NG-RAN 노드 간의 NRPPa PDU 전송을 지원하는데 사용되는 프로토콜 레이어의 예시를 나타낸다. NRPPa는 NG-RAN 노드와 LMF 간의 정보 교환에 사용될 수 있다. 구체적으로 NRPPa는 ng-eNB에서 LMF로 전송되는 측정을 위한 E-CID, OTDOA 측위 방법을 지원하기 위한 데이터, NR Cell ID 측위 방법을 위한 Cell-ID 및 Cell 위치 ID 등을 교환할 수 있다. AMF는 연관된 NRPPa 트랜잭션(transaction)에 대한 정보가 없더라도, NG-C 인터페이스를 통해 연관된 LMF의 라우팅 ID를 기반으로 NRPPa PDU들을 라우팅할 수 있다.
위치 및 데이터 수집을 위한 NRPPa 프로토콜의 절차는 2가지 유형으로 구분될 수 있다. 첫번째 유형은, 특정 UE에 대한 정보 (예를 들어, 위치 측정 정보 등)를 전달하기 위한 UE 관련 절차(UE associated procedure)이고, 두번째 유형은, NG-RAN 노드 및 관련된 TP들에 적용 가능한 정보 (예를 들어, gNB/ng-eNG/TP 타이밍 정보 등)을 전달하기 위한 비 UE 관련 절차 (non UE associated procedure)이다. 상기 2가지 유형의 절차는 독립적으로 지원될 수도 있고, 동시에 지원될 수도 있다.
<측위 방법(Positioning Measurement Method)>
NG-RAN에서 지원하는 측위 방법들에는 GNSS, OTDOA, E-CID (enhanced cell ID), 기압 센서 측위, WLAN 측위, 블루투스 측위 및 TBS (terrestrial beacon system), UTDOA (Uplink Time Difference of Arrival) 등이 있을 수 있다. 상기 측위 방법들 중, 어느 하나의 측위 방법을 이용하여 UE의 위치를 측정할 수도 있지만, 둘 이상의 측위 방법을 이용하여 UE의 위치를 측정할 수도 있다.
(1) OTDOA (Observed Time Difference Of Arrival)
도 8은 OTDOA 측위 방법을 설명하기 위한 도면이다. OTDOA 측위 방법은 UE가 eNB, ng-eNB 및 PRS 전용 TP를 포함하는 다수의 TP들로부터 수신된 하향링크 신호들의 측정 타이밍을 이용한다. UE는 위치 서버로부터 수신된 위치 보조 데이터를 이용하여 수신된 하향링크 신호들의 타이밍을 측정한다. 그리고 이러한 측정 결과 및 이웃 TP들의 지리적 좌표들을 기반으로 UE의 위치를 결정할 수 있다.
gNB에 연결된 UE는 TP로부터 OTDOA 측정을 위한 측정 갭(gap)을 요청할 수 있다. 만약, UE가 OTDOA 보조 데이터 내의 적어도 하나의 TP를 위한 SFN을 인지하지 못하면, UE는 RSTD (Reference Signal Time Difference) 측정(Measurement)을 수행하기 위한 측정 갭을 요청하기 전에 OTDOA 참조 셀(reference cell)의 SFN을 획득하기 위해 자율적인 갭(autonomous gap)을 사용할 수 있다.
여기서, RSTD는 참조 셀과 측정 셀로부터 각각 수신된 2개의 서브프레임들의 경계 간의 가장 작은 상대적인 시간 차를 기반으로 정의될 수 있다. 즉, 측정 셀로부터 수신된 서브 프레임의 시작 시간에 가장 가까운 참조 셀의 서브프레임의 시작 시간 간의 상대적인 시간 차이를 기반으로 계산될 수 있다. 한편, 참조 셀은 UE에 의해 선택될 수 있다.
정확한 OTDOA 측정을 위해서는 지리적으로 분산된 3개 이상의 TP들 또는 기지국들로부터 수신된 신호의 TOA(time of arrival)을 측정하는 것이 필요하다. 예를 들어, TP 1, TP 2 및 TP 3 각각에 대한 TOA를 측정하고, 3개의 TOA를 기반으로 TP 1-TP 2에 대한 RSTD, TP 2-TP 3에 대한 RSTD 및 TP 3-TP 1에 대한 RSTD를 계산하여, 이를 기반으로 기하학적 쌍곡선을 결정하고, 이러한 쌍곡선이 교차하는 지점을 UE의 위치로 추청할 수 있다. 이 때, 각 TOA 측정에 대한 정확도 및/또는 불확실성이 생길 수 있는 바, 추정된 UE의 위치는 측정 불확실성에 따른 특정 범위로 알려질 수도 있다.
예를 들어, 두 TP에 대한 RSTD는 아래의 [수학식 3]을 기반으로 산출될 수 있다.
[수학식 3]
Figure PCTKR2020010890-appb-img-000009
여기서, c는 빛의 속도이고,
Figure PCTKR2020010890-appb-img-000010
는 타겟 UE의 (알려지지 않은) 좌표이고,
Figure PCTKR2020010890-appb-img-000011
는 (알려진) TP의 좌표이며,
Figure PCTKR2020010890-appb-img-000012
은 참조 TP (또는 다른 TP)의 좌표일 수 있다. 여기서,
Figure PCTKR2020010890-appb-img-000013
은 두 TP 간의 전송 시간 오프셋으로서, "Real Time Differences" (RTDs)로 명칭될 수 있으며, n_i, n_1은 UE TOA 측정 에러에 관한 값을 나타낼 수 있다.
(2) E-CID (Enhanced Cell ID)
셀 ID (CID) 측위 방법에서, UE의 위치는 UE의 서빙 ng-eNB, 서빙 gNB 및/또는 서빙 셀의 지리적 정보를 통해 측정될 수 있다. 예를 들어, 서빙 ng-eNB, 서빙 gNB 및/또는 서빙 셀의 지리적 정보는 페이징(paging), 등록(registration) 등을 통해 획득될 수 있다.
한편, E-CID 측위 방법은 CID 측위 방법에 더하여 UE 위치 추정치를 향상 시키기 위한 추가적인 UE 측정 및/또는 NG-RAN 무선 자원 등을 이용할 수 있다. E-CID 측위 방법에서, RRC 프로토콜의 측정 제어 시스템과 동일한 측정 방법들 중 일부를 사용할 수 있지만, 일반적으로 UE의 위치 측정만을 위하여 추가적인 측정을 하지 않는다. 다시 말해, UE의 위치를 측정하기 위하여 별도의 측정 설정 (measurement configuration) 또는 측정 제어 메시지(measurement control message)는 제공되지 않을 수 있으며, UE 또한 위치 측정만을 위한 추가적인 측정 동작이 요청될 것을 기대하지 않고, UE가 일반적으로 측정 가능한 측정 방법들을 통해 획득된 측정 값을 보고할 수 있다.
예를 들어, 서빙 gNB는 UE로부터 제공되는 E-UTRA 측정치를 사용하여 E-CID 측위 방법을 구현할 수 있다.
E-CID 측위를 위해 사용할 수 있는 측정 요소의 예를 들면 다음과 같을 수 있다.
- UE 측정: E-UTRA RSRP (Reference Signal Received Power), E-UTRA RSRQ (Reference Signal Received Quality), UE E-UTRA 수신-송신 시간차 (Rx-Tx Time difference), GERAN/WLAN RSSI (Reference Signal Strength Indication), UTRAN CPICH (Common Pilot Channel) RSCP (Received Signal Code Power), UTRAN CPICH Ec/Io
- E-UTRAN 측정: ng-eNB 수신-송신 시간차 (Rx-Tx Time difference), 타이밍 어드밴스 (Timing Advance; T_ADV), Angle of Arrival (AoA)
여기서, T_ADV는 아래와 같이 Type 1과 Type 2로 구분될 수 있다.
T_ADV Type 1 = (ng-eNB 수신-송신 시간차)+(UE E-UTRA 수신-송시 시간차)
T_ADV Type 2 = ng-eNB 수신-송신 시간차
한편, AoA는 UE의 방향을 측정하는데 사용될 수 있다. AoA는 기지국/TP로부터 반 시계 방향으로 UE의 위치에 대한 추정 각도로 정의될 수 있다. 이 때, 지리적 기준 방향은 북쪽일 수 있다. 기지국/TP는 AoA 측정을 위해 SRS (Sounding Reference Signal) 및/또는 DMRS (Demodulation Reference Signal)과 같은 상향링크 신호를 이용할 수 있다. 또한, 안테나 어레이의 배열이 클수록 AoA의 측정 정확도가 높아지며, 동일한 간격으로 안테나 어레이들이 배열된 경우, 인접한 안테나 소자들에서 수신된 신호들은 일정한 위상 변화(Phase-Rotate)를 가질 수 있다.
(3) UTDOA (Uplink Time Difference of Arrival)
UTDOA는 SRS의 도달 시간을 추정하여 UE의 위치를 결정하는 방법이다. 추정된 SRS 도달 시간을 산출할 때, 서빙 셀이 참조 셀로 사용하여, 다른 셀 (혹은 기지국/TP)와의 도달 시간 차이를 통해 UE의 위치를 추정할 수 있다. UTDOA를 구현하기 위해 E-SMLC는 타겟 UE에게 SRS 전송을 지시하기 위해, 타겟 UE의 서빙 셀을 지시할 수 있다. 또한, E-SMLC는 SRS의 주기적/비주기적 여부, 대역폭 및 주파수/그룹/시퀀스 호핑 등과 같은 설정(Configuration)을 제공할 수 있다.
(4) Multi RTT (Multi-cell RTT)
네트워크 내 TP 들 간의 좋은 (fine) 동기화(예를 들어, nano-second level)를 요구하는 OTDOA 등과는 달리, RTT 는 OTDOA 등과 마찬가지로 TOA 측정을 기반으로 하나, 대략적인 (coarse) TRP (예를 들어, 기지국) 타이밍 동기화 (timing synchronization) 만을 필요로 한다.
도 9는 Multi RTT (round trip time) 측위 방법의 실시 예를 설명하기 위한 도면이다.
도 9(a)을 참조하면, initiating device 와 responding device 에서 TOA 측정이 수행되고, responding device 가 RTT 측정(계산)을 위하여 initiating device) 에 TOA 측정을 제공하는 RTT 과정을 예시한다. 예를 들어, initiating device 는 TRP 및/또는 단말일 수 있고, responding device 는 단말 및/또는 TRP 일 수 있다.
예시적 실시예에 따른 동작 901 에서 initiating device 는 RTT 측정 요청을 송신하고, responding device 는 이를 수신할 수 있다.
예시적 실시예에 따른 동작 903 에서, initiating device 는 RTT 측정 신호를 t0 에서 송신할 수 있고, responding device 는 TOA 측정 t1을 획득할 수 있다.
예시적 실시예에 따른 동작 905 에서, responding device 는 RTT 측정 신호를 t2 에서 송신할 수 있고, initiating device 는 TOA 측정 t3을 획득할 수 있다.
예시적 실시예에 따른 동작 907 에서, responding device 는 [t2-t1] 에 대한 정보를 송신할 수 있고, initiating device 는 해당 정보를 수신하여, 아래 수학식 4 에 기초하여 RTT 를 계산할 수 있다. 해당 정보는 별개 신호에 기초하여 송수신될 수도 있고, 905 의 RTT 측정 신호에 포함되어 송수신될 수도 있다.
[수학식 4]
Figure PCTKR2020010890-appb-img-000014
도 9(b)을 참조하면, 해당 RTT 는 두 디바이스 간의 double-range 측정과 대응할 수 있다. 해당 정보로부터 측위 추정 (positioning estimation) 이 수행될 수 있으며, multilateration 기법이 사용될 수 있다. 측정된 RTT 에 기반하여 d1, d2, d3 가 결정될 수 있으며, 각 BS1, BS2, BS3 (또는 TRP) 를 중심으로 하고 각 d1, d2, d3 를 반지름으로 하는 원주의 교차점으로 target device location 이 결정될 수 있다.
<상향링크 전력 제어(Uplink Power Control)>
무선 통신 시스템에서는 상황에 따라 단말(예: User Equipment, UE) 및/또는 이동 장치(mobile device)의 전송 전력을 증가 또는 감소시킬 필요가 있을 수 있다. 이와 같이 단말 및/또는 이동 장치의 전송 전력을 제어하는 것은 상향링크 전력 제어(uplink power contorl)로 지칭될 수 있다. 일례로, 전송 전력 제어 방식은 기지국(예: gNB, eNB 등)에서의 요구 사항(requirement)(예: SNR(Signal-to-Noise Ratio), BER(Bit Error Ratio), BLER(Block Error Ratio) 등)을 만족시키기 위해 적용될 수 있다.
상술한 바와 같은 전력 제어는 개루프(open-loop) 전력 제어 방식과 폐루프(closed-loop) 전력 제어 방식으로 수행될 수 있다.
구체적으로, 개루프 전력 제어 방식은 전송 장치(예: 기지국 등)로부터 수신 장치(예: 단말 등)로의 피드백(feedback) 및/또는 수신 장치로부터 전송 장치로의 피드백 없이 전송 전력을 제어하는 방식을 의미한다. 일례로, 단말은 기지국으로부터 특정 채널/신호(pilot channel/signal)를 수신하고, 이를 이용하여 수신 전력의 강도(strength)를 추정할 수 있다. 이후, 단말은 추정된 수신 전력의 강도를 이용하여 전송 전력을 제어할 수 있다.
이와 달리, 폐루프 전력 제어 방식은 전송 장치로부터 수신 장치로의 피드백 및/또는 수신 장치로부터 전송 장치로의 피드백에 기반하여 전송 전력을 제어하는 방식을 의미한다. 일례로, 기지국은 단말로부터 특정 채널/신호를 수신하며, 수신된 특정 채널/신호에 의해 측정된 전력 수준(power level), SNR, BER, BLER 등에 기반하여 단말의 최적 전력 수준(optimum power level)을 결정한다. 기지국은 결정된 최적 전력 수준에 대한 정보(즉, 피드백)를 제어 채널(control channel) 등을 통해 단말에게 전달하며, 해당 단말은 기지국에 의해 제공된 피드백을 이용하여 전송 전력을 제어할 수 있다.
이하, 무선 통신 시스템에서 단말 및/또는 이동 장치가 기지국으로의 상향링크 전송을 수행하는 경우들에 대한 전력 제어 방식에 대해 구체적으로 살펴본다. 구체적으로, 1) 상향링크 데이터 채널(예: PUSCH(Physical Uplink Shared Channel), 2) 상향링크 제어 채널(예: PUCCH(Physical Uplink Control Channel), 3) 사운딩 참조 신호(Sounding Reference Signal, SRS), 4) 랜덤 엑세스 채널(예: PRACH(Physical Random Access Channel) 전송에 대한 전력 제어 방식들이 설명된다. 이 때, PUSCH, PUCCH, SRS 및/또는 PRACH에 대한 전송 기회(transmission occasion)(즉, 전송 시간 단위)(i)는 시스템 프레임 번호(system frame number, SFN)의 프레임 내에서의 슬롯 인덱스(slot index)(n_s), 슬롯 내의 첫 번째 심볼(S), 연속하는 심볼의 수(L) 등에 의해 정의될 수 있다.
(1) 상향링크 데이터 채널의 전력 제어
상향링크 데이터 채널의 전력 제어와 관련하여, 이하에서는 설명의 편의를 위하여 단말이 PUSCH 전송을 수행하는 경우를 기준으로 전력 제어 방식을 설명하나, 해당 전력 제어 방식이 PUCSH 전송에 한정하여 적용되는 것은 아니며 무선 통신 시스템에서 지원되는 다른 상향링크 데이터 채널에도 확장하여 적용될 수 있음은 물론이다.
서빙 셀(serving cell)(c)의 캐리어(carrier)(f)의 활성화된(active) 상향링크 대역폭 부분(UL bandwidth part, UL BWP)에서의 PUSCH 전송의 경우, 단말은 이하 수학식 5에 의해 결정되는 전송 전력의 선형 전력 값(linear power value)을 산출할 수 있다. 이후, 해당 단말은 산출된 선형 전력 값을 안테나 포트(antenna port) 수 및/또는 SRS 포트(SRS port) 수 등을 고려하여 전송 전력을 제어할 수 있다.
특히, 단말이 인덱스 j에 기반한 파라미터 집합 구성(parameter set configuration) 및 인덱스 l에 기반한 PUSCH 전력 제어 조정 상태(PUSCH power control adjustment state)를 이용하여, 서빙 셀(c)의 캐리어(f)의 활성화된 UL BWP(b)에서의 PUSCH 전송을 수행하는 경우, 단말은 아래 수학식 5에 기반하여 PUSCH 전송 기회(i)에서의 PUSCH 전송 전력
Figure PCTKR2020010890-appb-img-000015
(dBm)를 결정할 수 있다.
[수학식 5]
Figure PCTKR2020010890-appb-img-000016
수학식 5에서, 인덱스 j는 개루프 전력 제어 파라미터(예: P_o, 알파(alpha,
Figure PCTKR2020010890-appb-img-000017
) 등)에 대한 인덱스를 나타내며, 셀 당 최대 32개의 파라미터 집합들이 설정될 수 있다. 인덱스 q_d는 경로 손실(PathLoss, PL) 측정(measurement)(예:
Figure PCTKR2020010890-appb-img-000018
)에 대한 DL RS 자원의 인덱스를 나타내며, 셀 당 최대 4개의 측정치들이 설정될 수 있다. 인덱스 l은 폐루프 전력 제어 프로세스(process)에 대한 인덱스를 나타내며, 셀 당 최대 2개의 프로세스들이 설정될 수 있다.
또한, P_o(예:
Figure PCTKR2020010890-appb-img-000019
는 시스템 정보의 일부로 브로드캐스트되는 파라미터로, 수신 측에서의 목표(target) 수신 전력을 나타낼 수 있다. 해당 P_o 값은 단말의 처리량(throughput), 셀의 용량(capacity), 잡음(noise) 및/또는 간섭(interference) 등을 고려하여 설정될 수 있다. 또한, 알파(예:
Figure PCTKR2020010890-appb-img-000020
)는 경로 손실에 대한 보상을 수행하는 비율을 나타낼 수 있다. 알파는 0부터 1까지의 값으로 설정될 수 있으며, 설정되는 값에 따라 완전 경로 손실 보상(full pathloss compensation) 또는 부분 경로 손실 보상(fractional pathloss compensation)이 수행될 수 있다. 이 경우, 상기 알파 값은 단말들 간의 간섭 및/또는 데이터 속도 등을 고려하여 설정될 수 있다. 또한,
Figure PCTKR2020010890-appb-img-000021
는 설정된 단말 전송 전력(UE transmit power)을 나타낼 수 있다. 일례로, 상기 설정된 단말 전송 전력은 3GPP TS 38.101-1 및/또는 TS38.101-2에서 정의된 '설정된 단말의 최대 출력 전력(configured maximum UE output power)'으로 해석될 수 있다. 또한,
Figure PCTKR2020010890-appb-img-000022
는 서브캐리어 간격(subcarrier spacing)(
Figure PCTKR2020010890-appb-img-000023
)에 기반하여 PUSCH 전송 기회에 대한 자원 블록(resource block, RB)의 수로 표현되는 PUSCH 자원 할당의 대역폭(bandwidth)을 나타낼 수 있다. 또한, PUSCH 전력 제어 조정 상태와 관련된
Figure PCTKR2020010890-appb-img-000024
는 DCI(예: DCI format 0_0, DCI format 0_1, DCI format 2_2, DCI format2_3 등)의 TPC 명령 필드(TPC command field)에 기반하여 설정 또는 지시될 수 있다.
이 경우, 특정 RRC(Radio Resource Control) 파라미터(예: SRI-PUSCHPowerControl-Mapping 등)는 DCI(downlink control information)의 SRI(SRS Resource Indicator) 필드와 상술한 인덱스 j, q_d, l간의 연결 관계(linkage)를 나타낼 수 있다. 다시 말해, 상술한 인덱스 j, l, q_d 등은 특정 정보에 기반하여 빔(beam), 패널(panel), 및/또는 공간 영역 전송 필터(spatial domain trnamission filter) 등과 연관될 수 있다. 이를 통해, 빔, 패널, 및/또는 공간 영역 전송 필터 단위의 PUSCH 전송 전력 제어가 수행될 수 있다.
상술한 PUSCH 전력 제어를 위한 파라미터들 및/또는 정보는 BWP 별로 개별적(즉, 독립적)으로 설정될 수 있다. 이 경우, 해당 파라미터들 및/또는 정보는 상위 계층 시그널링(예: RRC 시그널링, MAC-CE(Medium Access Control-Control Element) 등) 및/또는 DCI 등을 통해 설정 또는 지시될 수 있다. 일례로, PUSCH 전력 제어를 위한 파라미터 및/또는 정보는 RRC 시그널링 PUSCH-ConfigCommon, PUSCH-PowerControl 등을 통해 전달될 수 있으며, 3GPP TS Rel.16 38.331에서 언급되는 PUSCH-ConfigCommon, PUSCH-PowerControl은 아래와 같다.
Figure PCTKR2020010890-appb-img-000025
단말은 상술한 바와 같은 방식을 통해 PUSCH 전송 전력을 결정 또는 산출할 수 있으며, 결정된 또는 산출된 PUSCH 전송 전력을 이용하여 PUSCH를 전송할 수 있다.
(2) 상향링크 제어 채널의 전력 제어
상향링크 데이터 채널의 전력 제어와 관련하여, 이하에서는 설명의 편의를 위하여 단말이 PUCCH 전송을 수행하는 경우를 기준으로 전력 제어 방식을 설명하나, 해당 전력 제어 방식이 PUCCH 전송에 한정하여 적용되는 것은 아니며 무선 통신 시스템에서 지원되는 다른 상향링크 데이터 채널에도 확장하여 적용될 수 있음은 물론이다.
단말이 인덱스 l에 기반한 PUCCH 전력 제어 조정 상태(PUCCH power control adjustment state)를 이용하여, 프라이머리 셀(primary cell)(또는 세컨더리 셀(secondary cell))(c)의 캐리어(f)의 활성화된 UL BWP(b)에서의 PUCCH 전송을 수행하는 경우, 단말은 아래 수학식 6에 기반하여 PUCCH 전송 기회(i)에서의 PUCCH 전송 전력
Figure PCTKR2020010890-appb-img-000026
(dBm)를 결정할 수 있다.
[수학식 6]
Figure PCTKR2020010890-appb-img-000027
수학식 6에서, q_u는 개루프 전력 제어 파라미터(예: P_o 등)에 대한 인덱스를 나타내며, 셀 당 최대 8개의 파라미터 값들이 설정될 수 있다. 인덱스 q_d는 경로 손실(PL) 측정(예:
Figure PCTKR2020010890-appb-img-000028
)에 대한 DL RS 자원의 인덱스를 나타내며, 셀 당 최대 4개의 측정치들이 설정될 수 있다. 인덱스 l은 폐루프 전력 제어 프로세스(process)에 대한 인덱스를 나타내며, 셀 당 최대 2개의 프로세스들이 설정될 수 있다.
또한, P_o (예:
Figure PCTKR2020010890-appb-img-000029
)는 시스템 정보의 일부로 브로드캐스트되는 파라미터로, 수신 측에서의 목표(target) 수신 전력을 나타낼 수 있다. 해당 Po 값은 단말의 처리량(throughput), 셀의 용량(capacity), 잡음(noise) 및/또는 간섭(interference) 등을 고려하여 설정될 수 있다. 또한,
Figure PCTKR2020010890-appb-img-000030
는 설정된 단말 전송 전력을 나타낼 수 있다. 일례로, 상기 설정된 단말 전송 전력은 3GPP TS 38.101-1 및/또는 TS38.101-2에서 정의된 '설정된 단말의 최대 출력 전력(configured maximum UE output power)'으로 해석될 수 있다. 또한,
Figure PCTKR2020010890-appb-img-000031
는 서브캐리어 간격(
Figure PCTKR2020010890-appb-img-000032
)에 기반하여 PUCCH 전송 기회에 대한 자원 블록(RB)의 수로 표현되는 PUCCH 자원 할당의 대역폭을 나타낼 수 있다. 또한, 델타 함수(delta function)(예:
Figure PCTKR2020010890-appb-img-000033
,
Figure PCTKR2020010890-appb-img-000034
)는 PUCCH 포맷(예: PUCCH formats 0, 1, 2, 3, 4 등)을 고려하여 설정될 수 있다. 또한, PUCCH 전력 제어 조정 상태와 관련된
Figure PCTKR2020010890-appb-img-000035
는, 단말이 수신한 또는 검출한 DCI(예: DCI format 1_0, DCI format 1_1, DCI format 2_2 등)의 TPC 명령 필드에 기반하여 설정 또는 지시될 수 있다.
이 경우, 특정 RRC 파라미터(예: PUCCH-SpatialRelationInfo 등) 및/또는 특정 MAC-CE 명령(command)(예: PUCCH spatial relation Activation/Deactivation 등)은 PUCCH 자원(PUCCH resource)와 상술한 인덱스 q_u, q_d, l간의 연결 관계를 활성화 또는 비활성화하기 위해 이용될 수 있다. 일례로, MAC-CE에서의 PUCCH spatial relation Activation/Deactivation 명령은 RRC 파라미터 PUCCH-SpatialRelationInfo에 기반하여 PUCCH 자원과 상술한 인덱스 q_u, q_d, l간의 연결 관계를 활성화 또는 비활성화할 수 있다. 다시 말해, 상술한 인덱스 q_u, q_d, l 등은 특정 정보에 기반하여 빔, 패널, 및/또는 공간 영역 전송 필터 등과 연관될 수 있다. 이를 통해, 빔, 패널, 및/또는 공간 영역 전송 필터 단위의 PUCCH 전송 전력 제어가 수행될 수 있다.
상술한 PUCCH 전력 제어를 위한 파라미터들 및/또는 정보는 BWP 별로 개별적(즉, 독립적)으로 설정될 수 있다. 이 경우, 해당 파라미터들 및/또는 정보는 상위 계층 시그널링(예: RRC 시그널링, MAC-CE 등) 및/또는 DCI 등을 통해 설정 또는 지시될 수 있다. 일례로, PUCCH 전력 제어를 위한 파라미터 및/또는 정보는 RRC 시그널링 PUCCH-ConfigCommon, PUCCH-PowerControl 등을 통해 전달될 수 있으며, 3GPP TS Rel.16 38.331에서 언급되는 PUCCH-ConfigCommon, PUCCH-PowerControl은 아래와 같다.
Figure PCTKR2020010890-appb-img-000036
단말은 상술한 바와 같은 방식을 통해 PUSCH 전송 전력을 결정 또는 산출할 수 있으며, 결정된 또는 산출된 PUCCH 전송 전력을 이용하여 PUCCH를 전송할 수 있다.
(3) 사운딩 참조 신호의 전력 제어
서빙 셀(c)의 캐리어(f)의 활성화된 UL BWP에서의 사운딩 참조 신호(SRS) 전송과 관련하여, 단말은 이하 수학식 7에 의해 결정되는 전송 전력의 선형 전력 값을 산출할 수 있다. 이후, 해당 단말은 산출된 선형 전력 값을 SRS를 위해 설정된 안테나 포트(들)에 대해서 균등하게 분할하여 전송 전력을 제어할 수 있다.
구체적으로, 단말이 인덱스 l에 기반한 SRS 전력 제어 조정 상태(SRS power control adjustment state)를 이용하여, 서빙 셀(c)의 캐리어(f)의 활성화된 UL BWP(b)에서의 SRS 전송을 수행하는 경우, 단말은 아래 수학식 7에 기반하여 SRS 전송 기회(i)에서의 SRS 전송 전력
Figure PCTKR2020010890-appb-img-000037
(dBm)를 결정할 수 있다.
[수학식 7]
Figure PCTKR2020010890-appb-img-000038
수학식 7에서, q_s는 개루프 전력 제어 파라미터(예: P_o, 알파(alpha,
Figure PCTKR2020010890-appb-img-000039
), 경로 손실(PL) 측정(예:
Figure PCTKR2020010890-appb-img-000040
)에 대한 DL RS 자원 등)에 대한 인덱스를 나타내며, SRS 자원 집합(SRS resource set) 별로 설정될 수 있다. 인덱스 l은 폐루프 전력 제어 프로세스(process)에 대한 인덱스를 나타내며, 해당 인덱스는 PUSCH와 독립적으로 설정되거나, 연관되어 설정될 수도 있다. SRS 전력 제어가 PUSCH와 연관되지 않는 경우, SRS를 위한 폐루프 전력 제어 프로세스의 최대 수는 1일 수 있다.
또한, P_o(예:
Figure PCTKR2020010890-appb-img-000041
)는 시스템 정보의 일부로 브로드캐스트되는 파라미터로, 수신 측에서의 목표(target) 수신 전력을 나타낼 수 있다. 해당 P_o 값은 단말의 처리량(throughput), 셀의 용량(capacity), 잡음(noise) 및/또는 간섭(interference) 등을 고려하여 설정될 수 있다. 또한, 알파(예:
Figure PCTKR2020010890-appb-img-000042
)는 경로 손실에 대한 보상을 수행하는 비율을 나타낼 수 있다. 알파는 0부터 1까지의 값으로 설정될 수 있으며, 설정되는 값에 따라 완전 경로 손실 보상(full pathloss compensation) 또는 부분 경로 손실 보상(fractional pathloss compensation)이 수행될 수 있다. 이 경우, 상기 알파 값은 단말들 간의 간섭 및/또는 데이터 속도 등을 고려하여 설정될 수 있다. 또한,
Figure PCTKR2020010890-appb-img-000043
는 설정된 단말 전송 전력을 나타낼 수 있다. 일례로, 상기 설정된 단말 전송 전력은 3GPP TS 38.101-1 및/또는 TS38.101-2에서 정의된 '설정된 단말의 최대 출력 전력(configured maximum UE output power)'으로 해석될 수 있다. 또한,
Figure PCTKR2020010890-appb-img-000044
는 서브캐리어 간격(
Figure PCTKR2020010890-appb-img-000045
)에 기반하여 SRS 전송 기회에 대한 자원 블록(RB)의 수로 표현되는 SRS 자원 할당의 대역폭을 나타낼 수 있다. 또한, SRS 전력 제어 조정 상태와 관련된
Figure PCTKR2020010890-appb-img-000046
는, 단말이 수신한 또는 검출한 DCI(예: DCI format 2_3 등)의 TPC 명령 필드 및/또는 RRC 파라미터(예: srs-PowerControlAdjustmentStates 등)에 기반하여 설정 또는 지시될 수 있다.
SRS 전송에 대한 자원은 기지국 및/또는 단말이 빔, 패널, 및/또는 공간 영역 전송 필터 등을 결정하기 위한 기준(reference)으로 적용될 수 있으며, 이러한 점을 고려할 때 SRS 전송 전력 제어는 빔, 패널, 및/또는 공간 영역 전송 필터 단위로 수행될 수 있다.
상술한 SRS 전력 제어를 위한 파라미터들 및/또는 정보는 BWP 별로 개별적(즉, 독립적)으로 설정될 수 있다. 이 경우, 해당 파라미터들 및/또는 정보는 상위 계층 시그널링(예: RRC 시그널링, MAC-CE 등) 및/또는 DCI 등을 통해 설정 또는 지시될 수 있다. 일례로, SRS 전력 제어를 위한 파라미터 및/또는 정보는 RRC 시그널링 SRS-Config, SRS-TPC-CommandConfig 등을 통해 전달될 수 있으며, 3GPP TS Rel.16 38.331에서 언급되는 SRS-Config, SRS-TPC-CommandConfig는 아래와 같다.
Figure PCTKR2020010890-appb-img-000047
Figure PCTKR2020010890-appb-img-000048
Figure PCTKR2020010890-appb-img-000049
단말은 상술한 바와 같은 방식을 통해 SRS 전송 전력을 결정 또는 산출할 수 있으며, 결정된 또는 산출된 SRS 전송 전력을 이용하여 SRS를 전송할 수 있다.
(4) 랜덤 액세스 채널의 전력 제어
단말이 서빙 셀(c)의 캐리어(f)의 활성화된 UL BWP(b)에서의 PRACH 전송을 수행하는 경우, 단말은 아래 수학식 8에 기반하여 PRACH 전송 기회(i)에서의 PRACH 전송 전력
Figure PCTKR2020010890-appb-img-000050
(dBm)를 결정할 수 있다.
[수학식 8]
Figure PCTKR2020010890-appb-img-000051
수학식 8에서,
Figure PCTKR2020010890-appb-img-000052
는 설정된 단말 전송 전력을 나타낼 수 있다. 일례로, 상기 설정된 단말 전송 전력은 3GPP TS 38.101-1 및/또는 TS38.101-2에서 정의된 '설정된 단말의 최대 출력 전력(configured maximum UE output power)'으로 해석될 수 있다. 또한,
Figure PCTKR2020010890-appb-img-000053
는 활성화된 UL BWP에 대해 상위 계층 시그널링(예: RRC 시그널링, MAC-CE 등)을 통해 제공되는 PRACH 타겟 수신 전력(PRACH target reception power)을 나타낸다. 또한,
Figure PCTKR2020010890-appb-img-000054
는 활성화된 UL BWP에 대한 경로 손실을 나타내며, 서빙 셀(c)의 활성화된 DL BWP에서의 PRACH 전송과 연관된 DL RS에 기반하여 결정될 수 있다. 일례로, 단말은 PRACH 전송과 연관된 SS(Synchronization Signal)/PBCH(Physical Broadcast Channel) 블록 등에 기반하여 PRACH 전송과 관련된 경로 손실을 결정할 수 있다.
상술한 PRACH 전력 제어를 위한 파라미터들 및/또는 정보는 BWP 별로 개별적(즉, 독립적)으로 설정될 수 있다. 이 경우, 해당 파라미터들 및/또는 정보는 상위 계층 시그널링(예: RRC 시그널링, MAC-CE 등) 등을 통해 설정 또는 지시될 수 있다. 일례로, PRACH 전력 제어를 위한 파라미터 및/또는 정보는 RRC 시그널링 RACH-ConfigGeneric 등을 통해 전달될 수 있으며, 3GPP TS Rel.16 38.331에서 언급되는 RACH-ConfigGeneric은 아래와 같다.
Figure PCTKR2020010890-appb-img-000055
단말은 상술한 바와 같은 방식을 통해 PRACH 전송 전력을 결정 또는 산출할 수 있으며, 결정된 또는 산출된 PRACH 전송 전력을 이용하여 PRACH를 전송할 수 있다.
(5) 전송 전력 제어를 위한 우선 순위
캐리어 병합(carrier aggregation)의 상황에서의 단일 셀 동작(single cell operation) 또는 다수의 UL 캐리어들(예: 두 개의 UL 캐리어들)의 상황에서의 단일 셀 동작의 경우를 고려한, 단말의 전송 전력을 제어하는 방법에 대해 이하 살펴본다.
이 때, 각각의 전송 기회(transmission occasion)(i)에서의 상향링크 전송들(예: 상술한 (1) 내지 (4)에서의 PUSCH, PUCCH, SRS, 및/또는 PRACH 전송들)을 위한 단말의 총 전송 전력(total UE transmit power)이 설정된 단말 전송 전력의 선형 값(linear value)(예:
Figure PCTKR2020010890-appb-img-000056
)을 초과하는 경우, 단말은 우선 순위 순서(priority order)에 따라 상기 상향링크 전송들에 대한 전력을 할당하도록 설정될 수 있다. 일례로, 설정된 단말 전송 전력은 3GPP TS 38.101-1 및/또는 TS38.101-2에서 정의된 '설정된 단말의 최대 출력 전력(configured maximum UE output power)'(예:
Figure PCTKR2020010890-appb-img-000057
)을 의미할 수 있다.
이 때, 전송 전력 제어를 위한 우선 순위는 다음과 같은 순서대로 설정 또는 정의될 수 있다.
- PCell(Primary Cell)에서의 PRACH 전송
- HARQ-ACK(Hybrid Automatic Repeat and reQuest-Acknowledgement) 정보 및/또는 SR(Scheduling Request)을 위한 PUCCH, 또는 HARQ-ACK 정보를 위한 PUSCH
- CSI(Channel State Information)을 위한 PUCCH 또는 PUSCH
- HARQ-ACK 정보 또는 CSI를 위한 것이 아닌 PUSCH
- SRS 전송(다만, 비주기적(aperiodic) SRS는 반-지속적(semi-persistent) SRS 및/또는 주기적(periodic) SRS보다 높은 우선 순위를 가짐) 또는 Pcell이 아닌 서빙 셀(serving cell)에서의 PRACH 전송
상술한 바와 같은 우선 순위 순서에 기반한 전력 할당을 통해, 단말은 전송 기회(i)의 각각의 심볼들에서의 총 전송 전력을 설정된 단말 전송 전력의 선형 값보다 작거나 같도록 제어할 수 있다. 일레로, 이를 위해, 단말은 낮은 우선 순위를 갖는 상향링크 전송에 대한 전력을 스케일링(scaling) 및/또는 드롭(drop)하도록 설정될 수 있다. 이 경우, 스케일링 및/또는 드롭에 대한 구체적인 사항은 단말 구현(UE implementation)에 따르도록 설정 또는 정의될 수 있다.
또한, 구체적인 예로, 캐리어 병합에서 동일한 우선 순위를 갖는 전송들의 경우, 단말은 Pcell에서의 전송을 Scell에서의 전송보다 높은 우선 순위로 고려할 수 있다. 그리고/또는, 다수의 UL 캐리어들(예: 두 개의 UL 캐리어들)에서 동일한 우선 순위를 갖는 전송들의 경우, 단말은 PUCCH 전송이 설정된 캐리어를 높은 우선 순위로 고려할 수 있다. 또한, 어느 캐리어에도 PUCCH 전송이 설정되지 않은 경우, 단말은 non-supplementary UL 캐리어에서의 전송을 높은 우선 순위로 고려할 수도 있다.
(6) 전송 전력 제어 절차
도 10은 상향링크 전송 전력을 제어하는 절차의 실시 예를 설명하기 위한 도면이다.
먼저, 단말(User equipment)은 기지국(Base station)으로부터 전송 전력(Tx power)와 관련된 파라미터 및/또는 정보를 수신할 수 있다(1005). 이 경우, 단말은 상위 계층 시그널링(예: RRC 시그널링, MAC-CE 등) 등을 통해 해당 파라미터 및/또는 정보를 수신할 수 있다. 일례로, PUSCH 전송, PUCCH 전송, SRS 전송, 및/또는 PRACH 전송과 관련하여, 단말은 상술한 전송 전력 제어와 관련된 파라미터 및/또는 정보를 수신할 수 있다.
이후, 단말은 기지국으로부터 전송 전력과 관련된 TPC 명령(TPC command)를 수신할 수 있다(1010). 이 경우, 단말은 하위 계층 시그널링(예: DCI) 등을 통해 해당 TPC 명령을 수신할 수 있다. 일례로, PUSCH 전송, PUCCH 전송 및/또는 SRS 전송과 관련하여, 단말은 상술한 바와 같이 전력 제어 조정 상태 등을 결정에 이용될 TPC 명령에 대한 정보를 미리 정의된 DCI 포맷의 TPC 명령 필드를 통해 수신할 수 있다. 다만, PRACH 전송의 경우 해당 단계가 생략될 수도 있다.
이후, 단말은 기지국으로부터 수신한 파라미터, 정보, 및/또는 TPC 명령에 기반하여, 상향링크 전송을 위한 전송 전력을 결정(또는 산출)할 수 있다(1015). 일례로, 단말은 상술한 방식(예: 수학식 5, 수학식 6, 수학식 7, 수학식 8 등)에 기반하여 PUSCH 전송 전력, PUCCH 전송 전력, SRS 전송 전력, 및/또는 PRACH 전송 전력을 결정할 수 있다. 그리고/또는, 캐리어 병합과 같은 상황과 같이, 두 개 이상의 상향링크 채널 및/또는 신호들이 중첩하여 전송될 필요가 있는 경우, 단말은 상술한 우선 순위 순서(priority) 등을 고려하여 상향링크 전송을 위한 전송 전력을 결정할 수도 있다.
이후, 단말은 결정된(또는 산출된) 전송 전력에 기반하여, 기지국에 대해 하나 또는 그 이상의 상향링크 채널들 및/또는 신호들(예: PUSCH, PUCCH, SRS, PRACH 등)의 전송을 수행할 수 있다(1020).
구체적인 설명에 앞서, 도 11 내지 도 12를 참조하여, 본 개시의 실시 예에 따른 단말 및 네트워크 노드의 동작 구현 예를 설명하고자 한다.
도 11은 본 개시에 따른 단말의 동작 구현 예를 설명하기 위한 도면이다. 도 11을 참조하면, SRS의 송신과 관련된 하향링크(downlink; DL) RS 자원에 대한 정보를 수신할 수 있다(S1101). 이후 단말은 상기 DL RS 자원에 대한 정보에 따른 경로 손실(path loss)의 측정(measurement) 여부를 기초로 상기 SRS를 송신하기 위한 전송 전력을 결정할 수 있으며(S1103), 상기 전송 전력에 따라 상기 SRS를 송신할 수 있다(S1105). 이 때, S1101~S1105의 단말이 SRS를 전송하는 구체적인 방법은 후술하는 실시 예들 및 특징들에 기반할 수 있다.
한편, 도 11의 단말은 도 14 내지 도 17에 개시된 다양한 무선 장치들 중 어느 하나일 수 있다. 예를 들어, 도 11의 단말은 도 14의 제 1 무선 기기(100) 또는 도 15의 무선 기기(100, 200)일 수 있다. 다시 말해, 도 11의 동작 과정은 도 14 내지 도 17에 개시된 다양한 무선 장치들 중 어느 하나에 의해 수행되고 실행될 수 있다.
도 12는 본 개시에 따른 네트워크 노드의 동작 구현 예를 설명하기 위한 도면이다. 도 12를 참조하면, SRS의 송신과 관련된 하향링크(downlink; DL) RS 자원에 대한 정보를 단말로 송신할 수 있다(S1201). 이후 상기 SRS를 상기 단말로부터 수신할 수 있다(S1203). 이 때, S1201~S1203의 네트워크 노드가 SRS를 수신하는 구체적인 방법은 후술하는 실시 예들 및 특징들에 기반할 수 있다.
한편, 도 12의 네트워크 노드는 도 14 내지 도 17에 개시된 다양한 무선 장치들 중 어느 하나일 수 있다. 예를 들어, 도 12의 네트워크 노드는 도 14의 제 2 무선 기기(200) 또는 도 15의 무선 기기(100, 200)일 수 있다. 다시 말해, 도 12의 동작 과정은 도 14 내지 도 17에 개시된 다양한 무선 장치들 중 어느 하나에 의해 수행되고 실행될 수 있다.
이제, SRS의 송신과 관련된 하향링크(downlink; DL) RS 자원에 대한 정보를 수신하여 경로 손실(path loss)의 측정 여부를 기초로 상기 SRS를 송신하기 위한 전송 전력을 결정하는 단계 (S1101~S1103, S1201)에서, 단말이 수신한 정보에 기초하여 경로 손실 참조(path-loss reference)를 획득하지 못하는 경우에 SRS 전송 전력을 결정하는 구체적인 실시 예를 살펴보도록 한다.
최근 NR 표준화 논의에서는, 단말의 서빙 셀 뿐 아니라 다른 셀 또는 인접 셀을 고려하여 SRS(Sounding Reference Signal)에 대한 전력 제어 기능을 도입하는 것으로 정리되었다. 특히, 측위와 관련된 상향링크 SRS 전송 전력을 위한 구체적인 내용으로서, 1) SRS 전력 제어를 위한 DL 경로 손실 참조(path-loss reference)로서, CSI-RS, SSB, 및/또는 DL PRS 등 활용 가능성이 있는 인접 셀의 DL 참조 신호에 대한 설정 지원, 2) 인접 셀의 DL 참조 신호에 대한 설정 시그널링 방법 및 절차, 3) 단말이 path-loss reference를 획득하지 못한 경우에 있어서의 폴백(fall-back) 절차 및 4) 경로 손실 측정의 횟수 설정 등에 대한 논의를 포함하고 있다.
이와 같은 논의는 단말 측위를 위한 것으로, SRS의 전력 제어를 통해 UTDOA(Uplink Timing Difference of Arrival) 또는, 상향링크/하향링크를 모두 사용하는 multi-cell RTT(Round Trip Time) 기법 등을 효과적으로 지원하기 위한 것이다. 일반 데이터의 송수신과 달리, UTDOA 또는 multi-cell RTT 기법은 특정 단말이 자신의 서빙 셀 뿐 아니라 다른 셀 또는 인접 셀을 타겟으로 하여 SRS와 같은 상향링크 참조 신호(Uplink Reference Signal; UL RS)를 전송하여야 한다.
그러나 기지국 또는 위치 서버가, 특정한 인접 셀 또는 다른 셀로부터 하나 이상의 CSI-RS 자원, 하나 이상의 SSB, 또는 하나 이상의 PRS 자원 등을 통해 전송되는 하향링크 참조 신호(Downlink Reference Signal; DL RS)를 경로 손실 참조(path loss reference)를 위한 신호로서 사용하도록 단말에 지시 또는 설정하더라도, 단말이 상기 특정한 인접 셀 또는 다른 셀로부터 전송되는 참조 신호 자원(RS resource)을 적절하게 수신하지 못하는 경우가 발생할 수 있다. 예를 들어, 일정한 셀로부터 특정 참조 신호가 전송되기로 설정된 시간/주파수 (time/frequency) 자원 영역에 서빙 셀로부터의 데이터 및/또는 참조 신호가 전송되어 해당 특정 참조 신호를 수신하지 못할 수 있다. 또는 예를 들어, 일정한 셀로부터 수신해야 할 특정 참조 신호의 참조 신호 수신 전력(Reference Signal Received Power; RSRP)과 같은 수신 세기 또는 SNR(Signal to Noise power Ratio)/SINR(Signal to Interference plus Noise power Ratio) 등이 지나치게 낮아 해당 특정 참조 신호를 검출하지 못할 수도 있다.
위와 같은 경우 단말은 본래 특정 셀을 통해 수신하여야 할 특정 DL RS를 수신하지 못하여 해당 특정 DL RS를 경로 손실 참조를 위한 신호로서 사용하지 못하게 되는 것이므로 단말의 전송 전력 계산에 문제가 발생할 수 있으며, 따라서 이러한 문제점을 보완할 수 있는 단말, 기지국 및/또는 위치 서버의 동작 방법이 필요할 수 있다. 이하의 본 개시에서는 특히 단말의 SRS (Sounding Reference Signal)과 관련하여 단말이 서빙 셀 뿐 아니라 다른 셀 또는 인접 셀까지 고려해 SRS의 전력 제어를 설정하는 데 있어서, 단말이 다른 셀 또는 인접 셀에서 전송되는 특정 하향링크 참조 신호를 적절하게 수신하지 못해 경로 손실 참조(path-loss reference)를 획득하지 못할 때의 단말의 동작 방법들에 대해 서술하도록 한다. 이하의 본 개시에서 언급되는 셀(cell)은 기지국, TP (Transmission Point) 및/또는 TRP (Transmission and Reception Point) 등을 다루는 의미의 개념으로서 활용될 수 있다.
실시 예1
단말이 지시 받은 특정한 인접 셀 또는 다른 셀에서 전송되는 DL RS 자원을 적절하게 수신하지 못한 경우, 또는 단말이 지시 받은 셀/gNG/TP들의 그룹(a group of Cells/gNBs/TPs)에 대하여 DL RS 자원을 검출하지 못하였을 때, 단말은 다음과 같이 동작할 수 있다.
(1) SRS의 미전송
우선 단말은, 전송할 예정이었던 SRS 자원을 전송하지 않을 수 있다. 즉, 단말은 기지국 또는 위치 서버로부터 상기 특정 인접 셀 또는 다른 셀을 타겟(target)으로 전송하도록 설정된 SRS 자원을 전송하지 않을 수 있다. 또한 단말은 SRS 자원을 전송하지 않고, 지시 받은 특정한 인접 셀 또는 다른 셀에서 전송되는 DL RS 자원을 적절하게 수신하지 못하였음을 기지국 또는 위치 서버에 보고하거나, 지시 받은 특정한 인접 셀 또는 다른 셀에서 전송되는 DL RS에 대한 적절한 측정(measurement) 결과를 획득하지 못하였음을 기지국 또는 위치 서버에 보고할 수 있다.
이 때 상기와 같은 단말의 SRS 미전송 동작 및/또는 이에 관련된 기지국 또는 위치 서버에 대한 단말의 보고 동작은 사전에 기지국 또는 위치 서버로부터 시지 또는 설정 받을 수 있다.
단말이 특정한 인접 셀 또는 다른 셀에서 전송되는 DL RS 자원의 수신에 실패한 경우, 단말이 SRS 자원을 전송할 때 요구되는 전력량이 기지국/TP/위치서버가 DL RS 자원을 전송할 때 요구되는 전력량 보다 훨씬 작은 점을 고려한다면 상기와 같은 단말의 동작은 전력 낭비의 방지 측면에서 의미가 있을 수 있다. 즉, 단말이 특정한 인접 셀 또는 다른 셀에서 전송되는 DL RS 자원의 수신에 실패했다면 단말이 SRS 자원을 전송한다 하더라도 해당 SRS 자원을 수신해야 하는 대상 셀/gNG/TP가 해당 SRS 자원을 적절하게 수신하지 못할 확률이 높은데, 이러한 상황에서 단말이 굳이 SRS 자원을 전송하여 다른 셀에 간섭 영향을 주는 것 보다는 SRS 자원을 전송하지 않는 것이 전체적인 무선 네트워크의 성능 측면에서 도움이 될 수 있다.
(2) path-loss의 평균값의 활용
단말이 SRS 자원을 전송하고자 하는 경우의 일 예로, 단말은 서빙 셀이 아닌 인접 셀 또는 다른 셀에서 전송되는 DL RS 자원들 가운데 측정 결과를 획득할 수 있는 DL RS 자원들을 활용하여 해당 DL RS 자원들의 경로 손실을 보상한 값의 평균 값을 취하여, 본래 측정의 대상이었으나 측정 결과를 획득하지 못하였던 DL RS 자원 또는 본래 경로 손실을 계산하기 위해 지시되었으나 수신하지 못하였던 DL RS 자원에 대한 경로 손실의 참조 값으로서 사용할 수 있다.
(3) 사용 가능한 최대 전력의 활용
단말이 SRS 자원을 전송하고자 하는 경우의 다른 일 예로, 단말은 경로 손실 계산을 통해 SRS 전송 전력을 설정하지 않고 자신이 할당할 수 있는 최대 전력을 사용하여 해당 SRS 자원을 전송할 수도 있다.
이 때 사용 가능한 최대 전력을 통한 단말의 SRS 전송 동작은 기지국 또는 위치 서버로부터 미리 지시 또는 설정 받을 수 있다. 단말이 전송할 SRS 자원은 특정한 인접 셀 또는 다른 셀을 대상으로 설정된 것이므로, 해당 특정한 인접 셀 또는 다른 셀의 SRS 자원에 대한 검출 가능성(hearability)을 고려할 때 단말이 SRS의 전송에 최대 송신 전력을 사용하는 것이 적합한 방안이 될 수 있다.
(4) 서빙 셀의 전력 설정 활용
단말이 SRS 자원을 전송하고자 하는 경우의 다른 일 예로, 단말은 현재 자신의 서빙 셀로부터 지시 또는 설정 받은 SRS 송신 전력을 사용하여 해당 SRS 자원을 전송할 수 있다. 즉, 본래 특정한 인접 셀 또는 다른 셀로 전송되어야 할 상기 SRS 자원에 대한 전송 전력을, 서빙 셀을 타겟으로 하여 SRS 자원을 전송할 때 사용하는 전력 제어 설정에 따라 설정할 수 있다.
예를 들어, 서빙 셀에 대하여 단말은 MIB (Master Information Block)을 획득하기 위해 SSB(Synchronization Signal/Physical Broadcast Channel) block을 수신하게 되는데, 만약 단말이 SRS 전송 시 SRS의 전력 제어를 위한 경로 손실 값을 정확히 측정하지 못한다고 판단하는 경우, 단말은 MIB를 수신하기 위한 서빙 셀의 SSB block로부터 획득한 참조 자원을 사용하여 상기 SRS의 전력 제어를 위한 경로 손실 값을 계산할 수 있다.
Figure PCTKR2020010890-appb-img-000058
구체적으로, SRS의 전송 전력은 위 수식에 따라 결정되는데 수식의 인자 중 경로 손실 측정 값을 나타내는
Figure PCTKR2020010890-appb-img-000059
인자를, MIB를 수신하기 위한 서빙 셀의 SSB block로부터 획득한 참조 자원을 사용하여 계산할 수 있다.
또한 이 때 서빙 셀의 전력 설정을 활용하여 특정한 인접 셀 또는 다른 셀에 대한 SRS 전송을 수행하는 단말의 상기 동작은 사전에 기지국 또는 위치 서버로부터 지시 또는 설정 받을 수 있다.
(5) 전력 오프셋(offset)의 활용
단말이 SRS 자원을 전송하고자 하는 경우의 다른 일 예로, 단말은 서빙 셀을 타겟으로 하여 SRS 자원을 전송할 때 사용하는 전송 전력에 특정한 전력 오프셋을 적용하여 해당 특정 오프셋만큼 높은 전송 전력을 통해 특정한 인접 셀 또는 다른 셀에 SRS 자원을 전송할 수 있다. 여기서, 특정 오프셋 값은 RRC (Radio Resource Control) 시그널링, MAC-CE (Medium Access Control-Control Element) 시그널링 또는 DCI (Downlink Control Information) 시그널링 등 다양한 계층의 시그널링을 통해 기지국으로부터 단말에 설정될 수 있거나, 또는 단말 스스로 상기와 같은 특정 오프셋 값을 결정하여 적용하고 자신이 사용한 오프셋 값을 기지국에 보고하도록 설정될 수도 있다.
이 때 전송 전력 결정에 사용되는 오프셋 값은, 서빙 셀에 SRS 자원을 전송할 때 사용되는 전력량에 대한 특정한 인접 셀 또는 다른 셀에 SRS 자원을 전송할 때 사용될 수 있는 전력량의 상대적인 비율이 될 수 있거나, 및/또는 서빙 셀에 SRS 자원을 전송할 때 사용되는 전력량과 특정한 인접 셀 또는 다른 셀에 SRS 자원을 전송할 때 사용될 수 있는 전력량의 차이를 나타내는 절대적인 값이 될 수 있다. 또한 전송 전력 결정에 사용되는 오프셋 값은 상기 예시처럼 양(+)의 값으로 한정되는 것은 아니며, 오프셋 의 값이 음(-)의 값을 가져 특정한 인접 셀 또는 다른 셀에 SRS 자원을 전송할 때 사용되는 전송 전력이 서빙 셀을 타겟으로 하여 SRS 자원을 전송할 때 사용하는 전송 전력 보다 오프셋 값만큼 낮아질 수도 있다.
(6) 전송 전력의 직접 지시
단말이 SRS 자원을 전송하고자 하는 경우의 다른 일 예로, 단말은 특정한 인접 셀 또는 다른 셀에 전송할 SRS 자원에 대한 전송 전력을 기지국이 직접 지시 또는 설정해줄 것을 요청할 수 있다. 단말의 요청을 받은 기지국은 서빙 셀을 타겟으로 하여 SRS 자원을 전송할 때 사용하는 전송 전력에 적용될 수 있는 오프셋을 단말에 지시하거나, 또는 특정한 인접 셀 또는 다른 셀에 SRS 자원 전송할 때 사용되는 전송 전력의 절대적인 값을 지시할 수도 있다.
상기 전술한 동작 예들은, NR 표준화 논의의 내용들과도 관련하여 정리될 수 있다. 지난 NR 표준화 논의들에서는 인접 셀을 고려한 SRS 전송 전력 제어를 지원하는 방법에 대하여 다루었으나, 어느 DL 참조 신호가 SRS 전송 전력 제어를 위한 path-loss reference로 사용될 수 있는 지에 대하여는 정리되지 않았던 바 있다. 이와 관련, 여러 인접 셀들에 대한 검출 가능성을 생각한다면 SRS 전송 전력 제어를 위한 path-loss reference로서 DL PRS가 사용되는 것에 대한 논의를 고려해볼 수 있으며, 또한 단말이 인접 셀을 위한 path-loss reference를 획득하지 못하는 경우에 대한 폴백(fall-back) 절차에 대한 논의 역시 필요할 수 있다.
특히, 단말이 전송 대상인 인접 셀을 위한 path-loss reference를 획득하지 못하는 경우에 있어서의 SRS 전력 제어에 대한 폴백 모드로서 단말은 다음과 같은 동작들을 수행할 수 있으며, 이는 상기 실시 예1의 전술한 동작 예들과 유사하게 적용될 수 있다.
구체적으로 단말은 전송 대상으로 삼은 인접 셀에 대하여 SRS 자원을 전송하지 않을 수 있으며, 네트워크에 해당 인접 셀에 대한 정상적인 SRS 자원의 전송이 불가능한 상황임을 알릴 수 있다. 또는, 단말은 해당 인접 셀에 대해 사용 가능한 최대의 전송 전력을 할당하여 SRS 자원을 전송할 수 있다. 또는, 단말은 서빙 셀에 대해 사용될 수 있는 전송 전력에 따라 해당 인접 셀에 SRS 자원을 전송할 수 있다. 또는, 단말은 서빙 셀을 통해 해당 인접 셀에 대하여 사용되는 전력 설정을 지시 받을 수 있으며, 지시된 전력 설정을 통해 할당된 전송 전력을 활용하여 SRS 자원을 해당 인접 셀에 전송할 수 있다. 이 때 지시된 전력 설정은 본래 서빙 셀에 대해 사용될 수 있는 전송 전력에 추가적으로 적용될 수 있는 전력 오프셋일 수 있다.
인접 셀로부터의 RS 자원이 수신 불가능한 경우의 전력 낭비의 방지 측면에 대하여, 단말이 사용 가능한 최대 전력으로 SRS 자원을 전송한다 하더라도 해당 최대 전력은 인접 셀의 기지국 전송 전력 보다 훨씬 낮을 것이며, 따라서 기지국/TP가 단말로부터 최대 전력에 기초하여 전송된 SRS 자원을 검출하기 어려울 수 있다. 따라서 이와 같은 경우에는 단말은 전송 대상으로 삼은 인접 셀에 대하여 SRS 자원을 전송하지 않는 것이 위 동작 예들 중 전력 낭비의 방지를 위해 가장 적절할 수 있다.
실시 예2
단말은 서빙 셀이 아닌 특정한 인접 셀 또는 다른 셀에서 전송되는 DL RS 자원을, 다른 DL RS 자원의 Quasi Co-Located (QCL) type D의 QCL 자원으로서 지시 또는 설정 받을 수 있다. 또한, 단말은 서빙 셀이 아닌 특정한 인접 셀 또는 다른 셀에서 전송되는 DL RS 자원을 특정 UL SRS 자원에 대한 공간 관계 정보 (spatial relation information)의 자원으로서 설정 또는 지시 받을 수 있다. 단말은 이를 통해 특정한 인접 셀 또는 다른 셀에서 전송되는 DL RS 자원에 대한 측정을 수행하고, 해당 DL RS 자원을 수신한 방향으로 다른 DL RS 자원을 수신하거나 UL SRS 자원을 전송할 수 있다.
다만 위와 같은 방법으로 DL RS 자원을 수신하거나 SRS 자원을 전송하는 경우에도, 단말은 다른 자원의 간섭 영향 및/또는 지나치게 낮은 신호 세기로 인한 검출 불가 등의 사유로 인해 특정한 인접 셀 또는 다른 셀에서 전송되는 DL RS 자원에 대한 측정의 결과를 적절하게 획득하지 못할 수 있다.
이 때 단말은, 상기 특정한 인접 셀 또는 다른 셀에서 전송되는 측정 대상의 DL RS 자원을 QCL type D 자원으로서 지시 또는 설정 받았으나 해당 DL RS 자원을 수신한 방향을 정확하게 알 수 없음을 기지국에 보고하거나, 또는 해당 측정 대상의 DL RS 자원에 대한 측정 품질이 지나치게 낮다는 등의 피드백을 기지국에 보고할 수 있다.
또한, 단말이 상기 특정한 인접 셀 또는 다른 셀에서 전송되는 측정 대상의 DL RS 자원을 특정한 DL RS 자원에 대한 QCL type D 자원으로서 지시 또는 설정 받은 경우에 있어서, 단말이 해당 측정 대상의 DL RS 자원에 대한 측정 결과를 전술한 사유 등으로 적절히 획득하지 못한 때에 사용할 수 있는 폴백(fall-back) QCL 자원이 기지국에 의해 단말에 지시 또는 설정될 수 있다. 여기서 폴백 QCL 자원은 처음 설정되었던 QCL 자원의 type과 동일하게 QCL type D로 설정될 수 있으나, 이에 제한되는 것은 아니며 다른 type의 설정 역시 가능할 수 있다. 한편, 단말 역시 상기 측정 대상 DL RS 자원에 대한 측정 결과를 적절히 획득하지 못했다고 판단되면 상기 폴백 QCL 자원의 지시 또는 설정을 기지국에 요청할 수 있다.
마찬가지로 단말은, 특정한 인접 셀 또는 다른 셀에서 전송되는 DL RS 자원을 특정 UL SRS 자원에 대한 spatial relation information의 자원으로서 설정 또는 지시 받았으나 해당 DL RS 자원을 수신한 방향을 정확하게 알 수 없음을 기지국에 보고하거나, 또는 해당 DL RS 자원에 대한 측정 품질이 지나치게 낮다는 등의 피드백을 기지국에 보고할 수 있다.
또한, 단말이 상기 특정한 인접 셀 또는 다른 셀에서 전송되는 DL RS 자원을 특정 UL SRS 자원에 대한 spatial relation information의 자원으로서 지시 또는 설정 받은 경우에 있어서, 단말이 상기 DL RS 자원에 대한 측정 결과를 전술한 사유 등으로 적절히 획득하지 못한 때에 대체적으로 사용할 수 있는 대체 spatial relation information이 기지국에 의해 단말에 지시 또는 설정될 수 있다. 여기서, 대체 spatial relation information이란 폴백 RS 자원으로서 사용될 수 있는 자원에 대한 spatial relation information을 의미한다. 한편, 단말 역시 상기 DL RS 자원에 대한 측정 결과를 적절히 획득하지 못했다고 판단되면 상기 대체 spatial relation information 및 폴백에 대한 지시 또는 설정을 기지국에 요청할 수 있다.
실시 예3
단말은 서빙 셀에서 전송되는 DL RS 자원을 다른 DL RS 자원의 Quasi Co-Located (QCL) type D의 QCL 자원으로서 지시 또는 설정 받을 수 있을 뿐만 아니라, 특정한 인접 셀/TP 또는 다른 셀/TP에서 전송되는 DL RS 자원을 다른 DL RS 자원의 QCL type D의 QCL 자원으로서 지시 또는 설정 받을 수도 있다.
또한, 단말은 서빙 셀에서 전송되는 DL RS 자원 및/또는 SRS 전송에 사용할 UL SRS 자원을 특정 UL SRS 자원의 spatial relation information의 자원으로서 설정 또는 지시 받을 수 있을 뿐 아니라, 특정한 인접 셀/TP 또는 다른 셀/TP에서 전송되는 DL RS 자원 및/또는 SRS 전송에 사용할 UL SRS 자원을 특정 UL SRS 자원의 spatial relation information의 자원으로서 설정 또는 지시 받을 수도 있다. 여기서, 단말이 spatial relation information의 대상으로서 지시 받는 상기 특정 UL SRS 자원은 단말 측위 목적으로 설정된 SRS 자원 또는 SRS 자원 집합일 수 있다.
이 때 위처럼 단말이 DL RS 자원을 위한 QCL type D의 QCL 자원 및 spatial relation information의 대상인 UL SRS 자원을 설정 또는 지시 받는 경우에 있어서, RS 자원에 대한 정보와 함께 관련 셀 및/또는 TP에 대한 정보가 함께 설정될 수 있다. 또한 DL RS 자원을 위한 QCL type D의 QCL 자원 및 spatial relation information의 대상인 UL SRS 자원의 설정 주체는 위치 서버 또는 기지국일 수 있다.
DL RS 자원을 위한 QCL type D의 QCL 자원의 설정을 통해 단말은 인접 셀 또는 다른 셀에서 전송되는 DL RS 자원에 대한 측정을 수행하고, 해당 DL RS 자원을 수신한 방향으로 다른 DL RS 자원을 수신하거나 UL SRS 자원을 전송할 수 있다. 다만 이 때 단말은, 다른 자원의 간섭 영향 및/또는 지나치게 낮은 신호 세기로 인한 검출 불가 등의 사유로 인해 서빙 셀이 아닌 특정한 인접 셀 또는 다른 셀에서 전송되는 DL RS 자원, 즉, PRS 자원, SSB 및/또는 Radio Resource Management(RRM)를 위한 CSI-RS 자원 등에 대한 측정의 결과를 획득하지 못할 수 있다.
한편, 단말은 서빙 셀이 아닌 특정한 인접 셀 또는 다른 셀에서 전송되는 DL RS 자원, 즉, PRS 자원, SSB 및/또는 CSI-RS 자원 등을 특정 UL SRS 자원의 spatial relation information의 자원으로서 무선 망 기지국 및/또는 위치 서버/LMF로부터 설정 또는 지시 받을 수 있다. 여기서, spatial relation information의 대상인 상기 특정 UL SRS 자원은 단말의 측위를 위하여 단말 전용으로(dedicated) 설정될 수 있다. 이와 같은 경우에 있어서, 단말이 서빙 셀이 아닌 특정한 인접 셀 또는 다른 셀에서 전송되는 상기 DL RS 자원의 측정 결과를 적절히 획득하지 못하거나 수신하지 못했다고 판단되면 단말은 다음과 같은 동작의 수행을 고려할 수 있다.
1) 단말은 기지국 또는 위치 서버로부터 설정 또는 지시 받은 spatial relation information의 자원인 PRS 자원, SSB 및/또는 CSI-RS 자원 등을 적절하게 수신하지 못하였음을 기지국 또는 위치 서버에 보고하거나, 해당 자원들을 적절하게 검출하지 못하였음을 기지국 또는 위치 서버에 보고할 수 있다. 또한 단말은 SRS 자원을 전송하지 않거나, 상기 SRS 자원을 Zero-Power SRS 자원으로 전송할 수 있다. 이 때 (a) 단말이 spatial relation information의 자원을 적절하게 수신하지 못하였음을 기지국 또는 위치 서버에 보고하는 동작과, (b) 단말이 SRS 자원을 전송하지 않거나 Zero-Power SRS 자원으로 전송하는 동작은 동시에 또는 순차적으로 수행될 수 있다.
2) 단말은 기지국 또는 위치 서버에 오프셋 각(angle offset)을 제공해 줄 것을 요청할 수 있다. 여기서, angle offset은 단말의 특정 송신 및/또는 수신 빔을 기준으로 시계 또는 반시계 방향과 같은 일정한 방향을 지시해줄 수 있는 각도 값으로서 단말에 지시되거나 설정될 수 있다. 또는, angle offset은 단말 및 기지국 또는 위치 서버가 알 수 있는 절대적/상대적 좌표의 특정 위치 또는 방향을 기준으로 일정 방향에 대한 각도 값으로서 단말에 지시되거나 설정될 수도 있다.
3) 단말은 기지국 또는 위치 서버에 spatial relation information을 재설정 해줄 것을 요청하거나, 다른 spatial relation information을 설정해줄 것을 요청할 수 있다. 이 때 spatial relation information의 설정은 다른 셀/TP에 대한 전송되는 DL RS 자원 또는 UL SRS 자원에 대한 정보뿐 아니라 해당 다른 셀/TP에 대한 정보까지 설정하는 것으로도 이해될 수 있다.
4) 단말은 spatial relation information를 통한 자원의 설정 정보 중 셀/TP에 대한 정보만 사용할 수도 있다. 일 예로, 단말 기준 측위에서는 셀/TP에 대한 정보가 단말에 제공되기 때문에, 셀/TP의 ID 정보를 통해 단말은 셀/TP의 위치를 파악할 수 있으며 상기 셀/TP를 지향하는 송신 Tx beam을 단말이 결정할 수도 있다. 또는 다른 일 예로, 단말이 상기 셀/TP에서 전송된 RS를 검출하는 데 실패하더라도 단말은 상기 셀/TP에 대한 정보를 설정 받은 점을 알고 있으므로, 상기 셀/TP로부터 수신한 다른 DL RS 자원들 가운데 수신에 성공한 DL RS 자원을 대안으로서 spatial relation information의 설정에 사용할 수 있다. 즉, 상기 SRS 자원의 spatial relation information 자원으로서 설정 받은 셀/TP에 대한 정보 및 RS 정보 중에서, 셀/TP에 대한 정보만을 활용하여 상기 셀/TP에서 전송된 DL RS 자원을 찾아 빔 방향 결정에 활용할 수 있다.
5) 단말의 폴백 동작(fall-back behavior)으로써, 상기 SRS 자원을 전송할 때 사용 가능한 최대 전력을 사용할 수 있다. 또한 이러한 단말의 폴백 동작을 기지국 또는 위치 서버로부터 설정 또는 지시 받을 수 있으며, 단말이 SRS 자원의 전송을 위해 사용 가능한 최대 전력을 설정하는 전력 제어는 단말의 송신 빔 방향과 무관하게 사용될 수 있다.
6) 단말의 특정 SRS 자원 ID 및/또는 서빙 셀/TP로부터 전송되는 특정 DL RS 자원 ID를 상기 SRS 자원의 spatial relation information에 대한 폴백 설정으로써 사용하도록 기지국 또는 위치 서버가 단말에 지시 또는 설정할 수 있다.
실시 예4
인접 셀/TP를 전송 대상으로 하는 전력 제어를 위한 경로 손실 참조(path-loss reference) 설정과 인접 셀/TP를 대상으로 구성하는 전송 빔 방향을 위한 spatial relation information 설정이 다른 경우, 단말의 입장에서는 SRS 전송을 위해 설정 받은 정보들의 대응되는 내용이 서로 다른 문제가 발생할 수 있다. 마찬가지로, 인접 셀/TP로부터 특정 SRS 자원의 path-loss reference로서 설정 받은 DL RS 자원과 인접 셀/TP를 대상으로 전송하기 위해 spatial relation information으로 설정 받은 DL RS 자원이 다른 경우에도, SRS 전송을 위해 단말이 설정 받은 정보들의 대응되는 내용이 서로 다른 문제가 발생할 수 있다. 또는, 인접 셀/TP로부터 특정 SRS 자원의 path-loss reference로서 설정 받은 DL RS 자원의 ID와 인접 셀/TP를 대상으로 전송하기 위해 spatial relation information으로 설정 받은 DL RS 자원의 ID가 동일하더라도, 설정 받은 각각의 DL RS 자원이 전송되는 인접 셀/TP가 서로 다른 문제 역시 발생할 수 있다.
이하의 개시에서는 전술한 문제들이 나타나는 경우에 있어서 단말의 동작을 살펴본다. 이하에서 언급하는 SRS 자원 및/또는 SRS 자원 집합은 단말의 위치 측정을 수행하기 위한 목적으로 설정되는 SRS 자원 및/또는 SRS 자원 집합일 수 있다. 이와 같이 단말의 위치를 수행하기 위한 SRS 자원은 기지국으로부터 단말에 설정 또는 지시될 수도 있는 것이거나 위치 서버/LMF로부터 단말에 설정 또는 지시될 수도 있으며, 따라서 이하의 개시에서 언급하는 단말의 동작은 기지국이 설정 또는 지시할 수 있는 것이거나 위치 서버/LMF가 지시 또는 설정할 수도 있다. 추가적으로, 본 실시 예에서 다루는 path-loss reference는 특정 DL RS 자원에 대한 정보뿐만 아니라, 해당 DL RS 자원이 전송되는 특정 셀/TP에 대한 정보 역시 physical cell ID(s)/TP ID(s) 등의 형태로서 포함한 것으로서 설정 또는 지시될 수 있다. 따라서 cell ID(s)/TP ID(s) 등의 정보를 포함하는 path-loss reference는, 단말이 서빙 셀/TP뿐만 아니라 인접 셀/TP를 대상으로 SRS를 전송할 수 있다는 점에서 단말 측위를 위해 주요하게 사용될 수 있다.
(1) 단말이 특정 SRS 자원 또는 특정 SRS 자원 집합 내 일정한 SRS 자원을 전송하는 송신 전력을 결정할 때, 기지국 또는 위치 서버로부터 path-loss reference로 설정 받은 DL RS 자원의 경우 수신 신호의 세기가 너무 작아 적절한 검파를 하지 못하는 등의 이유로 수신 또는 검출에 실패하고, 전송할 SRS 자원을 위한 송신 빔의 방향을 결정하기 위한 spatial relation information으로 설정 받은 DL RS 자원에 대하여만 수신 또는 검출에 성공하는 경우가 발생할 수 있다. 예를 들어, 단말이 특정한 SRS 자원을 전송할 때 비슷한 방향에 존재하는 여러 개의 셀/TP가 있는 방향으로 단말의 송신 빔이 설정되고, SRS의 송신 전력은 해당 여러 개의 셀/TP 가운데 가장 멀리 있는 셀/TP를 기준으로 결정하도록 설정 또는 지시된다면, 가장 멀리 있는 셀/TP로부터 설정 받는 path-loss reference 용 DL RS 자원은 그 수신 세기가 약해 단말이 검출하지 못할 수 있다. 이러한 경우 단말 또는 기지국/위치 서버는 다음과 같은 동작을 취할 수 있다.
일 예로 단말은, 기지국/위치 서버에 단말 자신이 SRS 자원을 전송하기 위한 송신 전력 결정에 사용되는 path-loss reference RS를 제대로 수신 또는 검파하지 못한 채 spatial relation information으로 설정 받은 DL RS 자원을 수신했음을 알릴 수 있다.
다른 일 예로 단말은, SRS 자원에 대한 path-loss reference를 재설정 또는 재지시해 줄 것을 요청하거나, SRS 자원에 대한 path-loss reference를 업데이트 해줄 것을 요청할 수도 있다.
다른 일 예로 단말은, SRS 자원을 전송하는 송신 전력을 결정하기 위한 path-loss reference로서 상기 SRS 자원에 대해 spatial relation information으로 설정 받은 DL RS 자원에 대한 정보 및/또는 해당 DL RS 자원이 전송되는 셀/TP에 대한 정보를 사용할 수 있다. 추가적으로, 단말은 이러한 동작을 기지국/위치 서버로부터 설정 또는 지시 받을 수 있다.
다른 일 예로 단말은, 단말 자신이 SRS 자원을 전송하는 송신 전력을 결정하기 위한 path-loss reference의 수신 또는 검출에 실패했지만 상기 SRS 자원을 전송할 대상인 하나 이상의 인접 셀/TP과 전송 빔 방향을 파악하고 있으므로, 단말이 사용할 수 있는 최대 전력을 사용해서 상기 SRS 자원을 전송할 수 있다. 또는, 단말은 서빙 셀/TP이나 기준 셀/TP을 기준으로 결정하는 SRS 자원의 송신 전력에 특정 전력 오프셋(power offset)을 적용해, 서빙 셀/TP이나 기준 셀/TP을 기준으로 결정하는 SRS 자원의 송신 전력에 특정 전력 오프셋 값만큼 높은 전력으로 상기 SRS 자원을 전송할 수 있다. 이 때 SRS 전송 전력 결정에 사용되는 상기 전력 오프셋의 값은, 단말이 path-loss reference의 수신 또는 검출에 실패하되 SRS 자원을 전송할 대상인 하나 이상의 인접 셀/TP과 전송 빔 방향을 알고 있는 위와 같은 상황에서 디폴트로(by default) 사용되도록 기지국/위치 서버가 단말에 설정 또는 지시할 수도 있다. 또는, 단말이 path-loss reference의 수신 또는 검출에 실패하되 SRS 자원을 전송할 대상인 하나 이상의 인접 셀/TP과 전송 빔 방향을 알고 있는 위와 같은 상황을 기지국/위치 서버에 보고하면 기지국/위치 서버가 전력 오프셋을 설정 또는 지시할 수도 있다. 또한 SRS 전송 전력의 결정에 상기와 같은 전력 오프셋을 사용하도록 하는 동작 역시 기지국/위치 서버가 단말에 설정 또는 지시할 수 있다.
다른 일 예로 단말은, SRS 자원을 전송하는 방향은 spatial relation information의 설정을 따르되 상기 SRS 자원을 전송하기 위한 송신 전력은 서빙 셀의 SSB와 같은 특정 RS를 기준으로 결정할 수 있으며, 이러한 단말의 동작은 기지국/위치 서버가 단말에 설정 또는 지시할 수 있다.
다른 일 예로 단말은, SRS 자원을 전송하지 않을 수 있다. 즉, 단말은 상기 SRS 자원을 Zero-Power로 전송할 수 있다. 마찬가지로 이러한 동작은 기지국/위치 서버가 단말에 설정 또는 지시할 수 있으며, 이 때 위치 서버는 상기 SRS 자원을 사용하여 RTOA 등을 측정하는 데 사용하기 때문에 단말은 상기 SRS 자원이 전송되지 않았음을 기지국/위치 서버에 알려줄 필요가 있다.
(2) 반대로, 단말이 특정 SRS 자원 또는 특정 SRS 자원 집합 내 일정한 SRS 자원을 전송하는 송신 전력을 결정할 때, path-loss reference로 설정 받은 DL RS 자원의 수신 또는 검출에는 성공하고, 전송할 SRS 자원을 위한 송신 빔의 방향을 결정하기 위한 spatial relation information으로 설정 받은 DL RS 자원에 대하여는 수신 또는 검출에 실패하는 경우가 발생할 수 있다.
일 예로 단말은, 기지국/위치 서버에 단말 자신이 spatial relation information으로 설정 받은 DL RS 자원을 수신하지 못한 채 SRS 자원을 전송하기 위한 송신 전력 결정에 사용되는 path-loss reference 신호를 수신 했음을 알릴 수 있다.
다른 일 예로 단말은, SRS 자원에 대한 spatial relation information를 재설정 또는 재지시해 줄 것을 요청하거나, SRS 자원에 대한 spatial relation information를 업데이트 해줄 것을 요청할 수도 있다
다른 일 예로 단말은, SRS 자원에 대한 spatial relation information으로, 상기 SRS 자원을 전송하는 송신 전력을 결정하기 위한 path-loss reference로서 설정 받은 DL RS 자원에 대한 정보 및/또는 해당 DL RS 자원이 전송되는 셀/TP에 대한 정보를 사용할 수 있다. 추가적으로, 단말은 이러한 동작을 기지국/위치 서버로부터 설정 또는 지시 받을 수 있다.
다른 일 예로 단말은, SRS 자원을 전송하는 방향을 서빙 셀의 SSB와 같은 특정 RS를 기준으로 결정할 수 있으며, 이러한 단말의 동작은 기지국/위치 서버가 단말에 설정 또는 지시할 수 있다.
다른 일 예로 단말은, SRS 자원을 전송하지 않을 수 있다. 즉, 단말은 상기 SRS 자원을 Zero-Power로 전송할 수 있으며, 마찬가지로 이러한 동작은 기지국/위치 서버가 단말에 설정 또는 지시할 수 있다. 단말이 정확하지 않은 방향에 대해 인접 셀/TP를 대상으로 SRS 자원을 전송하게 되면, 실제 전송 대상인 셀/TP는 상기 SRS 자원을 적절하게 수신하지 못하고 불필요한 간섭만 발생시킬 수 있기 때문에, 상황에 따라서는 이와 같이 상기 SRS 자원을 Zero-Power로 전송하는 것이 합리적일 수 있다.
(3) 추가적으로, 단말이 특정 SRS 자원 또는 특정 SRS 자원 집합 내 일정한 SRS 자원을 전송하는 송신 전력을 결정할 때, path-loss reference로 설정 받은 DL RS 자원의 수신 또는 검출에 실패하고, spatial relation information으로 설정 받은 DL RS 자원의 수신 또는 검출에도 실패하는 경우가 발생할 수 있다.
이러한 상황에서의 일 예로 단말은, 상기 SRS 자원을 전송하지 않을 수 있으며 이러한 단말의 동작을 기지국/위치 서버가 지시할 수도 있다. 즉, 단말이 상기 SRS 자원에 대한 spatial relation information으로 설정 받은 DL RS 자원 및 상기 SRS 자원에 대한 path-loss reference로 사용되는 DL RS 자원 모두에 대한 수신에 실패한다면 단말은 상기 SRS 자원을 전송하지 않도록 지시 또는 설정될 수 있다. 또한 단말의 이와 같은 SRS 미 전송 동작은 spatial relation information으로 설정 받은 DL RS 자원 및 상기 SRS 자원에 대한 path-loss reference로 사용되는 DL RS 자원 모두에 대한 수신에 실패한 경우 디폴트로(by default) 수행되도록 정의될 수 있으며, 단말은 상기 SRS 자원을 전송하지 않았음을 기지국/위치 서버에 보고할 수 있다.
다른 일 예로 단말은, 단말 스스로 임의로 선택한 특정 방향을 기준으로, 또는 특정 DL RS 자원을 spatial relation information의 대상 자원으로서 가정하여 이를 기준으로, 사용할 수 있는 최대의 송신 전력으로 상기 SRS 자원을 전송할 수 있다.
상기 전술한 실시 예들 및 내용들은, NR 표준화 논의의 내용들과도 관련하여 정리될 수 있다. 지난 NR 표준화 논의에서는, 단말이 인접 셀/TP에 대한 path-loss reference 설정을 획득할 수 없을 때 개루프 전력 제어만이 지원되는 폴백(fall-back) 절차가 단말에 지원될 수 있음이 정리되었다. 즉, 만약 단말이 서빙 셀 또는 인접 셀로부터 측위를 위한 SRS 설정을 통해 path-loss reference를 지시 받았더라도 지시된 path-loss reference를 통해 경로 손실에 대한 측정을 적절하게 수행하지 못하는 경우, 단말은 MIB (Master Information Block)을 수신하기 위한 경로 손실 참조 신호로서 사용된 SSB로부터 획득된 RS 자원을 path-loss reference로서 활용할 수 있다.
지난 NR 표준화 논의 내용과 같이 단말이 인접 셀/TP에 대한 path-loss reference 설정을 획득할 수 없는 경우라면, 인접 셀/TP에 대한 SRS 자원의 전송을 위해 단말이 보다 큰 전송 전력을 할당하는 것이 합리적일 수 있다.
SRS 자원이 좁은 범위의 송신(Tx) 빔을 통해 전송된다 하더라도, 단말로부터 비슷한 방향 범위 내에 존재하는 복수의 셀/TP에 대하여는 상기 SRS 자원이 수신될 수 있다. 단말은 복수의 셀/TP에 대하여 의도된 SRS 자원을 전송하도록 지시 받을 수 있으나, 이들 복수의 셀/TP 모두가 해당 SRS 자원을 검출할 수는 없다. 단말은 송신 빔 방향을 결정하기 위한 spatial relation information의 자원으로서의 DL RS 자원을 설정 받을 수 있으며, 경로 손실을 계산하기 위한 path-loss reference로서의 다른 DL RS 자원 역시 설정 받을 수 있다.
최근 NR 표준화 논의에 따르면, 단말은 SRS 자원을 전송하기 위한 spatial relation information의 자원으로서의 DL RS 자원을 인접 셀/TP로부터 적절히 검출한다 하더라도, 단말이 전송할 SRS 자원의 전송 전력 결정을 위한 path loss reference로서 설정되는 DL RS 자원에 대한 측정 결과를 적절히 획득할 수 없는 경우에는 서빙 셀로부터 수신하는 SSB를 사용하여 경로 손실을 계산하게 된다.
만약 단말이 SRS 자원을 전송하기 위한 spatial relation information의 자원으로서의 DL RS 자원을 인접 셀/TP로부터 수신할 수 있다면, 단말은 path loss reference로서 설정되는 DL RS 자원에 대한 측정 결과를 획득할 수 없더라도 서빙 셀에 대하여 SRS 자원을 전송하는 것과 비교하여 보다 큰 전송 전력을 할당해 SRS 자원을 전송할 필요가 있다. 간단히 예를 들어, 단말은 사용 가능한 최대의 전송 전력으로 SRS 자원을 전송할 수 있다.
추가적으로, 단말이 SRS 자원을 전송하기 위한 spatial relation information의 자원으로서의 DL RS 자원을 인접 셀/TP로부터 수신하지 못하여 전송 빔 방향을 결정하기 어려운 경우가 발생할 수 있는데, 단말이 전송 빔 방향을 결정하지 못한 채 임의의 방향으로 SRS 자원을 전송한다면 전송 대상인 셀/TP가 이를 수신하지 못할 가능성이 높으므로 이러한 경우에도 단말로 하여금 SRS 전송을 수행하도록 하는 것은 부적절할 수 있다. 따라서 이와 같은 상황에서 단말은 SRS 자원을 전송하기 위한 spatial relation information의 자원으로서의 DL RS 자원을 인접 셀/TP로부터 수신하지 못했다는 점을 기지국에 알려야 하며, 단말이 spatial relation information을 제대로 획득하지 못한 점을 인지한 기지국은 단말이 SRS 자원을 전송하기 위한 spatial relation information을 재설정 해줄 수 있다.
한편, 이와 관련해 3GPP TS Rel.16 38.331에서는, 앞서 언급한 SRS resource configuration에 연관된 내용 및 spatial relation information을 아래와 같은 SRS-config를 통해 다루고 있다.
Figure PCTKR2020010890-appb-img-000060
Figure PCTKR2020010890-appb-img-000061
Figure PCTKR2020010890-appb-img-000062
Figure PCTKR2020010890-appb-img-000063
Figure PCTKR2020010890-appb-img-000064
Figure PCTKR2020010890-appb-img-000065
Figure PCTKR2020010890-appb-img-000066
Figure PCTKR2020010890-appb-img-000067
Figure PCTKR2020010890-appb-img-000068
본 발명에서 언급하는 SRS는 단말 측위를 목적으로 설정 또는 지시된 SRS 자원 및/또는 SRS 자원 집합일 수 있으며, SRS 자원 또는 SRS 자원 집합의 설정 또는 지시는 기지국 및/또는 위치 서버로부터 받을 수 있다. 또한 SRS 자원에 대한 설정으로서의 spatial relation information에 대한 내용은 전술한 3GPP TS 38.331과, 3GPP TS 38.214 등에서 확인할 수 있다.
이로 제한되는 것은 아니지만, 본 문서에 개시된 본 발명의 다양한 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 기기들간에 무선 통신/연결(예, 5G)을 필요로 하는 다양한 분야에 적용될 수 있다.
이하, 도면을 참조하여 보다 구체적으로 예시한다. 이하의 도면/설명에서 동일한 도면 부호는 다르게 기술하지 않는 한, 동일하거나 대응되는 하드웨어 블록, 소프트웨어 블록 또는 기능 블록을 예시할 수 있다.
도 13은 본 발명에 적용되는 통신 시스템(1)을 예시한다.
도 13을 참조하면, 본 발명에 적용되는 통신 시스템(1)은 무선 기기, 기지국 및 네트워크를 포함한다. 여기서, 무선 기기는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여 통신을 수행하는 기기를 의미하며, 통신/무선/5G 기기로 지칭될 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(100a), 차량(100b-1, 100b-2), XR(eXtended Reality) 기기(100c), 휴대 기기(Hand-held device)(100d), 가전(100e), IoT(Internet of Thing) 기기(100f), AI기기/서버(400)를 포함할 수 있다. 예를 들어, 차량은 무선 통신 기능이 구비된 차량, 자율 주행 차량, 차량간 통신을 수행할 수 있는 차량 등을 포함할 수 있다. 여기서, 차량은 UAV(Unmanned Aerial Vehicle)(예, 드론)를 포함할 수 있다. XR 기기는 AR(Augmented Reality)/VR(Virtual Reality)/MR(Mixed Reality) 기기를 포함하며, HMD(Head-Mounted Device), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등의 형태로 구현될 수 있다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 컴퓨터(예, 노트북 등) 등을 포함할 수 있다. 가전은 TV, 냉장고, 세탁기 등을 포함할 수 있다. IoT 기기는 센서, 스마트미터 등을 포함할 수 있다. 예를 들어, 기지국, 네트워크는 무선 기기로도 구현될 수 있으며, 특정 무선 기기(200a)는 다른 무선 기기에게 기지국/네트워크 노드로 동작할 수도 있다.
무선 기기(100a~100f)는 기지국(200)을 통해 네트워크(300)와 연결될 수 있다. 무선 기기(100a~100f)에는 AI(Artificial Intelligence) 기술이 적용될 수 있으며, 무선 기기(100a~100f)는 네트워크(300)를 통해 AI 서버(400)와 연결될 수 있다. 네트워크(300)는 3G 네트워크, 4G(예, LTE) 네트워크 또는 5G(예, NR) 네트워크 등을 이용하여 구성될 수 있다. 무선 기기(100a~100f)는 기지국(200)/네트워크(300)를 통해 서로 통신할 수도 있지만, 기지국/네트워크를 통하지 않고 직접 통신(e.g. 사이드링크 통신(sidelink communication))할 수도 있다. 예를 들어, 차량들(100b-1, 100b-2)은 직접 통신(e.g. V2V(Vehicle to Vehicle)/V2X(Vehicle to everything) communication)을 할 수 있다. 또한, IoT 기기(예, 센서)는 다른 IoT 기기(예, 센서) 또는 다른 무선 기기(100a~100f)와 직접 통신을 할 수 있다.
무선 기기(100a~100f)/기지국(200), 기지국(200)/기지국(200) 간에는 무선 통신/연결(150a, 150b, 150c)이 이뤄질 수 있다. 여기서, 무선 통신/연결은 상향/하향링크 통신(150a)과 사이드링크 통신(150b)(또는, D2D 통신), 기지국간 통신(150c)(e.g. relay, IAB(Integrated Access Backhaul)과 같은 다양한 무선 접속 기술(예, 5G NR)을 통해 이뤄질 수 있다. 무선 통신/연결(150a, 150b, 150c)을 통해 무선 기기와 기지국/무선 기기, 기지국과 기지국은 서로 무선 신호를 송신/수신할 수 있다. 예를 들어, 무선 통신/연결(150a, 150b, 150c)은 다양한 물리 채널을 통해 신호를 송신/수신할 수 있다. 이를 위해, 본 발명의 다양한 제안들에 기반하여, 무선 신호의 송신/수신을 위한 다양한 구성정보 설정 과정, 다양한 신호 처리 과정(예, 채널 인코딩/디코딩, 변조/복조, 자원 매핑/디매핑 등), 자원 할당 과정 등 중 적어도 일부가 수행될 수 있다.
도 14는 본 발명에 적용될 수 있는 무선 기기를 예시한다.
도 14를 참조하면, 제1 무선 기기(100)와 제2 무선 기기(200)는 다양한 무선 접속 기술(예, LTE, NR)을 통해 무선 신호를 송수신할 수 있다. 여기서, {제1 무선 기기(100), 제2 무선 기기(200)}은 도 13의 {무선 기기(100x), 기지국(200)} 및/또는 {무선 기기(100x), 무선 기기(100x)}에 대응할 수 있다.
제1 무선 기기(100)는 하나 이상의 프로세서(102) 및 하나 이상의 메모리(104)를 포함하며, 추가적으로 하나 이상의 송수신기(106) 및/또는 하나 이상의 안테나(108)을 더 포함할 수 있다. 프로세서(102)는 메모리(104) 및/또는 송수신기(106)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(102)는 메모리(104) 내의 정보를 처리하여 제1 정보/신호를 생성한 뒤, 송수신기(106)을 통해 제1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(102)는 송수신기(106)를 통해 제2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(104)에 저장할 수 있다. 메모리(104)는 프로세서(102)와 연결될 수 있고, 프로세서(102)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(104)는 프로세서(102)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(102)와 메모리(104)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(106)는 프로세서(102)와 연결될 수 있고, 하나 이상의 안테나(108)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(106)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(106)는 RF(Radio Frequency) 유닛과 혼용될 수 있다. 본 발명에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
구체적으로 본 발명의 실시 예에 따른 제 1 무선 기기(100)의 프로세서(102)에 의해 제어되고, 메모리(104)에 저장되는 명령 및/또는 동작들에 대해서 살펴보도록 한다.
하기 동작들은 프로세서(102)의 관점에서 프로세서(102)의 제어 동작을 기반으로 설명하지만, 이러한 동작을 수행하기 위한 소프트웨어 코드 등에 메모리(104)에 저장될 수 있다.
프로세서(102)는 SRS의 송신과 관련된 하향링크(downlink; DL) RS 자원에 대한 정보를 수신하도록 송수신기(106)를 제어할 수 있다. 또한 프로세서(102)는 상기 DL RS 자원에 대한 정보에 따른 경로 손실(path loss)의 측정(measurement) 여부를 기초로 상기 SRS를 송신하기 위한 전송 전력을 결정할 수 있다. 그리고 프로세서(102)는 상기 전송 전력에 따라 상기 SRS를 송신하도록 송수신기(106)를 제어할 수 있다. 이 때, 프로세서(102)가 SRS의 송신과 관련된 하향링크(downlink; DL) RS 자원에 대한 정보를 수신하도록 송수신기(106)를 제어하고, 상기 전송 전력에 따라 상기 SRS를 송신하도록 송수신기(106)를 제어하는 구체적인 방법은 상술한 실시 예들에 기반할 수 있다.
구체적으로 본 발명의 실시 예에 따른 제 2 무선 기기(200)의 프로세서(202)에 의해 제어되고, 메모리(204)에 저장되는 명령 및/또는 동작들에 대해서 살펴보도록 한다.
하기 동작들은 프로세서(202)의 관점에서 프로세서(202)의 제어 동작을 기반으로 설명하지만, 이러한 동작을 수행하기 위한 소프트웨어 코드 등에 메모리(204)에 저장될 수 있다.
프로세서(202)는 SRS의 송신과 관련된 하향링크(downlink; DL) RS 자원에 대한 정보를 송신하도록 송수신기(206)를 제어할 수 있다. 또한 프로세서(202)는 상기 SRS를 수신하도록 송수신기(206)를 제어할 수 있다. 이 때, 프로세서(202)가 SRS의 송신과 관련된 하향링크(downlink; DL) RS 자원에 대한 정보를 송신하도록 송수신기(206)를 제어하고, 상기 SRS를 수신하도록 송수신기(206)를 제어하는 구체적인 방법은 상술한 실시 예들에 기반할 수 있다.
이하, 무선 기기(100, 200)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(102, 202)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 계층(예, PHY, MAC, RLC, PDCP, RRC, SDAP와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(Service Data Unit)를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(106, 206)에게 제공할 수 있다. 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)로부터 신호(예, 베이스밴드 신호)를 수신할 수 있고, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.
하나 이상의 프로세서(102, 202)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(102, 202)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(Application Specific Integrated Circuit), 하나 이상의 DSP(Digital Signal Processor), 하나 이상의 DSPD(Digital Signal Processing Device), 하나 이상의 PLD(Programmable Logic Device) 또는 하나 이상의 FPGA(Field Programmable Gate Arrays)가 하나 이상의 프로세서(102, 202)에 포함될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(102, 202)에 포함되거나, 하나 이상의 메모리(104, 204)에 저장되어 하나 이상의 프로세서(102, 202)에 의해 구동될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다.
하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(104, 204)는 ROM, RAM, EPROM, 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(104, 204)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(102, 202)와 연결될 수 있다.
하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치에게 본 문서의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치로부터 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)와 연결될 수 있고, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)를 통해 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 문서에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예, 안테나 포트)일 수 있다. 하나 이상의 송수신기(106, 206)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(102, 202)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(106, 206)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.
도 15는 본 발명에 적용되는 무선 기기의 다른 예를 나타낸다. 무선 기기는 사용-예/서비스에 따라 다양한 형태로 구현될 수 있다(도 13 참조).
도 15를 참조하면, 무선 기기(100, 200)는 도 14의 무선 기기(100,200)에 대응하며, 다양한 요소(element), 성분(component), 유닛/부(unit), 및/또는 모듈(module)로 구성될 수 있다. 예를 들어, 무선 기기(100, 200)는 통신부(110), 제어부(120), 메모리부(130) 및 추가 요소(140)를 포함할 수 있다. 통신부는 통신 회로(112) 및 송수신기(들)(114)을 포함할 수 있다. 예를 들어, 통신 회로(112)는 도 14의 하나 이상의 프로세서(102,202) 및/또는 하나 이상의 메모리(104,204) 를 포함할 수 있다. 예를 들어, 송수신기(들)(114)는 도 14의 하나 이상의 송수신기(106,206) 및/또는 하나 이상의 안테나(108,208)을 포함할 수 있다. 제어부(120)는 통신부(110), 메모리부(130) 및 추가 요소(140)와 전기적으로 연결되며 무선 기기의 제반 동작을 제어한다. 예를 들어, 제어부(120)는 메모리부(130)에 저장된 프로그램/코드/명령/정보에 기반하여 무선 기기의 전기적/기계적 동작을 제어할 수 있다. 또한, 제어부(120)는 메모리부(130)에 저장된 정보를 통신부(110)을 통해 외부(예, 다른 통신 기기)로 무선/유선 인터페이스를 통해 전송하거나, 통신부(110)를 통해 외부(예, 다른 통신 기기)로부터 무선/유선 인터페이스를 통해 수신된 정보를 메모리부(130)에 저장할 수 있다. 따라서, 본 발명에 따른 구체적인 제어부(120)의 동작 과정 및 메모리부(130)에 저장된 프로그램/코드/명령/정보들은 도 14의 프로세서 (102, 202) 중 적어도 하나의 동작 및 메모리(104, 204) 중 적어도 하나의 동작과 대응될 수 있다.
추가 요소(140)는 무선 기기의 종류에 따라 다양하게 구성될 수 있다. 예를 들어, 추가 요소(140)는 파워 유닛/배터리, 입출력부(I/O unit), 구동부 및 컴퓨팅부 중 적어도 하나를 포함할 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(도 13, 100a), 차량(도 13, 100b-1, 100b-2), XR 기기(도 13, 100c), 휴대 기기(도 13, 100d), 가전(도 13, 100e), IoT 기기(도 13, 100f), 디지털 방송용 단말, 홀로그램 장치, 공공 안전 장치, MTC 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, AI 서버/기기(도 13, 400), 기지국(도 13, 200), 네트워크 노드 등의 형태로 구현될 수 있다. 무선 기기는 사용-예/서비스에 따라 이동 가능하거나 고정된 장소에서 사용될 수 있다.
도 15에서 무선 기기(100, 200) 내의 다양한 요소, 성분, 유닛/부, 및/또는 모듈은 전체가 유선 인터페이스를 통해 상호 연결되거나, 적어도 일부가 통신부(110)를 통해 무선으로 연결될 수 있다. 예를 들어, 무선 기기(100, 200) 내에서 제어부(120)와 통신부(110)는 유선으로 연결되며, 제어부(120)와 제1 유닛(예, 130, 140)은 통신부(110)를 통해 무선으로 연결될 수 있다. 또한, 무선 기기(100, 200) 내의 각 요소, 성분, 유닛/부, 및/또는 모듈은 하나 이상의 요소를 더 포함할 수 있다. 예를 들어, 제어부(120)는 하나 이상의 프로세서 집합으로 구성될 수 있다. 예를 들어, 제어부(120)는 통신 제어 프로세서, 어플리케이션 프로세서(Application processor), ECU(Electronic Control Unit), 그래픽 처리 프로세서, 메모리 제어 프로세서 등의 집합으로 구성될 수 있다. 다른 예로, 메모리부(130)는 RAM(Random Access Memory), DRAM(Dynamic RAM), ROM(Read Only Memory), 플래시 메모리(flash memory), 휘발성 메모리(volatile memory), 비-휘발성 메모리(non-volatile memory) 및/또는 이들의 조합으로 구성될 수 있다.
이하, 도 15의 구현 예에 대해 도면을 참조하여 보다 자세히 설명한다.
도 16은 본 발명에 적용되는 휴대 기기를 예시한다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 휴대용 컴퓨터(예, 노트북 등)을 포함할 수 있다. 휴대 기기는 MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station) 또는 WT(Wireless terminal)로 지칭될 수 있다.
도 16을 참조하면, 휴대 기기(100)는 안테나부(108), 통신부(110), 제어부(120), 메모리부(130), 전원공급부(140a), 인터페이스부(140b) 및 입출력부(140c)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110~130/140a~140c는 각각 도 15의 블록 110~130/140에 대응한다.
통신부(110)는 다른 무선 기기, 기지국들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 휴대 기기(100)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 AP(Application Processor)를 포함할 수 있다. 메모리부(130)는 휴대 기기(100)의 구동에 필요한 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 또한, 메모리부(130)는 입/출력되는 데이터/정보 등을 저장할 수 있다. 전원공급부(140a)는 휴대 기기(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 인터페이스부(140b)는 휴대 기기(100)와 다른 외부 기기의 연결을 지원할 수 있다. 인터페이스부(140b)는 외부 기기와의 연결을 위한 다양한 포트(예, 오디오 입/출력 포트, 비디오 입/출력 포트)를 포함할 수 있다. 입출력부(140c)는 영상 정보/신호, 오디오 정보/신호, 데이터, 및/또는 사용자로부터 입력되는 정보를 입력 받거나 출력할 수 있다. 입출력부(140c)는 카메라, 마이크로폰, 사용자 입력부, 디스플레이부(140d), 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다.
일 예로, 데이터 통신의 경우, 입출력부(140c)는 사용자로부터 입력된 정보/신호(예, 터치, 문자, 음성, 이미지, 비디오)를 획득하며, 획득된 정보/신호는 메모리부(130)에 저장될 수 있다. 통신부(110)는 메모리에 저장된 정보/신호를 무선 신호로 변환하고, 변환된 무선 신호를 다른 무선 기기에게 직접 전송하거나 기지국에게 전송할 수 있다. 또한, 통신부(110)는 다른 무선 기기 또는 기지국으로부터 무선 신호를 수신한 뒤, 수신된 무선 신호를 원래의 정보/신호로 복원할 수 있다. 복원된 정보/신호는 메모리부(130)에 저장된 뒤, 입출력부(140c)를 통해 다양한 형태(예, 문자, 음성, 이미지, 비디오, 헵틱)로 출력될 수 있다.
도 17은 본 발명에 적용되는 차량 또는 자율 주행 차량을 예시한다. 차량 또는 자율 주행 차량은 이동형 로봇, 차량, 기차, 유/무인 비행체(Aerial Vehicle, AV), 선박 등으로 구현될 수 있다.
도 17을 참조하면, 차량 또는 자율 주행 차량(100)은 안테나부(108), 통신부(110), 제어부(120), 구동부(140a), 전원공급부(140b), 센서부(140c) 및 자율 주행부(140d)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110/130/140a~140d는 각각 도 15의 블록 110/130/140에 대응한다.
통신부(110)는 다른 차량, 기지국(e.g. 기지국, 노변 기지국(Road Side unit) 등), 서버 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 차량 또는 자율 주행 차량(100)의 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 ECU(Electronic Control Unit)를 포함할 수 있다. 구동부(140a)는 차량 또는 자율 주행 차량(100)을 지상에서 주행하게 할 수 있다. 구동부(140a)는 엔진, 모터, 파워 트레인, 바퀴, 브레이크, 조향 장치 등을 포함할 수 있다. 전원공급부(140b)는 차량 또는 자율 주행 차량(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 센서부(140c)는 차량 상태, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(140c)는 IMU(inertial measurement unit) 센서, 충돌 센서, 휠 센서(wheel sensor), 속도 센서, 경사 센서, 중량 감지 센서, 헤딩 센서(heading sensor), 포지션 모듈(position module), 차량 전진/후진 센서, 배터리 센서, 연료 센서, 타이어 센서, 스티어링 센서, 온도 센서, 습도 센서, 초음파 센서, 조도 센서, 페달 포지션 센서 등을 포함할 수 있다. 자율 주행부(140d)는 주행중인 차선을 유지하는 기술, 어댑티브 크루즈 컨트롤과 같이 속도를 자동으로 조절하는 기술, 정해진 경로를 따라 자동으로 주행하는 기술, 목적지가 설정되면 자동으로 경로를 설정하여 주행하는 기술 등을 구현할 수 있다.
일 예로, 통신부(110)는 외부 서버로부터 지도 데이터, 교통 정보 데이터 등을 수신할 수 있다. 자율 주행부(140d)는 획득된 데이터를 기반으로 자율 주행 경로와 드라이빙 플랜을 생성할 수 있다. 제어부(120)는 드라이빙 플랜에 따라 차량 또는 자율 주행 차량(100)이 자율 주행 경로를 따라 이동하도록 구동부(140a)를 제어할 수 있다(예, 속도/방향 조절). 자율 주행 도중에 통신부(110)는 외부 서버로부터 최신 교통 정보 데이터를 비/주기적으로 획득하며, 주변 차량으로부터 주변 교통 정보 데이터를 획득할 수 있다. 또한, 자율 주행 도중에 센서부(140c)는 차량 상태, 주변 환경 정보를 획득할 수 있다. 자율 주행부(140d)는 새로 획득된 데이터/정보에 기반하여 자율 주행 경로와 드라이빙 플랜을 갱신할 수 있다. 통신부(110)는 차량 위치, 자율 주행 경로, 드라이빙 플랜 등에 관한 정보를 외부 서버로 전달할 수 있다. 외부 서버는 차량 또는 자율 주행 차량들로부터 수집된 정보에 기반하여, AI 기술 등을 이용하여 교통 정보 데이터를 미리 예측할 수 있고, 예측된 교통 정보 데이터를 차량 또는 자율 주행 차량들에게 제공할 수 있다.
한편, 본 발명에 따른 실시 예들을 수행하기 위하여, 도 18과 같은 위치 서버(Location Server, 90)가 포함될 수 있다. 여기서, 위치 서버(Location Server, 90)는 무선 장치(70) 및/또는 네트워크 노드(80)와 논리적 또는 물리적으로 연결될 수 있다. 한편, 상기 무선 장치(70)는 도 14의 제 1 무선 기기(100) 및/또는 도 15의 무선 기기(100, 200)일 수 있다. 또한, 상기 네트워크 노드(80)는 도 14의 제 2 무선 기기(100) 및/또는 도 15의 무선 기기(100, 200)일 수 있다.
한편, 상기 위치 서버(90)는 AMF, LMF, E-SMLC 및/또는 SLP일 수 있으나, 이에 한정되지 않으며, 본 발명의 실시 예를 구현하기 위해 상기 위치 서버(90)의 역할을 할 수 있는 통신 장치라면, 어떠한 통신 장치도 상기 위치 서버(90)로 활용될 수 있다. 특히, 상기 위치 서버(90)는 설명의 편의 상, 위치 서버라는 명칭을 사용하였으나, 서버 형태로 구현되지 않을 수 있으며, 칩(Chip) 형태로 구현될 수 있고, 이러한 칩(Chip) 형태의 구현은 후술하는 위치 서버(90)의 기능들을 모두 수행할 수 있도록 구현될 수 있다.
구체적으로 상기 위치 서버(90)에 대해 살펴보면, 상기 위치 서버(90)는 하나 이상의 다른 무선 장치, 네트워크 노드 및/또는 네트워크의 다른 요소와 통신하기 위한 송수신기(Transceiver)(91)를 포함한다. 이 때, 송수신기(91)는 하나 이상의 통신 인터페이스를 포함 할 수 있다. 상기 통신 인터페이스를 통해 연결된 하나 이상의 다른 무선 장치, 네트워크 노드 및/또는 네트워크의 다른 요소와 통신을 수행한다.
또한, 위치 서버(90)는 프로세싱 칩(92)을 포함한다. 프로세싱 칩(92)은 프로세서 (93)와 같은 적어도 하나의 프로세서 및 메모리 (94)와 같은 적어도 하나의 메모리 장치를 포함 할 수 있다.
프로세싱 칩(92)은 본 명세서에서 설명된 방법들, 및/또는 본 명세서에서 해결하고자 하는 과제 및 그에 대한 해결책을 위한 실시 예들을 구현하기 위하여, 하나 이상의 프로세스를 제어할 수 있다. 다시 말해, 상기 프로세싱 칩(92)은 본 명세서에 기재된 적어도 하나 이상의 실시 예들이 수행되도록 구성 될 수 있다. 즉, 프로세서(93)는 본 명세서에서 설명된 위치 서버(90)의 기능을 수행하기 위한 적어도 하나의 프로세서를 포함한다. 예를 들어, 하나 이상의 프로세서는 도 18의 하나 이상의 송수신기(91)를 제어하여, 정보를 송수신할 수 있다.
또한, 프로세싱 칩(92)은 데이터, 프로그래밍 가능한 소프트웨어 코드 및/또는 본 명세서에 설명된 실시 예들을 수행하기 위한 다른 정보를 저장하도록 구성된 메모리 (94)를 포함한다.
다시 말해 본 명세서에 따른 실시 예에서, 메모리 (94)는 프로세서 (93)와 같은 적어도 하나의 프로세서에 의해 실행(executed)될 때, 프로세서 (93)로 하여금 도 18의 프로세서 (93)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하게 하거나, 본 명세서에 설명된 실시 예들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드(95)를 저장한다.
이상에서 설명된 실시 예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시 예를 구성하는 것도 가능하다. 본 발명의 실시 예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시 예의 일부 구성이나 특징은 다른 실시 예에 포함될 수 있고, 또는 다른 실시 예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시 예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
여기서, 본 명세서의 무선 기기에서 구현되는 무선 통신 기술은 LTE, NR 및 6G뿐만 아니라 저전력 통신을 위한 NB-IoT(Narrowband Internet of Things)를 포함할 수 있다. 이때, 예를 들어 NB-IoT 기술은 LPWAN(Low Power Wide Area Network) 기술의 일례일 수 있고, LTE Cat(Category) NB1 및/또는 LTE Cat NB2 등의 규격으로 구현될 수 있으며, 상술한 명칭에 한정되는 것은 아니다. 추가적으로 또는 대체적으로, 본 명세서의 무선 기기에서 구현되는 무선 통신 기술은 LTE-M 기술을 기반으로 통신을 수행할 수 있다. 이때, 일 예로, LTE-M 기술은 LPWAN 기술의 일례일 수 있고, eMTC(enhanced Machine Type Communication) 등의 다양한 명칭으로 불릴 수 있다. 예를 들어, LTE-M 기술은 1) LTE CAT 0, 2) LTE Cat M1, 3) LTE Cat M2, 4) LTE non-BL(non-Bandwidth Limited), 5) LTE-MTC, 6) LTE Machine Type Communication, 및/또는 7) LTE M 등의 다양한 규격 중 적어도 어느 하나로 구현될 수 있으며 상술한 명칭에 한정되는 것은 아니다. 추가적으로 또는 대체적으로, 본 명세서의 무선 기기에서 구현되는 무선 통신 기술은 저전력 통신을 고려한 지그비(ZigBee), 블루투스(Bluetooth) 및 저전력 광역 통신망(Low Power Wide Area Network, LPWAN) 중 적어도 어느 하나를 포함할 수 있으며, 상술한 명칭에 한정되는 것은 아니다. 일 예로 ZigBee 기술은 IEEE 802.15.4 등의 다양한 규격을 기반으로 소형/저-파워 디지털 통신에 관련된 PAN(personal area networks)을 생성할 수 있으며, 다양한 명칭으로 불릴 수 있다.
본 문서에서 기지국에 의해 수행된다고 설명된 특정 동작은 경우에 따라서는 그 상위 노드(upper node)에 의해 수행될 수 있다. 즉, 기지국을 포함하는 복수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. 기지국은 고정국(fixed station), gNode B(gNB), Node B, eNode B(eNB), 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
사운딩 참조 신호 (Sounding Reference Signal; SRS)를 송신하는 방법 및 이를 위한 장치는 5세대 NewRAT 시스템에 적용되는 예를 중심으로 설명하였으나, 5세대 NewRAT 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (16)

  1. 무선 통신 시스템에서 단말이 사운딩 참조 신호 (Sounding Reference Signal; SRS)를 송신하는 방법에 있어서,
    SRS의 송신과 관련된 하향링크(downlink; DL) RS 자원에 대한 정보를 수신하고,
    상기 DL RS 자원에 대한 정보에 따른 경로 손실(path loss)의 측정(measurement) 여부를 기초로 상기 SRS를 송신하기 위한 전송 전력을 결정하며,
    상기 전송 전력에 따라 상기 SRS를 송신하는 것을 포함하고,
    상기 DL RS 자원은 인접 셀(neighbor cell)과 관련되며,
    상기 DL RS 자원에 대한 정보에 따른 상기 경로 손실의 측정에 성공한 점에 기반하여, 상기 경로 손실의 측정 값이 상기 전송 전력의 결정에 사용되고,
    상기 DL RS 자원에 대한 정보에 따른 상기 경로 손실의 측정에 실패한 점에 기반하여, 서빙 셀(serving cell)로부터 획득되는 전력 설정과 관련된 정보가 상기 전송 전력의 결정에 사용되는,
    SRS 송신 방법.
  2. 제 1 항에 있어서,
    상기 DL RS 자원에 대한 정보에 따른 상기 경로 손실의 측정에 실패한 점에 기반하여, 상기 SRS가 송신되지 않는,
    SRS 송신 방법.
  3. 제 1 항에 있어서,
    상기 DL RS 자원에 대한 정보에 따른 상기 경로 손실의 측정에 실패한 점에 기반하여, 상기 전송 전력은 상기 서빙 셀을 위한 SRS 전송 전력에 전력 오프셋(offset)을 적용하여 결정되는,
    SRS 송신 방법.
  4. 제 1 항에 있어서,
    상기 SRS는 상기 단말의 측위(positioning)와 관련된,
    SRS 송신 방법.
  5. 제 1 항에 있어서,
    상기 방법은 상기 DL RS 자원과 관련된 공간 관계 정보(spatial relation information)을 수신하는 것을 더 포함하고,
    상기 공간 관계 정보는 상기 인접 셀에 대한 정보를 포함하는,
    SRS 송신 방법.
  6. 제 5 항에 있어서,
    상기 DL RS 자원에 대한 정보에 따른 상기 경로 손실의 측정에 실패한 점에 기반하여, 상기 공간 관계 정보에 포함된 상기 인접 셀에 대한 정보가 상기 SRS의 송신 빔(beam)의 결정에 사용되는,
    SRS 송신 방법.
  7. 무선 통신 시스템에서 사운딩 참조 신호 (Sounding Reference Signal; SRS)를 송신하는 단말에 있어서,
    적어도 하나의 트랜시버;
    적어도 하나의 프로세서; 및
    상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리;를 포함하고,
    상기 특정 동작은,
    SRS의 송신과 관련된 하향링크(downlink; DL) RS 자원에 대한 정보를 수신하고,
    상기 DL RS 자원에 대한 정보에 따른 경로 손실(path loss)의 측정(measurement) 여부를 기초로 상기 SRS를 송신하기 위한 전송 전력을 결정하며,
    상기 전송 전력에 따라 상기 SRS를 송신하는 것을 포함하고,
    상기 DL RS 자원은 인접 셀(neighbor cell)과 관련되며,
    상기 DL RS 자원에 대한 정보에 따른 상기 경로 손실의 측정에 성공한 점에 기반하여, 상기 경로 손실의 측정 값이 상기 전송 전력의 결정에 사용되고,
    상기 DL RS 자원에 대한 정보에 따른 상기 경로 손실의 측정에 실패한 점에 기반하여, 서빙 셀(serving cell)로부터 획득되는 전력 설정과 관련된 정보가 상기 전송 전력의 결정에 사용되는,
    단말.
  8. 제 7 항에 있어서,
    상기 DL RS 자원에 대한 정보에 따른 상기 경로 손실의 측정에 실패한 점에 기반하여, 상기 SRS가 송신되지 않는,
    단말.
  9. 제 7 항에 있어서,
    상기 DL RS 자원에 대한 정보에 따른 상기 경로 손실의 측정에 실패한 점에 기반하여, 상기 전송 전력은 상기 서빙 셀을 위한 SRS 전송 전력에 전력 오프셋(offset)을 적용하여 결정되는,
    단말.
  10. 제 7 항에 있어서,
    상기 SRS는 상기 단말의 측위(positioning)와 관련된,
    단말.
  11. 제 7 항에 있어서,
    상기 특정 동작은 상기 DL RS 자원과 관련된 공간 관계 정보(spatial relation information)을 수신하는 것을 더 포함하고,
    상기 공간 관계 정보는 상기 인접 셀에 대한 정보를 포함하는,
    단말.
  12. 제 11 항에 있어서,
    상기 DL RS 자원에 대한 정보에 따른 상기 경로 손실의 측정에 실패한 점에 기반하여, 상기 공간 관계 정보에 포함된 상기 인접 셀에 대한 정보가 상기 SRS의 송신 빔(beam)의 결정에 사용되는,
    단말.
  13. 무선 통신 시스템에서 사운딩 참조 신호 (Sounding Reference Signal; SRS)를 송신하는 장치에 있어서,
    적어도 하나의 트랜시버;
    적어도 하나의 프로세서; 및
    상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리;를 포함하고,
    상기 특정 동작은,
    SRS의 송신과 관련된 하향링크(downlink; DL) RS 자원에 대한 정보를 수신하고,
    상기 DL RS 자원에 대한 정보에 따른 경로 손실(path loss)의 측정(measurement) 여부를 기초로 상기 SRS를 송신하기 위한 전송 전력을 결정하며,
    상기 전송 전력에 따라 상기 SRS를 송신하는 것을 포함하고,
    상기 DL RS 자원은 인접 셀(neighbor cell)과 관련되며,
    상기 DL RS 자원에 대한 정보에 따른 상기 경로 손실의 측정에 성공한 점에 기반하여, 상기 경로 손실의 측정 값이 상기 전송 전력의 결정에 사용되고,
    상기 DL RS 자원에 대한 정보에 따른 상기 경로 손실의 측정에 실패한 점에 기반하여, 서빙 셀(serving cell)로부터 획득되는 전력 설정과 관련된 정보가 상기 전송 전력의 결정에 사용되는,
    장치.
  14. 무선 통신 시스템에서 네트워크 노드가 사운딩 참조 신호 (Sounding Reference Signal; SRS)를 수신하는 방법에 있어서,
    SRS의 송신과 관련된 하향링크(downlink; DL) RS 자원에 대한 정보를 단말로 송신하고,
    상기 SRS를 상기 단말로부터 수신하며,
    상기 DL RS 자원은 인접 셀(neighbor cell)과 관련되고,
    상기 DL RS 자원은 경로 손실의 측정에 사용되며,
    상기 DL RS 자원에 대한 정보에 따른 상기 경로 손실의 측정이 성공되는 점에 기반하여, 상기 경로 손실의 측정 값에 따라 상기 SRS의 전송 전력이 결정되고,
    상기 DL RS 자원에 대한 정보에 따른 상기 경로 손실의 측정에 실패하는 점에 기반하여, 서빙 셀(serving cell)에 대한 전력 설정과 관련된 정보에 따라 상기 SRS의 전송 전력이 결정되는,
    SRS 수신 방법.
  15. 무선 통신 시스템에서 사운딩 참조 신호 (Sounding Reference Signal; SRS)를 수신하는 네트워크 노드에 있어서,
    적어도 하나의 트랜시버;
    적어도 하나의 프로세서; 및
    상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리;를 포함하고,
    상기 특정 동작은,
    SRS의 송신과 관련된 하향링크(downlink; DL) RS 자원에 대한 정보를 단말로 송신하고,
    상기 SRS를 상기 단말로부터 수신하며,
    상기 DL RS 자원은 인접 셀(neighbor cell)과 관련되고,
    상기 DL RS 자원은 경로 손실의 측정에 사용되며,
    상기 DL RS 자원에 대한 정보에 따른 상기 경로 손실의 측정이 성공되는 점에 기반하여, 상기 경로 손실의 측정 값에 따라 상기 SRS의 전송 전력이 결정되고,
    상기 DL RS 자원에 대한 정보에 따른 상기 경로 손실의 측정에 실패하는 점에 기반하여, 서빙 셀(serving cell)에 대한 전력 설정과 관련된 정보에 따라 상기 SRS의 전송 전력이 결정되는,
    네트워크 노드.
  16. 컴퓨터 판독가능한 저장 매체에 있어서,
    상기 컴퓨터 판독가능한 저장 매체는, 적어도 하나의 프로세서에 의해 실행될 때, 상기 적어도 하나의 프로세서로 하여금 사용자기기를 위한 동작들을 수행하도록 하는 지시들을 포함하는 적어도 하나의 컴퓨터 프로그램을 저장하며, 상기 동작들은,
    SRS의 송신과 관련된 하향링크(downlink; DL) RS 자원에 대한 정보를 수신하고,
    상기 DL RS 자원에 대한 정보에 따른 경로 손실(path loss)의 측정(measurement) 여부를 기초로 상기 SRS를 송신하기 위한 전송 전력을 결정하며,
    상기 전송 전력에 따라 상기 SRS를 송신하는 것을 포함하고,
    상기 DL RS 자원은 인접 셀(neighbor cell)과 관련되며,
    상기 DL RS 자원에 대한 정보에 따른 상기 경로 손실의 측정에 성공한 점에 기반하여, 상기 경로 손실의 측정 값이 상기 전송 전력의 결정에 사용되고,
    상기 DL RS 자원에 대한 정보에 따른 상기 경로 손실의 측정에 실패한 점에 기반하여, 서빙 셀(serving cell)로부터 획득되는 전력 설정과 관련된 정보가 상기 전송 전력의 결정에 사용되는,
    컴퓨터 판독가능한 저장 매체.
PCT/KR2020/010890 2019-08-16 2020-08-14 사운딩 참조 신호를 송신하는 방법 및 이를 위한 장치 WO2021034049A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201962887749P 2019-08-16 2019-08-16
US62/887,749 2019-08-16
US201962932558P 2019-11-08 2019-11-08
US62/932,558 2019-11-08

Publications (1)

Publication Number Publication Date
WO2021034049A1 true WO2021034049A1 (ko) 2021-02-25

Family

ID=74660052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/010890 WO2021034049A1 (ko) 2019-08-16 2020-08-14 사운딩 참조 신호를 송신하는 방법 및 이를 위한 장치

Country Status (1)

Country Link
WO (1) WO2021034049A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114026907A (zh) * 2021-09-28 2022-02-08 北京小米移动软件有限公司 一种上行波束的测量方法及其装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170128107A (ko) * 2016-05-13 2017-11-22 한국전자통신연구원 제어 채널을 위한 자원의 설정 정보를 전송하는 방법 및 장치, 상향링크 drs를 위한 자원의 설정 정보를 전송하는 방법 및 장치, 서브프레임/슬롯의 타입을 지시하는 지시자를 전송하는 방법 및 장치, 그리고 하향링크 심볼의 개수를 전송하는 방법 및 장치
US20190199554A1 (en) * 2017-05-04 2019-06-27 Lg Electronics Inc. Method and apparatus for uplink transmission and reception in a wireless communication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170128107A (ko) * 2016-05-13 2017-11-22 한국전자통신연구원 제어 채널을 위한 자원의 설정 정보를 전송하는 방법 및 장치, 상향링크 drs를 위한 자원의 설정 정보를 전송하는 방법 및 장치, 서브프레임/슬롯의 타입을 지시하는 지시자를 전송하는 방법 및 장치, 그리고 하향링크 심볼의 개수를 전송하는 방법 및 장치
US20190199554A1 (en) * 2017-05-04 2019-06-27 Lg Electronics Inc. Method and apparatus for uplink transmission and reception in a wireless communication system

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC.: "Procedure design for NR positioning", 3GPP TSG-RAN WG1 #97 MEETING; R1-1906564, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 4 May 2019 (2019-05-04), Reno, USA; 20190513 - 20190517, XP051708600 *
MITSUBISHI ELECTRIC: "Views on physical-layer procedures for NR positioning", 3GPP TSG RAN WG1 MEETING #98; R1-1908120, 3RD GENERATION PARTNERSHIP PROJECT (3GPP),SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 7 August 2019 (2019-08-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051755558 *
QUALCOMM INCORPORATED: "Considerations on Phy-layer procedures for NR Positioning", 3GPP TSG RAN WG1 #97; R1-1907299, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 4 May 2019 (2019-05-04), Reno, USA; 20190513 - 20190517, XP051709322 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114026907A (zh) * 2021-09-28 2022-02-08 北京小米移动软件有限公司 一种上行波束的测量方法及其装置
CN114026907B (zh) * 2021-09-28 2024-01-30 北京小米移动软件有限公司 一种上行波束的测量方法及其装置

Similar Documents

Publication Publication Date Title
WO2020145739A1 (ko) 무선 통신 시스템에서 측위 정보를 획득하는 방법 및 이를 위한 장치
WO2020145700A1 (ko) 측위 정보를 송수신하는 방법 및 이를 위한 장치
WO2020101266A1 (ko) 측위를 위한 상향링크 참조 신호를 송수신하는 방법 및 이를 위한 장치
WO2020209564A1 (ko) 무선통신시스템에서 사이드링크 통신 및 피드백에 관련된 ue의 동작 방법
WO2021040501A1 (ko) 무선통신시스템에서 사용자기기의 측위 방법
WO2020091545A1 (ko) 측위 참조 신호를 송수신하는 방법 및 이를 위한 장치
WO2020153749A1 (ko) 무선통신시스템에서 psfch를 전송할 슬롯을 결정하는 방법
WO2020145803A1 (ko) 무선통신시스템에서 피드백 정보를 전송하는 방법
WO2021040494A1 (ko) 무선통신시스템에서 사용자기기의 방법
WO2021040495A1 (ko) 무선통신시스템에서 사용자기기의 방법
WO2020197328A1 (ko) 무선통신시스템에서 랜덤 액세스 절차 후 링크를 수립한 tx ue의 rlf의 보고 관련된 tx ue의 동작 방법
WO2020050646A1 (ko) 측위 참조 신호를 송수신하는 방법 및 이를 위한 장치
WO2020246818A1 (ko) 무선통신시스템에서 사이드링크 신호를 송신하는 방법
WO2021045565A1 (ko) 무선통신시스템에서 단말의 위치를 측정하는 방법 및 장치
WO2020209594A1 (ko) 무선통신시스템에서 사이드링크 통신 및 피드백에 관련된 ue의 동작 방법
WO2021045575A1 (ko) 무선통신시스템에서 단말의 위치를 측정하는 방법 및 장치
WO2021040489A1 (ko) 무선통신시스템에서 단말의 위치를 측정하는 방법 및 장치
WO2021034043A1 (ko) 무선 통신 시스템에서 단말이 사운딩 참조 신호 (sounding reference signal; srs)의 전송 전력을 제어하는 방법 및 이를 위한 장치
WO2020262906A1 (ko) 무선통신시스템에서 성상도의 이동에 관련된 사이드링크 단말의 동작 방법
WO2020067764A1 (ko) 참조 신호 측정 관련 정보를 보고하는 방법 및 이를 위한 장치
WO2020218872A1 (ko) 무선통신시스템에서 사이드링크 그룹캐스트에서 피드백 자원 결정에 관련된 ue의 동작 방법
WO2020242211A1 (ko) 무선통신시스템에서 사이드링크 신호를 송신하는 방법
WO2020166797A1 (ko) 측위를 위한 상향링크 참조 신호를 송수신하는 방법 및 이를 위한 장치
WO2021206499A1 (ko) 무선 통신 시스템에서 동작하는 장치 및 동작 방법
WO2021215791A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20853685

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20853685

Country of ref document: EP

Kind code of ref document: A1