WO2021033957A1 - 알파 올레핀 제조 방법 및 알파 올레핀 제조 장치 - Google Patents

알파 올레핀 제조 방법 및 알파 올레핀 제조 장치 Download PDF

Info

Publication number
WO2021033957A1
WO2021033957A1 PCT/KR2020/010255 KR2020010255W WO2021033957A1 WO 2021033957 A1 WO2021033957 A1 WO 2021033957A1 KR 2020010255 W KR2020010255 W KR 2020010255W WO 2021033957 A1 WO2021033957 A1 WO 2021033957A1
Authority
WO
WIPO (PCT)
Prior art keywords
stream
monomer
reactor
supplied
solvent
Prior art date
Application number
PCT/KR2020/010255
Other languages
English (en)
French (fr)
Inventor
김혜빈
김은교
김미경
신준호
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200092937A external-priority patent/KR102592638B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP20854725.7A priority Critical patent/EP3851430B1/en
Priority to US17/281,081 priority patent/US11254624B2/en
Priority to JP2021518963A priority patent/JP7250399B2/ja
Publication of WO2021033957A1 publication Critical patent/WO2021033957A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/04Purification; Separation; Use of additives by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond

Definitions

  • the present invention relates to an alpha olefin production method and an alpha olefin production apparatus, and more particularly, to an alpha olefin production method and an alpha olefin production apparatus for reducing the amount of refrigerant used in the alpha olefin production process in order to ensure economic efficiency.
  • Alpha-olefin is an important material used in comonomers, detergents, lubricants, plasticizers, etc., and is widely used commercially.
  • 1-hexene and 1-octene control the density of polyethylene in the production of linear low-density polyethylene (LLDPE). It is widely used as a comonomer for regulation.
  • LLDPE linear low-density polyethylene
  • Alpha olefins such as 1-hexene and 1-octene are typically produced through an oligomerization reaction of ethylene.
  • the ethylene oligomerization reaction is carried out by an oligomerization reaction (trimerization reaction or tetramerization reaction) of ethylene using ethylene as a reactant, and the product produced through the reaction contains the desired 1-hexene and 1-octene. Since it contains not only the multi-component hydrocarbon mixture but also by-products such as unreacted ethylene, the product undergoes a separation process through a distillation column, and at this time, the unreacted ethylene is recovered and reused for the oligomerization reaction of ethylene.
  • the problem to be solved in the present invention is to provide an alpha olefin production method and an alpha olefin production apparatus that improves economic efficiency by reducing the amount of refrigerant used in the process in order to solve the problems mentioned in the technology behind the present invention. To provide.
  • the present invention by supplying ethylene monomer to the reactor in a liquid phase to remove the heat of dissolution (latent heat) of the ethylene monomer from the outside of the reactor, the amount of refrigerant used in the process is reduced, thereby producing an alpha olefin that can improve economy. It is an object to provide a method and an apparatus for producing alpha olefins.
  • the present invention supplies a feed stream containing an ethylene monomer in a gas phase to a monomer dissolving device to dissolve it in a solvent supplied to the monomer dissolving device, and the discharge stream is a reactor. Feeding into; Oligomerization reaction of the monomer dissolution device discharge stream supplied to the reactor; Supplying a partial stream of the first discharge stream of the reactor to a first separation device, and supplying a second discharge stream of the reactor to a second separation device; And recovering the ethylene monomer as an upper discharge stream in each of the first separation device and the second separation device, wherein the dissolution rate at which the gaseous ethylene monomer contained in the feed stream is dissolved in the solvent is 50%. It provides a method for producing the above alpha olefin.
  • the present invention is a monomer dissolving apparatus for supplying a feed stream containing a liquid ethylene monomer formed by dissolving a feed stream containing the supplied gaseous ethylene monomer in a separately supplied solvent to the reactor;
  • a reactor for oligomerizing the supplied monomer dissolution device discharge stream, supplying a partial stream of the first discharge stream to a first separation device, and supplying a second discharge stream to a second separation device;
  • a first separation device receiving a partial stream of the first discharge stream of the reactor and recovering the monomer as an upper discharge stream;
  • a second separation device for receiving the second discharge stream of the reactor and recovering the monomer to the upper discharge stream, wherein the dissolution rate at which the gaseous ethylene monomer contained in the feed stream is dissolved in a solvent in the monomer dissolving device is 50% or more. It provides an alpha olefin production apparatus that is controlled by.
  • the heat of dissolution of the ethylene monomer can be removed from the outside of the reactor by dissolving a feed stream containing an ethylene monomer in a gas phase in a solvent and supplying it to the reactor in a liquid phase, Accordingly, the amount of refrigerant used in the process can be reduced, thereby securing economical efficiency.
  • the stream containing ethylene monomer in the gas phase is supplied in the naphtha pyrolysis process, and is supplied while maintaining a pressure of 20 bar to 80 bar, which is the pressure of the supply source, and thus, the monomer dissolving device can be operated at a higher pressure than the reactor. In addition, it is possible to improve the dissolution rate of the gas phase ethylene monomer dissolved in the solvent.
  • FIG. 1 is a process flow diagram according to a method for producing an alpha olefin according to an embodiment of the present invention.
  • FIG. 2 is a process flow diagram according to a method for producing an alpha olefin according to a comparative example.
  • the term'stream' may mean a flow of a fluid in a process, and may also mean a fluid itself flowing in a pipe. Specifically, the'stream' may mean the fluid itself and the flow of the fluid simultaneously flowing in a pipe connecting each device. In addition, the fluid may mean gas or liquid.
  • a method for producing an alpha olefin comprising: supplying a feed stream containing ethylene monomer in a gas phase to a monomer dissolving device, dissolving in a solvent supplied to the monomer dissolving device, and supplying an exhaust stream to a reactor; Oligomerization reaction of the monomer dissolution device discharge stream supplied to the reactor; Supplying a partial stream of the first discharge stream of the reactor to a first separation device, and supplying a second discharge stream of the reactor to a second separation device; And recovering the ethylene monomer as an upper discharge stream in each of the first separation device and the second separation device, wherein in the monomer dissolving device, the dissolution rate at which the ethylene monomer contained in the feed stream is dissolved in a solvent is 50% or more.
  • a method for producing olefins can be provided.
  • the step of supplying a feed stream containing ethylene monomer in a gas phase to a monomer dissolving device to dissolve it in a solvent supplied to the monomer dissolving device, and supplying the discharge stream to the reactor comprises: A feed stream containing the monomer dissolving device is supplied to the monomer dissolving device, and the feed stream including the gaseous ethylene monomer is dissolved using a solvent separately supplied to the monomer dissolving device, and the feed stream including the liquid ethylene monomer is converted into a reactor. It can be carried out in a way that is fed into.
  • the feed stream containing the liquid ethylene monomer is supplied to the reactor as a monomer dissolving device discharge stream, and in the reactor, the supplied monomer dissolving device discharge stream is oligomerized to react to the desired alpha olefin.
  • the product is produced.
  • the oligomerization reaction may be performed in the lower part of the reactor, and the oligomerization reaction of the monomer may be performed in a liquid phase.
  • the oligomerization reaction may mean a reaction in which a monomer is micropolymerized. Depending on the number of monomers to be polymerized, they are called trimerization and tetramerization, and these are collectively referred to as multimerization.
  • the alpha olefin is an important material used for comonomers, detergents, lubricants, plasticizers, etc., and is widely used commercially.
  • 1-hexene and 1-octene are used to control the density of polyethylene when preparing linear low density polyethylene (LLDPE). It is widely used as a comonomer.
  • Alpha olefins such as 1-hexene and 1-octene may be prepared, for example, through a trimerization reaction or tetramerization reaction of ethylene.
  • the step of the oligomerization reaction of the monomer may be carried out in a reactor suitable for a continuous process, preferably selected from the group consisting of a continuous stirred reactor (CSTR) and a plug flow reactor (PFR). It can be carried out under a reaction system comprising one or more reactors.
  • a reactor suitable for a continuous process preferably selected from the group consisting of a continuous stirred reactor (CSTR) and a plug flow reactor (PFR). It can be carried out under a reaction system comprising one or more reactors.
  • the oligomerization reaction of the monomer is a homogeneous liquid phase reaction in the presence or absence of a solvent by applying a conventional contact technique with the reaction system, a form in which some or all of the catalyst system is not dissolved. It can be carried out as a phosphorus slurry reaction, a two-phase liquid/liquid reaction, or as a bulk or gaseous reaction in which the product acts as the main medium.
  • the step of the oligomerization reaction of the monomer may be performed as a homogeneous liquid phase reaction.
  • the containing feed stream was dissolved in a separately supplied solvent.
  • the feed stream containing the gaseous ethylene monomer is dissolved in the solvent and fed to the reactor as a feed stream containing the liquid ethylene monomer.
  • the heat of dissolution of the ethylene monomer is removed from the outside of the reactor, and through this, the amount of refrigerant used in the alpha olefin manufacturing process can be reduced.
  • the feed stream containing the gaseous ethylene monomer supplied to the monomer dissolving device may be supplied to the monomer dissolving device at a supply pressure of 20 bar to 80 bar.
  • the supply pressure of the feed stream containing the gaseous ethylene monomer may be 20 bar to 58 bar, 25 bar to 55 bar, or 40 bar to 51 bar.
  • the feed stream containing the gaseous ethylene monomer is supplied to the monomer dissolving device at a high pressure within the above range, thereby increasing the dissolution rate of the gaseous ethylene monomer dissolved in the solvent.
  • the supply pressure of the feed stream containing the gaseous ethylene monomer may be higher than the operating pressure of the reactor.
  • the supply pressure of the feed stream containing the gaseous ethylene monomer may be 10 bar to 40 bar higher than the operating pressure of the reactor.
  • the supply pressure of the feed stream containing the gaseous ethylene monomer may be 10 bar to 30 bar, 12 bar to 28 bar, or 15 bar to 25 bar higher than the operating pressure of the reactor. For this reason, the monomer dissolving device can be operated at a higher pressure than the reactor operating pressure.
  • the operating pressure of the monomer dissolving device is 20 bar to 80 bar, 30 bar to 60 bar, or 35 bar to 50 bar due to the supply pressure of the feed stream containing the gaseous ethylene monomer and the supply pressure of the solvent. Can be maintained.
  • the monomer dissolving device is operated at a higher pressure than the operating pressure of the reactor, thereby increasing the dissolution rate of the gaseous ethylene monomer dissolved in the solvent, and a separate pump for increasing the pressure of the reactor when supplying the monomer dissolving device discharge stream to the reactor.
  • a separate pump for increasing the pressure of the reactor when supplying the monomer dissolving device discharge stream to the reactor.
  • Such a device may not be required.
  • the temperature of the monomer dissolution device discharge stream may be 30° C. to 50° C.
  • the temperature of the monomer dissolving device discharge stream may be 30°C to 50°C, 35°C to 50°C, or 35°C to 45°C.
  • the alpha olefin production method according to the present invention can dissolve the gaseous ethylene monomer at a high temperature such as 30°C to 50°C by dissolving the gaseous ethylene monomer in a solvent in a monomer dissolving device and then supplying it to the reactor.
  • the monomer dissolution device discharge stream may be partially cooled before being supplied to the reactor, and in this case, the utility cost may be reduced by using cooling water instead of the refrigerant.
  • the feed stream containing the gaseous ethylene monomer supplied to the monomer dissolving device may be supplied from a Naphtha Cracking Center (NCC).
  • the naphtha pyrolysis process includes the steps of: introducing naphtha, C2 and C3 hydrocarbon compounds and propane as feedstocks, respectively, and performing pyrolysis in each pyrolysis furnace; Cooling a pyrolysis gas including hydrogen, C1, C2 and C3 or more hydrocarbon compounds by pyrolysis in each pyrolysis furnace; Compressing the cooled pyrolysis gas; And purifying a pyrolysis compressed stream comprising hydrogen, C1, C2 and C3 or more hydrocarbon compounds.
  • the feed stream containing the gaseous ethylene monomer supplied to the monomer dissolving device may be a stream containing ethylene (C2) separated from naphtha pyrolysis .
  • the pressure of the stream containing ethylene (C2) separated during the naphtha pyrolysis process is 20 bar to 80 bar, and is supplied as a feed stream containing gaseous ethylene monomer to the monomer dissolving device while maintaining the high pressure.
  • a separate pump or other device is not required, and the dissolution rate dissolved in the solvent can be increased.
  • the dissolution rate at which the ethylene monomer contained in the feed stream is dissolved in the solvent may be 50% or more, 55% to 100%, 70% to 100%, or 95% to 100%.
  • the dissolution rate at which the ethylene monomer contained in the feed stream is dissolved in the solvent may be measured through the following general formula 1.
  • F1 is the flow rate (ton/hr) of the feed stream containing the gaseous ethylene monomer
  • F2 is the flow rate (ton/hr) of the ethylene monomer in the total flow rate of the monomer dissolving device discharge stream.
  • General Formula 1 refers to the dissolution rate of the gaseous ethylene monomer dissolved in the solvent when dissolving the feed stream containing the gaseous ethylene monomer in a solvent in a monomer dissolving device and discharging it to the exhaust stream of the monomer dissolving device. I can.
  • the gaseous ethylene monomer not dissolved in the solvent in the monomer dissolving device is discharged as a separate stream to be supplied to the reactor. I can.
  • the gaseous ethylene monomer discharged from the monomer dissolving device is supplied to the reactor as a separate stream, or includes gaseous ethylene monomer recovered from each of the first separation device and the second separation device described below and supplied to the reactor. It may be fed to the reactor as the mixed stream after forming the mixed stream in the upper discharge stream and the mixer.
  • the solvent supplied to the monomer dissolving device is n-pentane, n-hexane, n-heptane, cyclohexane, methylcyclohexane, octane, cyclooctane, decane, dodecane, benzene, xyl It may be one or more selected from the group consisting of ene, 1,3,5-trimethylbenzene, toluene, ethylbenzene, chlorobenzene, dichlorobenzene, and trichlorobenzene. As a specific example, the solvent may be methylcyclohexane.
  • the solvent supplied to the monomer dissolving device may be used by mixing two types according to the case.
  • the solvent may be a mixture of methylcyclohexane and decane.
  • a solvent in which methylcyclohexane and decane with a high boiling point are mixed is used to dissolve the ethylene monomer in the gas phase, thereby liquefying the ethylene monomer in the gas phase at a higher temperature, The dissolution rate in which the gaseous ethylene monomer is dissolved in a solvent can be improved.
  • the temperature of the solvent supplied to the monomer dissolving device may range from 10 °C to 50 °C, and the pressure may range from 20 bar to 80 bar.
  • the supply temperature of the solvent is in the range of 10°C to 50°C, 20°C to 50°C, or 35°C to 45°C
  • the supply pressure is 20 bar to 60 bar, 30 bar to 60 bar, or 35 bar to 50 bar
  • the gaseous ethylene monomer can be liquefied at a relatively high temperature in the monomer dissolving device.
  • the flow rate of the solvent stream supplied to the monomer dissolving device may range from 1 to 10 times, 2 to 6 times, or 2 to 4 times compared to the content of the feed stream containing gaseous ethylene supplied to the monomer dissolving device. .
  • By supplying a solvent stream having an amount within the above range it is possible to efficiently prepare an oligomer product with a similar amount of solvent compared to the amount of the solvent used in the conventional alpha olefin production method.
  • the step of oligomerizing the discharge stream of the monomer dissolving device supplied to the reactor may be performed under a temperature of 10°C to 180°C, 30°C to 150°C, or 50°C to 120°C. .
  • the step of performing the oligomerization reaction may be performed under a pressure of 10 bar to 70 bar.
  • the step of performing the oligomerization reaction may be performed under a pressure of 10 bar to 65 bar, 20 bar to 50 bar, or 25 bar to 35 bar.
  • the selectivity for the desired alpha olefin can be excellent, the amount of by-products can be reduced, the operational efficiency of the continuous process can be increased, and the cost can be reduced. can do.
  • the separation device in the step of supplying the first discharge stream of the reactor to the first separation device and supplying the second discharge stream of the reactor to the second separation device, the separation device is a conventional flash Drums, condensers, and distillation columns can be used.
  • the reactor first discharge stream may be a stream containing gaseous ethylene monomer.
  • the first discharge stream containing the gaseous ethylene monomer is supplied to a condenser, and the first discharge stream is condensed in the condenser, and the stream condensed in the liquid phase from the condenser is supplied to the reactor, and the stream condensed in the liquid phase in the condenser is Other streams may be supplied to the first separation device through a heat exchanger. Then, the first separation device may supply an upper discharge stream containing gaseous ethylene monomer to the reactor, and a lower discharge stream containing liquid ethylene monomer to the second separation unit.
  • the heat exchanger was provided, and the ethylene monomer in the gas phase was cooled using a refrigerant in the heat exchanger.
  • the feed stream was supplied to a monomer dissolving device to dissolve the gaseous ethylene monomer in a solvent, and then supplied to the reactor in a liquid phase to remove the heat of dissolution of the ethylene monomer from the outside of the reactor, through which the heat exchange It is possible to reduce the amount of refrigerant used because the amount of heat removed from the machine is low.
  • the reactor second discharge stream may be a stream containing a liquid ethylene monomer.
  • the second discharge stream containing the liquid ethylene monomer is supplied to a second separation unit together with the first separation unit lower discharge stream, and in the second separation unit, an upper discharge stream containing gaseous ethylene monomer and an alpha olefin It can be separated into a bottoms effluent stream comprising products, by-products and solvents.
  • the gaseous ethylene monomer recovered as an upper discharge stream in the second separation device may be supplied to the reactor.
  • the upper discharge stream containing the gaseous ethylene monomer recovered from each of the first separation device and the second separation device may be supplied to the reactor.
  • the upper discharge stream of the first separation device and the upper discharge stream of the second separation device including gaseous ethylene monomers are supplied to the reactor as respective streams, or a mixed stream is formed using a mixer, and the mixing It can be fed to the reactor as a stream.
  • the alpha olefin product, the by-product and the solvent may be separated through an additional separation process.
  • the separated solvent can be supplied to a monomer dissolving device and reused.
  • the separated alpha olefin product may be separated into trimers and tetramers of ethylene monomers through an additional separation process.
  • an apparatus for producing an alpha olefin comprising: a monomer dissolving apparatus for supplying a feed stream containing a liquid ethylene monomer formed by dissolving a feed stream containing a supplied gaseous ethylene monomer in a separately supplied solvent to a reactor; A reactor for oligomerizing the supplied monomer dissolution device discharge stream, supplying a partial stream of the first discharge stream to a first separation device, and supplying a second discharge stream to a second separation device; A first separation device receiving a partial stream of the first discharge stream of the reactor and recovering the monomer as an upper discharge stream; And a second separation device receiving the second discharge stream of the reactor and recovering the monomer as an upper discharge stream.
  • the apparatus for producing an alpha olefin according to the present invention may be an apparatus for performing a process according to the method for producing an alpha olefin described above.
  • the apparatus for producing an alpha olefin according to the present invention may be described with reference to FIG. 1 below.
  • the alpha olefin production apparatus supplies a feed stream containing an ethylene monomer in a gas phase to the monomer dissolving device 300, and dissolves it in a solvent separately supplied to the monomer dissolving device 300, A feed stream comprising monomers may be fed to the reactor 100 as a monomer dissolution device 300 discharge stream.
  • a separate pump (not shown) may be used as the solvent supplied to the monomer dissolving device 300 to increase the pressure of the monomer dissolving device 300.
  • the dissolution rate at which the gaseous ethylene monomer contained in the feed stream is dissolved in the solvent may be controlled to 50% or more, 55% to 100%, 70% to 100%, or 95% to 100%. .
  • the heat of dissolution of the ethylene monomer was removed from the outside of the reactor, and through this, the amount of heat required in the heat exchanger is low and the amount of refrigerant used. Can be reduced.
  • the exhaust stream of the monomer dissolving device 300 may be supplied to the reactor 100 and subjected to an oligomerization reaction in the reactor 100, and the dissolution rate of the gaseous ethylene monomer contained in the feed stream in the monomer dissolving device 300 If this is not 100%, the undissolved gaseous ethylene monomer may be supplied to the reactor 100 as a separate stream.
  • a first discharge stream including gaseous ethylene monomer and a second discharge stream including liquid ethylene monomer may be separated.
  • the first discharge stream including the separated gaseous ethylene monomer may be supplied to the first separation device 200, and the second discharge stream including the liquid ethylene monomer may be supplied to the second separation device 210. .
  • the stream containing ethylene monomer supplied to the reactor 100 is an ethylene monomer recovered from the upper discharge stream of the first separation device 200 and the second separation device 210 together with the discharge stream of the monomer dissolving device 300 It may further include a stream including.
  • the upper discharge stream of the first separation device 200 and the upper discharge stream of the second separation device 210 are supplied to the reactor 100 as separate streams, or as a mixed discharge stream mixed in a mixer (not shown). It may be supplied to the reactor 100.
  • the first discharge stream of the reactor 100 is supplied to the condenser 400, and the stream containing the condensed liquid monomer is resupplied to the reactor 100, and the reactor ( Streams other than the stream to be resupplied to 100) are supplied to the first separation device 200 at a temperature partially cooled by using a refrigerant in the heat exchanger 500 through a heat exchanger 500.
  • the first separation device 200 receives the first discharge stream from the reactor 100, and the upper discharge stream containing the gaseous ethylene monomer and the lower discharge containing the liquid ethylene monomer. It can be separated into streams.
  • the upper discharge stream of the first separation device 200 may be supplied to the reactor 100, and the lower discharge stream may be supplied to the second separation device 210.
  • the second separation device 210 receives the second discharge stream of the reactor 100 including the liquid monomer and the lower discharge stream of the first separation device 200, It can be separated into a top effluent stream comprising ethylene monomer and a bottom effluent stream comprising alpha olefin products, by-products and solvents.
  • the upper discharge stream of the second separation device 210 is supplied to the reactor 100, and a lower discharge stream including an alpha olefin product and a solvent may be recovered.
  • the alpha olefin product and the solvent contained in the lower discharge stream of the third separation device 220 may be separated through an additional separation device (not shown), and the separated solvent may be reused in the alpha olefin production process.
  • the alpha olefin products 1-hexene and 1-octene may be included.
  • the 1-hexene and 1-octene may be separated through an additional separation device (not shown) or may be separated and used through a separate process.
  • the alpha olefin production device is supplied to the reactor 100, the first separation device 200, the second separation device 210, and the monomer dissolving device 300 if necessary in addition to the above-described configuration.
  • the stream may be optionally further included.
  • the alpha olefin production apparatus additionally includes a condenser (not shown), a reboiler (not shown), a pump (not shown), a compressor (not shown), and a mixer (not shown). You can install more.
  • Second stream Third stream Stream 4 Stream 5 Stream 6 Phase weather Liquid Liquid weather weather Air/liquid Temperature(°C) 30 39 40 80 40 20 Pressure (bar) 50 50 50 15 15 15 Flow (ton/hr) 13 39 52 208 182 182 Ethylene (ton/hr) 13 0 13 164 162 162 Solvent (ton/hr) 0 39 39 22 5 5 *
  • First stream feed stream supplied to monomer dissolving device 300 *
  • Second stream solvent stream supplied to monomer dissolving device 300 *
  • Third stream Monomer dissolving device 300 discharge stream *
  • Fourth stream The upper discharge stream of the reactor 100 supplied to the condenser 400 *
  • the fifth stream The stream supplied from the condenser 400 to the heat exchanger 500 *
  • the sixth stream The first separation device 200 from the heat exchanger 500 Stream fed to
  • an ethylene monomer is supplied to the monomer dissolving device 300 at a flow rate of 13 ton/hr, a temperature of 30° C. and a pressure of 50 bar, and a solvent is a flow rate of 39 ton/hr, a temperature of 39° C. And it was supplied at a pressure of 50 bar, it can be seen that the gaseous ethylene monomer is dissolved in the solvent. At this time, due to the supply pressure of the ethylene monomer, the operating pressure of the monomer dissolving device 300 is confirmed to be 50 bar. The gaseous ethylene monomer is dissolved in a solvent, and the stream containing the liquid ethylene monomer is a monomer dissolving device.
  • the stream containing the monomer supplied to the reactor 100 includes an upper discharge stream of the first separation device 200 and the second separation device 210 in addition to the discharge stream of the monomer dissolution device 300.
  • the temperature of the stream containing ethylene monomer recovered as the upper discharge stream of the first separation device 200 is 23° C., the pressure is 15 bar, the flow rate is 177 ton/hr, and the second separation device 210
  • the temperature of the stream containing monomers returned to the discharge stream is 0° C., the pressure is 15 bar, and the flow rate is 2 ton/hr.
  • the upper discharge stream of the reactor 100 is condensed in the condenser 400 and partially re-supplied to the reactor 100, and the rest is supplied to the first separation device 200 through the heat exchanger 500, It was found that the amount of refrigerant used in the heat exchanger 500 was 1,880 Mcal/hr.
  • Example 1 except that the temperature of the feed stream supplied to the monomer dissolving device 300 was controlled to 30 °C, the pressure was controlled to 50 bar, the temperature of the solvent stream was controlled to 37 °C, and the pressure was controlled to 40 bar. Then, it was carried out in the same manner as in Example 1. The results are shown in Table 2 below.
  • Second stream Third stream Stream 4 Stream 5 Stream 6 Phase weather Liquid Liquid weather weather Air/liquid Temperature(°C) 30 37 40 80 40 17 Pressure (bar) 50 40 40 15 15 15 Flow (ton/hr) 13 39 47 208 182 182 Ethylene (ton/hr) 13 0 9 164 162 162 Solvent (ton/hr) 0 39 39 22 5 5 *
  • First stream feed stream supplied to monomer dissolving device 300 *
  • Second stream solvent stream supplied to monomer dissolving device 300 *
  • Third stream Monomer dissolving device 300 discharge stream *
  • Fourth stream The upper discharge stream of the reactor 100 supplied to the condenser 400 *
  • the fifth stream The stream supplied from the condenser 400 to the heat exchanger 500 *
  • the sixth stream The first separation device 200 from the heat exchanger 500 Stream fed to
  • Example 2 compared to Example 1, by controlling the operating pressure of the monomer dissolving device 300 to 40 bar, the ethylene monomer in the gas phase was dissolved at a dissolution rate of about 67%, and the dissolution The ethylene monomer in the gaseous phase that was not in a separate stream was discharged from the monomer dissolving device 300 and supplied to the reactor 100.
  • the refrigerant for removing the heat of dissolution in the process is slightly increased compared to Example 1, and the amount of refrigerant used in the heat exchanger 500 is 2,148 Mcal/ It was confirmed that it was slightly increased compared to Example 1 in hr.
  • Example 1 except that the temperature of the feed stream supplied to the monomer dissolving device 300 was controlled to 30 °C, the pressure was controlled to 50 bar, the temperature of the solvent stream was controlled to 36 °C, and the pressure was controlled to 35 bar. Then, it was carried out in the same manner as in Example 1. The results are shown in Table 3 below.
  • Second stream Third stream Stream 4 Stream 5 Stream 6 Phase weather Liquid Liquid weather weather Air/liquid Temperature(°C) 30 36 40 80 40 15 Pressure (bar) 50 35 35 15 15 15 15 Flow (ton/hr) 13 39 45 208 182 182 Ethylene (ton/hr) 13 0 7 164 162 162 Solvent (ton/hr) 0 39 38 22 5 5 *
  • First stream feed stream supplied to monomer dissolving device 300 *
  • Second stream solvent stream supplied to monomer dissolving device 300 *
  • Third stream Monomer dissolving device 300 discharge stream *
  • Fourth stream The upper discharge stream of the reactor 100 supplied to the condenser 400 *
  • the fifth stream The stream supplied from the condenser 400 to the heat exchanger 500 *
  • the sixth stream The first separation device 200 from the heat exchanger 500 Stream fed to
  • Example 3 compared to Example 1, by controlling the operating pressure of the monomer dissolving device 300 to 35 bar, the gaseous ethylene monomer was dissolved at a dissolution rate of about 54%, and the dissolution The ethylene monomer in the gaseous phase that was not in a separate stream was discharged from the monomer dissolving device 300 and supplied to the reactor 100.
  • the refrigerant for removing the heat of dissolution in the process is slightly increased compared to Example 1, and the amount of refrigerant used in the heat exchanger 500 is 2,278 Mcal/ It was confirmed that it was slightly increased in hr compared to Example 1 and Example 2.
  • the process was simulated using the Aspen Plus simulator of Aspen Tech .
  • the gaseous ethylene monomer (C2) supplied to the reactor 100 as a feed stream is supplied at a flow rate of 13 ton/hr while maintaining a pressure of 50 bar, which is the ethylene monomer recovered in the process and the mixer. It was mixed in (not shown) and supplied to the reactor 100.
  • the solvent separately supplied to the reactor 100 was methylcyclohexane, and was supplied at a flow rate of 39 ton/hr. At this time, the amount of the solvent supplied was about three times the amount of the ethylene monomer in the gas phase.
  • the operating temperature of the reactor 100 was set to 80 °C
  • the operating pressure was set to 15 bar
  • the total flow rate of the ethylene monomer introduced for the oligomerization reaction and the heat removal of the reaction was maintained the same as in Example 1.
  • the results are shown in Table 4 below.
  • the gaseous ethylene monomer is not dissolved outside the reactor 100, but is supplied to the reactor 100 and dissolved while mixing with the solvent supplied to the reactor 100, and at this time, heat of dissolution is generated. For this reason, compared to Example 1, a refrigerant for removing the heat of dissolution in the process is further required, and the amount of refrigerant used in the heat exchanger 500 is 2,313 Mcal/hr, which is used in the heat exchanger 500 of Example 1. It was confirmed that the amount of refrigerant increased by about 23% compared to 1,880 Mcal/hr.
  • Example 1 the supply temperature of the solvent supplied to the monomer dissolving device 300 is controlled at 33° C., and the supply pressure is supplied at 15 bar, so that the operating pressure of the monomer dissolving device 300 is adjusted to the reactor 100. It was carried out in the same manner as in Example 1, except that the operating pressure was controlled at 15 bar. The results are shown in Table 5 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 알파 올레핀 제조 방법에 관한 것으로서, 기상의 에틸렌 단량체를 포함하는 피드 스트림을 단량체 용해 장치에 공급하여 단량체 용해 장치로 공급되는 용매에 용해시키고, 배출 스트림을 반응기로 공급하는 단계; 반응기에 공급된 단량체 용해 장치 배출 스트림을 올리고머화 반응시키는 단계; 상기 반응기의 제1 배출 스트림의 일부 스트림은 제1 분리 장치에 공급하고, 상기 반응기의 제2 배출 스트림을 제2 분리 장치에 공급하는 단계; 및 상기 제1 분리 장치 및 제2 분리 장치 각각에서 에틸렌 단량체를 상부 배출 스트림으로 회수하는 단계를 포함하고, 상기 단량체 용해 장치에서 피드 스트림 내 포함된 기상의 에틸렌 단량체가 용매에 용해되는 용해율은 50% 이상인 알파 올레핀 제조 방법 및 제조 장치를 제공한다.

Description

알파 올레핀 제조 방법 및 알파 올레핀 제조 장치
관련출원과의 상호인용
본 출원은 2019년 08월 21일자 한국특허출원 제10-2019-0102507호 및 2020년 07월 27일자 한국특허출원 제10-2020-0092937호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 알파 올레핀 제조 방법 및 알파 올레핀 제조 장치에 관한 것으로, 보다 상세하게는 경제성을 확보하기 위해 알파 올레핀 제조 공정에서 냉매 사용량을 감소시키기 위한 알파 올레핀 제조 방법 및 알파 올레핀 제조 장치에 관한 것이다.
알파 올레핀(alpha-olefin)은 공단량체, 세정제, 윤활제, 가소제 등에 쓰이는 중요한 물질로 상업적으로 널리 사용되며, 특히 1-헥센과 1-옥텐은 선형 저밀도 폴리에틸렌(LLDPE)의 제조 시, 폴리에틸렌의 밀도를 조절하기 위한 공단량체로 많이 사용되고 있다.
상기 1-헥센 및 1-옥텐과 같은 알파 올레핀은 대표적으로 에틸렌의 올리고머화 반응을 통해 제조되고 있다. 상기 에틸렌 올리고머화 반응은 에틸렌을 반응물로 사용하여 에틸렌의 올리고머화 반응(삼량체화 반응 또는 사량체화 반응)에 의하여 수행되는 것으로, 상기 반응을 통해 생성된 생성물은 목적하는 1-헥센 및 1-옥텐을 포함하는 다성분 탄화수소 혼합물뿐 아니라 미반응 에틸렌 등의 부산물을 포함하고 있어, 상기 생성물은 증류탑을 통해 분리 공정을 거치게 되며, 이 때, 미반응 에틸렌은 회수되어 에틸렌의 올리고머화 반응에 재사용하고 있다.
상기 에틸렌 단량체를 올리고머화시킬 때, 반응열이 상당하기 때문에, 반응기를 설계함에 있어, 반응열의 제거가 중요한 인자가 된다. 상기 반응열을 제거하는 방법으로서, 종래에는 단량체를 저온으로 공급하여 단량체의 현열을 이용하여 반응열을 제거하는 방법이 사용되어 왔다. 그러나, 종래의 제열 방법은, 저온으로 공급되는 과량의 단량체가 반응온도까지 승온하며 반응열을 제거하는 것으로, 단량체를 저온으로 냉각하기 위해 많은 양의 냉매가 요구되어 경제성이 떨어지는 문제가 있다.
본 발명에서 해결하고자 하는 과제는, 상기 발명의 배경이 되는 기술에서 언급한 문제들을 해결하기 위하여, 공정 내에서 사용되는 냉매의 사용량을 절감시켜 경제성을 향상시킨 알파 올레핀 제조 방법 및 알파 올레핀 제조 장치를 제공하는 것이다.
즉, 본 발명은 에틸렌 단량체를 액상으로 반응기에 공급하여, 반응기 외부에서 에틸렌 단량체의 용해열(잠열)을 제거함으로써, 공정 내에서 사용되는 냉매의 사용량을 감소시켜, 경제성을 향상시킬 수 있는 알파 올레핀 제조 방법 및 알파 올레핀 제조 장치를 제공하는 것을 목적으로 한다.
상기의 과제를 해결하기 위한 본 발명의 일 실시예에 따르면, 본 발명은 기상의 에틸렌 단량체를 포함하는 피드 스트림을 단량체 용해 장치에 공급하여 단량체 용해 장치로 공급되는 용매에 용해시키고, 배출 스트림을 반응기로 공급하는 단계; 반응기에 공급된 단량체 용해 장치 배출 스트림을 올리고머화 반응시키는 단계; 상기 반응기의 제1 배출 스트림의 일부 스트림은 제1 분리 장치에 공급하고, 상기 반응기의 제2 배출 스트림을 제2 분리 장치에 공급하는 단계; 및 상기 제1 분리 장치 및 제2 분리 장치 각각에서 에틸렌 단량체를 상부 배출 스트림으로 회수하는 단계를 포함하고, 상기 단량체 용해 장치에서 피드 스트림 내 포함된 기상의 에틸렌 단량체가 용매에 용해되는 용해율은 50% 이상인 알파 올레핀 제조 방법을 제공한다.
또한, 본 발명은 공급된 기상의 에틸렌 단량체를 포함하는 피드 스트림을 별도로 공급되는 용매에 용해시켜 형성된 액상의 에틸렌 단량체를 포함하는 피드 스트림을 반응기로 공급하는 단량체 용해 장치; 상기 공급된 단량체 용해 장치 배출 스트림을 올리고머화 반응시키고, 제1 배출 스트림의 일부 스트림을 제1 분리 장치에 공급하며, 제2 배출 스트림을 제2 분리 장치에 공급하는 반응기; 상기 반응기 제1 배출 스트림의 일부 스트림을 공급받아 상부 배출 스트림으로 단량체를 회수하는 제1 분리 장치; 및 상기 반응기 제2 배출 스트림을 공급받아 상부 배출 스트림으로 단량체를 회수하는 제2 분리 장치를 포함하며, 상기 단량체 용해 장치에서 피드 스트림 내 포함된 기상의 에틸렌 단량체가 용매에 용해되는 용해율을 50% 이상으로 제어하는 것인 알파 올레핀 제조 장치를 제공한다.
본 발명의 알파 올레핀 제조 방법 및 알파 올레핀 제조 장치에 따르면, 기상의 에틸렌 단량체를 포함하는 피드 스트림을 용매에 용해시킨 후 액상으로 반응기에 공급함으로써, 에틸렌 단량체의 용해열을 반응기 외부에서 제거할 수 있고, 이로 인해, 공정 내에서 사용되는 냉매량을 절감시켜 경제성을 확보할 수 있다.
또한, 상기 기상의 에틸렌 단량체를 포함하는 스트림은 나프타 열분해 공정에서 공급되는 것으로, 공급처의 압력인 20 bar 내지 80 bar의 압력을 유지하면서 공급되며, 이로 인해, 단량체 용해 장치를 반응기보다 고압으로 운전할 수 있으며, 용매에 용해되는 기상의 에틸렌 단량체의 용해율을 향상시킬 수 있다.
도 1은 본 발명의 일 실시예에 따른 알파 올레핀 제조 방법에 따른 공정 흐름도이다.
도 2는 비교예에 따른 알파 올레핀 제조 방법에 따른 공정 흐름도이다.
본 발명의 설명 및 청구범위에서 사용된 용어나 단어는, 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선을 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명에서 용어 '스트림(stream)'은 공정 내 유체(fluid)의 흐름을 의미하는 것일 수 있고, 또한, 배관 내에서 흐르는 유체 자체를 의미하는 것일 수 있다. 구체적으로, 상기 '스트림'은 각 장치를 연결하는 배관 내에서 흐르는 유체 자체 및 유체의 흐름을 동시에 의미하는 것일 수 있다. 또한, 상기 유체는 기체(gas) 또는 액체(liquid)를 의미할 수 있다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 발명에 따르면, 알파 올레핀 제조 방법이 제공된다. 상기 알파 올레핀 제조 방법으로서, 기상의 에틸렌 단량체를 포함하는 피드 스트림을 단량체 용해 장치에 공급하여 단량체 용해 장치로 공급되는 용매에 용해시키고, 배출 스트림을 반응기로 공급하는 단계; 반응기에 공급된 단량체 용해 장치 배출 스트림을 올리고머화 반응시키는 단계; 상기 반응기의 제1 배출 스트림의 일부 스트림은 제1 분리 장치에 공급하고, 상기 반응기의 제2 배출 스트림을 제2 분리 장치에 공급하는 단계; 및 상기 제1 분리 장치 및 제2 분리 장치 각각에서 에틸렌 단량체를 상부 배출 스트림으로 회수하는 단계를 포함하고, 상기 단량체 용해 장치에서 피드 스트림 내 포함된 에틸렌 단량체가 용매에 용해되는 용해율은 50% 이상인 알파 올레핀 제조 방법을 제공할 수 있다.
본 발명의 일 실시예에 따르면, 기상의 에틸렌 단량체를 포함하는 피드 스트림을 단량체 용해 장치에 공급하여 단량체 용해 장치로 공급되는 용매에 용해시키고, 배출 스트림을 반응기로 공급하는 단계는, 기상의 에틸렌 단량체를 포함하는 피드 스트림이 단량체 용해 장치에 공급되고, 상기 단량체 용해 장치에 별도로 공급되는 용매를 이용하여 상기 기상의 에틸렌 단량체를 포함하는 피드 스트림을 용해시켜, 액상의 에틸렌 단량체를 포함하는 피드 스트림을 반응기로 공급하는 방법으로 수행될 수 있다.
본 발명의 일 실시예에 따르면, 상기 액상의 에틸렌 단량체를 포함하는 피드 스트림은 단량체 용해 장치 배출 스트림으로서 반응기에 공급되며, 반응기에서는 상기 공급된 단량체 용해 장치 배출 스트림을 올리고머화 반응시켜 목적하는 알파 올레핀 생성물을 제조하게 된다. 이 때, 상기 올리고머화 반응은 반응기의 하부에서 수행되며, 액체 상으로 단량체의 올리고머화 반응이 수행될 수 있다. 상기 올리고머화 반응은, 단량체가 소중합되는 반응을 의미할 수 있다. 중합되는 단량체의 개수에 따라 삼량화(trimerization), 사량화(tetramerization)라고 불리며, 이를 총칭하여 다량화(multimerization)라고 한다.
상기 알파 올레핀은 공단량체, 세정제, 윤활제, 가소제 등에 쓰이는 중요한 물질로 상업 적으로 널리 사용되며, 특히 1-헥센과 1-옥텐은 선형 저밀도 폴리에틸렌(LLDPE)의 제조 시, 폴리에틸렌의 밀도를 조절하기 위한 공단량체로 많이 사용된다. 상기 1-헥센 및 1-옥텐과 같은 알파 올레핀은 예를 들어, 에틸렌의 삼량체화 반응 또는 사량체화 반응을 통해 제조할 수 있다.
본 발명의 일 실시예에 따르면, 상기 단량체의 올리고머화 반응 단계는 연속 공정에 적합한 반응기에서 수행될 수 있으며, 바람직하게는 연속 교반식 반응기(CSTR) 및 플러그 흐름 반응기(PFR)로 이루어진 군에서 선택된 1종 이상의 반응기를 포함하는 반응 시스템 하에서 수행될 수 있다.
본 발명의 일 실시예에 따르면, 상기 단량체의 올리고머화 반응은, 상기 반응 시스템과 통상의 접촉 기술을 응용하여 용매의 존재 또는 부재 하에서 균질 액상 반응, 촉매 시스템이 일부 용해되지 않거나 전부 용해되지 않는 형태인 슬러리 반응, 2상 액체/액체 반응, 또는 생성물이 주 매질로 작용하는 벌크상 반응 또는 가스상 반응으로 수행될 수 있다. 바람직하게는, 상기 단량체의 올리고머화 반응 단계는 균질 액상 반응으로 수행될 수 있다.
본 발명의 일 실시예에 따르면, 상기 단량체의 올리고머화 반응을 수행하기 위하여 반응기로 공급되는 액상의 에틸렌 단량체를 포함하는 피드 스트림은, 상술한 바와 같이, 단량체 용해 장치로 공급되는 기상의 에틸렌 단량체를 포함하는 피드 스트림을 별도로 공급되는 용매에 용해시킨 것이다. 이와 같이, 기상의 에틸렌 단량체를 포함하는 피드 스트림은 반응기로 공급되기 이전에, 용매에 용해되고, 액상의 에틸렌 단량체를 포함하는 피드 스트림으로 반응기에 공급된다. 이러한 과정에서 에틸렌 단량체의 용해열은 반응기 외부에서 제거되고, 이를 통해, 알파 올레핀 제조 공정 내에서 사용되는 냉매의 사용량을 절감할 수 있다.
상기 단량체 용해 장치로 공급되는 기상의 에틸렌 단량체를 포함하는 피드 스트림은 20 bar 내지 80 bar의 공급 압력으로 단량체 용해 장치로 공급될 수 있다. 예를 들어, 상기 기상의 에틸렌 단량체를 포함하는 피드 스트림의 공급 압력은 20 bar 내지 58 bar, 25 bar 내지 55 bar 또는 40 bar 내지 51 bar일 수 있다. 상기 기상의 에틸렌 단량체를 포함하는 피드 스트림은 상기 범위 내의 고압으로 단량체 용해 장치에 공급됨으로써, 용매에 용해되는 기상의 에틸렌 단량체의 용해율을 높일 수 있다.
상기 기상의 에틸렌 단량체를 포함하는 피드 스트림의 공급 압력은 반응기의 운전 압력보다 높을 수 있다. 예를 들어, 상기 기상의 에틸렌 단량체를 포함하는 피드 스트림의 공급 압력은 반응기의 운전 압력보다 10 bar 내지 40 bar 높을 수 있다. 구체적인 예로서, 상기 기상의 에틸렌 단량체를 포함하는 피드 스트림의 공급 압력은 반응기의 운전 압력보다 10 bar 내지 30 bar, 12 bar 내지 28 bar 또는 15 bar 내지 25 bar 높을 수 있다. 이로 인해, 단량체 용해 장치를 반응기 운전 압력보다 고압으로 운전할 수 있다. 예를 들어, 상기 단량체 용해 장치의 운전 압력은 상기 기상의 에틸렌 단량체를 포함하는 피드 스트림의 공급 압력과 용매의 공급 압력으로 인해 20 bar 내지 80 bar, 30 bar 내지 60 bar 또는 35 bar 내지 50 bar로 유지될 수 있다. 이와 같이, 단량체 용해 장치가 반응기의 운전 압력보다 고압으로 운전됨으로써, 용매에 용해되는 기상의 에틸렌 단량체의 용해율을 높이며, 단량체 용해 장치 배출 스트림을 반응기로 공급할 때, 반응기의 압력까지 높이기 위한 별도의 펌프 등의 장치가 요구되지 않을 수 있다.
상기 단량체 용해 장치 배출 스트림의 온도는 30 ℃ 내지 50 ℃일 수 있다. 예를 들어, 상기 단량체 용해 장치 배출 스트림의 온도는 30 ℃ 내지 50 ℃, 35 ℃ 내지 50 ℃ 또는 35 ℃ 내지 45 ℃일 수 있다. 본 발명에 따른 알파 올레핀 제조 방법은 기상의 에틸렌 단량체를 단량체 용해 장치에서 용매에 용해시킨 후 반응기로 공급함으로써, 30 ℃ 내지 50 ℃와 같이 높은 온도에서 기상의 에틸렌 단량체를 용해시킬 수 있으며, 이 때, 상기 단량체 용해 장치 배출 스트림을 반응기로 공급하기 전에 일부 냉각시킬 수 있으며, 이 때, 냉매 대신 냉각수를 사용함으로써 유틸리티 비용을 절감할 수 있다.
본 발명의 일 실시예에 따르면, 상기 단량체 용해 장치로 공급되는 기상의 에틸렌 단량체를 포함하는 피드 스트림은 나프타 열분해 공정(Naphtha Cracking Center, NCC)에서 공급되는 것일 수 있다. 상기 나프타 열분해 공정은, 나프타, C2 및 C3 탄화수소 화합물 및 프로판 등을 각각 공급 원료로 투입하여, 각각의 열분해로에서 열분해를 실시하는 단계; 각각의 열분해로에서 열분해되어 수소, C1, C2 및 C3 이상의 탄화수소 화합물을 포함하는 열분해 가스를 냉각하는 단계; 냉각된 열분해 가스를 압축하는 단계; 및 수소, C1, C2 및 C3 이상의 탄화수소 화합물을 포함하는 열분해 압축 스트림을 정제하는 단계를 포함하여 실시될 수 있다. 이 때, 상기 단량체 용해 장치로 공급되는 기상의 에틸렌 단량체를 포함하는 피드 스트림은 나프타 열분해로부터 분리되는 에틸렌(C2)을 포함하는 스트림일 수 있다 .
상기 나프타 열분해 공정 중 분리되는 에틸렌(C2)을 포함하는 스트림의 압력은 20 bar 내지 80 bar로, 상기 고압을 유지하면서 단량체 용해 장치에 기상의 에틸렌 단량체를 포함하는 피드 스트림으로서 공급됨으로써, 이송을 위한 별도의 펌프 등의 장치가 요구되지 않으며, 용매에 용해되는 용해율을 높일 수 있다.
상기 단량체 용해 장치에서 피드 스트림 내 포함된 에틸렌 단량체가 용매에 용해되는 용해율은 50% 이상, 55% 내지 100%, 70% 내지 100% 또는 95% 내지 100%일 수 있다.
상기 단량체 용해 장치에서 피드 스트림 내 포함된 에틸렌 단량체가 용매에 용해되는 용해율은 하기 일반식 1을 통해 측정될 수 있다.
[일반식 1]
F2/F1 * 100
상기 일반식 1에서, F1은 기상의 에틸렌 단량체를 포함하는 피드 스트림의 유량(ton/hr)이고, F2는 단량체 용해 장치 배출 스트림 총 유량 중 에틸렌 단량체의 유량(ton/hr)이다. 구체적으로, 상기 일반식 1은 기상의 에틸렌 단량체를 포함하는 피드 스트림을 단량체 용해 장치에서 용매에 용해시켜, 단량체 용해 장치 배출 스트림으로 배출함에 있어, 용매에 용해된 기상의 에틸렌 단량체의 용해율을 의미할 수 있다. 이와 같이, 기상의 에틸렌 단량체의 50% 이상 내지 전량을 용매에 용해시켜 단량체 용해 장치 배출 스트림으로서 반응기에 공급함으로써, 기상의 에틸렌 단량체의 용해열을 반응기 외부에서 효과적으로 제거하여, 공정 내에서 사용되는 냉매의 사용량을 절감시킬 수 있다.
상기 단량체 용해 장치에서 피드 스트림 내 포함된 에틸렌 단량체가 용매에 용해되는 용해율은 100%가 아닌 경우, 상기 단량체 용해 장치에서 용매에 용해되지 않은 기상의 에틸렌 단량체는 별도의 스트림으로 배출되어 반응기로 공급될 수 있다. 이 때, 상기 단량체 용해 장치에서 배출되는 기상의 에틸렌 단량체는 별도의 스트림으로 반응기로 공급되거나, 후술하는 제1 분리 장치, 제2 분리 장치 각각에서 회수되어 반응기로 공급되는 기상의 에틸렌 단량체를 포함하는 상부 배출 스트림과 혼합기에서 혼합 스트림을 형성한 후 상기 혼합 스트림으로서 반응기로 공급될 수 있다.
본 발명의 일 실시예에 따르면, 상기 단량체 용해 장치에 공급되는 용매는 n-펜탄, n-헥산, n-헵탄, 시클로헥산, 메틸시클로헥산, 옥탄, 시클로옥탄, 데칸, 도데칸, 벤젠, 자일렌, 1,3,5-트리메틸벤젠, 톨루엔, 에틸벤젠, 클로로벤젠, 디클로로벤젠 및 트리클로로벤젠으로 이루어진 군으로부터 선택된 1종 이상일 수 있다. 구체적인 예로서, 상기 용매는 메틸시클로헥산일 수 있다.
상기 단량체 용해 장치에 공급되는 용매는 경우에 따라서 2종을 혼합하여 사용할 수 있다. 구체적인 예로서, 상기 용매는 메틸시클로헥산 및 데칸의 혼합물일 수 있다. 상기 용매로서, 2종을 혼합하여 사용할 경우, 메틸시클로헥산에 비점이 높은 데칸을 혼합한 용매를 기상의 에틸렌 단량체를 용해시키기 위해 사용함으로써, 보다 높은 온도로 기상의 에틸렌 단량체를 액화시킬 수 있으며, 기상의 에틸렌 단량체가 용매에 용해되는 용해율을 향상시킬 수 있다.
상기 단량체 용해 장치에 공급되는 용매의 온도는 10 ℃ 내지 50 ℃ 범위이고, 압력은 20 bar 내지 80 bar 범위일 수 있다. 예를 들어, 상기 용매의 공급 온도는 10 ℃ 내지 50 ℃, 20 ℃ 내지 50 ℃ 또는 35 ℃ 내지 45 ℃ 범위이고, 공급 압력은 20 bar 내지 60 bar, 30 bar 내지 60 bar 또는 35 bar 내지 50 bar일 수 있다. 상기 온도와 압력 범위로 용매를 단량체 용해 장치로 공급함으로써, 단량체 용해 장치 내에서 기상의 에틸렌 단량체를 비교적 높은 온도에서 액화시킬 수 있다.
상기 단량체 용해 장치에 공급되는 용매 스트림의 유량은 단량체 용해 장치로 공급되는 기상의 에틸렌을 포함하는 피드 스트림의 함량 대비 1 배 내지 10 배, 2 배 내지 6 배 또는 2 배 내지 4 배 범위일 수 있다. 상기 범위 내의 함량의 용매스트림을 공급함으로써, 기존의 알파 올레핀 제조 방법에서 사용되던 용매의 양과 비교하여 유사한 양의 용매로 올리고머 생성물을 효율적으로 제조할 수 있다.
본 발명의 일 실시예에 따르면, 반응기에 공급된 단량체 용해 장치 배출 스트림을 올리고머화 반응시키는 단계는, 10 ℃ 내지 180 ℃, 30 ℃ 내지 150 ℃ 또는 50 ℃ 내지 120 ℃의 온도 하에서 수행될 수 있다 . 또한, 상기 올리고머화 반응을 실시하는 단계는 10 bar 내지 70 bar의 압력 하에서 수행될 수 있다. 예를 들어, 상기 올리고머화 반응을 실시하는 단계는 10 bar 내지 65 bar, 20 bar 내지 50 bar 또는 25 bar 내지 35 bar의 압력 하에서 수행될 수 있다. 상기 온도 범위 및 압력 범위 내에서 에틸렌을 올리고머화 반응시킬 때, 원하는 알파 올레핀에 대해 선택도가 우수할 수 있고, 부산물의 양이 저감될 수 있으며, 연속 공정의 운용상 효율을 상승시키고 비용을 절감할 수 있다.
본 발명의 일 실시예에 따르면, 상기 반응기의 제1 배출 스트림을 제1 분리 장치에 공급하고, 상기 반응기의 제2 배출 스트림을 제2 분리 장치에 공급하는 단계에서, 상기 분리 장치는 통상의 플래시 드럼, 응축기 및 증류탑 등을 이용할 수 있다.
상기 반응기 제1 배출 스트림은 기상의 에틸렌 단량체를 포함하는 스트림일 수 있다. 상기 기상의 에틸렌 단량체를 포함하는 제1 배출 스트림은 응축기로 공급되고, 상기 응축기에서 제1 배출 스트림을 응축시켜, 응축기로부터 액상으로 응축된 스트림은 반응기로 공급되며, 응축기에서 액상으로 응축된 스트림을 제외한 나머지 스트림은 열교환기를 거쳐 제1 분리 장치로 공급될 수 있다. 그런 다음, 상기 제1 분리 장치는 기상의 에틸렌 단량체를 포함하는 상부 배출 스트림을 반응기로 공급하고, 액상의 에틸렌 단량체를 포함하는 하부 배출 스트림은 제2 분리 장치로 공급할 수 있다.
상기 기상의 에틸렌 단량체를 포함하는 반응기 제1 배출 스트림을 제1 분리 장치로 공급하여, 미반응 에틸렌 단량체를 효율적으로 회수하기 위해서는 냉각시켜주어야 한다. 이를 위하여, 본 발명에서는 상기 열교환기를 구비하였고, 상기 열교환기에서 냉매를 이용하여 기상의 에틸렌 단량체를 냉각시켰다. 이 때, 본 발명에서는 상기 피드 스트림을 단량체 용해 장치로 공급하여 기상의 에틸렌 단량체를 용매에 용해시킨 후, 액상으로 반응기에 공급함으로써, 반응기 외부에서 에틸렌 단량체의 용해열을 제거하였고, 이를 통해, 상기 열교환기에서 필요한 제열량이 낮아 냉매 사용량을 절감시킬 수 있다.
상기 반응기 제2 배출 스트림은 액상의 에틸렌 단량체를 포함하는 스트림일 수 있다. 상기 액상의 에틸렌 단량체를 포함하는 제2 배출 스트림은 제1 분리 장치 하부 배출 스트림과 더불어 제2 분리 장치로 공급되고, 상기 제2 분리 장치에서는기상의 에틸렌 단량체를 포함하는 상부 배출 스트림과, 알파 올레핀 생성물, 부산물 및 용매를 포함하는 하부 배출 스트림으로 분리할 수 있다. 상기 제2 분리 장치에서 상부 배출 스트림으로 회수되는 기상의 에틸렌 단량체는 반응기로 공급될 수 있다.
상기 제1 분리 장치 및 제2 분리 장치 각각에서 회수된 기상의 에틸렌 단량체를 포함하는 상부 배출 스트림은 반응기로 공급될 수 있다. 이 때, 기상의 에틸렌 단량체를 포함하는 상기 제1 분리 장치의 상부 배출 스트림 및 제2 분리 장치의 상부 배출 스트림은 각각의 스트림으로 반응기에 공급되거나, 혼합기를 이용하여 혼합 스트림을 형성하고, 상기 혼합 스트림으로서 반응기에 공급될 수 있다.
본 발명의 일 실시예에 따르면, 상기 제2 분리 장치의 하부 스트림에 있어서, 알파 올레핀 생성물, 부산물 및 용매는 추가적인 분리 공정을 통해 분리될 수 있다. 상기 분리된 용매는 단량체 용해 장치로 공급하여 재사용할 수 있다. 또한, 상기 분리된 알파 올레핀 생성물은 다시 추가적인 분리 공정을 통해 에틸렌 단량체의 삼량체 및 사량체 등으로 분리할 수 있다.
본 발명에 따르면, 알파 올레핀 제조 장치가 제공된다. 상기 알파 올레핀 제조 장치로서, 공급된 기상의 에틸렌 단량체를 포함하는 피드 스트림을 별도로 공급되는 용매에 용해시켜 형성된 액상의 에틸렌 단량체를 포함하는 피드 스트림을 반응기로 공급하는 단량체 용해 장치; 상기 공급된 단량체 용해 장치 배출 스트림을 올리고머화 반응시키고, 제1 배출 스트림의 일부 스트림을 제1 분리 장치에 공급하며, 제2 배출 스트림을 제2 분리 장치에 공급하는 반응기; 상기 반응기 제1 배출 스트림의 일부 스트림을 공급받아 상부 배출 스트림으로 단량체를 회수하는 제1 분리 장치; 및 상기 반응기 제2 배출 스트림을 공급받아 상부 배출 스트림으로 단량체를 회수하는 제2 분리 장치를 포함하는 알파 올레핀 제조 장치를 제공할 수 있다.
본 발명의 일 실시예에 따르면, 상기 본 발명에 따른 알파 올레핀 제조 장치는 앞서 기재한 알파 올레핀 제조 방법에 따른 공정을 실시하기 위한 장치일 수 있다.
본 발명의 일 실시예에 따르면, 상기 본 발명에 따른 알파 올레핀 제조 장치는 하기 도 1을 참조하여 설명할 수 있다. 예를 들어, 상기 알파 올레핀 제조 장치는, 기상의 에틸렌 단량체를 포함하는 피드 스트림을 단량체 용해 장치(300)에 공급하고, 상기 단량체 용해 장치(300)에 별도로 공급되는 용매에 용해시켜, 액상의 에틸렌 단량체를 포함하는 피드 스트림을 단량체 용해 장치(300) 배출 스트림으로서 반응기(100)에 공급할 수 있다. 이 때, 상기 단량체 용해 장치(300)로 공급되는 용매는, 단량체 용해 장치(300)의 압력까지 높여주기 위하여 별도의 펌프(미도시)를 사용할 수 있다.
상기 단량체 용해 장치(300)에서 피드 스트림 내 포함된 기상의 에틸렌 단량체가 용매에 용해되는 용해율을 50% 이상, 55% 내지 100%, 70% 내지 100% 또는 95% 내지 100%로 제어할 수 있다. 상기 범위 내로 단량체 용해 장치(300)에서 피드 스트림 내 포함된 기상의 에틸렌 단량체의 용해율을 제어함으로써, 반응기 외부에서 에틸렌 단량체의 용해열을 제거하였고, 이를 통해, 상기 열교환기에서 필요한 제열량이 낮아 냉매 사용량을 절감시킬 수 있다.
상기 단량체 용해 장치(300) 배출 스트림은 반응기(100)로 공급하여, 상기 반응기(100)에서 올리고머화 반응시킬 수 있고, 상기 단량체 용해 장치(300)에서 피드 스트림 내 포함된 기상의 에틸렌 단량체의 용해율이 100%가 아닌 경우, 용해되지 못한 기상의 에틸렌 단량체는 별도의 스트림으로 반응기(100)로 공급될 수 있다.
상기 반응기(100)에서는 기상의 에틸렌 단량체를 포함하는 제1 배출 스트림과 액상의 에틸렌 단량체를 포함하는 제2 배출 스트림을 분리할 수 있다. 상기 분리된 기상의 에틸렌 단량체를 포함하는 제1 배출 스트림은 제1 분리 장치(200)로 공급되며, 액상의 에틸렌 단량체를 포함하는 제2 배출 스트림은 제2 분리 장치(210)로 공급될 수 있다.
상기 반응기(100)로 공급되는 에틸렌 단량체를 포함하는 스트림은 단량체 용해 장치(300) 배출 스트림과 더불어, 제1 분리 장치(200) 및 제2 분리 장치(210)의 상부 배출 스트림으로부터 회수되는 에틸렌 단량체를 포함하는 스트림을 더 포함할 수 있다. 이 때, 상기 제1 분리 장치(200) 상부 배출 스트림과 제2 분리 장치(210) 상부 배출 스트림은 별도의 스트림으로 반응기(100)에 공급되거나, 혼합기(미도시)에서 혼합된 혼합 배출 스트림으로 반응기(100)에 공급될 수 있다.
상기 반응기(100) 제1 배출 스트림은, 응축기(400)로 공급되며, 응축된 액상의 단량체를 포함하는 스트림은 반응기(100)로 재공급되고, 상기 반응기(100) 제1 배출 스트림 중 반응기(100)로 재공급되는 스트림을 제외한 스트림은 열교환기(500)를 거쳐 상기 열교환기(500)에서 냉매를 이용하여 일부 냉각된 온도로 제1 분리 장치(200)로 공급된다.
본 발명의 일 실시예에 따르면, 제1 분리 장치(200)는 반응기(100)로부터 제1 배출 스트림을 공급받아, 기상의 에틸렌 단량체를 포함하는 상부 배출 스트림 및 액상의 에틸렌 단량체를 포함하는 하부 배출 스트림으로 분리할 수 있다. 이 때, 상기 제1 분리 장치(200) 상부 배출 스트림은 반응기(100)로 공급하며, 하부 배출 스트림은 제2 분리 장치(210)로 공급할 수 있다.
본 발명의 일 실시예에 따르면, 제2 분리 장치(210)는 액상의 단량체를 포함하는 반응기(100)의 제2 배출 스트림 및 제1 분리 장치(200)의 하부 배출 스트림을 공급받아, 기상의 에틸렌 단량체를 포함하는 상부 배출 스트림 및 알파 올레핀 생성물, 부산물 및 용매를 포함하는 하부 배출 스트림으로 분리할 수 있다. 이 때, 상기 제2 분리 장치(210) 상부 배출 스트림은 반응기(100)로 공급하며, 알파 올레핀 생성물 및 용매를 포함하는 하부 배출 스트림은 회수될 수 있다.
이 때, 상기 제3 분리 장치(220) 하부 배출 스트림에 포함된 알파 올레핀 생성물 및 용매는 추가적인 분리 장치(미도시)를 통해 분리될 수 있으며, 분리된 용매는 알파 올레핀 제조 공정 내에서 재사용될 수 있다. 이 때, 상기 알파 올레핀 생성물 1-헥센 및 1-옥텐을 포함할 수 있다. 이 경우, 상기 1-헥센 및 1-옥텐은 추가적인 분리 장치(미도시)를 통해 분리되거나, 별도의 공정을 통해 분리하여 사용할 수 있다.
본 발명의 일 실시예에 따르면, 알파 올레핀 제조 장치는 상술한 구성 이외에도 필요한 경우에는 반응기(100), 제1 분리 장치(200), 제2 분리 장치(210) 및 단량체 용해 장치(300)에 공급되는 스트림을 선택적으로 더 포함할 수 있다.
본 발명의 일 실시예에 따르면, 알파 올레핀 제조 장치는 필요한 경우, 응축기(미도시), 재비기(미도시), 펌프(미도시), 압축기(미도시) 및 혼합기(미도시) 등을 추가적으로 더 설치할 수 있다.
이상, 본 발명에 따른 알파 올레핀 제조 방법 및 제조 장치를 기재 및 도면에 도시하였으나, 상기의 기재 및 도면의 도시는 본 발명을 이해하기 위한 핵심적인 구성만을 기재 및 도시한 것으로, 상기 기재 및 도면에 도시한 공정 및 장치 이외에, 별도로 기재 및 도시하지 않은 공정 및 장치는 본 발명에 따른 알파 올레핀 제조 방법 및 제조 장치를 실시하기 위해 적절히 응용되어 이용될 수 있다.
이하, 실시예에 의하여 본 발명을 더욱 상세하게 설명하고자 한다. 그러나, 하기 실시예는 본 발명을 예시하기 위한 것으로 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 통상의 기술자에게 있어서 명백한 것이며, 이들 만으로 본 발명의 범위가 한정되는 것은 아니다.
실시예
실시예 1
도 1에 도시된 공정 흐름도에 대하여, 아스펜 테크사의 아스펜 플러스 시뮬레이터를 이용하여, 공정을 시뮬레이션 하였다 . 이 때, 단량체 용해 장치(300)에 피드 스트림으로서 기상의 에틸렌 단량체(C2)를 공급처의 압력인 50 bar를 유지하며 13 ton/hr의 유량으로 공급하였고, 용매로서 메틸시클로헥산을 펌프를 이용하여 압력을 50 bar로 높여 39 ton/hr의 유량으로 공급하였다. 이 때, 상기 용매의 공급량은 기상의 에틸렌 단량체의 공급량 대비 약 3배로 투입하였다. 또한, 반응기(100)의 운전 온도는 80 ℃로 설정하고, 운전 압력은 15 bar로 설정하였다. 그 결과는 하기 표 1에 나타내었다.
제1 스트림 제2 스트림 제3 스트림 제4 스트림 제5 스트림 제6 스트림
상(Phase) 기상 액상 액상 기상 기상 기/액상
온도(℃) 30 39 40 80 40 20
압력(bar) 50 50 50 15 15 15
유량(ton/hr) 13 39 52 208 182 182
에틸렌 (ton/hr) 13 0 13 164 162 162
용매 (ton/hr) 0 39 39 22 5 5
* 제1 스트림: 단량체 용해 장치(300)로 공급되는 피드 스트림* 제2 스트림: 단량체 용해 장치(300)로 공급되는 용매 스트림 * 제3 스트림: 단량체 용해 장치(300) 배출 스트림* 제4 스트림: 응축기(400)로 공급되는 반응기(100) 상부 배출 스트림* 제5 스트림: 응축기(400)에서 열교환기(500)로 공급되는 스트림* 제6 스트림: 열교환기(500)에서 제1 분리 장치(200)로 공급되는 스트림
상기 표 1을 참조하면, 단량체 용해 장치(300)에 에틸렌 단량체가 13 ton/hr의 유량, 30 ℃의 온도 및 50 bar의 압력으로 공급되고, 용매가 39 ton/hr의 유량, 39 ℃의 온도 및 50 bar의 압력으로 공급되어, 용매에 기상의 에틸렌 단량체가 용해되는 것을 알 수 있다. 이 때, 상기 에틸렌 단량체의 공급 압력으로 인해 단량체 용해 장치(300)의 운전 압력은 50 bar로 확인된다.상기 기상의 에틸렌 단량체가 용매에 용해되어, 액상의 에틸렌 단량체를 포함하는 스트림은 단량체 용해 장치(300) 배출 스트림으로서 반응기(100)에 공급된다. 이 때, 상기 단량체 용해 장치(300) 배출 스트림은 액상이고, 온도는 40 ℃이며, 용매(제2 스트림)에 기상의 에틸렌 단량체(제1 스트림)가 100%의 용해율로 용해된 것을 알 수 있다.
상기 반응기(100)에 공급되는 단량체를 포함하는 스트림은, 단량체 용해 장치(300) 배출 스트림 외에도 제1 분리 장치(200) 및 제2 분리 장치(210)의 상부 배출 스트림도 포함한다. 상기 제1 분리 장치(200) 상부 배출 스트림으로 회수되는 에틸렌 단량체를 포함하는 스트림의 온도는 23 ℃이고, 압력은 15 bar이며, 유량은 177 ton/hr이고, 상기 제2 분리 장치(210) 상부 배출 스트림으로 회수되는 단량체를 포함하는 스트림의 온도는 0 ℃이고, 압력은 15 bar이며, 유량은 2 ton/hr이다.
이 때, 상기 반응기(100) 상부 배출 스트림은 응축기(400)에서 응축시켜 일부는 반응기(100)로 재공급하고, 나머지는 열교환기(500)를 거쳐 제1 분리 장치(200)로 공급되는데, 상기 열교환기(500)에서 사용되는 냉매량은 1,880 Mcal/hr인 것으로 확인되었다.
실시예 2
상기 실시예 1에서, 단량체 용해 장치(300)로 공급되는 피드 스트림의 온도를 30 ℃로, 압력을 50 bar로 제어하고, 용매 스트림의 온도를 37 ℃로, 압력을 40 bar로 제어한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 수행하였다. 그 결과는 하기 표 2에 나타내었다.
제1 스트림 제2 스트림 제3 스트림 제4 스트림 제5 스트림 제6 스트림
상(Phase) 기상 액상 액상 기상 기상 기/액상
온도(℃) 30 37 40 80 40 17
압력(bar) 50 40 40 15 15 15
유량(ton/hr) 13 39 47 208 182 182
에틸렌 (ton/hr) 13 0 9 164 162 162
용매 (ton/hr) 0 39 39 22 5 5
* 제1 스트림: 단량체 용해 장치(300)로 공급되는 피드 스트림* 제2 스트림: 단량체 용해 장치(300)로 공급되는 용매 스트림 * 제3 스트림: 단량체 용해 장치(300) 배출 스트림* 제4 스트림: 응축기(400)로 공급되는 반응기(100) 상부 배출 스트림* 제5 스트림: 응축기(400)에서 열교환기(500)로 공급되는 스트림* 제6 스트림: 열교환기(500)에서 제1 분리 장치(200)로 공급되는 스트림
상기 표 2를 참조하면, 상기 실시예 2는 실시예 1과 비교하여 단량체 용해 장치(300)의 운전 압력을 40 bar로 제어함으로써, 기상의 에틸렌 단량체가 약 67% 수준의 용해율로 용해되었고, 용해되지 못한 기상의 에틸렌 단량체는 별도의 스트림으로 단량체 용해 장치(300)에서 배출되어 반응기(100)로 공급되었다.
이와 같이, 피드 스트림 내 기상의 에틸렌 단량체를 상기 수준으로 용해시킴으로써, 실시예 1과 비교하여 공정 내에서 용해열을 제거하기 위한 냉매가 다소 증가하며, 열교환기(500)에서 사용되는 냉매량은 2,148 Mcal/hr로 실시예 1 대비 다소 증가한 것을 확인하였다.
실시예 3
상기 실시예 1에서, 단량체 용해 장치(300)로 공급되는 피드 스트림의 온도를 30 ℃로, 압력을 50 bar로 제어하고, 용매 스트림의 온도를 36 ℃로, 압력을 35 bar로 제어한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 수행하였다. 그 결과는 하기 표 3에 나타내었다.
제1 스트림 제2 스트림 제3 스트림 제4 스트림 제5 스트림 제6 스트림
상(Phase) 기상 액상 액상 기상 기상 기/액상
온도(℃) 30 36 40 80 40 15
압력(bar) 50 35 35 15 15 15
유량(ton/hr) 13 39 45 208 182 182
에틸렌 (ton/hr) 13 0 7 164 162 162
용매 (ton/hr) 0 39 38 22 5 5
* 제1 스트림: 단량체 용해 장치(300)로 공급되는 피드 스트림* 제2 스트림: 단량체 용해 장치(300)로 공급되는 용매 스트림 * 제3 스트림: 단량체 용해 장치(300) 배출 스트림* 제4 스트림: 응축기(400)로 공급되는 반응기(100) 상부 배출 스트림* 제5 스트림: 응축기(400)에서 열교환기(500)로 공급되는 스트림* 제6 스트림: 열교환기(500)에서 제1 분리 장치(200)로 공급되는 스트림
상기 표 3을 참조하면, 상기 실시예 3은 실시예 1과 비교하여 단량체 용해 장치(300)의 운전 압력을 35 bar로 제어함으로써, 기상의 에틸렌 단량체가 약 54% 수준의 용해율로 용해되었고, 용해되지 못한 기상의 에틸렌 단량체는 별도의 스트림으로 단량체 용해 장치(300)에서 배출되어 반응기(100)로 공급되었다.
이와 같이, 피드 스트림 내 기상의 에틸렌 단량체를 상기 수준으로 용해시킴으로써, 실시예 1과 비교하여 공정 내에서 용해열을 제거하기 위한 냉매가 다소 증가하며, 열교환기(500)에서 사용되는 냉매량은 2,278 Mcal/hr로 실시예 1과실시예 2보다 다소 증가한 것을 확인하였다.
비교예
비교예 1
도 2에 도시된 공정 흐름도에 대하여, 아스펜 테크사의 아스펜 플러스 시뮬레이터를 이용하여, 공정을 시뮬레이션 하였다 . 이 때, 피드 스트림으로서 반응기(100)로 공급되는 기상의 에틸렌 단량체(C2)는 공급처의 압력인 50 bar를 유지하며 13 ton/hr의 유량으로 공급하며, 이는 공정 내에서 회수된 에틸렌 단량체와 혼합기(미도시)에서 혼합하여 반응기(100)로 공급하였다. 또한, 반응기(100)에 별도로 공급되는 용매는 메틸시클로헥산을 사용하고, 39 ton/hr의 유량으로 공급하였다. 이 때, 상기 용매의 공급량은 기상의 에틸렌 단량체의 공급량 대비 약 3배로 투입하였다. 또한, 반응기(100)의 운전 온도는 80 ℃로 설정하고, 운전 압력은 15 bar로 설정하였으며, 올리고머화 반응과 반응열 제열을 위해 투입되는 에틸렌 단량체의 총 유량을 실시예 1과 동일하게 유지하였다. 그 결과는 하기 표 4에 나타내었다.
제1-1 스트림 제2-1 스트림 제3-1 스트림 제4-1 스트림 제5-1 스트림
상(Phase) 기상 액상 기상 기상 기/액상
온도(℃) 30 33 80 40 15
압력(bar) 50 15 15 15 15
유량(ton/hr) 13 39 207 182 182
에틸렌 (ton/hr) 13 0 163 162 162
용매 (ton/hr) 0 39 22 5 5
* 제1-1 스트림: 반응기(100)로 공급되는 피드 스트림* 제2-1 스트림: 반응기(100)로 공급되는 용매 스트림 * 제3-1 스트림: 응축기(400)로 공급되는 반응기(100) 상부 배출 스트림* 제4-1 스트림: 응축기(400)에서 열교환기(500)로 공급되는 스트림* 제5-1 스트림: 열교환기(500)에서 제1 분리 장치(200)로 공급되는 스트림
상기 표 4를 참조하면, 상기 비교예 1은 실시예와 비교하여 피드 스트림 내 기상의 에틸렌 단량체를 용매에 용해시켜 반응기(100)로 공급하지 않고, 상기 피드 스트림과 용매 스트림을 각각의 스트림으로 반응기(100)에 공급한 것으로서,
상기 기상의 에틸렌 단량체는 반응기(100) 외부에서 용해되지 않고, 반응기(100)로 공급되어 반응기(100)에 공급되는 용매와 혼합하면서 용해되며, 이 때, 용해열이 발생하게 된다. 이로 인해, 실시예 1과 비교하여 공정 내에서 용해열을 제거하기 위한 냉매가 더 요구되며, 열교환기(500)에서 사용되는 냉매량은 2,313 Mcal/hr로 실시예 1의 열교환기(500)에서 사용된 냉매량인 1,880 Mcal/hr와 비교하여 약 23 % 증가한 것으로 확인되었다.
비교예 2
상기 실시예 1에서, 단량체 용해 장치(300)에 공급되는 용매의 공급 온도를 33 ℃로 제어하고, 공급 압력을 15 bar로 공급하여, 단량체 용해 장치(300)의 운전 압력을 반응기(100)의 운전 압력과 동일하게 15 bar로 제어한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 수행하였다. 그 결과는 하기 표 5에 나타내었다.
제1-2 스트림 제2-2 스트림 제3-2 스트림 제4-2 스트림 제5-2 스트림 제6-2 스트림
상(Phase) 기상 액상 액상 기상 기상 기/액상
온도(℃) 30 33 28 80 40 15
압력(bar) 50 15 15 15 15 15
유량(ton/hr) 13 39 41 207 182 182
에틸렌 (ton/hr) 13 0 3 163 162 162
용매 (ton/hr) 0 39 38 22 5 5
* 제1-2 스트림: 단량체 용해 장치(300)로 공급되는 피드 스트림* 제2-2 스트림: 단량체 용해 장치(300)로 공급되는 용매 스트림 * 제3-2 스트림: 단량체 용해 장치(300) 배출 스트림* 제4-2 스트림: 응축기(400)로 공급되는 반응기(100) 상부 배출 스트림* 제5-2 스트림: 응축기(400)에서 열교환기(500)로 공급되는 스트림* 제6-2 스트림: 열교환기(500)에서 제1 분리 장치(200)로 공급되는 스트림
상기 표 5를 참조하면, 상기 비교예 2는 실시예 1과 비교하여 상기 단량체 용해 장치(300)에서 용매 스트림에 기상의 에틸렌 단량체가 약 23% 수준의 용해율로 용해되었고, 용해되지 못한 기상의 에틸렌 단량체는 별도의 스트림으로 단량체 용해 장치(300)에서 배출되어 반응기(100)로 공급되었다.
이와 같이, 피드 스트림 내 기상의 에틸렌 단량체를 상기 수준으로 용해시킴으로써, 실시예 1과 비교하여 공정 내에서 용해열을 제거하기 위한 냉매가 더 요구되며, 열교환기(500)에서 사용되는 냉매량은 2,313 kcal/hr로 비교예 1과 동일한 수준으로 실시예 1 내지 4와 같은 냉매 사용량 감소 효과를 보이지 못하였다.

Claims (12)

  1. 기상의 에틸렌 단량체를 포함하는 피드 스트림을 단량체 용해 장치에 공급하여 단량체 용해 장치로 공급되는 용매에 용해시키고, 배출 스트림을 반응기로 공급하는 단계;
    반응기에 공급된 단량체 용해 장치 배출 스트림을 올리고머화 반응시키는 단계;
    상기 반응기의 제1 배출 스트림의 일부 스트림은 제1 분리 장치에 공급하고, 상기 반응기의 제2 배출 스트림을 제2 분리 장치에 공급하는 단계; 및
    상기 제1 분리 장치 및 제2 분리 장치 각각에서 에틸렌 단량체를 상부 배출 스트림으로 회수하는 단계를 포함하고,
    상기 단량체 용해 장치에서 피드 스트림 내 포함된 기상의 에틸렌 단량체가 용매에 용해되는 용해율은 50% 이상인 알파 올레핀 제조 방법.
  2. 제1항에 있어서,
    상기 단량체 용해 장치에서 피드 스트림 내 포함된 기상의 에틸렌 단량체가 용매에 용해되는 용해율은 95% 내지 100%인 알파 올레핀 제조 방법.
  3. 제1항에 있어서,
    상기 기상의 에틸렌 단량체를 포함하는 피드 스트림의 공급 압력은 20 bar 내지 80 bar인 알파 올레핀 제조 방법.
  4. 제1항에 있어서,
    상기 단량체 용해 장치로 공급되는 용매의 압력은 20 bar 내지 80 bar인 알파 올레핀 제조 방법.
  5. 제1항에 있어서,
    상기 단량체 용해 장치의 운전 압력은 반응기의 운전 압력보다 높은 것인 알파 올레핀 제조 방법.
  6. 제1항에 있어서,
    상기 단량체 용해 장치의 운전 압력은 20 bar 내지 80 bar인 알파 올레핀 제조 방법.
  7. 제1항에 있어서,
    상기 단량체 용해 장치 배출 스트림의 온도는 30 ℃ 내지 50 ℃인 알파 올레핀 제조 방법.
  8. 제1항에 있어서,
    상기 기상의 에틸렌 단량체를 포함하는 피드 스트림은 나프타 열분해 공정에서 공급되는 것인 알파 올레핀 제조 방법.
  9. 제1항에 있어서,
    상기 용매는 n-펜탄, n-헥산, n-헵탄, 시클로헥산, 메틸시클로헥산, 옥탄, 시클로옥탄, 데칸, 도데칸, 벤젠, 자일렌, 1,3,5-트리메틸벤젠, 톨루엔, 에틸벤젠, 클로로벤젠, 디클로로벤젠 및 트리클로로벤젠으로 이루어진 군으로부터 선택된 1종 이상인 알파 올레핀 제조 방법.
  10. 제1항에 있어서,
    상기 제1 분리 장치 및 제2 분리 장치 각각에서 회수된 에틸렌 단량체를 포함하는 상부 배출 스트림은 반응기로 공급되는 것인 알파 올레핀 제조 방법.
  11. 제1항에 있어서,
    상기 반응기의 제1 배출 스트림은 응축기로 공급되고, 상기 응축기 배출 스트림의 일부 스트림은 반응기로 공급되며, 나머지 스트림은 열교환기를 거쳐 제1 분리 장치로 공급되는 것인 알파 올레핀 제조 방법.
  12. 공급된 기상의 에틸렌 단량체를 포함하는 피드 스트림을 별도로 공급되는 용매에 용해시켜 형성된 액상의 에틸렌 단량체를 포함하는 피드 스트림을 반응기로 공급하는 단량체 용해 장치;
    상기 공급된 단량체 용해 장치 배출 스트림을 올리고머화 반응시키고, 제1 배출 스트림의 일부 스트림을 제1 분리 장치에 공급하며, 제2 배출 스트림을 제2 분리 장치에 공급하는 반응기;
    상기 반응기 제1 배출 스트림의 일부 스트림을 공급받아 상부 배출 스트림으로 단량체를 회수하는 제1 분리 장치; 및
    상기 반응기 제2 배출 스트림을 공급받아 상부 배출 스트림으로 단량체를 회수하는 제2 분리 장치를 포함하며,
    상기 단량체 용해 장치에서 피드 스트림 내 포함된 기상의 에틸렌 단량체가 용매에 용해되는 용해율을 50% 이상으로 제어하는 것인 알파 올레핀 제조 장치.
PCT/KR2020/010255 2019-08-21 2020-08-04 알파 올레핀 제조 방법 및 알파 올레핀 제조 장치 WO2021033957A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20854725.7A EP3851430B1 (en) 2019-08-21 2020-08-04 Method for preparing alpha olefin and device for preparing alpha olefin
US17/281,081 US11254624B2 (en) 2019-08-21 2020-08-04 Method and apparatus for preparing alpha olefin
JP2021518963A JP7250399B2 (ja) 2019-08-21 2020-08-04 アルファオレフィンの製造方法およびアルファオレフィンの製造装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2019-0102507 2019-08-21
KR20190102507 2019-08-21
KR10-2020-0092937 2020-07-27
KR1020200092937A KR102592638B1 (ko) 2019-08-21 2020-07-27 알파 올레핀 제조 방법 및 알파 올레핀 제조 장치

Publications (1)

Publication Number Publication Date
WO2021033957A1 true WO2021033957A1 (ko) 2021-02-25

Family

ID=74660308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/010255 WO2021033957A1 (ko) 2019-08-21 2020-08-04 알파 올레핀 제조 방법 및 알파 올레핀 제조 장치

Country Status (1)

Country Link
WO (1) WO2021033957A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1490291A (zh) * 2003-09-19 2004-04-21 中国石油天然气股份有限公司 一种在乙烯齐聚催化剂体系存在下制备1-己烯的方法
JP2007119383A (ja) * 2005-10-27 2007-05-17 Sumitomo Chemical Co Ltd 1−ヘキセンの製造方法
JP2009120588A (ja) * 2007-10-23 2009-06-04 Mitsubishi Chemicals Corp エチレン低重合体の製造方法及び1−ヘキセンの製造方法
KR20170028203A (ko) * 2015-09-03 2017-03-13 한택규 에틸렌의 선택적 올리고머화 반응 공정
US9856184B2 (en) * 2015-03-03 2018-01-02 Evonik Degussa Gmbh Regeneration of a heterogeneous catalyst in ethene oligomerization

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1490291A (zh) * 2003-09-19 2004-04-21 中国石油天然气股份有限公司 一种在乙烯齐聚催化剂体系存在下制备1-己烯的方法
JP2007119383A (ja) * 2005-10-27 2007-05-17 Sumitomo Chemical Co Ltd 1−ヘキセンの製造方法
JP2009120588A (ja) * 2007-10-23 2009-06-04 Mitsubishi Chemicals Corp エチレン低重合体の製造方法及び1−ヘキセンの製造方法
US9856184B2 (en) * 2015-03-03 2018-01-02 Evonik Degussa Gmbh Regeneration of a heterogeneous catalyst in ethene oligomerization
KR20170028203A (ko) * 2015-09-03 2017-03-13 한택규 에틸렌의 선택적 올리고머화 반응 공정

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ARTHUR ABRAHAM, MADDEN WILLIAM, PERCY RYAN, SOLIMAN EIMAN: "University of Pennsylvania Ethylene to Linear, Alpha Olefins (1-Hexene & 1-Octene)", SENIOR DESIGN REPORTS (CBE). 52, 1 April 2013 (2013-04-01), XP055782229, Retrieved from the Internet <URL:https://repository.upenn.edu/cgi/viewcontent.cgi?referer=https://www.google.com/&httpsredir=1&article=1050&context=cbe_sdr> [retrieved on 20210304] *

Similar Documents

Publication Publication Date Title
WO2017217708A1 (ko) 용매 회수 장치 및 용매 회수 방법
WO2021075657A1 (ko) 올리고머 제조 장치
JP2015535529A (ja) エチレンのオリゴマー化プロセス
WO2017069446A1 (ko) 에틸렌 올리고머화 반응물의 분리 방법
WO2016200052A1 (ko) 에틸렌을 회수하기 위한 분리방법 및 분리공정 시스템
WO2020122441A1 (ko) 에틸렌 올리고머화 반응 생성물의 분리방법
WO2015076624A1 (ko) 산화탈수소 반응을 통한 부타디엔 제조 공정 내 흡수 용매 회수방법
WO2021033993A1 (ko) 올리고머 제조 방법 및 올리고머 제조 장치
WO2021033957A1 (ko) 알파 올레핀 제조 방법 및 알파 올레핀 제조 장치
WO2015190801A1 (ko) 산화탈수소 반응을 통한 부타디엔 제조방법
KR102592638B1 (ko) 알파 올레핀 제조 방법 및 알파 올레핀 제조 장치
WO2021033972A1 (ko) 올리고머 제조 방법 및 올리고머 제조 장치
WO2016003215A1 (ko) 부타디엔 제조 공정 내 에너지 재활용 방법
WO2016200053A1 (ko) 에틸렌을 회수하기 위한 분리방법 및 분리공정 시스템
WO2021118008A1 (ko) 올리고머 제조 장치
WO2021033971A1 (ko) 올리고머 제조 방법 및 올리고머 제조 장치
WO2022050788A1 (ko) 올리고머 제조방법
WO2020040421A1 (ko) 열분해 생성물의 냉각 방법
WO2022154398A1 (ko) 올리고머 제조방법
WO2024143765A1 (ko) 올레핀의 올리고머화 반응기 내 고분자 제거방법
EP3999226A1 (en) Method of recovering unreacted ethylene in ethylene oligomerization process
WO2022019734A1 (ko) 올리고머 제조장치
KR20210023692A (ko) 올리고머 제조 방법 및 올리고머 제조 장치
WO2021256624A1 (ko) 방향족 탄화수소의 제조방법
WO2018225908A1 (ko) 에틸렌 분리공정 및 분리장치

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021518963

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20854725

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020854725

Country of ref document: EP

Effective date: 20210324

NENP Non-entry into the national phase

Ref country code: DE