WO2021033448A1 - 通信装置 - Google Patents

通信装置 Download PDF

Info

Publication number
WO2021033448A1
WO2021033448A1 PCT/JP2020/026727 JP2020026727W WO2021033448A1 WO 2021033448 A1 WO2021033448 A1 WO 2021033448A1 JP 2020026727 W JP2020026727 W JP 2020026727W WO 2021033448 A1 WO2021033448 A1 WO 2021033448A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
waveguide structure
communication device
waveguide
operating frequency
Prior art date
Application number
PCT/JP2020/026727
Other languages
English (en)
French (fr)
Inventor
英樹 上田
靖久 山本
雅司 大室
川端 一也
田中 聡
隆賢 水沼
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN202080058266.5A priority Critical patent/CN114270627A/zh
Priority to JP2021540661A priority patent/JP7180785B2/ja
Publication of WO2021033448A1 publication Critical patent/WO2021033448A1/ja
Priority to US17/673,798 priority patent/US11942685B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • H01Q1/523Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas between antennas of an array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/064Two dimensional planar arrays using horn or slot aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way

Definitions

  • the present invention relates to a communication device that operates at at least two frequencies.
  • Patent Document 1 discloses a planar array antenna that operates at two frequencies.
  • This antenna is composed of first and second planar array antenna units having a layered structure.
  • the first planar array antenna unit operates in a relatively low frequency band
  • the second planar array antenna unit operates in a relatively high frequency band.
  • the first planar array antenna unit is arranged on the second planar array antenna unit.
  • a ground plane is arranged between the first planar array antenna unit and the second planar array antenna unit.
  • the patch and ground plane of the first planar array antenna unit have frequency selectivity that is transparent to the operating frequency band of the second planar array antenna unit. Further, the ground plane reflects radio waves of the operating frequency of the first planar array antenna unit.
  • a patch of the first planar array antenna unit arranged on the second planar array antenna unit and a plurality of holes in the ground plane in order to be transparent at the operating frequency of the second antenna unit. Is provided.
  • electrically transparent means that the influence on radio waves is almost equivalent to that of air. Therefore, the radio waves transmitted and received by the second planar array antenna unit are attenuated to some extent by the patch and the ground plane of the first planar array antenna unit.
  • the two antennas are arranged side by side without overlapping, the radio waves transmitted and received by one antenna will be less affected by the other antenna.
  • the radio wave radiated from the low frequency band antenna is received by the high frequency band antenna and a harmonic is generated during processing of the received signal, this harmonic becomes noise with respect to the received signal of the high frequency band radio wave. turn into.
  • An object of the present invention is that in a communication device having two antennas operating at different frequencies, the harmonics of the received signal radiated from the antenna in the low frequency band and received by the antenna in the high frequency band are the antennas in the high frequency band. It is to provide a communication device capable of reducing the influence on the communication of the above.
  • the operating frequency of the second antenna is higher than the operating frequency of the first antenna.
  • the second antenna is an array antenna including a plurality of radiating elements.
  • the waveguide structure includes a unit waveguide that is outside the range of the half-value angle of the main beam as viewed from the first antenna and is arranged in the path of the radio wave received by the second antenna.
  • a communication device that attenuates a radio wave having an operating frequency of the first antenna more than a radio wave having an operating frequency of the second antenna.
  • the waveguide structure attenuates the radio wave of the operating frequency of the first antenna before the radio wave of the operating frequency of the first antenna is reflected by the radio wave reflector and received by the second antenna. Therefore, even if a harmonic of the received signal is generated after being received by the second antenna, the signal strength of the harmonic is low. Therefore, the influence of this harmonic on the signal reception processing of the second antenna is reduced.
  • FIG. 1A is a plan view of the antenna device used in the communication device according to the first embodiment
  • FIG. 1B is a cross-sectional view taken along the alternate long and short dash line 1B-1B of FIG. 1A
  • FIG. 1C is a communication according to the first embodiment. It is a perspective view of the waveguide structure included in the apparatus.
  • FIG. 2 is a block diagram of a radar function portion of the communication device according to the first embodiment.
  • FIG. 3 is a block diagram of a communication function portion of the communication device according to the first embodiment.
  • FIG. 4 is a schematic view of the communication device according to the first embodiment and the radio wave reflecting object existing in the radio wave radiation space of the communication device.
  • FIG. 1A is a plan view of the antenna device used in the communication device according to the first embodiment
  • FIG. 1B is a cross-sectional view taken along the alternate long and short dash line 1B-1B of FIG. 1A
  • FIG. 1C is a communication according to the first embodiment. It is
  • FIG. 5 is a graph showing an example of a change in signal strength from being radiated from the first antenna and the second antenna, reflected by a radio wave reflector, and detected by the second transmission / reception circuit.
  • FIG. 6A is a cross-sectional view of the communication device according to the second embodiment
  • FIG. 6B is a cross-sectional view of the communication device according to the modified example of the second embodiment.
  • FIG. 7A is a plan view of the antenna device used in the communication device according to the third embodiment
  • FIG. 7B is a cross-sectional view of the communication device in the alternate long and short dash line 7B-7B of FIG. 7A.
  • FIG. 8 is a cross-sectional view of the communication device according to the fourth embodiment.
  • FIG. 9A is a plan view of the communication device according to the fifth embodiment, and FIG. 9B is a cross-sectional view taken along the alternate long and short dash line 9B-9B of FIG. 9A.
  • 10A is a plan view of the communication device according to the sixth embodiment, and FIG. 10B is a cross-sectional view taken along the alternate long and short dash line 10B-10B of FIG. 10A.
  • 11A is a plan view of the communication device according to the seventh embodiment, and FIG. 11B is a cross-sectional view taken along the alternate long and short dash line 11B-11B of FIG. 11A.
  • FIG. 1A is a plan view of an antenna device used in the communication device according to the first embodiment.
  • FIG. 1B is a cross-sectional view taken along the alternate long and short dash line 1B-1B of FIG. 1A.
  • FIG. 1C is a perspective view of a waveguide structure included in the communication device according to the first embodiment.
  • the first antenna 11 and the second antenna 12 are provided on the support surface 31 which is one surface of the module board 30 (FIG. 1B).
  • the module substrate 30 also has a function as a support member for supporting the first antenna 11 and the second antenna 12.
  • the first antenna 11 includes a plurality of first radiating elements 11a
  • the second antenna 12 includes a plurality of second radiating elements 12a.
  • the module substrate 30 includes a ground plane 32 arranged inside.
  • a patch antenna is composed of each of the first radiating element 11a and the second radiating element 12a and the ground plane 32.
  • the first antenna 11 is an array antenna including a plurality of first radiating elements 11a
  • the second antenna 12 is an array antenna including a plurality of second radiating elements 12a.
  • the operating frequency f2 of the second antenna 12 is higher than the operating frequency f1 of the first antenna 11.
  • the operating frequency of the antenna is defined as the frequency at which the antenna gain is maximized.
  • the plurality of first radiating elements 11a are arranged in a matrix of, for example, 2 rows and 2 columns, and the second radiating elements 12a are arranged in a matrix of, for example, 3 rows and 4 columns.
  • the waveguide structure 20 is arranged between the support surface 31 of the module substrate 30 and the housing 50.
  • the waveguide structure 20 is in contact with both the module substrate 30 and the housing 50.
  • the waveguide structure 20 is outside the range of the half-value angle of the main beam when viewed from the first antenna 11, and is arranged in the path of the radio wave received by the second antenna 12. It is preferable that the waveguide structure 20 is arranged so as not to overlap with the first antenna 11 in a plan view and to include the second antenna 12.
  • the waveguide structure 20 (FIG. 1C) includes metal walls arranged in a grid pattern in a plan view.
  • a plurality of second radiating elements 12a of the second antenna 12 are arranged corresponding to the plurality of openings 21 of the lattice-shaped metal wall.
  • each of the second radiating elements 12a is arranged inside the corresponding opening 21 in a plan view.
  • the relative positional relationship between the second radiating element 12a and the corresponding opening 21 is the same in all the second radiating elements 12a.
  • the portion serving as the side wall of each of the plurality of openings 21 functions as one waveguide (hereinafter referred to as a unit waveguide) and allows radio waves of a desired wavelength to pass through.
  • the waveguide structure 20 functions as a reflector for radio waves having a wavelength sufficiently longer than the size of the opening 21. Specifically, the waveguide structure 20 passes radio waves of the operating frequency of the second antenna 12, and attenuates the radio waves of the operating frequency of the first antenna 11 more than the radio waves of the operating frequency of the second antenna 12. ..
  • FIG. 2 is a block diagram of the radar function portion of the communication device according to the first embodiment.
  • This radar functional part includes the functions of Time Division Multiple Access (TDMA), Frequency Modulated Continuous Wave (FMCW), and Multi-Input Multi-Output (MIMO).
  • TDMA Time Division Multiple Access
  • FMCW Frequency Modulated Continuous Wave
  • MIMO Multi-Input Multi-Output
  • a part of the plurality of second radiating elements 12a constitutes the second antenna 12T for transmission, and the remaining plurality of second radiating elements 12a constitute the second antenna 12R for reception.
  • the second transmission / reception circuit 42 supplies a high-frequency signal to a plurality of second radiation elements 12a of the second antenna 12T for transmission.
  • the high frequency signal received by the plurality of second radiation elements 12a of the second antenna 12R for reception is input to the second transmission / reception circuit 42.
  • the second transmission / reception circuit 42 includes a signal processing circuit 80, a local oscillator 81, a transmission processing unit 82, and a reception processing unit 85.
  • the local oscillator 81 outputs a local signal SL whose frequency linearly increases or decreases with time, based on the chirp control signal Sc from the signal processing circuit 80.
  • the local signal SL is given to the transmission processing unit 82 and the reception processing unit 85.
  • the transmission processing unit 82 includes a plurality of switches 83 and a power amplifier 84.
  • the switch 83 and the power amplifier 84 are provided for each of the second radiating elements 12a constituting the second antenna 12T for transmission.
  • the switch 83 is turned on and off based on the switching control signal Ss from the signal processing circuit 80. With the switch 83 turned on, the local signal SL is input to the power amplifier 84.
  • the power amplifier 84 amplifies the power of the local signal SL and supplies it to the corresponding second radiating element 12a.
  • the radio wave radiated from the second antenna 12T for transmission is reflected by the target, and the reflected wave is received by the second antenna 12R for reception.
  • the reception processing unit 85 includes a plurality of low noise amplifiers 87 and a mixer 86.
  • the low noise amplifier 87 and the mixer 86 are provided for each of the second radiating elements 12a constituting the second antenna 12R for reception.
  • the echo signal Se received by the plurality of second radiating elements 12a constituting the second antenna 12T for transmission is amplified by the low noise amplifier 87.
  • the mixer 86 multiplies the amplified echo signal Se and the local signal SL to generate a beat signal Sb.
  • the signal processing circuit 80 includes, for example, an AD converter, a microcomputer, and the like, and calculates the distance and direction to the target by performing signal processing on the beat signal Sb.
  • FIG. 3 is a block diagram of the communication function portion of the communication device according to the first embodiment.
  • a high frequency signal is supplied from the first transmission / reception circuit 41 to the first radiation element 11a of the first antenna 11, and the high frequency signal received by the first radiation element 11a is input to the first transmission / reception circuit 41.
  • the first transmission / reception circuit 41 includes a baseband integrated circuit element (BBIC) 110 and a high frequency integrated circuit element (RFIC) 90.
  • the high-frequency integrated circuit element 90 includes an intermediate frequency amplifier 91, an up / down conversion mixer 92, a transmission / reception changeover switch 93, a power divider 94, a plurality of phase shifters 95, a plurality of attenuators 96, a plurality of transmission / reception changeover switches 97, and a plurality of powers. It includes an amplifier 98, a plurality of low noise amplifiers 99, and a plurality of transmission / reception changeover switches 100.
  • An intermediate frequency signal is input from the baseband integrated circuit element 110 to the mixer 92 for up / down conversion via the intermediate frequency amplifier 91.
  • the high-frequency signal generated by up-converting the intermediate frequency signal by the up-down conversion mixer 92 is input to the power divider 94 via the transmission / reception changeover switch 93.
  • Each of the high frequency signals divided by the power divider 94 is input to the first radiation element 11a via the phase shifter 95, the attenuator 96, the transmission / reception changeover switch 97, the power amplifier 98, and the transmission / reception changeover switch 100.
  • the high frequency signal received by each of the plurality of first radiation elements 11a is input to the power divider 94 via the transmission / reception changeover switch 100, the low noise amplifier 99, the transmission / reception changeover switch 97, the attenuator 96, and the phase shifter 95.
  • the high-frequency signal synthesized by the power divider 94 is input to the up / down conversion mixer 92 via the transmission / reception changeover switch 93.
  • the intermediate frequency signal generated by down-converting the high frequency signal by the mixer 92 for up / down conversion is input to the baseband integrated circuit element 110 via the intermediate frequency amplifier 91.
  • FIG. 4 is a schematic view of the communication device according to the first embodiment and the radio wave reflecting object existing in the radio wave radiation space of the communication device.
  • the radio wave reflector 60 exists in the space where the radio waves of the first antenna 11 and the second antenna 12 are radiated.
  • the first antenna 11 is used in, for example, a 5th generation mobile communication system (5G communication system) and operates in the 26 GHz band.
  • the second antenna 12 is used in, for example, a millimeter wave radar or a gesture sensor system, and has an operating frequency of 79.5 GHz.
  • the waveguide structure 20 allows most of the radio waves of 79.5 GHz, which is the operating frequency of the second antenna 12, to pass through, and greatly attenuates the radio waves in the operating frequency band of the first antenna 11.
  • the radio wave radiated from the second antenna 12 is reflected by the radio wave reflector 60, and the reflected wave is received by the second antenna 12.
  • the radio wave radiated from the first antenna 11 is also reflected by the radio wave reflector 60, and the reflected wave is incident on the second antenna 12.
  • the antenna gain of the second antenna 12 is maximum at its operating frequency of 79.5 GHz, but it also has some gain in the operating frequency band of the first antenna 11. Therefore, for example, the reflected wave of the radio wave in the 26 GHz band is also received by the second antenna 12.
  • a signal in the 26 GHz band is amplified by the low noise amplifier of the second transmission / reception circuit 42 (FIG. 2), harmonics are generated due to the non-linearity of the low noise amplifier.
  • the third harmonic of a signal in the 26 GHz band includes a signal with a frequency that matches or is close to 79.5 GHz. Therefore, the third harmonic of the received signal in the 26 GHz band becomes noise with respect to the signal transmitted and received by the second antenna 12.
  • the waveguide structure 20 is radiated from the first antenna 11 and reflected by the radio wave reflector 60 to attenuate the radio waves incident on the second antenna 12, which is generated by the non-linearity of the low noise amplifier.
  • the intensity of the third harmonic is also reduced. Therefore, it is possible to reduce the influence of the noise caused by the radio waves radiated from the first antenna 11 on the signals transmitted and received by the second antenna 12.
  • the relative positional relationship between the plurality of second radiating elements 12a of the second antenna 12 and the opening 21 of the waveguide structure 20 corresponding thereto is the same in all the second radiating elements 12a. It is the same. Therefore, it is possible to suppress the variation in the antenna gain of the second radiating element 12a alone.
  • FIG. 5 shows a change in signal intensity from being radiated from the first antenna 11 and the second antenna 12, reflected by the radio wave reflector 60 (FIG. 4), and detected by the second transmission / reception circuit 42 (FIG. 2). It is a graph which shows an example. The vertical axis represents the signal strength in the unit "dBm".
  • the horizontal axis is the equivalent isotropic radiation power (EIRP) of the antenna and the factors that fluctuate the signal strength, that is, the propagation loss of radio waves, the loss due to the radar cross section (RCS) of radio wave reflectors, and the waveguide structure. It shows the propagation loss according to 20 (FIGS. 1A and 1B), the reception gain of the antenna, and the generation efficiency of the third harmonic due to the non-linearity of the low noise amplifier.
  • EIRP equivalent isotropic radiation power
  • FIG. 5 shows a case where the second antenna 12 is for millimeter-wave radar having a frequency of 79.5 GHz and the first antenna 11 is for transmission / reception in the 26 GHz band of a 5G communication system.
  • the 26.5 GHz radio wave included in the 26 GHz band is radiated from the first antenna 11, and the 79.5 GHz radio wave is radiated from the second antenna 12.
  • the frequency of the third harmonic radiated from the first antenna 11 is equal to the frequency of the fundamental wave radiated from the second antenna 12.
  • the thick solid line in the graph of FIG. 5 shows the fluctuation of the intensity of the signal related to the 79.5 GHz radio wave radiated from the second antenna 12.
  • the relatively dense hatched region indicates the range of intensity of the signal associated with the 79.5 GHz radio wave radiated from the second antenna 12.
  • the thin solid line shows the variation in the intensity of the signal associated with the 26.5 GHz radio wave radiated from the first antenna 11.
  • the relatively low density hatched region indicates the range of signal intensities associated with the 26.5 GHz radio wave radiated from the first antenna 11.
  • the dashed line indicates the intensity of the signal associated with the 26.5 GHz radio wave radiated from the first antenna 11 when the waveguide structure 20 is not arranged.
  • the EIRP of the fundamental wave of the first antenna 11 is 30 dBm.
  • the EIRP of the third harmonic is about -4 dBm. It is necessary to set the EIRP of the 79.5 GHz radio wave radiated from the second antenna 12 used in the radar system sufficiently higher than the EIRP of the third harmonic radiated from the first antenna 11. For example, the EIRP with a frequency of 79.5 GHz by the second antenna 12 is set to 39 dBm, which is sufficiently larger than -4 dBm.
  • the radar system including the second antenna 12 will be described. It is assumed that a patch array antenna in which eight traveling wave type patch arrays are arranged in parallel is used as the second antenna 12.
  • the EIRP can be set to 39 dBm by setting the input power of one port to 5 dBm.
  • the round-trip distance of the radio wave is 200 m. This propagation loss is about 116 dB. Therefore, the signal strength after the propagation loss occurs is ⁇ 77 dBm.
  • the radar cross section (RCS) of the radio wave reflector is in the range of ⁇ 10 dB or more and +10 dB or less
  • the signal intensity after considering the RCS of the radio wave reflector is ⁇ 87 dBm or more and ⁇ 67 dBm or less.
  • the signal strength after passing through the waveguide structure 20 is ⁇ 87 dBm or more and ⁇ 67 dBm or less.
  • the reception gain of the second antenna 12 is 25 dBi
  • the signal strength of the signal received by the second antenna 12 is ⁇ 62 dBm or more and ⁇ 42 dBm or less. Therefore, the reception sensitivity of the second transmission / reception circuit 42 (FIG. 2) is preferably at least -62 dBm or less. It is preferable that the reception sensitivity RS is about ⁇ 72 dBm with a margin of about 10 dB.
  • the signal strength of this harmonic is set to the reception sensitivity RS of the radar system, that is,-. It needs to be smaller than 72 dBm.
  • the 26.5 GHz EIRP by the first antenna 11 is set to, for example, 30 dBm as described above.
  • the propagation loss of 2 m round trip is about 67 dB. Therefore, the signal strength after the propagation loss occurs is ⁇ 37 dBm. If the RCS of the obstacle is about -10 dB, the signal strength after considering the RCS of the obstacle is -47 dBm.
  • the reception gain of the second antenna 12 at 79.5 GHz is 25 dBi
  • the reception gain at 26.5 GHz is lower than that.
  • the reception gain at 26.5 GHz is 0 dBi.
  • the signal strength of the 26.5 GHz received signal received by the second antenna 12 becomes ⁇ 47 dBm.
  • the signal intensity of the third harmonic having a frequency of 79.5 GHz after passing through the low noise amplifier is ⁇ 67 dBm.
  • this signal strength is larger than the reception sensitivity RS of -72 dBm, it will be detected as a valid signal by the radar system. Therefore, the 26.5 GHz radio wave received by the second antenna 12 must be attenuated by the waveguide structure 20 before reception.
  • an attenuation amount of about 10 dB is preferable, and an attenuation amount of about 20 dB may be provided with a margin. More preferred.
  • the signal strength of the third harmonic can be made lower than the reception sensitivity RS of the radar system.
  • the signal strength of the third harmonic can be made sufficiently lower than the reception sensitivity RS of the radar system.
  • the amount of radio wave attenuation of the operating frequency of the first antenna 11 by the waveguide structure 20 is 10 dB or more, and more preferably 20 dB or more.
  • the amount of radio wave attenuation by the waveguide structure 20 can be adjusted by adjusting the height of the waveguide structure 20 (corresponding to the length of the waveguide).
  • FIG. 6A is a cross-sectional view of the communication device according to the second embodiment.
  • the waveguide structure 20 (FIG. 1B) is in contact with both the module substrate 30 and the housing 50.
  • the waveguide structure 20 is fixed to the housing 50 with an adhesive and does not come into contact with the module substrate 30.
  • the housing 50 and the waveguide structure 20 may be manufactured by insert molding.
  • the plurality of second radiation elements 12a of the second antenna 12 and the waveguide structure 20 are aligned with each other.
  • the positional relationship between the plurality of second radiating elements 12a and the waveguide structure 20 in a plan view can be set to the same positional relationship as in the case of the first embodiment.
  • FIG. 6B is a cross-sectional view of a communication device according to a modified example of the second embodiment.
  • the waveguide structure 20 is fixed to the module substrate 30 with an adhesive and does not come into contact with the housing 50.
  • FIG. 7A is a plan view of the antenna device used in the communication device according to the third embodiment
  • FIG. 7B is a cross-sectional view taken along the alternate long and short dash line 7B-7B of FIG. 7A
  • the waveguide structure 20 (FIGS. 1A and 1C) is composed of a grid-like metal wall.
  • the waveguide structure 20 is composed of a plurality of conductor columns 22 and a grid-like conductor pattern 23.
  • a dielectric film 33 covering the first antenna 11 and the second antenna 12 is arranged on the support surface 31 of the module substrate 30.
  • a plurality of conductor columns 22 arranged along a grid-like straight line group in a plan view are embedded in the dielectric film 33.
  • the second radiating element 12a of the second antenna 12 is arranged in the gap portion between the plurality of grid-like straight lines formed by the plurality of conductor columns 22.
  • the upper ends of the plurality of conductor columns 22 are exposed on the upper surface of the dielectric film 33.
  • the conductor pattern 23 is arranged on the dielectric film 33 so as to pass through the upper ends of the conductor columns 22 exposed on the upper surface of the dielectric film 33, and electrically connects the upper ends of the plurality of conductor columns 22 to each other. doing.
  • the lower ends of the plurality of conductor columns 22 reach the ground plane 32 in the module substrate 30 and are electrically connected to the ground plane 32.
  • the distance between the plurality of conductor columns 22 is set so that the space corresponding to the opening of the lattice composed of the plurality of conductor columns 22 functions as a waveguide with respect to the radio wave of the operating frequency of the first antenna 11. ing.
  • the distance between the plurality of conductor columns 22 is set to 1/4 or less of the wavelength in the dielectric film 33 of the radio wave of the operating frequency of the second antenna 12.
  • a plurality of conductor columns 22 arranged so as to surround one second radiating element 12a in a plan view, and a conductor pattern 23 for electrically connecting the upper ends thereof are units corresponding to one second radiating element 12a. Functions as a waveguide.
  • the excellent effect of the third embodiment will be described. Also in the third embodiment, since the waveguide structure 20 attenuates the radio waves in the operating frequency band of the first antenna 11, the same excellent effect as in the case of the first embodiment can be obtained.
  • the amount of radio wave attenuation increases as the height from the support surface 31 to the upper end of the waveguide structure 20 increases.
  • the opening 21 of the waveguide structure 20 is filled with a dielectric film 33 having a dielectric constant higher than that of air. Therefore, the substantial length of the radio wave propagation from the support surface 31 to the upper end of the waveguide structure 20 is longer than that in the case where the opening 21 is hollow. As a result, an excellent effect that the amount of radio wave attenuation by the waveguide structure 20 is increased can be obtained.
  • the plurality of conductor columns 22 are connected to the ground plane 32, but it is not necessary to connect the conductor columns 22 to the ground plane 32. Further, in the third embodiment, the upper ends of the plurality of conductor columns 22 are connected to each other by the conductor pattern 23, but even in the intermediate portion between the upper end and the lower end, a plurality of conductors are formed by the grid-like conductor pattern of the inner layer.
  • the columns 22 may be electrically connected to each other.
  • FIG. 8 is a cross-sectional view of the communication device according to the fourth embodiment.
  • the first antenna 11 and the second antenna 12 are provided on a common module board 30 (FIG. 1B), and the module board 30 serves as a support member for supporting the first antenna 11 and the second antenna 12. It is used.
  • the first antenna 11 and the second antenna 12 are formed on different first module boards 30A and second module boards 30B, respectively.
  • the first module board 30A and the second module board 30B each have a ground plane 32A and a ground plane 32B inside, respectively.
  • the waveguide structure 20 is fixed to the second module substrate 30B.
  • the first module board 30A and the second module board 30B are fixed to the support surface 36 of the common support member 35.
  • the support member 35 is housed in the housing 50 and is fixed to the housing.
  • the excellent effect of the fourth embodiment will be described. Also in the fourth embodiment, by arranging the waveguide structure 20, the same excellent effect as in the case of the first embodiment can be obtained. Further, in the fourth embodiment, since the first antenna 11 and the second antenna 12 are formed on different module substrates, the degree of freedom in arranging both is increased.
  • FIG. 9A is a plan view of the communication device according to the fifth embodiment
  • FIG. 9B is a cross-sectional view taken along the alternate long and short dash line 9B-9B of FIG. 9A.
  • the plurality of openings of the lattice-shaped metal wall constituting the waveguide structure 20 and the plurality of second radiating elements 12a of the second antenna 12 have a one-to-one correspondence.
  • the two openings of the lattice-shaped metal wall constituting the waveguide structure 20 correspond to one second radiating element 12a. That is, two unit waveguides are arranged for one second radiating element 12a.
  • linear portions of the metal wall extending in the row direction (vertical direction in FIG. 9A) pass through the centers of the second radiating elements 12a.
  • the waveguide structure 20 attenuates the radio wave of the fundamental frequency radiated from the first antenna 11 as in the case of the first embodiment and the second embodiment.
  • the radio wave of the frequency transmitted or received by the second antenna 12 is hardly attenuated by the waveguide structure 20.
  • Radio waves are attenuated by the waveguide structure 20. Therefore, the signal of the fundamental frequency input to the low noise amplifier 87 (FIG. 2) is weakened. As a result, the signal intensity of the harmonic component generated by the non-linearity of the low noise amplifier 87 also decreases. Therefore, it is possible to reduce the influence of the noise caused by the radio waves radiated from the first antenna 11 on the signal received by the second antenna 12.
  • the relative positional relationship between the plurality of unit waveguides included in the waveguide structure 20 and the plurality of second radiation elements 12a of the second antenna 12 is all the second radiation. It is the same in the element 12a. Therefore, it is possible to suppress the variation in the antenna gain of the second radiating element 12a alone.
  • the upper and lower edges of the four edges of the second radiating element 12a of the second antenna 12 intersect the metal wall, and the left and right edges do not intersect the metal wall.
  • the linear portion extending in the column direction of the metal wall passes through the center of the second radiating element 12a, but the linear portion extending in the row direction of the metal wall is the second. It may pass through the center of the radiating element 12a.
  • one second radiating element 12a is associated with two unit waveguides, but one second radiating element 12a is associated with three or more unit waveguides. You may.
  • FIG. 10A is a plan view of the communication device according to the sixth embodiment
  • FIG. 10B is a cross-sectional view of the one-point chain line 10B-10B of FIG. 10A.
  • two unit waveguides are associated with one second radiating element 12a.
  • one unit waveguide is associated with the two second radiation elements 12a.
  • one unit waveguide is arranged for two second radiation elements 12a arranged in the row direction.
  • the shape of each unit waveguide in the plan view is a rectangle long in the row direction, and one unit waveguide includes two second radiation elements 12a in the plan view.
  • the waveguide structure 20 attenuates the radio wave of the fundamental frequency radiated from the first antenna 11 as in the case of the fifth embodiment.
  • the radio wave of the frequency transmitted or received by the second antenna 12 is hardly attenuated by the waveguide structure 20.
  • two second radiation elements 12a are associated with one unit waveguide, but three or more second radiation elements 12a may be associated with one unit waveguide. ..
  • one unit waveguide may include three or more second radiation elements 12a.
  • FIG. 11A is a plan view of the communication device according to the seventh embodiment
  • FIG. 11B is a cross-sectional view taken along the alternate long and short dash line 11B-11B of FIG. 11A
  • the communication device has a waveguide structure 20 including a unit waveguide arranged in the path of the radio wave received by the second antenna 12, as in the case of the first embodiment. Further, the waveguide structure 20 is arranged outside the range of the half-value angle of the main beam when viewed from the first antenna 11.
  • the waveguide structure 20 a structure having a waveguide function that attenuates radio waves of the operating frequency of the first antenna 11 to be larger than radio waves of the operating frequency of the second antenna 12 can be used.
  • the excellent effect of the seventh embodiment will be described. Also in the seventh embodiment, as in the case of the first embodiment, it is possible to reduce the influence of the noise caused by the radio waves radiated from the first antenna 11 on the signals transmitted and received by the second antenna 12. ..

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

同一の筐体に、第1アンテナ、第2アンテナ、及び導波管構造物が収容されている。第2アンテナの動作周波数は第1アンテナの動作周波数より高い。第2アンテナは、複数の放射素子を含むアレイアンテナである。導波管構造物は、第1アンテナから見てメインビームの半値角の範囲の外側であって、第2アンテナで受信される電波の経路に配置された単位導波管を含み、第1アンテナの動作周波数の電波を第2アンテナの動作周波数の電波より大きく減衰させる。

Description

通信装置
 本発明は、少なくとも2つの周波数で動作する通信装置に関する。
 下記の特許文献1に、2つの周波数で動作する平面アレイアンテナが開示されている。このアンテナは、層状の構成をなす第1及び第2の平面アレイアンテナユニットからなる。第1の平面アレイアンテナユニットは相対的に低周波数帯で動作し、第2の平面アレイアンテナユニットは相対的に高周波数帯で動作する。第1の平面アレイアンテナユニットは第2の平面アレイアンテナユニットの上に配置されている。第1の平面アレイアンテナユニットと第2の平面アレイアンテナユニットとの間に接地面が配置されている。第1の平面アレイアンテナユニットのパッチ及び接地面は、第2の平面アレイアンテナユニットの動作周波数帯に対しては透明である周波数選択性を持つ。また、接地面は、第1の平面アレイアンテナユニットの動作周波数の電波を反射する。
特表2000-514614号公報
 従来のアンテナでは、第2のアンテナユニットの動作周波数において透明にするために、第2の平面アレイアンテナユニットの上に配置された第1の平面アレイアンテナユニットのパッチ、及び接地面に複数の孔を設けている。ところが、第1の平面アレイアンテナユニットのパッチ及び接地面を完全に電気的に透明にすることは困難である。ここで、「電気的に透明」とは、電波に対する影響が空気とほぼ等価になることを意味する。このため、第2の平面アレイアンテナユニットで送受信される電波が、第1の平面アレイアンテナユニットのパッチ及び接地面である程度減衰されてしまう。
 2つのアンテナを重ねることなく横に並べて配置すると、一方のアンテナで送受信される電波が他方のアンテナの影響を受けにくくなる。ところが、低周波数帯のアンテナから放射された電波が高周波数帯のアンテナで受信され、受信信号の処理時に高調波が発生すると、この高調波が高周波数帯の電波の受信信号に対してノイズとなってしまう。
 本発明の目的は、異なる周波数で動作する2つのアンテナを持つ通信装置において、低周波数帯のアンテナから放射されて高周波数帯のアンテナで受信された受信信号の高調波が、高周波数帯のアンテナの通信に与える影響を軽減することが可能な通信装置を提供することである。
 本発明の一観点によると、
 同一の筐体に収容された第1アンテナ、第2アンテナ、及び導波管構造物を有し、
 前記第2アンテナの動作周波数は前記第1アンテナの動作周波数より高く、
 前記第2アンテナは、複数の放射素子を含むアレイアンテナであり、
 前記導波管構造物は、前記第1アンテナから見てメインビームの半値角の範囲の外側であって、前記第2アンテナで受信される電波の経路に配置された単位導波管を含み、前記第1アンテナの動作周波数の電波を前記第2アンテナの動作周波数の電波より大きく減衰させる通信装置が提供される。
 第1アンテナの動作周波数の電波が電波反射物で反射されて第2アンテナで受信される前に、導波管構造物が第1アンテナの動作周波数の電波を減衰させる。このため、第2アンテナで受信された後に受信信号の高調波が発生したとしても、高調波の信号強度は低い。従って、この高調波が第2アンテナの信号受信処理に与える影響が軽減される。
図1Aは、第1実施例による通信装置に用いられるアンテナ装置の平面図であり、図1Bは、図1Aの一点鎖線1B-1Bにおける断面図であり、図1Cは、第1実施例による通信装置に含まれる導波管構造物の斜視図である。 図2は、第1実施例による通信装置のレーダー機能部分のブロック図である。 図3は、第1実施例による通信装置の通信機能部分のブロック図である。 図4は、第1実施例による通信装置及び通信装置の電波放射空間に存在する電波反射物の概略図である。 図5は、第1アンテナ及び第2アンテナから放射されて、電波反射物で反射され、第2送受信回路で検出されるまでの信号強度の変化の一例を示すグラフである。 図6Aは、第2実施例による通信装置の断面図であり、図6Bは、第2実施例の変形例による通信装置の断面図である。 図7Aは、第3実施例による通信装置に用いられるアンテナ装置の平面図であり、図7Bは、図7Aの一点鎖線7B-7Bにおける通信装置の断面図である。 図8は、第4実施例による通信装置の断面図である。 図9Aは、第5実施例による通信装置の平面図であり、図9Bは、図9Aの一点鎖線9B-9Bにおける断面図である。 図10Aは、第6実施例による通信装置の平面図であり、図10Bは、図10Aの一点鎖線10B-10Bにおける断面図である。 図11Aは、第7実施例による通信装置の平面図であり、図11Bは、図11Aの一点鎖線11B-11Bにおける断面図である。
 [第1実施例]
 図1A乃至図4を参照して、第1実施例による通信装置について説明する。
 図1Aは、第1実施例による通信装置に用いられるアンテナ装置の平面図である。図1Bは、図1Aの一点鎖線1B-1Bにおける断面図である。図1Cは、第1実施例による通信装置に含まれる導波管構造物の斜視図である。
 モジュール基板30(図1B)の一方の面である支持面31に第1アンテナ11及び第2アンテナ12が設けられている。モジュール基板30は、第1アンテナ11及び第2アンテナ12を支持する支持部材としての機能も有する。第1アンテナ11は、複数の第1放射素子11aを含み、第2アンテナ12は、複数の第2放射素子12aを含む。モジュール基板30は、内部に配置されたグランドプレーン32を含む。
 第1放射素子11a及び第2放射素子12aの各々とグランドプレーン32とによってパッチアンテナが構成される。第1アンテナ11は、複数の第1放射素子11aを含むアレイアンテナであり、第2アンテナ12は、複数の第2放射素子12aを含むアレイアンテナである。第2アンテナ12の動作周波数f2は、第1アンテナ11の動作周波数f1より高い。ここで、アンテナの動作周波数は、アンテナ利得が最大となる周波数と定義される。
 平面視において、複数の第1放射素子11aは、例えば2行2列の行列状に配置されており、第2放射素子12aは、例えば3行4列の行列状に配置されている。
 筐体50の一部分が、モジュール基板30の支持面31に対して間隔を隔てて対向している。モジュール基板30の支持面31と筐体50との間に導波管構造物20が配置されている。導波管構造物20は、モジュール基板30及び筐体50の両方に接触している。例えば、導波管構造物20は、第1アンテナ11から見てメインビームの半値角の範囲の外側であって、第2アンテナ12で受信される電波の経路に配置されている。導波管構造物20は、平面視において第1アンテナ11と重ならず、第2アンテナ12を包含するように配置することが好ましい。
 導波管構造物20(図1C)は、平面視において格子状に配置された金属壁を含む。格子状の金属壁の複数の開口部21に対応して、第2アンテナ12の複数の第2放射素子12aが配置されている。具体的には、第2放射素子12aの各々は、平面視において対応する開口部21の内部に配置されている。第2放射素子12aと、それに対応する開口部21との相対的な位置関係は、すべての第2放射素子12aにおいて同一である。
 格子状の金属壁のうち、複数の開口部21の各々の側壁となる部分が1つの導波管(以下、単位導波管という。)として機能し、所望の波長の電波を通過させる。また、開口部21の寸法に対して十分長い波長の電波に対しては、導波管構造物20が反射器として機能する。具体的には、導波管構造物20は、第2アンテナ12の動作周波数の電波を通過させ、第1アンテナ11の動作周波数の電波を、第2アンテナ12の動作周波数の電波より大きく減衰させる。
 図2は、第1実施例による通信装置のレーダー機能部分のブロック図である。このレーダー機能部分は、時分割多元接続(TDMA)、周波数変調連続波(FMCW)、及びマルチ入力マルチ出力(MIMO)の機能を含んでいる。複数の第2放射素子12aの一部が送信用の第2アンテナ12Tを構成し、残りの複数の第2放射素子12aが受信用の第2アンテナ12Rを構成している。
 第2送受信回路42が、送信用の第2アンテナ12Tの複数の第2放射素子12aに高周波信号を供給する。受信用の第2アンテナ12Rの複数の第2放射素子12aで受信された高周波信号が第2送受信回路42に入力される。第2送受信回路42は、信号処理回路80、ローカル発振器81、送信処理部82、及び受信処理部85を含んでいる。
 ローカル発振器81が、信号処理回路80からのチャープ制御信号Scに基づいて、時間と共に周波数が線形に増加または減少するローカル信号SLを出力する。ローカル信号SLは、送信処理部82及び受信処理部85に与えられる。
 送信処理部82は、複数のスイッチ83とパワーアンプ84とを含む。スイッチ83及びパワーアンプ84は、送信用の第2アンテナ12Tを構成する第2放射素子12aごとに設けられている。スイッチ83は、信号処理回路80からのスイッチング制御信号Ssに基づいてオンオフされる。スイッチ83がオンになっている状態で、ローカル信号SLがパワーアンプ84に入力される。パワーアンプ84は、ローカル信号SLの電力を増幅して、対応する第2放射素子12aに供給する。
 送信用の第2アンテナ12Tから放射された電波がターゲットで反射され、反射波が受信用の第2アンテナ12Rで受信される。
 受信処理部85は、複数のローノイズアンプ87とミキサ86とを含む。ローノイズアンプ87及びミキサ86は、受信用の第2アンテナ12Rを構成する第2放射素子12aごとに設けられている。送信用の第2アンテナ12Tを構成する複数の第2放射素子12aで受信されたエコー信号Seがローノイズアンプ87で増幅される。ミキサ86は、増幅されたエコー信号Seとローカル信号SLとを乗算し、ビート信号Sbを生成する。
 信号処理回路80は、例えばADコンバータ、マイクロコンピュータ等を備えており、ビート信号Sbに対する信号処理を行うことにより、ターゲットまでの距離及び方位を算出する。
 図3は、第1実施例による通信装置の通信機能部分のブロック図である。第1送受信回路41から第1アンテナ11の第1放射素子11aに高周波信号が供給され、第1放射素子11aで受信された高周波信号が第1送受信回路41に入力される。
 第1送受信回路41は、ベースバンド集積回路素子(BBIC)110及び高周波集積回路素子(RFIC)90を含む。高周波集積回路素子90は、中間周波増幅器91、アップダウンコンバート用ミキサ92、送受信切替スイッチ93、パワーディバイダ94、複数の移相器95、複数のアッテネータ96、複数の送受信切替スイッチ97、複数のパワーアンプ98、複数のローノイズアンプ99、及び複数の送受信切替スイッチ100を含む。
 まず、送信機能について説明する。ベースバンド集積回路素子110から、中間周波増幅器91を介してアップダウンコンバート用ミキサ92に、中間周波信号が入力される。アップダウンコンバート用ミキサ92で中間周波信号がアップコンバートされて生成された高周波信号が、送受信切替スイッチ93を介してパワーディバイダ94に入力される。パワーディバイダ94で分割された高周波信号の各々が、移相器95、アッテネータ96、送受信切替スイッチ97、パワーアンプ98、送受信切替スイッチ100を経由して第1放射素子11aに入力される。
 次に、受信機能について説明する。複数の第1放射素子11aの各々で受信された高周波信号が、送受信切替スイッチ100、ローノイズアンプ99、送受信切替スイッチ97、アッテネータ96、移相器95を経由してパワーディバイダ94に入力される。パワーディバイダ94で合成された高周波信号が、送受信切替スイッチ93を経由して、アップダウンコンバート用ミキサ92に入力される。アップダウンコンバート用ミキサ92で高周波信号がダウンコンバートされて生成された中間周波信号が、中間周波増幅器91を経由してベースバンド集積回路素子110に入力される。
 次に、図4を参照して、第1実施例の優れた効果について説明する。
 図4は、第1実施例による通信装置及び通信装置の電波放射空間に存在する電波反射物の概略図である。第1アンテナ11及び第2アンテナ12の電波が放射される空間に電波反射物60が存在している。第1アンテナ11は、例えば第5世代移動通信システム(5G通信システム)で用いられ、26GHz帯で動作する。第2アンテナ12は、例えばミリ波レーダーやジェスチャーセンサシステムに用いられ、動作周波数は79.5GHzである。
 導波管構造物20は、第2アンテナ12の動作周波数である79.5GHzの電波をほとんど通過させ、第1アンテナ11の動作周波数帯の電波を大きく減衰させる。第2アンテナ12から放射された電波が電波反射物60で反射し、反射波が第2アンテナ12で受信される。
 第1アンテナ11から放射された電波も電波反射物60で反射し、反射波が第2アンテナ12に入射する。第2アンテナ12のアンテナ利得は、その動作周波数79.5GHzにおいて最大であるが、第1アンテナ11の動作周波数帯においても、ある程度の利得を有している。このため、例えば26GHz帯の電波の反射波も第2アンテナ12で受信される。26GHz帯の信号が第2送受信回路42(図2)のローノイズアンプで増幅される際に、ローノイズアンプの非線形によって高調波が発生する。26GHz帯の信号の第3高調波には、79.5GHzに一致するか、または79.5GHzに近接している周波数の信号が含まれる。このため、26GHz帯の受信信号の第3高調波は、第2アンテナ12で送受信される信号に対してノイズとなる。
 第1実施例では、導波管構造物20が、第1アンテナ11から放射されて電波反射物60で反射し、第2アンテナ12に入射する電波を減衰させるため、ローノイズアンプの非線形性によって発生する第3高調波の強度も低下する。従って、第1アンテナ11から放射される電波に起因するノイズが、第2アンテナ12で送受信される信号に与える影響を軽減することができる。
 さらに、第1実施例では、第2アンテナ12の複数の第2放射素子12aと、それに対応する導波管構造物20の開口部21との相対位置関係が、すべての第2放射素子12aにおいて同一である。このため、第2放射素子12a単体のアンテナ利得のばらつきを抑制することができる。
 次に、図5を参照して導波管構造物20に求められる減衰量について説明する。
 図5は、第1アンテナ11及び第2アンテナ12から放射されて、電波反射物60(図4)で反射され、第2送受信回路42(図2)で検出されるまでの信号強度の変化の一例を示すグラフである。縦軸は信号強度を単位「dBm」で表す。
 横軸は、アンテナの等価等方放射電力(EIRP)、及び信号強度が変動する要因、すなわち電波の伝搬ロス、電波反射物のレーダー散乱断面積(RCS)に起因するロス、導波管構造物20(図1A、図1B)による伝搬ロス、アンテナの受信利得、ローノイズアンプの非線形性による第3高調波の発生効率を表している。
 図5では、第2アンテナ12が周波数79.5GHzのミリ波レーダー用であり、第1アンテナ11が5G通信システムの26GHz帯の送受信用である場合について示している。26GHz帯に含まれる26.5GHzの電波が第1アンテナ11から放射され、79.5GHzの電波が第2アンテナ12から放射される。第1アンテナ11から放射される第3高調波の周波数が、第2アンテナ12から放射される基本波の周波数と等しい。
 図5のグラフ中の太い実線は、第2アンテナ12から放射された79.5GHzの電波に関連する信号の強度の変動を示す。相対的に高密度のハッチングを付した領域は、第2アンテナ12から放射された79.5GHzの電波に関連する信号の強度の範囲を示す。細い実線は、第1アンテナ11から放射された26.5GHzの電波に関連する信号の強度の変動を示す。相対的に低密度のハッチングを付した領域は、第1アンテナ11から放射された26.5GHzの電波に関連する信号の強度の範囲を示す。破線は、導波管構造物20が配置されていない場合に、第1アンテナ11から放射された26.5GHzの電波に関連する信号の強度を示す。
 第1アンテナ11の基本波のEIRPが30dBmであると仮定する。このとき、例えば、第3高調波のEIRPは-4dBm程度である。レーダーシステムで用いる第2アンテナ12から放射される79.5GHzの電波のEIRPを、第1アンテナ11から放射される第3高調波のEIRPより十分高く設定する必要がある。例えば、第2アンテナ12による周波数79.5GHzのEIRPを、-4dBmに対して十分大きな39dBmに設定する。
 まず、第2アンテナ12を含むレーダーシステムについて説明する。第2アンテナ12として進行波型のパッチアレーを8個並列に並べたパッチアレーアンテナを用いると仮定する。アンテナ利得が25dBiである場合、1ポートの入力電力を5dBmとすることによりEIRPを39dBmにすることができる。100m離れた電波反射物を検知する場合、電波の往復距離が200mになる。この伝搬ロスは約116dBである。従って、伝搬ロスが発生した後の信号強度は-77dBmになる。さらに、電波反射物のレーダー散乱断面積(RCS)を-10dB以上+10dB以下の範囲と仮定すると、電波反射物のRCSを考慮した後の信号強度は-87dBm以上-67dBm以下になる。
 導波管構造物20は79.5GHzの電波をほとんどと通過させるため、導波管構造物20によるロスはほとんど生じない。従って、導波管構造物20通過後の信号強度は、-87dBm以上-67dBm以下である。第2アンテナ12の受信利得が25dBiであると仮定すると、第2アンテナ12による受信信号の信号強度は-62dBm以上-42dBm以下になる。従って、第2送受信回路42(図2)の受信感度は、少なくとも-62dBmより小さくすることが好ましい。10dB程度の余裕を見て、受信感度RSは-72dBm程度とすることが好ましい。
 次に、5G通信システム用の第1アンテナ11から放射された電波がレーダーシステムに与える影響について説明する。第1アンテナ11から放射された26.5GHzの基本波の第3高調波がレーダーシステムに影響を与えないようにするために、この高調波の信号強度を、レーダーシステムの受信感度RS、すなわち-72dBmより小さくする必要がある。
 第1アンテナ11による26.5GHzのEIRPは、上述のように例えば30dBmとする。一例として、第1アンテナ11から放射されて1m先の電波反射物で反射し、第2アンテナ12に入射する場合、往復2mの伝搬ロスは約67dBになる。このため、伝搬ロスが発生した後の信号強度は-37dBmになる。障害物のRCSが約-10dBである場合、障害物のRCSを考慮した後の信号強度は-47dBmになる。
 まず、導波管構造物20が配置されていない場合について説明する。第2アンテナ12の79.5GHzにおける受信利得が25dBiである場合、26.5GHzにおける受信利得はそれよりも低くなる。例えば、26.5GHzにおける受信利得は0dBiである。このとき、第2アンテナ12で受信された26.5GHzの受信信号の信号強度は-47dBmになる。ローノイズアンプの非線形性による第3高調波発生効率を-20dBとすると、ローノイズアンプを通過した後の周波数79.5GHzの第3高調波の信号強度は-67dBmになる。
 この信号強度は、受信感度RSである-72dBmより大きいため、レーダーシステムで有効な信号として検知されてしまう。従って、第2アンテナ12で受信される26.5GHzの電波を、受信前に導波管構造物20で減衰させなければならない。
 第3高調波の信号強度を受信感度RSより低くするためには、図5において細い実線で示すように、10dB程度の減衰量が好ましく、余裕を持たせて20dB程度の減衰量とすることがより好ましい。導波管構造物20で26.5GHzの電波を10dB減衰させることにより、第3高調波の信号強度をレーダーシステムの受信感度RSより低くすることができる。さらに、導波管構造物20で26.5GHzの電波を20dB減衰させることにより、第3高調波の信号強度をレーダーシステムの受信感度RSより十分低くすることができる。
 図5に示した例では種々の仮定を導入しているが、これらの仮定は実際のレーダーシステム、5G通信システムにおいて利用される状況を反映したものである。従って、一般的に、導波管構造物20による第1アンテナ11の動作周波数の電波の減衰量を10dB以上にすることが好ましく、20dB以上にすることがより好ましいといえる。導波管構造物20による電波の減衰量の調整は、導波管構造物20の高さ(導波管の長さに相当)を調整することにより行うことができる。
 [第2実施例]
 次に、図6Aを参照して第2実施例による通信装置について説明する。以下、第1実施例による通信装置(図1A、図1B、図1C)と共通の構成については説明を省略する。
 図6Aは、第2実施例による通信装置の断面図である。第1実施例による通信装置においては、導波管構造物20(図1B)がモジュール基板30と筐体50との両方に接触している。これに対して第2実施例では、導波管構造物20が筐体50に接着剤で固定されており、モジュール基板30には接触していない。なお、筐体50と導波管構造物20とを、インサート成形により製造してもよい。
 筐体50内にモジュール基板30を装着するときに、第2アンテナ12の複数の第2放射素子12aと導波管構造物20との位置合わせを行う。これにより、複数の第2放射素子12aと導波管構造物20との平面視における位置関係を、第1実施例の場合と同様の位置関係にすることができる。
 次に、図6Bを参照して第2実施例の変形例による通信装置について説明する。
 図6Bは、第2実施例の変形例による通信装置の断面図である。本変形例では、導波管構造物20がモジュール基板30に接着剤で固定されており、筐体50には接触していない。
 第2実施例、またはその変形例のように、導波管構造物20が、モジュール基板30及び筐体50の一方に接触しない構成としても、第1実施例の場合と同様の優れた効果が得られる。
 [第3実施例]
 次に、図7A及び図7Bを参照して第3実施例による通信装置について説明する。以下、第1実施例による通信装置(図1A、図1B、図1C)と共通の構成については説明を省略する。
 図7Aは、第3実施例による通信装置に用いられるアンテナ装置の平面図であり、図7Bは、図7Aの一点鎖線7B-7Bにおける断面図である。第1実施例においては、導波管構造物20(図1A、図1C)が格子状の金属壁で構成されている。これに対して第3実施例では、複数の導体柱22及び格子状の導体パターン23によって導波管構造物20が構成されている。
 モジュール基板30の支持面31の上に、第1アンテナ11及び第2アンテナ12を覆う誘電体膜33が配置されている。平面視において格子状の直線群に沿って配置された複数の導体柱22が誘電体膜33に埋め込まれている。複数の導体柱22によって構成される格子状の複数の直線の間の隙間部分に、それぞれ第2アンテナ12の第2放射素子12aが配置されている。
 複数の導体柱22の上端が誘電体膜33の上面に露出している。導体パターン23が、誘電体膜33の上面に露出した導体柱22の上端を通過するように、誘電体膜33の上に配置されており、複数の導体柱22の上端同士を電気的に接続している。複数の導体柱22の下端は、モジュール基板30内のグランドプレーン32まで達し、グランドプレーン32に電気的に接続されている。複数の導体柱22の間隔は、複数の導体柱22によって構成される格子の開口部に相当する空間が、第1アンテナ11の動作周波数の電波に対して導波管として機能する程度に設定されている。例えば、複数の導体柱22の間隔は、第2アンテナ12の動作周波数の電波の誘電体膜33内における波長の1/4以下に設定されている。平面視において1つの第2放射素子12aを取り囲むように配置された複数の導体柱22、及びこれらの上端同士を電気的に接続する導体パターン23が、1つの第2放射素子12aに対応する単位導波管として機能する。
 次に、第3実施例の優れた効果について説明する。
 第3実施例においても、導波管構造物20が第1アンテナ11の動作周波数帯の電波を減衰させるため、第1実施例の場合と同様の優れた効果が得られる。電波の減衰量は、支持面31から見て導波管構造物20の上端までの高さが高いほど大きくなる。第3実施例では、導波管構造物20の開口部21が、空気の誘電率より高い誘電率を持つ誘電体膜33で充填されている。このため、支持面31から導波管構造物20の上端までの、電波伝搬に関する実質的な長さが、開口部21が空洞にされている場合と比べて長くなる。その結果、導波管構造物20による電波の減衰量が大きくなるという優れた効果が得られる。
 次に、第3実施例の変形例について説明する。第3実施例では複数の導体柱22をグランドプレーン32に接続しているが、グランドプレーン32に接続しなくてもよい。また、第3実施例では、複数の導体柱22の上端同士が導体パターン23で接続されているが、上端と下端との間の中間部においても、内層の格子状の導体パターンで複数の導体柱22を相互に電気的に接続してもよい。複数の導体柱22を中間部で相互に接続することにより、単位導波管としての機能を高めることができる。
 [第4実施例]
 次に、図8を参照して第4実施例による通信装置について説明する。以下、第1実施例による通信装置(図1A、図1B、図1C)と共通の構成については説明を省略する。
 図8は、第4実施例による通信装置の断面図である。第1実施例では、第1アンテナ11及び第2アンテナ12が共通のモジュール基板30(図1B)に設けられており、モジュール基板30が第1アンテナ11及び第2アンテナ12を支持する支持部材として用いられている。これに対して第4実施例では、第1アンテナ11及び第2アンテナ12が、それぞれ異なる第1モジュール基板30A及び第2モジュール基板30Bに形成されている。第1モジュール基板30A及び第2モジュール基板30Bは、それぞれ内部にグランドプレーン32A及びグランドプレーン32Bを有している。導波管構造物20は第2モジュール基板30Bに固定されている。
 第1モジュール基板30A及び第2モジュール基板30Bが、共通の支持部材35の支持面36に固定されている。支持部材35は、筐体50内に収容されており、筐体に対して固定されている。
 次に、第4実施例の優れた効果について説明する。第4実施例においても、導波管構造物20を配置することにより、第1実施例の場合と同様の優れた効果が得られる。また、第4実施例では第1アンテナ11と第2アンテナ12とが異なるモジュール基板に形成されているため、両者の配置の自由度が高まる。
 [第5実施例]
 次に、図9A及び図9Bを参照して第5実施例による通信装置について説明する。以下、第1実施例(図1A)及び第2実施例(図6A)による通信装置と共通の構成については説明を省略する。
 図9Aは、第5実施例による通信装置の平面図であり、図9Bは、図9Aの一点鎖線9B-9Bにおける断面図である。第1実施例(図1A)では、導波管構造物20を構成する格子状の金属壁の複数の開口部と第2アンテナ12の複数の第2放射素子12aとが1対1に対応している。これに対して第5実施例では、導波管構造物20を構成する格子状の金属壁の2つの開口部が1つの第2放射素子12aに対応している。すなわち、1つの第2放射素子12aに対して、2つの単位導波管が配置されている。平面視において、金属壁の、列方向(図9Aにおいて縦方向)に延びる直線状の部分が、第2放射素子12aの各々の中心を通過している。
 第5実施例においても、第1実施例及び第2実施例の場合と同様に、導波管構造物20が、第1アンテナ11から放射される基本周波数の電波を減衰させる。第2アンテナ12で送信または受信される周波数の電波は、導波管構造物20でほとんど減衰されない。
 次に、第5実施例の優れた効果について説明する。第5実施例においても、第1実施例、第2実施例等と同様に、第1アンテナ11から放射されて電波反射物60(図4)で反射し、第2アンテナ12に入射する基本周波数の電波が、導波管構造物20によって減衰される。このため、ローノイズアンプ87(図2)に入力される基本周波数の信号が弱められる。その結果、ローノイズアンプ87の非線形性によって発生する高調波成分の信号強度も低下する。従って、第1アンテナ11から放射される電波に起因するノイズが、第2アンテナ12で受信される信号に与える影響を軽減することができる。
 さらに、第5実施例においても、導波管構造物20に含まれる複数の単位導波管と、第2アンテナ12の複数の第2放射素子12aとの相対位置関係が、すべての第2放射素子12aにおいて同一である。このため、第2放射素子12a単体のアンテナ利得のばらつきを抑制することができる。
 第5実施例では、図9Aにおいて第2アンテナ12の第2放射素子12aの4つの縁のうち上下の縁が、金属壁と交差しており、左右の縁は金属壁と交差していない。この場合、金属壁と交差していない縁が波源となるように第2放射素子12aを励振させることが好ましい。すなわち、図9Aにおいて第2放射素子12aの偏波方向が左右方向となる構成とすることが好ましい。
 次に、第5実施例の変形例について説明する。
 第5実施例では、平面視において、金属壁の列方向に延びる直線状の部分が第2放射素子12aの中心を通過しているが、金属壁の行方向に延びる直線状の部分が第2放射素子12aの中心を通過するようにしてもよい。また、第5実施例では、1つの第2放射素子12aに2つの単位導波管を対応付けているが、1つの第2放射素子12aに3つ以上の複数の単位導波管を対応付けてもよい。
 [第6実施例]
 次に、図10A及び図10Bを参照して第6実施例による通信装置について説明する。以下、第5実施例による通信装置(図9A、図9B)と共通の構成については説明を省略する。
 図10Aは、第6実施例による通信装置の平面図であり、図10Bは、図10Aの一点鎖線10B-10Bにおける断面図である。第5実施例では、1つの第2放射素子12aに2つの単位導波管を対応付けている。これに対して第6実施例では、2つの第2放射素子12aに1つの単位導波管を対応付けている。具体的には、行方向に並ぶ2つの第2放射素子12aに対して1つの単位導波管を配置している。単位導波管の各々の平面視における形状は、行方向に長い長方形であり、平面視において1つの単位導波管に2つの第2放射素子12aが包含される。
 第6実施例においても、第5実施例の場合と同様に、導波管構造物20が、第1アンテナ11から放射される基本周波数の電波を減衰させる。第2アンテナ12で送信または受信される周波数の電波は、導波管構造物20でほとんど減衰されない。
 次に、第6実施例の優れた効果について説明する。第6実施例においても、第5実施例と同様に、第1アンテナ11から放射される電波に起因するノイズが、第2アンテナ12で受信される信号に与える影響を軽減することができる。
 次に、第6実施例の変形例について説明する。第6実施例では1つの単位導波管に2つの第2放射素子12aを対応付けているが、1つの単位導波管に3つ以上の複数の第2放射素子12aを対応付けてもよい。例えば、平面視において、1つの単位導波管に3つ以上の複数の第2放射素子12aが包含されるようにしてもよい。
 [第7実施例]
 次に、図11A及び図11Bを参照して第7実施例による通信装置について説明する。以下、第1実施例による通信装置(図1A乃至図5)と共通の構成については説明を省略する。
 図11Aは、第7実施例による通信装置の平面図であり、図11Bは、図11Aの一点鎖線11B-11Bにおける断面図である。第7実施例により通信装置は、第1実施例の場合と同様に、第2アンテナ12で受信される電波の経路に配置された単位導波管を含む導波管構造物20を有する。また、導波管構造物20は、第1アンテナ11から見てメインビームの半値角の範囲の外側に配置されている。導波管構造物20として、第1アンテナ11の動作周波数の電波を第2アンテナ12の動作周波数の電波より大きく減衰させる導波機能を持つ構造物を用いることができる。
 次に第7実施例の優れた効果について説明する。第7実施例においても、第1実施例の場合と同様に、第1アンテナ11から放射される電波に起因するノイズが、第2アンテナ12で送受信される信号に与える影響を軽減することができる。
 上述の各実施例は例示であり、異なる実施例で示した構成の部分的な置換または組み合わせが可能であることは言うまでもない。複数の実施例の同様の構成による同様の作用効果については実施例ごとには逐次言及しない。さらに、本発明は上述の実施例に制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。
11 第1アンテナ
11a 第1放射素子
12 第2アンテナ
12a 第2放射素子
12R 受信用の第2アンテナ
12T 送信用の第2アンテナ
20 導波管構造物
21 開口部
22 導体柱
23 導体パターン
30 モジュール基板
30A 第1モジュール基板
30B 第2モジュール基板
31 支持面
32、32A、32B グランドプレーン
33 誘電体膜
35 支持部材
36 支持面
41 第1送受信回路
42 第2送受信回路
50 筐体
60 電波反射物
80 信号処理回路
81 ローカル発振器
82 送信処理部
83 スイッチ
84 パワーアンプ
85 受信処理部
86 ミキサ
87 ローノイズアンプ
90 高周波集積回路素子
91 中間周波増幅器
92 アップダウンコンバート用ミキサ
93 送受信切替スイッチ
94 パワーディバイダ
95 移相器
96 アッテネータ
97 送受信切替スイッチ
98 パワーアンプ
99 ローノイズアンプ
100 送受信切替スイッチ
110 ベースバンド集積回路素子
 

Claims (8)

  1.  同一の筐体に収容された第1アンテナ、第2アンテナ、及び導波管構造物を有し、
     前記第2アンテナの動作周波数は前記第1アンテナの動作周波数より高く、
     前記第2アンテナは、複数の放射素子を含むアレイアンテナであり、
     前記導波管構造物は、前記第1アンテナから見てメインビームの半値角の範囲の外側であって、前記第2アンテナで受信される電波の経路に配置された単位導波管を含み、前記第1アンテナの動作周波数の電波を前記第2アンテナの動作周波数の電波より大きく減衰させる通信装置。
  2.  前記導波管構造物は前記単位導波管を複数個含み、前記単位導波管は、前記第2アンテナの複数の放射素子のそれぞれに対応して配置されている請求項1に記載の通信装置。
  3.  さらに、前記第1アンテナと前記第2アンテナとを共通の支持面に支持する支持部材を有し、
     前記導波管構造物は、平面視において、前記第1アンテナとは重ならず、前記第2アンテナを包含している請求項1または2に記載の通信装置。
  4.  前記導波管構造物は、平面視において格子状に配置された金属壁を含み、前記金属壁のうち、格子状の前記金属壁の複数の開口部の各々を取り囲む部分が前記単位導波管を構成する請求項3に記載の通信装置。
  5.  前記筐体の一部分が前記支持面に対して間隔を隔てて対向しており、前記導波管構造物は前記筐体に固定されている請求項3または4に記載の通信装置。
  6.  前記導波管構造物は前記支持部材に固定されている請求項3または4に記載の通信装置。
  7.  さらに、前記支持面上に配置されて前記第2アンテナを覆う誘電体膜を有し、
     前記導波管構造物は、前記誘電体膜に埋め込まれた複数の導体柱を含み、前記複数の導体柱は、平面視において格子状の直線群に沿って配置されており、前記複数の導体柱によって構成される格子の複数の開口部の各々を取り囲む複数の導体柱が前記単位導波管を構成する請求項3に記載の通信装置。
  8.  前記導波管構造物は、前記複数の導体柱を接続し、平面視において前記第2アンテナの前記複数の放射素子と重ならないように配置された導体パターンを、さらに含む請求項7に記載の通信装置。
     
PCT/JP2020/026727 2019-08-19 2020-07-08 通信装置 WO2021033448A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080058266.5A CN114270627A (zh) 2019-08-19 2020-07-08 通信装置
JP2021540661A JP7180785B2 (ja) 2019-08-19 2020-07-08 通信装置
US17/673,798 US11942685B2 (en) 2019-08-19 2022-02-17 Communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-149899 2019-08-19
JP2019149899 2019-08-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/673,798 Continuation US11942685B2 (en) 2019-08-19 2022-02-17 Communication device

Publications (1)

Publication Number Publication Date
WO2021033448A1 true WO2021033448A1 (ja) 2021-02-25

Family

ID=74660903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026727 WO2021033448A1 (ja) 2019-08-19 2020-07-08 通信装置

Country Status (4)

Country Link
US (1) US11942685B2 (ja)
JP (1) JP7180785B2 (ja)
CN (1) CN114270627A (ja)
WO (1) WO2021033448A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005505963A (ja) * 2001-10-01 2005-02-24 レイセオン・カンパニー スロット結合偏波放射器
CN205900780U (zh) * 2016-07-29 2017-01-18 华南理工大学 一种紧凑型多频基站天线阵列
WO2018076491A1 (zh) * 2016-10-26 2018-05-03 华南理工大学 一种高低频滤波阵子交织排列的紧凑型多波束天线阵列
WO2018115372A1 (en) * 2016-12-23 2018-06-28 Iee International Electronics & Engineering S.A. High-resolution 3d radar wave imaging device
WO2019054094A1 (ja) * 2017-09-12 2019-03-21 株式会社村田製作所 アンテナモジュール

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE201940T1 (de) 1996-07-04 2001-06-15 Skygate Internat Technology Nv Planare gruppenantenne für zwei frequenzen
JP4516246B2 (ja) * 2001-08-06 2010-08-04 日本電業工作株式会社 アンテナ
WO2006011412A1 (ja) 2004-07-30 2006-02-02 Matsushita Electric Industrial Co., Ltd. 高周波回路素子および高周波回路
US9666952B2 (en) * 2014-05-07 2017-05-30 Panasonic Intellectual Property Management Co., Ltd. Antenna device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005505963A (ja) * 2001-10-01 2005-02-24 レイセオン・カンパニー スロット結合偏波放射器
CN205900780U (zh) * 2016-07-29 2017-01-18 华南理工大学 一种紧凑型多频基站天线阵列
WO2018076491A1 (zh) * 2016-10-26 2018-05-03 华南理工大学 一种高低频滤波阵子交织排列的紧凑型多波束天线阵列
WO2018115372A1 (en) * 2016-12-23 2018-06-28 Iee International Electronics & Engineering S.A. High-resolution 3d radar wave imaging device
WO2019054094A1 (ja) * 2017-09-12 2019-03-21 株式会社村田製作所 アンテナモジュール

Also Published As

Publication number Publication date
US20220173508A1 (en) 2022-06-02
CN114270627A (zh) 2022-04-01
US11942685B2 (en) 2024-03-26
JPWO2021033448A1 (ja) 2021-02-25
JP7180785B2 (ja) 2022-11-30

Similar Documents

Publication Publication Date Title
EP2822095B1 (en) Antenna with fifty percent overlapped subarrays
KR101310562B1 (ko) 주파수 스캐닝 안테나
WO2021033447A1 (ja) アンテナ装置及び通信装置
US7283102B2 (en) Radial constrained lens
WO2020158009A1 (ja) アンテナ装置及びレーダ装置
JPH06232621A (ja) アクティブ送信フェーズドアレイアンテナ
KR20190086130A (ko) 안테나 장치
US11848496B2 (en) Lens-enhanced communication device
CN113013638A (zh) 一种宽带折叠式平面反射阵列天线
CN113097736B (zh) 一种新型频率及波束可重构天线
WO2021033448A1 (ja) 通信装置
EP1932212B1 (en) Frequency scanning antenna
CN112366459A (zh) 一体化有源多波束罗特曼透镜天线
Pham et al. V-band beam-switching transmitarray antenna for 5G MIMO channel sounding
CN110649397B (zh) 一种集成反射阵的可重构平面反射阵天线
CN113544907B (zh) 一种透镜天线、探测装置及通信装置
GB2182806A (en) Linearly polarized grid reflector antenna system with improved cross-polarization performance
WO2023053865A1 (ja) アンテナ装置及び通信装置
US20230238710A1 (en) Quasi-optical beam former with superposed parallel-plate waveguide
RU2282288C2 (ru) Фазированная антенная решетка с двумя независимыми лучами и управляемой поляризацией в суммарном луче (варианты)
JP2014195232A (ja) アンテナ装置
WO2022158061A1 (ja) アンテナ装置、レーダモジュール、及び通信モジュール
US20240128654A1 (en) Quasi-optical beamformer comprising two reflectors
KR20050039893A (ko) 단일 빔 패턴의 안테나와 이를 사용한 알 에프 중계시스템
RU2101809C1 (ru) Передающая антенная система с фазированной решеткой

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20853801

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021540661

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20853801

Country of ref document: EP

Kind code of ref document: A1