WO2022158061A1 - アンテナ装置、レーダモジュール、及び通信モジュール - Google Patents

アンテナ装置、レーダモジュール、及び通信モジュール Download PDF

Info

Publication number
WO2022158061A1
WO2022158061A1 PCT/JP2021/038990 JP2021038990W WO2022158061A1 WO 2022158061 A1 WO2022158061 A1 WO 2022158061A1 JP 2021038990 W JP2021038990 W JP 2021038990W WO 2022158061 A1 WO2022158061 A1 WO 2022158061A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric block
radiation electrode
dielectric
block portions
radiation
Prior art date
Application number
PCT/JP2021/038990
Other languages
English (en)
French (fr)
Inventor
浩 西田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2022576975A priority Critical patent/JPWO2022158061A1/ja
Publication of WO2022158061A1 publication Critical patent/WO2022158061A1/ja
Priority to US18/355,829 priority patent/US20230361489A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2283Supports; Mounting means by structural association with other equipment or articles mounted in or on the surface of a semiconductor substrate as a chip-type antenna or integrated with other components into an IC package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna

Definitions

  • the present invention relates to antenna devices, radar modules, and communication modules.
  • the aperture efficiency can be increased (see Patent Document 1 below, for example).
  • a dielectric block is loaded for each radiation electrode so that the dielectric block completely covers the radiation electrode of the patch antenna.
  • a substrate including a ground conductor plate; a radiation electrode arranged on the substrate at a distance from the ground conductor plate in the thickness direction of the substrate; and a dielectric member loaded on the radiation electrode, the dielectric member includes two dielectric block portions spaced apart in a first direction that is an excitation direction of the radiation electrode; The two dielectric block portions are arranged at positions sandwiching the geometric center of the radiation electrode in plan view, and a portion of each of the two dielectric block portions overlaps a portion of the radiation electrode in plan view. , the remainder of which is arranged outside said radiation electrode.
  • a substrate including a ground conductor plate; a plurality of antenna elements for transmission provided on the substrate; a plurality of receiving antenna elements for receiving radio waves radiated from the plurality of transmitting antenna elements and reflected by a target; a signal processing circuit that processes signals received by the plurality of antenna elements to generate target position information; each of the plurality of antenna elements, a plurality of firing electrodes arranged on the substrate at intervals in the thickness direction of the substrate from the ground conductor plate; and a dielectric member loaded on each of the plurality of radiation electrodes, excitation directions of the plurality of radiation electrodes are parallel to the first direction;
  • the plurality of antenna elements are arranged side by side in a direction orthogonal to the first direction in plan view, each of the dielectric members, including two dielectric block portions spaced apart in the first direction; The two dielectric block portions are arranged at positions sandwiching the geometric center of the radiation electrode loaded with the dielectric member in plan view, and a portion of each of the two dielectric block portions is,
  • a substrate including a ground conductor plate; a plurality of antenna elements provided on the substrate; a high frequency integrated circuit element that supplies high frequency signals to the plurality of antenna elements and down-converts the high frequency signals received by the plurality of antenna elements into intermediate frequency signals or baseband signals; each of the plurality of antenna elements, a plurality of firing electrodes arranged on the substrate at intervals in the thickness direction of the substrate from the ground conductor plate; and a dielectric member loaded on each of the plurality of radiation electrodes, excitation directions of the plurality of radiation electrodes are parallel to the first direction;
  • the plurality of antenna elements are arranged side by side in a direction orthogonal to the first direction in plan view, each of the dielectric members, including two dielectric block portions spaced apart in the first direction;
  • the two dielectric block portions are arranged at positions sandwiching the geometric center of the radiation electrode loaded with the dielectric member in plan view, and a portion of each of the two dielectric block portions is, in plan view,
  • a communication module is provided
  • the antenna gain of the antenna device can be increased.
  • FIG. 1 is a perspective view of the antenna device according to the first embodiment.
  • 2A is a plan view of the antenna device according to the first embodiment, and
  • FIG. 2B is a cross-sectional view taken along dashed-dotted line 2B-2B in FIG. 2A.
  • FIG. 3 is a perspective view of an antenna device according to a comparative example.
  • 4A and 4B are graphs showing directivity characteristics in the yz plane and xz plane, respectively.
  • 5A and 5B are graphs showing directivity characteristics in the yz plane and the xz plane of simulation models with different intervals between the two dielectric block portions 40A.
  • FIG. 6 is a graph showing the relationship between the distance between two dielectric block portions and the antenna gain in the front direction.
  • FIG. 1 is a perspective view of the antenna device according to the first embodiment.
  • 2A is a plan view of the antenna device according to the first embodiment
  • FIG. 2B is a cross-sectional view taken along dashed-dotted line 2
  • FIG. 7A is a perspective view of an antenna device according to a second embodiment
  • FIGS. 7B and 7C are perspective views of antenna devices according to modifications of the second embodiment.
  • 8A and 8B are a perspective view and a cross-sectional view, respectively, of an antenna device according to a third embodiment.
  • FIG. 9 is a perspective view of the antenna device according to the fourth embodiment.
  • FIG. 10 is a plan view of the antenna device according to the fifth embodiment.
  • 11A and 11B are a perspective view and a plan view, respectively, of an antenna device according to a sixth embodiment.
  • 12A and 12B are a perspective view and a plan view, respectively, of an antenna device according to a seventh embodiment.
  • FIG. 13 is a plan view of the antenna device mounted on the radar module according to the eighth embodiment.
  • FIG. 14 is a block diagram of the radar module according to the eighth embodiment.
  • FIG. 15 is a block diagram of a communication module according to the ninth embodiment.
  • FIG. 1 is a perspective view of the antenna device according to the first embodiment.
  • 2A is a plan view of the antenna device according to the first embodiment, and
  • FIG. 2B is a cross-sectional view taken along dashed-dotted line 2B-2B in FIG. 2A.
  • the antenna device includes a substrate 21, a radiation electrode 30, and a dielectric member 40.
  • the substrate 21 is a multilayer wiring board in which dielectric layers and wiring layers are alternately laminated. It includes a feed line 25 arranged between the plates 22,23. The feeder line 25 forms a stripline together with the ground conductor plates 22 and 23 .
  • the radiation electrode 30 is spaced from the ground conductor plate 22 in the thickness direction of the substrate 21 .
  • the radiation electrode 30 is arranged on the surface opposite to the surface on which the ground conductor plate 23 is arranged.
  • the shape of the radiation electrode 30 in plan view is, for example, square or rectangular.
  • a feeding point 30A is arranged at the midpoint of one edge of the radiation electrode 30 or between the geometric center of the radiation electrode 30 and the midpoint of one edge.
  • An xyz orthogonal coordinate system is defined in which the direction of a straight line connecting the geometric center of the radiation electrode 30 and the feeding point 30A is the y direction, and the thickness direction of the substrate 21 is the z direction.
  • a feed point 30A of the radiation electrode 30 is connected to the feed line 25 via an interlayer connection conductor 26 (FIG. 2B).
  • the interlayer connection conductor 26 is composed of a plurality of inner layer lands and a plurality of vias.
  • An opening 22A is provided in the ground conductor plate 22, and the interlayer connection conductor 26 passes through the opening 22A.
  • Dielectric member 40 made of ceramic or resin is loaded on the radiation electrode 30 .
  • Dielectric member 40 includes two dielectric block portions 40A.
  • the two dielectric block portions 40A are composed of individual blocks separated from each other.
  • the dielectric block portion 40A is fixed to the substrate 21 with an adhesive, for example.
  • Each dielectric block portion 40A has a rectangular parallelepiped or cubic shape, and each face is perpendicular to the x-direction, y-direction, or z-direction. Also, the dimensions of the dielectric block portions 40A in the x-direction, the y-direction, and the z-direction are substantially the same between the two dielectric block portions 40A.
  • the two dielectric block portions 40A are spaced apart from each other in the y-direction so as to sandwich the geometric center 30C (FIG. 2A) of the radiation electrode 30 in plan view.
  • a portion of each of the two dielectric block portions 40A overlaps a portion of the radiation electrode 30 in a plan view, and the remaining portions protrude to the outside of the radiation electrode 30 toward one side in the y direction and both sides in the x direction. ing. That is, the remaining portion is arranged outside the radiation electrode 30 in plan view.
  • a portion of each of the two dielectric block portions 40A may protrude only in the y direction.
  • the operation of the antenna device according to the first embodiment will be explained.
  • the radiation electrode 30 When a high-frequency signal is supplied from the feeding point 30A to the radiation electrode 30, the radiation electrode 30 is excited in the y-direction and resonance occurs in the radiation electrode 30.
  • FIG. The amplitude of the electric field is maximized at both edges in the y direction, and the edges at both ends in the y direction are sources of radio wave radiation.
  • the two radiation sources are each enclosed in the dielectric block portion 40A in plan view, so each of the two radiation sources is coupled to the dielectric block portion 40A. Therefore, each of the two dielectric block portions 40A operates as a dielectric antenna. As a result, an excellent effect of improving the antenna gain is obtained.
  • a plurality of radiation electrodes 30 are arranged to form an array in order to obtain a desired antenna gain.
  • the dielectric member 40 of the antenna device according to the first embodiment is loaded onto each of the plurality of radiation electrodes 30, the antenna gain of each radiation electrode 30 is improved. can be reduced. Therefore, the size of the antenna device can be reduced.
  • the antenna apparatus according to the first embodiment to a millimeter-wave band antenna apparatus in which transmission loss is likely to increase, the effect appears remarkably.
  • FIG. 3 is a perspective view of an antenna device according to a comparative example.
  • the dielectric member 40 is composed of one dielectric block.
  • the radiation electrode 30 is included in the dielectric member 40 .
  • the x-direction and y-direction dimensions of the radiation electrode 30 were set to 0.5 mm and 0.7 mm, respectively.
  • the x-direction, y-direction, and z-direction dimensions of the dielectric block portion 40A are set to 1.0 mm, 1.5 mm, and 1.6 mm, respectively.
  • the distance in the y direction between the two dielectric block portions 40A was set to 0.5 mm.
  • the midpoint of a line segment having both ends at the geometric centers of the two dielectric block portions 40A coincides with the geometric center of the radiation electrode 30.
  • the dimension in the x direction of each of the portions where the dielectric block portion 40A protrudes from the radiation electrode 30 on both sides in the x direction is 0.25 mm.
  • the relative dielectric constant of the dielectric block portion 40A is set to 6.
  • the dimensions of the radiation electrode 30 are the same as those of the simulation model of the antenna device according to the first embodiment.
  • the shape and dimensions of the dielectric block were made the same as the shape and dimensions of one dielectric block portion 40A in the simulation model of the antenna device according to the first embodiment.
  • the resonance frequency should be 79 GHz. Adjust the dimensions of each part.
  • FIGS. 4A and 4B are graphs showing directivity characteristics in the yz plane and in the xz plane, respectively.
  • the horizontal axis of FIG. 4A represents the polar angle ⁇ y from the z direction to the positive direction of the y-axis in units of degrees
  • the horizontal axis of FIG. 4B represents the polar angle ⁇ x from the z-direction to the positive direction of the x-axis in units of degrees. Expressed in degrees.
  • the vertical axes of FIGS. 4A and 4B represent the antenna gain in units of "dBi".
  • Curves a, b, and c shown in FIGS. 4A and 4B are the antenna gains of the antenna device according to the first embodiment, the antenna device according to the comparative example shown in FIG. 3, and the antenna device not loaded with the dielectric block, respectively. shows the simulation results of
  • each of the two dielectric block portions 40A functions as a radiation source.
  • FIGS. 5A and 5B are graphs showing directivity characteristics in the yz plane and the xz plane of simulation models with different intervals between the two dielectric block portions 40A.
  • the horizontal axis of FIG. 5A represents the polar angle ⁇ y from the z-direction to the y-direction in units of degrees
  • the horizontal axis of FIG. 5B represents the polar angle ⁇ x from the z-direction to the x-directions in units of degrees.
  • the vertical axes of FIGS. 5A and 5B represent the antenna gain in units of “dBi”.
  • a numerical value attached to each curve in FIGS. 5A and 5B indicates the distance between the two dielectric block portions 40A.
  • FIG. 6 is a graph showing the relationship between the distance between the two dielectric block portions 40A and the antenna gain in the front direction.
  • the horizontal axis represents the distance between the two dielectric block portions 40A in the unit of "mm”
  • the vertical axis represents the antenna gain in the front direction in the unit of "dBi”.
  • the edges of the two dielectric block portions 40A parallel to the x-direction match the edges of the radiation electrode 30 parallel to the x-direction in plan view. That is, the dielectric block portion 40A and the radiation electrode 30 are in contact with each other in plan view, and do not overlap each other.
  • the antenna gain in the front direction depends on the distance between the two dielectric block portions 40A, and exhibits the maximum value when the distance is in the range of 0.5 mm or more and 0.6 mm or less. If the two dielectric block portions 40A are placed too close to each other, the difference from the configuration in which one dielectric block is loaded as in the comparative example shown in FIG. 3 becomes small, and the antenna gain is lowered. It can be seen that the distance between the two dielectric block portions 40A has a preferable range for maximizing the antenna gain in the front direction.
  • the distance between the two dielectric block portions 40A is 0.3 mm or more, an antenna gain equivalent to that obtained when the dielectric block portion 40A is in contact with the radiation electrode 30 in plan view can be obtained. .
  • the distance between the two dielectric block portions 40A should be 40% or more of the dimension of the radiation electrode 30 in the y direction.
  • each of the two dielectric block portions 40A that constitute the dielectric member 40 depends on the wavelength within the dielectric block portion 40A of the radio waves to be radiated. That is, the preferred dimensions of the dielectric block portion 40A are determined from the wavelength at the resonance frequency of the radiation electrode 30 and the dielectric constant of the dielectric block portion 40A. The dimensions of the dielectric block portion 40A may be adjusted by conducting simulations or evaluation experiments so as to maximize the antenna gain.
  • the shape of the dielectric block portion 40A is a cube or rectangular parallelepiped, but other shapes may be used.
  • the dielectric block portion 40A may have a cylindrical shape or an elliptical cylindrical shape.
  • FIG. 7A is a perspective view of the antenna device according to the second embodiment.
  • the dielectric member 40 is composed of two dielectric block portions 40A separated from each other.
  • two dielectric block portions 40A are connected to each other by a connecting portion 40B.
  • the connecting portion 40B is continuous with a partial region including the lower (substrate 21 side) edges of the mutually facing surfaces of the two dielectric block portions 40A.
  • the surfaces of the two dielectric block portions 40A and the connection portion 40B facing the substrate 21 are located on the same plane.
  • the two dielectric block portions 40A and the connecting portion 40B are made of the same dielectric material and integrally molded.
  • the cross section of the connecting portion 40B perpendicular to the y direction (the cross section parallel to the xz plane) is smaller than the cross sections of the two dielectric block portions 40A perpendicular to the y direction. Therefore, a gap is ensured between the two dielectric block portions 40A.
  • the two dielectric block portions 40A are connected to each other by the connection portion 40B.
  • the portion 40A has the same function as the dielectric block portion 40A according to the first embodiment which is composed of separate blocks. Therefore, the antenna gain can be increased also in the second embodiment.
  • the dielectric member 40 including the two dielectric block portions 40A is integrally molded, the number of parts of the antenna device can be reduced. Further, in the second embodiment, the accuracy of the spacing between the two dielectric block portions 40A does not depend on the positional accuracy when the dielectric member 40 is fixed to the substrate 21. FIG. Therefore, it is easy to improve the dimensional accuracy of the spacing between the two dielectric block portions 40A.
  • the dielectric member 40 separates the two dielectric block portions 40A.
  • the effect of inclusion is reduced.
  • the area of the cross section perpendicular to the y direction of the connection portion 40B and the area of the cross section of the dielectric block portion 40A perpendicular to the y direction should be It is preferable to set the ratio to 0.3 or less.
  • FIGS. 7B and 7C are perspective views of antenna devices according to modifications of the second embodiment.
  • one connecting portion 40B is provided to connect two dielectric block portions 40A, but in the modification shown in FIGS. 7B and 7C, two connecting portions 40B are provided. .
  • the connecting portions 40B are connected to two locations, the lower end and the upper end (that is, both ends in the z direction) of the mutually facing surfaces of the two dielectric block portions 40A.
  • the connecting portions 40B are connected to both ends in the x direction of the mutually facing surfaces of the two dielectric block portions 40A.
  • a plurality of connecting portions 40B may be provided as in the modification shown in FIGS. 7B and 7C.
  • FIGS. 8A and 8B are a perspective view and a cross-sectional view, respectively, of the antenna device according to the third embodiment.
  • first embodiment FIGS. 1, 2A, and 2B
  • two dielectric block portions 40A are fixed to the substrate 21 with an adhesive or the like.
  • two dielectric block portions 40A are fixed to the substrate 21 by soldering.
  • Two first metal patterns 41 are provided on the surface facing the substrate 21 of the dielectric block portion 40A.
  • the two first metal patterns 41 are spaced apart in the y direction.
  • the two first metal patterns 41 are arranged at both ends in the y direction of the lower surface of each dielectric block portion 40A.
  • Second metal patterns 31 are provided on the upper surface of the substrate 21 at positions sandwiching the radiation electrode 30 in the y direction in plan view.
  • One first metal pattern 41 of the dielectric block portion 40A is fixed to the radiation electrode 30 via solder 45, and the other first metal pattern 41 is fixed to the second metal pattern 31 via solder 45.
  • the antenna gain of the antenna device can be increased in the third embodiment.
  • the dielectric block portion 40A may be fixed to the substrate 21 by solder 45 instead of the adhesive. By adjusting the relative positions of the radiation electrode 30, the second metal pattern 31, and the first metal pattern 41, the dielectric block portion 40A can be positioned in a self-aligning manner during solder reflow.
  • the radiation electrode 30 is used as a metal pattern for connection with solder 45, but a configuration may be employed in which the radiation electrode 30 is not used for fixing with solder.
  • two second metal patterns 31 are arranged on the substrate 21 for each dielectric block portion 40A.
  • the two first metal patterns 41 of the dielectric block portion 40A should be fixed to the two second metal patterns 31 of the substrate 21 via solder 45 .
  • FIG. 9 is a perspective view of the antenna device according to the fourth embodiment.
  • the shape of each of the two dielectric block portions 40A is a cube or rectangular parallelepiped.
  • each of the two dielectric block portions 40A includes a tapered portion.
  • a portion of the dielectric block portion 40A on the substrate 21 side has a constant dimension in the x direction, and a portion above it (positive direction of the z-axis) has a dimension in the x direction that is different from the substrate 21. It becomes smaller toward the upper part.
  • the antenna gain can be increased by arranging the two dielectric block portions 40A with an interval in the y direction.
  • the directivity of the antenna device can be changed by changing the shape of the dielectric block portion 40A from a cube or rectangular parallelepiped. As in the fourth embodiment, by decreasing the dimension of the dielectric block portion 40A in the x direction upward, it is possible to widen the directivity in the xz plane.
  • the dielectric block portion 40A of the antenna device according to the fourth embodiment includes a tapered portion such that the dimension in the x direction decreases upward, but at least one of the dimension in the x direction and the dimension in the y direction It may include a tapered portion that tapers toward .
  • the x-direction dimension may be constant and the y-direction dimension may decrease upward, or both the x- and y-direction dimensions may decrease upward.
  • the shape of the dielectric block portion 40A may be a truncated square pyramid, a truncated cone, or the like.
  • FIG. 10 is a plan view of the antenna device according to the fifth embodiment.
  • the radiation electrode 30 has a square or rectangular shape in plan view, but the radiation electrode 30 of the antenna device according to the fifth embodiment has a circular shape in plan view. is.
  • a feed point 30A is provided at a position where the geometric center 30C of the radiation electrode 30 is moved in the y direction.
  • the excitation direction of the radiation electrode 30 is parallel to the y-direction.
  • the two dielectric block portions 40A are arranged at positions sandwiching the geometric center 30C of the radiation electrode 30 in the y direction, as in the first embodiment. A portion of each of the dielectric block portions 40A overlaps a portion of the radiation electrode 30 in plan view.
  • the excellent effects of the fifth embodiment will be described.
  • two portions of the radiation electrode 30 where the electric field strength is maximized are each included in the dielectric block portion 40A in plan view. Therefore, each of the radiation sources couples with the dielectric block portion 40A. Therefore, the antenna gain can be increased as in the first embodiment.
  • the radiation electrode 30 has a circular shape in plan view, but it may have another shape.
  • the shape may be a shape in which the four corners of a square are cut off into small squares, a rectangular shape with rounded corners, or the like.
  • FIG. 11A and 11B are a perspective view and a plan view, respectively, of the antenna device according to the sixth embodiment.
  • the antenna arrangement according to the first embodiment (FIGS. 1, 2A, 2B) has one radiating electrode 30.
  • FIG. on the other hand, the antenna device according to the sixth embodiment has two radiation electrodes 30 .
  • the two radiation electrodes 30 are spaced apart in the y direction.
  • a feeding point 30A is provided at each midpoint of the edges of the two radiation electrodes 30 facing each other.
  • One feeder line 25 is branched at a branch point 25A, and the two feeder lines 25 after branching are connected to two feeder points 30A, respectively.
  • the difference between the line length from the branch point 25A to one feeding point 30A and the line length to the other feeding point 30A is equal to 1/2 of the wavelength corresponding to the resonance frequency of the radiation electrode 30.
  • FIG. Therefore, the two feeding points 30A are excited in opposite phases.
  • One of the two radiation electrodes 30 is provided with a feeding point 30A at the end on the positive side of the y-axis, and the other is provided at the end on the negative side of the y-axis. Therefore, the two radiation electrodes 30 are excited in phase in the y direction.
  • a dielectric member 40 is loaded for each radiation electrode 30 .
  • Each dielectric member 40 is composed of two dielectric block portions 40A.
  • the antenna gain of each of the two radiation electrodes 30 can be increased. Therefore, the gain of the antenna device as a whole can be increased.
  • the feeding points 30A are provided at the edges of the two radiation electrodes 30 facing each other, the total line length from the branch point 25A to the two feeding points 30A can be shortened. As a result, it is possible to suppress an increase in transmission loss of the high-frequency signal transmitted through the power supply line 25 . Further, by exciting the two feeding points 30A in opposite phases, the two radiation electrodes 30 can be excited in the same phase in the y direction.
  • the sixth embodiment Although two radiation electrodes 30 are arranged in the sixth embodiment, three or more radiation electrodes 30 may be arranged. Also when three or more radiation electrodes 30 are arranged, the position of the feeding point 30A and the line length of the feeding line 25 are adjusted so that all the radiation electrodes 30 are excited in the y direction in the same phase. Since the antenna gain of each radiation electrode 30 can be increased, the number of radiation electrodes 30 required to achieve the target antenna gain can be reduced. This makes it possible to reduce the size of the antenna device.
  • the feeder line 25 is branched into two at a branch point 25A to supply two radiation electrodes 30 with high frequency signals.
  • a distributor may be used to distribute the high-frequency signal to the plurality of radiation electrodes 30 .
  • a plurality of radiation electrodes 30 may be excited with a predetermined phase difference. By providing the phase difference, the direction of the main beam of the antenna device can be tilted from the front direction.
  • FIGS. 12A and 12B are a perspective view and a plan view, respectively, of the antenna device according to the seventh embodiment.
  • a parallel feeding method is adopted as a method of feeding power to the plurality of radiation electrodes 30, but in the antenna device according to the seventh embodiment, a series feeding method is used. is adopted.
  • the feeding line 25 is connected to the feeding point 30A of the first radiation electrode 30 .
  • the first radiation electrode 30 and the feeding point 30A of the second radiation electrode 30 are connected by a feeding line 25 connecting the radiation electrodes.
  • the front radiation electrode 30 and the feed point 30A of the rear radiation electrode 30 are connected by another feed line 25 .
  • the line length of the feeding line 25 between the radiation electrodes is adjusted such that the phase at the feeding point 30A of the radiation electrode 30 at the rear stage is delayed by 360° with respect to the feeding point 30A at the radiation electrode 30 at the front stage.
  • One dielectric block part 40A is arranged between the radiation electrodes 30 adjacent to each other. This one dielectric block portion 40A overlaps a part of each of the radiation electrodes 30 on both sides in plan view. is shared with
  • the seventh embodiment adopts the series feeding method, the total line length of the feeding line 25 can be shortened compared to the antenna device adopting the parallel feeding method. Thereby, the transmission loss of the high-frequency signal transmitted through the power supply line 25 can be reduced.
  • the dielectric block portions 40A arranged at both ends in the y direction are coupled to one radiation electrode 30, whereas the dielectric blocks other than the dielectric block portions 40A arranged at both ends are connected to one radiation electrode 30.
  • the body block portion 40A (hereinafter referred to as the inner dielectric block portion 40A) is coupled to two radiation electrodes 30, respectively. Therefore, the inner dielectric block portion 40A is excited more strongly than the dielectric block portions 40A at both ends.
  • the plurality of dielectric block portions 40A are used as radio wave radiation sources, the energy of the radio waves emitted from the radiation sources at both ends is lower than the energy of the radio waves emitted from the inner radiation source. Therefore, side lobes appearing in the radiation pattern in the yz plane can be suppressed.
  • the radar module according to the eighth embodiment includes the antenna device according to any one of the first to seventh embodiments or a plurality of antenna devices according to the first to seventh embodiments. It is equipped with a combined antenna system.
  • FIG. 13 is a plan view of the antenna device mounted on the radar module according to the eighth embodiment.
  • the antenna device according to the eighth embodiment includes a transmitting antenna element group 20Tx consisting of a plurality of antenna elements 20 and a receiving antenna element group 20Rx consisting of a plurality of antenna elements 20.
  • FIG. Each of the antenna elements 20 includes one radiation electrode 30 and a dielectric member 40 loaded thereon.
  • the dielectric member 40 includes two dielectric block portions 40A spaced apart in the excitation direction.
  • the plurality of antenna elements 20 are arranged in a row in a direction (x direction) perpendicular to the excitation direction (y direction) of the radiation electrode 30 in plan view.
  • the antenna element group 20Tx for transmission includes two antenna elements
  • the antenna element group 20Rx for reception includes four antenna elements 20.
  • FIG. 14 is a block diagram of the radar module according to the eighth embodiment.
  • the radar module includes Time Division Multiple Access (TDMA), Frequency Modulated Continuous Wave (FMCW), and Multiple Input Multiple Output (MIMO) capabilities.
  • TDMA Time Division Multiple Access
  • FMCW Frequency Modulated Continuous Wave
  • MIMO Multiple Input Multiple Output
  • the local oscillator 51 Based on the chirp control signal Sc from the signal processing circuit 50, the local oscillator 51 outputs a local signal SL whose frequency linearly increases or decreases with time.
  • the local signal SL is given to the transmission processing section 52 and the reception processing section 57 .
  • the transmission processing unit 52 includes multiple switches 53 and a power amplifier 54 .
  • the switch 53 and the power amplifier 54 are provided for each antenna element 20 of the transmission antenna element group 20Tx.
  • the switch 53 is turned on and off based on the switching control signal Ss from the signal processing circuit 50 .
  • the local signal SL is input to the power amplifier 54 while the switch 53 is on.
  • the power amplifier 54 amplifies the power of the local signal SL and supplies it to the antenna elements 20 of the antenna element group 20Tx for transmission.
  • the radio waves radiated from the antenna elements 20 of the antenna element group 20Tx for transmission are reflected by the target, and the reflected waves are received by the plurality of antenna elements 20 of the antenna element group 20Rx for reception.
  • the reception processing unit 57 includes a plurality of low noise amplifiers 55 and a mixer 56.
  • a low-noise amplifier 55 and a mixer 56 are provided for each antenna element 20 of the reception antenna element group 20Rx.
  • the echo signal Se received by the plurality of antenna elements 20 of the reception antenna element group 20Rx is amplified by the low noise amplifier 55 .
  • a mixer 56 multiplies the amplified echo signal Se and the local signal SL to generate a beat signal Sb.
  • the signal processing circuit 50 includes, for example, an AD converter, a microcomputer, etc., and performs signal processing on the beat signal Sb to generate position information regarding the distance to the target, direction, etc.
  • the antenna device according to any one of the first to seventh embodiments is used for the plurality of antenna elements 20, the antenna gain of each of the antenna elements 20 can be increased. can. Under the condition that the antenna gain is the same, the size of the antenna device can be reduced.
  • the communication module according to the ninth embodiment includes the antenna device according to any one of the first to seventh embodiments, or a plurality of antenna devices according to the first to seventh embodiments. It is equipped with a combined antenna system.
  • FIG. 15 is a block diagram of a communication module according to the ninth embodiment.
  • a communication module according to the ninth embodiment includes a baseband integrated circuit element (BBIC) 80 , a radio frequency integrated circuit element (RFIC) 60 and a plurality of antenna elements 20 .
  • a plurality of antenna elements 20 are arranged side by side in a direction (x direction) orthogonal to the excitation direction (y direction) of the radiation electrode 30 to form an array antenna.
  • Each of the antenna elements 20 includes one radiation electrode 30 and a dielectric member 40 loaded on the radiation electrode 30 .
  • the dielectric member 40 includes two dielectric block portions 40A spaced apart in the y direction.
  • the high frequency integrated circuit element 60 includes an intermediate frequency amplifier 61, an up-down conversion mixer 62, a transmission/reception switch 63, a power divider 64, a plurality of phase shifters 65, a plurality of attenuators 66, a plurality of transmission/reception switches 67, and a plurality of power It includes an amplifier 68 , a plurality of low noise amplifiers 69 and a plurality of transmission/reception selector switches 70 .
  • An intermediate frequency signal is input from the baseband integrated circuit element 80 to the up/down conversion mixer 62 via the intermediate frequency amplifier 61 .
  • the up-down conversion mixer 62 up-converts the intermediate frequency signal to generate a high frequency signal.
  • the generated high frequency signal is input to the power divider 64 via the transmission/reception selector switch 63 .
  • Each of the high-frequency signals distributed by power divider 64 is input to antenna element 20 via phase shifter 65 , attenuator 66 , transmission/reception selector switch 67 , power amplifier 68 , and transmission/reception selector switch 70 .
  • a high frequency signal received by each of the plurality of antenna elements 20 is input to power divider 64 via transmission/reception selector switch 70 , low noise amplifier 69 , transmission/reception selector switch 67 , attenuator 66 and phase shifter 65 .
  • the high-frequency signal synthesized by the power divider 64 is input to the up-down conversion mixer 62 via the transmission/reception selector switch 63 .
  • the up-down conversion mixer 62 down-converts the high frequency signal to generate an intermediate frequency signal.
  • the generated intermediate frequency signal is input to baseband integrated circuit element 80 via intermediate frequency amplifier 61 .
  • the up-down conversion mixer 62 may employ a direct conversion method in which the high-frequency signal is directly down-converted to a baseband signal.
  • the antenna device according to any one of the first to seventh embodiments is used as the plurality of antenna elements 20 included in the communication module according to the ninth embodiment, the antenna gain of each of the antenna elements 20 is can be enhanced. Under the condition that the antenna gain is the same, the size of the antenna device can be reduced.
  • Second metal pattern 40 Dielectric member 40A Dielectric block part 40B Connection part 41 First metal pattern 45 Solder 50 Signal processing circuit 51 Local oscillator 52 Transmission processing part 53 Switch 54 Power amplifier 55 Low noise amplifier 56 Mixer 57 Reception processing part 60 Radio Frequency Integrated Circuit Devices (RFIC) 61 Intermediate frequency amplifier 62 Up/down conversion mixer 63 Transmission/reception selector switch 64 Power divider 65 Phase shifter 66 Attenuator 67 Transmission/reception selector switch 68 Power amplifier 69 Low-noise amplifier 70 Transmission/reception selector switch 80 Baseband integrated circuit device (BBIC)
  • BBIC Baseband integrated circuit device

Abstract

基板に含まれるグランド導体板から基板の厚さ方向に間隔を隔てて放射電極が配置されている。放射電極に誘電体部材が装荷されている。誘電体部材は、放射電極の励振方向に間隔を隔てて配置された2つの誘電体ブロック部を含む。2つの誘電体ブロック部は、平面視において放射電極の幾何中心を挟む位置に配置され、2つの誘電体ブロック部のそれぞれの一部分が、平面視において放射電極の一部分に重なっており、残りの部分は放射電極の外側に配置されている。

Description

アンテナ装置、レーダモジュール、及び通信モジュール
 本発明は、アンテナ装置、レーダモジュール、及び通信モジュールに関する。
 パッチアンテナの放射電極に誘電体ブロックを装荷することにより、開口効率を高めることができる(例えば、下記の特許文献1参照。)。下記の特許文献1に開示されたパッチアンテナにおいては、パッチアンテナの放射電極を誘電体ブロックが完全に覆うように、放射電極ごとに誘電体ブロックが装荷されている。
特開平1-243605号公報
 パッチアンテナの放射電極に、従来の手法で誘電体ブロックを装荷することによるアンテナ利得の増加には限界がある。所望のアンテナ利得を得るために、放射電極の個数を増やす必要がある。放射電極の個数が増加すると、それぞれの放射電極までの給電線が長くなり、伝送線路損失が大きくなってしまう。このため、放射電極の個数を増やしたことによって得られるアンテナ利得の増加という効果が減殺されてしまう。
 本発明の目的は、パッチアンテナの放射電極に誘電体からなる部材を装荷することによって、従来の構成に比べてアンテナ利得をさらに高めることが可能なアンテナ装置を提供することである。本発明の他の目的は、このアンテナ素子を搭載したレーダモジュール及び通信モジュールを提供することである。
 本発明の一観点によると、
 グランド導体板を含む基板と、
 前記グランド導体板から前記基板の厚さ方向に間隔を隔てて、前記基板に配置された放射電極と、
 前記放射電極に装荷された誘電体部材と
を備え、
 前記誘電体部材は、前記放射電極の励振方向である第1方向に間隔を隔てて配置された2つの誘電体ブロック部を含み、
 前記2つの誘電体ブロック部は、平面視において前記放射電極の幾何中心を挟む位置に配置され、前記2つの誘電体ブロック部のそれぞれの一部分が、平面視において前記放射電極の一部分に重なっており、残りの部分は前記放射電極の外側に配置されているアンテナ装置が提供される。
 本発明の他の観点によると、
 グランド導体板を含む基板と、
 前記基板に設けられた送信用の複数のアンテナ素子と、
 送信用の前記複数のアンテナ素子から放射され、ターゲットで反射した電波を受信する受信用の複数のアンテナ素子と、
 前記複数のアンテナ素子で受信された信号を処理して、ターゲットの位置情報を生成する信号処理回路と
を備え、
 前記複数のアンテナ素子の各々は、
 前記グランド導体板から前記基板の厚さ方向に間隔を隔てて、前記基板に配置された複数の射電極と、
 前記複数の放射電極のそれぞれに装荷された誘電体部材と
を備え、
 前記複数の放射電極の励振方向は第1方向と平行であり、
 前記複数のアンテナ素子は、平面視において前記第1方向と直交する方向に並んで配置されており、
 前記誘電体部材の各々は、
 前記第1方向に間隔を隔てて配置された2つの誘電体ブロック部を含み、
 前記2つの誘電体ブロック部は、平面視において、当該誘電体部材が装荷されている放射電極の幾何中心を挟む位置に配置され、前記2つの誘電体ブロック部のそれぞれの一部分が、平面視において、当該誘電体部材が装荷されている放射電極の一部分に重なっており、残りの部分は放射電極の外側に配置されているレーダモジュールが提供される。
 本発明のさらに他の観点によると、
 グランド導体板を含む基板と、
 前記基板に設けられた複数のアンテナ素子と、
 前記複数のアンテナ素子に高周波信号を供給し、前記複数のアンテナ素子で受信された高周波信号を中間周波信号またはベースバンド信号にダウンコンバートする高周波集積回路素子と
を備え、
 前記複数のアンテナ素子の各々は、
 前記グランド導体板から前記基板の厚さ方向に間隔を隔てて、前記基板に配置された複数の射電極と、
 前記複数の放射電極のそれぞれに装荷された誘電体部材と
を備え、
 前記複数の放射電極の励振方向は第1方向と平行であり、
 前記複数のアンテナ素子は、平面視において前記第1方向と直交する方向に並んで配置されており、
 前記誘電体部材の各々は、
 前記第1方向に間隔を隔てて配置された2つの誘電体ブロック部を含み、
 前記2つの誘電体ブロック部は、平面視において、当該誘電体部材が装荷されている放射電極の幾何中心を挟む位置に配置され、前記2つの誘電体ブロック部のそれぞれの一部分が、平面視において、当該誘電体部材が装荷されている放射電極の一部分に重なっており、残りの部分は放射電極の外側に配置されている通信モジュールが提供される。
 放射電極に装荷された誘電体部材が2つの誘電体ブロック部を含むようにすることにより、アンテナ装置のアンテナ利得を高めることができる。
図1は、第1実施例によるアンテナ装置の斜視図である。 図2Aは、第1実施例によるアンテナ装置の平面図であり、図2Bは図2Aの一点鎖線2B-2Bにおける断面図である。 図3は、比較例によるアンテナ装置の斜視図である。 図4A及び図4Bは、それぞれyz面及びxz面内における指向特性を示すグラフである。 図5A及び図5Bは、それぞれ2つの誘電体ブロック部40Aの間隔が異なるシミュレーションモデルのyz面及びxz面内における指向特性を示すグラフである。 図6は、2つの誘電体ブロック部の間隔と、正面方向のアンテナ利得との関係を示すグラフである。 図7Aは、第2実施例によるアンテナ装置の斜視図であり、図7B及び図7Cは、第2実施例の変形例によるアンテナ装置の斜視図である。 図8A及び図8Bは、それぞれ第3実施例によるアンテナ装置の斜視図及び断面図である。 図9は、第4実施例によるアンテナ装置の斜視図である。 図10は、第5実施例によるアンテナ装置の平面図である。 図11A及び図11Bは、それぞれ第6実施例によるアンテナ装置の斜視図及び平面図である。 図12A及び図12Bは、それぞれ第7実施例によるアンテナ装置の斜視図及び平面図である。 図13は、第8実施例によるレーダモジュールに搭載されたアンテナ装置の平面図である。 図14は、第8実施例によるレーダモジュールのブロック図である。 図15は、第9実施例による通信モジュールのブロック図である。
 [第1実施例]
 図1から図6までの図面を参照して、第1実施例によるアンテナ装置について説明する。
 図1は、第1実施例によるアンテナ装置の斜視図である。図2Aは、第1実施例によるアンテナ装置の平面図であり、図2Bは図2Aの一点鎖線2B-2Bにおける断面図である。
 第1実施例によるアンテナ装置は、基板21、放射電極30,及び誘電体部材40を含む。基板21は、誘電体層と配線層とが交互に積層された多層配線基板であり、内層に配置されたグランド導体板22、一方の表面に配置されたグランド導体板23、及び2つのグランド導体板22、23の間に配置された給電線25を含む。給電線25は、グランド導体板22、23とともにストリップ線路を構成している。
 放射電極30は、グランド導体板22から基板21の厚さ方向に間隔を隔てて配置されている。例えば、放射電極30は、グランド導体板23が配置されている表面とは反対側の表面に配置されている。放射電極30の平面視における形状は例えば正方形または長方形である。放射電極30の1つの縁の中点、または放射電極30の幾何中心と1つの縁の中点との間に、給電点30Aが配置される。放射電極30の幾何中心と給電点30Aとを結ぶ直線の方向をy方向とし、基板21の厚さ方向をz方向とするxyz直交座標系を定義する。
 放射電極30の給電点30Aが、層間接続導体26(図2B)を介して給電線25に接続されている。層間接続導体26は、複数の内層ランド及び複数のビアで構成される。なお、グランド導体板22に開口22Aが設けられており、層間接続導体26は開口22A内を通過する。
 放射電極30に、セラミックまたは樹脂からなる誘電体部材40が装荷されている。誘電体部材40は、2つの誘電体ブロック部40Aを含む。2つの誘電体ブロック部40Aは、相互に分離された個別のブロックで構成されている。誘電体ブロック部40Aは、例えば接着剤により基板21に固定されている。誘電体ブロック部40Aの各々の形状は、直方体または立方体であり、各面がx方向、y方向、またはz方向に対して垂直である。また、誘電体ブロック部40Aのx方向、y方向、及びz方向の寸法は、2つの誘電体ブロック部40Aの間で略同一である。
 2つの誘電体ブロック部40Aは、平面視において放射電極30の幾何中心30C(図2A)を挟むように、相互にy方向に間隔を隔てて配置されている。2つの誘電体ブロック部40Aのそれぞれの一部分が、平面視において放射電極30の一部分に重なっており、残りの部分は、y方向の片側及びx方向の両側に向かって放射電極30の外側まで張り出している。すなわち、残りの部分は、平面視において放射電極30の外側に配置されている。なお、2つの誘電体ブロック部40Aのそれぞれの一部分が、y方向にのみ張り出していてもよい。
 次に、第1実施例によるアンテナ装置の動作について説明する。
 給電点30Aから放射電極30に高周波信号を供給すると、放射電極30がy方向に励振され、放射電極30で共振が生じる。y方向の両端の縁において、電界の振幅が最大になり、y方向の両端の縁が電波の放射源となる。第1実施例では、2つの放射源が、それぞれ平面視において誘電体ブロック部40Aに包含されているため、2つの放射源のそれぞれが誘電体ブロック部40Aに結合する。このため、2つの誘電体ブロック部40Aのそれぞれが誘電体アンテナとして動作する。その結果、アンテナ利得が向上するという優れた効果が得られる。
 所望のアンテナ利得を得るために、放射電極30を複数個配置してアレイ化する場合がある。複数の放射電極30のそれぞれに第1実施例によるアンテナ装置の誘電体部材40を装荷すると、放射電極30ごとのアンテナ利得が向上するため、所望のアンテナ利得を実現するために必要な放射電極30の個数を削減することができる。このため、アンテナ装置の小型化を図ることができる。
 さらに、放射電極30の個数を削減すると、放射電極30のそれぞれに高周波信号を供給する給電線25の線路長を短くすることが可能である。その結果、給電線25による伝送損失を低減させることができる。特に、伝送損失が増大しやすいミリ波帯のアンテナ装置に第1実施例によるアンテナ装置を適用することにより、効果が顕著に現れる。
 第1実施例の効果を確認するために、第1実施例及び比較例によるアンテナ装置のアンテナ利得を求めるシミュレーションを行った。次に、シミュレーション結果について説明する。
 図3は、比較例によるアンテナ装置の斜視図である。比較例によるアンテナ装置においては、誘電体部材40が1つの誘電体ブロックで構成されている。平面視において、放射電極30が誘電体部材40に包含されている。
 次に、シミュレーションモデルについて説明する。
 第1実施例によるアンテナ装置のシミュレーションモデルにおいては、放射電極30のx方向及びy方向の寸法を、それぞれ0.5mm及び0.7mmとした。誘電体ブロック部40Aのそれぞれのx方向、y方向、及びz方向の寸法を、それぞれ1.0mm、1.5mm、及び1.6mmとした。2つの誘電体ブロック部40Aのy方向の間隔を0.5mmとした。平面視において、2つの誘電体ブロック部40Aの幾何中心を両端とする線分の中点が、放射電極30の幾何中心に一致する。このとき、誘電体ブロック部40Aが放射電極30からx方向の両側に張り出している部分のそれぞれのx方向の寸法は0.25mmになる。誘電体ブロック部40Aの比誘電率を6とした。
 比較例(図3)によるアンテナ装置のシミュレーションモデルにおいては、放射電極30の寸法を、第1実施例によるアンテナ装置のシミュレーションモデルの放射電極30の寸法と同一にした。誘電体ブロックの形状及び寸法を、第1実施例によるアンテナ装置のシミュレーションモデルの1つの誘電体ブロック部40Aの形状及び寸法と同一にした。
 さらに、誘電体ブロックを装荷しないパッチアンテナについても、シミュレーションを行った。誘電体ブロックを装荷しないシミュレーションモデルにおいては、放射電極30のx方向及びy方向の寸法を、それぞれ1.1mm及び1.04mmとした。いずれのシミュレーションモデルにおいても、共振周波数が79GHzになるように。各部の寸法を調整している。
 図4A及び図4Bは、それぞれyz面内及びxz面内における指向特性を示すグラフである。図4Aの横軸は、z方向からy軸の正方向への極角θyを単位「度」で表し、図4Bの横軸は、z方向からx軸の正方向への極角θxを単位「度」で表す。図4A及び図4Bの縦軸はアンテナ利得を単位「dBi」で表す。図4A及び図4Bに示した曲線a、b、cは、それぞれ第1実施例によるアンテナ装置、図3に示した比較例によるアンテナ装置、及び誘電体ブロックを装荷していないアンテナ装置のアンテナ利得のシミュレーション結果を示す。
 アンテナ装置の正面方向(θx=θy=0°)におけるアンテナ利得は、第1実施例によるアンテナ装置が最も高く、誘電体ブロックを装荷していないアンテナ装置が最も低くなっている。これにより、誘電体ブロックを装荷することにより、正面方向のアンテナ利得が高くなることがわかる。さらに、第1実施例のように2つの誘電体ブロック部40Aをy方向に間隔を隔てて配置することにより、正面方向のアンテナ利得がさらに高くなることがわかる。
 また、y方向に関しては、極角θyが30°から40°の範囲内にヌル点が現れている。これは、2つの誘電体ブロック部40Aがそれぞれ放射源として機能していることを示唆する。
 次に、第1実施例によるアンテナ装置の2つの誘電体ブロック部40Aの間隔が異なる複数のシミュレーションモデルについてシミュレーションを行った結果について説明する。
 図5A及び図5Bは、それぞれ2つの誘電体ブロック部40Aの間隔が異なるシミュレーションモデルのyz面及びxz面内における指向特性を示すグラフである。図5Aの横軸は、z方向からy方向に向かう極角θyを単位「度」で表し、図5Bの横軸は、z方向からx方向に向かう極角θxを単位「度」で表す。図5A及び図5Bの縦軸はアンテナ利得を単位「dBi」で表す。図5A及び図5Bの各曲線に付された数値は、2つの誘電体ブロック部40Aの間隔を示している。
 2つの誘電体ブロック部40Aの間隔が変化すると、アンテナ装置の指向特性、及び正面方向におけるアンテナ利得も変化することがわかる。
 図6は、2つの誘電体ブロック部40Aの間隔と、正面方向のアンテナ利得との関係を示すグラフである。横軸は、2つの誘電体ブロック部40Aの間隔を単位「mm」で表し、縦軸は、正面方向のアンテナ利得を単位「dBi」で表す。間隔が0.7mmのシミュレーションモデルにおいては、平面視において2つの誘電体ブロック部40Aのx方向に平行な縁が放射電極30のx方向に平行な縁に一致している。すなわち、誘電体ブロック部40Aと放射電極30とは、平面視において接しており、重なり持っていない。
 正面方向のアンテナ利得は、2つの誘電体ブロック部40Aの間隔に依存し、間隔が0.5mm以上0.6mm以下の範囲で最大値を示す。2つの誘電体ブロック部40Aを近付けすぎると、図3に示した比較例のように1つの誘電体ブロックを装荷した構成との差が小さくなり、アンテナ利得が低下する。2つの誘電体ブロック部40Aの間隔には、正面方向のアンテナ利得を最大化するための好ましい範囲が存在することがわかる。
 図6から、2つの誘電体ブロック部40Aの間隔が0.3mm以上の範囲では、平面視において誘電体ブロック部40Aが放射電極30に接している場合と同等のアンテナ利得が得られることがわかる。このことから、2つの誘電体ブロック部40Aの間隔は、放射電極30のy方向の寸法の40%以上にすることが好ましいと考えられる。また、図6から、2つの誘電体ブロック部40Aの間隔を、放射電極30のy方向の寸法の70%以上85%以下にすることがより好ましいと考えられる。
 次に、誘電体部材40(図1、図2A、図2B)の寸法及び誘電率について説明する。誘電体部材40を構成する2つの誘電体ブロック部40Aのそれぞれの好ましい寸法は、放射すべき電波の誘電体ブロック部40A内における波長に依存する。すなわち、放射電極30の共振周波数における波長、及び誘電体ブロック部40Aの誘電率から、誘電体ブロック部40Aの好ましい寸法が決まる。誘電体ブロック部40Aの寸法は、シミュレーションまたは評価実験を行って、アンテナ利得が最大になるように調整すればよい。
 次に、第1実施例の変形例について説明する。
 第1実施例では、誘電体ブロック部40Aの形状を立方体または直方体としたが、その他の形状としてもよい。例えば、誘電体ブロック部40Aの形状を円柱状にしてもよいし、楕円柱状にしてもよい。
 [第2実施例]
 次に、図7Aを参照して第2実施例によるアンテナ装置について説明する。以下、第1実施例によるアンテナ装置(図1、図2A、図2B)と共通の構成については説明を省略する。
 図7Aは、第2実施例によるアンテナ装置の斜視図である。第1実施例では、誘電体部材40が、相互に分離された2つの誘電体ブロック部40Aで構成されている。これに対して第2実施例では、2つの誘電体ブロック部40Aが、接続部40Bによって相互に接続されている。接続部40Bは、2つの誘電体ブロック部40Aの相互に対向する面の下側(基板21側)の縁を含む一部の領域に連続している。2つの誘電体ブロック部40A及び接続部40Bの、基板21側を向く面は、同一の平面上に位置する。2つの誘電体ブロック部40A及び接続部40Bは、同一の誘電体材料で形成され、一体成形されている。
 接続部40Bのy方向に直交する断面(xz平面に平行な断面)は、2つの誘電体ブロック部40Aのそれぞれのy方向に直交する断面より小さい。このため、2つの誘電体ブロック部40Aの間には、空隙が確保されている。
 次に、第2実施例の優れた効果について説明する。
 第2実施例においては、2つの誘電体ブロック部40Aが接続部40Bによって相互に接続されているが、2つの誘電体ブロック部40Aの間に空隙が確保されているため、2つの誘電体ブロック部40Aは、別々のブロックで構成した第1実施例による誘電体ブロック部40Aと同様の機能を持つ。このため、第2実施例においても、アンテナ利得を高めることができる。
 さらに、第2実施例では、2つの誘電体ブロック部40Aを含む誘電体部材40が一体成形されるため、アンテナ装置の部品点数を削減することができる。また、第2実施例では、2つの誘電体ブロック部40Aの間隔の精度が、基板21への誘電体部材40の固着時の位置精度に依存しない。このため、2つの誘電体ブロック部40Aの間隔の寸法精度を高めることが容易である。
 接続部40Bのy方向に垂直な断面の面積と、誘電体ブロック部40Aのy方向に垂直な断面の面積との比が1に近づくと、誘電体部材40が2つの誘電体ブロック部40Aを含むことの効果が小さくなる。2つの誘電体ブロック部40Aを配置することの十分な効果を得るために、接続部40Bのy方向に垂直な断面の面積と、誘電体ブロック部40Aのy方向に垂直な断面の面積との比を0.3以下にすることが好ましい。
 次に、図7B及び図7Cを参照して第2実施例の変形例について説明する。
 図7B及び図7Cは、第2実施例の変形例によるアンテナ装置の斜視図である。第2実施例では、2つの誘電体ブロック部40Aを接続する接続部40Bが1つ設けられているが、図7B及び図7Cに示した変形例では、接続部40Bが2つ設けられている。
 図7Bに示した変形例では、2つの誘電体ブロック部40Aの相互に対向する面の下端及び上端の2か所(すなわちz方向の両端)に、それぞれ接続部40Bが接続されている。図7Cに示した変形例では、2つの誘電体ブロック部40Aの相互に対向する面のx方向の両端に、それぞれ接続部40Bが接続されている。図7B及び図7Cに示した変形例のように、接続部40Bを複数個設けてもよい。
 [第3実施例]
 次に、図8A及び図8Bを参照して第3実施例によるアンテナ装置について説明する。以下、第1実施例によるアンテナ装置(図1、図2A、図2B)と共通の構成については説明を省略する。
 図8A及び図8Bは、それぞれ第3実施例によるアンテナ装置の斜視図及び断面図である。第1実施例(図1、図2A、図2B)では、2つの誘電体ブロック部40Aが接着剤等によって基板21に固定されている。これに対して第3実施例では、2つの誘電体ブロック部40Aがハンダによって基板21に固定されている。
 誘電体ブロック部40Aの基板21に対向する面に、2つの第1金属パターン41(図8B)が設けられている。2つの第1金属パターン41は、y方向に間隔を隔てて配置されている。例えば、2つの第1金属パターン41は、誘電体ブロック部40Aのそれぞれの下面の、y方向の両端に配置されている。基板21の上面に、平面視において放射電極30をy方向に挟む位置に、それぞれ第2金属パターン31(図8B)が設けられている。
 誘電体ブロック部40Aの一方の第1金属パターン41は放射電極30にハンダ45を介して固着され、他方の第1金属パターン41は第2金属パターン31にハンダ45を介して固着されている。
 次に、第3実施例の優れた効果について説明する。
 第3実施例においても第1実施例と同様に、アンテナ装置のアンテナ利得を高めることができる。第3実施例のように、誘電体ブロック部40Aを、接着剤に代えてハンダ45によって基板21に固定してもよい。放射電極30、第2金属パターン31、及び第1金属パターン41の相対的な位置を調整しておくことにより、ハンダリフロー時に誘電体ブロック部40Aを自己整合的に位置決めすることができる。
 次に、第3実施例の変形例について説明する。
 第3実施例では、放射電極30をハンダ45による接続のための金属パターンとして利用しているが、放射電極30をハンダによる固着に利用しない構成を採用してもよい。この構成を採用する変形例では、誘電体ブロック部40Aごとに、基板21に2つの第2金属パターン31を配置する。この場合、誘電体ブロック部40Aの2つの第1金属パターン41を、基板21の2つの第2金属パターン31にハンダ45を介して固着すればよい。
 [第4実施例]
 次に、図9を参照して第4実施例によるアンテナ装置について説明する。以下、第1実施例によるアンテナ装置(図1、図2A、図2B)と共通の構成については説明を省略する。
 図9は、第4実施例によるアンテナ装置の斜視図である。第1実施例(図1、図2A、図2B)では、2つの誘電体ブロック部40Aのそれぞれの形状が立方体または直方体である。これに対して第4実施例においては、2つの誘電体ブロック部40Aの各々がテーパ形状部分を含む。
 例えば、誘電体ブロック部40Aの基板21側の一部分においては、x方向の寸法が一定であり、それよりも上方(z軸の正方向)の部分においては、x方向の寸法が、基板21から上方に向かって小さくなっている。
 次に、第4実施例の優れた効果について説明する。
 第4実施例においても第1実施例と同様に、2つの誘電体ブロック部40Aをy方向に間隔を隔てて配置することにより、アンテナ利得を高めることができる。さらに、第4実施例では、誘電体ブロック部40Aの形状を立方体または直方体から変化させることにより、アンテナ装置の指向性を変化させることができる。第4実施例のように、誘電体ブロック部40Aのx方向の寸法を上方に向かって小さくすることにより、xz面内に関する指向特性を広くすることができる。
 次に、第4実施例の変形例について説明する。
 第4実施例によるアンテナ装置の誘電体ブロック部40Aは、上方に向かってx方向の寸法が小さくなるようなテーパ形状部分を含むが、x方向の寸法及びy方向の寸法の少なくとも一方が、上方に向かって小さくなるようなテーパ形状部分を含むようにしてもよい。例えば、x方向の寸法を一定にし、y方向の寸法を上方に向かって小さくしてもよいし、x方向及びy方向の両方の寸法を、上方に向かって小さくなるようにしてもよい。例えば、誘電体ブロック部40Aの形状を四角錐台、円錐台等にしてもよい。
 [第5実施例]
 次に、図10を参照して第5実施例によるアンテナ装置について説明する。以下、第1実施例によるアンテナ装置(図1、図2A、図2B)と共通の構成については説明を省略する。
 図10は、第5実施例によるアンテナ装置の平面図である。第1実施例(図1、図2A、図2B)では、放射電極30の平面視における形状が正方形または長方形であるが、第5実施例によるアンテナ装置の放射電極30の平面視における形状は円形である。放射電極30の幾何中心30Cをy方向に移動させた位置に給電点30Aが設けられている。第5実施例においても第1実施例と同様に、放射電極30の励振方向はy方向と平行である。
 2つの誘電体ブロック部40Aは、第1実施例と同様に、放射電極30の幾何中心30Cをy方向に挟む位置に配置されている。また、誘電体ブロック部40Aのそれぞれの一部分が、平面視において放射電極30の一部分と重なっている。
 次に、第5実施例の優れた効果について説明する。
 第5実施例においても第1実施例と同様に、放射電極30のうち電界強度が最大となる2箇所が、それぞれ平面視において誘電体ブロック部40Aに包含されている。このため、放射源のそれぞれが誘電体ブロック部40Aと結合する。このため、第1実施例と同様に、アンテナ利得を高めることができる。
 次に、第5実施例の変形例について説明する。第5実施例では、放射電極30の平面視における形状が円形であるが、その他の形状にしてもよい。例えば、正方形の四隅を小さな正方形状に切り落とした形状、角丸長方形状等にしてもよい。
 [第6実施例]
 次に、図11A及び図11Bを参照して第6実施例によるアンテナ装置について説明する。以下、第1実施例によるアンテナ装置(図1、図2A、図2B)と共通の構成については説明を省略する。
 図11A及び図11Bは、それぞれ第6実施例によるアンテナ装置の斜視図及び平面図である。第1実施例(図1、図2A、図2B)によるアンテナ装置は、1つの放射電極30を有している。これに対して第6実施例によるアンテナ装置は、2つの放射電極30を有している。2つの放射電極30は、y方向に間隔を隔てて配置されている。
 2つの放射電極30の相互に対向する縁のそれぞれの中点に、給電点30Aが設けられている。1本の給電線25が分岐点25Aで分岐され、分岐後の2本の給電線25が、それぞれ2つの給電点30Aに接続されている。分岐点25Aから一方の給電点30Aまでの線路長と、他方の給電点30Aまでの線路長との差が、放射電極30の共振周波数に相当する波長の1/2に等しい。このため、2つの給電点30Aは逆相で励振される。また、2つの放射電極30の一方においては、給電点30Aがy軸の正側の端部に設けられており、他方においてはy軸の負側の端部に設けられている。このため、2つの放射電極30はy方向に同相で励振される。
 放射電極30のそれぞれに対して誘電体部材40が装荷されている。誘電体部材40の各々は、2つの誘電体ブロック部40Aで構成されている。
 次に、第6実施例の優れた効果について説明する。
 第6実施例においては、2つの放射電極30のそれぞれのアンテナ利得を高めることができる。このため、アンテナ装置全体としての利得を高めることができる。また、2つの放射電極30の相互に対向する縁に給電点30Aを設けているため、分岐点25Aから2つの給電点30Aまでの合計の線路長を短くすることができる。これにより、給電線25を伝送される高周波信号の伝送損失の増大を抑制することができる。また、2つの給電点30Aを逆相で励振することにより、2つの放射電極30をy方向に同相で励振することができる。
 次に、第6実施例の変形例について説明する。
 第6実施例では、2つの放射電極30を配置しているが、3つ以上の複数の放射電極30を配置してもよい。3つ以上の複数の放射電極30を配置する場合も、すべての放射電極30がy方向に同相で励振されるように、給電点30Aの位置及び給電線25の線路長が調整される。放射電極30のそれぞれのアンテナ利得を高めることができるため、目標とするアンテナ利得を実現するために必要な放射電極30の個数を削減することができる。これにより、アンテナ装置の小型化を図ることが可能になる。
 第6実施例では給電線25を分岐点25Aで2分岐させて2つの放射電極30に高周波信号を供給している。その他の構成として、分配器を用いて高周波信号を複数の放射電極30に分配してもよい。また、複数の放射電極30を、所定の位相差を設けて励振してもよい。位相差を設けることにより、アンテナ装置のメインビームの方向を正面方向から傾けることができる。
 [第7実施例]
 次に、図12A及び図12Bを参照して第7実施例によるアンテナ装置について説明する。以下、第6実施例によるアンテナ装置(図11A、図11B)と共通の構成については説明を省略する。
 図12A及び図12Bは、それぞれ第7実施例によるアンテナ装置の斜視図及び平面図である。第6実施例によるアンテナ装置(図11A、図11B)においては、複数の放射電極30への給電方式として並列給電方式が採用されているが、第7実施例によるアンテナ装置においては、直列給電方式が採用される。具体的には、給電線25が1番目の放射電極30の給電点30Aに接続される。1番目の放射電極30と2番目の放射電極30の給電点30Aとが、放射電極間を接続する給電線25によって接続される。同様に、前段の放射電極30と後段の放射電極30の給電点30Aとが、他の給電線25により接続される。前段の放射電極30の給電点30Aに対して、後段の放射電極30の給電点30Aにおける位相が360°遅れるように、放射電極間の給電線25の線路長が調整されている。
 相互に隣り合う放射電極30の間に1つの誘電体ブロック部40Aが配置されている。この1つの誘電体ブロック部40Aは、平面視において両側の放射電極30のそれぞれの一部分と重なっている、このように、1つの誘電体ブロック部40Aが、y方向に隣り合う2つの放射電極30で共用されている。
 次に、第7実施例の優れた効果について説明する。第7実施例では直列給電方式が採用されているため、並列給電方式を採用しているアンテナ装置と比べて、給電線25の合計線路長を短くすることができる。これにより、給電線25を伝送される高周波信号の伝送損失を低減させることができる。
 また、第7実施例では、y方向の両端に配置された誘電体ブロック部40Aは、1つの放射電極30に結合しているのに対し、両端に配置された誘電体ブロック部40A以外の誘電体ブロック部40A(以下、内側の誘電体ブロック部40Aという。)は、それぞれ2つの放射電極30に結合している。このため、内側の誘電体ブロック部40Aは、両端の誘電体ブロック部40Aよりも強く励振される。複数の誘電体ブロック部40Aを、それぞれ電波の放射源としたとき、両端の放射源から放射される電波のエネルギが、内側の放射源から放射される電波のエネルギより低くなる。このため、yz面内における放射パターンに現れるサイドローブを抑制することができる。
 [第8実施例]
 次に、図13及び図14を参照して第8実施例によるレーダモジュールについて説明する。第8実施例によるレーダモジュールには、第1実施例から第7実施例までのいずれかの実施例によるアンテナ装置、または第1実施例から第7実施例までの実施例による複数のアンテナ装置を組み合わせたアンテナ装置が搭載されている。
 図13は、第8実施例によるレーダモジュールに搭載されたアンテナ装置の平面図である。第8実施例によるアンテナ装置は、複数のアンテナ素子20からなる送信用のアンテナ素子群20Txと、複数のアンテナ素子20からなる受信用のアンテナ素子群20Rxとを含む。アンテナ素子20の各々は、1つの放射電極30及びそれに装荷された誘電体部材40を含む。誘電体部材40は、励振方向に間隔を隔てて配置された2つの誘電体ブロック部40Aを含む。
 複数のアンテナ素子20は、平面視において放射電極30の励振方向(y方向)と直交する方向(x方向)に一列に並んで配置されている。例えば、送信用のアンテナ素子群20Txは2つのアンテナ素子20を含み、受信用のアンテナ素子群20Rxは4つのアンテナ素子20を含む。
 図14は、第8実施例によるレーダモジュールのブロック図である。このレーダモジュールは、時分割多元接続(TDMA)、周波数変調連続波(FMCW)、及びマルチ入力マルチ出力(MIMO)の機能を含んでいる。
 ローカル発振器51が、信号処理回路50からのチャープ制御信号Scに基づいて、時間と共に周波数が線形に増加または減少するローカル信号SLを出力する。ローカル信号SLは、送信処理部52及び受信処理部57に与えられる。
 送信処理部52は、複数のスイッチ53とパワーアンプ54とを含む。スイッチ53及びパワーアンプ54は、送信用のアンテナ素子群20Txのアンテナ素子20ごとに設けられている。スイッチ53は、信号処理回路50からのスイッチング制御信号Ssに基づいてオンオフされる。スイッチ53がオンになっている状態で、ローカル信号SLがパワーアンプ54に入力される。パワーアンプ54は、ローカル信号SLの電力を増幅して送信用のアンテナ素子群20Txのアンテナ素子20に供給する。
 送信用のアンテナ素子群20Txのアンテナ素子20から放射された電波がターゲットで反射され、反射波が受信用のアンテナ素子群20Rxの複数のアンテナ素子20で受信される。
 受信処理部57は、複数のローノイズアンプ55とミキサ56とを含む。ローノイズアンプ55及びミキサ56は、受信用のアンテナ素子群20Rxのアンテナ素子20ごとに設けられている。受信用のアンテナ素子群20Rxの複数のアンテナ素子20で受信されたエコー信号Seがローノイズアンプ55で増幅される。ミキサ56は、増幅されたエコー信号Seとローカル信号SLとを乗算し、ビート信号Sbを生成する。
 信号処理回路50は、例えばADコンバータ、マイクロコンピュータ等を備えており、ビート信号Sbに対する信号処理を行うことにより、ターゲットまでの距離及び方位等に関する位置情報を生成する。
 次に、第8実施例の優れた効果について説明する。
 第8実施例では、複数のアンテナ素子20に、第1実施例から第7実施例までのいずれかの実施例によるアンテナ装置を用いているため、アンテナ素子20のそれぞれのアンテナ利得を高めることができる。アンテナ利得が同一の条件の下では、アンテナ装置を小型化することができる。
 [第9実施例]
 次に、図15を参照して第9実施例による通信モジュールについて説明する。第9実施例による通信モジュールには、第1実施例から第7実施例までのいずれかの実施例によるアンテナ装置、または第1実施例から第7実施例までの実施例による複数のアンテナ装置を組み合わせたアンテナ装置が搭載されている。
 図15は、第9実施例による通信モジュールのブロック図である。
 第9実施例による通信モジュールは、ベースバンド集積回路素子(BBIC)80、高周波集積回路素子(RFIC)60、及び複数のアンテナ素子20を含む。複数のアンテナ素子20は、放射電極30の励振方向(y方向)と直交する方向(x方向)に並んで配置されており、アレイアンテナを構成している。アンテナ素子20の各々は、1つの放射電極30、放射電極30に装荷された誘電体部材40を含む。誘電体部材40は、y方向に間隔を隔てて配置された2つの誘電体ブロック部40Aを含む。
 高周波集積回路素子60は、中間周波増幅器61、アップダウンコンバート用ミキサ62、送受信切替スイッチ63、パワーディバイダ64、複数の移相器65、複数のアッテネータ66、複数の送受信切替スイッチ67、複数のパワーアンプ68、複数のローノイズアンプ69、及び複数の送受信切替スイッチ70を含む。
 まず、送信機能について説明する。ベースバンド集積回路素子80から、中間周波増幅器61を介してアップダウンコンバート用ミキサ62に、中間周波信号が入力される。アップダウンコンバート用ミキサ62は、中間周波信号をアップコンバートして高周波信号を生成する。生成された高周波信号は、送受信切替スイッチ63を介してパワーディバイダ64に入力される。パワーディバイダ64で分配された高周波信号の各々が、移相器65、アッテネータ66、送受信切替スイッチ67、パワーアンプ68、送受信切替スイッチ70を経由してアンテナ素子20に入力される。
 次に、受信機能について説明する。複数のアンテナ素子20の各々で受信された高周波信号が、送受信切替スイッチ70、ローノイズアンプ69、送受信切替スイッチ67、アッテネータ66、移相器65を経由してパワーディバイダ64に入力される。パワーディバイダ64で合成された高周波信号が、送受信切替スイッチ63を経由して、アップダウンコンバート用ミキサ62に入力される。アップダウンコンバート用ミキサ62は、高周波信号をダウンコンバートして中間周波信号を生成する。生成された中間周波信号は、中間周波増幅器61を経由してベースバンド集積回路素子80に入力される。なお、アップダウンコンバート用ミキサ62が、高周波信号を直接ベースバンド信号にダウンコンバートするダイレクトコンバージョン方式を採用してもよい。
 次に、第9実施例の優れた効果について説明する。
 第9実施例による通信モジュールに含まれる複数のアンテナ素子20として、第1実施例から第7実施例までのいずれかの実施例によるアンテナ装置が用いられるため、アンテナ素子20のそれぞれのアンテナ利得を高めることができる。アンテナ利得が同一の条件の下では、アンテナ装置を小型化することができる。
 上述の各実施例は例示であり、異なる実施例で示した構成の部分的な置換または組み合わせが可能であることは言うまでもない。複数の実施例の同様の構成による同様の作用効果については実施例ごとには逐次言及しない。さらに、本発明は上述の実施例に制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。
20 アンテナ素子
20Rx 受信用のアンテナ素子群
20Tx 送信用のアンテナ素子群
21 基板
22 グランド導体板
22A 開口
23 グランド導体板
25 給電線
25A 分岐点
26 層間接続導体
30 放射電極
30A 給電点
30C 放射電極の幾何中心
31 第2金属パターン
40 誘電体部材
40A 誘電体ブロック部
40B 接続部
41 第1金属パターン
45 ハンダ
50 信号処理回路
51 ローカル発振器
52 送信処理部
53 スイッチ
54 パワーアンプ
55 ローノイズアンプ
56 ミキサ
57 受信処理部
60 高周波集積回路素子(RFIC)
61 中間周波増幅器
62 アップダウンコンバート用ミキサ
63 送受信切替スイッチ
64 パワーディバイダ
65 移相器
66 アッテネータ
67 送受信切替スイッチ
68 パワーアンプ
69 ローノイズアンプ
70 送受信切替スイッチ
80 ベースバンド集積回路素子(BBIC)
 

Claims (11)

  1.  グランド導体板を含む基板と、
     前記グランド導体板から前記基板の厚さ方向に間隔を隔てて、前記基板に配置された放射電極と、
     前記放射電極に装荷された誘電体部材と
    を備え、
     前記誘電体部材は、前記放射電極の励振方向である第1方向に間隔を隔てて配置された2つの誘電体ブロック部を含み、
     前記2つの誘電体ブロック部は、平面視において前記放射電極の幾何中心を挟む位置に配置され、前記2つの誘電体ブロック部のそれぞれの一部分が、平面視において前記放射電極の一部分に重なっており、残りの部分は前記放射電極の外側に配置されているアンテナ装置。
  2.  前記2つの誘電体ブロック部のそれぞれの形状は直方体または立方体である請求項1に記載のアンテナ装置。
  3.  前記2つの誘電体ブロック部のそれぞれの形状は、前記第1方向の寸法、及び平面視において前記第1方向と直交する方向の寸法の少なくとも一方が、上方に向かって小さくなっている請求項1に記載のアンテナ装置。
  4.  前記2つの誘電体ブロック部は、相互に分離された個別のブロックで構成されている請求項1乃至3のいずれか1項に記載のアンテナ装置。
  5.  前記誘電体部材は、前記2つの誘電体ブロック部を相互に接続する接続部を、さらに含み、前記接続部の前記第1方向に直交する断面は、前記2つの誘電体ブロック部のそれぞれの前記第1方向に直交する断面よりも小さい請求項1乃至3のいずれか1項に記載のアンテナ装置。
  6.  前記放射電極は、前記第1方向に並んで複数個配置されており、
     前記放射電極のそれぞれに前記誘電体部材が装荷されている請求項1乃至5のいずれか1項に記載のアンテナ装置。
  7.  前記放射電極のうち相互に隣り合う2つの放射電極の間に配置された誘電体ブロック部は、平面視において両側の放射電極のそれぞれの一部分と重なっており、相互に隣り合う2つの放射電極で共用されている請求項6に記載のアンテナ装置。
  8.  前記2つの誘電体ブロック部の各々の、前記基板に対向する面に設けられた第1金属パターンを、さらに備え、
     前記第1金属パターンが前記放射電極にハンダによって固定されている請求項1乃至7のいずれか1項に記載のアンテナ装置。
  9.  前記第1金属パターンは、前記2つの誘電体ブロック部の各々の、前記基板に対向する面の2か所に設けられており、
     前記基板の、前記2つの誘電体ブロック部の各々に対向する面の2か所に設けられた第2金属パターンを、さらに備え、
     前記第1金属パターンのうち前記放射電極に固定されていない方の第1金属パターンは、ハンダによって前記第2金属パターンに固定されている請求項8に記載のアンテナ装置。
  10.  グランド導体板を含む基板と、
     前記基板に設けられた送信用の複数のアンテナ素子と、
     送信用の前記複数のアンテナ素子から放射され、ターゲットで反射した電波を受信する受信用の複数のアンテナ素子と、
     前記複数のアンテナ素子で受信された信号を処理して、ターゲットの位置情報を生成する信号処理回路と
    を備え、
     前記複数のアンテナ素子の各々は、
     前記グランド導体板から前記基板の厚さ方向に間隔を隔てて、前記基板に配置された複数の射電極と、
     前記複数の放射電極のそれぞれに装荷された誘電体部材と
    を備え、
     前記複数の放射電極の励振方向は第1方向と平行であり、
     前記複数のアンテナ素子は、平面視において前記第1方向と直交する方向に並んで配置されており、
     前記誘電体部材の各々は、
     前記第1方向に間隔を隔てて配置された2つの誘電体ブロック部を含み、
     前記2つの誘電体ブロック部は、平面視において、当該誘電体部材が装荷されている放射電極の幾何中心を挟む位置に配置され、前記2つの誘電体ブロック部のそれぞれの一部分が、平面視において、当該誘電体部材が装荷されている放射電極の一部分に重なっており、残りの部分は放射電極の外側に配置されているレーダモジュール。
  11.  グランド導体板を含む基板と、
     前記基板に設けられた複数のアンテナ素子と、
     前記複数のアンテナ素子に高周波信号を供給し、前記複数のアンテナ素子で受信された高周波信号を中間周波信号またはベースバンド信号にダウンコンバートする高周波集積回路素子と
    を備え、
     前記複数のアンテナ素子の各々は、
     前記グランド導体板から前記基板の厚さ方向に間隔を隔てて、前記基板に配置された複数の射電極と、
     前記複数の放射電極のそれぞれに装荷された誘電体部材と
    を備え、
     前記複数の放射電極の励振方向は第1方向と平行であり、
     前記複数のアンテナ素子は、平面視において前記第1方向と直交する方向に並んで配置されており、
     前記誘電体部材の各々は、
     前記第1方向に間隔を隔てて配置された2つの誘電体ブロック部を含み、
     前記2つの誘電体ブロック部は、平面視において、当該誘電体部材が装荷されている放射電極の幾何中心を挟む位置に配置され、前記2つの誘電体ブロック部のそれぞれの一部分が、平面視において、当該誘電体部材が装荷されている放射電極の一部分に重なっており、残りの部分は放射電極の外側に配置されている通信モジュール。
     
PCT/JP2021/038990 2021-01-25 2021-10-21 アンテナ装置、レーダモジュール、及び通信モジュール WO2022158061A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022576975A JPWO2022158061A1 (ja) 2021-01-25 2021-10-21
US18/355,829 US20230361489A1 (en) 2021-01-25 2023-07-20 Antenna device, radar module, and communication module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021009627 2021-01-25
JP2021-009627 2021-01-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/355,829 Continuation US20230361489A1 (en) 2021-01-25 2023-07-20 Antenna device, radar module, and communication module

Publications (1)

Publication Number Publication Date
WO2022158061A1 true WO2022158061A1 (ja) 2022-07-28

Family

ID=82548694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038990 WO2022158061A1 (ja) 2021-01-25 2021-10-21 アンテナ装置、レーダモジュール、及び通信モジュール

Country Status (3)

Country Link
US (1) US20230361489A1 (ja)
JP (1) JPWO2022158061A1 (ja)
WO (1) WO2022158061A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01243605A (ja) * 1988-03-24 1989-09-28 Tetsuo Tsugawa 誘電体装荷アレイアンテナ
JPH098541A (ja) * 1995-06-20 1997-01-10 Matsushita Electric Ind Co Ltd 誘電体共振器アンテナ
JP2000307333A (ja) * 1999-04-26 2000-11-02 Hitachi Metals Ltd アンテナ装置
JP2010141566A (ja) * 2008-12-11 2010-06-24 Denso Corp 誘電体装荷アンテナ
WO2020066453A1 (ja) * 2018-09-27 2020-04-02 株式会社村田製作所 アンテナ装置及び通信装置
WO2020140019A1 (en) * 2018-12-27 2020-07-02 Qualcomm Incorporated Antenna and device configurations

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01243605A (ja) * 1988-03-24 1989-09-28 Tetsuo Tsugawa 誘電体装荷アレイアンテナ
JPH098541A (ja) * 1995-06-20 1997-01-10 Matsushita Electric Ind Co Ltd 誘電体共振器アンテナ
JP2000307333A (ja) * 1999-04-26 2000-11-02 Hitachi Metals Ltd アンテナ装置
JP2010141566A (ja) * 2008-12-11 2010-06-24 Denso Corp 誘電体装荷アンテナ
WO2020066453A1 (ja) * 2018-09-27 2020-04-02 株式会社村田製作所 アンテナ装置及び通信装置
WO2020140019A1 (en) * 2018-12-27 2020-07-02 Qualcomm Incorporated Antenna and device configurations

Also Published As

Publication number Publication date
US20230361489A1 (en) 2023-11-09
JPWO2022158061A1 (ja) 2022-07-28

Similar Documents

Publication Publication Date Title
JP6750738B2 (ja) アンテナモジュールおよび通信装置
JP6705577B1 (ja) アンテナ素子、アンテナモジュールおよび通信装置
CN109845034B (zh) 天线元件、天线模块以及通信装置
US10950945B2 (en) Antenna element, antenna module, and communication apparatus
KR102466972B1 (ko) 스위칭 가능한 송수신 페이즈드 어레이 안테나
US8957819B2 (en) Dielectric antenna and antenna module
US6232920B1 (en) Array antenna having multiple independently steered beams
JPWO2019026595A1 (ja) アンテナモジュールおよび通信装置
US10886630B2 (en) Antenna module and communication device
US20090140943A1 (en) Slot antenna for mm-wave signals
EP1622221A1 (en) Circular polarised array antenna
US11581635B2 (en) Antenna module
WO2020261806A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
JP6777273B1 (ja) アンテナモジュールおよびそれを搭載した通信装置
US20220173530A1 (en) Antenna device and communication device
CN112703638B (zh) 具有独立旋转的辐射元件的天线阵列
CN113097736B (zh) 一种新型频率及波束可重构天线
JP6798656B1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2022158061A1 (ja) アンテナ装置、レーダモジュール、及び通信モジュール
CN114336043B (zh) 一种小型化集成相控阵天线及其设计方法
WO2023090182A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2023037805A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
CN112055918B (zh) 天线模块
WO2024034188A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2023032581A1 (ja) アンテナモジュール、およびそれを搭載した通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21921164

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022576975

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21921164

Country of ref document: EP

Kind code of ref document: A1