WO2021032413A1 - Système de batterie pour véhicule à moteur comprenant une unité de commutation pour chauffer les éléments de batterie, procédé pour faire fonctionner le système de batterie et véhicule à moteur - Google Patents

Système de batterie pour véhicule à moteur comprenant une unité de commutation pour chauffer les éléments de batterie, procédé pour faire fonctionner le système de batterie et véhicule à moteur Download PDF

Info

Publication number
WO2021032413A1
WO2021032413A1 PCT/EP2020/071200 EP2020071200W WO2021032413A1 WO 2021032413 A1 WO2021032413 A1 WO 2021032413A1 EP 2020071200 W EP2020071200 W EP 2020071200W WO 2021032413 A1 WO2021032413 A1 WO 2021032413A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching element
phase
connection
battery module
switching
Prior art date
Application number
PCT/EP2020/071200
Other languages
German (de)
English (en)
Inventor
Joachim Oehl
Andreas Gleiter
Sven Landa
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2021032413A1 publication Critical patent/WO2021032413A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0069Charging or discharging for charge maintenance, battery initiation or rejuvenation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4264Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing with capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/637Control systems characterised by the use of reversible temperature-sensitive devices, e.g. NTC, PTC or bimetal devices; characterised by control of the internal current flowing through the cells, e.g. by switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the invention relates to a battery system for a motor vehicle, which has a battery module which has an internal voltage source, an internal resistor, an internal inductance, a positive pole and a negative pole, an output capacitor which has a positive terminal and a negative terminal, and a Switching unit for electrically connecting the battery module to the output capacitor comprises.
  • the invention also relates to a method for operating a battery system according to the invention and to a motor vehicle that has a corresponding battery system.
  • Conventional motor vehicles have a drive which usually comprises an internal combustion engine. Furthermore, conventional motor vehicles include a battery system for supplying a starter and other consumers of the motor vehicle with electrical energy and a generator for charging the battery system. Electric vehicles have a battery system for supplying a traction motor and other consumers with electrical energy.
  • a generic battery system of a conventional motor vehicle comprises a battery module with at least one, preferably with a plurality of battery cells, which are for example connected in series. Such a battery module has a nominal voltage of 12 V, 24 V or 48 V, for example.
  • An output voltage of a battery system of a conventional motor vehicle corresponds to the nominal voltage of the battery module.
  • a battery system of an electric vehicle can comprise several serially connected battery modules and thus have a higher output voltage of 600 V, for example.
  • a generic battery system also includes an output capacitor, which is used to buffer the output voltage of the battery system. Such an output capacitor is electrically connected to an on-board network of the motor vehicle and is also referred to as an intermediate circuit capacitor.
  • a generic battery system also includes a switching unit for electrically connecting the battery module to the output capacitor. By means of the switching unit, the battery module can be electrically connected to the on-board network of the motor vehicle and to the output capacitor, as well as being separated from the on-board network and the output capacitor.
  • the battery cells of the battery module are, for example, lithium-ion battery cells.
  • lithium-ion battery cells At low operating temperatures of lithium-ion battery cells of, for example, less than 0 ° C., these have a relatively high internal resistance.
  • a high internal resistance causes severe restrictions in the operation of the battery system at low temperatures, in particular when the motor vehicle is cold-started in winter.
  • the internal resistance of the lithium-ion battery cells drops significantly.
  • a drive system of a motor vehicle is known from the documents DE 10 2014 202 717 B3 and US 2015/0236616 A1.
  • the drive system comprises an intermediate circuit capacitor which can be supplied with voltage from a battery of the motor vehicle.
  • the intermediate circuit capacitor is electrically connected to an inverter for controlling a three-phase electric motor.
  • the inverter has a switching unit with a plurality of switching elements.
  • a hybrid drive train system is known from the documents DE 10 2011 110 906 A1 and CN 102 39 8507 B, which contains a high-voltage battery and a DC coupling which is coupled to a rectifier / inverter module.
  • the rectifier / inverter module is electrically connected to two torque machines and includes a switch device which includes a pair of power transistors.
  • WO 2017/064820 A1 discloses a system for generating electrical energy with a generator and with a frequency converter.
  • a frequency converter has a switching unit with several switching elements.
  • the battery system comprises a battery module, which has an internal voltage source, an internal resistor, an internal inductance, a positive pole and a negative pole, an output capacitor, which has a positive terminal and a negative terminal, and a switching unit for the electrical connection of the battery module with the output capacitor.
  • the battery module comprises a plurality of battery cells, which can be connected to one another both in series and in parallel within the battery module.
  • the battery cells are preferably designed as lithium ion battery cells.
  • the battery cells simulate electrical voltage sources with temperature-dependent internal resistances.
  • Electrical lines within the battery module also have an electrical resistance and an inductance.
  • the electrical voltage sources of the battery cells form the internal voltage source of the battery module.
  • the internal resistance of the battery cells and the resistance of the electrical lines form the internal resistance of the battery module.
  • the inductance of the electrical lines forms the internal inductance of the battery module.
  • the battery module can also have a coil with an additional inductance.
  • Said output capacitor is, for example, an intermediate circuit capacitor.
  • the intermediate circuit capacitor can be electrically connected to an on-board network of the motor vehicle and serves to buffer an output voltage of the battery system.
  • the battery module can also have a further capacitor.
  • the battery module can be electrically connected to the on-board network of the motor vehicle and to the output capacitor, as well as being separated from the on-board network and the output capacitor.
  • the switching unit has a first switching element, a second switching element and a third switching element.
  • the switching elements each have three connections, a switching path being formed between a first connection and a second connection, which can be controlled by means of a third connection.
  • a first connection of the first switching element is connected to a junction, and a second connection of the first switching element is connected to one of the poles of the battery module.
  • a first terminal of the second switching element is connected to the junction and a second terminal of the second switching element is connected to one of the terminals of the output capacitor.
  • a first connection of the third switching element is connected to the other of the poles of the battery module and to the other of the terminals of the output capacitor, and a second connection of the third switching element is connected to the node.
  • the second connection of the first switching element is connected to the positive pole of the battery module, and the second connection of the second switching element is connected to the positive terminal of the output capacitor.
  • the first connection of the third switching element is then connected to the negative pole of the battery module and to the negative terminal of the output capacitor.
  • the negative pole of the battery module is permanently connected to the negative terminal of the output capacitor.
  • the inventive interconnection of the switching elements of the switching unit enables multiple switching states of the battery system.
  • a first switching state when the first switching element is closed, the second switching element is open and the third switching element is closed, a current can flow through the internal resistor and the internal inductance of the battery module, but not to the output capacitor and to the vehicle electrical system.
  • a second switching state when the first switching element is closed, the second switching element is closed and the third switching element is opened, a current can flow through the internal resistor and the internal inductance of the battery module and through the output capacitor.
  • a third switching state when the first switching element is open, no current can flow through the battery module.
  • a fourth switching state when the second switching element is open and the third switching element is open, no current can flow through the battery module either.
  • the first switching element, the second switching element and the third switching element are designed as field effect transistors and each have a SOURCE connection, a DRAIN connection and a GATE connection.
  • the switching elements are connected in such a way that the first connection is the SOURCE connection, the second connection is the DRAIN connection and the third connection is the GATE connection.
  • the switching elements are MOSFETs, in particular n-channel MOSFETs of the enhancement type.
  • a method for operating a battery system according to the invention is also proposed.
  • the switching unit is controlled in such a way that an alternating current flows through the battery module.
  • Said alternating current thus flows in particular through the internal resistor of the battery module.
  • the alternating current causes a voltage drop across the internal resistance of the battery module and thus across the internal resistance of the battery cells.
  • electrical energy is converted into heat in the internal resistance of the battery module, and thus in the internal resistance of the battery cells.
  • the battery module in particular the battery cells of the battery module, is heated.
  • the internal resistance of the battery cells decreases as the operating temperature rises.
  • the switching unit is preferably activated in several successive phases.
  • the switching unit is controlled in such a way that during a first phase electrical energy is transferred from the internal voltage source of the battery module to the internal inductance of the battery module, during a second phase electrical energy is transferred from the internal inductance of the battery module to the output capacitor, and during a third phase electrical energy is transferred from the output capacitor to the internal voltage source of the battery module.
  • the switching unit is preferably controlled in such a way that the first switching element is closed, the second switching element is opened and the third switching element is closed during a first phase.
  • the current flows through the internal voltage source, through the internal resistor, through the internal inductance, through the first switching element and through the third switching element.
  • the switching unit is preferably further controlled in such a way that the first switching element is closed, the second switching element is closed and the third switching element is opened during a second phase.
  • the current flows through the internal voltage source, through the internal resistor, through the internal inductance, through the first switching element, through the second switching element and through the output capacitor.
  • the switching unit is preferably further controlled in such a way that the second switching element is opened and the third switching element is opened during a first intermediate phase between the first phase and the second phase.
  • the first switching element can remain closed.
  • the switching unit is also preferably controlled in such a way that the first switching element is closed, the second switching element is closed and the third switching element is opened during a third phase.
  • the current flows through the internal voltage source, through the internal resistor, through the internal inductance, through the first switching element, through the second switching element and through the output capacitor. The current flows during the third phase in the opposite direction as during the second phase.
  • the switching unit is also preferably controlled in such a way that the second switching element is opened and the third switching element is opened during a second intermediate phase between the third phase and the first phase.
  • the first switching element can remain closed.
  • the switching unit is also preferably controlled in such a way that the first phase, the second phase and the third phase are repeated cyclically.
  • the the first phase, the second phase and the third phase are preferably repeated at a relatively high frequency of, for example, 20 kHz.
  • a motor vehicle which comprises at least one battery system according to the invention, which is operated with the method according to the invention.
  • a motor vehicle By means of the method according to the invention, it is possible in a battery system according to the invention for a motor vehicle to heat the battery cells of the battery module to a suitable operating temperature in a relatively short time. As a result, the internal resistance of the battery cells decreases and the battery system of the motor vehicle is ready for use in a relatively short time. A separate heating device for heating the battery cells is not required.
  • the battery system according to the invention can be operated in a manner similar to a DC / DC converter, or like a step-up converter.
  • the alternating current flowing in the process always flows through the internal resistance of the battery module and thus through the internal resistance of the battery cells. Due to the voltage drop caused by this, electrical energy is converted into heat at the internal resistances of the battery cells, which causes the battery cells to heat up. During this process, electrical energy is transferred between the voltage source, the internal inductor and the output capacitor. The electrical energy is thus shifted within the battery system according to the invention. With the exception of the conversion of electrical energy into heat at the internal resistances of the battery cells, no further significant losses occur.
  • the battery module is only slightly discharged.
  • Figure 1 is a schematic representation of a battery system
  • Figure 2 is a schematic representation of the battery system during a first phase of the method
  • FIG. 3 shows a schematic representation of the battery system during a second phase of the method
  • FIG. 4 shows a schematic representation of the battery system during a third phase of the method.
  • FIG. 1 shows a schematic representation of a battery system 10 for a motor vehicle.
  • the battery system 10 comprises a battery module 5, an output capacitor CA and a switching unit 60.
  • the switching unit 60 is used to electrically connect the battery module 5 to the output capacitor CA.
  • the battery module 5 comprises several battery cells, not shown here, which can be connected to one another both in series and in parallel within the battery module 5.
  • Each of the battery cells simulates an electrical voltage source with a temperature-dependent internal resistance.
  • the electrical voltage sources of the battery cells form an internal voltage source Vi.
  • the internal resistances of the battery cells and an electrical resistance of electrical lines form an internal resistance Ri.
  • Inductances of the electrical lines and the battery cells 2 form an internal inductance Li.
  • a coil with an additional inductance can also be provided.
  • the inductors form of the electrical lines and the battery cells 2 together with the inductance of the coil, the internal inductance Li.
  • the battery module 5 thus has the internal voltage source Vi, the internal resistance Ri and the internal inductance Li.
  • the battery module 5 also has a positive pole 22 and a negative pole 21. When idling, a voltage supplied by the internal voltage source Vi is applied between the positive pole 22 and the negative pole 21.
  • the output capacitor CA has a positive terminal 12 and a negative terminal 11.
  • the output capacitor CA is, for example, an intermediate circuit capacitor which is electrically connected to an on-board network of the motor vehicle.
  • the battery module 5 can have a further capacitor, which then forms the output capacitor CA together with the intermediate circuit capacitor.
  • the switching unit 60 has a first switching element 61, a second switching element 62 and a third switching element 63.
  • the switching elements 61, 62, 63 each have three connections, a switching path being formed between a first connection and a second connection, which can be controlled by means of a third connection.
  • the first switching element 61, the second switching element 62 and the third switching element 63 are in the present case designed as field effect transistors.
  • the switching elements 61, 62, 63 each have a SOURCE connection, a DRAIN connection and a GATE connection.
  • the first connection is the SOURCE connection
  • the second connection is the DRAIN connection
  • the third connection is the GATE connection.
  • the switching elements 61, 62, 63 are n-channel MOSFETs of the enhancement type in the present case.
  • the switching elements 61, 62, 63 each have a switching path and an inverse diode connected in parallel to the switching path.
  • the inverse diode which is also referred to as a body diode, is created in every MOSFET due to its internal structure and is not an explicit component.
  • the first connection of the first switching element 61 is connected to a node 25.
  • a second connection of the first switching element 61 is connected to the positive pole 22 of the battery module 5.
  • a first connection of the second switching element 62 is connected to the node 25.
  • a second terminal of the second switching element 62 is connected to the positive terminal 12 of the output capacitor CA.
  • a first connection of the third switching element 63 is connected to the negative pole 21 of the battery module 5 and to the negative terminal 11 of the output capacitor CA.
  • a second connection of the third switching element 63 is connected to the node 25.
  • FIG. 2 shows a schematic illustration of the battery system 10 during a first phase of the method.
  • the first switching element 61 is closed, the second switching element 62 is open and the third switching element 63 is closed.
  • a current I flows through the internal voltage source Vi, through the internal resistor Ri, through the internal inductance Li, through the first switching element 61 and through the third switching element 63.
  • the third switching element 63 is opened and a first intermediate phase begins, in which the second switching element 62 and the third switching element 63 are opened.
  • the first switching element 61 remains closed.
  • the second switching element 62 is closed and a second phase begins.
  • FIG. 3 shows a schematic representation of the battery system 10 during the second phase of the method.
  • the first switching element 61 is closed, the second switching element 62 is closed and the third switching element 63 is open.
  • a current I flows through the internal voltage source Vi, through the internal resistor Ri, through the internal inductance Li, through the first switching element 61, through the second switching element 62 and through the output capacitor CA.
  • electrical energy is transferred from the internal inductance Li to the output capacitor CA.
  • the internal inductance Li discharges its stored energy into the output capacitor CA.
  • the current I generates a voltage drop across the internal resistor Ri, as a result of which electrical energy is converted into heat.
  • FIG. 4 shows a schematic illustration of the battery system 10 during a third phase of the method.
  • the first switching element 61 is closed, the second switching element 62 is closed and the third switching element 63 is open.
  • a current I flows through the internal voltage source Vi, through the internal resistor Ri, through the internal inductance Li, through the first switching element 61, through the second switching element 62 and through the output capacitor CA.
  • the current I flows in the opposite direction as during the second phase.
  • the second switching element 62 is opened and a second intermediate phase begins, in which the second switching element 62 and the third switching element 63 are opened.
  • the first switching element 61 remains closed.
  • the third switching element 63 is closed and a further first phase begins.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

L'invention concerne un système de batterie (10) destiné à un véhicule à moteur, comprenant un module de batterie (5) qui présente une source de tension interne (Vi), une résistance interne (Ri), une inductance interne (Li), un pôle positif (22) et un pôle négatif (21), un condensateur de sortie (CA) qui présente une borne positive (12) et une borne négative (11), et une unité de commutation (60) pour connecter électriquement le module de batterie (5) au condensateur de sortie (CA). L'unité de commutation (60) présente un premier élément de commutation (61), un deuxième élément de commutation (62) et un troisième élément de commutation (63), une première borne du premier élément de commutation (61) étant reliée à un nœud (25), une seconde borne du premier élément de commutation (61) étant reliée à l'un des pôles (21, 22) du module de batterie (5), une première borne du deuxième élément de commutation (62) étant reliée au nœud (25), une seconde borne du deuxième élément de commutation (62) étant reliée à l'une des bornes (11, 12) du condensateur de sortie (CA), une première borne du troisième élément de commutation (63) étant reliée à l'autre des pôles (21, 22) du module de batterie (5) et à l'autre des bornes (11, 12) du condensateur de sortie (CA), et une seconde borne du troisième élément de commutation (63) étant reliée au nœud (25). L'invention concerne par ailleurs un procédé pour faire fonctionner un système de batterie (10) selon l'invention, l'unité de commutation (60) étant commandée de telle sorte qu'un courant alternatif (I) traverse le module de batterie (5). L'invention concerne en outre un véhicule à moteur qui comprend au moins un système de batterie (10) selon l'invention qui fonctionne à l'aide d'un procédé selon l'invention.
PCT/EP2020/071200 2019-08-21 2020-07-28 Système de batterie pour véhicule à moteur comprenant une unité de commutation pour chauffer les éléments de batterie, procédé pour faire fonctionner le système de batterie et véhicule à moteur WO2021032413A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019212475.5 2019-08-21
DE102019212475.5A DE102019212475A1 (de) 2019-08-21 2019-08-21 Batteriesystem für ein Kraftfahrzeug, Verfahren zum Betreiben eines Batteriesystems und Kraftfahrzeug

Publications (1)

Publication Number Publication Date
WO2021032413A1 true WO2021032413A1 (fr) 2021-02-25

Family

ID=71846397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/071200 WO2021032413A1 (fr) 2019-08-21 2020-07-28 Système de batterie pour véhicule à moteur comprenant une unité de commutation pour chauffer les éléments de batterie, procédé pour faire fonctionner le système de batterie et véhicule à moteur

Country Status (3)

Country Link
DE (1) DE102019212475A1 (fr)
TW (1) TW202120351A (fr)
WO (1) WO2021032413A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114889497A (zh) * 2022-04-28 2022-08-12 重庆大学 一种电动车辆动力系统复合加热装置和控制方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021203748A1 (de) 2021-04-15 2022-10-20 Robert Bosch Gesellschaft mit beschränkter Haftung Batteriesystem und Verfahren zum Betreiben eines Batteriesystems
DE102021211418A1 (de) 2021-10-11 2023-04-13 Robert Bosch Gesellschaft mit beschränkter Haftung Batterieheizvorrichtung, Verfahren zum Heizen einer Batterie
DE102021212316A1 (de) 2021-11-02 2023-05-04 Robert Bosch Gesellschaft mit beschränkter Haftung Anordnung zur Impedanzanalyse eines Batteriepacks, Batteriesystem, Verfahren zur Impedanzanalyse eines Batteriepacks
DE102021213950A1 (de) 2021-12-08 2023-06-15 Robert Bosch Gesellschaft mit beschränkter Haftung Vorrichtung zum Heizen eines Energiespeichersystems mit mindestens einem elektrochemischen Energiespeicher

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011110906A1 (de) 2010-09-02 2012-03-08 Gm Global Technology Operations Llc, ( N.D. Ges. D. Staates Delaware) Verfahren und Vorrichtung zum Steuern einer Hochspannungsbatterieverbindung für ein Hybridantriebsstrangsystem
DE102014202717B3 (de) 2014-02-14 2015-06-11 Robert Bosch Gmbh System zur Kapazitätsbestimmung eines Zwischenkreiskondensators und Verfahren zum Ansteuern eines Wechselrichters
WO2017064820A1 (fr) 2015-10-13 2017-04-20 Hitachi, Ltd. Système de génération de puissance électrique et son système de commande
CN107666028A (zh) * 2017-08-16 2018-02-06 同济大学 一种电动车用锂离子电池低温交流加热装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9793810B2 (en) * 2015-09-10 2017-10-17 Futurewei Technologies, Inc. Control method for zero voltage switching buck-boost power converters
KR102056876B1 (ko) * 2017-09-25 2019-12-17 주식회사 엘지화학 배터리 관리 장치와 이를 포함하는 배터리 팩 및 자동차

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011110906A1 (de) 2010-09-02 2012-03-08 Gm Global Technology Operations Llc, ( N.D. Ges. D. Staates Delaware) Verfahren und Vorrichtung zum Steuern einer Hochspannungsbatterieverbindung für ein Hybridantriebsstrangsystem
CN102398507A (zh) 2010-09-02 2012-04-04 通用汽车环球科技运作有限责任公司 用于控制混合动力系系统的高压电池连接的方法和设备
DE102014202717B3 (de) 2014-02-14 2015-06-11 Robert Bosch Gmbh System zur Kapazitätsbestimmung eines Zwischenkreiskondensators und Verfahren zum Ansteuern eines Wechselrichters
US20150236616A1 (en) 2014-02-14 2015-08-20 Robert Bosch Gmbh System comprising a control apparatus for semiconductor switches of an inverter and method for actuating an inverter
WO2017064820A1 (fr) 2015-10-13 2017-04-20 Hitachi, Ltd. Système de génération de puissance électrique et son système de commande
CN107666028A (zh) * 2017-08-16 2018-02-06 同济大学 一种电动车用锂离子电池低温交流加热装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114889497A (zh) * 2022-04-28 2022-08-12 重庆大学 一种电动车辆动力系统复合加热装置和控制方法
CN114889497B (zh) * 2022-04-28 2024-05-07 重庆大学 一种电动车辆动力系统复合加热装置和控制方法

Also Published As

Publication number Publication date
TW202120351A (zh) 2021-06-01
DE102019212475A1 (de) 2021-02-25

Similar Documents

Publication Publication Date Title
WO2021032413A1 (fr) Système de batterie pour véhicule à moteur comprenant une unité de commutation pour chauffer les éléments de batterie, procédé pour faire fonctionner le système de batterie et véhicule à moteur
DE102012200841B4 (de) Elektrisches system und verfahren
EP1670663B1 (fr) Dispositif de commutation pour la compensation de charge bidirectionnelle entre des accumulateurs d'energie et procede correspondant
EP3496259A1 (fr) Système de convertisseur électrique
DE102011089312A1 (de) System und Verfahren zum Laden der Energiespeicherzellen einer Energiespeichereinrichtung
DE102010001250A1 (de) Elektrisches Bordnetz sowie Verfahren zum Betreiben eines elektrischen Bordnetzes
WO2016079603A1 (fr) Dispositif de conversion cc/cc
EP2842214B1 (fr) Procédé de charge d'éléments accumulateurs d'un système d'accumulation d'énergie et système d'accumulation d'énergie chargeable
DE102012205119A1 (de) Verfahren zum Aufheizen von Energiespeicherzellen einer Energiespeichereinrichtung und aufheizbare Energiespeichereinrichtung
DE102012205095A1 (de) Verfahren zum Aufheizen von Energiespeicherzellen einer Energiespeichereinrichtung und aufheizbare Energiespeichereinrichtung
DE102012014178A1 (de) Vorrichtung und Verfahren zum Laden mindestens einer Traktionsbatterie eines Elektrofahrzeugs
DE102018207797B3 (de) Vorrichtung zur Temperaturkonditionierung einer Batterie, Batterieeinheit und Verfahren zur Temperaturkonditionierung einer Batterie
DE102013203734B4 (de) Modularer Hochfrequenz-Umrichter
DE102018221234A1 (de) Batterieeinheit
DE102015225574A1 (de) Verfahren und Vorrichtung zum Laden einer Batterie
DE102019212473A1 (de) Batteriesystem für ein Kraftfahrzeug, Verfahren zum Betreiben eines Batteriesystems und Kraftfahrzeug
WO2020064429A1 (fr) Circuit de charge destiné à un accumulateur d'énergie électrique embarqué dans un véhicule
WO2020043883A1 (fr) Procédé et dispositif pour adapter la tension du condensateur de filtrage d'un convertisseur cc-cc avant la connexion d'une batterie haute tension
DE102020007840A1 (de) Aufwärtswandler zum Laden eines elektrischen Energiespeichers eines elektrisch angetriebenen Fahrzeugs, sowie Fahrzeug und Verfahren
DE102014201440A1 (de) Kraftfahrzeugbordnetz mit optimierter Durchschaltfunktion
WO2013072107A1 (fr) Dispositif accumulateur d'énergie, système doté d'un dispositif accumulateur d'énergie et procédé de commande d'un dispositif accumulateur d'énergie
WO2021032411A1 (fr) Système de batterie pour véhicule à moteur pour réaliser un équilibrage entre des modules de batterie, procédé pour faire fonctionner un système de batterie et véhicule à moteur
DE102020007837A1 (de) Spannungswandler zum Laden eines elektrischen Energiespeichers eines elektrisch angetriebenen Fahrzeugs, sowie Fahrzeug und Verfahren
DE102020200794B4 (de) Lade- und Heizschaltung
DE102013209383A1 (de) Batterie mit mindestens einem Batteriestrang mit mehreren Batteriemodulen sowie Verfahren zur Regelung einer Batteriespannung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20747394

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20747394

Country of ref document: EP

Kind code of ref document: A1