WO2021032413A1 - Battery system for a motor vehicle having a switching unit for heating the battery cells, method for operating the battery system, and motor vehicle - Google Patents

Battery system for a motor vehicle having a switching unit for heating the battery cells, method for operating the battery system, and motor vehicle Download PDF

Info

Publication number
WO2021032413A1
WO2021032413A1 PCT/EP2020/071200 EP2020071200W WO2021032413A1 WO 2021032413 A1 WO2021032413 A1 WO 2021032413A1 EP 2020071200 W EP2020071200 W EP 2020071200W WO 2021032413 A1 WO2021032413 A1 WO 2021032413A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching element
phase
connection
battery module
switching
Prior art date
Application number
PCT/EP2020/071200
Other languages
German (de)
French (fr)
Inventor
Joachim Oehl
Andreas Gleiter
Sven Landa
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2021032413A1 publication Critical patent/WO2021032413A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0069Charging or discharging for charge maintenance, battery initiation or rejuvenation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4264Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing with capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/637Control systems characterised by the use of reversible temperature-sensitive devices, e.g. NTC, PTC or bimetal devices; characterised by control of the internal current flowing through the cells, e.g. by switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the invention relates to a battery system for a motor vehicle, which has a battery module which has an internal voltage source, an internal resistor, an internal inductance, a positive pole and a negative pole, an output capacitor which has a positive terminal and a negative terminal, and a Switching unit for electrically connecting the battery module to the output capacitor comprises.
  • the invention also relates to a method for operating a battery system according to the invention and to a motor vehicle that has a corresponding battery system.
  • Conventional motor vehicles have a drive which usually comprises an internal combustion engine. Furthermore, conventional motor vehicles include a battery system for supplying a starter and other consumers of the motor vehicle with electrical energy and a generator for charging the battery system. Electric vehicles have a battery system for supplying a traction motor and other consumers with electrical energy.
  • a generic battery system of a conventional motor vehicle comprises a battery module with at least one, preferably with a plurality of battery cells, which are for example connected in series. Such a battery module has a nominal voltage of 12 V, 24 V or 48 V, for example.
  • An output voltage of a battery system of a conventional motor vehicle corresponds to the nominal voltage of the battery module.
  • a battery system of an electric vehicle can comprise several serially connected battery modules and thus have a higher output voltage of 600 V, for example.
  • a generic battery system also includes an output capacitor, which is used to buffer the output voltage of the battery system. Such an output capacitor is electrically connected to an on-board network of the motor vehicle and is also referred to as an intermediate circuit capacitor.
  • a generic battery system also includes a switching unit for electrically connecting the battery module to the output capacitor. By means of the switching unit, the battery module can be electrically connected to the on-board network of the motor vehicle and to the output capacitor, as well as being separated from the on-board network and the output capacitor.
  • the battery cells of the battery module are, for example, lithium-ion battery cells.
  • lithium-ion battery cells At low operating temperatures of lithium-ion battery cells of, for example, less than 0 ° C., these have a relatively high internal resistance.
  • a high internal resistance causes severe restrictions in the operation of the battery system at low temperatures, in particular when the motor vehicle is cold-started in winter.
  • the internal resistance of the lithium-ion battery cells drops significantly.
  • a drive system of a motor vehicle is known from the documents DE 10 2014 202 717 B3 and US 2015/0236616 A1.
  • the drive system comprises an intermediate circuit capacitor which can be supplied with voltage from a battery of the motor vehicle.
  • the intermediate circuit capacitor is electrically connected to an inverter for controlling a three-phase electric motor.
  • the inverter has a switching unit with a plurality of switching elements.
  • a hybrid drive train system is known from the documents DE 10 2011 110 906 A1 and CN 102 39 8507 B, which contains a high-voltage battery and a DC coupling which is coupled to a rectifier / inverter module.
  • the rectifier / inverter module is electrically connected to two torque machines and includes a switch device which includes a pair of power transistors.
  • WO 2017/064820 A1 discloses a system for generating electrical energy with a generator and with a frequency converter.
  • a frequency converter has a switching unit with several switching elements.
  • the battery system comprises a battery module, which has an internal voltage source, an internal resistor, an internal inductance, a positive pole and a negative pole, an output capacitor, which has a positive terminal and a negative terminal, and a switching unit for the electrical connection of the battery module with the output capacitor.
  • the battery module comprises a plurality of battery cells, which can be connected to one another both in series and in parallel within the battery module.
  • the battery cells are preferably designed as lithium ion battery cells.
  • the battery cells simulate electrical voltage sources with temperature-dependent internal resistances.
  • Electrical lines within the battery module also have an electrical resistance and an inductance.
  • the electrical voltage sources of the battery cells form the internal voltage source of the battery module.
  • the internal resistance of the battery cells and the resistance of the electrical lines form the internal resistance of the battery module.
  • the inductance of the electrical lines forms the internal inductance of the battery module.
  • the battery module can also have a coil with an additional inductance.
  • Said output capacitor is, for example, an intermediate circuit capacitor.
  • the intermediate circuit capacitor can be electrically connected to an on-board network of the motor vehicle and serves to buffer an output voltage of the battery system.
  • the battery module can also have a further capacitor.
  • the battery module can be electrically connected to the on-board network of the motor vehicle and to the output capacitor, as well as being separated from the on-board network and the output capacitor.
  • the switching unit has a first switching element, a second switching element and a third switching element.
  • the switching elements each have three connections, a switching path being formed between a first connection and a second connection, which can be controlled by means of a third connection.
  • a first connection of the first switching element is connected to a junction, and a second connection of the first switching element is connected to one of the poles of the battery module.
  • a first terminal of the second switching element is connected to the junction and a second terminal of the second switching element is connected to one of the terminals of the output capacitor.
  • a first connection of the third switching element is connected to the other of the poles of the battery module and to the other of the terminals of the output capacitor, and a second connection of the third switching element is connected to the node.
  • the second connection of the first switching element is connected to the positive pole of the battery module, and the second connection of the second switching element is connected to the positive terminal of the output capacitor.
  • the first connection of the third switching element is then connected to the negative pole of the battery module and to the negative terminal of the output capacitor.
  • the negative pole of the battery module is permanently connected to the negative terminal of the output capacitor.
  • the inventive interconnection of the switching elements of the switching unit enables multiple switching states of the battery system.
  • a first switching state when the first switching element is closed, the second switching element is open and the third switching element is closed, a current can flow through the internal resistor and the internal inductance of the battery module, but not to the output capacitor and to the vehicle electrical system.
  • a second switching state when the first switching element is closed, the second switching element is closed and the third switching element is opened, a current can flow through the internal resistor and the internal inductance of the battery module and through the output capacitor.
  • a third switching state when the first switching element is open, no current can flow through the battery module.
  • a fourth switching state when the second switching element is open and the third switching element is open, no current can flow through the battery module either.
  • the first switching element, the second switching element and the third switching element are designed as field effect transistors and each have a SOURCE connection, a DRAIN connection and a GATE connection.
  • the switching elements are connected in such a way that the first connection is the SOURCE connection, the second connection is the DRAIN connection and the third connection is the GATE connection.
  • the switching elements are MOSFETs, in particular n-channel MOSFETs of the enhancement type.
  • a method for operating a battery system according to the invention is also proposed.
  • the switching unit is controlled in such a way that an alternating current flows through the battery module.
  • Said alternating current thus flows in particular through the internal resistor of the battery module.
  • the alternating current causes a voltage drop across the internal resistance of the battery module and thus across the internal resistance of the battery cells.
  • electrical energy is converted into heat in the internal resistance of the battery module, and thus in the internal resistance of the battery cells.
  • the battery module in particular the battery cells of the battery module, is heated.
  • the internal resistance of the battery cells decreases as the operating temperature rises.
  • the switching unit is preferably activated in several successive phases.
  • the switching unit is controlled in such a way that during a first phase electrical energy is transferred from the internal voltage source of the battery module to the internal inductance of the battery module, during a second phase electrical energy is transferred from the internal inductance of the battery module to the output capacitor, and during a third phase electrical energy is transferred from the output capacitor to the internal voltage source of the battery module.
  • the switching unit is preferably controlled in such a way that the first switching element is closed, the second switching element is opened and the third switching element is closed during a first phase.
  • the current flows through the internal voltage source, through the internal resistor, through the internal inductance, through the first switching element and through the third switching element.
  • the switching unit is preferably further controlled in such a way that the first switching element is closed, the second switching element is closed and the third switching element is opened during a second phase.
  • the current flows through the internal voltage source, through the internal resistor, through the internal inductance, through the first switching element, through the second switching element and through the output capacitor.
  • the switching unit is preferably further controlled in such a way that the second switching element is opened and the third switching element is opened during a first intermediate phase between the first phase and the second phase.
  • the first switching element can remain closed.
  • the switching unit is also preferably controlled in such a way that the first switching element is closed, the second switching element is closed and the third switching element is opened during a third phase.
  • the current flows through the internal voltage source, through the internal resistor, through the internal inductance, through the first switching element, through the second switching element and through the output capacitor. The current flows during the third phase in the opposite direction as during the second phase.
  • the switching unit is also preferably controlled in such a way that the second switching element is opened and the third switching element is opened during a second intermediate phase between the third phase and the first phase.
  • the first switching element can remain closed.
  • the switching unit is also preferably controlled in such a way that the first phase, the second phase and the third phase are repeated cyclically.
  • the the first phase, the second phase and the third phase are preferably repeated at a relatively high frequency of, for example, 20 kHz.
  • a motor vehicle which comprises at least one battery system according to the invention, which is operated with the method according to the invention.
  • a motor vehicle By means of the method according to the invention, it is possible in a battery system according to the invention for a motor vehicle to heat the battery cells of the battery module to a suitable operating temperature in a relatively short time. As a result, the internal resistance of the battery cells decreases and the battery system of the motor vehicle is ready for use in a relatively short time. A separate heating device for heating the battery cells is not required.
  • the battery system according to the invention can be operated in a manner similar to a DC / DC converter, or like a step-up converter.
  • the alternating current flowing in the process always flows through the internal resistance of the battery module and thus through the internal resistance of the battery cells. Due to the voltage drop caused by this, electrical energy is converted into heat at the internal resistances of the battery cells, which causes the battery cells to heat up. During this process, electrical energy is transferred between the voltage source, the internal inductor and the output capacitor. The electrical energy is thus shifted within the battery system according to the invention. With the exception of the conversion of electrical energy into heat at the internal resistances of the battery cells, no further significant losses occur.
  • the battery module is only slightly discharged.
  • Figure 1 is a schematic representation of a battery system
  • Figure 2 is a schematic representation of the battery system during a first phase of the method
  • FIG. 3 shows a schematic representation of the battery system during a second phase of the method
  • FIG. 4 shows a schematic representation of the battery system during a third phase of the method.
  • FIG. 1 shows a schematic representation of a battery system 10 for a motor vehicle.
  • the battery system 10 comprises a battery module 5, an output capacitor CA and a switching unit 60.
  • the switching unit 60 is used to electrically connect the battery module 5 to the output capacitor CA.
  • the battery module 5 comprises several battery cells, not shown here, which can be connected to one another both in series and in parallel within the battery module 5.
  • Each of the battery cells simulates an electrical voltage source with a temperature-dependent internal resistance.
  • the electrical voltage sources of the battery cells form an internal voltage source Vi.
  • the internal resistances of the battery cells and an electrical resistance of electrical lines form an internal resistance Ri.
  • Inductances of the electrical lines and the battery cells 2 form an internal inductance Li.
  • a coil with an additional inductance can also be provided.
  • the inductors form of the electrical lines and the battery cells 2 together with the inductance of the coil, the internal inductance Li.
  • the battery module 5 thus has the internal voltage source Vi, the internal resistance Ri and the internal inductance Li.
  • the battery module 5 also has a positive pole 22 and a negative pole 21. When idling, a voltage supplied by the internal voltage source Vi is applied between the positive pole 22 and the negative pole 21.
  • the output capacitor CA has a positive terminal 12 and a negative terminal 11.
  • the output capacitor CA is, for example, an intermediate circuit capacitor which is electrically connected to an on-board network of the motor vehicle.
  • the battery module 5 can have a further capacitor, which then forms the output capacitor CA together with the intermediate circuit capacitor.
  • the switching unit 60 has a first switching element 61, a second switching element 62 and a third switching element 63.
  • the switching elements 61, 62, 63 each have three connections, a switching path being formed between a first connection and a second connection, which can be controlled by means of a third connection.
  • the first switching element 61, the second switching element 62 and the third switching element 63 are in the present case designed as field effect transistors.
  • the switching elements 61, 62, 63 each have a SOURCE connection, a DRAIN connection and a GATE connection.
  • the first connection is the SOURCE connection
  • the second connection is the DRAIN connection
  • the third connection is the GATE connection.
  • the switching elements 61, 62, 63 are n-channel MOSFETs of the enhancement type in the present case.
  • the switching elements 61, 62, 63 each have a switching path and an inverse diode connected in parallel to the switching path.
  • the inverse diode which is also referred to as a body diode, is created in every MOSFET due to its internal structure and is not an explicit component.
  • the first connection of the first switching element 61 is connected to a node 25.
  • a second connection of the first switching element 61 is connected to the positive pole 22 of the battery module 5.
  • a first connection of the second switching element 62 is connected to the node 25.
  • a second terminal of the second switching element 62 is connected to the positive terminal 12 of the output capacitor CA.
  • a first connection of the third switching element 63 is connected to the negative pole 21 of the battery module 5 and to the negative terminal 11 of the output capacitor CA.
  • a second connection of the third switching element 63 is connected to the node 25.
  • FIG. 2 shows a schematic illustration of the battery system 10 during a first phase of the method.
  • the first switching element 61 is closed, the second switching element 62 is open and the third switching element 63 is closed.
  • a current I flows through the internal voltage source Vi, through the internal resistor Ri, through the internal inductance Li, through the first switching element 61 and through the third switching element 63.
  • the third switching element 63 is opened and a first intermediate phase begins, in which the second switching element 62 and the third switching element 63 are opened.
  • the first switching element 61 remains closed.
  • the second switching element 62 is closed and a second phase begins.
  • FIG. 3 shows a schematic representation of the battery system 10 during the second phase of the method.
  • the first switching element 61 is closed, the second switching element 62 is closed and the third switching element 63 is open.
  • a current I flows through the internal voltage source Vi, through the internal resistor Ri, through the internal inductance Li, through the first switching element 61, through the second switching element 62 and through the output capacitor CA.
  • electrical energy is transferred from the internal inductance Li to the output capacitor CA.
  • the internal inductance Li discharges its stored energy into the output capacitor CA.
  • the current I generates a voltage drop across the internal resistor Ri, as a result of which electrical energy is converted into heat.
  • FIG. 4 shows a schematic illustration of the battery system 10 during a third phase of the method.
  • the first switching element 61 is closed, the second switching element 62 is closed and the third switching element 63 is open.
  • a current I flows through the internal voltage source Vi, through the internal resistor Ri, through the internal inductance Li, through the first switching element 61, through the second switching element 62 and through the output capacitor CA.
  • the current I flows in the opposite direction as during the second phase.
  • the second switching element 62 is opened and a second intermediate phase begins, in which the second switching element 62 and the third switching element 63 are opened.
  • the first switching element 61 remains closed.
  • the third switching element 63 is closed and a further first phase begins.

Abstract

The invention relates to a battery system (10) for a motor vehicle, comprising a battery module (5) which has an internal voltage source (Vi), an internal resistance (Ri), an internal inductance (Li), a positive pole (22) and a negative pole (21), an output capacitor (CA) which has a positive terminal (12) and a negative terminal (11), and a switching unit (60) for electrically connecting the battery module (5) to the output capacitor (CA). The switching unit (60) has a first switching element (61), a second switching element (62) and a third switching element (63), wherein a first connection of the first switching element (61) is connected to a node (25), a second connection of the first switching element (61) is connected to one of the poles (21, 22) of the battery module (5), a first connection of the second switching element (62) is connected to the node (25), a second connection of the second switching element (62) is connected to one of the terminals (11, 12) of the output capacitor (CA), a first connection of the third switching element (63) is connected to the other of the poles (21, 22) of the battery module (5) and to the other of the terminals (11, 12) of the output capacitor (CA), and a second connection of the third switching element (63) is connected to the node (25). The invention relates to a method for operating a battery system (10) according to the invention, wherein the switching unit (60) is controlled in such a way that an alternating current (I) flows through the battery module (5). The invention further relates to a motor vehicle, comprising at least one battery system (10) according to the invention which is operated using the method according to the invention.

Description

BATTERIESYSTEM FÜR EIN KRAFTFAHRZEUG MIT SCHALTEINHEIT ZUR ERWÄRMUNG DER BATTERIEZELLEN, BATTERY SYSTEM FOR A MOTOR VEHICLE WITH SWITCH UNIT FOR WARMING THE BATTERY CELLS,
VERFAHREN ZUM BETREIBEN DES BATTERIESYSTEMS UND KRAFTFAHRZEUG METHOD OF OPERATING THE BATTERY SYSTEM AND MOTOR VEHICLE
Die Erfindung betrifft ein Batteriesystem für ein Kraftfahrzeug, das ein Batteriemodul, welches eine interne Spannungsquelle, einen internen Widerstand, eine interne Induktivität, einen positiven Pol und einen negativen Pol aufweist, einen Ausgangskondensator, welcher ein positives Terminal und ein negatives Terminal aufweist, und eine Schalteinheit zur elektrischen Verbindung des Batteriemoduls mit dem Ausgangskondensator umfasst. Die Erfindung betrifft auch ein Verfahren zum Betreiben eines erfindungsgemäßen Batteriesystems sowie ein Kraftfahrzeug, welches ein entsprechendes Batteriesystem aufweist. The invention relates to a battery system for a motor vehicle, which has a battery module which has an internal voltage source, an internal resistor, an internal inductance, a positive pole and a negative pole, an output capacitor which has a positive terminal and a negative terminal, and a Switching unit for electrically connecting the battery module to the output capacitor comprises. The invention also relates to a method for operating a battery system according to the invention and to a motor vehicle that has a corresponding battery system.
Stand der Technik State of the art
Konventionelle Kraftfahrzeuge weisen einen Antrieb auf, welcher üblicherweise einen Verbrennungsmotor umfasst. Ferner umfassen konventionelle Kraftfahrzeuge ein Batteriesystem zur Versorgung eines Anlassers und weiterer Verbraucher des Kraftfahrzeugs mit elektrischer Energie sowie einen Generator zum Laden des Batteriesystems. Elektrofahrzeuge weisen ein Batteriesystem zur Versorgung eines Traktionsmotors und weiterer Verbraucher mit elektrischer Energie auf. Conventional motor vehicles have a drive which usually comprises an internal combustion engine. Furthermore, conventional motor vehicles include a battery system for supplying a starter and other consumers of the motor vehicle with electrical energy and a generator for charging the battery system. Electric vehicles have a battery system for supplying a traction motor and other consumers with electrical energy.
Ein gattungsgemäßes Batteriesystem eines konventionellen Kraftfahrzeugs umfasst ein Batteriemodul mit mindestens einer, vorzugsweise mit mehreren Batteriezellen, die beispielsweise seriell verschaltet sind. Ein solches Batteriemodul weist eine Nominalspannung von beispielsweise 12 V, 24 V oder 48 V auf. Eine Ausgangsspannung eines Batteriesystems eines konventionellen Kraftfahrzeugs entspricht dabei der Nominalspannung des Batteriemoduls. Ein Batteriesystem eines Elektrofahrzeugs kann mehrere seriell verschaltete Batteriemodule umfassen und dadurch eine höhere Ausgangsspannung von beispielsweise 600 V aufweisen. Ein gattungsgemäßes Batteriesystem umfasst auch einen Ausgangskondensator, welcher zur Pufferung der Ausgangsspannung des Batteriesystems dient. Ein solcher Ausgangskondensator ist elektrisch mit einem Bordnetz des Kraftfahrzeugs verbunden und wird auch als Zwischenkreiskondensator bezeichnet. Ein gattungsgemäßes Batteriesystem umfasst ferner eine Schalteinheit zur elektrischen Verbindung des Batteriemoduls mit dem Ausgangskondensator. Mittels der Schalteinheit kann das Batteriemodul elektrisch mit dem Bordnetz des Kraftfahrzeugs und mit dem Ausgangskondensator verbunden, sowie von dem Bordnetz und dem Ausgangskondensator getrennt werden. A generic battery system of a conventional motor vehicle comprises a battery module with at least one, preferably with a plurality of battery cells, which are for example connected in series. Such a battery module has a nominal voltage of 12 V, 24 V or 48 V, for example. An output voltage of a battery system of a conventional motor vehicle corresponds to the nominal voltage of the battery module. A battery system of an electric vehicle can comprise several serially connected battery modules and thus have a higher output voltage of 600 V, for example. A generic battery system also includes an output capacitor, which is used to buffer the output voltage of the battery system. Such an output capacitor is electrically connected to an on-board network of the motor vehicle and is also referred to as an intermediate circuit capacitor. A generic battery system also includes a switching unit for electrically connecting the battery module to the output capacitor. By means of the switching unit, the battery module can be electrically connected to the on-board network of the motor vehicle and to the output capacitor, as well as being separated from the on-board network and the output capacitor.
Bei den Batteriezellen des Batteriemoduls handelt es sich beispielsweise um Lithium-Ionen-Batteriezellen. Bei tiefen Betriebstemperaturen von Lithium-Ionen- Batteriezellen von beispielsweise weniger als 0°C weisen diese einen verhältnismäßig hohen Innenwiderstand auf. Ein hoher Innenwiderstand bewirkt starke Einschränkungen beim Betrieb des Batteriesystems bei tiefen Temperaturen, insbesondere bei einem Kaltstart des Kraftfahrzeugs im Winter. Bei steigender Betriebstemperatur sinkt der Innenwiderstand der Lithium-Ionen- Batteriezellen signifikant ab. The battery cells of the battery module are, for example, lithium-ion battery cells. At low operating temperatures of lithium-ion battery cells of, for example, less than 0 ° C., these have a relatively high internal resistance. A high internal resistance causes severe restrictions in the operation of the battery system at low temperatures, in particular when the motor vehicle is cold-started in winter. When the operating temperature rises, the internal resistance of the lithium-ion battery cells drops significantly.
Aus den Dokumenten DE 10 2014 202 717 B3und US 2015/0236616 Al ist ein Antriebssystem eines Kraftfahrzeugs bekannt. Das Antriebssystem umfasst einen Zwischenkreiskondensator, welcher von einer Batterie des Kraftfahrzeugs mit Spannung versorgt werden kann. Der Zwischenkreiskondensator ist elektrisch mit einem Wechselrichter zum Ansteuern eines dreiphasigen Elektromotors verbundenen. Der Wechselrichter weist eine Schalteinheit mit mehreren Schaltelementen auf. A drive system of a motor vehicle is known from the documents DE 10 2014 202 717 B3 and US 2015/0236616 A1. The drive system comprises an intermediate circuit capacitor which can be supplied with voltage from a battery of the motor vehicle. The intermediate circuit capacitor is electrically connected to an inverter for controlling a three-phase electric motor. The inverter has a switching unit with a plurality of switching elements.
Aus den Dokumenten DE 10 2011 110 906 Al und CN 102 39 8507 B ist ein Hybridantriebsstrangsystem bekannt, welches eine Hochspannungsbatterie und eine DC-Kopplung enthält, welche mit einem Gleichrichter/Wechselrichter-Modul gekoppelt ist. Das Gleichrichter/Wechselrichter-Modul ist mit zwei Drehmomentmaschinen elektrisch verbunden und umfasst eine Schaltereinrichtung, welche ein Paar von Leistungstransistoren umfasst. A hybrid drive train system is known from the documents DE 10 2011 110 906 A1 and CN 102 39 8507 B, which contains a high-voltage battery and a DC coupling which is coupled to a rectifier / inverter module. The rectifier / inverter module is electrically connected to two torque machines and includes a switch device which includes a pair of power transistors.
Das Dokument WO 2017/064820 Al offenbart ein System zur Erzeugung von elektrischer Energie mit einem Generator und mit einem Frequenzumrichter. Der besagte Frequenzumrichter weist dabei eine Schalteinheit mit mehreren Schaltelementen auf. The document WO 2017/064820 A1 discloses a system for generating electrical energy with a generator and with a frequency converter. Of the said frequency converter has a switching unit with several switching elements.
Offenbarung der Erfindung Disclosure of the invention
Es wird ein Batteriesystem für ein Kraftfahrzeug vorgeschlagen. Das Batteriesystem umfasst dabei ein Batteriemodul, welches eine interne Spannungsquelle, einen internen Widerstand, eine interne Induktivität, einen positiven Pol und einen negativen Pol aufweist, einen Ausgangskondensator, welcher ein positives Terminal und ein negatives Terminal aufweist, und eine Schalteinheit zur elektrischen Verbindung des Batteriemoduls mit dem Ausgangskondensator. A battery system for a motor vehicle is proposed. The battery system comprises a battery module, which has an internal voltage source, an internal resistor, an internal inductance, a positive pole and a negative pole, an output capacitor, which has a positive terminal and a negative terminal, and a switching unit for the electrical connection of the battery module with the output capacitor.
Das Batteriemodul umfasst mehrere Batteriezellen, die innerhalb des Batteriemoduls sowohl seriell als auch parallel miteinander verschaltetet sein können. Die Batteriezellen sind vorzugsweise als Lithium- lonen-Batteriezellen ausgeführt. Die Batteriezellen bilden elektrische Spannungsquellen mit temperaturabhängigen Innenwiderständen nach. Elektrische Leitungen innerhalb des Batteriemoduls weisen ebenfalls einen elektrischen Widerstand sowie eine Induktivität auf. Die elektrischen Spannungsquellen der Batteriezellen bilden die interne Spannungsquelle des Batteriemoduls. Die Innenwiderstände der Batteriezellen und der Widerstand der elektrischen Leitungen bilden den internen Widerstand des Batteriemoduls. Die Induktivität der elektrischen Leitungen bildet die interne Induktivität des Batteriemoduls. Optional kann das Batteriemodul zusätzlich eine Spule mit einer zusätzlichen Induktivität aufweisen. The battery module comprises a plurality of battery cells, which can be connected to one another both in series and in parallel within the battery module. The battery cells are preferably designed as lithium ion battery cells. The battery cells simulate electrical voltage sources with temperature-dependent internal resistances. Electrical lines within the battery module also have an electrical resistance and an inductance. The electrical voltage sources of the battery cells form the internal voltage source of the battery module. The internal resistance of the battery cells and the resistance of the electrical lines form the internal resistance of the battery module. The inductance of the electrical lines forms the internal inductance of the battery module. Optionally, the battery module can also have a coil with an additional inductance.
Bei dem besagten Ausgangskondensator handelt es sich beispielsweise um einen Zwischenkreiskondensator. Der Zwischenkreiskondensator ist elektrisch mit einem Bordnetz des Kraftfahrzeugs verbindbar und dient zur Pufferung einer Ausgangsspannung des Batteriesystems. Alternativ oder zusätzlich zu dem Zwischenkreiskondensator kann das Batteriemodul zusätzlich einen weiteren Kondensator aufweisen. Said output capacitor is, for example, an intermediate circuit capacitor. The intermediate circuit capacitor can be electrically connected to an on-board network of the motor vehicle and serves to buffer an output voltage of the battery system. As an alternative or in addition to the intermediate circuit capacitor, the battery module can also have a further capacitor.
Mittels der Schalteinheit kann das Batteriemodul elektrisch mit dem Bordnetz des Kraftfahrzeugs und mit dem Ausgangskondensator verbunden, sowie von dem Bordnetz und dem Ausgangskondensator getrennt werden. Erfindungsgemäß weist die Schalteinheit ein erstes Schaltelement, ein zweites Schaltelement und ein drittes Schaltelement auf. Die Schaltelemente weisen jeweils drei Anschlüsse auf, wobei zwischen einem ersten Anschluss und einem zweiten Anschluss eine Schaltstrecke gebildet ist, welche mittels eines dritten Anschlusses ansteuerbar ist. By means of the switching unit, the battery module can be electrically connected to the on-board network of the motor vehicle and to the output capacitor, as well as being separated from the on-board network and the output capacitor. According to the invention, the switching unit has a first switching element, a second switching element and a third switching element. The switching elements each have three connections, a switching path being formed between a first connection and a second connection, which can be controlled by means of a third connection.
Dabei ist ein erster Anschluss des ersten Schaltelements mit einem Knotenpunkt verbunden, und ein zweiter Anschluss des ersten Schaltelements ist mit einem der Pole des Batteriemoduls verbunden. Ein erster Anschluss des zweiten Schaltelements ist mit dem Knotenpunkt verbunden, und ein zweiter Anschluss des zweiten Schaltelements ist mit einem der Terminals des Ausgangskondensators verbunden. Ein erster Anschluss des dritten Schaltelements ist mit dem anderen der Pole des Batteriemoduls und mit dem anderen der Terminals des Ausgangskondensators verbunden, und ein zweiter Anschluss des dritten Schaltelements ist mit dem Knotenpunkt verbunden. A first connection of the first switching element is connected to a junction, and a second connection of the first switching element is connected to one of the poles of the battery module. A first terminal of the second switching element is connected to the junction and a second terminal of the second switching element is connected to one of the terminals of the output capacitor. A first connection of the third switching element is connected to the other of the poles of the battery module and to the other of the terminals of the output capacitor, and a second connection of the third switching element is connected to the node.
Beispielsweise ist der zweite Anschluss des ersten Schaltelements mit dem positiven Pol des Batteriemoduls verbunden, und der zweite Anschluss des zweiten Schaltelements ist mit dem positiven Terminal des Ausgangskondensators verbunden. Der erste Anschluss des dritten Schaltelements ist dann mit dem negativen Pol des Batteriemoduls und mit dem negativen Terminal des Ausgangskondensators verbunden. Der negative Pol des Batteriemoduls ist dabei mit dem negativen Terminal des Ausgangskondensators fest verbunden. For example, the second connection of the first switching element is connected to the positive pole of the battery module, and the second connection of the second switching element is connected to the positive terminal of the output capacitor. The first connection of the third switching element is then connected to the negative pole of the battery module and to the negative terminal of the output capacitor. The negative pole of the battery module is permanently connected to the negative terminal of the output capacitor.
Die erfindungsgemäße Verschaltung der Schaltelemente der Schalteinheit ermöglicht mehrere Schaltzustände des Batteriesystems. In einem ersten Schaltzustand, wenn das erste Schaltelement geschlossen, das zweite Schaltelement geöffnet und das dritte Schaltelement geschlossen ist, kann ein Strom durch den internen Widerstand und die interne Induktivität des Batteriemoduls, jedoch nicht zu dem Ausgangskondensator und zu dem Bordnetz des Kraftfahrzeugs fließen. In einem zweiten Schaltzustand, wenn das erste Schaltelement geschlossen, das zweite Schaltelement geschlossen und das dritte Schaltelement geöffnet ist, kann ein Strom durch den internen Widerstand und die interne Induktivität des Batteriemoduls und durch den Ausgangskondensator fließen. In einem dritten Schaltzustand, wenn das erste Schaltelement geöffnet ist, kann kein Strom durch das Batteriemodul fließen. In einem vierten Schaltzustand, wenn das zweite Schaltelement geöffnet und das dritte Schaltelement geöffnet ist, kann ebenfalls kein Strom durch das Batteriemodul fließen. The inventive interconnection of the switching elements of the switching unit enables multiple switching states of the battery system. In a first switching state, when the first switching element is closed, the second switching element is open and the third switching element is closed, a current can flow through the internal resistor and the internal inductance of the battery module, but not to the output capacitor and to the vehicle electrical system. In a second switching state, when the first switching element is closed, the second switching element is closed and the third switching element is opened, a current can flow through the internal resistor and the internal inductance of the battery module and through the output capacitor. In a third switching state, when the first switching element is open, no current can flow through the battery module. In In a fourth switching state, when the second switching element is open and the third switching element is open, no current can flow through the battery module either.
Gemäß einer bevorzugten Ausgestaltung der Erfindung sind das erste Schaltelement, das zweite Schaltelement und das dritte Schaltelement als Feldeffekttransistoren ausgebildet und weisen jeweils einen SOURCE- Anschluss, einen DRAIN-Anschluss und einen GATE-Anschluss auf. Die Schaltelemente sind derart verschaltet, dass jeweils der erste Anschluss der SOURCE-Anschluss, der zweite Anschluss der DRAIN-Anschluss und der dritte Anschluss der GATE-Anschluss ist. Beispielsweise handelt es sich bei den Schaltelementen um MOSFETs, insbesondere um n-Kanal-MOSFETs vom Anreicherungstyp. According to a preferred embodiment of the invention, the first switching element, the second switching element and the third switching element are designed as field effect transistors and each have a SOURCE connection, a DRAIN connection and a GATE connection. The switching elements are connected in such a way that the first connection is the SOURCE connection, the second connection is the DRAIN connection and the third connection is the GATE connection. For example, the switching elements are MOSFETs, in particular n-channel MOSFETs of the enhancement type.
Es wird auch ein Verfahren zum Betreiben eines erfindungsgemäßen Batteriesystems vorgeschlagen. Dabei wird die Schalteinheit derart angesteuert, dass ein alternierender Strom durch das Batteriemodul fließt. A method for operating a battery system according to the invention is also proposed. The switching unit is controlled in such a way that an alternating current flows through the battery module.
Der besagte alternierende Strom fließt somit insbesondere durch den internen Widerstand des Batteriemoduls. Der alternierende Strom verursacht dabei einen Spannungsabfall an dem internen Widerstand des Batteriemoduls, und damit an den Innenwiderständen der Batteriezellen. Dadurch wird in dem internen Widerstand des Batteriemoduls, und damit an den Innenwiderständen der Batteriezellen, elektrische Energie in Wärme umgewandelt. Dadurch findet eine Erwärmung des Batteriemoduls, insbesondere der Batteriezellen des Batteriemoduls, statt. Dadurch sinkt, bei steigender Betriebstemperatur, der Innenwiderstand der Batteriezellen. Said alternating current thus flows in particular through the internal resistor of the battery module. The alternating current causes a voltage drop across the internal resistance of the battery module and thus across the internal resistance of the battery cells. As a result, electrical energy is converted into heat in the internal resistance of the battery module, and thus in the internal resistance of the battery cells. As a result, the battery module, in particular the battery cells of the battery module, is heated. As a result, the internal resistance of the battery cells decreases as the operating temperature rises.
Bevorzugt wird die Schalteinheit in mehreren aufeinanderfolgenden Phasen angesteuert. Dabei wird die Schalteinheit derart angesteuert, dass während einer ersten Phase elektrische Energie von der internen Spannungsquelle des Batteriemoduls zu der internen Induktivität des Batteriemoduls übertragen wird, während einer zweiten Phase elektrische Energie von der internen Induktivität des Batteriemoduls zu dem Ausgangskondensator übertragen wird, und während einer dritten Phase elektrische Energie von dem Ausgangskondensator zu der internen Spannungsquelle des Batteriemoduls übertragen wird. Vorzugsweise wird die Schalteinheit derart angesteuert, dass während einer ersten Phase das erste Schaltelement geschlossen, das zweite Schaltelement geöffnet und das dritte Schaltelement geschlossen ist. Der Strom fließt während der ersten Phase durch die interne Spannungsquelle, durch den internen Widerstand, durch die interne Induktivität, durch das erste Schaltelement und durch das dritte Schaltelement. The switching unit is preferably activated in several successive phases. The switching unit is controlled in such a way that during a first phase electrical energy is transferred from the internal voltage source of the battery module to the internal inductance of the battery module, during a second phase electrical energy is transferred from the internal inductance of the battery module to the output capacitor, and during a third phase electrical energy is transferred from the output capacitor to the internal voltage source of the battery module. The switching unit is preferably controlled in such a way that the first switching element is closed, the second switching element is opened and the third switching element is closed during a first phase. During the first phase, the current flows through the internal voltage source, through the internal resistor, through the internal inductance, through the first switching element and through the third switching element.
Vorzugsweise wird die Schalteinheit ferner derart angesteuert, dass während einer zweiten Phase das erste Schaltelement geschlossen, das zweite Schaltelement geschlossen und das dritte Schaltelement geöffnet ist. Der Strom fließt während der zweiten Phase durch die interne Spannungsquelle, durch den internen Widerstand, durch die interne Induktivität, durch das erste Schaltelement, durch das zweite Schaltelement und durch den Ausgangskondensator. The switching unit is preferably further controlled in such a way that the first switching element is closed, the second switching element is closed and the third switching element is opened during a second phase. During the second phase, the current flows through the internal voltage source, through the internal resistor, through the internal inductance, through the first switching element, through the second switching element and through the output capacitor.
Vorzugsweise wird die Schalteinheit ferner derart angesteuert, dass während einer ersten Zwischenphase zwischen der ersten Phase und der zweiten Phase das zweite Schaltelement geöffnet und das dritte Schaltelement geöffnet ist. Das erste Schaltelement kann dabei geschlossen bleiben. The switching unit is preferably further controlled in such a way that the second switching element is opened and the third switching element is opened during a first intermediate phase between the first phase and the second phase. The first switching element can remain closed.
Vorzugsweise wird die Schalteinheit ferner derart angesteuert, dass während einer dritten Phase das erste Schaltelement geschlossen, das zweite Schaltelement geschlossen und das dritte Schaltelement geöffnet ist. Der Strom fließt während der dritten Phase durch die interne Spannungsquelle, durch den internen Widerstand, durch die interne Induktivität, durch das erste Schaltelement, durch das zweite Schaltelement und durch den Ausgangskondensator. Der Strom fließt während der dritten Phase in entgegengesetzte Richtung wie während der zweiten Phase. The switching unit is also preferably controlled in such a way that the first switching element is closed, the second switching element is closed and the third switching element is opened during a third phase. During the third phase, the current flows through the internal voltage source, through the internal resistor, through the internal inductance, through the first switching element, through the second switching element and through the output capacitor. The current flows during the third phase in the opposite direction as during the second phase.
Vorzugsweise wird die Schalteinheit ferner derart angesteuert, dass während einer zweiten Zwischenphase zwischen der dritten Phase und der ersten Phase das zweite Schaltelement geöffnet und das dritte Schaltelement geöffnet ist. Das erste Schaltelement kann dabei geschlossen bleiben. The switching unit is also preferably controlled in such a way that the second switching element is opened and the third switching element is opened during a second intermediate phase between the third phase and the first phase. The first switching element can remain closed.
Vorzugsweise wird die Schalteinheit ferner derart angesteuert, dass die erste Phase, die zweite Phase und die dritte Phase zyklisch wiederholt werden. Die erste Phase, die zweite Phase und die dritte Phase werden bevorzugt mit einer verhältnismäßig hohen Frequenz von beispielsweise 20 kHz wiederholt. The switching unit is also preferably controlled in such a way that the first phase, the second phase and the third phase are repeated cyclically. The the first phase, the second phase and the third phase are preferably repeated at a relatively high frequency of, for example, 20 kHz.
Es wird auch ein Kraftfahrzeug vorgeschlagen, das mindestens ein erfindungsgemäßes Batteriesystem umfasst, welches mit dem erfindungsgemäßen Verfahren betrieben wird. A motor vehicle is also proposed which comprises at least one battery system according to the invention, which is operated with the method according to the invention.
Vorteile der Erfindung Advantages of the invention
Mittels des erfindungsgemäßen Verfahrens ist es möglich, in einem erfindungsgemäßen Batteriesystem für ein Kraftfahrzeug die Batteriezellen des Batteriemoduls in verhältnismäßig kurzer Zeit auf eine passende Betriebstemperatur zu erwärmen. Dadurch sinkt der Innenwiderstand der Batteriezellen, und das Batteriesystem des Kraftfahrzeugs ist in verhältnismäßig kurzer Zeit einsatzbereit. Eine separate Heizeinrichtung zur Beheizung der Batteriezellen ist nicht erforderlich. By means of the method according to the invention, it is possible in a battery system according to the invention for a motor vehicle to heat the battery cells of the battery module to a suitable operating temperature in a relatively short time. As a result, the internal resistance of the battery cells decreases and the battery system of the motor vehicle is ready for use in a relatively short time. A separate heating device for heating the battery cells is not required.
Mittels des erfindungsgemäßen Verfahrens kann das erfindungsgemäße Batteriesystem ähnlich wie ein DC/DC-Wandler, beziehungsweise wie ein Hochsetzsteller, betrieben werden. Der dabei fließende alternierende Strom fließt stets durch den internen Widerstand des Batteriemoduls und somit durch die Innenwiderstände der Batteriezellen. Durch den dabei verursachten Spannungsabfall wird an den Innenwiderständen der Batteriezellen elektrische Energie in Wärme umgewandelt, wodurch eine Erwärmung der Batteriezellen stattfindet. Während dieses Vorgangs wird elektrische Energie zwischen der Spannungsquelle, der internen Induktivität und dem Ausgangskondensator übertragen. Die elektrische Energie wird also innerhalb des erfindungsgemäßen Batteriesystems verschoben. Mit Ausnahme von der Umwandlung von elektrischer Energie in Wärme an den Innenwiderständen der Batteriezellen treten keine weiteren signifikanten Verluste auf. Das Batteriemodul wird also nur unwesentlich entladen. By means of the method according to the invention, the battery system according to the invention can be operated in a manner similar to a DC / DC converter, or like a step-up converter. The alternating current flowing in the process always flows through the internal resistance of the battery module and thus through the internal resistance of the battery cells. Due to the voltage drop caused by this, electrical energy is converted into heat at the internal resistances of the battery cells, which causes the battery cells to heat up. During this process, electrical energy is transferred between the voltage source, the internal inductor and the output capacitor. The electrical energy is thus shifted within the battery system according to the invention. With the exception of the conversion of electrical energy into heat at the internal resistances of the battery cells, no further significant losses occur. The battery module is only slightly discharged.
Kurze Beschreibung der Zeichnungen Brief description of the drawings
Ausführungsformen der Erfindung werden anhand der Zeichnungen und der nachfolgenden Beschreibung näher erläutert. Es zeigen: Embodiments of the invention are explained in more detail with reference to the drawings and the following description. Show it:
Figur 1 eine schematische Darstellung eines Batteriesystems, Figure 1 is a schematic representation of a battery system,
Figur 2 eine schematische Darstellung des Batteriesystems während einer ersten Phase des Verfahrens, Figure 2 is a schematic representation of the battery system during a first phase of the method,
Figur 3 eine schematische Darstellung des Batteriesystems während einer zweiten Phase des Verfahrens und FIG. 3 shows a schematic representation of the battery system during a second phase of the method and FIG
Figur 4 eine schematische Darstellung des Batteriesystems während einer dritten Phase des Verfahrens. FIG. 4 shows a schematic representation of the battery system during a third phase of the method.
Ausführungsformen der Erfindung Embodiments of the invention
In der nachfolgenden Beschreibung der Ausführungsformen der Erfindung werden gleiche oder ähnliche Elemente mit gleichen Bezugszeichen bezeichnet, wobei auf eine wiederholte Beschreibung dieser Elemente in Einzelfällen verzichtet wird. Die Figuren stellen den Gegenstand der Erfindung nur schematisch dar. In the following description of the embodiments of the invention, the same or similar elements are denoted by the same reference numerals, a repeated description of these elements being dispensed with in individual cases. The figures represent the subject matter of the invention only schematically.
Figur 1 zeigt eine schematische Darstellung eines Batteriesystems 10 für ein Kraftfahrzeug. Das Batteriesystem 10 umfasst ein Batteriemodul 5, einen Ausgangskondensator CA und eine Schalteinheit 60. Die Schalteinheit 60 dient zur elektrischen Verbindung des Batteriemoduls 5 mit dem Ausgangskondensator CA. FIG. 1 shows a schematic representation of a battery system 10 for a motor vehicle. The battery system 10 comprises a battery module 5, an output capacitor CA and a switching unit 60. The switching unit 60 is used to electrically connect the battery module 5 to the output capacitor CA.
Das Batteriemodul 5 umfasst mehrere hier nicht dargestellte Batteriezellen, die innerhalb des Batteriemoduls 5 sowohl seriell als auch parallel miteinander verschaltetet sein können. Jede der Batteriezellen bildet eine elektrische Spannungsquelle mit einem temperaturabhängigen Innenwiderstand nach. Die elektrischen Spannungsquellen der Batteriezellen bilden eine interne Spannungsquelle Vi. Die Innenwiderstände der Batteriezellen und ein elektrischer Widerstand von elektrischen Leitungen bilden einen internen Widerstand Ri. Induktivitäten der elektrischen Leitungen und der Batteriezellen 2 bilden eine interne Induktivität Li. Optional kann zusätzlich eine Spule mit einer zusätzlichen Induktivität vorgesehen sein. In diesem Fall bilden die Induktivitäten der elektrischen Leitungen und der Batteriezellen 2 gemeinsam mit der Induktivität der Spule die interne Induktivität Li. The battery module 5 comprises several battery cells, not shown here, which can be connected to one another both in series and in parallel within the battery module 5. Each of the battery cells simulates an electrical voltage source with a temperature-dependent internal resistance. The electrical voltage sources of the battery cells form an internal voltage source Vi. The internal resistances of the battery cells and an electrical resistance of electrical lines form an internal resistance Ri. Inductances of the electrical lines and the battery cells 2 form an internal inductance Li. Optionally, a coil with an additional inductance can also be provided. In this case the inductors form of the electrical lines and the battery cells 2 together with the inductance of the coil, the internal inductance Li.
Das Batteriemodul 5 weist somit die interne Spannungsquelle Vi, den internen Widerstand Ri und die interne Induktivität Li auf. Das Batteriemodul 5 weist ferner einen positiven Pol 22 und einen negativen Pol 21 auf. Im Leerlauf liegt eine von der internen Spannungsquelle Vi gelieferte Spannung zwischen dem positiven Pol 22 und dem negativen Pol 21 an. The battery module 5 thus has the internal voltage source Vi, the internal resistance Ri and the internal inductance Li. The battery module 5 also has a positive pole 22 and a negative pole 21. When idling, a voltage supplied by the internal voltage source Vi is applied between the positive pole 22 and the negative pole 21.
Der Ausgangskondensator CA weist ein positives Terminal 12 und ein negatives Terminal 11 auf. Bei dem Ausgangskondensator CA handelt es sich beispielsweise um einen Zwischenkreiskondensator, welcher elektrisch mit einem Bordnetz des Kraftfahrzeugs verbunden ist. Das Batteriemodul 5 kann einen weiteren Kondensator aufweisen, welcher dann zusammen mit dem Zwischenkreiskondensator den Ausgangskondensator CA bildet. The output capacitor CA has a positive terminal 12 and a negative terminal 11. The output capacitor CA is, for example, an intermediate circuit capacitor which is electrically connected to an on-board network of the motor vehicle. The battery module 5 can have a further capacitor, which then forms the output capacitor CA together with the intermediate circuit capacitor.
Die Schalteinheit 60 weist ein erstes Schaltelement 61, ein zweites Schaltelement 62 und ein drittes Schaltelement 63 auf. Die Schaltelemente 61, 62, 63 weisen jeweils drei Anschlüsse auf, wobei zwischen einem ersten Anschluss und einem zweiten Anschluss eine Schaltstrecke gebildet ist, welche mittels eines dritten Anschlusses ansteuerbar ist. The switching unit 60 has a first switching element 61, a second switching element 62 and a third switching element 63. The switching elements 61, 62, 63 each have three connections, a switching path being formed between a first connection and a second connection, which can be controlled by means of a third connection.
Das erste Schaltelement 61, das zweite Schaltelement 62 und das dritte Schaltelement 63 sind vorliegend als Feldeffekttransistoren ausgebildet. Die Schaltelemente 61, 62, 63 weisen jeweils einen SOURCE-Anschluss, einen DRAIN-Anschluss und einen GATE-Anschluss auf. Die Schaltelemente 61, 62,The first switching element 61, the second switching element 62 and the third switching element 63 are in the present case designed as field effect transistors. The switching elements 61, 62, 63 each have a SOURCE connection, a DRAIN connection and a GATE connection. The switching elements 61, 62,
63 sind derart verschaltet, dass jeweils der erste Anschluss der SOURCE- Anschluss, der zweite Anschluss der DRAIN-Anschluss und der dritte Anschluss der GATE-Anschluss ist. 63 are connected in such a way that the first connection is the SOURCE connection, the second connection is the DRAIN connection and the third connection is the GATE connection.
Bei den Schaltelementen 61, 62, 63 handelt es sich vorliegend um n-Kanal- MOSFETs vom Anreicherungstyp. Die Schaltelemente 61, 62, 63 weisen jeweils eine Schaltstrecke sowie eine parallel zu der Schaltstrecke geschaltete Inversdiode auf. Die Inversdiode, welche auch als Body-Diode bezeichnet wird, entsteht in jedem MOSFET aufgrund von dessen interner Struktur und ist kein explizites Bauteil. Der erste Anschluss des ersten Schaltelements 61 ist mit einem Knotenpunkt 25 verbunden. Ein zweiter Anschluss des ersten Schaltelements 61 ist mit dem positiven Pol 22 des Batteriemoduls 5 verbunden. Ein erster Anschluss des zweiten Schaltelements 62 ist mit dem Knotenpunkt 25 verbunden. Ein zweiter Anschluss des zweiten Schaltelements 62 ist mit dem positiven Terminal 12 des Ausgangskondensators CA verbunden. Ein erster Anschluss des dritten Schaltelements 63 ist mit dem negativen Pol 21 des Batteriemoduls 5 und mit dem negativen Terminal 11 des Ausgangskondensators CA verbunden. Ein zweiter Anschluss des dritten Schaltelements 63 ist mit dem Knotenpunkt 25 verbunden. The switching elements 61, 62, 63 are n-channel MOSFETs of the enhancement type in the present case. The switching elements 61, 62, 63 each have a switching path and an inverse diode connected in parallel to the switching path. The inverse diode, which is also referred to as a body diode, is created in every MOSFET due to its internal structure and is not an explicit component. The first connection of the first switching element 61 is connected to a node 25. A second connection of the first switching element 61 is connected to the positive pole 22 of the battery module 5. A first connection of the second switching element 62 is connected to the node 25. A second terminal of the second switching element 62 is connected to the positive terminal 12 of the output capacitor CA. A first connection of the third switching element 63 is connected to the negative pole 21 of the battery module 5 and to the negative terminal 11 of the output capacitor CA. A second connection of the third switching element 63 is connected to the node 25.
Figur 2 zeigt eine schematische Darstellung des Batteriesystems 10 während einer ersten Phase des Verfahrens. Während der ersten Phase ist das erste Schaltelement 61 geschlossen, das zweite Schaltelement 62 ist geöffnet und das dritte Schaltelement 63 ist geschlossen. Ein Strom I fließt während der ersten Phase durch die interne Spannungsquelle Vi, durch den internen Widerstand Ri, durch die interne Induktivität Li, durch das erste Schaltelement 61 und durch das dritte Schaltelement 63. FIG. 2 shows a schematic illustration of the battery system 10 during a first phase of the method. During the first phase, the first switching element 61 is closed, the second switching element 62 is open and the third switching element 63 is closed. During the first phase, a current I flows through the internal voltage source Vi, through the internal resistor Ri, through the internal inductance Li, through the first switching element 61 and through the third switching element 63.
Dabei wird elektrische Energie von der internen Spannungsquelle Vi zu der internen Induktivität Li übertragen. Ferner erzeugt der Strom I einen Spannungsabfall an dem internen Widerstand Ri, wodurch elektrische Energie in Wärme umgewandelt wird. In this case, electrical energy is transferred from the internal voltage source Vi to the internal inductance Li. Furthermore, the current I generates a voltage drop across the internal resistor Ri, as a result of which electrical energy is converted into heat.
Nach Ende der ersten Phase wird das dritte Schaltelement 63 geöffnet und es beginnt eine erste Zwischenphase, in welcher das zweite Schaltelement 62 und das dritte Schaltelement 63 geöffnet sind. Das erste Schaltelement 61 bleibt dabei geschlossen. Nach Ende der ersten Zwischenphase wird das zweite Schaltelement 62 geschlossen und es beginnt eine zweite Phase. After the end of the first phase, the third switching element 63 is opened and a first intermediate phase begins, in which the second switching element 62 and the third switching element 63 are opened. The first switching element 61 remains closed. After the end of the first intermediate phase, the second switching element 62 is closed and a second phase begins.
Figur 3 zeigt eine schematische Darstellung des Batteriesystems 10 während der zweiten Phase des Verfahrens. Während der zweiten Phase ist das erste Schaltelement 61 geschlossen, das zweite Schaltelement 62 ist geschlossen und das dritte Schaltelement 63 ist geöffnet. Ein Strom I fließt während der zweiten Phase durch die interne Spannungsquelle Vi, durch den internen Widerstand Ri, durch die interne Induktivität Li, durch das erste Schaltelement 61, durch das zweite Schaltelement 62 und durch den Ausgangskondensator CA. Dabei wird elektrische Energie von der internen Induktivität Li zu dem Ausgangskondensator CA übertragen. Die interne Induktivität Li entlädt ihre gespeicherte Energie in den Ausgangskondensator CA. Ferner erzeugt der Strom I einen Spannungsabfall an dem internen Widerstand Ri, wodurch elektrische Energie in Wärme umgewandelt wird. FIG. 3 shows a schematic representation of the battery system 10 during the second phase of the method. During the second phase, the first switching element 61 is closed, the second switching element 62 is closed and the third switching element 63 is open. During the second phase, a current I flows through the internal voltage source Vi, through the internal resistor Ri, through the internal inductance Li, through the first switching element 61, through the second switching element 62 and through the output capacitor CA. Here, electrical energy is transferred from the internal inductance Li to the output capacitor CA. The internal inductance Li discharges its stored energy into the output capacitor CA. Furthermore, the current I generates a voltage drop across the internal resistor Ri, as a result of which electrical energy is converted into heat.
Figur 4 zeigt eine schematische Darstellung des Batteriesystems 10 während einer dritten Phase des Verfahrens. Während der dritten Phase ist das erste Schaltelement 61 geschlossen, das zweite Schaltelement 62 ist geschlossen und das dritte Schaltelement 63 ist geöffnet. Ein Strom I fließt während der dritten Phase durch die interne Spannungsquelle Vi, durch den internen Widerstand Ri, durch die interne Induktivität Li, durch das erste Schaltelement 61, durch das zweite Schaltelement 62 und durch den Ausgangskondensator CA. Der Strom I fließt während der dritten Phase jedoch in entgegengesetzte Richtung wie während der zweiten Phase. FIG. 4 shows a schematic illustration of the battery system 10 during a third phase of the method. During the third phase, the first switching element 61 is closed, the second switching element 62 is closed and the third switching element 63 is open. During the third phase, a current I flows through the internal voltage source Vi, through the internal resistor Ri, through the internal inductance Li, through the first switching element 61, through the second switching element 62 and through the output capacitor CA. During the third phase, however, the current I flows in the opposite direction as during the second phase.
Dabei wird elektrische Energie von dem Ausgangskondensator CA zu der internen Spannungsquelle Vi übertragen. Ferner erzeugt der Strom I einen Spannungsabfall an dem internen Widerstand Ri, wodurch elektrische Energie in Wärme umgewandelt wird. In this case, electrical energy is transferred from the output capacitor CA to the internal voltage source Vi. Furthermore, the current I generates a voltage drop across the internal resistor Ri, as a result of which electrical energy is converted into heat.
Nach Ende der dritten Phase wird das zweite Schaltelement 62 geöffnet und es beginnt eine zweite Zwischenphase, in welcher das zweite Schaltelement 62 und das dritte Schaltelement 63 geöffnet sind. Das erste Schaltelement 61 bleibt dabei geschlossen. Nach Ende der ersten Zwischenphase wird das dritte Schaltelement 63 geschlossen und es beginnt eine weitere erste Phase. After the end of the third phase, the second switching element 62 is opened and a second intermediate phase begins, in which the second switching element 62 and the third switching element 63 are opened. The first switching element 61 remains closed. After the end of the first intermediate phase, the third switching element 63 is closed and a further first phase begins.
Die Erfindung ist nicht auf die hier beschriebenen Ausführungsbeispiele und die darin hervorgehobenen Aspekte beschränkt. Vielmehr ist innerhalb des durch die Ansprüche angegebenen Bereichs eine Vielzahl von Abwandlungen möglich, die im Rahmen fachmännischen Handelns liegen. The invention is not restricted to the exemplary embodiments described here and the aspects emphasized therein. Rather, within the range specified by the claims, a large number of modifications are possible that are within the scope of expert knowledge.

Claims

Ansprüche Expectations
1. Batteriesystem (10) für ein Kraftfahrzeug, umfassend ein Batteriemodul (5), welches eine interne Spannungsquelle (Vi), einen internen Widerstand (Ri), eine interne Induktivität (Li), einen positiven Pol (22) und einen negativen Pol (21) aufweist, einen Ausgangskondensator (CA), weicher ein positives Terminal (12) und ein negatives Terminal (11) aufweist, und eine Schalteinheit (60) zur elektrischen Verbindung des Batteriemoduls (5) mit dem Ausgangskondensator (CA), dadurch gekennzeichnet, dass die Schalteinheit (60) ein erstes Schaltelement (61), ein zweites Schaltelement (62) und ein drittes Schaltelement (63) aufweist, wobei ein erster Anschluss des ersten Schaltelements (61) mit einem Knotenpunkt (25) verbunden ist, ein zweiter Anschluss des ersten Schaltelements (61) mit einem der Pole (21, 22) des Batteriemoduls (5) verbunden ist, ein erster Anschluss des zweiten Schaltelements (62) mit dem Knotenpunkt (25) verbunden ist, ein zweiter Anschluss des zweiten Schaltelements (62) mit einem der Terminals (11, 12) des Ausgangskondensators (CA) verbunden ist, ein erster Anschluss des dritten Schaltelements (63) mit dem anderen der Pole (21, 22) des Batteriemoduls (5) und mit dem anderen der Terminals (11, 12) des Ausgangskondensators (CA) verbunden ist, und ein zweiter Anschluss des dritten Schaltelements (63) mit dem Knotenpunkt (25) verbunden ist. 1. Battery system (10) for a motor vehicle, comprising a battery module (5), which has an internal voltage source (Vi), an internal resistor (Ri), an internal inductance (Li), a positive pole (22) and a negative pole ( 21), an output capacitor (CA), which has a positive terminal (12) and a negative terminal (11), and a switching unit (60) for electrically connecting the battery module (5) to the output capacitor (CA), characterized in that, that the switching unit (60) has a first switching element (61), a second switching element (62) and a third switching element (63), a first connection of the first switching element (61) being connected to a node (25), a second connection of the first switching element (61) is connected to one of the poles (21, 22) of the battery module (5), a first connection of the second switching element (62) is connected to the node (25), a second connection of the second switching element (62) mi t one of the terminals (11, 12) of the output capacitor (CA) is connected, a first connection of the third switching element (63) to the other of the poles (21, 22) of the battery module (5) and to the other of the terminals (11, 12) of the output capacitor (CA) is connected, and a second connection of the third switching element (63) is connected to the node (25).
2. Batteriesystem (10) nach Anspruch 1, dadurch gekennzeichnet, dass das erste Schaltelement (61), das zweite Schaltelement (62) und das dritte Schaltelement (63) als Feldeffekttransistoren ausgebildet sind, wobei jeweils der erste Anschluss ein SOURCE-Anschluss, der zweite Anschluss ein DRAIN-Anschluss und ein dritter Anschluss ein GATE-Anschluss ist. 2. Battery system (10) according to claim 1, characterized in that the first switching element (61), the second switching element (62) and the third switching element (63) are designed as field effect transistors, wherein the first connection is a SOURCE connection second connection is a DRAIN connection and a third connection is a GATE connection.
3. Verfahren zum Betreiben eines Batteriesystems (10) nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Schalteinheit (60) derart angesteuert wird, dass ein alternierender Strom (I) durch das Batteriemodul (5) fließt. 3. The method for operating a battery system (10) according to any one of the preceding claims, characterized in that the switching unit (60) is controlled such that an alternating current (I) flows through the battery module (5).
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die Schalteinheit (60) derart angesteuert wird, dass während einer ersten Phase elektrische Energie von der internen Spannungsquelle (Vi) des Batteriemoduls (5) zu der internen Induktivität (Li) des Batteriemoduls (5) übertragen wird, während einer zweiten Phase elektrische Energie von der internen Induktivität (Li) des Batteriemoduls (5) zu dem Ausgangskondensator (CA) übertragen wird, und während einer dritten Phase elektrische Energie von dem Ausgangskondensator (CA) zu der internen Spannungsquelle (Vi) des Batteriemoduls (5) übertragen wird. 4. The method according to claim 3, characterized in that the switching unit (60) is controlled in such a way that electrical energy from the internal voltage source (Vi) of the battery module (5) to the internal inductance (Li) of the battery module (5) during a first phase ) is transmitted, during a second phase electrical energy is transmitted from the internal inductance (Li) of the battery module (5) to the output capacitor (CA), and during a third phase electrical energy is transmitted from the output capacitor (CA) to the internal voltage source (Vi ) of the battery module (5) is transferred.
5. Verfahren nach einem der Ansprüche 3 bis 4, dadurch gekennzeichnet, dass die Schalteinheit (60) derart angesteuert wird, dass während einer ersten Phase das erste Schaltelement (61) geschlossen, das zweite Schaltelement (62) geöffnet und das dritte Schaltelement (63) geschlossen ist. 5. The method according to any one of claims 3 to 4, characterized in that the switching unit (60) is controlled in such a way that, during a first phase, the first switching element (61) is closed, the second switching element (62) is opened and the third switching element (63 ) closed is.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Schalteinheit (60) derart angesteuert wird, dass während einer zweiten Phase das erste Schaltelement (61) geschlossen, das zweite Schaltelement (62) geschlossen und das dritte Schaltelement (63) geöffnet ist. 6. The method according to claim 5, characterized in that the switching unit (60) is controlled such that the first switching element (61) is closed, the second switching element (62) is closed and the third switching element (63) is opened during a second phase.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Schalteinheit (60) derart angesteuert wird, dass während einer ersten Zwischenphase zwischen der ersten Phase und der zweiten Phase das zweite Schaltelement (62) geöffnet und das dritte Schaltelement (63) geöffnet ist. 7. The method according to claim 6, characterized in that the switching unit (60) is controlled such that the second switching element (62) is opened and the third switching element (63) is opened during a first intermediate phase between the first phase and the second phase.
8. Verfahren nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass die Schalteinheit (60) derart angesteuert wird, dass während einer dritten Phase das erste Schaltelement (61) geschlossen, das zweite Schaltelement (62) geschlossen und das dritte Schaltelement (63) geöffnet ist. 8. The method according to any one of claims 5 to 7, characterized in that the switching unit (60) is controlled in such a way that during a third phase the first switching element (61) is closed, the second switching element (62) is closed and the third switching element (63 ) is open.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Schalteinheit (60) derart angesteuert wird, dass während einer zweiten Zwischenphase zwischen der dritten Phase und der ersten Phase das zweite Schaltelement (62) geöffnet und das dritte Schaltelement (63) geöffnet ist. 9. The method according to claim 8, characterized in that the switching unit (60) is controlled such that the second switching element (62) is opened and the third switching element (63) is opened during a second intermediate phase between the third phase and the first phase.
10. Verfahren nach einem der Ansprüche 5 bis 9, dadurch gekennzeichnet, dass die Schalteinheit (60) derart angesteuert wird, dass die erste Phase, die zweite Phase und die dritte Phase zyklisch wiederholt werden. 10. The method according to any one of claims 5 to 9, characterized in that the switching unit (60) is controlled in such a way that the first phase, the second phase and the third phase are repeated cyclically.
11. Kraftfahrzeug, umfassend mindestens ein Batteriesystem (10) nach einem der Ansprüche 1 bis 2, welches mit einem Verfahren nach einem der Ansprüche 3 bis 10 betrieben wird. 11. Motor vehicle, comprising at least one battery system (10) according to one of claims 1 to 2, which is operated with a method according to one of claims 3 to 10.
PCT/EP2020/071200 2019-08-21 2020-07-28 Battery system for a motor vehicle having a switching unit for heating the battery cells, method for operating the battery system, and motor vehicle WO2021032413A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019212475.5 2019-08-21
DE102019212475.5A DE102019212475A1 (en) 2019-08-21 2019-08-21 Battery system for a motor vehicle, method for operating a battery system and motor vehicle

Publications (1)

Publication Number Publication Date
WO2021032413A1 true WO2021032413A1 (en) 2021-02-25

Family

ID=71846397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/071200 WO2021032413A1 (en) 2019-08-21 2020-07-28 Battery system for a motor vehicle having a switching unit for heating the battery cells, method for operating the battery system, and motor vehicle

Country Status (3)

Country Link
DE (1) DE102019212475A1 (en)
TW (1) TW202120351A (en)
WO (1) WO2021032413A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021203748A1 (en) 2021-04-15 2022-10-20 Robert Bosch Gesellschaft mit beschränkter Haftung Battery system and method for operating a battery system
DE102021211418A1 (en) 2021-10-11 2023-04-13 Robert Bosch Gesellschaft mit beschränkter Haftung Battery heater, method of heating a battery
DE102021212316A1 (en) 2021-11-02 2023-05-04 Robert Bosch Gesellschaft mit beschränkter Haftung Arrangement for impedance analysis of a battery pack, battery system, method for impedance analysis of a battery pack
DE102021213950A1 (en) 2021-12-08 2023-06-15 Robert Bosch Gesellschaft mit beschränkter Haftung Device for heating an energy storage system with at least one electrochemical energy store

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011110906A1 (en) 2010-09-02 2012-03-08 Gm Global Technology Operations Llc, ( N.D. Ges. D. Staates Delaware) A method and apparatus for controlling a high voltage battery connection for a hybrid powertrain system
DE102014202717B3 (en) 2014-02-14 2015-06-11 Robert Bosch Gmbh System for determining the capacitance of a DC link capacitor and method for driving an inverter
WO2017064820A1 (en) 2015-10-13 2017-04-20 Hitachi, Ltd. Electric power generation system and its control system
CN107666028A (en) * 2017-08-16 2018-02-06 同济大学 A kind of lithium ion battery for electric vehicle low temperature exchanges heater

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9793810B2 (en) * 2015-09-10 2017-10-17 Futurewei Technologies, Inc. Control method for zero voltage switching buck-boost power converters
KR102056876B1 (en) * 2017-09-25 2019-12-17 주식회사 엘지화학 Apparatus for managing battery, battery pack including the same and vehicle including the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011110906A1 (en) 2010-09-02 2012-03-08 Gm Global Technology Operations Llc, ( N.D. Ges. D. Staates Delaware) A method and apparatus for controlling a high voltage battery connection for a hybrid powertrain system
CN102398507A (en) 2010-09-02 2012-04-04 通用汽车环球科技运作有限责任公司 Method and apparatus for controlling high-voltage battery connection for hybrid powertrain system
DE102014202717B3 (en) 2014-02-14 2015-06-11 Robert Bosch Gmbh System for determining the capacitance of a DC link capacitor and method for driving an inverter
US20150236616A1 (en) 2014-02-14 2015-08-20 Robert Bosch Gmbh System comprising a control apparatus for semiconductor switches of an inverter and method for actuating an inverter
WO2017064820A1 (en) 2015-10-13 2017-04-20 Hitachi, Ltd. Electric power generation system and its control system
CN107666028A (en) * 2017-08-16 2018-02-06 同济大学 A kind of lithium ion battery for electric vehicle low temperature exchanges heater

Also Published As

Publication number Publication date
TW202120351A (en) 2021-06-01
DE102019212475A1 (en) 2021-02-25

Similar Documents

Publication Publication Date Title
WO2021032413A1 (en) Battery system for a motor vehicle having a switching unit for heating the battery cells, method for operating the battery system, and motor vehicle
DE102012200841B4 (en) ELECTRICAL SYSTEM AND PROCEDURE
EP1670663B1 (en) Switching device for bi-directionally equalizing charge between energy accumulators, and corresponding methods
EP3496259A1 (en) Electrical converter system
DE102011089312A1 (en) System and method for charging the energy storage cells of an energy storage device
DE102010001250A1 (en) Electric vehicle electrical system and method for operating an electrical vehicle electrical system
WO2016079603A1 (en) Dc/dc conversion device
EP2842214B1 (en) Method for charging the energy storage cells of an energy storage device, and rechargeable energy storage device
DE102012205119A1 (en) A method for heating energy storage cells of an energy storage device and heatable energy storage device
DE102012205095A1 (en) A method for heating energy storage cells of an energy storage device and heatable energy storage device
DE102012014178A1 (en) Device and method for charging at least one traction battery of an electric vehicle
DE102018207797B3 (en) Device for temperature conditioning of a battery, battery unit and method for temperature conditioning of a battery
DE102013203734B4 (en) Modular high frequency inverter
DE102018221234A1 (en) Battery unit
DE102015225574A1 (en) Method and device for charging a battery
DE102019212473A1 (en) Battery system for a motor vehicle, method for operating a battery system and motor vehicle
WO2020064429A1 (en) Charging circuit for a vehicle-side electrical energy store
WO2020043883A1 (en) Method and device for the voltage matching of the smoothing capacitor of a dc-to-dc converter before a high-voltage battery is connected
DE102020007840A1 (en) Boost converter for charging an electrical energy store of an electrically powered vehicle, as well as vehicle and method
DE102018210781A1 (en) Vehicle-side charging circuit
WO2013072107A1 (en) Energy storage device, system with energy storage device and method for actuating an energy storage device
WO2021032411A1 (en) Battery system for a motor vehicle for balancing battery modules, method for operating a battery system and motor vehicle
DE102014201440A1 (en) Motor vehicle electrical system with optimized switching function
DE102020007837A1 (en) Voltage converter for charging an electrical energy store of an electrically powered vehicle, and vehicle and method
DE102020200794B4 (en) charging and heating circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20747394

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20747394

Country of ref document: EP

Kind code of ref document: A1