WO2021031858A1 - 一种随机接入的方法及通信装置 - Google Patents

一种随机接入的方法及通信装置 Download PDF

Info

Publication number
WO2021031858A1
WO2021031858A1 PCT/CN2020/107252 CN2020107252W WO2021031858A1 WO 2021031858 A1 WO2021031858 A1 WO 2021031858A1 CN 2020107252 W CN2020107252 W CN 2020107252W WO 2021031858 A1 WO2021031858 A1 WO 2021031858A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
ssb
preamble
network device
transmission
Prior art date
Application number
PCT/CN2020/107252
Other languages
English (en)
French (fr)
Inventor
庞高昆
董会云
凌岑
类春阳
徐国琴
周恩
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021031858A1 publication Critical patent/WO2021031858A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • This application relates to the field of wireless communication technology, and in particular to a random access method and communication device.
  • a terminal device In a wireless communication system, a terminal device needs to establish a connection with the network, and this process is usually called a random access (random access, RA) process. From the perspective of terminal equipment, the RA process may encounter various problems and cause RA failure. In the long term evolution (LTE) system, if this RA fails, the terminal equipment will re-initiate RA and execute it. Power ramping (power ramping), using higher power than last time to initiate RA.
  • LTE long term evolution
  • the network equipment in the 5G communication system can interact with terminal equipment through beamforming technology, for example, network equipment It can communicate with the terminal device through one or more beams to achieve higher data transmission efficiency. Under this mechanism, if the terminal device switches the transmit beam or the receive beam, power climbing cannot be performed.
  • the terminal device selects the transmission beam to initiate the RA again depends on the internal implementation of the terminal device.
  • the power cannot be ramped up, and the transmission power of the terminal device may be small, which makes it unreachable to the network device, and ultimately causes the terminal device to take a long time to complete the RA, which brings more Large access delay affects the user experience.
  • the present application provides a random access method and communication device.
  • the terminal device may not switch transmission beams as much as possible to achieve power ramping, thereby improving the success rate of RA and shortening the completion time of RA.
  • a random access method is provided, which may be executed by a terminal device, or may also be executed by a chip or circuit configured in the terminal device, which is not limited in this application.
  • the method includes: a terminal device measures a plurality of synchronization signal blocks SSB sent by a network device in a first measurement period to determine a first transmission beam, and the first transmission beam corresponds to the first SSB; and the terminal device uses the first transmission beam Send the first preamble to the network device at the first transmission power for the first random access; when the first random access fails, the terminal device uses the first transmission beam to send the second preamble to the network device at the second transmission power Code to perform a second random access, and the second transmission power is greater than the first transmission power.
  • the terminal device can continue to use the first transmission beam and send a second transmission power greater than the first transmission power to the network (to achieve power ramping)
  • the device transmits the second preamble, that is, uses the first transmit beam to initiate the second random access with the second transmit power.
  • the terminal device device may not switch the transmit beam as much as possible to achieve power ramping. Improve the success rate of RA, shorten the completion time of RA, and improve the user experience.
  • the method before the terminal device uses the first transmit beam to transmit the second preamble to the network device at the second transmit power, the method further includes: the terminal device performs a second measurement Periodically measuring the first SSB to obtain the first measurement value; and the terminal device using the first transmission beam to send the second preamble to the network device at the second transmission power includes: when the first measurement value meets a preset condition, The terminal device uses the first transmit beam to transmit the second preamble to the network device at the second transmit power.
  • the preset condition includes: the first measured value is greater than or equal to the first threshold.
  • the preset condition includes: the first measurement value is greater than or equal to the second measurement value, and the second measurement value is a detection period of the terminal device before the second measurement period The measured value of the first SSB.
  • the method before the terminal device uses the first transmit beam to transmit the second preamble to the network device at the second transmit power, the method further includes: the terminal device performs a second measurement Periodically measure the first SSB; and the terminal device uses the first transmit beam to send the second preamble to the network device at the second transmit power, including: when the measurement value of the first SSB is not obtained, the terminal device uses the first transmit beam Send the second preamble to the network device at the second transmission power.
  • the method before the terminal device uses the first transmit beam to transmit the second preamble to the network device at the second transmit power, the method further includes: the terminal device performs a second measurement Periodically measure multiple SSBs to obtain multiple measurement values; and the terminal device uses the first transmission beam to send the second preamble to the network device at the second transmission power, including: when the multiple measurement values meet a preset condition, The terminal device uses the first transmit beam to transmit the second preamble to the network device at the second transmit power.
  • the preset condition includes: the maximum value of the multiple measured values is the measured value of the first SSB.
  • the preset condition includes: the maximum value of the multiple measurement values is not the measurement value of the first SSB, and the difference between the maximum value and the measurement value of the first SSB is less than Or equal to the second threshold.
  • the method before the terminal device uses the first transmit beam to transmit the second preamble to the network device at the second transmit power, the method further includes: the terminal device performs a second measurement Periodically measure multiple SSBs; and the terminal device uses the first transmit beam to send the second preamble to the network device at the second transmit power, including: when all measurement values of the multiple SSBs are not obtained, the terminal device uses the first transmission The beam transmits the second preamble to the network device at the second transmission power.
  • the terminal device measures multiple synchronization signal blocks SSB sent by the network device in the first measurement period to determine the first SSB, including: The measurement period measures multiple SSBs to obtain multiple measurement values, and the terminal device determines the SSB corresponding to the maximum value of the multiple measurement values as the first SSB.
  • a communication device in a second aspect, includes a measurement unit configured to measure multiple synchronization signal blocks SSB sent by a network device in a first measurement period to determine a first transmission beam, and the first transmission beam is connected to the Corresponds to the first SSB; the sending unit is configured to use the first sending beam to send the first preamble to the network device at the first sending power for the first random access; when the first random access fails, the sending unit also It is configured to use the first transmission beam to send a second preamble to a network device at a second transmission power for second random access, where the second transmission power is greater than the first transmission power.
  • the measuring unit before the transmitting unit uses the first transmit beam to transmit the second preamble to the network device at the second transmit power, the measuring unit is further configured to: Measuring the first SSB to obtain the first measurement value; and the sending unit is further configured to: when the first measurement value meets the preset condition, use the first transmission beam to send the second preamble to the network device at the second transmission power .
  • the preset condition includes: the first measured value is greater than or equal to the first threshold.
  • the preset condition includes: the first measurement value is greater than or equal to the second measurement value, and the second measurement value is a detection period of the measurement unit before the second measurement period The measured value of the first SSB.
  • the measuring unit before the transmitting unit uses the first transmit beam to transmit the second preamble to the network device at the second transmit power, the measuring unit is further configured to: Measuring the first SSB; and the sending unit is further configured to: when the measurement value of the first SSB is not obtained, use the first sending beam to send the second preamble to the network device at the second sending power.
  • the measuring unit before the transmitting unit uses the first transmit beam to transmit the second preamble to the network device at the second transmit power, the measuring unit is further configured to: Measuring multiple SSBs to obtain multiple measurement values; and the sending unit is further configured to: when the multiple measurement values meet the preset condition, use the first transmission beam to send the second preamble to the network device at the second transmission power .
  • the preset condition includes: the maximum value of the multiple measured values is the measured value of the first SSB.
  • the preset condition includes: the maximum value of the multiple measurement values is not the measurement value of the first SSB, and the difference between the maximum value and the measurement value of the first SSB is less than Or equal to the second threshold.
  • the measuring unit before the transmitting unit uses the first transmit beam to transmit the second preamble to the network device at the second transmit power, the measuring unit is further configured to: Measuring multiple SSBs; and the sending unit is further configured to: when all measurement values of the multiple SSBs are not obtained, use the first transmission beam to send the second preamble to the network device at the second transmission power.
  • the measurement unit is further configured to: measure the multiple SSBs in the first measurement period to obtain multiple measurement values, and combine the multiple measurement values The SSB corresponding to the maximum value is determined as the first SSB.
  • a communication device may be a terminal device or a chip in the terminal device.
  • the device may include a processing unit and a transceiving unit.
  • the processing unit may be a processor, and the transceiving unit may be a transceiver;
  • the terminal device may also include a storage unit, and the storage unit may be a memory;
  • the processing unit executes the instructions stored by the storage unit, so that the terminal device executes the method in the first aspect.
  • the processing unit may be a processor, and the transceiving unit may be an input/output interface, a pin or a circuit, etc.; the processing unit executes the instructions stored in the storage unit to make
  • the terminal device executes the method in the first aspect
  • the storage unit may be a storage unit in the chip (for example, a register, a cache, etc.), or a storage unit in the terminal device located outside the chip (for example, Read only memory, random access memory, etc.).
  • a communication device including at least one processor configured to couple with a memory, read and execute instructions in the memory, so as to implement any method in the first aspect.
  • the communication device further includes a memory.
  • a computer program product comprising: computer program code, which when the computer program code runs on a computer, causes the computer to execute any method in the first aspect.
  • the above computer program code may be stored in whole or in part on a first storage medium, where the first storage medium may be packaged with the processor or separately packaged with the processor, and this application does not specifically limit this .
  • a computer-readable medium stores program code, and when the computer program code runs on a computer, the computer executes any method in the first aspect.
  • Fig. 1 shows a schematic diagram of a suitable communication system suitable for embodiments of the present application.
  • Figure 2 shows a flow chart of competing random access between the LTE system and the 5G system.
  • Figure 3 shows a schematic diagram of a network device communicating with a terminal device through beamforming technology.
  • Fig. 4 shows a schematic flowchart of an example of the random access method of the present application.
  • Fig. 5 shows a schematic flowchart of another example of the random access method of the present application.
  • Fig. 6 shows a schematic flowchart of another example of the random access method of the present application.
  • Fig. 7 shows a schematic diagram of a communication device according to an embodiment of the present application.
  • FIG. 8 shows a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • LTE frequency division duplex FDD
  • TDD LTE Time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • Fig. 1 shows a schematic diagram of a suitable communication system suitable for embodiments of the present application.
  • the communication system 10 may include at least one network device, such as the network device 11 shown in FIG. 1; the communication system 10 may also include at least one terminal device, such as the terminal device 12 shown in FIG. 1.
  • the network device 11 and the terminal device 12 can communicate via a wireless link.
  • Each communication device, such as the network device 11 or the terminal device 12 may be configured with multiple antennas, and the multiple antennas may include at least one transmitting antenna for transmitting signals and at least one receiving antenna for receiving signals.
  • each communication device additionally includes a transmitter chain and a receiver chain.
  • Those of ordinary skill in the art can understand that they can all include multiple components related to signal transmission and reception (such as processors, modulators, multiplexers). , Demodulator, demultiplexer or antenna, etc.). Therefore, the network device 11 and the terminal device 12 can communicate through multi-antenna technology.
  • the network device in the wireless communication system may be any device with a wireless transceiver function.
  • the equipment includes but is not limited to: evolved NodeB (eNB or eNodeB), radio network controller (RNC), node B (NodeB, NB), base station controller (BSC) ), base transceiver station (BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (BBU), wireless fidelity (WIFI) system
  • the access point (AP), wireless relay node, wireless backhaul node, transmission point (TP), or transmission and reception point (TRP), etc. can also be 5G, such as , NR, gNB in the system, or transmission point (TRP or TP), one or a group of antenna panels (including multiple antenna panels) of the base station in the 5G system, or it can also be a network that constitutes a gNB or transmission point Nodes, such as baseband unit (BBU), or distributed unit (DU), etc.
  • RNC
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include a radio unit (RU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB, for example, CU implements radio resource control (radio resource control, RRC), packet data convergence protocol (packet data convergence protocol, PDCP) layer functions
  • DU implements wireless link
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • DU implements wireless link
  • RLC radio link control
  • MAC media access control
  • PHY physical
  • the network device may be a CU node, or a DU node, or a device including a CU node and a DU node.
  • the CU can be divided into network equipment in an access network (radio access network, RAN), and the CU can also be divided into network equipment in a core network (core network, CN), which is not limited in this application.
  • the terminal equipment in the wireless communication system may also be referred to as user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, User terminal, terminal, wireless communication device, user agent or user device.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (pad), a computer with wireless transceiver function, a virtual reality (VR) terminal device, and an augmented reality (AR) terminal Equipment, wireless terminals in industrial control, wireless terminals in unmanned driving (self-driving), wireless terminals in remote medical, wireless terminals in smart grid, transportation safety ( Wireless terminals in transportation safety, wireless terminals in smart cities, and wireless terminals in smart homes.
  • the embodiment of this application does not limit the application scenario.
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, for example, Linux operating system, Unix operating system, Android operating system, iOS operating system, or windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the present application do not specifically limit the specific structure of the execution body of the method provided in the embodiments of the present application, as long as the program that records the code of the method provided in the embodiments of the present application can be provided according to the embodiments of the present application.
  • the execution subject of the method provided in the embodiment of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call and execute the program.
  • computer-readable media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks, or tapes, etc.), optical disks (for example, compact discs (CDs), digital versatile discs (digital versatile discs, DVDs) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • magnetic storage devices for example, hard disks, floppy disks, or tapes, etc.
  • optical disks for example, compact discs (CDs), digital versatile discs (digital versatile discs, DVDs) Etc.
  • smart cards and flash memory devices for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • Random access of LTE system and 5G system is divided into two types: competitive random access and non-competitive random access.
  • Figure 2 shows a flow chart of competing random access between the LTE system and the 5G system.
  • the competing random access of the LTE system and the 5G system is used for: (1) initial terminal access; (2) radio resource control (RRC) connection reestablishment and handover; (3) RRC connection state in an asynchronous state Line data arrival; (4) Uplink data arrival in RRC connected state; (5) Positioning in RRC connected state.
  • RRC radio resource control
  • the 5G system also introduces system message requests and inactive terminals to resume connections.
  • the competitive random access process is shown in Figure 2, which is mainly divided into four steps:
  • Message 1 The UE selects the random access preamble and physical random access channel (PRACH) resources, and sends the selected random access preamble (ie, the selected random access preamble) to the base station on the selected PRACH resource.
  • PRACH physical random access channel
  • Message 2 The base station receives the random access request Msg1 and sends a random access response (RAR, or Msg2) to the UE.
  • the random access response includes the uplink timing advance and the uplink resources allocated for Msg3 UL grant, temporary cell radio network temporary identifier (temporary C-RNTI) assigned by the network side, etc.
  • the physical downlink control channel (PDCCH) that carries the Msg2 scheduling message is scrambled with random access-radio network temporary identifier (RA-RNTI).
  • Msg2 also carries the Preamble ID, and the UE passes RA-RNTI and Preamble ID determine that the Msg2 corresponds to the Msg1 sent.
  • Msg3 Message 3
  • the UE sends a scheduled transmission message (Msg3) on the UL grant designated by Msg2.
  • the Msg3 message contains layer 2/layer 3 (L2/L3) random access information, different random Access reasons Msg3 uplink transmission content is different, for example, for initial access, Msg3 transmits an RRC connection establishment request.
  • L2/L3 layer 2/layer 3
  • Msg4 Message 4
  • the base station sends a contention resolution message (Msg4) to the UE, and the UE can determine whether the random access is successful according to the Msg4.
  • the temporary C-RNTI is automatically converted to the unique UE identification C-RNTI of the UE in the cell after the contention is resolved successfully.
  • the RA process may encounter various problems and cause RA failure.
  • the reason for RA failure can include any of the following:
  • the terminal device does not receive the RAR corresponding to the preamble sent by it.
  • the terminal device does not receive the random access response media access control (MAC) protocol data unit (PDU), or the received RAR MAC PDU does not include the RAR corresponding to the preamble;
  • MAC media access control
  • the terminal device receives Msg4, but the terminal device is not the winner of the conflict resolution.
  • the terminal device will re-initiate the RA and use the power ramping step to increase the transmission power, for example, by 2 dB each time until the RA is completed.
  • MIMO massive-input multiple-output
  • FD-MIMO full-dimension MIMO
  • array antenna digital beamforming (digital beamforming), analog beamforming (analog beamforming) and other antenna technologies.
  • the network equipment in the 5G system can interact with user equipment through beamforming technology.
  • a network device may generally form multiple downlink (DL) transmission beams (transmit beam, Tx beam), and send downlink signals to terminal devices within the coverage of the beam on one or more DL Tx beams.
  • the terminal device can receive through a receive beam (receive beam, Rx beam) or an omnidirectional antenna to obtain a larger array gain.
  • Rx beam receive beam
  • omnidirectional antenna omnidirectional antenna
  • FIG 3 shows a schematic diagram of a network device communicating with a terminal device through beamforming technology.
  • network equipment can use beamforming technology, such as digital beamforming or analog beamforming, to form multiple transmission beams or receive beams.
  • the angles covered by each beam can be the same or different, and beams with different coverage angles can be There are overlapping parts.
  • a network device can use a beam with a wide coverage angle to send control information, and a beam with a narrow coverage angle to send data information.
  • the user equipment may receive the information sent by the network device within the coverage of one or more beams or beam sets or beam groups.
  • the user equipment may also form multiple receiving beams through beamforming technology, corresponding to the downlink beam used by the network equipment, and determine to use one or more receiving beams to receive.
  • the beam involved in the embodiments of the present application may refer to a single beam or multiple beams.
  • the downlink transmission beam of the network device and the corresponding reception beam of the user equipment, or the uplink transmission beam of the user equipment and the reception beam of the corresponding network device can be called a beam pair, which is defined by The transmission link formed by the beam pair is called a beam pair link (BPL).
  • BPL beam pair link
  • the user equipment may determine to use beam 6 as the corresponding receiving beam, and beam 3 and beam 6 form a pair of BPL.
  • the corresponding reception beam or transmission beam may be determined by the transmission beam or the reception beam.
  • the beam pair may include a transmission beam at the transmitting end and a receiving beam at the receiving end, or, also referred to as an uplink beam or a downlink beam.
  • the beam pair may include a gNB Tx beam transmission beam or a UE Rx beam receiving beam, or a UE Tx beam transmission beam or a gNB Rx beam receiving beam.
  • the transmission performance of a network device is better than that of a terminal device. Therefore, compared to the receiving beam of a terminal device, the network device can have more transmission beams. In this case, multiple transmissions of the network device
  • the beam may form multiple beam pairs with one receiving beam of the terminal device.
  • the beam 2 used by the network device may also form a beam pair with the beam 6 of the terminal device, which is not limited in this application.
  • the beam may also be called beam, and the beam may be directly replaced with beam, or the beam may be directly replaced with beam, which will not be repeated here;
  • the beam may also be called a direction, and the beam may be directly replaced with a direction, or the direction may be directly replaced with a beam.
  • the first beam may be replaced with a first direction, and the first direction may be replaced with a first beam. No longer;
  • the beam can also be referred to as a space resource, and the beam can be directly replaced with a space resource, or the space resource can be directly replaced with a beam, which will not be repeated here;
  • the beam can also be referred to as a precoding vector, and the beam can be directly replaced with a precoding vector, or the precoding vector can be directly replaced with a beam, which will not be repeated here;
  • beam/beam may be understood as a spatial resource, and may refer to a transmission or reception precoding vector with energy transmission directivity/directivity.
  • the transmission or reception precoding vector can be identified by index information.
  • the energy transmission directivity may refer to a signal that has been pre-encoded by the pre-encoding vector within a certain spatial position and has good received power, such as meeting the signal-to-noise ratio of receiving demodulation, etc.; the energy Transmission directionality can also mean that the same signal sent from different spatial locations received through the precoding vector has different received powers.
  • the uplink is further distinguished. Space resources and/or downlink space resources, or space resources used to send information, space resources used to receive information;
  • the beam can be understood as the main lobe (beam (of the antenna) is the main lobe of the radiation pattern of an antenna array) formed by the transmission pattern of the antenna array;
  • the same communication device may have different precoding vectors, and different devices may also have different precoding vectors, that is, corresponding to different beams, and different beams can correspond to different directions. It can be understood that the device uses different beams to indicate that the device uses different pre-coding vectors. Optionally, it further distinguishes the uplink pre-coding vector, the downlink pre-coding vector, or the pre-coding vector used to send information and the one used to receive information. Pre-encoded vector;
  • beam/beam can also be understood as a spatial domain transmission filter;
  • the beam used by a device (such as a network device and/or user equipment) can be replaced with a spatial domain transmission filter used by the device;
  • the device does not restrict the use of a certain beam (for example, the Nth beam, where N is any beam supported by the device).
  • a certain beam for example, the Nth beam, where N is any beam supported by the device.
  • the device uses the first beam, which can be replaced by the device in the first direction; further, the device uses the first transmission beam, which can be replaced by the device in the first transmission direction, and/or the device uses the first receive beam , Can be replaced by the device in the first receiving direction;
  • the device uses the first beam (or in the first direction), it can be replaced by the device using the first space resource; further, the device using the first transmission beam can be replaced by the device using the first transmission space resource, and /Or, the device uses the first receiving beam, which can be replaced by using the first receiving space resource;
  • the device uses the first beam (or in the first direction), it can be replaced by the device using the first antenna mode; further, the device using the first transmission beam can be replaced by the device using the first transmission antenna mode, and /Or, the device uses the first receiving beam, which can be replaced by using the first receiving antenna mode;
  • the device uses the first beam (or in the first direction), it can be replaced by the device using the first antenna mode; further, the device using the first transmission beam can be replaced by the device using the first transmission antenna mode, and /Or, the device uses the first receiving beam, which can be replaced by using the first receiving antenna mode;
  • the device uses the first beam (or in the first direction), it can be replaced by the device using the first antenna array pattern; further, if the device uses the first transmit beam, it can be replaced by the device using the first transmit antenna array pattern. , And/or, the device uses the first receiving beam, which can be replaced by using the first receiving antenna array pattern;
  • the device uses the first beam (or in the first direction), it can be replaced by the device using the first spatial domain transmission filter;
  • the device using the first transmission beam may be replaced by the device using the first spatial domain transmission filter for transmission; and/or the device using the first receiving beam may be replaced by the device using the first spatial domain for receiving Transmission filter
  • the device uses the first transmit beam (or in the first direction), it can be replaced by the device using the first transmit spatial domain transmission filter; and/or the device uses the first receive beam, which can be replaced by the device use The first receiving spatial domain transmission filter;
  • the device uses the first beam (or in the first direction), it can be replaced by the device using the first precoding vector; further, if the device uses the first transmission beam, it can be replaced by the device using the first transmission precoding vector. , And/or, the device uses the first receive beam, which can be replaced by using the first receive precoding vector;
  • the device uses the first beam (or in the first direction), it can be replaced by the device using the first weight; further, if the device uses the first transmission beam, it can be replaced by the device using the first transmission weight, and/or , The device uses the first receiving beam, which can be replaced by using the first receiving weight;
  • the device uses the first beam (or in the first direction), it can be replaced by the device using the first parameter (for example, the parameters involved in the antenna array); further, the device uses the first transmission beam and can be replaced by the device Using the first transmission parameter, and/or, the device uses the first receiving beam, which may be replaced by using the first receiving parameter;
  • the first parameter for example, the parameters involved in the antenna array
  • the device uses the first beam (or in the first direction), it can be replaced by the device using the first weighting parameter (for example, different antennas in the antenna array use different parameters); further, the device uses the first transmit beam , It can be replaced by the device using the first transmission weighting parameter, and/or the device using the first receiving beam can be replaced by the first receiving weight parameter;
  • the first weighting parameter for example, different antennas in the antenna array use different parameters
  • the device uses the first beam (or in the first direction), it can be replaced by the device using the first beamforming; further, the device using the first transmission beam can be replaced by the device using the first transmission beamforming, and /Or, the device uses the first receive beam, which can be replaced with the first receive beamforming;
  • the transmission beam used by the device corresponds to a synchronization signal block (synchronization signals block, SSB), for example, the first transmission beam corresponds to the first SSB, and the second transmission beam corresponds to the second SSB;
  • SSB synchronization signals block
  • the network device uses the first transmission beam to transmit the first SSB, and the network device uses the second beam to transmit the second SSB;
  • a network device sends information on a resource corresponding to the first SSB, indicating that the network device uses the first transmission beam, and a network device sends information on a resource corresponding to the second SSB, indicating that the network device uses the second transmission beam .
  • the terminal device if the terminal device meets either of the following two conditions, the terminal device has the ability to transmit/receive beam consistency:
  • the terminal device can determine the transmitting beam of the terminal device based on the measurement result of the terminal device on one or more receiving beams (for example, the result of measuring the SSB sent by the network device).
  • the terminal device determines the receiving beam of the terminal device according to the measurement result of one or more transmission beams of the terminal device by the network device.
  • a terminal device capable of transmitting/receiving beam consistency has a receiving beam and a transmitting beam in the same direction.
  • a terminal device has a first receiving beam in a first direction, and if the terminal device has a transmission/reception beam consistency capability, the terminal device also has a first transmission beam in the first direction.
  • the terminal device has multiple receiving beams in multiple directions. If the terminal device has the ability to transmit/receive beam consistency, the terminal device also has multiple transmit beams in the multiple directions. The transmitting beam corresponds to the multiple receiving beams one to one. Taking into account the reciprocity of the channels, if the measurement result of the SSB received by the terminal device in the spatial direction of the first receive beam is the best, then correspondingly, the terminal device performs data on the first transmit beam in the spatial direction of the first receive beam. The sending effect is also the best, and then the terminal device can select the first sending beam in the spatial direction of the first receiving beam to send data.
  • terminal equipment can be divided into two types:
  • the first type is terminal equipment with the ability to transmit/receive beam consistency
  • the second type is terminal equipment that does not have the ability to transmit/receive beam consistency.
  • a multi-beam mechanism is introduced. Under this mechanism, if the terminal device switches the transmit beam or the receive beam, the power ramp cannot be performed.
  • the terminal device selects the transmission beam to initiate the RA again depends on the internal implementation of the terminal device.
  • the terminal device continuously performs transmission beam switching, for example, the terminal device initiates RA through the first transmission beam, and after failure, the terminal device determines to initiate RA again with a second transmission beam that is different from the first transmission beam, then this When the terminal device switches the transmission beam, the power cannot be ramped up.
  • the transmission power of the terminal device may be small, which makes it unreachable to the network device. As a result, it will take a long time for the terminal device to complete the RA, resulting in greater The access delay affects the user experience.
  • This application provides a random access method.
  • the terminal device may not switch transmission beams as much as possible to achieve power ramping, thereby improving the success rate of RA, shortening the completion time of RA, and improving users Experience.
  • the network device in the embodiment may be the network device 11 in FIG. 1, and the terminal device may be the terminal device 12 in FIG.
  • FIG. 4 is a schematic flowchart of a random access method 200 according to this application.
  • the method 200 provided by the embodiment of the present application is described with reference to FIG. 4, and the method 200 includes:
  • Step 210 The terminal device measures the multiple synchronization signal blocks SSB sent by the network device in the first measurement period to determine the first transmission beam, and the first transmission beam corresponds to the first SSB;
  • Step 220 The terminal device uses the first transmission beam to send a first preamble to the network device at the first transmission power to perform the first random access.
  • Step 230 When the first random access fails, the terminal device uses the first transmission beam to send a second preamble to the network device at a second transmission power to perform a second random access, and the second transmission power is greater than the first transmission power. Transmission power.
  • the terminal device and the network device may be communication devices in a multi-beam system, and the terminal device and the network device may communicate with each other through one or more beams.
  • the network device may have multiple transmission beams, and the terminal device may have multiple reception beams.
  • the network device and the terminal device may communicate with each other through at least one transmission beam and at least one reception beam.
  • the at least one transmission beam and the at least one reception beam may form at least a pair of beams.
  • the network device may send multiple SSBs through multiple transmission beams, and the multiple transmission beams may correspond to the multiple SSBs one-to-one.
  • the terminal device can receive the multiple SSBs on the corresponding multiple receiving beams.
  • the network device transmits the first SSB on transmission beam #1, and correspondingly, the terminal device can receive the first SSB on reception beam #1, where transmission beam #1 and reception beam #1 form a beam pair.
  • the network device transmits the second SSB on transmission beam #2, and correspondingly, the terminal device can receive the second SSB on reception beam #2, where transmission beam #2 and reception beam #2 form a beam pair.
  • the network device sends a third SSB on transmission beam #3, and correspondingly, the terminal device can receive the third SSB on reception beam #1, where transmission beam #3 can also form a beam pair with reception beam #1 .
  • multiple SSBs also correspond to multiple receiving beams of the terminal device.
  • the terminal device has the ability to transmit/receive beam consistency. That is to say, the terminal device can have both a transmitting beam and a receiving beam in the same direction. For example, in the spatial direction of the receiving beam #1, the terminal device also has a transmitting beam #1, and the receiving beam #1 of the terminal device and the transmitting beam The beam #1 corresponds.
  • multiple SSBs also correspond to multiple transmission beams of the terminal device.
  • the terminal device may measure the multiple SSBs in the first measurement period to determine the first transmission beam, where the first transmission beam corresponds to the first SSB.
  • the terminal device may have multiple receiving beams.
  • the terminal device may also have multiple transmitting beams, and the terminal device may use one of the multiple transmitting beams to transmit beams (for example, the first transmitting beam) To send the first preamble to perform the first random access.
  • the terminal device may use a better (or best) transmission beam to transmit the first preamble to perform the first random access.
  • the terminal device can determine the beam qualities of the multiple transmission beams by detecting the beam qualities of the multiple reception beams, and further can determine the first transmission beam.
  • the terminal device may measure the multiple SSBs in the first measurement period to determine the first transmission beam, and the first transmission beam corresponds to the first SSB.
  • the terminal device measuring multiple SSBs may be measuring the signal quality of multiple SSBs, for example, it may be measuring reference signal receiving power (RSRP) of multiple SSBs.
  • RSRP reference signal receiving power
  • the beam quality of the multiple receiving beams of the terminal device can be determined through the measurement results of multiple SSBs, and then the beam quality of the multiple transmitting beams of the terminal device can be determined according to the reciprocity of the channel.
  • the SSB with good (or best) signal quality among the multiple SSBs may be determined as the first SSB, that is, the terminal device may use the transmission beam with good (or best) quality as the first transmission beam, To send the first preamble to perform the first random access.
  • the terminal device measures multiple SSBs to obtain multiple measurement values.
  • the terminal device may determine the SSB corresponding to the maximum value of the multiple measurement values as the first SSB, that is, determine the transmission beam with the best quality as the first transmission beam.
  • the physical layer of the terminal device receives multiple SSBs sent by the network device, and performs measurements to obtain multiple measurement values.
  • the physical layer can choose to report the 8 SSBs with the largest measurement values to the MAC layer, and the MAC layer can report the maximum 8 SSBs are used to refresh the saved list, and the MAC layer can determine from the 8 SSBs that the SSB with the largest measurement value is the first SSB, and determine the transmission beam corresponding to the first SSB as the first transmission beam.
  • the terminal device can measure multiple SSBs corresponding to multiple transmission beams to obtain multiple measurement values, where the maximum value of the measurement values corresponds to the reception beam quality of the best (based on channel reciprocity). The quality of the corresponding transmission beam is also the best), the terminal device determines the transmission beam corresponding to the maximum value of the multiple measurement values as the first transmission beam, and the terminal device uses the first transmission beam to communicate with the network device. Communication, which can improve communication quality.
  • the terminal device may also determine the SSB corresponding to the second largest measurement value among the multiple measurement values as the first SSB, that is, determine the transmission beam with the second best quality as the first transmission beam, which is not in this application. limited.
  • the multiple measured values may be multiple RSRP values.
  • the terminal device may also determine the transmission power for initiating the RA (that is, the first transmission power).
  • the terminal device may also determine the first transmit power for initiating RA according to the measured value of the first SSB.
  • the measured value may be RSRP, and in this case, the first transmission power may be determined according to the RSRP of the first SSB.
  • the terminal device may also determine the used first transmission beam and the first transmission power in other ways.
  • step 220 the terminal device uses the first transmission beam to send the first preamble to the network device at the first transmission power to perform the first random access.
  • the network device may receive the first preamble.
  • the network device may not be able to receive the first preamble due to reasons such as the first transmission power of the terminal device being too small and unreachable to the network device, which is not limited in this application.
  • step 230 when the first random access fails, the terminal device uses the first transmission beam to send a second preamble to the network device at a second transmission power to perform a second random access, and the second transmission power is greater than the The first transmission power.
  • the terminal device may first use the first transmission beam and send the first preamble to the network device at the first transmission power for the first random access, and after determining that the first random access fails, it may continue to use the first random access.
  • the terminal device may first determine that the first random access fails. For example, in the first case where the response message reception is considered to be failed (this first case can also be referred to as: the terminal device is ready to initiate the random access procedure again, or the terminal device is ready to send the preamble again (for example, the second In the case of the preamble)), or in the second case in which the conflict resolution is deemed to have failed, the terminal device may determine that the first random access fails.
  • the terminal device may determine that the first random access fails:
  • the terminal device does not receive the RAR corresponding to the first preamble sent by it.
  • the terminal device does not receive the RAR MAC PDU, or the received RAR MAC PDU does not include the RAR corresponding to the first preamble;
  • the terminal device can use the first transmission beam to send a second preamble to the network device at a second transmission power to perform a second random access, and the second transmission power is greater than the first transmission. power.
  • the second transmission power may be the first transmission power plus power increased by the power ramp.
  • the power increased by the power ramp may be the power ramp step length.
  • the magnitude of this value can be 2dB.
  • the power increased by the power ramp may also be specified by a communication system or a communication protocol, or may also be configured by a network device, which is not particularly limited in this application.
  • the terminal device can continue to use the first transmit beam and transmit to the network device with a second transmit power that is greater than the first transmit power (to achieve a power ramp)
  • the second preamble that is, use the first transmit beam to initiate the second random access with the second transmit power.
  • the terminal equipment may not switch the transmit beam as much as possible to achieve power ramping, thereby improving RA
  • the success rate of RA shortens the completion time of RA and improves the user experience.
  • the terminal device when initiating RA, in order to increase the flexibility of beam selection, it is also possible to continue to measure SSB and set preset conditions. When the preset conditions are met, the terminal device will continue to use the first transmission beam The second random access is initiated with the second transmission power.
  • the terminal device measures the first SSB to obtain the first measurement value, and when the first measurement value meets the preset condition, the terminal device continues to use the first transmission beam
  • the second preamble is sent to the network device at the second transmission power to perform the second random access, so that the transmission beam may not be switched as much as possible to achieve power ramping, thereby improving the success rate of RA.
  • the terminal device in the second measurement period after the first measurement period, when the terminal device measures the first SSB, but the measurement value of the first SSB is not obtained, the terminal device continues to use the first transmission beam to perform the second measurement.
  • the transmit power sends the second preamble to the network device for second random access, so that the transmit beam may not be switched as much as possible, so as to achieve power ramping, thereby improving the success rate of RA.
  • the terminal device measures multiple SSBs to obtain multiple measurement values.
  • the terminal device continues to use the first transmission
  • the beam sends the second preamble to the network device at the second transmission power to perform the second random access, so that the transmission beam may not be switched as much as possible to achieve power ramping, thereby improving the success rate of RA.
  • the terminal device measures multiple SSBs, and when all the measurement values of the multiple SSBs are not obtained, the terminal device continues to use the first transmit beam with the second transmit power
  • the second preamble is sent to the network device to perform the second random access, so that the transmission beam may not be switched as much as possible, so as to achieve power ramping, thereby improving the success rate of RA.
  • the periods in the first measurement period and the second measurement period do not mean that the measurement in this application must be performed periodically.
  • the first measurement period and the second measurement period can be understood as the first measurement period.
  • the first and second measurement periods do not necessarily mean the first and second measurement.
  • the first measurement period and the second measurement period can also be two of the SSB measurements in the middle. .
  • Manner 1 The terminal device measures the first SSB.
  • FIG. 5 shows a schematic flowchart of another example of a random access method 200 according to this application.
  • the method 200 before step 230, that is, before the terminal device uses the first transmit beam to transmit the second preamble to the network device at the second transmit power, the method 200 further includes:
  • Step 221 The terminal device measures the first SSB in the second measurement period to obtain a first measurement value.
  • Step 230 also includes:
  • Step 231 When the first measurement value meets the preset condition, the terminal device uses the first transmission beam to send the second preamble to the network device at the second transmission power.
  • the terminal device may also continue to measure the first SSB in the second measurement period to obtain the first measurement value, and determine whether to use the first transmission beam to transmit the second transmission power to the network device according to the first measurement value. Two preamble.
  • the terminal device uses the first transmission beam to send the second preamble to the network device at the second transmission power.
  • the first measurement value does not meet the preset condition, and the terminal device does not use the first transmission beam to send the second preamble to the network device.
  • the measurement of the first SSB may be the measurement of the signal quality of the first SSB, the first measurement value may reflect the quality of the first transmission beam, and the first measurement value satisfies a preset condition (for example, When the quality of the first transmit beam is good enough), the first transmit beam can be used to initiate RA, and power ramp is performed, and the second preamble is transmitted using a larger second transmit power.
  • a preset condition for example, When the quality of the first transmit beam is good enough
  • the first transmit beam can be used to initiate RA, and power ramp is performed, and the second preamble is transmitted using a larger second transmit power.
  • measuring the first SSB may be measuring the RSPR of the first SSB, that is, the first measurement value may be the value of RSRP.
  • the terminal device may determine whether to use the first transmission beam to transmit the second preamble with the second transmission power according to whether the first measurement value meets the preset condition, so as to perform the second random access.
  • the terminal device uses the first transmission beam to transmit the second preamble at the second transmission power to perform the second random access.
  • the first measurement value does not meet the preset condition, and the terminal device does not use the first transmission beam to send the second preamble.
  • the present application does not limit the preset conditions for making judgments.
  • the preset conditions may include any one of the following conditions.
  • the first measurement value is greater than or equal to the first threshold value.
  • the terminal device can continue to use the first transmission. Power and use the increased transmission power (that is, the second transmission power) to send the second preamble to the network device, thereby initiating the random access procedure again.
  • the first threshold may be specified by a communication system or a communication protocol, or may also be configured by a network device, which is not particularly limited in this application.
  • the first threshold may be rsrp-ThresholdSSB sent by the base station.
  • the first measurement value is greater than or equal to the second measurement value
  • the second measurement value is a measurement value of the first SSB of the terminal device in a detection period before the second measurement period.
  • the network device may send multiple first SSBs periodically, semi-persistent, or aperiodicly, and the terminal device may receive the multiple first SSBs and perform Multiple first SSBs are measured.
  • the second measurement value is the measurement value of the first SSB of the terminal device in a detection period before the second measurement period.
  • the second measurement value may be the measurement value of the first SSB in the first measurement period (that is, the measurement value of the first SSB in step 210).
  • the second measurement value may also be a measurement value of the first SSB in a detection period between the first measurement period and the second measurement period (that is, it may be the measurement value of the first SSB in the detection period between step 210 and step 221).
  • the measurement value of the first SSB is not limited in this application.
  • the terminal device can Continue to use the first transmission power and use the increased transmission power (that is, the second transmission power) to send the second preamble to the network device, thereby initiating the random access procedure again.
  • the terminal device may not use the second measurement value.
  • a sending beam is used to send the second preamble.
  • the terminal device may continue to perform measurement on other SSBs other than the first SSB.
  • the terminal device may continue to perform measurement on SSBs other than the first SSB among the multiple SSBs.
  • the terminal device may use the second transmission beam to send the second preamble to the network device to initiate the second random access.
  • the terminal device may determine the third transmission power according to the measured value of the second SSB, and use the second transmission beam to send the second preamble to the network device at the third transmission power, and the second random access has been initiated.
  • the measured value may be the RSRP value, and in this case, the third transmission power may be determined according to the RSRP of the second SSB.
  • the terminal device does not obtain the measurement value of the first SSB (ie, the first measurement value).
  • the terminal device may not complete the measurement of the first SSB, that is, the first measurement value has not been measured.
  • the system or protocol can specify, or according to the agreement with the network device, the terminal device can continue to use the first SSB.
  • the transmitting beam sends a second preamble to the network device at the second transmission power to initiate a second random access. This allows the terminal device to avoid switching transmission beams as much as possible to achieve power ramping, thereby improving the success rate of RA, shortening the completion time of RA, and improving the user experience.
  • the possible reasons for the terminal device not completing the measurement of the first SSB include: insufficient measurement time, the receiving antenna is occupied, the MAC layer of the terminal device has not received the measurement result notified by the physical layer, etc.
  • protocol in the embodiment of the present application may refer to a standard protocol in the communication field, for example, may include the LTE protocol, the NR protocol, and related protocols applied to future communication systems, which are not limited in this application.
  • Method 2 The terminal equipment measures multiple SSBs
  • FIG. 6 shows a schematic flowchart of another example of the random access method 200 of the present application.
  • the method 200 before step 230, that is, before the terminal device uses the first transmit beam to transmit the second preamble to the network device at the second transmit power, the method 200 further includes:
  • Step 222 The terminal device measures multiple SSBs in the second measurement period to obtain multiple measurement values.
  • Step 230 also includes:
  • Step 232 When the multiple measured values meet the preset condition, the terminal device uses the first transmission beam to send the second preamble to the network device at the second transmission power.
  • the terminal device may also measure multiple SSBs in the second measurement period to obtain multiple measurement values, and determine whether to use the first transmission beam to transmit the second transmission beam to the network device at the second transmission power according to the multiple measurement values. Preamble.
  • the terminal device uses the first transmission beam to send the second preamble to the network device at the second transmission power.
  • the terminal device does not use the first transmission beam to send the second preamble to the network device.
  • measuring multiple SSBs may be measuring signal quality of multiple SSBs, for example, measuring RSPR of multiple SSBs, and the multiple measured values may be RSRP values.
  • the terminal device determines whether to use the first transmission beam to transmit the second preamble at the second transmission power to perform the second random access according to whether the multiple measurement values of the multiple SSBs meet a preset condition.
  • the terminal device uses the first transmission beam to transmit the second preamble with the second transmission power to perform the second random access.
  • the multiple measured values do not meet the preset condition, and the terminal device does not use the first transmitting beam to transmit the second preamble.
  • the present application does not limit the preset conditions for making judgments.
  • the preset conditions may include any one of the following conditions.
  • the maximum value among the measurement values of the multiple SSBs is the measurement value of the first SSB.
  • the terminal device can continue to use the first transmission beam and use the increased transmission power (that is, the second transmission power) to send the second preamble to the network device to initiate the first transmission beam.
  • the increased transmission power that is, the second transmission power
  • the maximum value among the multiple measurement values is not the measurement value of the first SSB, and the difference between the maximum value among the measurement values of the multiple SSB and the measurement value of the first SSB is less than or equal to the second threshold.
  • the measurement value of the first SSB is not the maximum value among the measurement values of the multiple SSBs
  • the maximum value of the measurement values of the multiple SSBs is the same as the measurement value of the first SSB
  • the difference of the value is less than or equal to the second threshold, indicating that although the signal of the first SSB is not the best, it is not too bad, and it also indicates that the quality of the first transmission beam is not too bad.
  • the terminal device can continue to use the first transmission beam and use the increased transmission power (ie, the second transmission power) to send the second preamble to the network device to initiate the second random access, so that no handover is possible as much as possible Send beams to achieve power ramping, which can improve the success rate of RA.
  • the increased transmission power ie, the second transmission power
  • Another advantage of the above configuration is that it can prevent the terminal equipment from constantly selecting different transmission beams, ping-pong switching, and changing back and forth during the process of multiple RA failures, and cannot achieve power ramping, resulting in low RA efficiency.
  • the second threshold may be specified by a communication system or a communication protocol, or may also be configured by a network device, which is not particularly limited in this application.
  • the terminal device may use a second transmission beam to send the second preamble to the network device , Where the maximum value is the measured value of the second SSB, and the second transmission beam corresponds to the second SSB.
  • the terminal device may determine the third transmission power according to the maximum measurement value, and use the second transmission beam to send the second preamble to the network device at the third transmission power to initiate the second random access.
  • the terminal device has not obtained the measurement values of multiple SSBs corresponding to multiple transmission beams.
  • the terminal device may not have completed the measurement of all SSBs, that is, multiple measurement values have not been completely measured.
  • the system or protocol can specify, or according to the agreement with the network device, the terminal device can continue to use the first
  • the transmitting beam sends a second preamble to the network device at the second transmission power to initiate a second random access. This allows the terminal device to avoid switching transmission beams as much as possible to achieve power ramping, thereby improving the success rate of RA, shortening the completion time of RA, and improving the user experience.
  • the possible reasons that the terminal device has not completed the measurement of multiple SSBs include: insufficient measurement time, occupied receiving antenna, and the MAC layer of the terminal device has not received the measurement result notified by the physical layer.
  • FIG. 7 is a schematic diagram of a communication device according to an embodiment of the present application.
  • the communication device 600 shown in FIG. 5 includes: a measuring unit 610 and a sending unit 620, wherein,
  • the measuring unit 610 is configured to measure multiple synchronization signal blocks SSB sent by the network device in a first measurement period to determine a first transmission beam, and the first transmission beam corresponds to the first SSB;
  • the sending unit 620 is configured to use the first sending beam to send a first preamble to a network device at a first sending power, so as to perform a first random access;
  • the sending unit 620 is further configured to use the first transmission beam to send a second preamble to the network device at a second transmission power to perform a second random access, and the second transmission power is greater than the first transmission power.
  • the measuring unit 610 is further configured to: The first SSB performs measurement to obtain a first measurement value; and the sending unit 620 is further configured to: when the first measurement value satisfies a preset condition, use the first transmission beam to send a second transmission power to The network device sends the second preamble.
  • the preset condition includes: the first measured value is greater than or equal to a first threshold.
  • the preset condition includes: the first measurement value is greater than or equal to the second measurement value, and the second measurement value is a pair of detection periods before the second measurement period of the measurement unit 610 The measured value of the first SSB.
  • the measuring unit 610 is further configured to: The first SSB performs measurement; and the sending unit 620 is further configured to: when the measurement value of the first SSB is not obtained, use the first transmission beam to send a second transmission to the network device at a second transmission power. Preamble.
  • the measuring unit 610 is further configured to: The multiple SSBs are measured to obtain multiple measurement values; and the sending unit 620 is further configured to: when the multiple measurement values meet a preset condition, use the first transmission beam to transmit a second transmission power to The network device sends the second preamble.
  • the preset condition includes: the maximum value of the multiple measured values is the measured value of the first SSB.
  • the preset condition includes: the maximum value of the plurality of measurement values is not the measurement value of the first SSB, and the difference between the maximum value and the measurement value of the first SSB is less than or equal to The second threshold.
  • the measuring unit 610 is further configured to: The multiple SSBs perform measurement; and the sending unit 620 is further configured to: when all the measurement values of the multiple SSBs are not obtained, use the first transmission beam to transmit the second transmission power to the network device Two preamble.
  • the measuring unit 610 is further configured to measure the multiple SSBs in the first measurement period to obtain multiple measurement values, and determine the SSB corresponding to the maximum value of the multiple measurement values Is the first SSB.
  • the above-mentioned communication device 600 may be a terminal device 70, wherein the function of the measuring unit may be implemented by the processor 702 in the terminal device, and the function of the sending unit may be implemented by the transceiver 701 of the terminal device (ie, control The circuit is implemented together with the antenna.
  • the function of the measuring unit may be implemented by the processor 702 in the terminal device
  • the function of the sending unit may be implemented by the transceiver 701 of the terminal device (ie, control The circuit is implemented together with the antenna.
  • FIG. 8 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • the terminal device can be applied to the system shown in FIG. 1 to perform the functions of the terminal device in the foregoing method embodiment.
  • FIG. 8 only shows the main components of the terminal device.
  • the terminal device 70 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the entire terminal device, execute the software program, and process the data of the software program, for example, to support the terminal device to perform the actions described in the above method embodiment.
  • the memory is mainly used to store software programs and data.
  • the control circuit is mainly used for the conversion of baseband signals and radio frequency signals and the processing of radio frequency signals.
  • the control circuit and the antenna together can also be called a transceiver, which is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and then sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 8 only shows one memory and one processor. In an actual terminal device, there may be multiple processors and multiple memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in the embodiment of the present application.
  • the processor may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data.
  • the central processing unit is mainly used to control the entire terminal device and execute Software program, processing the data of the software program.
  • the processor in FIG. 8 can integrate the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit can also be independent processors and are interconnected by technologies such as a bus.
  • the terminal device may include multiple baseband processors to adapt to different network standards, the terminal device may include multiple central processors to enhance its processing capabilities, and various components of the terminal device may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data can be built in the processor, or can be stored in the storage unit in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • the processor in the embodiment of the present application may be a central processing unit (Central Processing Unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), and dedicated integration Circuit (application specific integrated circuit, ASIC), ready-made programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electronic Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • Access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory Take memory (synchlink DRAM, SLDRAM) and direct memory bus random access memory (direct rambus RAM, DR RAM).
  • the present application also provides a computer program product, the computer program product includes: computer program code, when the computer program code runs on a computer, the computer is caused to execute as shown in Figure 4-6 The method of any one of the embodiments.
  • the present application also provides a computer-readable medium that stores program code, and when the program code runs on a computer, the computer executes the steps shown in Figure 4-6.
  • the present application also provides a system, which includes the aforementioned one or more terminal devices and one or more network devices.
  • the foregoing embodiments can be implemented in whole or in part by software, hardware, firmware or any other combination.
  • the above-mentioned embodiments may be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions or computer programs.
  • the computer instructions or computer programs are loaded or executed on a computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center that includes one or more sets of available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium.
  • the semiconductor medium may be a solid state drive.
  • the "communication protocol” involved in the embodiments of the present application may refer to a standard protocol in the communication field, for example, may include the LTE protocol, the NR protocol, and related protocols applied to future communication systems, which are not limited in this application.
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not correspond to the implementation process of the embodiments of the present application. Constitute any limitation.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种随机接入的方法及通信装置,该方法包括:终端设备在第一测量周期对网络设备发送的多个同步信号块SSB进行测量,以确定第一发送波束,所述第一发送波束与第一SSB相对应;所述终端设备使用所述第一发送波束以第一发送功率向所述网络设备发送第一前导码,以进行第一随机接入;当所述第一随机接入失败时,所述终端设备使用所述第一发送波束以第二发送功率向所述网络设备发送第二前导码,以进行第二随机接入,所述第二发送功率大于所述第一发送功率。本申请终端设备在进行随机接入时可以尽可能的不切换发送波束,以实现功率爬坡,从而能够提高随机接入的成功率,缩短随机接入的完成时间。

Description

一种随机接入的方法及通信装置
本申请要求于2019年08月21日提交中国专利局、申请号为201910773329.4、申请名称为“一种随机接入的方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,特别涉及一种随机接入的方法及通信装置。
背景技术
在无线通信系统中,终端设备需要和网络建立连接,这一过程通常被称为随机接入(random access,RA)过程。从终端设备的角度上看,RA过程可能遇到各种问题导致RA失败,在长期演进(long term evolution,LTE)系统中,如果本次RA失败了,则终端设备会重新发起RA,并执行功率爬坡(power ramping),使用比上次更高的功率去发起RA。
在第五代移动通信(5G)新空口(new radio,NR)系统中引入了波束成形(beamforming)技术,5G通信系统中的网络设备可以通过波束成形技术与终端设备进行交互,例如,网络设备可以通过一个或者多个波束(beam)与终端设备进行通信,以实现更高的数据传输效率。在该机制下,如果终端设备切换了发送波束或者接收波束,则不能执行功率爬坡。
在5G通信系统中,终端设备在RA失败后,如何进行发送波束的选择以再次发起RA取决于终端设备的内部实现。当终端设备不断的执行发送波束的切换,会导致功率不能爬坡,终端设备的发送功率可能较小,从而对网络设备不可达,最终导致终端设备需要较长的时间才能完成RA,带来较大的接入时延,影响用户的使用体验。
发明内容
本申请提供一种随机接入的方法及通信装置,在RA过程中,终端设备可以尽可能的不切换发送波束,以实现功率爬坡,从而能够提高RA的成功率,缩短RA的完成时间。
第一方面,提供了一种随机接入的方法,该方法可以由终端设备执行,或者,也可以由配置于终端设备中的芯片或电路执行,本申请对此不作限定。
该方法包括:终端设备在第一测量周期对网络设备发送的多个同步信号块SSB进行测量,以确定第一发送波束,第一发送波束与第一SSB相对应;终端设备使用第一发送波束以第一发送功率向网络设备发送第一前导码,以进行第一随机接入;当第一随机接入失败时,终端设备使用第一发送波束以第二发送功率向网络设备发送第二前导码,以进行第二随机接入,第二发送功率大于所述第一发送功率。
根据本申请提供的技术方案,终端设备在确定第一随机接入失败以后,可以继续使用第一发送波束并且以相对第一发送功率更大的第二发送功率(实现功率的爬坡)向网络设 备发送第二前导码,也就是说,使用第一发送波束以第二发送功率发起第二随机接入,此时终端设备设备可以尽可能的不切换发送波束,以实现功率爬坡,从而能够提高RA的成功率,缩短RA的完成时间,提高用户的使用体验。
结合第一方面,在第一方面的某些实现方式中,在终端设备使用第一发送波束以第二发送功率向网络设备发送第二前导码之前,该方法还包括:终端设备在第二测量周期对第一SSB进行测量,以获得第一测量值;以及终端设备使用第一发送波束以第二发送功率向网络设备发送第二前导码,包括:在第一测量值满足预设条件时,终端设备使用第一发送波束以第二发送功率向网络设备发送第二前导码。
结合第一方面,在第一方面的某些实现方式中,预设条件包括:第一测量值大于或者等于第一阈值。
结合第一方面,在第一方面的某些实现方式中,预设条件包括:第一测量值大于或者等于第二测量值,第二测量值为终端设备在第二测量周期之前的一个检测周期对第一SSB的测量值。
结合第一方面,在第一方面的某些实现方式中,在终端设备使用第一发送波束以第二发送功率向网络设备发送第二前导码之前,该法还包括:终端设备在第二测量周期对第一SSB进行测量;以及终端设备使用第一发送波束以第二发送功率向网络设备发送第二前导码,包括:当未获得第一SSB的测量值时,终端设备使用第一发送波束以第二发送功率向网络设备发送第二前导码。
结合第一方面,在第一方面的某些实现方式中,在终端设备使用第一发送波束以第二发送功率向网络设备发送第二前导码之前,该法还包括:终端设备在第二测量周期对多个SSB进行测量,以获得多个测量值;以及终端设备使用第一发送波束以第二发送功率向网络设备发送第二前导码,包括:在多个测量值满足预设条件时,终端设备使用第一发送波束以第二发送功率向网络设备发送第二前导码。
结合第一方面,在第一方面的某些实现方式中,预设条件包括:多个测量值中的最大值为第一SSB的测量值。
结合第一方面,在第一方面的某些实现方式中,预设条件包括:多个测量值中的最大值不是第一SSB的测量值,最大值与第一SSB的测量值的差值小于或等于第二阈值。
结合第一方面,在第一方面的某些实现方式中,在终端设备使用第一发送波束以第二发送功率向网络设备发送第二前导码之前,该法还包括:终端设备在第二测量周期对多个SSB进行测量;以及终端设备使用第一发送波束以第二发送功率向网络设备发送第二前导码,包括:在未获得多个SSB的全部测量值时,终端设备使用第一发送波束以第二发送功率向网络设备发送第二前导码。
结合第一方面,在第一方面的某些实现方式中,终端设备在第一测量周期对网络设备发送的多个同步信号块SSB进行测量,以确定第一SSB,包括:终端设备在第一测量周期对多个SSB进行测量,以获得多个测量值,终端设备将多个测量值中的最大值所对应的SSB确定为第一SSB。
第二方面,提供了一种通信装置,该装置包括:测量单元,用于在第一测量周期对网络设备发送的多个同步信号块SSB进行测量以确定第一发送波束,第一发送波束与第一SSB相对应;发送单元,用于使用第一发送波束以第一发送功率向网络设备发送第一前导 码,以进行第一随机接入;当第一随机接入失败时,发送单元还用于使用第一发送波束以第二发送功率向网络设备发送第二前导码,以进行第二随机接入,第二发送功率大于所述第一发送功率。
结合第二方面,在第二方面的某些实现方式中,在发送单元使用第一发送波束以第二发送功率向网络设备发送第二前导码之前,测量单元还用于:在第二测量周期对第一SSB进行测量,以获得第一测量值;以及发送单元还用于:在第一测量值满足预设条件时,使用第一发送波束以第二发送功率向网络设备发送第二前导码。
结合第二方面,在第二方面的某些实现方式中,预设条件包括:第一测量值大于或者等于第一阈值。
结合第二方面,在第二方面的某些实现方式中,预设条件包括:第一测量值大于或者等于第二测量值,第二测量值为测量单元在第二测量周期之前的一个检测周期对第一SSB的测量值。
结合第二方面,在第二方面的某些实现方式中,在发送单元使用第一发送波束以第二发送功率向网络设备发送第二前导码之前,测量单元还用于:在第二测量周期对第一SSB进行测量;以及发送单元还用于:当未获得第一SSB的测量值时,使用第一发送波束以第二发送功率向所述网络设备发送第二前导码。
结合第二方面,在第二方面的某些实现方式中,在发送单元使用第一发送波束以第二发送功率向网络设备发送第二前导码之前,测量单元还用于:在第二测量周期对多个SSB进行测量,以获得多个测量值;以及发送单元还用于:在多个测量值满足预设条件时,使用第一发送波束以第二发送功率向网络设备发送第二前导码。
结合第二方面,在第二方面的某些实现方式中,预设条件包括:多个测量值中的最大值为第一SSB的测量值。
结合第二方面,在第二方面的某些实现方式中,预设条件包括:多个测量值中的最大值不是第一SSB的测量值,最大值与第一SSB的测量值的差值小于或等于第二阈值。
结合第二方面,在第二方面的某些实现方式中,在发送单元使用第一发送波束以第二发送功率向网络设备发送第二前导码之前,测量单元还用于:在第二测量周期对多个SSB进行测量;以及发送单元还用于:在未获得多个SSB的全部测量值时,使用第一发送波束以第二发送功率向网络设备发送第二前导码。
结合第二方面,在第二方面的某些实现方式中,测量单元还用于:在第一测量周期对所述多个SSB进行测量,以获得多个测量值,将多个测量值中的最大值所对应的SSB确定为第一SSB。
第三方面,提供一种通信装置,该装置可以是终端设备,也可以是终端设备内的芯片。该装置可以包括处理单元和收发单元。当所述装置是终端设备时,所述处理单元可以是处理器,所述收发单元可以是收发器;所述终端设备还可以包括存储单元,所述存储单元可以是存储器;所述存储单元用于存储指令,所述处理单元执行所述存储单元所存储的指令,以使所述终端设备执行第一方面中的方法。当所述装置是终端设备内的芯片时,所述处理单元可以是处理器,所述收发单元可以是输入/输出接口、管脚或电路等;处理单元执行存储单元所存储的指令,以使终端设备执行第一方面中的方法,存储单元可以是所述芯片内的存储单元(例如,寄存器、缓存等),也可以是所述终端设备内的位于所述芯片外部 的存储单元(例如,只读存储器、随机存取存储器等)。
第四方面,提供一种通信装置,包括至少一个处理器,该至少一个处理器用于与存储器耦合,读取并执行所述存储器中的指令,以实现第一方面中的任一种方法。
可选地,该通信装置还包括存储器。
第五方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行第一方面中的任一种方法。
需要说明的是,上述计算机程序代码可以全部或者部分存储在第一存储介质上,其中第一存储介质可以与处理器封装在一起的,也可以与处理器单独封装,本申请对此不作具体限定。
第六方面,提供了一种计算机可读介质,所述计算机可读介质存储有程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行第一方面中的任一种方法。
附图说明
图1示出了适用于本申请实施例的适用的通信系统的示意图。
图2示出了LTE系统和5G系统的竞争随机接入的流程图。
图3示出了网络设备通过波束成形技术与终端设备进行通信的示意图。
图4示出了本申请随机接入方法的一例的示意性流程图。
图5示出了本申请随机接入方法的另一例的示意性流程图。
图6示出了本申请随机接入方法的再一例的示意性流程图。
图7示出了本申请实施例的通信设备的示意图。
图8示出了本申请实施例的一种终端设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(global system for mobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)通信系统或新无线接入技术(new radio access technology,NR)等。
为便于理解本申请实施例,首先结合图1详细说明适用于本申请实施例的通信系统。图1示出了适用于本申请实施例的适用的通信系统的示意图。如图1所示,该通信系统10可以包括至少一个网络设备,例如图1所示的网络设备11;该通信系统10还可以包括至少一个终端设备,例如图1所示的终端设备12。网络设备11与终端设备12可通过无线链路通信。各通信设备,如网络设备11或终端设备12,可以配置多个天线,该多个天线可以包括至少一个用于发送信号的发射天线和至少一个用于接收信号的接收天线。另 外,各通信设备还附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。因此,网络设备11与终端设备12可通过多天线技术通信。
应理解,该无线通信系统中的网络设备可以是任意一种具有无线收发功能的设备。该设备包括但不限于:演进型节点B(evolved NodeB,eNB或eNodeB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,例如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+CU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
还应理解,该无线通信系统中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且, 本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
为便于理解本申请实施例,首先对本申请中涉及到的相关技术内容作简单说明。
1、随机接入
LTE系统和5G系统的随机接入分为竞争随机接入和非竞争随机接入两种。图2示出了LTE系统和5G系统的竞争随机接入的流程图。
LTE系统和5G系统的竞争随机接入用于:(1)终端初始接入;(2)无线资源控制(radio resource control,RRC)连接重建、切换;(3)非同步状态下RRC连接态时下行数据到达;(4)RRC连接态时上行数据到达;(5)RRC连接态时的定位。此外,5G系统还引入系统消息请求、非激活态的终端恢复连接等。竞争随机接入过程如图2所示,主要分为四步:
消息1(Msg1):UE选择随机接入前导码Preamble和物理随机接入信道(physical random access channel,PRACH)资源,在选择的PRACH资源上向基站发送所选的随机接入前导码Preamble(即Msg1)。
消息2(Msg2):基站接收到随机接入请求Msg1,向UE发送随机接入响应(random access response,RAR,即Msg2),随机接入响应中包含上行定时提前量、为Msg3分配的上行资源UL grant、网络侧分配的临时小区无线网络临时标识(cell radio network temporary identifier,temporary C-RNTI)等。承载Msg2调度消息的物理下行控制信道(physical downlink control channel,PDCCH)用随机接入无线网络临时标识(random access-radio network temporary identifier,RA-RNTI)加扰,Msg2中还携带Preamble ID,UE通过RA-RNTI和Preamble ID确定该Msg2是与其发送的Msg1对应的。
消息3(Msg3):UE在Msg2指定的UL grant上发送基于调度的传输消息(scheduled transmission,即Msg3),该Msg3消息中包含层2/层3(L2/L3)随机接入信息,不同随机接入原因Msg3上行传输的内容不同,例如对于初始接入,Msg3传输的是RRC连接建立请求。
消息4(Msg4):基站发送竞争解决消息(contention resolution,即Msg4)给UE,UE根据Msg4可以判断随机接入是否成功。对于初始接入UE,竞争解决成功后临时C-RNTI自动转化为UE在该小区的唯一UE标识C-RNTI。
从终端设备的角度上看,RA过程可能遇到各种问题而导致RA失败,作为示例而非 限定,RA失败的原因可以包括以下任意一种:
(1)终端设备没有收到其发送的preamble所对应的RAR。例如,终端设备没有收到随机接入响应媒体接入控制(media access control,MAC)协议数据单元(protocol data unit,PDU),或者收到的RAR MAC PDU中不包括对应该preamble的RAR;
(2)终端设备发送了Msg3,但是没有收到Msg4;
(3)终端设备收到了Msg4,但是该终端设备并不是冲突解决的胜利者。
在LTE系统中,如果本次RA失败了,则终端设备会重新发起RA,并且使用功率爬坡步长(power ramping step)去增加发送功率,例如每次增加2dB,直至完成RA。
2、波束成形
为了降低无线电波的传播损失并且增加传输距离,在5G系统中讨论了波束成形、大规模多输入多输出(multiple-input multiple-output,MIMO)、全维度MIMO(full-dimension MIMO,FD-MIMO)、阵列天线、数字波束成形(digital beamforming)、模拟波束形成(analog beamforming)等天线技术。
5G系统中的网络设备(例如,gNB或TRP)可以通过波束成形技术与用户设备进行交互。网络设备通常可以形成多个下行链路(down link,DL)传输波束(transmit beam,Tx beam),在某一个或者多个DL Tx beam上向该波束覆盖范围内的终端设备发送下行信号。终端设备可以通过接收波束(receive beam,Rx beam)或者全向天线进行接收,以获得较大的阵列增益。通过波束成形技术,网络设备与用户设备间实现了更高的数据传输速率。
图3示出了网络设备通过波束成形技术与终端设备进行通信的示意图。如图3所示,网络设备可以通过波束成形技术,如数字波束成形或者模拟波束成形,来形成多个传输波束或者接收波束,各个波束所覆盖的角度可以相同或者不同,不同覆盖角度的波束可以存在重叠部分,例如,网络设备可以用覆盖角度较宽的波束发送控制信息,用覆盖角度较窄的波束发送数据信息。用户设备可以在其中的一个或者多个波束或者波束集或波束组的覆盖范围内接收网络设备发送的信息。
用户设备也可以通过波束成形技术形成多个接收波束,对应于网络设备所使用的下行链路波束,确定使用某一个或者多个接收波束来接收。为描述方便,本申请实施例中所涉及的波束可以指代单个或者多个波束。
因此,可以将网络设备的下行链路传输波束和相应的用户设备的接收波束,或者用户设备的上行链路传输波束和相应的网络设备的接收波束称为一对波束对(beam pair),由该波束对形成的传输链路称为波束对链路(beam pair link,BPL)。例如,当图3中的网络设备使用波束3作为下行链路传输波束时,用户设备可以确定使用波束6作为相应的接收波束,波束3与波束6形成一对BPL。当网络设备或者用户设备的波束符合波束对应(beam correspondence)特征时,可以由传输波束或者接收波束确定对应的接收波束或者传输波束。
波束对可以包括发送端的传输波束和接收端的接收波束,或者,也称作上行波束或下行波束。例如,波束对可以包括gNB Tx beam传输波束或UE Rx beam接收波束,或者,UE Tx beam传输波束或gNB Rx beam接收波束。
应理解,通常情况下,网络设备的传输性能要好于终端设备的传输性能,因此,相比 于终端设备的接收波束,网络设备可以拥有更多的传输波束,此时,网络设备的多个传输波束可以与终端设备的一个接收波束形成多对波束对,例如,在图3中,网络设备使用的波束2也可以和终端设备的波束6形成波束对,本申请对此并不限定。
下面继续对本申请中的波束作进一步介绍。
本申请实施例中波束也可以称为beam,波束可以直接替换为beam,或,beam可以直接替换为波束,本文不再赘述;
可选地,波束也可以称为方向,波束可以直接替换为方向,或,方向可以直接替换为波束,例如,第一波束可以替换为第一方向,第一方向可以替换为第一波束,本文不再赘述;
可选地,波束也可以称为空间资源,波束可以直接替换为空间资源,或,空间资源可以直接替换为波束,本文不再赘述;
可选地,波束也可以称为预编码向量,波束可以直接替换为预编码向量,或,预编码向量可以直接替换为波束,本文不再赘述;
可选地,波束/beam可以理解为空间资源,可以指具有能量传输指向性/方向性的发送或接收预编码向量。并且,该发送或接收预编码向量能够通过索引信息进行标识。其中,所述能量传输指向性可以指在一定空间位置内,接收经过所述预编码向量进行预编码处理后的信号具有较好的接收功率,如满足接收解调信噪比等;所述能量传输指向性也可以指通过所述预编码向量接收来自不同空间位置发送的相同信号具有不同的接收功率,可以理解为设备使用不同的beam表示设备使用不同的空间资源,可选地,进一步区分上行空间资源和/或下行空间资源,或,用于发送信息的空间资源,用于接收信息的空间资源;
可选地,波束可以理解为通过天线阵列的发送模式所形成的主瓣(beam(of the antenna)is the main lobe of the radiation pattern of an antenna array);
可选地,同一通信设备(例如终端设备或网络设备)可以有不同的预编码向量,不同的设备也可以有不同的预编码向量,即对应不同的波束,不同的波束可以对应不同的方向,可以理解为设备使用不同的beam表示设备使用不同的预先编码向量,可选地,进一步区分上行预先编码向量,下行预先编码向量,或,区分用于发送信息的预先编码向量,用于接收信息的预先编码向量;
可选地,波束/beam还可理解为空间域传输过滤器(spatial domain transmission filter);设备(例如网络设备和/或用户设备)使用波束可以替换为设备使用空间域传输过滤器;
设备不限制使用某个波束(例如,第N个波束,N为设备支持的任意一个波束),为了方便理解,以设备使用第一波束为例;
可选地,例如:设备使用第一波束,可以替换为设备在第一方向;进一步,设备使用第一发送波束,可以替换为设备在第一发送方向,和/或,设备使用第一接收波束,可以替换为设备在第一接收方向;
可选地,例如:设备使用第一波束(或在第一方向),可以替换为设备使用第一空间资源;进一步,设备使用第一发送波束,可以替换为设备使用第一发送空间资源,和/或,设备使用第一接收波束,可以替换为使用第一接收空间资源;
可选地,例如:设备使用第一波束(或在第一方向),可以替换为设备使用第一天线模式;进一步,设备使用第一发送波束,可以替换为设备使用第一发送天线模式,和/或, 设备使用第一接收波束,可以替换为使用第一接收天线模式;
可选地,例如:设备使用第一波束(或在第一方向),可以替换为设备使用第一天线模式;进一步,设备使用第一发送波束,可以替换为设备使用第一发送天线模式,和/或,设备使用第一接收波束,可以替换为使用第一接收天线模式;
可选地,例如:设备使用第一波束(或在第一方向),可以替换为设备使用第一天线阵列模式;进一步,设备使用第一发送波束,可以替换为设备使用第一发送天线阵列模式,和/或,设备使用第一接收波束,可以替换为使用第一接收天线阵列模式;
可选地,例如:设备使用第一波束(或在第一方向),可以替换为设备使用第一空间域传输过滤;
进一步,设备使用第一发送波束,可以替换为设备使用用于发送的第一空间域传输过滤器;和/或,设备使用第一接收波束,可以替换为设备使用用于接收的第一空间域传输过滤器;
可选地,例如:设备使用第一发送波束(或在第一方向),可以替换为设备使用第一发送空间域传输过滤器;和/或,设备使用第一接收波束,可以替换为设备使用第一接收空间域传输过滤器;
可选地,例如:设备使用第一波束(或在第一方向),可以替换为设备使用第一预编码向量;进一步,设备使用第一发送波束,可以替换为设备使用第一发送预编码向量,和/或,设备使用第一接收波束,可以替换为使用第一接收预编码向量;
可选地,例如:设备使用第一波束(或在第一方向),可以替换为设备使用第一权重;进一步,设备使用第一发送波束,可以替换为设备使用第一发送权重,和/或,设备使用第一接收波束,可以替换为使用第一接收权重;
可选地,例如:设备使用第一波束(或在第一方向),可以替换为设备使用第一参数(例如天线阵列中涉及的参数);进一步,设备使用第一发送波束,可以替换为设备使用第一发送参数,和/或,设备使用第一接收波束,可以替换为使用第一接收参数;
可选地,例如:设备使用第一波束(或在第一方向),可以替换为设备使用第一加权参数(例如天线阵列中不同的天线使用不同的参数);进一步,设备使用第一发送波束,可以替换为设备使用第一发送加权参数,和/或,设备使用第一接收波束,可以替换为使用第一接收加权参数;
可选地,例如:设备使用第一波束(或在第一方向),可以替换为设备使用第一波束成形;进一步,设备使用第一发送波束,可以替换为设备使用第一发送波束成形,和/或,设备使用第一接收波束,可以替换为使用第一接收波束成形;
可选地,设备所使用的发送波束与同步信号块(synchronization signals block,SSB)相对应,比如第一发送波束对应第一SSB,第二发送波束对应第二SSB;
例如,网络设备使用第一发送波束发送第一SSB,网络设备使用第二波束发送第二SSB;
再例如,网络设备在对应第一SSB的资源上发送信息,表示网络设备使用的是第一发送波束,网络设备在对应第二SSB的资源上发送信息,表示网络设备使用的是第二发送波束。
下面继续对终端设备的发送/接收波束一致性能力进行介绍。
在5G NR的多波束系统中,如果终端设备满足如下两种情况中的任一种,则该终端设备具备发送/接收波束一致性能力:
(1)终端设备能够基于终端设备在一个或者多个接收波束上的测量结果(例如,对网络设备发送的SSB进行测量的结果)确定终端设备的发送波束。
(2)终端设备根据网络设备对终端设备的一个或多个发送波束的测量结果确定终端设备的接收波束。
具体地,具备发送/接收波束一致性能力的终端设备具有在相同方向上的接收波束和发送波束。例如,终端设备具有在第一方向上的第一接收波束,如果该终端设备具备发送/接收波束一致性能力,则该终端设备在第一方向上还具有第一发送波束。
再例如,终端设备具有在多个方向上的多个接收波束,如果该终端设备具备发送/接收波束一致性能力,则该终端设备在该多个方向上还具有多个发送波束,该多个发送波束与多个接收波束一一对应。考虑到信道的互异性,如果终端设备在第一接收波束的空间方向上接收到的SSB的测量结果最好,那么相应的,终端设备在第一接收波束空间方向上的第一发送波束进行数据发送的效果也最好,则此时终端设备可以选择第一接收波束空间方向上的第一发送波束来发送数据。
根据上述对发送/接收波束的一致性能力的定义,可以将终端设备分为两种类型:
第一类型,具备发送/接收波束一致性能力的终端设备;
第二类型,不具备发送/接收波束一致性能力的终端设备。
应注意,在一个多波束系统中,上述两种类型的终端设备可能都会存在。
在5G系统中引入了多波束机制,在该机制下,如果终端设备切换了发送波束或者接收波束,则不能执行功率爬坡。
应理解,前述对随机接入、波束成形、波束对等的相关介绍只是为了便于理解本申请的技术方案,而不对本申请构成任何限定。
在5G系统中,终端设备在RA失败后,如何进行发送波束的选择以再次发起RA取决于终端设备的内部实现。当终端设备不断的执行发送波束的切换,例如,终端设备在通过第一发送波束发起RA,并且失败以后,终端设备确定以区别于第一发送波束的第二发送波束再一次发起RA,则此时由于终端设备切换了发送波束,会导致功率不能爬坡,终端设备的发送功率可能较小,从而对网络设备不可达,最终导致终端设备需要较长的时间才能完成RA,带来较大的接入时延,影响用户的使用体验。
本申请提供了一种随机接入的方法,在RA过程中,终端设备可以尽可能的不切换发送波束,以实现功率爬坡,从而能够提高RA的成功率,缩短RA的完成时间,提高用户的使用体验。
下面结合附图介绍本申请实施例提供的随机接入的方法,实施例中的网络设备可以是图1中的网络设备11,终端设备可以是图1中的终端设备12。
图4是本申请随机接入的方法200的示意性流程图。以下,结合图4阐述本申请实施例提供的方法200,该方法200包括:
步骤210,终端设备在第一测量周期对网络设备发送的多个同步信号块SSB进行测量,以确定第一发送波束,第一发送波束与第一SSB相对应;
步骤220,终端设备使用第一发送波束以第一发送功率向网络设备发送第一前导码 (preamble),以进行第一随机接入;
步骤230,当第一随机接入失败时,终端设备使用第一发送波束以第二发送功率向网络设备发送第二前导码,以进行第二随机接入,第二发送功率大于所述第一发送功率。
具体地,在本申请实施例中,终端设备和网络设备可以是多波束系统中的通信设备,终端设备和网络设备之间可以通过一个或者多个波束进行通信。例如,网络设备可以具有多个传输波束,终端设备具有多个接收波束,网络设备和终端设备之间可以通过至少一个传输波束和至少一个接收波束进行通信。可选地,该至少一个传输波束和至少一个接收波束可以形成至少一对波束对。
在本申请实施例中,网络设备可以通过多个传输波束来发送多个SSB,该多个传输波束可以和多个SSB一一对应。相应地,根据波束对应原则,终端设备可以在对应的多个接收波束上来接收该多个SSB。
例如,网络设备在传输波束#1上发送第一SSB,相应地,终端设备可以在接收波束#1上接收该第一SSB,其中,传输波束#1和接收波束#1形成波束对。
再例如,网络设备在传输波束#2上发送第二SSB,相应地,终端设备可以在接收波束#2上接收该第二SSB,其中,传输波束#2和接收波束#2形成波束对。
再例如,网络设备在传输波束#3上发送第三SSB,相应地,终端设备可以在接收波束#1上接收该第三SSB,其中,传输波束#3也可以和接收波束#1形成波束对。
也就是说,多个SSB也与终端设备的多个接收波束相对应。
在本申请实施例中,终端设备具备发送/接收波束一致性的能力。也就是说,终端设备在相同的方向上,可以同时具备发送波束和接收波束,例如在接收波束#1的空间方向上,终端设备还具有发送波束#1,终端设备的接收波束#1与发送波束#1相对应。
也就是说,多个SSB也与终端设备的多个发送波束相对应。
进一步地,终端设备可以在第一测量周期内对该多个SSB进行测量,以确定第一发送波束,其中,第一发送波束与第一SSB相对应。
在本申请实施例中,终端设备可以具有多个接收波束,相应地,终端设备还可以具有多个发送波束,终端设备可以使用多个发送波束中的某一个发送波束(例如第一发送波束)来发送第一前导码,以进行第一随机接入。
进一步地,终端设备可以使用质量较好(或者最好)的发送波束来发送第一前导码,以进行第一随机接入。
基于信道互易性,如果终端设备的接收波束#1波束质量较好,相对应的,终端设备的发送波束#1的波束质量也较好。也就是说,终端设备可以通过检测多个接收波束的波束质量来确定多个发送波束的波束质量,进一步可以确定该第一发送波束。
在本申请实施例中,终端设备可以在第一测量周期内对该多个SSB进行测量,以确定第一发送波束,该第一发送波束和第一SSB相对应。
具体地,终端设备对多个SSB进行测量,可以是对多个SSB的信号质量进行测量,例如,可以是对多个SSB的参考信号接收功率(reference signal receiving power,RSRP)进行测量。通过对多个SSB的测量结果可以确定终端设备的多个接收波束的波束质量,之后根据信道的互易性,可以确定终端设备多个发送波束的波束质量。
可选地,可以将该多个SSB中信号质量较好(或者最好)的SSB确定为第一SSB, 即终端设备可以将质量较好(或者最好)的发送波束作为第一发送波束,来发送第一前导码,以进行第一随机接入。
可选地,终端设备对多个SSB进行测量,可以得到多个测量值。
可选地,终端设备可以将该多个测量值中的最大值对应的SSB确定为第一SSB,即将质量最好的发送波束确定为第一发送波束。
例如,终端设备的物理层接收网络设备发送的多个SSB,并且进行测量,得到多个测量值,物理层可以选择将测量值最大的8个SSB上报给MAC层,MAC层可以根据该最大的8个SSB来刷新保存的列表(list),并且MAC层可以从该8个SSB中确定测量值最大的SSB为第一SSB,并且将第一SSB所对应的发送波束确定为第一发送波束。
也就是说,终端设备可以对与多个发送波束对应的多个SSB进行测量,以获得多个测量值,其中,测量值中的最大值所对应的接收波束质量最好(基于信道的互易性,其所对应的发送波束的质量也最好),终端设备将多个测量值中的最大值所对应的发送波束确定为第一发送波束,终端设备使用该第一发送波束与网络设备进行通信,从而可以提高通信质量。
此外,终端设备也可以将该多个测量值中的第二大的测量值对应的SSB确定为第一SSB,即将质量第二好的发送波束确定为第一发送波束,本申请对此并不限定。
可选地,该多个测量值可以是多个RSRP的值。
此外,在步骤210中,终端设备还可以确定发起RA的发送功率(即第一发送功率)。
例如,终端设备还可以根据第一SSB的测量值来确定发起RA的第一发送功率。
再例如,该测量值可以为RSRP,此时可以根据第一SSB的RSRP来确定第一发送功率。
应理解,前述对终端设备确定所使用的第一发送波束以及第一发送功率的相关介绍仅用于示例而非限定。在其他实施方式中,终端设备还可以通过其他方式确定所使用的第一发送波束以及第一发送功率。
在步骤220中,终端设备使用第一发送波束以第一发送功率向网络设备发送第一前导码,以进行第一随机接入。
相应地,在步骤220中,网络设备可以接收该第一前导码。
此外,在步骤220中,可能由于终端设备的第一发送功率过小而对网络设备不可达等原因,导致网络设备无法接收到第一前导码,本申请对此并不限定。
在步骤230中,当第一随机接入失败时,终端设备使用第一发送波束以第二发送功率向网络设备发送第二前导码,以进行第二随机接入,第二发送功率大于所述第一发送功率。
也就是说,终端设备可以先使用第一发送波束并且以第一发送功率向网络设备发送第一前导码进行第一随机接入,并且在确定了第一随机接入失败以后,可以继续使用第一发送波束并且以更大的发送功率发起下一次(即第二)随机接入。
在步骤230中,终端设备可以首先确定第一随机接入失败。例如,响应消息接收被认为失败的第一情况下(该第一情况又可以称之为:终端设备准备再次发起随机接入过程的情况下,或,终端设备准备再次发送前导码(例如第二前导码)的情况下),或,冲突解决被认为失败的第二情况下,终端设备可以确定第一随机接入失败。
可选地,在出现以下任一种情况下,终端设备可以确定第一随机接入失败:
(1)终端设备没有收到其发送的第一前导码所对应的RAR。例如,终端设备没有收到RAR MAC PDU,或者收到的RAR MAC PDU中不包括对应第一前导码的RAR;
(2)终端设备发送了Msg3(即此时终端设备收到了第一前导码所对应的RAR),但是没有收到Msg4;
(3)终端设备收到了Msg4,但是终端设备并不是冲突解决的胜利者。
在终端设备确定第一随机接入失败以后,终端设备可以使用第一发送波束以第二发送功率向网络设备发送第二前导码,以进行第二随机接入,第二发送功率大于第一发送功率。
可选地,第二发送功率可以为第一发送功率加上功率爬坡增加的功率。
可选地,该功率爬坡增加的功率可以为功率爬坡步长。例如,该值的大小可以为2dB。
可选地,该功率爬坡增加的功率也可以由通信系统或通信协议规定,或者,也可以由网络设备配置,本申请并未特别限定。
根据本申请实施例,终端设备在确定第一随机接入失败以后,可以继续使用第一发送波束并且以相对第一发送功率更大的第二发送功率(实现功率的爬坡)向网络设备发送第二前导码,也就是说,使用第一发送波束以第二发送功率发起第二随机接入,此时终端设备设备可以尽可能的不切换发送波束,以实现功率爬坡,从而能够提高RA的成功率,缩短RA的完成时间,提高用户的使用体验。
在本申请实施例中,在发起RA时,为了提高波束选择的灵活性,还可以继续对SSB进行测量,并且设置预设条件,在预设条件满足时,终端设备才继续使用第一发送波束以第二发送功率发起第二随机接入。
例如,在第一测量周期之后的第二测量周期内,终端设备对第一SSB进行测量,以获得第一测量值,在第一测量值满足预设条件时,终端设备继续使用第一发送波束以第二发送功率向网络设备发送第二前导码,以进行第二随机接入,从而可以尽可能的不切换发送波束,以实现功率爬坡,从而能够提高RA的成功率。
再例如,在第一测量周期之后的第二测量周期内,终端设备对第一SSB进行测量,但是并未获得第一SSB的测量值时,终端设备继续使用所述第一发送波束以第二发送功率向网络设备发送第二前导码,以进行第二随机接入,从而可以尽可能的不切换发送波束,以实现功率爬坡,从而能够提高RA的成功率。
再例如,在第一测量周期之后的第二测量周期内,终端设备对多个SSB进行测量,以获取多个测量值,在多个测量值满足预设条件时,终端设备继续使用第一发送波束以第二发送功率向网络设备发送第二前导码,以进行第二随机接入,从而可以尽可能的不切换发送波束,以实现功率爬坡,从而能够提高RA的成功率。
再例如,在第一测量周期之后的第二测量周期内,终端设备对多个SSB进行测量,在未获得多个SSB的全部测量值时,终端设备继续使用第一发送波束以第二发送功率向网络设备发送第二前导码,以进行第二随机接入,从而可以尽可能的不切换发送波束,以实现功率爬坡,从而能够提高RA的成功率。
应理解,在本申请中,第一测量周期、第二测量周期中的周期,并不能说明本申请的测量一定是周期性进行的,第一测量周期、第二测量周期可以理解为第一次测量期间、第二次测量期间,而第一、第二也并不能说明一定是测量的首次和第二次,第一测量周期、第二测量周期也可以是中间对SSB进行测量的某两次。
以下结合附图5、6对上述几种两种实施方式分别作进一步说明。
方式1:终端设备对第一SSB进行测量。
图5示出了本申请随机接入的方法200的另一例的示意性流程图。如图5所示,在步骤230之前,即在终端设备使用第一发送波束以第二发送功率向网络设备发送第二前导码之前,方法200还包括:
步骤221,终端设备在第二测量周期对第一SSB进行测量,以获得第一测量值。
步骤230还包括:
步骤231,在第一测量值满足预设条件时,终端设备使用第一发送波束以第二发送功率向网络设备发送第二前导码。
具体地,终端设备还可以在第二测量周期对第一SSB继续进行测量,以获取第一测量值,并且根据第一测量值确定是否使用第一发送波束以第二发送功率向网络设备发送第二前导码。
例如,该第一测量值满足预设条件,终端设备使用第一发送波束以第二发送功率向网络设备发送第二前导码。
再例如,该第一测量值不满足预设条件,终端设备不使用第一发送波束向网络设备发送第二前导码。
其中,对第一SSB进行测量,可以是对第一SSB的信号质量进行测量,该第一测量值可以反映第一发送波束质量的好坏程度,并且在第一测量值满足预设条件(例如第一发送波束质量足够好时),可以继续使用第一发送波束发起RA,并且执行功率爬坡,使用更大的第二发送功率发送第二前导码。
本申请对第一测量值的参数类型并不限定,例如,对第一SSB进行测量可以是对第一SSB的RSPR进行测量,即该第一测量值可以是RSRP的值。
终端设备可以根据第一测量值是否满足预设条件,以确定是否使用第一发送波束以第二发送功率发送第二前导码,以进行第二随机接入。
例如,该第一测量值满足预设条件,终端设备使用第一发送波束以第二发送功率发送第二前导码,以进行第二随机接入。
再例如,该第一测量值不满足预设条件,终端设备不使用第一发送波束发送第二前导码。
此外,本申请对进行判定的预设条件并不做限定,作为示例,该预设条件可以包括以下条件中的任意一种。
条件1-1
第一测量值大于或者等于第一阈值。
具体地,在第一测量值大于或者等于第一阈值的情况下,说明第一SSB的信号足够好,同时也说明第一发送波束的质量也足够好,此时终端设备可以继续使用第一发送功率并且使用增大后的发送功率(即第二发送功率)向网络设备发送第二前导码,从而再一次发起随机接入程序。
可选地,该第一阈值可以由通信系统或通信协议规定,或者,也可以由网络设备配置,本申请并未特别限定。例如,该第一阈值可以为基站发送的rsrp-ThresholdSSB。
条件1-2
第一测量值大于或者等于第二测量值,第二测量值为终端设备在第二测量周期之前的一个检测周期对第一SSB的测量值。
应理解,网络设备可以是周期性(periodic)、半持续性(semi-persistent)或非周期性(aperiodic)的发送多个第一SSB,终端设备可以接收该多个第一SSB,并且对该多个第一SSB进行测量。
在本申请中,第二测量值为终端设备在第二测量周期之前的一个检测周期对第一SSB的测量值。例如,该第二测量值可以为第一测量周期对第一SSB的测量值(即在步骤210中对第一SSB的测量值)。
再例如,该第二测量值还可以为第一测量周期和第二测量周期之间的一个检测周期内对第一SSB的测量值(即可以是在步骤210和步骤221之间的检测周期内对第一SSB的测量值),本申请对此不做限定。
在本申请中,在第一测量值大于或者等于第二测量值的情况下,说明第一SSB的信号在变好,同时也说明第一发送波束的质量也在变好,此时终端设备可以继续使用第一发送功率并且使用增大后的发送功率(即第二发送功率)向网络设备发送第二前导码,从而再一次发起随机接入程序。
可选地,在第一测量值小于第二测量值的情况下,说明第一SSB的信号在变差,同时也说明第一发送波束的质量也在变差,此时终端设备可以不使用第一发送波束来发送第二前导码,此时为了选取合适的发送波束发送第二前导码,终端设备可以继续对第一SSB之外其他的SSB执行测量。
可选地,在第一测量值小于第二测量值的情况下,此时终端设备可以继续对该多个SSB中第一SSB之外的SSB执行测量。
进一步地,若此时对包括第一SSB在内的多个SSB进行测量,得到的最大测量值为第二SSB的测量值,说明此时第二SSB对应的第二发送波束质量最好,则此时终端设备可以使用第二发送波束向所述网络设备发送第二前导码,以发起第二随机接入。
进一步地,此时终端设备可以根据对第二SSB的测量值确定第三发送功率,并且使用第二发送波束以第三发送功率向网络设备发送第二前导码,已发起第二随机接入。
例如,该测量值可以为RSRP的值,此时可以根据第二SSB的RSRP来确定第三发送功率。
条件1-3
终端设备未获得第一SSB的测量值(即第一测量值)。
具体地,终端设备可能并未完成对第一SSB的测量,即并未测量得到第一测量值,则此时系统或者协议可以规定,或者根据与网络设备的约定,终端设备可以继续使用第一发送波束以第二发送功率向网络设备发送第二前导码,以发起第二随机接入。使得终端设备可以尽可能的不切换发送波束,以实现功率爬坡,从而能够提高RA的成功率,缩短RA的完成时间,提高用户的使用体验。
可选地,终端设备并未完成对第一SSB的测量可能的原因有:测量时间不够、接收天线被占用、终端设备的MAC层没有收到物理层通知的测量结果等。
应理解,本申请实施例中的“协议”可以是指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
方式2:终端设备对多个SSB进行测量
图6示出了本申请随机接入的方法200的再一例的示意性流程图。如图6所示,在步骤230之前,即在终端设备使用第一发送波束以第二发送功率向网络设备发送第二前导码之前,方法200还包括:
步骤222,终端设备在第二测量周期对多个SSB进行测量,以获得多个测量值。
步骤230还包括:
步骤232,在多个测量值满足预设条件时,终端设备使用第一发送波束以第二发送功率向网络设备发送第二前导码。
具体地,终端设备还可以在第二测量周期对多个SSB进行测量,以获得多个测量值,并且根据多个测量值确定是否使用第一发送波束以第二发送功率向网络设备发送第二前导码。
例如,该多个测量值满足预设条件,终端设备使用第一发送波束以第二发送功率向网络设备发送第二前导码。
再例如,该多个测量值不满足预设条件,终端设备不使用第一发送波束向网络设备发送第二前导码。
类似地,对多个SSB进行测量,可以是对多个SSB的信号质量进行测量,例如对多个SSB的RSPR进行测量,而该多个测量值可以是RSRP的值。
可选地,终端设备根据对多个SSB的多个测量值是否满足预设条件,以确定是否使用第一发送波束以第二发送功率发送第二前导码,以进行第二随机接入。
例如,该多个测量值满足预设条件,终端设备使用第一发送波束以第二发送功率发送第二前导码,以进行第二随机接入。
再例如,该多个测量值不满足预设条件,终端设备不使用第一发送波束发送第二前导码。
此外,本申请对进行判定的预设条件并不做限定,作为示例,该预设条件可以包括以下条件中的任意一种。
条件2-1
多个SSB的测量值中的最大值为第一SSB的测量值。
具体地,若多个测量值中的最大值为第一SSB的测量值(即第一测量值为多个测量值中的最大值),则说明第一SSB的信号最好,同时说明第一SSB对应的第一发送波束的质量最好,此时终端设备可以继续使用第一发送波束并且使用增大后的发送功率(即第二发送功率)向网络设备发送第二前导码,以发起第二随机接入,从而可以尽可能的不切换发送波束,以实现功率爬坡,从而能够提高RA的成功率。
条件2-2
多个测量值中的最大值不是第一SSB的测量值,多个SSB的测量值中的最大值与第一SSB的测量值的差值小于或等于第二阈值。
具体地,区别于前述条件2-1,当第一SSB的测量值不是多个SSB的多个测量值中的最大值时,若多个SSB的测量值中的最大值与第一SSB的测量值(即第一测量值)的差值小于或等于第二阈值,说明第一SSB的信号虽然不是最好的,但是也不太差,同时也说明第一发送波束的质量也不太差,此时终端设备可以继续使用第一发送波束并且使用增 大后的发送功率(即第二发送功率)向网络设备发送第二前导码,以发起第二随机接入,从而可以尽可能的不切换发送波束,以实现功率爬坡,从而能够提高RA的成功率。
以上设置的另一个好处是,可以防止终端设备在多次RA失败的过程中不停的选择不同的发送波束,乒乓切换,变来变去,不能实现功率爬坡,导致RA效率低下。
可选地,该第二阈值可以由通信系统或通信协议规定,或者,也可以由网络设备配置,本申请并未特别限定。
可选地,若多个SSB的测量值中的最大值与第一SSB的测量值的差值大于第二阈值,终端设备可以使用第二发送波束向所述网络设备发送所述第二前导码,其中,该最大值为第二SSB的测量值,第二发送波束与第二SSB相对应。
进一步地,此时终端设备可以根据该最大测量值确定第三发送功率,并且使用第二发送波束以第三发送功率向网络设备发送第二前导码,以发起第二随机接入。
条件2-3
终端设备未获得多个发送波束对应的多个SSB的测量值。
具体地,终端设备可能并未完成对全部SSB的测量,即并未完全测量得到多个测量值,则此时系统或者协议可以规定,或者根据与网络设备的约定,终端设备可以继续使用第一发送波束以第二发送功率向网络设备发送第二前导码,以发起第二随机接入。使得终端设备可以尽可能的不切换发送波束,以实现功率爬坡,从而能够提高RA的成功率,缩短RA的完成时间,提高用户的使用体验。
可选地,终端设备并未完成对多个SSB的测量可能的原因有:测量时间不够、接收天线被占用、终端设备的MAC层没有收到物理层通知的测量结果等。
上文结合图1至图6详细描述了本申请实施例的随机接入的方法,下面结合图7、图8,详细描述本申请实施例的通信装置。应理解,图7、图8所示的装置能够实现图4-6所示的方法流程中的一个或者多个的步骤。为避免重复,在此不再详细赘述。
图7是本申请一实施例的通信设备的示意图,图5所示的通信装置600包括:测量单元610、发送单元620,其中,
测量单元610,用于在第一测量周期对网络设备发送的多个同步信号块SSB进行测量,以确定第一发送波束,第一发送波束与第一SSB相对应;
发送单元620,用于使用第一发送波束以第一发送功率向网络设备发送第一前导码,以进行第一随机接入;
当所述第一随机接入失败时,发送单元620还用于使用第一发送波束以第二发送功率向网络设备发送第二前导码,以进行第二随机接入,第二发送功率大于第一发送功率。
可选地,在所述发送单元620使用所述第一发送波束以第二发送功率向所述网络设备发送第二前导码之前,所述测量单元610还用于:在第二测量周期对所述第一SSB进行测量,以获得第一测量值;以及所述发送单元620还用于:在所述第一测量值满足预设条件时,使用所述第一发送波束以第二发送功率向所述网络设备发送第二前导码。
可选地,所述预设条件包括:所述第一测量值大于或者等于第一阈值。
可选地,所述预设条件包括:所述第一测量值大于或者等于第二测量值,所述第二测量值为所述测量单元610在所述第二测量周期之前的一个检测周期对所述第一SSB的测量值。
可选地,在所述发送单元620使用所述第一发送波束以第二发送功率向所述网络设备发送第二前导码之前,所述测量单元610还用于:在第二测量周期对所述第一SSB进行测量;以及所述发送单元620还用于:当未获得所述第一SSB的测量值时,使用所述第一发送波束以第二发送功率向所述网络设备发送第二前导码。
可选地,在所述发送单元620使用所述第一发送波束以第二发送功率向所述网络设备发送第二前导码之前,所述测量单元610还用于:在第二测量周期对所述多个SSB进行测量,以获得多个测量值;以及所述发送单元620还用于:在所述多个测量值满足预设条件时,使用所述第一发送波束以第二发送功率向所述网络设备发送第二前导码。
可选地,所述预设条件包括:所述多个测量值中的最大值为所述第一SSB的测量值。
可选地,所述预设条件包括:所述多个测量值中的最大值不是所述第一SSB的测量值,所述最大值与所述第一SSB的测量值的差值小于或等于第二阈值。
可选地,在所述发送单元620使用所述第一发送波束以第二发送功率向所述网络设备发送第二前导码之前,所述测量单元610还用于:在第二测量周期对所述多个SSB进行测量;以及所述发送单元620还用于:在未获得所述多个SSB的全部测量值时,使用所述第一发送波束以第二发送功率向所述网络设备发送第二前导码。
可选地,所述测量单元610还用于:在第一测量周期对所述多个SSB进行测量,以获得多个测量值,将所述多个测量值中的最大值所对应的SSB确定为所述第一SSB。
在一种可能的实现方式中,上述通信装置600可以为终端设备70,其中测量单元的功能可以由终端设备中的处理器702实现,发送单元的功能可以通过终端设备的收发器701(即控制电路与天线一起)实现。下文结合图8介绍本申请实施例的终端设备的结构。
图8是本申请实施例的一种终端设备的结构示意图。该终端设备可适用于图1所示出的系统中,执行上述方法实施例中终端设备的功能。为了便于说明,图8仅示出了终端设备的主要部件。如图8所示,终端设备70包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端设备执行上述方法实施例中所描述的动作。存储器主要用于存储软件程序和数据。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图8仅示出了一个存储器和一个处理器。在实际的终端设备中,可以存在多个处理器和多个存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限定。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主 要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图8中的处理器可以集成基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
应理解,在本申请实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图4-6所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图4-6所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的一个或多个终端设备以及一个或多个网络设备。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机 可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
为了便于理解,下文中对本申请介绍方案的过程中涉及的名词进行说明。
在本申请实施例中,各术语及英文缩略语,如同步信号块(SSB)、随机接入(RA)等,参考信号接收功率(RSRP)、前导码(preamble)均为方便描述而给出的示例性举例,不应对本申请构成任何限定。本申请并不排除在已有或未来的协议中定义其它能够实现相同或相似功能的术语的可能。
在本申请实施例中,“第一”、“第二”以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。例如,区分不同的SSB、波束等。
本申请实施例中涉及的“通信协议”可以是指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (24)

  1. 一种随机接入的方法,其特征在于,包括:
    终端设备在第一测量周期对网络设备发送的多个同步信号块SSB进行测量,以确定第一发送波束,所述第一发送波束与第一SSB相对应;
    所述终端设备使用所述第一发送波束以第一发送功率向所述网络设备发送第一前导码,以进行第一随机接入;
    当所述第一随机接入失败时,所述终端设备使用所述第一发送波束以第二发送功率向所述网络设备发送第二前导码,以进行第二随机接入,所述第二发送功率大于所述第一发送功率。
  2. 根据权利要求1所述的方法,其特征在于,在所述终端设备使用所述第一发送波束以第二发送功率向所述网络设备发送第二前导码之前,所述方法还包括:
    所述终端设备在第二测量周期对所述第一SSB进行测量,以获得第一测量值;以及
    所述终端设备使用所述第一发送波束以第二发送功率向所述网络设备发送第二前导码,包括:
    在所述第一测量值满足预设条件时,所述终端设备使用所述第一发送波束以第二发送功率向所述网络设备发送第二前导码。
  3. 根据权利要求2所述的方法,其特征在于,所述预设条件包括:所述第一测量值大于或者等于第一阈值。
  4. 根据权利要求2所述的方法,其特征在于,所述预设条件包括:所述第一测量值大于或者等于第二测量值,所述第二测量值为所述终端设备在所述第二测量周期之前的一个检测周期对所述第一SSB的测量值。
  5. 根据权利要求1所述的方法,其特征在于,在所述终端设备使用所述第一发送波束以第二发送功率向所述网络设备发送第二前导码之前,所述方法还包括:
    所述终端设备在第二测量周期对所述第一SSB进行测量;以及
    所述终端设备使用所述第一发送波束以第二发送功率向所述网络设备发送第二前导码,包括:
    当未获得所述第一SSB的测量值时,所述终端设备使用所述第一发送波束以第二发送功率向所述网络设备发送第二前导码。
  6. 根据权利要求1所述的方法,其特征在于,在所述终端设备使用所述第一发送波束以第二发送功率向所述网络设备发送第二前导码之前,所述方法还包括:
    所述终端设备在第二测量周期对所述多个SSB进行测量,以获得多个测量值;以及
    所述终端设备使用所述第一发送波束以第二发送功率向所述网络设备发送第二前导码,包括:
    在所述多个测量值满足预设条件时,所述终端设备使用所述第一发送波束以第二发送功率向所述网络设备发送第二前导码。
  7. 根据权利要求6所述的方法,其特征在于,所述预设条件包括:所述多个测量值中的最大值为所述第一SSB的测量值。
  8. 根据权利要求6所述的方法,其特征在于,所述预设条件包括:所述多个测量值中的最大值不是所述第一SSB的测量值,所述最大值与所述第一SSB的测量值的差值小于或等于第二阈值。
  9. 根据权利要求1所述的方法,其特征在于,在所述终端设备使用所述第一发送波束以第二发送功率向所述网络设备发送第二前导码之前,所述方法还包括:
    所述终端设备在第二测量周期对所述多个SSB进行测量;以及
    所述终端设备使用所述第一发送波束以第二发送功率向所述网络设备发送第二前导码,包括:
    在未获得所述多个SSB的全部测量值时,所述终端设备使用所述第一发送波束以第二发送功率向所述网络设备发送第二前导码。
  10. 根据权利要求1-9中任一项所述的方法,其特征在于,所述终端设备在第一测量周期对网络设备发送的多个同步信号块SSB进行测量,以确定第一SSB,包括:
    所述终端设备在第一测量周期对所述多个SSB进行测量,以获得多个测量值,所述终端设备将所述多个测量值中的最大值所对应的SSB确定为所述第一SSB。
  11. 一种通信装置,其特征在于,包括:
    测量单元,用于在第一测量周期对网络设备发送的多个同步信号块SSB进行测量,以确定第一发送波束,所述第一发送波束与第一SSB相对应;
    发送单元,用于使用所述第一发送波束以第一发送功率向所述网络设备发送第一前导码,以进行第一随机接入;
    当所述第一随机接入失败时,所述发送单元还用于使用所述第一发送波束以第二发送功率向所述网络设备发送第二前导码,以进行第二随机接入,所述第二发送功率大于所述第一发送功率。
  12. 根据权利要求11所述的装置,其特征在于,在所述发送单元使用所述第一发送波束以第二发送功率向所述网络设备发送第二前导码之前,所述测量单元还用于:
    在第二测量周期对所述第一SSB进行测量,以获得第一测量值;以及
    所述发送单元还用于:
    在所述第一测量值满足预设条件时,使用所述第一发送波束以第二发送功率向所述网络设备发送第二前导码。
  13. 根据权利要求12所述的装置,其特征在于,所述预设条件包括:所述第一测量值大于或者等于第一阈值。
  14. 根据权利要求12所述的装置,其特征在于,所述预设条件包括:所述第一测量值大于或者等于第二测量值,所述第二测量值为所述测量单元在所述第二测量周期之前的一个检测周期对所述第一SSB的测量值。
  15. 根据权利要求11所述的装置,其特征在于,在所述发送单元使用所述第一发送波束以第二发送功率向所述网络设备发送第二前导码之前,所述测量单元还用于:
    在第二测量周期对所述第一SSB进行测量;以及
    所述发送单元还用于:
    当未获得所述第一SSB的测量值时,使用所述第一发送波束以第二发送功率向所述网络设备发送第二前导码。
  16. 根据权利要求11所述的装置,其特征在于,在所述发送单元使用所述第一发送波束以第二发送功率向所述网络设备发送第二前导码之前,所述测量单元还用于:
    在第二测量周期对所述多个SSB进行测量,以获得多个测量值;以及
    所述发送单元还用于:
    在所述多个测量值满足预设条件时,使用所述第一发送波束以第二发送功率向所述网络设备发送第二前导码。
  17. 根据权利要求16所述的装置,其特征在于,所述预设条件包括:所述多个测量值中的最大值为所述第一SSB的测量值。
  18. 根据权利要求16所述的装置,其特征在于,所述预设条件包括:所述多个测量值中的最大值不是所述第一SSB的测量值,所述最大值与所述第一SSB的测量值的差值小于或等于第二阈值。
  19. 根据权利要求11所述的装置,其特征在于,在所述发送单元使用所述第一发送波束以第二发送功率向所述网络设备发送第二前导码之前,所述测量单元还用于:
    在第二测量周期对所述多个SSB进行测量;以及
    所述发送单元还用于:
    在未获得所述多个SSB的全部测量值时,使用所述第一发送波束以第二发送功率向所述网络设备发送第二前导码。
  20. 根据权利要求11-19中任一项所述的装置,其特征在于,所述测量单元还用于:
    在第一测量周期对所述多个SSB进行测量,以获得多个测量值,将所述多个测量值中的最大值所对应的SSB确定为所述第一SSB。
  21. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至10中任意一项所述的方法。
  22. 一种芯片系统,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片系统的通信设备执行如权利要求1至10中任意一项所述的方法。
  23. 一种通信装置,其特征在于,包括至少一个处理器,所述至少一个处理器用于与存储器耦合,读取并执行所述存储器中的指令,以实现如权利要求1至10中任一项所述的方法。
  24. 根据权利要求23所述的通信装置,其特征在于,还包括所述存储器。
PCT/CN2020/107252 2019-08-21 2020-08-06 一种随机接入的方法及通信装置 WO2021031858A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910773329.4A CN110461007B (zh) 2019-08-21 2019-08-21 一种随机接入的方法及通信装置
CN201910773329.4 2019-08-21

Publications (1)

Publication Number Publication Date
WO2021031858A1 true WO2021031858A1 (zh) 2021-02-25

Family

ID=68488165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/107252 WO2021031858A1 (zh) 2019-08-21 2020-08-06 一种随机接入的方法及通信装置

Country Status (2)

Country Link
CN (1) CN110461007B (zh)
WO (1) WO2021031858A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110461007B (zh) * 2019-08-21 2021-01-29 华为技术有限公司 一种随机接入的方法及通信装置
WO2021134626A1 (zh) * 2019-12-31 2021-07-08 华为技术有限公司 传输同步信号块的方法和装置
CN113518434A (zh) * 2020-04-09 2021-10-19 华为技术有限公司 一种通信方法及装置
CN114338314A (zh) * 2020-09-30 2022-04-12 中兴通讯股份有限公司 信号发送方法、频偏估计方法、通信网络系统、终端

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108289329A (zh) * 2017-01-09 2018-07-17 北京三星通信技术研究有限公司 随机接入的方法及基站设备、用户设备
CN108391319A (zh) * 2017-02-03 2018-08-10 华为技术有限公司 一种发送随机接入前导的方法及其装置
US20180332520A1 (en) * 2017-05-14 2018-11-15 Yu-Hsin Cheng Methods, devices, and systems for beam refinement during handover
US20190069322A1 (en) * 2017-10-27 2019-02-28 Alexei Davydov Control resource set information in physical broadcast channel
CN110312322A (zh) * 2019-05-31 2019-10-08 华为技术有限公司 随机接入的方法及执行随机接入的设备
CN110461007A (zh) * 2019-08-21 2019-11-15 华为技术有限公司 一种随机接入的方法及通信装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3487255B1 (en) * 2016-07-15 2021-12-22 NTT DoCoMo, Inc. Terminal, radio communication method, base station and system
CN110169119A (zh) * 2016-11-02 2019-08-23 株式会社Ntt都科摩 用户终端和无线通信方法
CN109151923B (zh) * 2017-06-16 2023-12-12 华为技术有限公司 通信方法和装置
CN109392066B (zh) * 2017-08-11 2021-05-04 华为技术有限公司 随机接入的方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108289329A (zh) * 2017-01-09 2018-07-17 北京三星通信技术研究有限公司 随机接入的方法及基站设备、用户设备
CN108391319A (zh) * 2017-02-03 2018-08-10 华为技术有限公司 一种发送随机接入前导的方法及其装置
US20180332520A1 (en) * 2017-05-14 2018-11-15 Yu-Hsin Cheng Methods, devices, and systems for beam refinement during handover
US20190069322A1 (en) * 2017-10-27 2019-02-28 Alexei Davydov Control resource set information in physical broadcast channel
CN110312322A (zh) * 2019-05-31 2019-10-08 华为技术有限公司 随机接入的方法及执行随机接入的设备
CN110461007A (zh) * 2019-08-21 2019-11-15 华为技术有限公司 一种随机接入的方法及通信装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ETRI: "Remaining details on RACH procedure", 3GPP DRAFT; R1-1718004 REMAINING DETAILS ON RACH PROCEDURE_FINAL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Prague, Czech; 20171009 - 20171013, 8 October 2017 (2017-10-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051341186 *

Also Published As

Publication number Publication date
CN110461007B (zh) 2021-01-29
CN110461007A (zh) 2019-11-15

Similar Documents

Publication Publication Date Title
WO2021031858A1 (zh) 一种随机接入的方法及通信装置
TWI705717B (zh) 預設上行鏈路波束確定方法及使用者設備
US11979914B2 (en) Random access method and apparatus
WO2019096150A1 (zh) 用于随机接入的方法、终端设备和网络设备
US20200187266A1 (en) Random access method, device, and system
WO2019214682A1 (zh) 通信方法及装置
WO2019154272A1 (zh) 波束失败恢复方法及用户终端
JP7423801B2 (ja) 通信方法および通信装置
CN105981446B (zh) 通过第二无线网络的网络接入
US11076422B2 (en) Random access responding method and device, and random access method and device
WO2020233701A1 (zh) 一种通信方法及通信装置
WO2023050472A1 (zh) 用于寻呼的方法和装置
EP4301023A1 (en) Beam failure recovery method and apparatus, and readable storage medium
WO2019128760A1 (zh) 消息接收方法及终端
US20230164746A1 (en) Random access resource selection method and related apparatus
US20220279395A1 (en) Early data transmission for dual connectivity or carrier aggregation
WO2023016332A1 (zh) 一种通信方法以及装置
WO2022028555A1 (zh) 波束测量的方法和装置
WO2022067614A1 (zh) 无线通信方法、终端设备和网络设备
WO2023198059A1 (zh) 一种通信方法、装置、系统及存储介质
US20240196442A1 (en) Random access method and apparatus
WO2024022511A1 (zh) 定时提前命令确定方法与装置、终端设备和网络设备
WO2022237439A1 (zh) 一种通信方法及装置
WO2023004545A1 (zh) 通信方法及通信装置
WO2023133839A1 (zh) 通信方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20854406

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20854406

Country of ref document: EP

Kind code of ref document: A1