WO2020233701A1 - 一种通信方法及通信装置 - Google Patents

一种通信方法及通信装置 Download PDF

Info

Publication number
WO2020233701A1
WO2020233701A1 PCT/CN2020/091785 CN2020091785W WO2020233701A1 WO 2020233701 A1 WO2020233701 A1 WO 2020233701A1 CN 2020091785 W CN2020091785 W CN 2020091785W WO 2020233701 A1 WO2020233701 A1 WO 2020233701A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
terminal
time
frequency resource
downlink
Prior art date
Application number
PCT/CN2020/091785
Other languages
English (en)
French (fr)
Inventor
葛泉
张立文
徐舟
高全中
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20809515.8A priority Critical patent/EP3965457A4/en
Publication of WO2020233701A1 publication Critical patent/WO2020233701A1/zh
Priority to US17/532,541 priority patent/US20220086666A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/06Testing, supervising or monitoring using simulated traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0802Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection
    • H04B7/0817Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection with multiple receivers and antenna path selection
    • H04B7/082Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection with multiple receivers and antenna path selection selecting best antenna path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup

Definitions

  • the embodiments of the present application relate to the communication field, and in particular, to a communication method and communication device.
  • the path loss of the uplink and the downlink are basically the same.
  • the channel quality of the uplink corresponding to the downlink with the best channel quality is also the best.
  • user equipment measures the channel quality of the downlink, and determines the optimal downlink according to the measurement result.
  • the uplink corresponding to the optimal downlink is the optimal uplink.
  • the UE communicates with the network side through the optimal uplink and the optimal downlink.
  • the uplink corresponding to the optimal downlink is not the uplink with the optimal channel quality.
  • the uplink and downlink are decoupled, the spectrum and antenna of the uplink and downlink are inconsistent, and the uplink and downlink path loss Inconsistencies are more common, and the uplink corresponding to the optimal downlink is most likely not the uplink with the best channel quality. If the UE always defaults that the uplink corresponding to the optimal downlink is the optimal uplink, and communicates with the network side through the uplink, the uplink communication performance will be affected.
  • the embodiments of the present application provide a communication method and a communication device, which can select an uplink with an actual optimal channel quality for a UE, and improve the transmission performance of uplink communication.
  • a communication method including: an access network device receives a first message from a terminal through at least two transceiver points.
  • the access network device may measure at least two uplinks according to the first message received by at least two transceiver points, and determine the first uplink according to the obtained measurement result; the first uplink is at least Among the two uplinks with the best measurement results, the at least two uplinks are the communication links between the at least two receiving and sending points and the terminal; the second message is sent to the terminal through the first downlink, The second message is used for the terminal to perform uplink communication through the first uplink.
  • the at least two transceiver points include a first transceiver point and a second transceiver point, the first uplink is established at the first transceiver point, and the first downlink is established at the second transceiver point; or,
  • At least two transceiver points include a first transceiver point and a third transceiver point.
  • the first uplink is established at the first transceiver point
  • the first downlink is established at the second transceiver point
  • the third transceiver point is the second transceiver point. Corresponding sending and receiving points.
  • the optimal uplink no longer depends on the UE's downlink measurement results.
  • the base station determines the optimal uplink through uplink measurement, which may not be the optimal downlink.
  • the uplink corresponding to the channel, that is, the optimal uplink and the optimal downlink can be established at different receiving and sending points.
  • the UE can perform uplink communication on the uplink with the actual optimal channel quality, and perform downlink communication on the downlink with the actual optimal channel quality to ensure the performance of the communication system.
  • the base station also does not need to maintain multiple uplinks, which saves resource overhead on the network side.
  • the first message includes a random access preamble for the terminal to perform random access;
  • the second message includes a request for establishing a radio resource control RRC connection
  • the time-frequency resource information for the RRC connection establishment request belongs to the first time-frequency resource, and the first time-frequency resource is the time-frequency resource configured for the first transceiver point.
  • the uplink with the best actual channel quality can be selected for the terminal performing competitive random access, Msg1 (first message) is received from the terminal through multiple transceiver points, and the received Msg1 is measured. Determine the uplink with the best actual channel quality.
  • the terminal allocates time-frequency resources for subsequent uplink messages (for example, RRC connection establishment request) sent by the terminal, and the terminal can perform uplink communication with the access network device through the uplink with the best actual channel quality. To improve network performance.
  • the method further includes: through the first uplink, the receiving terminal uses the time-frequency for the RRC connection establishment request The RRC connection establishment request sent by the resource.
  • the base station after determining the uplink with the best actual channel quality for the terminal, the base station no longer receives uplink messages through the uplink corresponding to the best downlink, and can use the uplink with the best actual channel quality.
  • Receive uplink messages sent by the terminal for example, RRC connection establishment request, to improve network performance.
  • the first message includes a channel sounding reference signal SRS.
  • the second message includes information about the time-frequency resource used for the physical uplink shared channel, the time-frequency resource used for the physical uplink shared channel belongs to the first time-frequency resource, and the first time-frequency resource is the time-frequency resource configured for the first transceiver point .
  • the uplink with the best actual channel quality can be selected for the terminal in the connected state, SRS (first message) is received from the terminal through multiple transmission and reception points, and the received SRS is measured to determine the actual channel. The highest quality uplink. And according to the time-frequency resource of the first transceiver point to allocate time-frequency resources for the subsequent uplink message (for example, physical uplink shared channel) sent by the terminal, the terminal can perform uplink communication with the access network device through the uplink with the best actual channel quality To improve network performance.
  • SRS first message
  • the method further includes: through the first uplink, the receiving terminal uses the time-frequency for the physical uplink shared channel The physical uplink shared channel for resource transmission.
  • the base station after determining the uplink with the best actual channel quality for the terminal, the base station no longer receives uplink messages through the uplink corresponding to the best downlink, and can use the uplink with the best actual channel quality. Receive the uplink message sent by the terminal, for example, the physical uplink shared channel, to improve network performance.
  • the first message includes SRS; the second message includes random access preamble, information about time-frequency resources used for random access preamble, and random Access response beam information; the time-frequency resource used for the random access preamble belongs to the first time-frequency resource, the first time-frequency resource is the time-frequency resource configured for the first transceiver point, and the random access response beam information is used to indicate Send the random access response beam.
  • the uplink with the best actual channel quality can be selected for the terminal in the connected state, SRS (first message) is received from the terminal through multiple transmission and reception points, and the received SRS is measured to determine the actual channel. The highest quality uplink. And instruct the terminal to access the new uplink by means of non-competitive random access.
  • the time-frequency resource of the first transceiver point the time-frequency resource is allocated for the subsequent uplink message sent by the terminal (for example, the random access preamble for non-competitive random access), and the terminal can use the uplink with the best actual channel quality Uplink communication with access network equipment to improve network performance.
  • the method further includes: through the first uplink, the receiving terminal uses the time-frequency resource for the random access preamble to send the random access Enter the preamble.
  • the base station after determining the uplink with the best actual channel quality for the terminal, the base station no longer receives uplink messages through the uplink corresponding to the best downlink, and can use the uplink with the best actual channel quality.
  • Receive the uplink message sent by the terminal for example, the random access preamble used for non-competitive random access to improve network performance.
  • the time-frequency resource used for the random access preamble is used to indicate communication with the terminal through the first downlink Perform downlink communication.
  • the base station may be random in the first time-frequency resource (that is, the time-frequency resource configured for the first transceiver point)
  • the access preamble allocates designated time-frequency resources.
  • the base station can identify these resources and can determine that the uplink of the terminal may be reselected by the base station based on the uplink measurement results, that is, the optimal uplink of the terminal has occurred
  • the optimal downlink of the terminal does not switch, and it is still necessary to send a downlink message to the terminal through the optimal downlink currently configured for the terminal (that is, the first downlink).
  • the method further includes: receiving random access response beam information sent by the terminal; or, according to The downlink service beam of the terminal determines the random access response beam information.
  • a communication device including: a communication unit, configured to receive a first message from a terminal through at least two transceiving points; a processing unit, configured to receive a pair of first messages according to at least two transceiving points Perform measurements on at least two uplinks, and determine the first uplink based on the obtained measurement results; the first uplink is the uplink with the best measurement result among the at least two uplinks, and the at least two uplinks are Communication links between at least two transceiver points and the terminal; the communication unit is further configured to send a second message to the terminal through the first downlink, and the second message is used for the terminal to perform uplink communication through the first uplink;
  • the first uplink is established at the first transceiver point, and the first downlink is established at the second transceiver point; at least two transceiver points include the first transceiver point and the second transceiver point, or at least two transceiver points include the first transceiver point.
  • the first message includes a random access preamble for the terminal to perform random access;
  • the second message includes a request for establishing a radio resource control RRC connection
  • the time-frequency resource information for the RRC connection establishment request belongs to the first time-frequency resource, and the first time-frequency resource is the time-frequency resource configured for the first transceiver point.
  • the communication unit is specifically configured to, through the first uplink, receive the terminal using the RRC connection establishment request The RRC connection establishment request sent by the time-frequency resource.
  • the first message includes the channel sounding reference signal SRS; the second message includes time-frequency resource information for the physical uplink shared channel, which is used for the physical uplink
  • the time-frequency resource of the shared channel belongs to the first time-frequency resource, and the first time-frequency resource is the time-frequency resource configured for the first transceiver point.
  • the communication unit is specifically configured to, through the first uplink, the receiving terminal uses the physical uplink shared channel The physical uplink shared channel sent by time-frequency resources.
  • the first message includes SRS; the second message includes random access preamble, information about time-frequency resources used for random access preamble, and random Access response beam information; the time-frequency resource used for the random access preamble belongs to the first time-frequency resource, the first time-frequency resource is the time-frequency resource configured for the first transceiver point, and the random access response beam information is used to indicate Send the random access response beam.
  • the communication unit is specifically configured to: through the first uplink, the receiving terminal uses the preamble for random access The random access preamble sent by the time-frequency resource.
  • the time-frequency resource used for the random access preamble is used to indicate communication with the terminal through the first downlink Perform downlink communication.
  • the communication unit is further configured to receive the random access response beam sent by the terminal Information; or, the processing unit is further configured to determine random access response beam information according to the downlink service beam of the terminal.
  • a communication device including: a communication interface, configured to receive a first message from a terminal through at least two transceiving points; a processor, configured to receive a pair of first messages according to at least two transceiving points Perform measurements on at least two uplinks, and determine the first uplink based on the obtained measurement results; the first uplink is the uplink with the best measurement result among the at least two uplinks, and the at least two uplinks are Communication links between at least two transceiver points and the terminal; the communication interface is also used to send a second message to the terminal through the first downlink, and the second message is used for the terminal to perform uplink communication through the first uplink; The first uplink is established at the first transceiver point, and the first downlink is established at the second transceiver point; at least two transceiver points include the first transceiver point and the second transceiver point, or at least two transceiver points include the first transceiver point.
  • the transceiver point configured to receive a first
  • the communication device may be the access network device described in the embodiment of the present application, it may also be a component in the access network device that implements the foregoing method, or it may also be a chip applied to the access network device.
  • the chip may be a System-On-a-Chip (SOC), or a baseband chip with communication function.
  • the first message includes a random access preamble for the terminal to perform random access;
  • the second message includes a request for establishing a radio resource control RRC connection
  • the time-frequency resource information for the RRC connection establishment request belongs to the first time-frequency resource, and the first time-frequency resource is the time-frequency resource configured for the first transceiver point.
  • the communication interface is specifically used to, through the first uplink, the receiving terminal uses the RRC connection establishment request The RRC connection establishment request sent by the time-frequency resource.
  • the first message includes the channel sounding reference signal SRS;
  • the second message includes time-frequency resource information for the physical uplink shared channel, which is used for the physical uplink
  • the time-frequency resource of the shared channel belongs to the first time-frequency resource, and the first time-frequency resource is the time-frequency resource configured for the first transceiver point.
  • the communication interface is specifically used for, through the first uplink, the receiving terminal uses the physical uplink shared channel The physical uplink shared channel sent by time-frequency resources.
  • the first message includes SRS; the second message includes random access preamble, time-frequency resource information for random access preamble, and random Access response beam information; the time-frequency resource used for the random access preamble belongs to the first time-frequency resource, the first time-frequency resource is the time-frequency resource configured for the first transceiver point, and the random access response beam information is used to indicate Send the random access response beam.
  • the communication interface is specifically used for, through the first uplink, the receiving terminal uses the preamble for random access The random access preamble sent by the time-frequency resource.
  • the time-frequency resource used for the random access preamble is used to indicate communication with the terminal through the first downlink Perform downlink communication.
  • the communication interface is also used to receive the random access response beam sent by the terminal Information; or, the processor is further configured to determine random access response beam information according to the downlink service beam of the terminal.
  • a computer-readable storage medium including instructions, which when run on a computer, cause the computer to execute the communication method described in the foregoing first aspect and any one of the possible implementation manners of the first aspect .
  • a computer program product including instructions, which when run on a computer, cause the computer to execute the communication method described in the first aspect and any one of the possible implementations of the first aspect.
  • a wireless communication device including: instructions stored in the wireless communication device; when the wireless communication device runs on the device described in the second or third aspect, the device is caused to execute In the first aspect and the communication method described in any one of the possible implementation manners of the first aspect, the wireless communication device is a chip.
  • a communication system in a seventh aspect, includes an access network device and a terminal, and the terminal is configured to send a first message to the access network device.
  • the access network device may receive the first message through at least two transceiving points, measure at least two uplinks according to the first message received by the at least two transceiving points, and determine the first uplink according to the obtained measurement results Route; send a second message to the terminal through the first downlink, the second message is used for the terminal to perform uplink communication through the first uplink; the first uplink is the best measurement result of the at least two uplinks In the uplink, the at least two uplinks are communication links between the at least two transceiver points and the terminal.
  • the at least two transceiver points include a first transceiver point and a second transceiver point, the first uplink is established at the first transceiver point, and the first downlink is established at the second transceiver point; or,
  • the at least two transceiver points include a first transceiver point and a third transceiver point.
  • the first uplink is established at the first transceiver point
  • the first downlink is established at the second transceiver point
  • the third transceiver point is the second transceiver point. The corresponding sending and receiving point.
  • FIG. 1 is an architecture diagram of a communication system provided by an embodiment of this application.
  • Figure 2 is a schematic diagram of a cell provided by an embodiment of the application.
  • FIG. 3 is a framework diagram of a communication device provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of another flow of a communication method provided by an embodiment of this application.
  • FIG. 6 is a schematic diagram of another flow of a communication method provided by an embodiment of this application.
  • FIG. 7 is a schematic flowchart of another communication method provided by an embodiment of the application.
  • FIG. 8 is another framework diagram of a communication device provided by an embodiment of this application.
  • FIG. 9 is another framework diagram of a communication device provided by an embodiment of the application.
  • the embodiment of the present application provides a communication system, which includes an access network device and at least one terminal, and the at least one terminal can perform wireless communication with the access network device.
  • Fig. 1 is a schematic diagram of a communication system provided by an embodiment of the application. As shown in FIG. 1, the access network device includes an access network device 11, the at least one terminal includes a terminal 12, and the access network device 11 and the terminal 12 can perform wireless communication. It should be noted that the access network equipment and terminals included in the communication system as shown in FIG. 1 are only an example. In the embodiment of the present application, the type, number, and network elements of the communication system include The connection relationship between elements is not limited to this.
  • the communication system in the embodiment of the present application may be a communication system supporting fourth generation (4G) access technology, such as long term evolution (LTE) access technology; or, the communication system may also support Fifth generation (5G) access technology communication system, such as new radio (NR) access technology; or, the communication system can also support third generation (3G) access technology
  • 4G fourth generation
  • 5G Fifth generation
  • NR new radio
  • a communication system such as a (universal mobile telecommunications system, UMTS) access technology
  • the communication system may also be a communication system supporting multiple wireless technologies, such as a communication system supporting LTE technology and NR technology.
  • the communication system can also be applied to future-oriented communication technologies.
  • the access network equipment in the embodiments of the present application may be equipment used on the access network side to support terminal access to the communication system.
  • BTS base transceiver station
  • BSC base station controller
  • node B node B
  • RNC radio network controller
  • 3G access technology communication system 3G access technology communication system
  • eNB evolved base station in 4G access technology communication system
  • gNB next generation nodeB
  • TRP transmission reception point
  • relay node relay node
  • access point access point
  • 5G access technology communication system point AP
  • the terminal in the embodiments of the present application may be a device that provides voice or data connectivity to users, for example, it may also be called user equipment (UE), mobile station (mobile station), subscriber unit (subscriber unit), Station (station), terminal equipment (terminal equipment, TE), etc.
  • the terminal can be a cellular phone (cellular phone), personal digital assistant (personal digital assistant, PDA), wireless modem (modem), handheld device (handheld), laptop computer (laptop computer), cordless phone (cordless phone), wireless Local loop (wireless local loop, WLL) station, tablet computer (pad), etc.
  • devices that can access the communication system, communicate with the network side of the communication system, or communicate with other objects through the communication system can all be the terminals in the embodiments of the present application, such as intelligent transportation Terminals and cars in smart homes, household equipment in smart homes, power meter reading equipment in smart grids, voltage monitoring equipment, environmental monitoring equipment, video monitoring equipment in smart security networks, cash registers, etc.
  • the terminal may communicate with an access network device, for example, the access network device 11.
  • the transceiver point described in the embodiment of the present application may be considered as a TRP (transmission reception point), and the TRP may also be referred to as TRxP.
  • TRP transmission reception point
  • TRxP transmission reception point
  • the coverage of different receiving and sending points is different.
  • the transmitting and receiving point may be the antenna of the base station.
  • the coverage of different antennas is different, and different antennas can be considered as different receiving and sending points.
  • the transmitting and receiving point may also be an antenna element split by the base station antenna. Different antenna elements have different coverage areas, and different antenna elements may be considered as different transmitting and receiving points.
  • time-frequency resources for different transceiver points may be different, or the same time-frequency resources are allocated to different transceiver points, and different transceiver points use time-frequency resources in a multiplexed manner.
  • the cell may also be referred to as the serving cell of the base station.
  • the coverage area of a transceiver point of a base station can be considered as a cell of the base station.
  • the coverage area of the antenna A of the base station is cell A
  • the coverage area of the antenna B of the base station is cell B
  • the coverage area of the antenna C of the base station is cell C.
  • the uplink (uplink, UL) is a link through which the terminal performs uplink communication with the access network device, that is, the terminal can send information to the access network device through the uplink.
  • the uplink is determined by the terminal’s antenna and a transceiver point of the access network equipment.
  • the base station receives the uplink information sent by the terminal through the transceiver point A, that is, the terminal’s uplink is the wireless connection between the transceiver point A and the terminal’s antenna. channel.
  • the optimal uplink is the uplink with the best channel quality among all the uplinks.
  • the terminal usually performs uplink communication with the access network device through the optimal uplink.
  • the terminal device has only one antenna, which can be used to send and receive information.
  • the base station has three antennas, A, B, and C, all of which can be used to send and receive information.
  • A, B, and C the wireless channel between the terminal's antenna and the antenna A is an uplink, which is recorded as uplink 1.
  • the base station receives the information sent by the terminal through the antenna B, the wireless channel between the antenna of the terminal and the antenna B is an uplink, denoted as uplink 2.
  • the wireless channel between the antenna of the terminal and the antenna C is an uplink, denoted as uplink 3.
  • uplink 3 the uplink with the best channel quality is the best uplink.
  • the downlink (downlink, DL) is a link for downlink communication between an access network device and a terminal, that is, the access network device can send information to the terminal through the downlink.
  • the downlink is determined by a transceiver point of the access network equipment and the terminal’s antenna.
  • the base station sends downlink information to the terminal through the transceiver point B, that is, the terminal’s downlink is the wireless connection between the transceiver point B and the terminal’s antenna. channel.
  • the optimal downlink is the downlink with the best channel quality among all the uplinks.
  • the terminal usually performs downlink communication with the access network device through the optimal downlink.
  • the terminal device has only one antenna, which can be used to send and receive information.
  • the base station has three antennas A, B, and C, all of which can be used to send and receive information. If the base station sends information to the terminal through antenna A, the wireless channel between the terminal's antenna and antenna A is a downlink, denoted as downlink 1. If the base station sends information to the terminal through antenna B, the wireless channel between the terminal's antenna and antenna B is a downlink, denoted as downlink 2. If the base station sends information to the terminal through antenna C, the wireless channel between the antenna of the terminal and antenna C is a downlink, denoted as downlink 3. Among downlink 1, downlink 2, and downlink 3, the downlink with the best channel quality is the best downlink for the terminal.
  • the downlink and the uplink corresponding to the downlink are established on the same transceiver point (for example, the antenna of the base station). It can be understood that the uplink and downlink established at the same transceiver point correspond to the same cell.
  • uplink 1 is the terminal's uplink
  • the downlink corresponding to uplink 1 is also established on antenna A, that is, the downlink corresponding to uplink 1.
  • the path is downlink 1, and the cells corresponding to uplink 1 and downlink 1 are both cell A.
  • the base station sends downlink information through antenna A
  • downlink 1 is the terminal's downlink
  • the uplink corresponding to downlink 1 is also established on antenna A, that is, the uplink corresponding to downlink 1 is the uplink Link 1.
  • the communication system supports uplink and downlink decoupling, and the uplink corresponding to the downlink and downlink is established on two different receiving and sending points.
  • the two different receiving and sending points can be called It is the corresponding sending and receiving point.
  • the 3.5GHz downlink and 1.8GHz uplink (SUL) are established at different transmission and reception points, and the uplink corresponding to the 3.5GHz downlink can be considered It is a 1.8GHz uplink.
  • the transceiver point corresponding to the 3.5GHz transceiver point is the 1.8GHz transceiver point
  • the transceiver point corresponding to the 1.8GHz transceiver point is the 3.5GHz transceiver point.
  • the base station can be based on the terminal Determine the optimal downlink from the downlink measurement results, and configure the uplink corresponding to the optimal downlink as the optimal uplink.
  • the base station and the terminal communicate through the optimal downlink and optimal uplink.
  • the path loss, interference, load, etc. of the uplink and the downlink are inconsistent, and the channel quality of the uplink corresponding to the optimal downlink may not be optimal.
  • the uplink and downlink are decoupled, and the spectrum and antennas of the uplink and downlink are inconsistent. If the uplink corresponding to the optimal downlink is simply used as the optimal uplink of the terminal, it cannot be guaranteed that the terminal will always work on the uplink with the best channel quality, which will affect the uplink communication performance.
  • An embodiment of the present application provides a communication method.
  • a base station can receive a first message from a terminal through at least two transceiving points, and can also perform a communication method on at least two uplinks based on the first message received by the at least two transceiving points. Perform measurement, reselect the optimal uplink for the terminal according to the obtained measurement result, and subsequently perform uplink communication with the terminal through the reselected optimal uplink, and receive uplink information sent by the terminal. It can be seen that in the embodiment of this application, the optimal uplink no longer depends on the UE's downlink measurement results. In the scenario of uplink and downlink decoupling, the base station uses uplink measurement to determine the uplink with the actual best channel quality as the terminal's best uplink.
  • the uplink may not be the uplink corresponding to the optimal downlink.
  • the UE can perform uplink communication on the uplink with the actual optimal channel quality, and perform downlink communication on the downlink with the actual optimal channel quality to ensure the performance of the communication system.
  • the base station also does not need to maintain multiple uplinks, which saves resource overhead on the network side.
  • FIG. 3 is a schematic diagram of the hardware structure of the communication device 30 provided by an embodiment of the application.
  • the communication device 30 includes a processor 301, a communication line 302, a memory 303, and at least one communication interface (in FIG. 3, it is only exemplary and the communication interface 304 is included as an example for illustration).
  • the processor 301 may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more programs for controlling the execution of the program of this application. integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the communication line 302 may include a path to transmit information between the aforementioned components.
  • Communication interface 304 using any device such as a transceiver to communicate with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), etc. .
  • RAN radio access network
  • WLAN wireless local area networks
  • the memory 303 can be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions
  • the dynamic storage device can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM) or other optical disk storage, optical disc storage (Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can be used by a computer Any other media accessed, but not limited to this.
  • the memory can exist independently and is connected to the processor through the communication line 302. The memory can also be integrated with the processor.
  • the memory 303 is used to store computer execution instructions for executing the solution of the present application, and the processor 301 controls the execution.
  • the processor 301 is configured to execute computer-executable instructions stored in the memory 303, so as to implement the intention processing method provided in the following embodiments of the present application.
  • the computer-executable instructions in the embodiments of the present application may also be referred to as application program code, which is not specifically limited in the embodiments of the present application.
  • the processor 301 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 3.
  • the communication device 30 may include multiple processors, such as the processor 301 and the processor 308 in FIG. 3. Each of these processors can be a single-CPU (single-CPU) processor or a multi-core (multi-CPU) processor.
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • the communication apparatus 30 may further include an output device 305 and an input device 306.
  • the output device 305 communicates with the processor 301 and can display information in a variety of ways.
  • the output device 305 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector (projector) Wait.
  • the input device 306 communicates with the processor 301 and can receive user input in a variety of ways.
  • the input device 306 may be a mouse, a keyboard, a touch screen device, or a sensor device.
  • the aforementioned communication device 30 may be a general-purpose device or a dedicated device.
  • the communication device 30 can be a desktop computer, a portable computer, a network server, a personal digital assistant (PDA), a mobile phone, a tablet computer, a wireless terminal device, an embedded device, or a device with a similar structure in FIG. 3 equipment.
  • PDA personal digital assistant
  • the embodiment of the present application does not limit the type of the communication device 30.
  • the embodiment of the application provides a communication method, which is applied to the communication system shown in FIG. 1. As shown in FIG. 4, the method includes the following steps:
  • the executor of the embodiments of the present application may be a device that can access the network, for example, a base station; it may also be a component of the access network device that implements the above method, or it may be applied to the access network device.
  • Chip The chip can be a System-On-a-Chip (SOC) or a baseband chip with communication functions.
  • the terminal sends the first message
  • the base station can receive the first message through different receiving and sending points.
  • the channel quality between different sending and receiving points and terminals may be different, that is, the channel quality of the uplink established at different sending and receiving points may also be different.
  • the base station can receive the first message through multiple sending and receiving points so that it can be based on The first message received by different receiving points determines the channel quality of the uplink established by different receiving points.
  • the at least two sending and receiving points include the sending and receiving points corresponding to the current optimal uplink. In this way, the base station can compare the signal strength of the first message received by multiple different sending and receiving points, and select the one that is the most current An uplink with better uplink channel quality.
  • the base station determines that the optimal uplink is downlink 1 (that is, the first downlink described in the embodiment of the present application) according to the downlink measurement results of the terminal, and the downlink 1 is established on the base station's transceiver point A.
  • the current optimal uplink is uplink 1 corresponding to downlink 1, and uplink 1 can be established at the transceiver point A of the base station.
  • the transceiver point A also needs to receive the first message of the terminal, so that the base station selects the uplink with channel quality better than uplink 1 as the optimal uplink for the UE according to the measurement results of multiple transceiver points.
  • the base station determines that the optimal uplink is downlink 1 according to the downlink measurement results of the terminal, and downlink 1 is established at the base station's transceiver point A1, and the current optimal uplink is downlink 1.
  • the corresponding uplink is the SUL established on the transceiver point A2.
  • the transmitting and receiving point A2 needs to receive the first message of the terminal, so that the base station selects an uplink with a channel quality better than the above-mentioned SUL as the optimal uplink for the UE according to the measurement results of multiple transmitting and receiving points.
  • the first message sent by the terminal may have the following three possibilities:
  • the base station when the terminal is in the random access process, the base station can measure the uplink message sent by the terminal and reselect the optimal uplink for the terminal.
  • the first message may be Msg1.
  • the first message includes a random access preamble, and the first message is used for the terminal to perform random access.
  • the base station can measure the uplink message sent by the terminal, reselect the optimal uplink for the terminal, and perform uplink scheduling through the new optimal uplink resources.
  • the terminal does not Perceive the handover of the optimal uplink.
  • the first message may be a channel sounding reference signal (sounding reference signal, SRS).
  • the base station can measure the uplink message sent by the terminal, reselect the optimal uplink for the terminal, and send a non-competitive random access indication to the terminal to instruct the terminal to perform the optimal uplink
  • the terminal can perceive the optimal uplink switching.
  • the first message may be a channel sounding reference signal (sounding reference signal, SRS).
  • the 402. Perform measurement on at least two uplinks according to the first messages received by the at least two transceiver points, and determine the first uplink according to the obtained measurement results; the first uplink is the at least two uplinks. The uplink with the best measurement result among the two uplinks.
  • the at least two uplinks are communication links between the at least two transceiver points and the terminal.
  • one uplink is established between a transceiver point of the base station and the terminal, and at least two different uplinks can be established on the at least two transceiver points.
  • the measurement of the first message received by the receiving and sending point may be to measure the uplink signal to interference plus noise ratio (SINR), and determine the uplink with the best channel quality according to the obtained SINR. road. For example, among all the sending and receiving points that receive the first message, the SINR obtained by measuring the first message received by the sending and receiving point A is the largest. It can be considered that the uplink channel quality established on the sending and receiving point A is the best, and then it can be determined The uplink established on the transceiver point A is the new optimal uplink.
  • SINR signal to interference plus noise ratio
  • the at least two transceiver points described in this embodiment of the application include a first transceiver point and a second transceiver point.
  • the first uplink is established at the first transceiver point
  • the first downlink is established at the second transceiver point.
  • the at least two transceiver points described in the embodiment of the application include a first transceiver point and a third transceiver point.
  • the first uplink is established at the first transceiver point
  • the first downlink is established at the second transceiver point
  • the third The transceiver point is the transceiver point corresponding to the second transceiver point.
  • the uplink corresponding to the downlink and the downlink may be established at the same transceiver point.
  • the current optimal downlink (first downlink) is established at the second transceiver point, and the current optimal uplink is also established at the second transceiver point.
  • an uplink with better channel quality than the current best uplink is selected.
  • the second transceiving point may receive the first message sent by the terminal device, that is, the at least two transceiving points include the first transceiving point and the first transceiving point.
  • the base station has two transmitting and receiving points A and B.
  • the base station determines that the downlink 1 established on the transmitting and receiving point A (the second transmitting and receiving point) is the optimal downlink according to the downlink measurement results of the terminal. Road), the uplink 1 established on the transceiver point A is the current optimal uplink.
  • both receiving and sending points A and B receive the first message sent by the terminal.
  • the base station determines that the new optimal uplink is the uplink 2 established on the receiving and sending point B (the first sending and receiving point). (First uplink), the base station receives the uplink message sent by the terminal through uplink 2 in the subsequent process.
  • the uplinks corresponding to the downlink and the downlink are established at different transceiver points.
  • the current optimal downlink (first downlink) is established at the second transceiver point, and the current optimal uplink is established at a different transceiver point, such as the third transceiver point, in order to compare the measurement results of different transceiver points , Select an uplink with better channel quality than the current best uplink.
  • the third transceiving point receives the first message sent by the terminal device, that is, the at least two transceiving points include the first transceiving point and the third transceiving point.
  • the base station has four transceiver points A1, A2, B1, and B2.
  • the base station determines the downlink 1 (first transceiver point) established on the transceiver point A1 (second transceiver point) according to the downlink measurement results of the terminal.
  • the downlink) is the optimal downlink
  • the current optimal uplink is SUL1 established at the transceiver point A2 (the third transceiver point).
  • the sending and receiving points A2, B1, and B2 all receive the first message sent by the terminal.
  • the base station determines that the new optimal uplink is the SUL2 established on the sending and receiving point B2 (the first sending and receiving point).
  • the first uplink the base station receives the uplink message sent by the terminal through SUL2 in the subsequent process.
  • the base station can determine the optimal downlink in the following manner: the base station sends downlink reference messages to the terminal through multiple different transceiver points, and the terminal measures the downlink reference messages from different transceiver points to obtain different downlink corresponding Measurement results.
  • the terminal may also report the obtained measurement result to the base station, and the base station determines the downlink with the best measurement result as the optimal downlink.
  • the first downlink in the embodiment of the present application may be the above-mentioned optimal downlink. In other words, the base station and the terminal still perform downlink communication through the previously determined optimal downlink, and perform uplink communication through the newly determined optimal uplink.
  • the base station can measure the uplink message sent by the terminal and reselect the optimal uplink for the terminal.
  • the first message may be Msg1, including a random access preamble.
  • the second message may be Msg2, which is a random access response.
  • Msg2 includes information about the time-frequency resources allocated for Msg3.
  • the time-frequency resource allocated for Msg3 may be a time-frequency resource used for a radio resource control (radio resource control, RRC) connection establishment request.
  • RRC radio resource control
  • the second message includes the information of the time-frequency resource used for the RRC connection establishment request.
  • the time-frequency resource used for the RRC connection establishment request belongs to the first time-frequency resource, and the first time-frequency resource is the time-frequency resource configured for the first transceiver point.
  • the optimal uplink is not necessarily the uplink corresponding to the optimal downlink, which realizes uplink and downlink decoupling, so that the terminal can communicate with the base station on the uplink and downlink with the actual optimal channel quality.
  • the base station may also receive the RRC connection establishment request sent by the terminal using the time-frequency resource used for the RRC connection establishment request through the first uplink.
  • the base station can measure the uplink message (for example, SRS) sent by the terminal, reselect the optimal uplink for the terminal, and perform uplink based on the new optimal uplink resource Scheduling.
  • the second message may be a physical downlink control channel (physical downlink control Chanel, PDCCH), which is used to schedule a physical uplink shared channel (physical uplink shared channel, PUSCH).
  • the second message may include information about the time-frequency resource used for the physical uplink shared channel, the time-frequency resource used for the physical uplink shared channel belongs to the first time-frequency resource, and the first time-frequency resource is for the first transceiver. Click the configured time-frequency resource.
  • the method provided in the embodiment of the present application can reselect the optimal uplink for the terminal, and the terminal can send the physical uplink shared channel to the base station on the reselected optimal uplink, which is beneficial to improving communication performance.
  • the optimal uplink is not necessarily the uplink corresponding to the optimal downlink, which realizes uplink and downlink decoupling, so that the terminal can communicate with the base station on the uplink and downlink with the actual optimal channel quality.
  • the base station may also receive the physical uplink shared channel sent by the terminal by using the time-frequency resource used for the physical uplink shared channel through the first uplink.
  • the base station can measure the SRS sent by the terminal, re-select the optimal uplink for the terminal, and send a non-competitive random access indication to the terminal to instruct the terminal to perform the optimal uplink Switch.
  • the non-contention random access indication includes random access preamble, information of time-frequency resources used for the random access preamble, and random access response beam information.
  • the random access response beam information is used to indicate the beam that sends the random access response.
  • the second message described in the embodiment of the present application may be a non-contention random access indication.
  • the time-frequency resource used for the random access preamble belongs to the first time-frequency resource, and the first time-frequency resource is the time-frequency resource configured for the first transceiver point. It can be seen that the method provided in the embodiments of the present application can reselect the optimal uplink for the terminal, and the terminal can send the random access preamble to the base station on the reselected optimal uplink to access the new optimal uplink , The subsequent communication with the access network equipment through the new optimal uplink will help improve the communication performance.
  • the optimal uplink is not necessarily the uplink corresponding to the optimal downlink, which realizes uplink and downlink decoupling, so that the terminal can communicate with the base station on the uplink and downlink with the actual optimal channel quality.
  • the base station may also receive the random access preamble sent by the terminal using the time-frequency resource used for the random access preamble through the first uplink.
  • the time-frequency resource used for the random access preamble is used to indicate downlink communication with the terminal through the first downlink.
  • the base station can allocate designated time-frequency resources for the random access preamble in the first time-frequency resource (that is, the time-frequency resource configured for the first transceiver point), and once the base station recognizes that the terminal sends the random access preamble, If the time-frequency resource is the designated time-frequency resource, it is determined that the optimal uplink of the terminal may have been handed over. Due to the difference in uplink and downlink channel quality, the downlink corresponding to the current optimal uplink of the terminal is not necessarily It is the downlink with the best channel quality, and the base station still performs downlink communication with the terminal based on the first downlink.
  • the base station can obtain random access response beam information in the following two ways:
  • the base station may instruct the terminal to determine the random access response beam information, and the terminal may report the random access response beam information to the base station after determining the random access response beam information.
  • the base station receives the random access response beam information sent by the terminal, and obtains the random access response beam information.
  • the base station may determine the random access response beam information according to the downlink service beam of the terminal. Specifically, the base station simulates the radiation position of the downlink service beam according to the weighted value of the downlink service beam at each antenna port, and then determines the SSB beam with the highest degree of matching with the downlink service beam among the static shared beam (SSB) beams as Random access response beam.
  • SSB static shared beam
  • the optimal uplink determined by the base station according to the measurement result of the first message may also be the uplink corresponding to the first downlink.
  • the base station determines the optimal downlink according to the downlink measurement results reported by the terminal to be the downlink 2 established on the transceiver point B, and measures the first messages received by the transceiver points A, B, and C respectively.
  • the first message received by B has the highest intensity, that is, the channel quality of the uplink 2 established on the transceiver point B is the best. Therefore, the optimal uplink selected by the base station for the terminal is the uplink corresponding to the downlink 2. Way, namely uplink 2.
  • At least two uplinks are established on different transceiver points of the same base station.
  • the foregoing at least two uplinks may also be established on the receiving and sending points of different base stations.
  • the optimal downlink between base station 1 and the terminal is established on the transceiver point A of base station 1, base station 1 receives the first message sent by the terminal through transceiver points A and B, and base station 2 receives the first message sent by the terminal through transceiver point E The first news.
  • the base station 1 measures the first message received by the transceiver point A and B, and the base station 2 measures the first message received by the transceiver point E, and sends the measurement result to the base station 1.
  • the base station 1 compares the measurement results corresponding to the sending and receiving points A, B, and E, and if the signal strength of the first message received by the sending and receiving point E is the largest, it determines that the optimal uplink of the terminal is the uplink established at the sending and receiving point E.
  • the base station 1 may also notify the base station 2 to allocate time-frequency resources to the transceiver point E for the terminal to perform uplink communication.
  • uplink and downlink decoupling (UL, DL Decoupling) are supported.
  • the network side selects the DL with the best channel quality as the UE’s best downlink based on the results of the terminal’s downlink measurement, and selects a SUL as the UE’s best downlink.
  • the UE is notified of the SUL information through a broadcast message.
  • the SUL is the uplink corresponding to the DL with the best channel quality.
  • the frequency and antenna of the SUL as the optimal uplink are inconsistent with the frequency and antenna of the optimal downlink.
  • the channel quality of the SUL and the optimal downlink channel quality may not be consistent. Based on the SUL and optimal downlink for uplink and downlink communication, it is very likely to affect communication performance.
  • the embodiment of the present application provides a communication method for selecting an optimal uplink for a UE in an initial random access process. Specifically, referring to FIG. 5, the method includes the following steps:
  • the UE accesses the optimal DL cell.
  • the optimal downlink is the downlink with the best channel quality determined by the base station according to the downlink measurement results of the terminal
  • the optimal DL cell is the coverage cell that establishes the optimal downlink transmission and reception point.
  • the base station has N transceiver points, namely, transceiver point 1, transceiver point 2, ... transceiver point N. Assuming that the optimal downlink is established at transceiver point 1, then the coverage cell of transceiver point 1 is The best DL cell.
  • step 501 the UE accesses the cell covered by the transceiver point 1. After the UE accesses the optimal DL cell, it can perform downlink communication with the base station through the optimal downlink, and receive downlink information sent by the base station.
  • the UE receives the system message broadcast by the base station through the optimal downlink.
  • the base station performs downlink communication with the UE through the optimal downlink, that is, the base station broadcasts system messages through the transceiver point 1, and the UE can receive the system messages broadcast by the base station through the optimal downlink.
  • the base station broadcasts a system message, and the system message includes time-frequency information of a physical random access channel (PRACH), root sequence index number, and cyclic shift (cyclic shift).
  • PRACH physical random access channel
  • the time-frequency information of the PRACH is used by the terminal to send the PRACH
  • the PRACH is a channel that carries the random access preamble.
  • the root sequence index number is used by the terminal to determine a random access preamble (hereinafter referred to as Preamble).
  • the UE sends Msg1 (message 1) according to the system message, and the Msg1 includes a Preamble (random access preamble).
  • the UE may send Msg1 to the base station through PRACH, where Msg1 is the first message described in the embodiment of the present application.
  • the UE obtains the root sequence number in the system message, determines a preamble according to the root sequence number, and sends the preamble on the time-frequency resource corresponding to the time-frequency information of the PRACH, so that the terminal can initiate a random access process.
  • the base station receives Msg1 through multiple transceiver points, measures the signal strength of the Msg1 received by each transceiver point, and determines the optimal uplink according to the measurement results at the multiple transceiver points.
  • information synchronization is performed between the optimal uplink cell and the optimal downlink cell of the base station, so as to allocate time-frequency resources to Msg3 according to the optimal uplink resources.
  • the base station obtains the downlink measurement result of the UE, and determines that the optimal downlink is downlink 1.
  • downlink 1 is established on antenna 1 of the base station, which is the downlink corresponding to cell A.
  • Cell A receives measurement results sent by other cells, summarizes the measurement results of all cells, and determines the optimal uplink. For example, cell B and cell C shown in FIG.
  • cell A both send measurement results to cell A, and cell A determines that the measurement result reported by cell B is the best, and then it determines that uplink 2 corresponding to cell B is the optimal uplink.
  • Cell A can notify cell B that the newly determined optimal uplink is uplink 2, and cell B can send information about the optimal uplink time-frequency resource (that is, the time-frequency resource configured for the first transceiver point)
  • cell A can determine the time-frequency resource of Msg3 according to the optimal uplink time-frequency resource, and send Msg2 to the UE through downlink 1, and indicate the time-frequency resource information of Msg3 through Msg2.
  • the base station has multiple transceiver points, and each transceiver point antenna covers a cell.
  • the base station receives Msg1 through multiple transceiver points, that is, receives Msg1 sent by the terminal through multiple cells. Since the coverage of different sending and receiving points is different, the channel quality of different uplinks will also be different, so the base station can measure the Msg1 received by each sending and receiving point, and determine the sending and receiving point with the best measurement result, that is, the new optimal uplink.
  • the link is established on the transceiver point. Among them, the transceiver point with the best measurement result is the transceiver point with the highest measured signal strength.
  • the base station For example, take the three cells of the base station as an example. Measure the Msg1 received by the transceiver point 1 corresponding to cell A, and the obtained signal strength is 3dB; measure the Msg1 received by the transceiver point 2 corresponding to cell B, and the obtained signal strength is 5dB; on the transceiver point 3 corresponding to cell C The received Msg1 is measured and the signal strength obtained is 6dB. The signal strength measured by the transmitting and receiving point 3 is the largest, that is, the optimal uplink is the uplink established on the transmitting and receiving point 3.
  • the optimal uplink determined by the base station according to the uplink measurement result may be established at the same transceiver point as the optimal downlink, or may be established at a different transceiver point from the optimal downlink.
  • the optimal downlink is established on antenna 1 of the base station
  • the optimal uplink can be the uplink established on antenna 1 or the uplink established on antenna 2 or antenna 3.
  • the embodiment of the present application does not limit this, and the above measurement result shall prevail.
  • the base station sends Msg2 (message 2) to the UE through the optimal downlink.
  • Msg2 can be a random access response message (random access response, RAR), Msg2 includes time-frequency resource information of Msg3, and the Msg3 can be a radio resource control (radio resource control, RRC) connection establishment request, or it can be
  • RAR random access response
  • Msg2 includes time-frequency resource information of Msg3
  • the Msg3 can be a radio resource control (radio resource control, RRC) connection establishment request, or it can be
  • RRC radio resource control
  • the data sent by the terminal through the uplink shared channel for the first time can be considered as the data initially transmitted by the terminal in the random access process.
  • Msg2 may be the second message described in the embodiment of the present application.
  • the time-frequency resource occupied by Msg3 belongs to the first time-frequency resource (the time-frequency resource allocated for the first transceiver point).
  • the first transceiver point is the transceiver point for establishing a new optimal uplink.
  • the first transceiver point is transceiver point 3.
  • the optimal uplink in the embodiment of this application no longer depends on the downlink measurement results of the UE.
  • the base station determines the optimal uplink through uplink measurement, which may not be the optimal downlink correspondence.
  • the uplink that is, the optimal uplink and the optimal downlink can be established at different transceiver points.
  • the UE can perform uplink communication on the uplink with the actual optimal channel quality, and perform downlink communication on the downlink with the actual optimal channel quality to ensure the performance of the communication system.
  • the UE sends Msg3 (message 3) through the optimal uplink.
  • the UE sends Msg3 to the base station in step 506, and the base station receives Msg3 from the terminal through the transceiver point N.
  • Msg3 can be used to request the base station to establish an RRC connection for the UE.
  • the base station sends Msg4 to the UE, and Msg4 may be a confirmation message of the RRC connection establishment request.
  • the base station detects random access information (Preamble) through multiple uplinks, summarizes the measurement results of the multiple uplinks, and determines the optimal uplink based on the measurement results.
  • Preamble random access information
  • the uplink with the best actual channel quality can be selected for the UE, so that the UE can perform uplink communication on the uplink with the actual best channel quality, and on the downlink with the actual best channel quality.
  • Downlink communication ensures the performance of the communication system.
  • the embodiment of the present application also provides a communication method for selecting an optimal uplink for a connected UE. Specifically, referring to FIG. 6, the method includes the following steps:
  • the base station receives the SRS sent by the UE through multiple transceiver points.
  • multiple transceiver points of the base station can simultaneously receive the SRS sent by the UE, and different uplinks are established on different transceiver points.
  • the SRS may be the first message described in the embodiment of the present application.
  • the base station detects the signal strength of the SRS received by each transceiver point, and determines the optimal uplink based on the detection result and the cell load.
  • each transceiver point after each transceiver point receives the SRS, it can measure the signal strength of the received SRS respectively, and determine the optimal uplink based on the measurement result. Specifically, the weight coefficients of signal strength and cell load can be set, and the uplink with the largest weighting result can be determined as the optimal uplink.
  • the weighting result is determined according to a*X+b*Y.
  • X represents signal strength
  • a is a weight coefficient of signal strength
  • Y represents cell load
  • b is a weight coefficient of cell load.
  • the cell load refers to the load of the cell corresponding to the uplink.
  • the downlink 1 is established at the transceiver point 1 (for example, antenna 1) of the base station, which is the downlink corresponding to cell A.
  • Transceiver 1 receives the weighted results sent by other cells, summarizes the weighted results of all cells, and determines the optimal uplink. For example, the base station's transceiver point 2 and transceiver point 3 both send the weighted results to cell A.
  • the transceiver point 1 determines that the weighted result reported by transceiver point 2 is the best, and then the uplink 2 corresponding to transceiver point 2 is determined to be the optimal uplink road.
  • the base station synchronizes the user information maintained by the original optimal uplink to the newly determined optimal uplink cell to implement uplink cell handover on the network side.
  • user information includes physical cell ID (physical cell ID, PCI), cell radio network temporary identifier (C-RNTI), L2 (Layer2) scheduling information, and so on.
  • the base station obtains the downlink measurement result of the UE, and determines that the optimal downlink is downlink 1.
  • the original optimal uplink is the uplink corresponding to the optimal downlink, that is, uplink 1.
  • the user information that cell A can maintain is sent to cell B so that the optimal uplink cell can be switched to cell B.
  • the optimal uplink and the optimal uplink cell are corresponding, and the optimal uplink cell is determined when the optimal uplink is determined. It is understandable that, assuming that the optimal uplink is established at the transceiver point 2 (for example, antenna 2 of the base station), then the optimal uplink cell is the coverage cell of antenna 2.
  • the base station judges whether the PUCCH resource and SRS resource of the UE conflict with the new optimal uplink UE.
  • the UE of the new optimal uplink can be considered as the UE covered under the new optimal uplink (uplink cell).
  • the base station can also receive PUCCH and SRS sent by other UEs through the optimal uplink. If the PUCCH resources and SRS resources of the UE conflict with the PUCCH resources and SRS resources of other UEs, the uplink messages between different UEs will Interference occurs and network performance is degraded. In order to avoid uplink interference between different UEs, PUCCH resources and SRS resources may be re-allocated for the UE.
  • step 604a is executed to reconfigure PUCCH resources and SRS resources for the UE. If there is no conflict, skip step 604a and directly perform step 605, and perform uplink scheduling through a downlink control information (DCI).
  • DCI downlink control information
  • the base station sends an RRC message to the UE to perform reconfiguration of PUCCH resources and SRS resources.
  • the RRC message may include PUCCH resources and SRS resources reconfigured for the UE.
  • the base station sends the RRC message to the UE through the previously determined optimal downlink. For example, the base station determines that the optimal downlink is the downlink 1 established on the transceiver point 1 according to the UE downlink measurement result. In step 604a, Then, the RRC message is sent to the UE through the transceiver point 1.
  • the base station sends DCI to the UE through the optimal downlink, and performs PUSCH, PUCCH, and SRS scheduling.
  • the base station sends DCI to the UE through the previously determined optimal downlink. For example, the base station determines that the optimal downlink is the downlink 1 established on the transceiver point 1 according to the UE downlink measurement result. In step 605 , The DCI is sent to the UE through the transceiver point 1.
  • the base station sends DCI to the UE, and the DCI indicates time-frequency resource information of PUSCH, time-frequency resource information of PUCCH, and time-frequency resource information of SRS.
  • the DCI may be the second message described in the embodiment of the present application.
  • the time-frequency resource of PUSCH belongs to the time-frequency resource configured for the first transceiver point.
  • the first transceiver point is the transceiver point for establishing the latest optimal uplink. With reference to the example of step 602, the optimal uplink is established on transceiver point 2 of the base station.
  • the base station simultaneously receives and detects SRS through multiple uplinks, and determines the optimal uplink based on factors such as detected signal strength/load.
  • the base station issues the scheduling result (DCI) of the new optimal UL link through the optimal downlink, and the UE does not perceive the uplink changes (the uplink PUSCH is sent according to the DCI, and the base station uses the new optimal uplink Perform uplink reception.
  • DCI scheduling result
  • the uplink with the best actual channel quality can be selected for the UE, so that the UE can perform uplink communication on the uplink with the best channel quality, and on the downlink with the best channel quality.
  • Downlink communication on the road to ensure the performance of the communication system.
  • the embodiment of the present application also provides a communication method for selecting an optimal uplink for a connected UE. Specifically, referring to FIG. 7, the method includes the following steps:
  • the base station receives the SRS sent by the UE through multiple receiving and sending points, detects the signal strength of the SRS received by each receiving and sending point, and determines the optimal uplink based on the detection result and the cell load.
  • multiple transceiver points of the base station can simultaneously receive the SRS sent by the UE, and different transceiver points are used to establish different uplinks.
  • the SRS may be the first message described in the embodiment of the present application.
  • step 602 refers to the introduction of step 602, which is not repeated here.
  • the base station After obtaining the Preamble resource and the RAR beam, the base station delivers a non-contention random access indication message to the UE through the optimal downlink.
  • the optimal downlink is the downlink with the best channel quality determined by the base station according to the downlink measurement result of the terminal, and the base station transceiver point corresponding to the optimal DL cell is used to establish the optimal downlink.
  • the base station has N receiving and sending points, namely receiving and sending point 1, receiving and sending point 2... and receiving and sending point N. Assuming that the optimal downlink is established at receiving and sending point 1, then the base station can use receiving and sending point 1 in step 702 Send a non-contention random access indication message.
  • the non-contention random access indication message may be the second message described in the embodiment of this application, and includes random access preamble, random access preamble time-frequency resource information, and random access response beam information.
  • the time-frequency resource occupied by the random access preamble belongs to the time-frequency resource configured for the first transceiver point.
  • the first transceiver point is the transceiver point for establishing the latest optimal uplink. With reference to the example of step 602, the optimal uplink is established on transceiver point 2 of the base station.
  • the base station may receive the random access response beam information reported by the UE, or determine the random access response beam information according to the downlink service beam of the terminal.
  • the base station allocates designated time-frequency resources for the Preamble, so as to recognize that the optimal uplink of the UE has been handed over according to the resources of the Preamble.
  • the UE accesses the optimal uplink cell according to the non-competition random indication, and initiates random access.
  • the coverage cell where the optimal uplink transceiver point is established may be referred to as the optimal uplink cell.
  • the optimal uplink determined by the base station in step 701 is the uplink established at the transceiver point N
  • the UE accesses the cell covered by the transceiver point N.
  • the base station identifies the UE according to the time-frequency resource of the Preamble, and issues an RAR through the original optimal downlink to complete access and carrier switching.
  • the original optimal downlink is the downlink with the best channel quality determined by the base station according to the downlink measurement result of the terminal. If the base station recognizes that the time-frequency resource used by the UE to send the Preamble is the designated time-frequency resource, it can be determined that the optimal uplink of the UE may have been switched and no longer corresponds to the optimal uplink. The previously determined optimal downlink is still the downlink with the best channel quality, and the base station continues to perform downlink communication with the UE through the original optimal downlink.
  • FIG. 8 shows a possible schematic structural diagram of the communication device involved in the foregoing embodiment.
  • the communication device shown in FIG. 8 may be the access network device described in the embodiment of the present application, may also be a component in the access network device that implements the foregoing method, or may also be a chip applied to the access network device.
  • the chip may be a System-On-a-Chip (SOC) or a baseband chip with communication function.
  • the communication device includes a processing unit 801 and a communication unit 802.
  • the processing unit may be one or more processors, and the communication unit may be a transceiver.
  • the processing unit 801 is configured to support the access network device to perform step 402, step 504, steps 602 to 604, and/or other processes used in the technology described herein.
  • the communication unit 802 is used to support communication between the communication device and other communication devices, for example, to support the access network equipment to perform step 401, step 403, step 502, step 503, step 505, step 601, step 604a, and step 605 , And/or other processes used in the techniques described herein.
  • the communication device includes: a processing module 901 and a communication module 902.
  • the processing module 901 is used to control and manage the actions of the communication device, for example, to execute the steps executed by the above-mentioned processing unit 801, and/or to execute other processes of the technology described herein.
  • the communication module 902 is configured to execute the steps performed by the above-mentioned communication unit 802, and supports interaction between the communication device and other devices, such as interaction with other terminal devices.
  • the communication device may further include a storage module 903, which is used to store the program code and data of the communication device.
  • the processing module 901 is a processor
  • the communication module 902 is a transceiver
  • the storage module 903 is a memory
  • the communication device is the communication device shown in FIG. 3.
  • the embodiment of the present application provides a computer-readable storage medium, and the computer-readable storage medium stores instructions; the instructions are used to execute the communication method shown in FIG. 4 to FIG. 7.
  • the embodiment of the present application provides a computer program product including instructions, which when running on a communication device, causes the communication device to execute the communication method as shown in FIG. 4 to FIG. 7.
  • a wireless communication device in an embodiment of the present application includes: instructions stored in the wireless communication device; when the wireless communication device runs on the communication device shown in FIG. 3, FIG. 8, and FIG. 9, the communication device is caused to execute as shown in FIG. ⁇
  • the wireless communication device may be a chip.
  • the embodiment of the present application also provides a communication system, including: a terminal and an access network device.
  • the terminal may be the communication device shown in FIG. 3, FIG. 8, and FIG. 9
  • the access network device may be the communication device shown in FIG. 3, FIG. 8, and FIG. 9.
  • the terminal is used to send a first message to an access network device
  • the access network device may receive the first message through at least two transceiving points, measure at least two uplinks according to the first message received by the at least two transceiving points, and determine the first uplink according to the obtained measurement results Route; send a second message to the terminal through the first downlink, the second message is used for the terminal to perform uplink communication through the first uplink; the first uplink is the best measurement result of the at least two uplinks Uplink, at least two uplinks are communication links between at least two transceiver points and the terminal;
  • the at least two transceiver points include a first transceiver point and a second transceiver point.
  • the first uplink is established at the first transceiver point
  • the first downlink is established at the second transceiver point.
  • the at least two transceiver points include a first transceiver point and a third transceiver point, the first uplink is established at the first transceiver point, and the first downlink is established at the second transceiver point.
  • the third transceiver point is the transceiver point corresponding to the second transceiver point.
  • the disclosed database access device and method can be implemented in other ways.
  • the embodiments of the database access device described above are only illustrative.
  • the division of the modules or units is only a logical function division.
  • the displayed or discussed mutual couplings or direct couplings or communication connections may be indirect couplings or communication connections through some interfaces, database access devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate parts may or may not be physically separate.
  • the parts displayed as units may be one physical unit or multiple physical units, that is, they may be located in one place, or they may be distributed to multiple different places. . Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a readable storage medium.
  • the technical solutions of the embodiments of the present application are essentially or the part that contributes to the prior art, or all or part of the technical solutions can be embodied in the form of software products, which are stored in a storage medium It includes several instructions to make a device (which may be a single-chip microcomputer, a chip, etc.) or a processor execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种通信方法及通信装置,涉及通信领域,能够为UE选择信道质量实际最优的上行链路,提高上行通信的传输性能。包括:接入网设备通过至少两个收发点接收来自终端的第一消息;根据接收到的第一消息对至少两个上行链路进行测量,确定其中测量结果最优的第一上行链路,通过第一下行链路向终端发送第二消息,第二消息用于终端通过第一上行链路进行上行通信;至少两个收发点包括第一收发点以及第二收发点,第一上行链路建立在第一收发点,第一下行链路建立在第二收发点;或,至少两个收发点包括第一收发点以及第三收发点,第一上行链路建立在第一收发点,第一下行链路建立在第二收发点,第三收发点是第二收发点对应的收发点。

Description

一种通信方法及通信装置
本申请要求于2019年5月23日提交国家知识产权局、申请号为201910436156.7、申请名称为“一种通信方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉通信领域,尤其涉及一种通信方法及通信装置。
背景技术
在传统的蜂窝移动通信系统中,认为上行链路和下行链路的路损是基本一致的,一般来说,信道质量最优的下行链路对应的上行链路的信道质量也是最优的。通常,用户设备(user equipment,UE)对下行链路的信道质量进行测量,根据测量结果确定最优下行链路,默认最优下行链路对应的上行链路为最优上行链路。UE通过最优上行链路、最优下行链路和网络侧进行通信。
但在实际网络中,对于某个UE来说,最优下行链路对应的上行链路并不是信道质量最优的上行链路。特别是在第五代(5th generation,5G)通信系统中,上行链路和下行链路是解耦的,上行链路和下行链路的频谱、天线不一致,上行链路和下行链路路损不一致的情况更加普遍,最优下行链路对应的上行链路极有可能不是信道质量最优的上行链路。如果UE始终默认最优下行链路对应的上行链路是最优上行链路,并通过该上行链路与网络侧进行通信,会影响上行通信的性能。
发明内容
本申请实施例提供一种通信方法及通信装置,能够为UE选择信道质量实际最优的上行链路,提高上行通信的传输性能。
为达到上述目的,本申请实施例采用如下技术方案:
第一方面,公开了一种通信方法,包括:接入网设备通过至少两个收发点接收来自终端的第一消息。可选的,接入网设备可以根据至少两个收发点接收到的第一消息对至少两个上行链路进行测量,根据所得的测量结果确定第一上行链路;第一上行链路为至少两个上行链路中测量结果最优的上行链路,至少两个上行链路为至少两个收发点与终端之间的通信链路;通过第一下行链路向终端发送第二消息,第二消息用于终端通过第一上行链路进行上行通信。至少两个收发点包括第一收发点以及第二收发点,第一上行链路建立在第一收发点,第一下行链路建立在第二收发点;或,
至少两个收发点包括第一收发点以及第三收发点,第一上行链路建立在第一收发点,第一下行链路建立在第二收发点,第三收发点是第二收发点对应的收发点。
本申请实施例提供的方法中,最优上行链路不再依赖于UE的下行测量结果,在上下行解耦的场景下,基站通过上行测量确定最优上行链路,可以不是最优下行链路对应的上行链路,即最优上行链路可以和最优下行链路建立在不同的收发点。UE可以在信道质量实际最优的上行链路上进行上行通信,在信道质量实际最优的下行链路上进行下行通信,保证通信系统的性能。基站也不需要维护多条上行链路,节省网络侧的资源开销。
结合第一方面,在第一方面的第一种可能的实现方式中,第一消息包括随机接入前导码,用于终端进行随机接入;第二消息包括用于无线资源控制RRC连接建立请求的时频资源的信息,用于RRC连接建立请求的时频资源属于第一时频资源,第一时频资源是为第一收发点配置的时频资源。
本申请实施例中,可以为进行竞争随机接入的终端选择实际信道质量最优的上行链路,通过多个收发点从终端接收Msg1(第一消息),对接收到的Msg1进行测量,可以确定实际信道质量最优的上行链路。并根据第一收发点的时频资源为终端后续发送的上行消息(例如,RRC连接建立请求)分配时频资源,终端可以通过实际信道质量最优的上行链路与接入网设备进行上行通信,提高网络性能。
结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,方法还包括:通过第一上行链路,接收终端利用用于RRC连接建立请求的时频资源发送的RRC连接建立请求。
本申请实施例中,为终端确定实际信道质量最优的上行链路之后,基站不再通过与最优下行链路对应的上行链路接收上行消息,可以通过实际信道质量最优的上行链路接收终端发送的上行消息,例如,RRC连接建立请求,提高网络性能。
结合第一方面,在第一方面的第三种可能的实现方式中,第一消息包括信道探测参考信号SRS。第二消息包括用于物理上行共享信道的时频资源的信息,用于物理上行共享信道的时频资源属于第一时频资源,第一时频资源是为第一收发点配置的时频资源。
本申请实施例中,可以为连接态的终端选择实际信道质量最优的上行链路,通过多个收发点从终端接收SRS(第一消息),对接收到的SRS进行测量,可以确定实际信道质量最优的上行链路。并根据第一收发点的时频资源为终端后续发送的上行消息(例如,物理上行共享信道)分配时频资源,终端可以通过实际信道质量最优的上行链路与接入网设备进行上行通信,提高网络性能。
结合第一方面的第三种可能的实现方式,在第一方面的第四种可能的实现方式中,方法还包括:通过第一上行链路,接收终端利用用于物理上行共享信道的时频资源发送的物理上行共享信道。
本申请实施例中,为终端确定实际信道质量最优的上行链路之后,基站不再通过与最优下行链路对应的上行链路接收上行消息,可以通过实际信道质量最优的上行链路接收终端发送的上行消息,例如,物理上行共享信道,提高网络性能。
结合第一方面,在第一方面的第一种可能的实现方式中,第一消息包括SRS;第二消息包括随机接入前导码、用于随机接入前导码的时频资源的信息以及随机接入响应波束信息;用于随机接入前导码的时频资源属于第一时频资源,第一时频资源是为第一收发点配置的时频资源,随机接入响应波束信息用于指示发送随机接入响应的波束。
本申请实施例中,可以为连接态的终端选择实际信道质量最优的上行链路,通过多个收发点从终端接收SRS(第一消息),对接收到的SRS进行测量,可以确定实际信道质量最优的上行链路。并指示终端通过非竞争随机接入的方式,接入新的上行链路。根据第一收发点的时频资源为终端后续发送的上行消息(例如,用于非竞争随机 接入的随机接入前导码)分配时频资源,终端可以通过实际信道质量最优的上行链路与接入网设备进行上行通信,提高网络性能。
结合第一方面,在第一方面的第六种可能的实现方式中,所述方法还包括:通过第一上行链路,接收终端利用用于随机接入前导码的时频资源发送的随机接入前导码。
本申请实施例中,为终端确定实际信道质量最优的上行链路之后,基站不再通过与最优下行链路对应的上行链路接收上行消息,可以通过实际信道质量最优的上行链路接收终端发送的上行消息,例如,用于非竞争随机接入的随机接入前导码,提高网络性能。
结合第一方面的第六种可能的实现方式,在第一方面的第七种可能的实现方式中,用于随机接入前导码的时频资源用于指示通过第一下行链路与终端进行下行通信。
本申请实施例中,基站在确定新的最优上行链路(即第一上行链路)之后,可以在第一时频资源(即为第一收发点配置的时频资源)中,为随机接入前导码分配指定的时频资源。当终端通过指定的时频资源发送随机接入前导码,基站可以识别这些资源,可以确定该终端的上行链路可能是基站根据上行测量结果重新选择的,即终端的最优上行链路发生了切换,但是,终端的最优下行链路没有发生切换,还是需要通过当前为终端配置的最优下行链路(即第一下行链路)向终端发送下行消息。
结合第一方面的第五至第七种可能的实现方式,在第一方面的第八种可能的实现方式中,所述方法还包括:接收终端发送的随机接入响应波束信息;或,根据终端的下行业务波束确定随机接入响应波束信息。
第二方面,公开了一种通信装置,包括:通信单元,用于通过至少两个收发点接收来自终端的第一消息;处理单元,用于根据至少两个收发点接收到的第一消息对至少两个上行链路进行测量,根据所得的测量结果确定第一上行链路;第一上行链路为至少两个上行链路中测量结果最优的上行链路,至少两个上行链路为至少两个收发点与终端之间的通信链路;通信单元还用于,通过第一下行链路向终端发送第二消息,第二消息用于终端通过第一上行链路进行上行通信;第一上行链路建立在第一收发点,第一下行链路建立在第二收发点;至少两个收发点包括第一收发点以及第二收发点,或至少两个收发点包括第一收发点和第三收发点,第三收发点是第二收发点对应的收发点。
结合第二方面,在第二方面的第一种可能的实现方式中,第一消息包括随机接入前导码,用于终端进行随机接入;第二消息包括用于无线资源控制RRC连接建立请求的时频资源的信息,用于RRC连接建立请求的时频资源属于第一时频资源,第一时频资源是为第一收发点配置的时频资源。
结合第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,通信单元具体用于,通过第一上行链路,接收终端利用用于RRC连接建立请求的时频资源发送的RRC连接建立请求。
结合第二方面,在第二方面的第三种可能的实现方式中,第一消息包括信道探测参考信号SRS;第二消息包括用于物理上行共享信道的时频资源的信息,用于物理上行共享信道的时频资源属于第一时频资源,第一时频资源是为第一收发点配置的时频资源。
结合第二方面的第三种可能的实现方式,在第二方面的第四种可能的实现方式中,通信单元具体用于,通过第一上行链路,接收终端利用用于物理上行共享信道的时频资源发送的物理上行共享信道。
结合第二方面,在第二方面的第五种可能的实现方式中,第一消息包括SRS;第二消息包括随机接入前导码、用于随机接入前导码的时频资源的信息以及随机接入响应波束信息;用于随机接入前导码的时频资源属于第一时频资源,第一时频资源是为第一收发点配置的时频资源,随机接入响应波束信息用于指示发送随机接入响应的波束。
结合第二方面的第五种可能的实现方式,在第二方面的第六种可能的实现方式中,通信单元具体用于,通过第一上行链路,接收终端利用用于随机接入前导码的时频资源发送的随机接入前导码。
结合第二方面的第六种可能的实现方式,在第二方面的第七种可能的实现方式中,用于随机接入前导码的时频资源用于指示通过第一下行链路与终端进行下行通信。
结合第二方面的第五至第七种可能的实现方式中的任意一种,在第二方面的第八种可能的实现方式中,通信单元还用于,接收终端发送的随机接入响应波束信息;或,处理单元还用于,根据终端的下行业务波束确定随机接入响应波束信息。
第三方面,公开了一种通信装置,包括:通信接口,用于通过至少两个收发点接收来自终端的第一消息;处理器,用于根据至少两个收发点接收到的第一消息对至少两个上行链路进行测量,根据所得的测量结果确定第一上行链路;第一上行链路为至少两个上行链路中测量结果最优的上行链路,至少两个上行链路为至少两个收发点与终端之间的通信链路;通信接口还用于,通过第一下行链路向终端发送第二消息,第二消息用于终端通过第一上行链路进行上行通信;第一上行链路建立在第一收发点,第一下行链路建立在第二收发点;至少两个收发点包括第一收发点以及第二收发点,或至少两个收发点包括第一收发点和第三收发点,第三收发点是第二收发点对应的收发点。
该通信装置可以是本申请实施例所述的接入网设备,也可以是接入网设备中实现上述方法的部件,或者,也可以是应用于接入网设备中的芯片。所述芯片可以是片上系统(System-On-a-Chip,SOC),或者是具备通信功能的基带芯片等。
结合第三方面,在第三方面的第一种可能的实现方式中,第一消息包括随机接入前导码,用于终端进行随机接入;第二消息包括用于无线资源控制RRC连接建立请求的时频资源的信息,用于RRC连接建立请求的时频资源属于第一时频资源,第一时频资源是为第一收发点配置的时频资源。
结合第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式中,通信接口具体用于,通过第一上行链路,接收终端利用用于RRC连接建立请求的时频资源发送的RRC连接建立请求。
结合第三方面,在第三方面的第三种可能的实现方式中,第一消息包括信道探测参考信号SRS;第二消息包括用于物理上行共享信道的时频资源的信息,用于物理上行共享信道的时频资源属于第一时频资源,第一时频资源是为第一收发点配置的时频资源。
结合第三方面的第三种可能的实现方式,在第三方面的第四种可能的实现方式中,通信接口具体用于,通过第一上行链路,接收终端利用用于物理上行共享信道的时频资源发送的物理上行共享信道。
结合第三方面,在第三方面的第五种可能的实现方式中,第一消息包括SRS;第二消息包括随机接入前导码、用于随机接入前导码的时频资源的信息以及随机接入响应波束信息;用于随机接入前导码的时频资源属于第一时频资源,第一时频资源是为第一收发点配置的时频资源,随机接入响应波束信息用于指示发送随机接入响应的波束。
结合第三方面的第五种可能的实现方式,在第三方面的第六种可能的实现方式中,通信接口具体用于,通过第一上行链路,接收终端利用用于随机接入前导码的时频资源发送的随机接入前导码。
结合第三方面的第六种可能的实现方式,在第三方面的第七种可能的实现方式中,用于随机接入前导码的时频资源用于指示通过第一下行链路与终端进行下行通信。
结合第三方面的第五至第七种可能的实现方式中的任意一种,在第三方面的第八种可能的实现方式中,通信接口还用于,接收终端发送的随机接入响应波束信息;或,处理器还用于,根据终端的下行业务波束确定随机接入响应波束信息。
第四方面,公开了一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行上述实现上述第一方面以及第一方面任意一种可能的实现方式所述的通信方法。
第五方面,公开了一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行实现上述第一方面以及第一方面任意一种可能的实现方式所述的通信方法。
第六方面,公开了一种无线通信装置,包括:无线通信装置中存储有指令;当无线通信装置在上述第二方面或第三方面所述的装置上运行时,使得装置执行如上述实现上述第一方面以及第一方面任意一种可能的实现方式所述的通信方法,无线通信装置为芯片。
第七方面,公开了一种通信系统,该通信系统包括接入网设备和终端,所述终端用于向接入网设备发送第一消息。
所述接入网设备可以通过至少两个收发点接收第一消息,根据至少两个收发点接收到的第一消息对至少两个上行链路进行测量,根据所得的测量结果确定第一上行链路;通过第一下行链路向终端发送第二消息,第二消息用于终端通过第一上行链路进行上行通信;第一上行链路为至少两个上行链路中测量结果最优的上行链路,至少两个上行链路为至少两个收发点与终端之间的通信链路。
示例性的,所述至少两个收发点包括第一收发点以及第二收发点,第一上行链路建立在第一收发点,第一下行链路建立在第二收发点;或者,
所述至少两个收发点包括第一收发点以及第三收发点,第一上行链路建立在第一收发点,第一下行链路建立在第二收发点,第三收发点是第二收发点对应的收发点。
附图说明
图1为本申请实施例提供的通信系统的架构图;
图2为本申请实施例提供的小区示意图;
图3为本申请实施例提供的通信装置的框架图;
图4为本申请实施例提供的通信方法的流程示意图;
图5为本申请实施例提供的通信方法的另一流程示意图;
图6为本申请实施例提供的通信方法的另一流程示意图;
图7为本申请实施例提供的通信方法的另一流程示意图;
图8为本申请实施例提供的通信装置的另一框架图;
图9为本申请实施例提供的通信装置的另一框架图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例提供了一种通信系统,该通信系统包括接入网设备和至少一个终端,该至少一个终端可以与该接入网设备进行无线通信。图1为本申请实施例提供的一种通信系统的示意图。如图1所示,该接入网设备包括接入网设备11,该至少一个终端包括终端12,接入网设备11和终端12可以进行无线通信。需要说明的是,在如图1所述的通信系统包含的接入网设备和终端仅是一种示例,在本申请实施例中,所述通信系统包含的网元的类型、数量,以及网元之间的连接关系不限于此。
本申请实施例中的通信系统可以是支持第四代(fourth generation,4G)接入技术的通信系统,例如长期演进(long term evolution,LTE)接入技术;或者,该通信系统也可以是支持第五代(fifth generation,5G)接入技术通信系统,例如新无线(new radio,NR)接入技术;或者,该通信系统也可以是支持第三代(third generation,3G)接入技术的通信系统,例如(universal mobile telecommunications system,UMTS)接入技术;或者,该通信系统还可以是支持多种无线技术的通信系统,例如支持LTE技术和NR技术的通信系统。另外,该通信系统也可以适用于面向未来的通信技术。
本申请实施例中的接入网设备可以是接入网侧用于支持终端接入通信系统的设备,例如,可以是2G接入技术通信系统中的基站收发信台(base transceiver station,BTS)和基站控制器(base station controller,BSC)、3G接入技术通信系统中的节点B(node B)和无线网络控制器(radio network controller,RNC)、4G接入技术通信系统中的演进型基站(evolved nodeB,eNB)、5G接入技术通信系统中的下一代基站(next generation nodeB,gNB)、发送接收点(transmission reception point,TRP)、中继节点(relay node)、接入点(access point,AP)等等。
本申请实施例中的终端可以是一种向用户提供语音或者数据连通性的设备,例如也可以称为用户设备(user equipment,UE),移动台(mobile station),用户单元(subscriber unit),站台(station),终端设备(terminal equipment,TE)等。终端可以为蜂窝电话(cellular phone),个人数字助理(personal digital assistant,PDA),无线调制解调器(modem),手持设备(handheld),膝上型电脑(laptop computer),无绳电话(cordless phone),无线本地环路(wireless local loop,WLL)台,平板电脑(pad)等。随着无线通信技术的发展,可以接入通信系统、可以与通信系统的网络侧进行通信,或者通过通信系统与其它物体进行通信的设备都可以是本申请实施例中的终端,譬如,智能交通中的终端和汽车、智能家居中的家用设备、智能电网中的电 力抄表仪器、电压监测仪器、环境监测仪器、智能安全网络中的视频监控仪器、收款机等等。在本申请实施例中,终端可以与接入网设备,例如接入网设备11进行通信。
首先,对本申请实施例涉及的术语进行解释说明:
(1)收发点
本申请实施例所述的收发点可以认为TRP(transmission reception point),TRP也可以称为TRxP。不同收发点的覆盖范围是不同的。一种可能的实现方式中,收发点可以是基站的天线。不同的天线的覆盖范围是不同的,不同的天线可以认为是不同的收发点。
另一种可能的实现方式中,收发点也可以是基站天线劈裂的天线阵子,不同天线阵子的覆盖范围不同,不同的天线阵子可以认为是不同的收发点。
需要说明的是,为不同收发点的时频资源可以是不同的,或者,为不同的收发点分配相同的时频资源,不同的收发点以复用的方式使用时频资源。
(2)小区
以基站为例,小区也可以称为基站的服务小区。通常,基站的一个收发点的覆盖区域可以认为是基站的一个小区。示例的,参考图2,以收发点为天线作为示例,基站的天线A的覆盖区域为小区A,基站的天线B的覆盖区域为小区B,基站的天线C的覆盖区域为小区C。
(3)上行链路
上行链路(uplink,UL)是终端与接入网设备进行上行通信的链路,即终端可以通过上行链路向接入网设备发送信息。上行链路由终端的天线、接入网设备的一个收发点确定,例如,基站通过收发点A接收终端发送的上行信息,即终端的上行链路为收发点A与终端的天线之间的无线信道。
(4)最优上行链路
最优上行链路是所有的上行链路中,信道质量最优的上行链路。终端通常通过最优上行链路与接入网设备进行上行通信。
示例的,参考图2,假设终端设备只有一根天线,可以用于发送信息和接收信息。基站的收发点有A、B、C三根天线,均可以用于发送信息和接收信息。在终端通过天线发送信息时,若基站通过天线A接收终端发送的信息,终端的天线与天线A之间的无线信道为一条上行链路,记为上行链路1。若基站通过天线B接收终端发送的信息,终端的天线与天线B之间的无线信道为一条上行链路,记为上行链路2。若基站通过天线C接收终端发送的信息,终端的天线与天线C之间的无线信道为一条上行链路,记为上行链路3。上行链路1、上行链路2、上行链路3中,信道质量最优的上行链路为最优上行链路。
(5)下行链路
下行链路(downlink,DL)是接入网设备与终端进行下行通信的链路,即接入网设备可以通过下行链路向终端发送信息。下行链路由接入网设备的一个收发点、终端的天线确定,例如,基站通过收发点B向终端发送的下行信息,即终端的下行链路为收发点B与终端的天线之间的无线信道。
(6)最优下行链路
最优下行链路是所有的上行链路中,信道质量最优的下行链路。终端通常通过最优下行链路与接入网设备进行下行通信。
示例的,参考图2,假设终端设备只有一根天线,可以用于发送信息和接收信息。基站有的收发点为A、B、C三根天线,均可以用于发送信息和接收信息。若基站通过天线A向终端发送信息,终端的天线与天线A之间的无线信道为一条下行链路,记为下行链路1。若基站通过天线B向终端发送信息,终端的天线与天线B之间的无线信道为一条下行链路,记为下行链路2。若基站通过天线C向终端发送信息,终端的天线与天线C之间的无线信道为一条下行链路,记为下行链路3。下行链路1、下行链路2、下行链路3中,信道质量最优的下行链路为终端的最优下行链路。
(7)链路的对应关系
一种可能的实现方式中,下行链路、下行链路对应的上行链路建立在同一个收发点(例如,基站的天线)上。可以理解的是,建立在同一个收发点的上行链路、下行链路对应同一个小区。例如,参考图2,当基站通过天线A接收上行信息,上行链路1为终端的上行链路,上行链路1对应的下行链路同样建立在天线A,即上行链路1对应的下行链路为下行链路1,上行链路1和下行链路1对应的小区均为小区A。同理,当基站通过天线A发送下行信息,下行链路1为终端的下行链路,下行链路1对应的上行链路同样建立在天线A,即下行链路1对应的上行链路为上行链路1。
另一种可能的实现方式中,通信系统支持上下行解耦,下行链路、下行链路对应的上行链路建立在两个不同的收发点上,这两个不同的收发点之间可以称为对应的收发点。例如,在辅助上行链路(supplementary uplink,SUL)场景中,3.5GHz下行链路和1.8GHz上行链路(SUL)建立在不同的收发点上,可以认为3.5GHz下行链路对应的上行链路为1.8GHz上行链路。3.5GHz收发点对应的收发点为1.8GHz收发点,1.8GHz收发点对应的收发点为3.5GHz收发点。
目前,在第二代(second generation,2G)通信系统、第三代(3 rd generation,3G)通信系统、第四代(4 th generation,4G)等传统蜂窝移动通信系统中,基站可以根据终端的下行测量结果确定最优下行链路,并配置最优下行链路对应的上行链路为最优上行链路。基站和终端通过最优下行链路和最优上行链路进行通信。
但是在实际网络中,上行链路和下行链路的路损、干扰、负载等不一致,最优下行链路对应的上行链路的信道质量有可能不是最优的。特别是在5G通信系统中,上行链路和下行链路是解耦的,上行链路和下行链路的频谱、天线不一致。如果只是简单地将最优下行链路对应的上行链路作为终端的最优上行链路,则无法保证终端始终工作在信道质量最优的上行链路上,影响上行通信性能。
本申请实施例提供一种通信方法,基站可以通过至少两个收发点接收来自终端的第一消息,还可以根据所述至少两个收发点接收到的第一消息,对至少两个上行链路进行测量,根据所得的测量结果为终端重新选择最优上行链路,后续可以通过重新选择的最优上行链路与终端进行上行通信,接收终端发送的上行信息。可见,本申请实施例中,最优上行链路不再依赖于UE的下行测量结果,在上下行解耦的场景下,基站通过上行测量确定信道质量实际最优的上行链路作为终端的最优上行链路,该上行链路可以不是最优下行链路对应的上行链路。在后续流程中,UE可以在信道质量实际 最优的上行链路上进行上行通信,在信道质量实际最优的下行链路上进行下行通信,保证通信系统的性能。基站也不需要维护多条上行链路,节省网络侧的资源开销。
本申请实施例所述的接入移动管理功能网元、无线接入网设备或者终端装置,可以通过图3中的通信装置30来实现。图3所示为本申请实施例提供的通信装置30的硬件结构示意图。该通信装置30包括处理器301,通信线路302,存储器303以及至少一个通信接口(图3中仅是示例性的以包括通信接口304为例进行说明)。
处理器301可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路302可包括一通路,在上述组件之间传送信息。
通信接口304,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。
存储器303可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路302与处理器相连接。存储器也可以和处理器集成在一起。
存储器303用于存储执行本申请方案的计算机执行指令,并由处理器301来控制执行。处理器301用于执行存储器303中存储的计算机执行指令,从而实现本申请下述实施例提供的意图处理方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器301可以包括一个或多个CPU,例如图3中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置30可以包括多个处理器,例如图3中的处理器301和处理器308。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,通信装置30还可以包括输出设备305和输入设备306。输出设备305和处理器301通信,可以以多种方式来显示信息。例如,输出设备305可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备306和处理器301通信,可以以多种方式接收用户的输入。例如,输入设备306可以是鼠标、键盘、触摸屏设备或传感设备等。
上述的通信装置30可以是一个通用设备或者是一个专用设备。在具体实现中,通信装置30可以是台式机、便携式电脑、网络服务器、掌上电脑(personal digital assistant,PDA)、移动手机、平板电脑、无线终端装置、嵌入式设备或有图3中类似结构的设备。本申请实施例不限定通信装置30的类型。
本申请实施例提供一种通信方法,应用于图1所示的通信系统,如图4所示,所述方法包括以下步骤:
401、通过至少两个收发点接收来自终端的第一消息。
需要说明的是,本申请实施例的执行主体可以是可以接入网设备,例如,基站;也可以是接入网设备中实现上述方法的部件,或者,也可以是应用于接入网设备中的芯片。芯片可以是片上系统(System-On-a-Chip,SOC)或者是具备通信功能的基带芯片等。
具体实现中,终端发送第一消息,基站可以通过不同的收发点来接收第一消息。不同的收发点和终端之间的信道质量可能不同,即建立在不同收发点的上行链路的信道质量也可能是有差异的,基站可以通过多个收发点来接收第一消息,以便可以根据不同收发点接收到的第一消息,确定不同接收点建立的上行链路的信道质量。值得注意的是,所述至少两个收发点包括当前最优上行链路对应的收发点,如此,基站可以比较多个不同的收发点接收到的第一消息的信号强度,选出比当前最优上行链路信道质量更优的上行链路。
示例的,基站根据终端下行测量结果确定最优上行链路为下行链路1(即本申请实施例所述的第一下行链路),下行链路1建立在基站的收发点A上,当前的最优上行链路是下行链路1对应的上行链路1,上行链路1可以建立在基站的收发点A。在步骤401中,收发点A也需要接收终端的第一消息,以便基站根据多个收发点的测量结果选择信道质量优于上行链路1的上行链路作为UE的最优上行链路。
或者,在SUL场景中,基站根据终端下行测量结果确定最优上行链路为下行链路1,下行链路1建立在基站的收发点A1上,当前的最优上行链路为下行链路1对应的上行链路,即建立在收发点A2上的SUL。在步骤401中,收发点A2需要接收终端的第一消息,以便基站根据多个收发点的测量结果选择信道质量优于上述SUL的上行链路作为UE的最优上行链路。
另外,终端发送的第一消息可以是以下三种可能:
第一种、当终端在随机接入过程中,基站可以对终端发送的上行消息进行测量,为终端重新选择最优上行链路。具体地,第一消息可以是Msg1。示例的,第一消息包括随机接入前导码,第一消息用于终端进行随机接入。
第二种、当终端在连接态时,基站可以对终端发送的上行消息进行测量,为终端重新选择最优上行链路,并通过新的最优上行链路的资源进行上行调度,终端并不感知最优上行链路的切换。具体地,第一消息可以是信道探测参考信号(sounding reference signal,SRS)。
第三种、当终端在连接态时,基站可以对终端发送的上行消息进行测量,为终端重新选择最优上行链路,并向终端发送非竞争随机接入指示,指示终端进行最优上行链路的切换,终端能够感知最优上行链路的切换。具体地,第一消息可以是信道探测 参考信号(sounding reference signal,SRS)。
402、根据所述至少两个收发点接收到的第一消息对至少两个上行链路进行测量,根据所得的测量结果确定第一上行链路;所述第一上行链路为所述至少两个上行链路中测量结果最优的上行链路。
示例性的,所述至少两个上行链路为所述至少两个收发点与所述终端之间的通信链路。具体地,一条上行链路建立在基站的一个收发点和终端之间,所述至少两个收发点上可以建立至少两条不同的上行链路。对某个收发点接收到的第一消息进行测量,就可以了解到建立在该收发点上的上行链路的信道质量,对所有收发点接收到的第一消息进行测量,就可以了解到所有收发点上建立的上行链路的信道质量。进而,可以将信道质量最优(即测量结果最优)的上行链路确定为最优上行链路。
一种可能的实现方式中,对收发点接收到的第一消息进行测量可以是测量上行信号干扰噪声比(signal to interference plus noise ratio,SINR),根据获得的SINR确定信道质量最优的上行链路。示例的,在接收第一消息的所有收发点中,测量收发点A接收到的第一消息所得的SINR最大,可以认为建立在收发点A上的上行链路的信道质量最好,进而可以确定收发点A上建立的上行链路为新的最优上行链路。
403、通过第一下行链路向所述终端发送第二消息,所述第二消息用于所述终端通过所述第一上行链路进行上行通信。
示例的,本申请实施例所述的至少两个收发点包括第一收发点以及第二收发点,第一上行链路建立在第一收发点,第一下行链路建立在第二收发点;或,
本申请实施例所述的至少两个收发点包括第一收发点以及第三收发点,第一上行链路建立在第一收发点,第一下行链路建立在第二收发点,第三收发点是第二收发点对应的收发点。
具体地,在上下行耦合的场景中,即下行链路、下行链路对应的上行链路可以建立在相同的收发点。当前的最优下行链路(第一下行链路)建立在第二收发点,当前的最优上行链路也建立在第二收发点。为了比较不同收发点的测量结果,选出比当前的最优上行链路信道质量更优的上行链路。在步骤401中,第二收发点可以接收终端设备发送的第一消息,即所述至少两个收发点包括第一收发点和第一收发点。
示例的,基站有A、B两个收发点,基站根据终端的下行测量结果确定建立在收发点A(第二收发点)上的下行链路1为最优下行链路(第一下行链路),建立在收发点A上的上行链路1为当前的最优上行链路。在步骤401中,收发点A、B均接收终端发送的第一消息,在步骤402中基站确定新的最优上行链路为建立在收发点B(第一收发点)上的上行链路2(第一上行链路),基站在后续流程中通过上行链路2接收终端发送的上行消息。
另外,在上下行解耦的场景中,下行链路、下行链路对应的上行链路建立在不同的收发点。当前的最优下行链路(第一下行链路)建立在第二收发点,当前的最优上行链路建立在不同的收发点,例如第三收发点,为了比较不同收发点的测量结果,选出比当前的最优上行链路信道质量更优的上行链路。在步骤401中,第三收发点接收终端设备发送的第一消息,即所述至少两个收发点包括第一收发点和第三收发点。
示例的,SUL场景中,假设基站有A1、A2、B1、B2四个收发点,基站根据终端 的下行测量结果确定建立在收发点A1(第二收发点)上的下行链路1(第一下行链路)为最优下行链路,当前的最优上行链路为建立在收发点A2(第三收发点)的SUL1。在步骤401中,收发点A2、B1、B2均接收终端发送的第一消息,在步骤402中基站确定新的最优上行链路为建立在收发点B2(第一收发点)上的SUL2(第一上行链路),基站在后续流程中通过SUL2接收终端发送的上行消息。
具体实现中,基站可以通过以下方式确定最优下行链路:基站通过多个不同的收发点向终端发送下行参考消息,终端对来自不同收发点的下行参考消息进行测量获得不同下行链路对应的测量结果。终端还可以将获得的测量结果上报给基站,基站将测量结果最优的下行链路确定为最优下行链路。本申请实施例中的第一下行链路可以是上述最优下行链路。也就是说,基站和终端之间仍然通过先前确定的最优下行链路进行下行通信,通过最新确定的最优上行链路进行上行通信。
针对上述第一消息的三种不同的实现方式,第二消息也有三种不同的实现可能:
第一种、当终端在随机接入过程,基站可以对终端发送的上行消息进行测量,为终端重新选择最优上行链路。第一消息可以是Msg1,包括随机接入前导码。第二消息可以是Msg2,即随机接入响应。Msg2中包括为Msg3分配的时频资源的信息。为Msg3分配的时频资源可以是用于无线资源控制(radio resource control,RRC)连接建立请求的时频资源。
也就是说,第二消息包括用于RRC连接建立请求的时频资源的信息。用于RRC连接建立请求的时频资源属于第一时频资源,第一时频资源是为第一收发点配置的时频资源。可见,本申请实施例提供的方法可以为终端重新选择最优上行链路,终端可以在重新选择的最优上行链路上向基站回复随机接入响应,有利于提高通信性能。最优上行链路不一定是最优下行链路对应的上行链路,实现了上下行解耦,使得终端可以在信道质量实际最优的上行链路、下行链路上和基站进行通信。
可选的,基站还可以通过所述第一上行链路,接收所述终端利用所述用于RRC连接建立请求的时频资源发送的所述RRC连接建立请求。
第二种、当终端在连接态时,基站可以对终端发送的上行消息(例如,SRS)进行测量,为终端重新选择最优上行链路,并根据新的最优上行链路的资源进行上行调度。第二消息可以是物理下行控制信道(physical dowlink control Chanel,PDCCH),用于调度物理上行共享信道(physical uplink shared chanel,PUSCH)。
具体地,第二消息可以包括用于物理上行共享信道的时频资源的信息,所述用于物理上行共享信道的时频资源属于第一时频资源,第一时频资源是为第一收发点配置的时频资源。可见,本申请实施例提供的方法可以为终端重新选择最优上行链路,终端可以在重新选择的最优上行链路上向基站发送物理上行共享信道,有利于提高通信性能。最优上行链路不一定是最优下行链路对应的上行链路,实现了上下行解耦,使得终端可以在信道质量实际最优的上行链路、下行链路上和基站进行通信。
可选的,基站还可以通过所述第一上行链路,接收所述终端利用所述用于物理上行共享信道的时频资源发送的所述物理上行共享信道。
第三种、当终端在连接态时,基站可以对终端发送的SRS进行测量,为终端重新选择最优上行链路,并向终端发送非竞争随机接入指示,指示终端进行最优上行链路 的切换。非竞争随机接入指示包括随机接入前导码、用于随机接入前导码的时频资源的信息以及随机接入响应波束信息。随机接入响应波束信息用于指示发送随机接入响应的波束。
具体地,本申请实施例所述的第二消息可以是非竞争随机接入指示。用于随机接入前导码的时频资源属于第一时频资源,第一时频资源是为第一收发点配置的时频资源。可见,本申请实施例提供的方法可以为终端重新选择最优上行链路,终端可以在重新选择的最优上行链路上向基站发送随机接入前导码,接入新的最优上行链路,后续通过新的最优上行链路与接入网设备进行通信,有利于提高通信性能。最优上行链路不一定是最优下行链路对应的上行链路,实现了上下行解耦,使得终端可以在信道质量实际最优的上行链路、下行链路上和基站进行通信。
可选的,基站还可以通过所述第一上行链路,接收所述终端利用所述用于随机接入前导码的时频资源发送的所述随机接入前导码。
可选的,所述用于随机接入前导码的时频资源用于指示通过所述第一下行链路与所述终端进行下行通信。也就是说,基站可以在第一时频资源(即为第一收发点配置的时频资源)中为随机接入前导码分配指定的时频资源,一旦基站识别终端发送随机接入前导码的时频资源为指定的时频资源,则确定该终端的最优上行链路可能进行过切换,由于上下行链路信道质量有差异,该终端当前最优上行链路对应的下行链路不一定是信道质量最优的下行链路,基站仍基于第一下行链路和终端进行下行通信。
可选的,基站可以通过以下两种方式获取随机接入响应波束信息:
第一、基站可以指示终端确定随机接入响应波束信息,终端确定随机接入响应波束信息之后可以向基站上报随机接入响应波束信息。基站接收所述终端发送的所述随机接入响应波束信息,获取随机接入响应波束信息。
第二、基站可以根据所述终端的下行业务波束确定所述随机接入响应波束信息。具体地,基站根据下行业务波束在各个天线端口的加权值模拟下行业务波束的辐射方位,再将静态共享波束(static shared beam,SSB)波束中,与下行业务波束匹配度最高的SSB波束确定为随机接入响应波束。
需要说明的是,基站根据对第一消息的测量结果确定的最优上行链路也有可能是第一下行链路对应的上行链路。示例的,基站根据终端上报的下行测量结果确定最优下行链路为建立在收发点B上的下行链路2,通过对收发点A、B、C接收的第一消息分别进行测量,收发点B接收到的第一消息的强度最高,即建立在收发点B上的上行链路2的信道质量最优,因此,基站为终端选择的最优上行链路为下行链路2对应的上行链路,即上行链路2。
另外,图4所示的方法中,至少两个上行链路建立在同一个基站的不同收发点上。一种可能的实现方式中,上述至少两个上行链路也可以建立在不同基站的收发点上。例如,基站1与终端之间的最优下行链路建立在基站1的收发点A上,基站1通过收发点A、B接收终端发送的第一消息,基站2通过收发点E接收终端发送的第一消息。基站1对收发点A、B接收到的第一消息进行测量,基站2对收发点E接收到的第一消息进行测量,并将测量结果发送给基站1。基站1比较收发点A、B、E对应的测量结果,如果收发点E接收到的第一消息的信号强度最大,则确定终端的最优上行链路 为建立在收发点E的上行链路。基站1还可以通知基站2为收发点E分配时频资源,以供终端进行上行通信。
以下以5G通信系统为例,介绍本申请实施例提供的通信方法。5G通信系统中,支持上下行解耦(UL、DL Decoupling),网络侧根据终端下行测量的结果,选择信道质量最优的DL为UE的最优下行链路,并选择一个SUL作为UE的最优上行链路,通过广播消息通知UE该SUL的信息。该SUL为所述信道质量最优的DL对应的上行链路。实际上,作为最优上行链路的SUL的频点、天线,与上述最优下行链路的频点和天线不一致,导致SUL的信道质量和最优下行的信道质量可能并不一致。基于该SUL、最优下行链路进行上下行通信,极有可能影响通信性能。
本申请实施例提供一种通信方法,用于为初始随机接入过程中的UE选择最优上行链路。具体地,参考图5,所述方法包括以下步骤:
501、UE接入最优DL小区。
具体实现中,最优下行链路是基站根据终端的下行测量结果确定的信道质量最优的下行链路,最优DL小区为建立最优下行链路的收发点的覆盖小区。示例的,本申请实施例中基站有N个收发点,分别为收发点1、收发点2……收发点N,假设最优下行链路建立在收发点1,那么收发点1的覆盖小区为最优DL小区。
在步骤501中,UE接入收发点1的覆盖小区。UE接入最优DL小区后,可以通过最优下行链路与基站进行下行通信,接收基站发送的下行信息。
502、UE通过最优下行链路接收基站广播的系统消息。
需要说明的是,基站通过最优下行链路与UE进行下行通信,即基站通过收发点1广播系统消息,UE则可以通过最优下行链路接收到基站广播的系统消息。
另外,当多个终端均有向基站发送数据的需求时,不同终端之间会发生冲突碰撞。因此可以通过终端间竞争的随机接入,控制不同终端发送上行数据的时间,避免终端之间的冲突。
具体地,基站会广播系统消息,该系统消息包括物理随机接入信道(physical random access channel,PRACH)的时频信息、根序列索引号、以及循环移位(cyclic shift)等。示例性的,PRACH的时频信息用于终端发送PRACH,PRACH为承载随机接入前导码的信道。根序列索引号用于终端确定随机接入前导码(以下简称Preamble)。
503、UE根据系统消息发送Msg1(消息1),Msg1包括Preamble(随机接入前导码)。
具体实现中,UE可以通过PRACH向基站发送Msg1,Msg1即本申请实施例所述的第一消息。
另外,UE在系统消息中获取根序列号,根据根序列号确定一个Preamble,在PRACH的时频信息相应的时频资源上发送上述Preamble,以便终端发起随机接入过程。
504、基站通过多个收发点接收Msg1,并对每个收发点接收到的Msg1进行信号强度测量,根据多个收发点上的测量结果确定最优上行链路。
具体实现中,基站的最优上行小区、最优下行小区之间进行信息同步,以便根据最优上行链路的资源为Msg3分配时频资源。示例的,基站获取UE的下行测量结果,确定最优下行链路为下行链路1。参考图2,下行链路1建立在基站的天线1,是小区 A对应的下行链路。小区A接收其他小区发送的测量结果,汇总所有小区的测量结果,确定出最优上行链路。例如,图2所示的小区B、小区C均将测量结果发送给小区A,小区A确定小区B上报的测量结果最优,则确定小区B对应的上行链路2为最优上行链路。小区A可以通知小区B新确定的最优上行链路为上行链路2,小区B则可以将最优上行链路的时频资源(即为第一收发点配置的时频资源)的信息发送给小区A,小区A可以根据最优上行链路的时频资源确定Msg3的时频资源,并通过下行链路1向UE发送Msg2,通过Msg2指示Msg3的时频资源的信息。
需要说明的是,基站有多个收发点,每个收发点天线覆盖一个小区。基站通过多个收发点接收Msg1,即通过多个小区接收终端发送的Msg1。由于不同的收发点的覆盖不同,不同的上行链路的信道质量也会有差异,因此基站可以对各个收发点接收的Msg1进行测量,确定测量结果最优的收发点,即新的最优上行链路建立在该收发点上。其中,测量结果最优的收发点即测得的信号强度最高的收发点。
示例的,以基站的三个小区为例。对小区A对应的收发点1接收的Msg1进行测量,获得的信号强度是3dB;对小区B对应的收发点2接收的Msg1进行测量,获得的信号强度是5dB;对小区C对应的收发点3接收的Msg1进行测量,获得的信号强度是6dB。收发点3测量所得的信号强度最大,即为最优上行链路为建立在收发点3上的上行链路。
本申请实施例式中,基站根据上行测量结果确定的最优上行链路,可以和最优下行链路建立在相同的收发点,也可以和最优下行链路建立在不同的收发点。例如,参考图2,假设最优下行链路建立在基站的天线1,最优上行链路可以是建立在天线1的上行链路,也可以是建立在天线2或天线3的上行链路,本申请实施例对此不做限定,以上行测量结果为准。
505、基站通过最优下行链路向UE发送Msg2(消息2)。
其中,Msg2可以是随机接入响应消息(random access response,RAR),Msg2包括Msg3的时频资源的信息,所述Msg3可以是无线资源控制(radio resource control,RRC)连接建立请求,也可以是终端首次通过上行共享信道发送的数据(first scheduled UL transmission on UL-SCH)。终端首次通过上行共享信道发送的数据可以认为是终端在随机接入过程中初传的数据。Msg2可以是本申请实施例所述的第二消息。
需要说明的是,Msg3占用的时频资源属于第一时频资源(为第一收发点分配的时频资源)。第一收发点是建立新的最优上行链路的收发点,例如,在步骤504的相关示例中,第一收发点为收发点3。可见,本申请实施例中最优上行链路不再依赖于UE的下行测量结果,在上下行解耦的场景下,基站通过上行测量确定最优上行链路,可以不是最优下行链路对应的上行链路,即最优上行链路可以和最优下行链路建立在不同的收发点。UE可以在信道质量实际最优的上行链路上进行上行通信,在信道质量实际最优的下行链路上进行下行通信,保证通信系统的性能。
506、UE通过最优上行链路发送Msg3(消息3)。
假设基站在步骤504确定的最优上行链路为建立在收发点N的上行链路,则步骤506中UE向基站发送Msg3,基站通过收发点N接收来自终端的Msg3。Msg3可以用于请求基站为UE建立RRC连接。
507、根据协议完成后续接入流程。
例如,基站向UE发送Msg4,Msg4可以是RRC连接建立请求的确认消息。
本申请实施例提供的方法中,基站通过多个上行链路进行随机接入信息(Preamble)的检测,汇总多个上行链路的测量结果,根据测量结果确定最优上行链路。初始接入场景下,可以为UE选择实际信道质量最优的上行链路,使得UE可以在信道质量实际最优的上行链路上进行上行通信,在信道质量实际最优的下行链路上进行下行通信,保证通信系统的性能。
本申请实施例还提供一种通信方法,用于为连接态的UE选择最优上行链路。具体地,参考图6,所述方法包括以下步骤:
601、基站通过多个收发点接收UE发送的SRS。
具体实现中,基站的多个收发点可以同时接收所述UE发送的SRS,不同的收发点上建立了不同的上行链路。所述SRS可以是本申请实施例所述的第一消息。
602、基站对各个收发点接收到的SRS进行信号强度检测,并结合检测结果以及小区负载确定最优上行链路。
具体地,各个收发点接收到SRS之后,可以分别对接收到的SRS进行信号强度测量,并基于测量结果确定最优上行链路。具体地,可以设置信号强度和小区负载的权重系数,并将加权结果最大的上行链路确定为最优上行链路。示例的,根据a*X+b*Y确定加权结果,示例性的,X代表信号强度,a是信号强度的权重系数,Y代表小区负载,b是小区负载的权重系数。小区负载指的是上行链路对应的小区的负载。
参考图2,下行链路1建立在基站的收发点1(例如,天线1),是小区A对应的下行链路。收发点1接收其他小区发送的加权结果,汇总所有小区的加权结果,确定出最优上行链路。例如,基站的收发点2、收发点3均将加权结果发送给小区A,收发点1确定收发点2上报的加权结果最优,则确定收发点2对应的上行链路2为最优上行链路。
603、基站将原最优上行链路维护的用户信息同步到新确定的最优上行小区,实现网络侧的上行小区切换。
需要说明的是用户信息包含物理小区标识(physical cell ID,PCI)、小区无线网络临时标识(cell radio network temporary identifier,C-RNTI)、L2(Layer2)调度信息等。示例的,基站获取UE的下行测量结果,确定最优下行链路为下行链路1。参考步骤602的示例,原最优上行链路为最优下行链路对应的上行链路,即上行链路1。小区A可以维护的用户信息发送给小区B,以便将最优上行小区切换为小区B。
另外,最优上行链路、最优上行小区是对应的,确定了最优上行链路也就确定了最优上行小区。可以理解的是,假设最优上行链路建立在收发点2(例如基站的天线2),那么最优上行小区为天线2的覆盖小区。
604、基站判断所述UE的PUCCH资源和SRS资源是否与新的最优上行链路的UE存在冲突。
新的最优上行链路的UE可以认为是新的最优上行链路(上行小区)下覆盖的UE。另外,基站还可以通过最优上行链路接收其他UE发送的PUCCH和SRS,如果所述UE的PUCCH资源、SRS资源与其他UE的PUCCH资源、SRS资源存在冲突,不同 UE之间的上行消息会产生干扰,网络性能下降。为了避免不同UE之间的上行干扰,则可以为所述UE重新分配PUCCH资源、SRS资源。
也就是说,若基站确定存在冲突,则执行步骤604a,为UE重新配置PUCCH资源和SRS资源。若不存在冲突,则跳过步骤604a,直接执行步骤605,通过下行控制消息(downlink control information,DCI)进行上行调度。
604a、基站向所述UE发送RRC消息,进行PUCCH资源、SRS资源的重配。
具体实现中,RRC消息中可以包括为所述UE重配的PUCCH资源、SRS资源。另外,基站通过先前确定的最优下行链路向UE发送RRC消息,例如,基站根据UE下行测量结果确定最优下行链路为建立在收发点1上的下行链路1,在步骤604a中,则通过收发点1向UE发送RRC消息。
605、基站通过最优下行链路向所述UE发送DCI,进行PUSCH、PUCCH和SRS的调度。
具体实现中,基站通过先前确定的最优下行链路向UE发送DCI,例如,基站根据UE下行测量结果确定最优下行链路为建立在收发点1上的下行链路1,在步骤605中,则通过收发点1向UE发送DCI。
基站向所述UE发送DCI,所述DCI指示了PUSCH的时频资源信息、PUCCH的时频资源信息和SRS的时频资源信息。所述DCI可以是本申请实施例所述的第二消息。其中,PUSCH的时频资源属于为第一收发点配置的时频资源。示例性的,第一收发点为建立最新的最优上行链路的收发点,参考步骤602的示例,最优上行链路建立在基站的收发点2上。
本申请实施例中,基站通过多个上行链路同时进行SRS的接收、检测,根据检测到的信号强度/负载等因素确定最优上行链路。基站通过最优下行链路下发新的最优UL链路的调度结果(DCI),UE不感知上行链路的变化(,根据DCI进行上行PUSCH的发送,基站通过新的最优上行链路进行上行接收。在连接态下,可以为UE选择实际信道质量最优的上行链路,使得UE可以在信道质量实际最优的上行链路上进行上行通信,在信道质量实际最优的下行链路上进行下行通信,保证通信系统的性能。
本申请实施例还提供一种通信方法,用于为连接态的UE选择最优上行链路。具体地,参考图7,所述方法包括以下步骤:
701、基站通过多个收发点接收UE发送的SRS,对各个收发点接收到的SRS进行信号强度检测,并结合检测结果以及小区负载确定最优上行链路。
具体实现中,基站的多个收发点可以同时接收所述UE发送的SRS,不同的收发点用于建立不同的上行链路。所述SRS可以是本申请实施例所述的第一消息。
具体实现参考步骤602的介绍,在此不作赘述。
702、基站获取Preamble资源和RAR波束后,通过最优下行链路向UE下发非竞争随机接入指示消息。
最优下行链路是基站根据终端的下行测量结果确定的信道质量最优的下行链路,最优DL小区对应的基站收发点用于建立最优下行链路。本申请实施例中基站有N个收发点,分别为收发点1、收发点2……收发点N,假设最优下行链路建立在收发点1,那么基站在步骤702中可以通过收发点1发送非竞争随机接入指示消息。
需要说明的是,非竞争随机接入指示消息可以是本申请实施例所述的第二消息,包括随机接入前导码、随机接入前导码的时频资源信息以及随机接入响应波束信息。示例性的,所述随机接入前导码占用的时频资源属于为第一收发点配置的时频资源。示例性的,第一收发点为建立最新的最优上行链路的收发点,参考步骤602的示例,最优上行链路建立在基站的收发点2上。
具体实现中,基站可以接收UE上报的随机接入响应波束信息,或者根据终端的下行业务波束确定所述随机接入响应波束信息。
另外,基站为Preamble分配指定的时频资源,以便根据Preamble的资源识别UE的最优上行链路发生了切换。
703、UE根据非竞争随机指示接入最优上行小区,发起随机接入。
需要说明的是,建立最优上行链路的收发点的覆盖小区可以称为最优上行小区。假设基站在步骤701确定的最优上行链路为建立在收发点N的上行链路,则步骤703中UE接入收发点N的覆盖小区。
704、基站根据Preamble的时频资源识别UE,并通过原最优下行链路下发RAR,完成接入和载波切换。
需要说明的是,原最优下行链路是基站根据终端的下行测量结果确定的信道质量最优的下行链路。如果基站识别出UE发送Preamble的时频资源为指定的时频资源,则可以确定UE的最优上行链路可能已经切换,与最优上行链路不再是对应关系。先前确定的最优下行链路仍为信道质量最优的下行链路,基站后续仍通过原最优下行链路与UE进行下行通信。
在采用对应各个功能划分各个功能模块的情况下,图8示出上述实施例中所涉及的通信装置的一种可能的结构示意图。图8所示的通信装置可以是本申请实施例所述的接入网设备,也可以是接入网设备中实现上述方法的部件,或者,也可以是应用于接入网设备中的芯片。所述芯片可以是片上系统(System-On-a-Chip,SOC)或者是具备通信功能的基带芯片等。如图8所示,通信装置包括处理单元801以及通信单元802。处理单元可以是一个或多个处理器,通信单元可以是收发器。
处理单元801,用于支持接入网设备执行步骤402、步骤504、步骤602~604,和/或用于本文所描述的技术的其它过程。
通信单元802,用于支持该通信装置与其他通信装置之间的通信,例如,支持接入网设备执行步骤401、步骤403、步骤502、步骤503、步骤505、步骤601、步骤604a以及步骤605,和/或用于本文所描述的技术的其它过程。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
示例性的,在采用集成的单元的情况下,本申请实施例提供的通信装置的结构示意图如图9所示。在图9中,该通信装置包括:处理模块901和通信模块902。处理模块901用于对通信装置的动作进行控制管理,例如,执行上述处理单元801执行的步骤,和/或用于执行本文所描述的技术的其它过程。通信模块902用于执行上述通信单元802执行的步骤,支持通信装置与其他设备之间的交互,如与其他终端装置之间的交互。如图9所示,通信装置还可以包括存储模块903,存储模块903用于存储通 信装置的程序代码和数据。
当处理模块901为处理器,通信模块902为收发器,存储模块903为存储器时,通信装置为图3所示的通信装置。
本申请实施例提供一种计算机可读存储介质,计算机可读存储介质中存储有指令;指令用于执行如图4~图7所示的通信方法。
本申请实施例提供一种包括指令的计算机程序产品,当其在通信装置上运行时,使得通信装置执行如如图4~图7所示的通信方法。
本申请实施例一种无线通信装置,包括:无线通信装置中存储有指令;当无线通信装置在图3、图8、图9所示的通信装置上运行时,使得通信装置执行如如图4~图7所示的通信方法。该无线通信装置可以为芯片。
本申请实施例还提供一种通信系统,包括:终端以及接入网设备。示例性的,终端可以是图3、图8、图9所示的通信装置,接入网设备可以是图3、图8、图9所示的通信装置。
示例的,所述终端用于向接入网设备发送第一消息;
所述接入网设备可以通过至少两个收发点接收第一消息,根据至少两个收发点接收到的第一消息对至少两个上行链路进行测量,根据所得的测量结果确定第一上行链路;通过第一下行链路向终端发送第二消息,第二消息用于终端通过第一上行链路进行上行通信;第一上行链路为至少两个上行链路中测量结果最优的上行链路,至少两个上行链路为至少两个收发点与终端之间的通信链路;
一种可能的实现方式中,所述至少两个收发点包括第一收发点以及第二收发点,第一上行链路建立在第一收发点,第一下行链路建立在第二收发点;或者,
另一种可能的实现方式中,所述至少两个收发点包括第一收发点以及第三收发点,第一上行链路建立在第一收发点,第一下行链路建立在第二收发点,第三收发点是第二收发点对应的收发点。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将数据库访问装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的数据库访问装置和方法,可以通过其它的方式实现。例如,以上所描述的数据库访问装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,数据库访问装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (21)

  1. 一种通信方法,其特征在于,包括:
    通过至少两个收发点接收来自终端的第一消息;
    根据所述至少两个收发点接收到的第一消息对至少两个上行链路进行测量,根据所得的测量结果确定第一上行链路;所述第一上行链路为所述至少两个上行链路中测量结果最优的上行链路,所述至少两个上行链路为所述至少两个收发点与所述终端之间的通信链路;
    通过第一下行链路向所述终端发送第二消息,所述第二消息用于所述终端通过所述第一上行链路进行上行通信;
    所述至少两个收发点包括第一收发点以及第二收发点,所述第一上行链路建立在所述第一收发点,所述第一下行链路建立在所述第二收发点;或,
    所述至少两个收发点包括第一收发点以及第三收发点,所述第一上行链路建立在所述第一收发点,所述第一下行链路建立在第二收发点,所述第三收发点是所述第二收发点对应的收发点。
  2. 根据权利要求1所述的方法,其特征在于,所述第一消息包括随机接入前导码,用于所述终端进行随机接入;
    所述第二消息包括用于无线资源控制RRC连接建立请求的时频资源的信息,所述用于RRC连接建立请求的时频资源属于第一时频资源,所述第一时频资源是为所述第一收发点配置的时频资源。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    通过所述第一上行链路,接收所述终端利用所述用于RRC连接建立请求的时频资源发送的所述RRC连接建立请求。
  4. 根据权利要求1所述的方法,其特征在于,所述第一消息包括信道探测参考信号SRS;
    所述第二消息包括用于物理上行共享信道的时频资源的信息,所述用于物理上行共享信道的时频资源属于第一时频资源,所述第一时频资源是为所述第一收发点配置的时频资源。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    通过所述第一上行链路,接收所述终端利用所述用于物理上行共享信道的时频资源发送的所述物理上行共享信道。
  6. 根据权利要求1所述的方法,其特征在于,所述第一消息包括SRS;
    所述第二消息包括随机接入前导码、用于随机接入前导码的时频资源的信息以及随机接入响应波束信息;所述用于随机接入前导码的时频资源属于第一时频资源,所述第一时频资源是为所述第一收发点配置的时频资源,所述随机接入响应波束信息用于指示发送随机接入响应的波束。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    通过所述第一上行链路,接收所述终端利用所述用于随机接入前导码的时频资源发送的所述随机接入前导码。
  8. 根据权利要求7所述的方法,其特征在于,所述用于随机接入前导码的时频资 源用于指示通过所述第一下行链路与所述终端进行下行通信。
  9. 根据权利要求6-8任一项所述的方法,其特征在于,所述方法还包括:接收所述终端发送的所述随机接入响应波束信息;或,
    根据所述终端的下行业务波束确定所述随机接入响应波束信息。
  10. 一种通信装置,其特征在于,包括:
    通信单元,用于通过至少两个收发点接收来自终端的第一消息;
    处理单元,用于根据所述至少两个收发点接收到的第一消息对至少两个上行链路进行测量,根据所得的测量结果确定第一上行链路;所述第一上行链路为所述至少两个上行链路中测量结果最优的上行链路,所述至少两个上行链路为所述至少两个收发点与所述终端之间的通信链路;
    所述通信单元还用于,通过第一下行链路向所述终端发送第二消息,所述第二消息用于所述终端通过所述第一上行链路进行上行通信;
    所述至少两个收发点包括第一收发点以及第二收发点,所述第一上行链路建立在所述第一收发点,所述第一下行链路建立在所述第二收发点;或,
    所述至少两个收发点包括第一收发点以及第三收发点,所述第一上行链路建立在所述第一收发点,所述第一下行链路建立在第二收发点,所述第三收发点是所述第二收发点对应的收发点。
  11. 根据权利要求10所述的通信装置,其特征在于,所述第一消息包括随机接入前导码,用于所述终端进行随机接入;
    所述第二消息包括用于无线资源控制RRC连接建立请求的时频资源的信息,所述用于RRC连接建立请求的时频资源属于第一时频资源,所述第一时频资源是为所述第一收发点配置的时频资源。
  12. 根据权利要求11所述的通信装置,其特征在于,所述通信单元具体用于,通过所述第一上行链路,接收所述终端利用所述用于RRC连接建立请求的时频资源发送的所述RRC连接建立请求。
  13. 根据权利要求10所述的通信装置,其特征在于,所述第一消息包括信道探测参考信号SRS;
    所述第二消息包括用于物理上行共享信道的时频资源的信息,所述用于物理上行共享信道的时频资源属于第一时频资源,所述第一时频资源是为所述第一收发点配置的时频资源。
  14. 根据权利要求13所述的通信装置,其特征在于,所述通信单元具体用于,通过所述第一上行链路,接收所述终端利用所述用于物理上行共享信道的时频资源发送的所述物理上行共享信道。
  15. 根据权利要求10所述的通信装置,其特征在于,所述第一消息包括SRS;
    所述第二消息包括随机接入前导码、用于随机接入前导码的时频资源的信息以及随机接入响应波束信息;所述用于随机接入前导码的时频资源属于第一时频资源,所述第一时频资源是为所述第一收发点配置的时频资源,所述随机接入响应波束信息用于指示发送随机接入响应的波束。
  16. 根据权利要求15所述的通信装置,其特征在于,所述通信单元具体用于,通 过所述第一上行链路,接收所述终端利用所述用于随机接入前导码的时频资源发送的所述随机接入前导码。
  17. 根据权利要求16所述的通信装置,其特征在于,所述用于随机接入前导码的时频资源用于指示通过所述第一下行链路与所述终端进行下行通信。
  18. 根据权利要求15-17任一项所述的通信装置,其特征在于,所述通信单元还用于,接收所述终端发送的所述随机接入响应波束信息;或,
    所述处理单元还用于,根据所述终端的下行业务波束确定所述随机接入响应波束信息。
  19. 一种通信装置,其特征在于,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,其特征在于,所述处理器执行所述程序时实现权利要求1-9中任一项所述的通信方法。
  20. 一种计算机可读存储介质,其特征在于,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1-9中任一项所述的通信方法。
  21. 一种计算机程序产品,其特征在于,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1-9中任一项所述的通信方法。
PCT/CN2020/091785 2019-05-23 2020-05-22 一种通信方法及通信装置 WO2020233701A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20809515.8A EP3965457A4 (en) 2019-05-23 2020-05-22 Communication method and communication apparatus
US17/532,541 US20220086666A1 (en) 2019-05-23 2021-11-22 Communication Method and Communication Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910436156.7 2019-05-23
CN201910436156.7A CN110324842B (zh) 2019-05-23 2019-05-23 一种通信方法及通信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/532,541 Continuation US20220086666A1 (en) 2019-05-23 2021-11-22 Communication Method and Communication Apparatus

Publications (1)

Publication Number Publication Date
WO2020233701A1 true WO2020233701A1 (zh) 2020-11-26

Family

ID=68119299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/091785 WO2020233701A1 (zh) 2019-05-23 2020-05-22 一种通信方法及通信装置

Country Status (4)

Country Link
US (1) US20220086666A1 (zh)
EP (1) EP3965457A4 (zh)
CN (1) CN110324842B (zh)
WO (1) WO2020233701A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023085982A1 (en) * 2021-11-09 2023-05-19 Telefonaktiebolaget Lm Ericsson (Publ) Measurement configuration for active trp measurement sets

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110324842B (zh) * 2019-05-23 2021-10-15 华为技术有限公司 一种通信方法及通信装置
CN113316266B (zh) * 2021-05-28 2023-04-07 成都蒙特斯科技有限公司 一种基于5g网络的音视频流传输方法及系统
WO2023206272A1 (zh) * 2022-04-28 2023-11-02 富士通株式会社 波束信息的发送和接收方法、装置和通信系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101944940A (zh) * 2009-07-08 2011-01-12 中兴通讯股份有限公司 一种移动终端的天线选择方法及装置
US20120327872A1 (en) * 2011-06-22 2012-12-27 Samsung Electronics Co., Ltd. Apparatus and method for network entry in a wireless communication system
CN104285385A (zh) * 2012-05-10 2015-01-14 三星电子株式会社 在通信系统中执行波束成形的方案
CN108235444A (zh) * 2016-12-12 2018-06-29 北京三星通信技术研究有限公司 随机接入的方法及基站设备、用户设备
CN110324842A (zh) * 2019-05-23 2019-10-11 华为技术有限公司 一种通信方法及通信装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7573851B2 (en) * 2004-12-07 2009-08-11 Adaptix, Inc. Method and system for switching antenna and channel assignments in broadband wireless networks
US7756099B2 (en) * 2007-07-13 2010-07-13 Mitsubishi Electric Research Laboratories, Inc. Method and system for selecting antennas adaptively in OFDMA networks
WO2014069781A1 (ko) * 2012-11-01 2014-05-08 엘지전자 주식회사 무선 통신 시스템에서 간섭 사용자기기를 식별하기 위한 방법 및 이를 위한 장치
CN108886813B (zh) * 2016-04-15 2022-09-27 上海诺基亚贝尔股份有限公司 用于基站的方法、用于用户设备的方法、基站、以及用户设备
US10574565B2 (en) * 2016-08-22 2020-02-25 Qualcomm Incorporated Event trigger for independent links
KR102616419B1 (ko) * 2016-10-12 2023-12-21 삼성전자주식회사 무선 통신 시스템에서 안테나 구성에 기반한 빔 탐색 장치 및 방법
CN108282894B (zh) * 2017-01-06 2020-07-07 中国移动通信有限公司研究院 一种小区接入的方法、基站及终端
US11108513B2 (en) * 2017-02-10 2021-08-31 Lg Electronics Inc. Method for terminal and base station including multiple transmission and reception points (TRP) to transmit/receive signals in wireless communication system, and device therefor
US20190103908A1 (en) * 2017-10-02 2019-04-04 Mediatek Inc. Method for Uplink Beam Indication for Wireless Communication System with Beamforming
EP3836651A4 (en) * 2018-08-07 2022-04-27 Mitsubishi Electric Corporation COMMUNICATION SYSTEM, COMMUNICATION TERMINAL AND BASE STATION
US11025457B2 (en) * 2018-09-27 2021-06-01 Mediatek Inc. Enhancements on QCL frameworks for multiple TRP operation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101944940A (zh) * 2009-07-08 2011-01-12 中兴通讯股份有限公司 一种移动终端的天线选择方法及装置
US20120327872A1 (en) * 2011-06-22 2012-12-27 Samsung Electronics Co., Ltd. Apparatus and method for network entry in a wireless communication system
CN104285385A (zh) * 2012-05-10 2015-01-14 三星电子株式会社 在通信系统中执行波束成形的方案
CN108235444A (zh) * 2016-12-12 2018-06-29 北京三星通信技术研究有限公司 随机接入的方法及基站设备、用户设备
CN110324842A (zh) * 2019-05-23 2019-10-11 华为技术有限公司 一种通信方法及通信装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AT&T: "NR Random Access Procedure Design", 3GPP DRAFT; R1-1612362 NR-RANDOMACCESS, vol. RAN WG1, 5 November 2016 (2016-11-05), Reno, USA, pages 1 - 5, XP051190420 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023085982A1 (en) * 2021-11-09 2023-05-19 Telefonaktiebolaget Lm Ericsson (Publ) Measurement configuration for active trp measurement sets

Also Published As

Publication number Publication date
EP3965457A4 (en) 2022-06-29
CN110324842B (zh) 2021-10-15
EP3965457A1 (en) 2022-03-09
CN110324842A (zh) 2019-10-11
US20220086666A1 (en) 2022-03-17

Similar Documents

Publication Publication Date Title
US20200163074A1 (en) Beam selection method and device
WO2020233701A1 (zh) 一种通信方法及通信装置
KR102169667B1 (ko) 장치 대 장치 간 통신을 위한 네트워크-보조 다중-셀 장치 디스커버리 프로토콜
KR102506241B1 (ko) 빔포밍 기반의 연결된 모드 핸드오버에 대한 랜덤 액세스를 수행하는 사용자 장치(ue) 및 방법
US20140335882A1 (en) Method for configuring dual connectivity
US20210274513A1 (en) Uplink determining method and apparatus
KR20130135696A (ko) 클라우드 셀 통신 시스템에서 네트워크 진입 절차 수행 장치 및 방법
WO2020078318A1 (zh) 通信方法及装置
US11510276B2 (en) Low latency beam alignment
WO2017144012A1 (zh) 一种信号传输方法、终端和网络侧设备
TWI732508B (zh) 用於候選波束偵測之方法及用戶設備
EP3695641B1 (en) Active coordination set for mobility management
WO2020192333A1 (zh) 测量方法、通信装置及存储介质
JP2023514245A (ja) Ul位置決めのための基準信号送信時のビームスイープ
KR20160068844A (ko) D2d 발견 신호의 송신 방법과 송신 장치
JP2023513261A (ja) 通信方法および通信装置
WO2023050472A1 (zh) 用于寻呼的方法和装置
US20220385428A1 (en) Signal quality information obtaining method, device, and system
JP2018538743A (ja) ユーザ機器、サービング基地局並びにユーザ機器及びサービング基地局のための方法
EP4185029A1 (en) Information processing method, terminal device, and network device
US11044701B2 (en) Communication method and communication apparatus
JP6992180B2 (ja) Nrアップリンク(ul)キャリアである第1のulキャリアと補助アップリンク(sul)キャリアである第2のulキャリアとを含むnrセルであるターゲットセルへのハンドオーバ
EP4002912A1 (en) Beam failure recovery method and device
US20240015735A1 (en) Application layer preemptive scheduling requests for ultra-low latency
EP4184968A1 (en) Random access resource selection method and related device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20809515

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020809515

Country of ref document: EP

Effective date: 20211202