WO2021031700A1 - 谐振器及其制造方法、滤波器、电子设备 - Google Patents

谐振器及其制造方法、滤波器、电子设备 Download PDF

Info

Publication number
WO2021031700A1
WO2021031700A1 PCT/CN2020/098836 CN2020098836W WO2021031700A1 WO 2021031700 A1 WO2021031700 A1 WO 2021031700A1 CN 2020098836 W CN2020098836 W CN 2020098836W WO 2021031700 A1 WO2021031700 A1 WO 2021031700A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
cap layer
substrate
resonator
manufacturing
Prior art date
Application number
PCT/CN2020/098836
Other languages
English (en)
French (fr)
Inventor
黄河
向阳辉
Original Assignee
中芯集成电路(宁波)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中芯集成电路(宁波)有限公司 filed Critical 中芯集成电路(宁波)有限公司
Publication of WO2021031700A1 publication Critical patent/WO2021031700A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/0296Surface acoustic wave [SAW] devices having both acoustic and non-acoustic properties
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1064Mounting in enclosures for surface acoustic wave [SAW] devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material

Definitions

  • the embodiments of the present invention relate to the field of semiconductor manufacturing, in particular to a resonator, a manufacturing method thereof, a filter, and an electronic device.
  • RF (Radio Frequency) filters are usually used to pass or block specific frequencies or frequency bands in RF signals.
  • RF filters used in communication terminals are required to achieve multi-band and multi-standard communication technology requirements.
  • RF filters in communication terminals are required to continue to develop in the direction of miniaturization and integration. Each frequency band uses one or more RF filters.
  • the main indicators of RF filters include quality factor Q and insertion loss. As the frequency difference between different frequency bands becomes smaller and smaller, the RF filter needs to be very selective, allowing signals in the frequency band to pass and blocking signals outside the frequency band. The larger the Q value, the narrower the passband bandwidth of the RF filter can be achieved, thereby achieving better selectivity.
  • the problem solved by the embodiments of the present invention is to provide a resonator, a manufacturing method thereof, a filter, and an electronic device, which can reduce the complexity of the manufacturing process while improving the reliability of the resonator.
  • an embodiment of the present invention provides a method for manufacturing a resonator, including: providing a wafer-level substrate, the substrate includes a piezoelectric oscillation effective area, the piezoelectric oscillation effective area is formed on the substrate There is an acoustic transducer; a sacrificial layer is formed on the substrate in the piezoelectric oscillation effective area, the sacrificial layer covers the acoustic transducer; a first cap layer covering the sacrificial layer is formed; At least one release hole is formed in the first cap layer, and the release hole exposes the sacrificial layer; the sacrificial layer is removed through the release hole to form a cavity; after the sacrificial layer is removed, a cover is formed to cover the first A second cap layer of the cap layer, and the second cap layer seals the release hole.
  • an embodiment of the present invention also provides a resonator, including: a substrate, the substrate including a piezoelectric oscillation effective area; an acoustic transducer, located on the substrate of the piezoelectric oscillation effective area; first A cap layer, covering the substrate, the first cap layer and the substrate of the piezoelectric oscillation effective region enclose a cavity, the cavity is used to accommodate the acoustic transducer; at least one release hole, The release hole penetrates the first cap layer above the substrate of the piezoelectric oscillation effective area, and the release hole communicates with the cavity; the second cap layer covers and seals the first cap layer The release hole.
  • an embodiment of the present invention also provides a filter including the aforementioned resonator.
  • an embodiment of the present invention also provides an electronic device including the aforementioned filter.
  • the technical solution of the embodiment of the present invention has the following advantages: the embodiment of the present invention forms a sacrificial layer covering the acoustic transducer in the piezoelectric oscillation effective area, and subsequently forms a first cap layer with a release hole, The sacrificial layer is removed through the release hole to form a cavity; compared with the solution of using a packaging process to form a cavity, the embodiment of the present invention adopts a semiconductor process to form the cavity to form the sacrificial layer and remove
  • the process of the sacrificial layer is simple, which correspondingly reduces the process complexity of manufacturing the resonator, and the bonding strength of the first cap layer and the substrate is high, the bonding strength of the second cap layer and the first cap layer is high, and
  • the first cap layer and the second cap layer have better sealing to the cavity, which correspondingly improves the reliability of the resonator; in summary, the manufacturing method according to the embodiment of the present invention improves the reliability of the resonator
  • 1 to 8 are schematic diagrams of the structure corresponding to each step in the first embodiment of the manufacturing method of the resonator of the present invention.
  • 9 to 12 are schematic diagrams of the structure corresponding to each step in the second embodiment of the manufacturing method of the resonator of the present invention.
  • Fig. 13 is a schematic structural diagram of an embodiment of a resonator of the present invention.
  • Fig. 14 is a schematic structural diagram of another embodiment of a resonator of the present invention.
  • FIG. 15 is a schematic structural diagram corresponding to another embodiment of a resonator of the present invention.
  • the package that realizes the resonator is mainly formed by packaging process, and the cavity is formed at the same time, for example, metal cap technology, chip sized SAW package (CSSP) technology or chip sized SAW package (die sized SAW). package, DSSP) technology, etc.
  • CSSP chip sized SAW package
  • DSSP chip sized SAW package
  • the metal cap technology fixes the metal cover on the substrate, so that the metal cover and the substrate surround the cavity, and the cavity is used to accommodate the acoustic transducer.
  • the metal cover is usually fixed on the substrate by dispensing or tin plating.
  • the adhesive used in the dispensing process will easily flow into the cavity before curing, which will affect the acoustic transducer; when the tin plating method is used, it will melt during the reflow soldering process. The latter tin also easily flows downstream into the cavity.
  • the above two situations are likely to cause the performance of the resonator to fail.
  • the above-mentioned method requires high flatness of the substrate and the metal cover, the bonding force between the metal cover and the substrate is poor, and it is difficult to ensure the sealing of the cavity, thereby reducing the reliability and performance consistency of the vibrator.
  • an embodiment of the present invention provides a method for manufacturing a resonator, including: providing a wafer-level substrate, the substrate including a piezoelectric oscillation effective area, and a substrate for the piezoelectric oscillation effective area An acoustic transducer is formed thereon; a sacrificial layer is formed on the substrate in the piezoelectric oscillation effective area, the sacrificial layer covers the acoustic transducer; a first cap layer covering the sacrificial layer is formed; At least one release hole is formed in the first cap layer, and the release hole exposes the sacrificial layer; the sacrificial layer is removed through the release hole to form a cavity; after the sacrificial layer is removed, the sacrificial layer is formed to cover the The second cap layer of the first cap layer, and the second cap layer seals the release hole.
  • the sacrificial layer is removed through the release hole to form a cavity; compared with the solution of forming the cavity by using a packaging process, the embodiment of the present invention uses a semiconductor process to form the cavity to form the sacrificial layer
  • the process of removing the sacrificial layer is simple, which correspondingly reduces the process complexity of manufacturing the resonator, and the bonding strength between the first cap layer and the substrate is high, and the bonding strength between the second cap layer and the first cap layer is high,
  • the first cap layer and the second cap layer have better sealing performance to the cavity, which correspondingly improves the reliability of the resonator; in summary, the manufacturing method according to the embodiment of the present invention improves the resonator At the same time of reliability, the complexity of the manufacturing process is reduced.
  • 1 to 8 are schematic diagrams of the structure corresponding to each step in the first embodiment of the manufacturing method of the resonator of the present invention.
  • a wafer-level substrate 100 is provided.
  • the substrate 100 includes a piezoelectric oscillation effective region 100s, and an acoustic transducer 200 is formed on the substrate 100 of the piezoelectric oscillation effective region 100s.
  • the substrate 100 is used to provide a process platform for the subsequent formation of resonators.
  • a resonator refers to a device that generates a resonant frequency.
  • the substrate 100 is a wafer-level substrate 100.
  • the substrate 100 includes a piezoelectric oscillation effective area 100s, the piezoelectric oscillation effective area 100s is a working area of the resonator for implementing a filtering function, and a cavity is subsequently formed in the piezoelectric oscillation effective area 100s.
  • the substrate 100 is a wafer-level substrate 100. Therefore, the substrate 100 includes a plurality of isolated piezoelectric oscillation effective regions 100s.
  • SAW resonator is a special filter device made of the physical characteristics of piezoelectric effect and surface acoustic wave propagation.
  • the signal undergoes electrical-acoustic-electrical conversion twice to achieve frequency-selective characteristics.
  • SAW resonators have the advantages of high operating frequency, simple manufacturing process, low manufacturing cost, and high frequency characteristic consistency. Therefore, they are widely used in various electronic devices.
  • the substrate 100 is a piezoelectric substrate (piezoelectric substrate substrate), so that subsequent resonators can use the piezoelectric effect for filtering.
  • the material of the substrate 100 is lithium niobate (LiNbO3), lithium tantalate (LiTaO3), quartz or piezoelectric ceramics.
  • lithium niobate or lithium tantalate can provide a very high electromechanical coupling coefficient, and can be used to manufacture filters that exhibit a relative bandwidth of about 50%.
  • the acoustic transducer 200 is used to realize the mutual conversion between the electric signal and the acoustic signal, so that the resonator can filter the signal.
  • the acoustic transducer 200 is an acoustic transducer with a piezoelectric structure.
  • the formed resonator is a SAW resonator. Therefore, the acoustic transducer 200 is a metal interdigital transducer (interdigital transducer). transducers, IDT).
  • IDT includes two sets of interdigital electrodes with energy conversion function, namely input interdigital transducer and output interdigital transducer.
  • the input interdigital transducer When the input interdigital transducer receives electrical signals (electrical signal), the surface of the piezoelectric substrate will vibrate and excite an acoustic wave of the same frequency as the external signal.
  • the acoustic wave propagates along the direction of the piezoelectric substrate surface, and a part of the acoustic wave is transmitted to the output interdigital transducer.
  • the output interdigital transducer converts mechanical vibrations into electrical signals, and the output interdigital transducer outputs.
  • the material of the interdigital electrode includes one or more of Mo, Al, Pt, W, Au, Al, Ni, and Ag.
  • the interdigital electrode is an interdigital aluminum electrode.
  • a metal film is vapor-deposited on the substrate 100, and the metal film is patterned through photolithography and etching processes to form the acoustic transducer 200.
  • the substrate 100 further includes a peripheral area 100e surrounding the piezoelectric oscillation effective area 100s, and the peripheral area 100e corresponds to the piezoelectric oscillation effective area 100s one-to-one.
  • a connecting terminal 110 is formed on the substrate 100 of the peripheral area 100 e, and the connecting terminal 110 is electrically connected to the acoustic transducer 200.
  • the connection terminal 110 serves as an input/output (I/O) terminal of the acoustic transducer 200.
  • two connecting terminals 110 are formed on the substrate 100, one of which is electrically connected to the input interdigital transducer, and the other One connecting terminal 110 is electrically connected to the output interdigital transducer.
  • the manufacturing method can also be used to form bulk acoustic wave resonators, for example, reflective array bulk acoustic wave resonators (BAW-SMR), diaphragm type thin films Film bulk acoustic resonator, FBAR) resonator or air gap type film bulk acoustic resonator.
  • the acoustic transducer includes a piezoelectric laminated structure.
  • a sacrificial layer 120 is formed on the substrate 100 in the piezoelectric oscillation effective region 100s, and the sacrificial layer 120 covers the acoustic transducer 200.
  • the sacrificial layer 120 is used to occupy a space for the subsequent formation of a cavity, that is, the sacrificial layer 120 is subsequently removed to form a cavity at the position of the sacrificial layer 120.
  • the material of the sacrificial layer 120 is a material that can be easily removed, and the subsequent process of removing the sacrificial layer 120 has less impact on the substrate 100 and the acoustic transducer 200.
  • the sacrificial layer 120 The material can ensure that the sacrificial layer 120 has good coverage, so as to completely cover the acoustic transducer 200 and the substrate 100 of the piezoelectric oscillation effective area 100s.
  • the material of the sacrificial layer 120 may include photoresist, polyimide, amorphous carbon or germanium.
  • the material of the sacrificial layer 120 is photoresist.
  • the photoresist is a photosensitive material, which can be patterned through a photolithography process, which is beneficial to reduce the process complexity of forming the sacrificial layer 120, and the photoresist can be removed by ashing, which is simple in process and has little impact.
  • the step of forming the sacrificial layer 120 includes: forming a sacrificial material layer covering the substrate 100 and the acoustic transducer 200; patterning the sacrificial material layer, leaving the sacrificial material layer located in the piezoelectric oscillation effective region 100s A sacrificial material layer serves as the sacrificial layer 120.
  • the sacrificial layer 120 is formed by a semiconductor process, the process for forming the sacrificial layer 120 is simple, and the process compatibility and process reliability are high.
  • the material of the sacrificial layer 120 is photoresist, so a coating process is used to form the sacrificial material layer, and the sacrificial material layer is patterned by a photolithography process.
  • the sacrificial material layer may also be formed by a deposition process, and the sacrificial material layer may be patterned by a dry etching process.
  • the sacrificial material layer is formed by a coating process, and the sacrificial material layer is patterned by a photolithography process; when the material of the sacrificial layer is amorphous carbon
  • the sacrificial material layer is patterned by a dry etching process
  • the sacrificial material layer is formed by a deposition process, and the sacrificial material layer is formed by a dry etching process.
  • the etching process patterns the sacrificial material layer.
  • the distance from the top surface of the sacrificial layer 120 to the top surface of the acoustic transducer 200 should not be too small or too large. If the distance is too small, the sacrificial layer 120 may not completely cover the top surface of the acoustic transducer 200.
  • the subsequent manufacturing process also includes forming a first cap layer covering the sacrificial layer.
  • the top surface of the energy device 200 will accordingly cause the first cap layer to contact the top surface of the acoustic transducer 200, thereby affecting the formation of the cavity, thereby adversely affecting the performance of the resonator; if the distance is too large, Correspondingly, the volume of the resonator will be increased, so that the manufacturing process of the resonator is difficult to meet the development of device miniaturization. Moreover, the process time required for forming the sacrificial layer 120 and removing the sacrificial layer 120 increases correspondingly, resulting in process cost and time Waste. For this reason, in this embodiment, the distance from the top surface of the sacrificial layer 120 to the top surface of the acoustic transducer 200 is 0.3 ⁇ m to 10 ⁇ m.
  • the longitudinal size of the subsequent cavity can be controlled, which simplifies the process difficulty of forming the cavity and has high process flexibility.
  • the sacrificial layer 120 is formed by a semiconductor process, this is beneficial to improve the dimensional accuracy of the sacrificial layer 120, and correspondingly improve the dimensional accuracy of the cavity.
  • a first capping layer 210 covering the sacrificial layer 120 is formed.
  • the first cap layer 210 is used to provide a process basis for subsequent formation of a release hole, so as to prepare for the formation of a cavity. Moreover, the first cap layer 210 can also realize the packaging of the resonator.
  • the first cap layer 210 also covers the connecting terminal 110, thereby providing a process basis for the subsequent formation of an interconnect structure electrically connected to the connecting terminal 110.
  • the first capping layer 210 is made of materials that are easy to pattern, thereby reducing the difficulty of the subsequent formation of the release hole and the interconnection structure. Moreover, the first cap layer 210 has better step coverage, thereby improving the adhesion of the first cap layer 210 to the sacrificial layer 120, the substrate 100, and the connection terminal 110. On the one hand, this is beneficial to guarantee The morphological quality and dimensional accuracy of the cavity, on the other hand, make the first cap layer 210 and the substrate 100 and the connection terminal 110 have a higher bonding strength, the above two aspects are beneficial to improve the resonator reliability.
  • the material of the first capping layer 210 is a photosensitive material, and the first capping layer 210 can be subsequently patterned by a photolithography process, which is beneficial to reduce the process complexity and process accuracy of the patterning process.
  • the photosensitive material is a dry film.
  • the dry film is a permanent bonding film.
  • the dry film has a high bonding strength, so that the bonding strength between the first cap layer 210 and the substrate 100 and the connecting end 110 is guaranteed, and at the same time, it is beneficial to improve the sealing of the cavity. Sex.
  • the photosensitive material is a film-like dry film, which makes the process of forming the first cap layer 210 simple.
  • the film-like dry film is manufactured by coating a solvent-free photoresist on a polyester film base, and then covering it with a polyethylene film; when in use, remove the polyethylene film and press the solvent-free photoresist on the base. Version.
  • the first capping layer 210 is formed by a lamination process. The lamination process is performed in a vacuum environment.
  • the step coverage capability of the first cap layer 210 is significantly improved, and at the same time, the first cap layer 210 and the sacrificial layer 120, the substrate 100, and the connection terminals are improved.
  • the bonding degree of 110 and the bonding strength between the first cap layer 210 and the substrate 100 and the connection terminal 110 are improved.
  • a liquid dry film may also be used to form the first capping layer, where the liquid dry film refers to that the components in the film-like dry film exist in liquid form.
  • the step of forming the first capping layer includes: coating the liquid dry film by a spin coating process; and curing the liquid dry film to form the first capping layer.
  • the cured liquid dry film is also a photosensitive material.
  • the material of the first capping layer may also be a dielectric material or an organic material.
  • the first capping layer can be formed by a deposition process or a coating process respectively.
  • the dielectric material may be silicon oxide, phosphosilicate glass (PSG) or boron-phosphorus glass (BPSG), and the organic material may be polyimide.
  • At least one release hole 211 is formed in the first cap layer 210, and the release hole 211 exposes the sacrificial layer 120.
  • the release hole 211 is used to provide a process basis for subsequent removal of the sacrificial layer 120.
  • a plurality of release holes 211 are formed in the first cap layer 210.
  • the release hole 211 exposes the top surface of the sacrificial layer 120. Compared with the sidewall of the sacrificial layer 120, the area of the top surface of the sacrificial layer 120 is larger. Therefore, it is easy to set the lateral size and density of the release hole 211 according to process requirements.
  • the material of the first capping layer 210 is a photosensitive material. Therefore, the first capping layer 210 is patterned by a photolithography process to form the release hole. By adopting a photolithography process, the process steps for forming the release hole 211 are simplified, and the dimensional accuracy of the release hole 211 is improved.
  • the material of the first capping layer is a non-photosensitive material
  • a photolithography process including photoresist coating, exposure, and development is used to form a photoresist mask (not shown)
  • the first capping layer is etched through the photoresist mask and using a dry etching process to form a release hole.
  • the dry etching process has anisotropic etching characteristics, which is beneficial to improve the topography quality and dimensional accuracy of the release hole, and the dry etching process may be a plasma dry etching process.
  • after forming the release hole it further includes: removing the photoresist mask through a wet deglue or ashing process.
  • the lateral size of the release hole 211 should not be too small or too large. If the lateral dimension is too small, the efficiency of subsequent removal of the sacrificial layer 120 is likely to be reduced; after the sacrificial layer is subsequently removed through the release hole 211 to form a cavity, it further includes forming a first cap layer 210 covering the first cap layer. Two cap layers. The second cap layer seals the release hole 211.
  • the lateral size of the release hole 211 is 0.2 ⁇ m to 20 ⁇ m.
  • the cross-sectional shape of the release hole 211 is circular, and the lateral size of the release hole 211 refers to the diameter of the release hole 211.
  • the sacrificial layer 120 covers the acoustic transducer 200, and under the protection of the sacrificial layer 120, it is beneficial to prevent the process of forming the release hole 211 from affecting the acoustic transducer 200.
  • the sacrificial layer 120 is removed through the release hole 211 (as shown in FIG. 4) to form a cavity 205.
  • the acoustic transducer 200 By forming the cavity 205, the acoustic transducer 200 is brought into contact with the air, so that the resonator can vibrate normally during operation, and the resonator can work normally. Moreover, the acoustic transducer 200 is in contact with the air, which can effectively reflect the leakage wave of the resonator from the interface between the air and the acoustic transducer 200 back to the surface of the substrate 100 (ie, piezoelectric substrate), thereby increasing the electrical energy. The conversion efficiency with mechanical energy also increases the quality factor (Q value).
  • Q value quality factor
  • this embodiment uses the sacrificial layer 120 to occupy the position of the cavity 205, that is, the present embodiment uses a semiconductor process to form the cavity 205 to form a sacrificial layer.
  • the process for removing the layer 120 and the sacrificial layer 120 is simple, which correspondingly reduces the process complexity of manufacturing the resonator, and the bonding strength between the first cap layer 210 and the substrate 100 is high, which correspondingly improves the reliability of the resonator
  • the process complexity is reduced.
  • the acoustic transducer 200 is usually formed on the substrate 100 through a semiconductor process.
  • the process of forming the cavity 205 is integrated into the semiconductor process, so that the process of forming the cavity 205 has higher process compatibility, and Through the sacrificial layer 120, the size of the cavity 205 can be defined more accurately.
  • the acoustic transducer 200 is formed on a wafer-level substrate 100, and the number of effective piezoelectric oscillation regions 100s is multiple. Therefore, the acoustic transducer 200 and the cavity 205 are one One correspondence.
  • the removal selection ratio of the sacrificial layer 120 and the first cap layer 210 is greater than or equal to 50:1, thereby reducing the impact of the process of removing the sacrificial layer 120
  • the damage of a cap layer 210 in turn ensures the integrity of the first cap layer 210.
  • a dry etching process is used to remove the sacrificial layer 120.
  • the dry etching process is a chemical etching process. Chemical etching uses the chemically active radicals in the plasma to chemically react with the material to be etched to generate a volatile reaction product, which is drawn out of the reaction chamber by a vacuum device, thereby achieving the purpose of etching, through the release hole 211
  • the sacrificial layer 120 is removed.
  • the material of the sacrificial layer 120 is photoresist, therefore, the dry etching process is an ashing process.
  • a reactive gas for example, oxygen
  • the sacrificial layer may also be removed by a wet etching process.
  • the wet etching process has the characteristics of isotropic etching, and the etching solution contacts and reacts with the sacrificial layer through the release hole, thereby removing the sacrificial layer cleanly.
  • the sacrificial layer is germanium, the sacrificial layer is etched with a hydrogen peroxide solution.
  • Hydrogen peroxide has a high etching rate for germanium, but has a very low etching rate for the first cap layer, interdigital electrode and substrate, which can remove the sacrificial layer cleanly while reducing other layers or structures Probability of being damaged.
  • a second capping layer 220 covering the first capping layer 210 is formed, and the second capping layer 220 seals the release hole 211.
  • the second cap layer 220 realizes the packaging of the resonator, and plays a role of sealing and moisture-proof, correspondingly reducing the influence of subsequent processes on the acoustic transducer 200, thereby improving the reliability of the formed resonator. Moreover, by sealing the cavity 205, it is also beneficial to isolate the cavity 205 from the external environment, thereby maintaining the stability of the acoustic performance of the acoustic transducer 200.
  • the second capping layer 220 is made of materials that are easy to pattern, thereby reducing the difficulty of the subsequent formation of the interconnect structure. Moreover, the second cap layer 220 has better covering ability, thereby improving the adhesion and bonding strength of the second cap layer 220 and the first cap layer 210, thereby improving the reliability of the resonator.
  • the material of the second capping layer 220 is a photosensitive material. Therefore, the second capping layer 220 can be subsequently patterned by a photolithography process, which is beneficial to reduce the process complexity and process accuracy of the patterning process.
  • the photosensitive material is a dry film.
  • the material of the second capping layer may also be a dielectric material or an organic material.
  • the photosensitive material is a film-like dry film.
  • the second capping layer 220 is formed by a lamination process, which significantly improves the relationship between the second capping layer 220 and the first capping layer 210 Fit and bond strength.
  • the second capping layer may also be formed by a deposition process or a coating process.
  • the specific description of the second capping layer 220 please refer to the related description of the first capping layer 210, which will not be repeated here.
  • the bonding strength of the second cap layer 220 and the first cap layer 210 is relatively high. Under the joint action of the second cap layer 220 and the first cap layer 210, the cavity 205 is increased. The airtightness, which correspondingly improves the reliability of the resonator.
  • the lateral size of the release hole 211 is 0.2 ⁇ m to 20 ⁇ m. Therefore, during the manufacturing process, by setting the thickness of the second cap layer 220 properly, the second cap layer 220 passes through The probability of the release hole 211 being filled into the cavity 205 is low.
  • the thickness of the second cap layer 220 will not be too small, so that The sealing and moisture-proof effects of the second cap layer 220 are guaranteed, and the thickness of the second cap layer 220 does not need to be too large, which makes the volume of the resonator not too large, thereby meeting the development trend of device miniaturization.
  • the second cap layer 220 seals the top of the release hole 211.
  • the second cap layer can also fill a partial depth of the release hole.
  • the semiconductor process is used to realize the packaging of the resonator and the formation of the acoustic transducer 200
  • the process has high process compatibility, which correspondingly simplifies the process difficulty of forming the cavity 205.
  • the sacrificial layer 120 (as shown in FIG. 4), the first cap layer 210, the second cap layer 220, and the cavity 205 are all formed by a semiconductor process, thereby improving the reliability of the resonator.
  • the manufacturing method further includes: forming an interconnection structure 140 (as shown in FIG. 8) for electrically connecting the connection terminal 110.
  • the interconnection structure 140 is used to realize the electrical connection between the connection terminal 110 and an external circuit.
  • the interconnection structure 140 before forming the interconnection structure 140, it further includes: forming an interconnection hole 130 penetrating the second cap layer 220 and the first cap layer 210, and the interconnection hole 130 exposes the connecting terminal 110.
  • the interconnection hole 130 is used to provide a space for the formation of the interconnection structure 140.
  • the materials of the second capping layer 220 and the first capping layer 210 are both dry films, and the dry films are photosensitive materials. Therefore, the second capping layer 220 and the first capping layer 220 are sequentially patterned through a photolithography process.
  • the capping layer 210 forms an interconnection hole 130 penetrating the second capping layer 220 and the first capping layer 210.
  • the second capping layer may be patterned by a dry etching process.
  • the first capping layer may also be patterned by a dry etching process.
  • the dry etching process has the characteristics of anisotropic etching. By selecting the dry etching process, it is also beneficial to improve the topography quality and dimensional accuracy of the interconnection holes.
  • a photolithography process including coating photoresist, exposure and development is adopted to form a photoresist mask, and the second cap layer and the first cap layer are sequentially etched through the photoresist mask, thereby The interconnection hole is formed. After forming the interconnection hole, it further includes: removing the photoresist mask through a wet deglue or ashing process.
  • an interconnection structure 140 is formed in the interconnection hole 130 (as shown in FIG. 7 ).
  • a bump process is used to form the interconnect structure 140 in the interconnect hole 130.
  • the bump process it is convenient to carry out the subsequent packaging process.
  • the bumping process is a metal pillar process, and the steps of the bumping process include: filling a metal pillar 141 in the interconnect hole 130; and forming a solder ball 142 on the surface of the metal pillar 141.
  • the material of the metal pillar 141 may include one or more of copper, aluminum, nickel, gold, silver, and titanium, and may be formed by any one of PVD, CVD, sputtering, electroplating, or electroless plating.
  • Metal pillar 141 In this embodiment, the material of the metal pillar 141 is copper.
  • the material of the solder ball 142 may be tin solder, silver solder, or gold-tin alloy solder, and the solder ball 142 may be formed by any of PVD, CVD, sputtering, electroplating or chemical plating. In this embodiment, the material of the solder ball 142 is tin solder.
  • the step of the bump process further includes: performing a reflow process after the solder balls 142 are formed on the surface of the metal pillar 141.
  • the bump process is a commonly used process in the field, and will not be repeated here.
  • the bump process may also be a micro bump process.
  • the top surface of the metal pillar is lower than the top of the interconnection hole.
  • 9 to 12 are schematic diagrams of the structure corresponding to each step in the second embodiment of the manufacturing method of the resonator of the present invention.
  • This embodiment is different from the first embodiment in that the method of forming the interconnection hole is different.
  • At least one release hole 411 is formed in the first capping layer 410, and the release hole 411 exposes the sacrificial layer 320.
  • a first interconnect hole 412 is formed in a cap layer 410, and the first interconnect hole 412 exposes the connecting end 310.
  • the first interconnection hole 412 is used to prepare for the subsequent formation of the interconnection hole.
  • the material of the first capping layer 410 is a dry film. Therefore, the first capping layer 410 is patterned by a photolithography process to form a release layer in the first capping layer 410 above the sacrificial layer 320. Hole 411, meanwhile, a first interconnect hole 412 is formed in the first cap layer 410 above the connection terminal 310.
  • the first capping layer 410 is not covered with other film layers, that is, the process of patterning the first capping layer 410 will not be affected by other film layers, which is beneficial to reduce the patterning of the first capping layer 410.
  • the process difficulty is increased, and the topography quality and dimensional accuracy of the first interconnection hole 412 are improved.
  • the process steps are simplified.
  • the sacrificial layer 320 is removed through the release hole 411 (as shown in FIG. 9) to form a cavity 405.
  • a second capping layer 420 covering the first capping layer 410 is formed, and the second capping layer 420 seals the release hole 411.
  • the first capping layer 410 is also formed with a first interconnection hole 412 exposing the connecting end 310. Therefore, the second capping layer 420 also seals the first interconnection hole 412. As an example, the second cap layer only seals the top of the first interconnection hole. In other embodiments, according to the thickness of the second capping layer, the lateral size of the first interconnection hole, and the process of forming the second capping layer, the second capping layer may also be filled to the first In the interconnection hole, alternatively, the second capping layer covers the bottom and sidewalls of the first interconnection hole.
  • the material of the second capping layer 420 is a dry film.
  • the specific description of the second capping layer 420 please refer to the corresponding description in the foregoing embodiment, and will not be repeated here.
  • a second interconnection hole 422 that penetrates the first interconnection hole 412 is formed in the second capping layer 420, and the second interconnection hole 422 and the first interconnection hole 412 are used to form the interconnection hole 430.
  • the material of the second capping layer 420 is a dry film. Therefore, the second capping layer 420 is patterned by a photolithography process to form the second interconnection hole 422.
  • the subsequent manufacturing process further includes: forming an interconnection structure in the interconnection hole 430.
  • the steps of forming the interconnection structure are the same as the foregoing embodiment, and will not be repeated here. It should be noted that, for the specific description of the manufacturing method in this embodiment, reference may be made to the corresponding description in the first embodiment.
  • the embodiment of the present invention also provides a resonator.
  • a schematic structural diagram of the first embodiment of the resonator of the present invention is shown.
  • the resonator includes: a substrate 100 including a piezoelectric oscillation effective region 100s; an acoustic transducer 200 located on the substrate 100 in the piezoelectric oscillation effective region 100s; a first cap layer 210, The substrate 100 covering the substrate 100, the first cap layer 210 and the piezoelectric oscillation effective region 100s encloses a cavity 205, and the cavity 205 is used to accommodate the acoustic transducer 200; at least A release hole 211, the release hole 211 penetrates the first cap layer 210 above the substrate 100 in the piezoelectric oscillation effective region 100s, and the release hole 211 communicates with the cavity 205; the second cap layer 220, covering the first cap layer 210 and sealing the top of the release hole 205.
  • the first cap layer 210 and the substrate 100 of the piezoelectric oscillation effective region 100s enclose a cavity 205.
  • a sacrificial layer is formed at the position of the cavity 205, that is, the cavity 205 passes through It is formed by removing the sacrificial layer.
  • the cavity 205 is formed by removing the sacrificial layer.
  • the resonator is packaged by a semiconductor process, which has high process compatibility with the formation of the acoustic transducer 200.
  • the cavity 205, the first capping layer 210, and the second capping layer 220 are formed by a semiconductor process, and the bonding strength of the first capping layer 210 and the substrate 100 is high, and the second capping layer 220 and The bonding strength of the first cap layer 210 is high, and the first cap layer 210 and the second cap layer 220 have good sealing properties to the cavity 205, which correspondingly improves the reliability of the resonator.
  • the substrate 100 is a wafer-level substrate 100.
  • the process cost can be reduced and mass production can be realized, which is beneficial to improve the reliability of the resonator and increase the manufacturing efficiency.
  • the substrate may also be a chip-level substrate.
  • the substrate 100 includes a piezoelectric oscillation effective area 100s, and the substrate 100 is a wafer-level substrate 100. Therefore, the substrate 100 includes a plurality of isolated piezoelectric oscillation effective areas 100s. , The piezoelectric oscillation effective area 100s and the cavity 205 have a one-to-one correspondence.
  • the resonator is a SAW resonator.
  • the substrate 100 is a piezoelectric substrate, and the material of the substrate 100 is lithium niobate, lithium tantalate, quartz or piezoelectric ceramics.
  • the acoustic transducer 200 is a metal IDT. IDT includes two sets of interdigital electrodes with energy conversion function, namely input interdigital transducer and output interdigital transducer.
  • the material of the interdigital electrode includes one or more of Mo, Al, Pt, W, Au, Al, Ni and Ag.
  • the interdigital electrode is an interdigital aluminum electrode.
  • the substrate 100 further includes a peripheral area 100e surrounding the piezoelectric oscillation effective area 100s, and the peripheral area 100e corresponds to the piezoelectric oscillation effective area 100s one-to-one.
  • a connecting terminal 110 is formed on the substrate 100 of the peripheral area 100 e, and the connecting terminal 110 is electrically connected to the acoustic transducer 200.
  • the connecting terminal 110 serves as the input/output terminal of the acoustic transducer 200.
  • two connecting ends 110 are formed on the substrate 100, one of which is electrically connected to the input interdigital transducer, and the other is electrically connected to the interdigital transducer. Connect the output interdigital transducer.
  • the first cap layer 210 and the substrate 100 of the piezoelectric oscillation effective area 100 s enclose a cavity 205, and the cavity 205 is used to accommodate the acoustic transducer 200.
  • the first cap layer 210 provides a process platform for the formation of the cavity 205. Through the cavity 205, the acoustic transducer 200 is in contact with the air, so that the resonator can vibrate normally during operation.
  • the acoustic transducer 200 is in contact with the air, which can effectively reflect the leakage wave of the resonator from the interface between the air and the acoustic transducer 200 back to the surface of the substrate 100 (ie, piezoelectric substrate), thereby improving the electrical energy and The conversion efficiency of mechanical energy also increases the quality factor.
  • the number of the piezoelectric oscillation effective regions 100s is multiple, therefore, the acoustic transducer 200 and the cavity 205 correspond one to one.
  • the distance from the top surface of the cavity 205 to the top surface of the acoustic transducer 200 should not be too small or too large. If the distance is too small, after the sacrificial layer is formed, the sacrificial layer may not be able to completely cover the top surface of the acoustic transducer 200, thereby causing the first cap layer 210 to contact the top surface of the acoustic transducer 200, and thus It will adversely affect the performance of the resonator; if the distance is too large, the volume of the resonator will be correspondingly increased, which will cause the resonator manufacturing process to be difficult to meet the development of device miniaturization. Moreover, the sacrificial layer is formed and removed.
  • the distance from the top surface of the cavity 205 to the top surface of the acoustic transducer 200 is 0.3 micrometers to 10 micrometers.
  • At least one release hole 211 is formed in the first cap layer 210, and the release hole 211 penetrates the first cap layer 210 above the substrate 100 in the piezoelectric oscillation effective region 100s, and the release hole 211 and the cavity 205 Connected.
  • the sacrificial layer is removed through the release hole 211, thereby forming the cavity 205.
  • the number of the release holes 211 is multiple.
  • the lateral size of the release hole 211 should not be too small or too large. If the lateral size of the release hole 211 is too small, it is easy to reduce the efficiency of removing the sacrificial layer; if the lateral size of the release hole 211 is too large, the second cap layer 220 is easily filled through the release hole 211. In the cavity 205, thereby affecting the performance of the resonator, or, in order to make the second cap layer 220 only seal the release hole 211, the thickness of the second cap layer 220 needs to be increased accordingly, resulting in an excessive volume of the resonator, Moreover, it will increase the difficulty of forming the interconnect structure.
  • the lateral size of the release hole 211 is 0.2 ⁇ m to 20 ⁇ m.
  • the cross-sectional shape of the release hole 211 is circular, and the lateral size of the release hole 211 refers to the diameter of the release hole 211.
  • the first cap layer 210 also covers the connecting terminal 110, thereby providing a process basis for forming an interconnect structure electrically connected to the connecting terminal 110.
  • the first capping layer 210 is made of materials that are easy to pattern, thereby reducing the process difficulty of forming the release hole 211 and the interconnection structure.
  • the first cap layer 210 has better covering ability, thereby improving the adhesion of the first cap layer 210 to the substrate 100 and the connecting terminal 110. On the one hand, this helps to ensure the quality and size of the cavity 205. Accuracy, on the other hand, enables a higher bonding strength between the first cap layer 210 and the substrate 100 and the connection terminal 110. Both of the above two aspects are beneficial to improve the reliability of the resonator.
  • the material of the first capping layer 210 is a photosensitive material.
  • the photosensitive material is a dry film.
  • the bonding strength of the dry film is relatively high, so that the bonding strength of the first cap layer 210 to the substrate 100 and the connection terminal 110 is guaranteed.
  • the material of the first capping layer may also be a dielectric material or an organic material.
  • the dielectric material may be silicon oxide, phosphosilicate glass or borophosphorus glass, and the organic material may be poly Imide.
  • the second cap layer 220 realizes the packaging of the resonator, and plays a role of sealing and moisture-proof, correspondingly reducing the influence of subsequent processes on the acoustic transducer 200, thereby improving the reliability of the resonator. Moreover, by sealing the cavity 205, it is also beneficial to isolate the cavity 205 from the external environment, thereby maintaining the stability of the acoustic performance of the acoustic transducer 200.
  • the second capping layer 220 is made of materials that are easy to pattern, thereby reducing the process difficulty of forming the interconnect structure. Moreover, the second cap layer 220 has better covering ability, thereby improving the adhesion and bonding strength between the second cap layer 220 and the first cap layer 210, thereby improving the reliability of the resonator.
  • the material of the second cap layer 220 is a photosensitive material.
  • the photosensitive material is a dry film.
  • the material of the second capping layer may also be a dielectric material or an organic material.
  • the specific description of the second capping layer 220 please refer to the related description of the first capping layer 210, which will not be repeated here.
  • the bonding strength of the second cap layer 220 and the first cap layer 210 is relatively high, and the second cap layer 220 and the first cap layer 210 have high sealing properties to the cavity 211, which improves accordingly Improve the reliability of the resonator.
  • the lateral size of the release hole 211 is 0.2 ⁇ m to 20 ⁇ m. Therefore, by reasonably setting the thickness of the second capping layer 220, the second capping layer 220 is filled through the release hole 211 The probability of getting into the cavity 205 is low. Wherein, based on the lateral size of the release hole 211, in order to prevent the second cap layer 220 from being filled into the cavity 205 through the release hole 211, the thickness of the second cap layer 220 will not be too small, so that The sealing and moisture-proof effects of the second cap layer 220 are guaranteed, and the thickness of the second cap layer 220 does not need to be too large, which makes the volume of the resonator not too large, thereby meeting the development trend of device miniaturization. As an example, the second cap layer 220 seals the top of the release hole 211. In other embodiments, the second cap layer can also fill a partial depth of the release hole.
  • the resonator further includes: an interconnection structure 140 electrically connected to the connection terminal 110.
  • the interconnection structure 140 is used to realize the electrical connection between the connection terminal 110 and an external circuit.
  • the interconnect structure 140 penetrates the second cap layer 220 and the first cap layer 210 above the connecting terminal 110.
  • the interconnect structure 140 is formed by a bump process, that is, the interconnect structure 140 is a bump structure, which facilitates subsequent packaging processes.
  • the bump process is a metal pillar process
  • the interconnect structure 140 includes: a metal pillar 141 that penetrates the second cap layer 220 and the first cap layer 210 above the connection terminal 110;
  • the solder ball 142 is located on the surface of the metal pillar 141.
  • the material of the metal pillar 141 may include one or more of copper, aluminum, nickel, gold, silver, and titanium, and the material of the solder ball 142 may be tin solder, silver solder, or gold-tin alloy solder.
  • the material of the metal pillar 141 is copper
  • the material of the solder ball 142 is tin solder.
  • the bump process may also be a micro bump process.
  • the top surface of the metal pillar is lower than the surface of the second cap layer.
  • Fig. 13 is a schematic structural diagram of a second embodiment of a resonator of the present invention.
  • the resonator is a bulk acoustic wave resonator.
  • the bulk acoustic wave resonator is a film bulk acoustic resonator (FBAR).
  • FBAR film bulk acoustic resonator
  • the FBAR is mainly composed of two upper and lower metal electrodes and a piezoelectric layer sandwiched between the two metal electrodes. Applying a radio frequency voltage to the electrode excites the bulk acoustic wave in the piezoelectric layer, thereby completing resonance.
  • FBAR has excellent characteristics such as small size, high resonance frequency, high Q value, large power capacity, and good roll-off effect.
  • the acoustic transducer 510 includes a bottom electrode 511, and a piezoelectric layer on the bottom electrode 511 512 and a top electrode 513 located on the piezoelectric layer 512, and the bottom electrode 511 and the top electrode 513 are electrically connected.
  • the material of the piezoelectric layer 512 may be piezoelectric crystal, piezoelectric ceramic, or piezoelectric polymer.
  • the piezoelectric crystal may be aluminum nitride, lead zirconate titanate, quartz crystal, lithium gallate, lithium germanate, titanium germanate, lithium niobate or lithium tantalate, etc.
  • the piezoelectric polymer may be Polyvinylidene fluoride, vinylidene fluoride-trifluoroethylene copolymer, nylon-11 or vinylidene cyanide-vinyl acetate alternating copolymer, etc.
  • the material of the piezoelectric layer 512 is aluminum nitride.
  • Aluminum nitride has the advantages of exhibiting a piezoelectric coupling coefficient of about 6.5% and exhibiting lower acoustic loss and dielectric loss, so that the bulk acoustic wave resonator exhibits a passband that matches the specifications required by most telecommunication standards.
  • the substrate 500 is a silicon substrate.
  • the resonator further includes a back cavity 501, a substrate 500 penetrating the piezoelectric oscillation effective area (not labeled), and the back cavity 501 exposing the bottom electrode 511.
  • the bottom electrode 511 is in contact with the air to achieve a zero acoustic impedance boundary, so that the leaked sound waves are totally reflected at the junction of the bottom electrode 511 and the air, thereby improving the electromechanical coupling coefficient and the resonator.
  • the Q value improves the performance of the resonator accordingly.
  • Fig. 14 is a schematic structural diagram of a third embodiment of a resonator of the present invention.
  • the bulk acoustic wave resonator is an air gap type thin film bulk acoustic wave resonator.
  • the acoustic transducer 610 also includes a bottom electrode 611, a piezoelectric layer 612 on the bottom electrode 611, and a top electrode 613 on the piezoelectric layer 612, and the acoustic transducer An air gap 620 is formed between the device 610 and the substrate 600. Wherein, the acoustic transducer 610 passes through the air gap 620 to achieve a zero acoustic impedance boundary.
  • Fig. 15 is a schematic structural diagram of a fourth embodiment of a resonator of the present invention.
  • the bulk acoustic wave resonator is a reflective array type bulk acoustic wave resonator.
  • the acoustic transducer 710 also includes: a bottom electrode 711 on the substrate 700, a piezoelectric layer 712 on the bottom electrode 711, and a top electrode 713 on the piezoelectric layer 712.
  • the resonator correspondingly further includes: a stacked Bragg reflective layer (not labeled) located between the bottom electrode 711 and the substrate 700.
  • the acoustic transducer 710 reflects the leaked sound wave into the acoustic transducer 710 through the Bragg reflective layer.
  • the Bragg resonance condition is satisfied, the acoustic wave can form a standing wave in the piezoelectric layer 712 and the Bragg reflective layer.
  • the Bragg reflective layer usually includes alternately stacked first impedance barrier layers and second impedance layers.
  • the acoustic impedance of the first impedance barrier layer is greater than the acoustic impedance of the second impedance layer.
  • an embodiment of the present invention also provides a filter, and the filter includes the resonator described in the foregoing embodiment.
  • the resonator described in the foregoing embodiment has high reliability, which correspondingly improves the reliability of the filter.
  • an embodiment of the present invention also provides an electronic device, which includes the filter described in the foregoing embodiment.
  • the filter can be assembled into various electronic devices. From the foregoing analysis, it can be known that the reliability of the filter is relatively high, and accordingly, a highly reliable electronic device can be obtained.
  • the electronic equipment can also be mobile terminals such as personal computers, smart phones, media players, navigation equipment, electronic game equipment, game controllers, tablet computers, wearable devices, anti-access electronic systems, POS terminals, medical Equipment, flight simulator, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

一种谐振器及其制造方法、滤波器、电子设备,制造方法包括:提供晶圆级衬底,包括压电振荡有效区,压电振荡有效区的衬底上形成有声学换能器;在压电振荡有效区的衬底上形成覆盖声学换能器的牺牲层;形成覆盖牺牲层的第一盖帽层;在第一盖帽层中形成至少一个释放孔;通过释放孔去除牺牲层,形成空腔;去除牺牲层后,形成覆盖第一盖帽层的第二盖帽层,第二盖帽层密封释放孔。所述空腔采用半导体工艺所形成,形成牺牲层和去除牺牲层的工艺简单,这降低了制造谐振器的工艺复杂度,而且,所述第一盖帽层与衬底的结合强度高、第二盖帽层和第一盖帽层的结合强度高,且第一盖帽层和第二盖帽层对所述空腔的密封性较好,这相应提高了谐振器的可靠性。

Description

谐振器及其制造方法、滤波器、电子设备 技术领域
本发明实施例涉及半导体制造领域,尤其涉及一种谐振器及其制造方法、滤波器、电子设备。
背景技术
随着无线通信技术的发展,传统的单频带单制式设备已经不能满足通讯系统多样化的要求。目前,通讯系统越来越趋向多频段化,这就要求通讯终端能够接受各个频带以满足不同的通讯服务商和不同地区的要求。
RF(射频)滤波器通常被用于通过或阻挡RF信号中的特定频率或频带。为了满足无线通信技术的发展需求,要求通讯终端使用的RF滤波器可以实现多频带、多制式的通讯技术要求,同时要求通讯终端中的RF滤波器不断向微型化、集成化方向发展,且每个频带采用一个或多个RF滤波器。
RF滤波器最主要的指标包括品质因数Q和插入损耗。随着不同频带间的频率差异越来越小,RF滤波器需要非常好的选择性,让频带内的信号通过并阻挡频带外的信号。Q值越大,则RF滤波器可以实现越窄的通带带宽,从而实现较好的选择性。
技术问题
本发明实施例解决的问题是提供一种谐振器及其制造方法、滤波器、电子设备,在提高谐振器的可靠性的同时,降低制造工艺的复杂度。
技术解决方案
为解决上述问题,本发明实施例提供一种谐振器的制造方法,包括:提供晶圆级衬底,所述衬底包括压电振荡有效区,所述压电振荡有效区的衬底上形成有声学换能器;在所述压电振荡有效区的所述衬底上形成牺牲层,所述牺牲层覆盖所述声学换能器;形成覆盖所述牺牲层的第一盖帽层;在所述第一盖帽层中形成至少一个释放孔,所述释放孔露出所述牺牲层;通过所述释放孔去除所述牺牲层,形成空腔;去除所述牺牲层后,形成覆盖所述第一盖帽层的第二盖帽层,所述第二盖帽层密封所述释放孔。
相应的,本发明实施例还提供一种谐振器,包括:衬底,所述衬底包括压电振荡有效区;声学换能器,位于所述压电振荡有效区的衬底上;第一盖帽层,覆盖所述衬底,所述第一盖帽层和所述压电振荡有效区的衬底围成空腔,所述空腔用于容纳所述声学换能器;至少一个释放孔,所述释放孔贯穿所述压电振荡有效区衬底上方的所述第一盖帽层,且所述释放孔与所述空腔相连通;第二盖帽层,覆盖所述第一盖帽层且密封所述释放孔。
相应的,本发明实施例还提供一种滤波器,包括前述谐振器。
相应的,本发明实施例还提供一种电子设备,包括前述滤波器。
有益效果
与现有技术相比,本发明实施例的技术方案具有以下优点:本发明实施例在压电振荡有效区形成覆盖声学换能器的牺牲层,后续形成具有释放孔的第一盖帽层后,通过所述释放孔去除所述牺牲层,以形成空腔(cavity);与采用封装工艺来形成空腔的方案相比,本发明实施例采用半导体工艺形成所述空腔,形成牺牲层和去除牺牲层的工艺简单,这相应降低了制造谐振器的工艺复杂度,而且,所述第一盖帽层与衬底的结合强度高、第二盖帽层和第一盖帽层的结合强度高,且第一盖帽层和第二盖帽层对所述空腔的密封性较好,这相应提高了谐振器的可靠性;综上,通过本发明实施例所述的制造方法,在提高谐振器的可靠性的同时,降低了制造工艺的复杂度。
附图说明
图1至图8是本发明谐振器的制造方法第一实施例中各步骤对应的结构示意图。
图9至图12是本发明谐振器的制造方法第二实施例中各步骤对应的结构示意图。
图13是本发明谐振器一实施例的结构示意图。
图14是本发明谐振器另一实施例的结构示意图。
图15是本发明谐振器又一实施例对应的结构示意图。
本发明的实施方式
在谐振器的制造过程中,需在谐振器中的声学换能器上方形成空腔,使得谐振器中的声波在无干扰的情况下传播,从而使得滤波器的性能和功能的满足需求。目前,主要通过封装工艺来形成实现谐振器的封装,同时形成空腔,例如,金属盖帽技术、芯片尺寸级SAW封装(chip sized SAW package,CSSP)技术或芯片尺寸级SAW封装(die sized SAW package,DSSP)技术等。但是,封装工艺的复杂度较高,且工艺可靠性较低。
以金属盖帽技术为例,金属盖帽技术通过在衬底上固定金属罩,使金属罩和衬底围成空腔,所述空腔用于容纳声学换能器。其中,金属罩通常通过点胶或者镀锡的方式固定于衬底上。当采用点胶的方式时,点胶工艺所采用的胶粘剂容易在固化前顺流到空腔中,从而对声学换能器产生影响;当采用镀锡方式时,在回流焊的过程中,融化后的锡也容易顺流到空腔中。以上两种情况都容易造成谐振器的性能失效。而且,上述方式对衬底和金属罩的平整度要求较高,金属罩与衬底的结合力差,且难以保障空腔的密封性,从而降低振器的可靠性以及性能一致性。
为了解决所述技术问题,本发明实施例提供一种谐振器的制造方法,包括:提供晶圆级衬底,所述衬底包括压电振荡有效区,所述压电振荡有效区的衬底上形成有声学换能器;在所述压电振荡有效区的所述衬底上形成牺牲层,所述牺牲层覆盖所述声学换能器;形成覆盖所述牺牲层的第一盖帽层;在所述第一盖帽层中形成至少一个释放孔,所述释放孔露出所述牺牲层;通过所述释放孔去除所述牺牲层,形成空腔;去除所述牺牲层后,形成覆盖所述第一盖帽层的第二盖帽层,所述第二盖帽层密封所述释放孔。
本发明实施例通过所述释放孔去除所述牺牲层,以形成空腔;与通过采用封装工艺来形成空腔的方案相比,本发明实施例采用半导体工艺形成所述空腔,形成牺牲层和去除牺牲层的工艺简单,这相应降低了制造谐振器的工艺复杂度,而且,所述第一盖帽层与衬底的结合强度高、第二盖帽层和第一盖帽层的结合强度高,且第一盖帽层和第二盖帽层对所述空腔的密封性较好,这相应提高了谐振器的可靠性;综上,通过本发明实施例所述的制造方法,在提高谐振器的可靠性的同时,降低了制造工艺的复杂度。
为使本发明实施例的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
图1至图8是本发明谐振器的制造方法第一实施例中各步骤对应的结构示意图。
参考图1,提供晶圆级衬底100,所述衬底100包括压电振荡有效区100s,所述压电振荡有效区100s的衬底100上形成有声学换能器200。
所述衬底100用于为后续形成谐振器(resonators)提供工艺平台。谐振器是指产生谐振频率的器件。本实施例中,所述衬底100为晶圆级衬底100。通过将谐振器制作在晶圆上,可以降低工艺成本、实现批量生产,这有利于提高谐振器的可靠性、提高制造效率。
所述衬底100包括压电振荡有效区100s,所述压电振荡有效区100s为谐振器用于实现滤波功能的工作区,后续在所述压电振荡有效区100s形成空腔。本实施例中,所述衬底100为晶圆级衬底100,因此,所述衬底100包括多个相隔离的压电振荡有效区100s。
本实施例中,以所形成的谐振器为声表面波(surface acoustic wave,SAW)谐振器为例进行说明。SAW谐振器是利用压电效应和声表面波传播的物理特性制成的滤波专用器件。在SAW谐振器中,信号经过电-声-电的两次转换,从而实现选频特性。SAW谐振器具有工作频率高、制造工艺简单、制造成本低、频率特性一致性高等优点,因此,广泛应用于各种电子设备中。
相应的,所述衬底100为压电基板(piezoelectric substrate),从而使后续谐振器能够利用压电效应进行滤波处理。本实施例中,所述衬底100的材料为铌酸锂(LiNbO3)、钽酸锂(LiTaO3)、石英或压电陶瓷。其中,铌酸锂或钽酸锂能够提供非常高的机电耦合系数,能够用于制造呈现大约50%的相对带宽的滤波器。
所述声学换能器200用于实现电信号与声信号之间的相互转换,从而使谐振器对信号进行滤波处理。具体地,所述声学换能器200为具有压电结构的声学换能器。本实施例中,所形成的谐振器为SAW谐振器,因此,所述声学换能器200为金属叉指换能器(interdigital transducers,IDT)。IDT包括两组具有能量转换功能的叉指型电极,分别为输入叉指换能器和输出叉指换能器。当输入叉指换能器接收电信号(electrical signal)时,压电基板的表面会发生振动,并激发出于外加信号同频率的声波(acoustic wave),所述声波沿着压电基板表面的方向传播,一部分声波传送到输出叉指换能器,输出叉指换能器将机械振动转换为电信号,并由所述输出叉指换能器输出。
叉指型电极的材料包括Mo、Al、Pt、W、Au、Al、Ni和Ag中的一种或多种。本实施例中,叉指型电极为叉指型铝电极。具体地,通过在衬底100上蒸镀金属膜,并通过光刻和刻蚀工艺图形化金属膜,以形成声学换能器200。
需要说明的是,所述衬底100还包括环绕压电振荡有效区100s的外围区100e,所述外围区100e和压电振荡有效区100s一一对应。所述外围区100e的衬底100上形成有连接端110,所述连接端110电连接所述声学换能器200。所述连接端110作为所述声学换能器200的输入/输出(I/O)端。本实施例中,在每一个压电振荡有效区100s对应的外围区100e中,所述衬底100上形成有两个连接端110,其中一个连接端110电连接输入叉指换能器,另一个连接端110电连接输出叉指换能器。
还需要说明的是,在其他实施例中,所述制造方法还可以用于形成体声波(bulk acoustic wave)谐振器,例如,反射阵型体声波谐振器(BAW-SMR)、横膈膜型薄膜体声波(film bulk acoustic resonator,FBAR)谐振器或空气隙型薄膜体声波谐振器。相应的,所述声学换能器包括压电叠层结构。
参考图2,在所述压电振荡有效区100s的所述衬底100上形成牺牲层120,所述牺牲层120覆盖所述声学换能器200。
所述牺牲层120用于为后续形成空腔占据空间位置,也就是说,后续通过去除所述牺牲层120,从而在所述牺牲层120的位置处形成空腔。
因此,所述牺牲层120的材料为易于被去除的材料,且后续去除所述牺牲层120的工艺对所述衬底100和声学换能器200的影响较小,此外,所述牺牲层120的材料能够保证所述牺牲层120具有较好的覆盖性,从而完全覆盖所述声学换能器200以及所述压电振荡有效区100s的衬底100。例如,所述牺牲层120的材料可以包括光刻胶、聚酰亚胺(polyimide)、无定形碳或锗。
本实施例中,所述牺牲层120的材料为光刻胶。光刻胶是光敏材料,可通过光刻工艺实现图形化,有利于降低形成所述牺牲层120的工艺复杂度,且可以通过灰化的方式去除光刻胶,工艺简单、产生的影响小。
具体地,形成所述牺牲层120的步骤包括:形成覆盖所述衬底100和声学换能器200的牺牲材料层;图形化所述牺牲材料层,保留位于所述压电振荡有效区100s的牺牲材料层作为所述牺牲层120。
所述牺牲层120通过半导体工艺所形成,形成所述牺牲层120的工艺简单,且工艺兼容性和工艺可靠性较高。
本实施例中,所述牺牲层120的材料为光刻胶,因此采用涂布工艺形成牺牲材料层,并通过光刻工艺图形化所述牺牲材料层。在其他实施例中,根据所述牺牲层所选取的材料,还可以采用沉积工艺形成所述牺牲材料层,通过干法刻蚀工艺图形化所述牺牲材料层。
例如,当所述牺牲层的材料为聚酰亚胺时,采用涂布工艺形成所述牺牲材料层,通过光刻工艺图形化所述牺牲材料层;当所述牺牲层的材料为无定形碳时,采用沉积工艺形成所述牺牲材料层,通过干法刻蚀工艺图形化所述牺牲材料层;当所述牺牲层的材料为锗时,采用沉积工艺形成所述牺牲材料层,通过干法刻蚀工艺图形化所述牺牲材料层。
需要说明的是,牺牲层120顶面至声学换能器200顶面的距离不宜过小,也不宜过大。如果所述距离过小,则容易导致所述牺牲层120无法完全覆盖声学换能器200的顶面,后续制程还包括形成覆盖牺牲层的第一盖帽层,如果牺牲层120无法完全覆盖声学换能器200的顶面,相应会导致第一盖帽层和声学换能器200的顶面相接触,从而影响空腔的形成,进而对谐振器的性能造成不良影响;如果所述距离过大,则相应会增大谐振器的体积,从而导致谐振器的制造工艺难以满足器件小型化的发展,而且,形成牺牲层120和去除牺牲层120时所需的工艺时间相应增加,从而造成工艺成本和时间的浪费。为此,本实施例中,牺牲层120顶面至声学换能器200顶面的距离为0.3微米至10微米。
在制造过程中,通过控制牺牲层120的厚度,即可控制后续空腔的纵向尺寸,简化了形成空腔的工艺难度,且工艺灵活性高。而且,由于所述牺牲层120通过半导体工艺所形成,这有利于提高所述牺牲层120的尺寸精度,相应提高了空腔的尺寸精度。
参考图3,形成覆盖所述牺牲层120的第一盖帽层210。
所述第一盖帽层210用于为后续形成释放孔(release hole)提供工艺基础,从而为形成空腔做准备。而且,所述第一盖帽层210还能实现对谐振器的封装。
本实施例中,所述第一盖帽层210还覆盖所述连接端110,从而为后续形成电连接所述连接端110的互连结构提供工艺基础。
所述第一盖帽层210选取易于实现图形化的材料,从而降低后续形成释放孔和互连结构的工艺难度。而且,所述第一盖帽层210具有较好的台阶覆盖能力,从而提高所述第一盖帽层210与牺牲层120、衬底100以及连接端110的贴合度,一方面,这有利于保障空腔的形貌质量和尺寸精度,另一方面,使所述第一盖帽层210与衬底100以及连接端110之间具有较高的结合强度,以上两个方面均有利于提高谐振器的可靠性。
本实施例中,第一盖帽层210的材料为光敏材料,后续能够通过光刻工艺图形化所述第一盖帽层210,有利于降低图形化工艺的工艺复杂度和工艺精度。具体地,所述光敏材料为干膜(dry film)。干膜是一种永久键合膜,干膜的粘结强度较高,从而使得第一盖帽层210与衬底100以及连接端110的结合强度得到保障,同时,有利于提高对空腔的密封性。
本实施例中,所述光敏材料为膜状干膜,使得形成所述第一盖帽层210的工艺简单。膜状干膜的制造是将无溶剂型光致抗蚀剂涂在涤纶片基上,再覆上聚乙烯薄膜;使用时揭去聚乙烯薄膜,把无溶剂型光致抗蚀剂压于基版上。为此,本实施例中,采用贴膜(lamination)工艺形成所述第一盖帽层210。lamination工艺在真空环境下进行,通过选用lamination工艺,显著提高了所述第一盖帽层210的台阶覆盖能力,同时,提高了所述第一盖帽层210与牺牲层120、衬底100以及连接端110的贴合度,以及提高所述第一盖帽层210与衬底100以及连接端110的结合强度。
在另一些实施例中,也可以采用液态干膜形成所述第一盖帽层,其中,液态干膜指的是膜状干膜中的成分以液态的形式存在。相应的,形成所述第一盖帽层的步骤包括:通过旋涂工艺涂布液态干膜;对液态干膜进行固化处理,以形成第一盖帽层。其中,固化后的液态干膜也是光敏性材料。在其他实施例中,所述第一盖帽层的材料也可以为介电材料或有机材料。相应的,可以分别采用沉积工艺或涂布工艺形成所述第一盖帽层。其中,介电材料可以为氧化硅、磷硅酸玻璃(PSG)或硼磷玻璃(BPSG),有机材料可以为聚酰亚胺。
参考图4,在所述第一盖帽层210中形成至少一个释放孔211,所述释放孔211露出所述牺牲层120。
所述释放孔211用于为后续去除所述牺牲层120提供工艺基础。
本实施例中,为了提高后续去除所述牺牲层120的效率,在所述第一盖帽层210中形成多个释放孔211。
本实施例中,所述释放孔211露出所述牺牲层120的顶面。与所述牺牲层120的侧壁相比,所述牺牲层120的顶面的面积较大,因此,易于根据工艺需求,设定所述释放孔211的横向尺寸和密度。
本实施例中,所述第一盖帽层210的材料为光敏材料,因此,通过光刻工艺图形化所述第一盖帽层210,以形成所述释放孔。通过采用光刻工艺,简化了形成所述释放孔211的工艺步骤,且有利于提高释放孔211的尺寸精度。
在其他实施例中,当所述第一盖帽层的材料为非光敏材料时,则采用包括涂布光刻胶、曝光和显影的光刻工艺,形成光刻胶掩膜(图未示),经由所述光刻胶掩膜,并采用干法刻蚀工艺对所述第一盖帽层进行刻蚀,以形成释放孔。其中,干法刻蚀工艺具有各向异性的刻蚀特性,有利于提高释放孔的形貌质量和尺寸精度,所述干法刻蚀工艺可以为等离子干法刻蚀工艺。相应的,在形成所述释放孔后,还包括:通过湿法去胶或者灰化工艺,去除光刻胶掩膜。
需要说明的是,所述释放孔211的横向尺寸不宜过小,也不宜过大。如果横向尺寸过小,则容易降低后续去除所述牺牲层120的效率;后续通过所述释放孔211去除所述牺牲层以形成空腔后,还包括形成覆盖所述第一盖帽层210的第二盖帽层,所述第二盖帽层密封所述释放孔211,如果横向尺寸过大,所述第二盖帽层容易通过所述释放孔211而填充至空腔中,从而影响谐振器的性能,或者,为了使第二盖帽层仅密封所述释放孔211,相应需要增大第二盖帽层的厚度,从而导致谐振器的体积过大,而且,还会增加后续互连结构的形成难度。为此,本实施例中,所述释放孔211的横向尺寸为0.2微米至20微米。作为一种示例,所述释放孔211的横截面形状为圆形,所述释放孔211的横向尺寸指的是所述释放孔211的直径。
还需要说明的是,所述牺牲层120覆盖声学换能器200,在所述牺牲层120的保护作用下,有利于避免形成释放孔211的工艺对声学换能器200造成影响。
参考图5,通过所述释放孔211去除所述牺牲层120(如图4所示),形成空腔205。
通过形成所述空腔205,使所述声学换能器200与空气相接触,从而使谐振器在工作时能够正常产生振动,进而使谐振器能够正常工作。而且,声学换能器200与空气相接触,还能有效地将谐振器的漏波从空气与声学换能器200的交界面处反射回衬底100(即压电基底)表面,从而提高电能与机械能的转换效率,也即提高了品质因子(Q值)。
其中,与通过封装工艺来形成空腔的方案相比,本实施例通过所述牺牲层120占据空腔205的位置,也就是说,本实施例采用半导体工艺形成所述空腔205,形成牺牲层120和去除牺牲层120的工艺简单,这相应降低了制造谐振器的工艺复杂度,而且,所述第一盖帽层210与衬底100的结合强度高,这相应提高了谐振器的可靠性;综上,通过本实施例所述的制造方法,在提高谐振器的可靠性的同时,降低了工艺复杂度。
而且,声学换能器200通常通过半导体工艺形成于衬底100上,本实施例将形成空腔205的工艺集成到半导体工艺中,使形成空腔205的制程具有较高的工艺兼容性,而且,通过牺牲层120,能够更加准确的限定空腔205的尺寸。
本实施例中,所述声学换能器200形成于晶圆级衬底100上,所述压电振荡有效区100s的数量为多个,因此,所述声学换能器200和空腔205一一对应。
本实施例中,去除所述牺牲层120的步骤中,所述牺牲层120和第一盖帽层210的去除选择比大于或等于50:1,从而减小去除所述牺牲层120的工艺对第一盖帽层210的损伤,进而保证第一盖帽层210的完整性。其中,通过合理选定所述牺牲层120和第一盖帽层210的材料,易于使所述牺牲层120和第一盖帽层210的去除选择比能够满足工艺需求。
本实施例中,采用干法刻蚀工艺,去除所述牺牲层120。其中,所述干法刻蚀工艺为化学性刻蚀工艺。化学性刻蚀利用等离子体中的化学活性原子团与被刻蚀材料发生化学反应,生成具有挥发性的反应产物,并被真空设备抽离反应腔室,从而实现刻蚀目的,通过所述释放孔211去除所述牺牲层120。具体地,所述牺牲层120的材料为光刻胶,因此,所述干法刻蚀工艺为灰化工艺。通过选用灰化工艺,反应气体(例如:氧气)通过所述释放孔211与所述牺牲层120相接触,从而能够将所述牺牲层120去除干净。
在其他实施例中,根据所述牺牲层的材料,还可以采用湿法刻蚀工艺去除所述牺牲层。湿法刻蚀工艺具有各向同性刻蚀的特性,刻蚀溶液通过所述释放孔与所述牺牲层相接触并发生反应,从而将牺牲层去除干净。例如,当牺牲层的材料为锗时,采用双氧水溶液刻蚀所述牺牲层。双氧水对锗具有较高的刻蚀速率,而对于第一盖帽层、叉指型电极和衬底均具有非常低的刻蚀速,从而能够将牺牲层去除干净的同时,降低其他膜层或结构受到损伤的概率。
参考图6,去除所述牺牲层120(如图4所示)后,形成覆盖所述第一盖帽层210的第二盖帽层220,所述第二盖帽层220密封所述释放孔211。
通过所述第二盖帽层220,实现谐振器的封装,并起到密封以及防潮的作用,相应减小后续工艺对声学换能器200的影响,从而提高所形成谐振器的可靠性。而且,通过密封所述空腔205,还有利于使得所述空腔205与外界环境隔绝,从而维持所述声学换能器200的声学性能的稳定性。
第二盖帽层220选取易于实现图形化的材料,从而降低后续形成互连结构的工艺难度。而且,第二盖帽层220具有较好的覆盖能力,从而提高第二盖帽层220与第一盖帽层210的贴合度和结合强度,从而提高谐振器的可靠性。
本实施例中,所述第二盖帽层220的材料为光敏材料,因此,后续能够通过光刻工艺图形化所述第二盖帽层220,有利于降低图形化工艺的工艺复杂度和工艺精度。具体地,所述光敏材料为干膜。在其他实施例中,所述第二盖帽层的材料还可以为介电材料或有机材料。
本实施例中,所述光敏材料为膜状干膜,相应的,采用lamination工艺形成所述第二盖帽层220,这显著提高了所述第二盖帽层220与所述第一盖帽层210的贴合度和结合强度。在其他实施例中,根据所述第二盖帽层的材料,还可以采用沉积工艺或涂布工艺形成所述第二盖帽层。对所述第二盖帽层220的具体描述,可参考对第一盖帽层210的相关描述,在此不再赘述。
本实施例中,所述第二盖帽层220和第一盖帽层210的结合强度较高,在所述第二盖帽层220和第一盖帽层210的共同作用下,提高了所述空腔205的密封性,这相应提高了谐振器的可靠性。
需要说明的是,所述释放孔211的横向尺寸为0.2微米至20微米,因此,在制造过程中,通过合理设定所述第二盖帽层220的厚度,所述第二盖帽层220通过所述释放孔211填充至空腔205中的概率较低。其中,基于所述释放孔211的横向尺寸,为了避免所述第二盖帽层220通过所述释放孔211填充至空腔205中,所述第二盖帽层220的厚度不会太小,从而使得第二盖帽层220的密封以及防潮作用得到保障,而且,所述第二盖帽层220的厚度也不需要太大,这使得谐振器的体积不会太大,从而满足器件小型化发展的趋势。作为一种示例,所述第二盖帽层220密封所述释放孔211的顶部。在其他实施例中,所述第二盖帽层也可以填充部分深度的释放孔。
本实施例中,通过所述牺牲层120(如图4所示)、第一盖帽层210和第二盖帽层220,利用半导体工艺实现了对谐振器的封装,与声学换能器200的形成工艺具有较高的工艺兼容性,这相应简化了形成空腔205的工艺难度。而且,所述牺牲层120(如图4所示)、第一盖帽层210、第二盖帽层220和空腔205均通过半导体工艺所形成,从而提高了谐振器的可靠性。
结合参考图7和图8,形成所述第二盖帽层220后,所述制造方法还包括:形成互连结构140(如图8所示),用于电连接所述连接端110。
所述互连结构140用于实现所述连接端110与外部电路的电连接。
因此,如图7所示,形成互连结构140之前,还包括:形成贯穿第二盖帽层220和第一盖帽层210的互连孔130,所述互连孔130露出所述连接端110。
所述互连孔130用于为互连结构140的形成提供空间位置。
本实施例中,所述第二盖帽层220和第一盖帽层210的材料均为干膜,干膜是光敏材料,因此,通过光刻工艺依次图形化所述第二盖帽层220和第一盖帽层210,形成贯穿所述第二盖帽层220和第一盖帽层210的互连孔130。
通过选用光刻工艺,有利于提高所述互连孔130的形貌质量和尺寸精度,且降低对所述连接端110的损伤。
在其他实施例中,根据所述第二盖帽层的材料,还可以通过干法刻蚀工艺图形化所述第二盖帽层。同理,根据所述第一盖帽层的材料,还可以通过干法刻蚀工艺图形化所述第一盖帽层。干法刻蚀工艺具有各向异性刻蚀的特性,通过选用干法刻蚀工艺,也有利于提高所述互连孔的形貌质量和尺寸精度。相应的,采用包括涂布光刻胶、曝光和显影的光刻工艺,形成光刻胶掩膜,经由所述光刻胶掩膜依次对第二盖帽层和第一盖帽层进行刻蚀,从而形成所述互连孔。在形成所述互连孔后,还包括:通过湿法去胶或者灰化工艺,去除光刻胶掩膜。
相应的,如图8所示,在互连孔130(如图7所示)中形成互连结构140。
本实施例中,采用凸点(bump)工艺,在所述互连孔130中形成所述互连结构140。通过采用凸点工艺,便于进行后续的封装制程。
具体地,所述凸点工艺为金属柱(pillar)工艺,所述凸点工艺的步骤包括:在所述互连孔130中填充金属柱141;在所述金属柱141表面形成焊球142。
所述金属柱141的材料可以包括铜、铝、镍、金、银和钛中的一种或多种,可以通过PVD、CVD、溅射、电镀或化学镀中的任一种工艺形成所述金属柱141。本实施例中,所述金属柱141的材料为铜。
所述焊球142的材料可以为锡焊料、银焊料或金锡合金焊料,可以通过PVD、CVD、溅射、电镀或化学镀中的任一种工艺形成所述焊球142。本实施例中,所述焊球142的材料为锡焊料。
本实施例中,凸点工艺的步骤还包括:在所述金属柱141表面形成焊球142后,进行回流工艺。其中,凸点工艺为本领域常用的工艺,在此不再赘述。
在其他实施例中,所述凸点工艺也可以为微凸点(micro bump)工艺。在该实施例中,所述金属柱的顶面低于所述互连孔的顶部。
图9至图12是本发明谐振器的制造方法第二实施例中各步骤对应的结构示意图。
本实施例与第一实施例的相同之处,在此不再赘述。本实施例与第一实施例的不同之处在于:形成互连孔的方法不同。
参考图9,形成覆盖牺牲层320的第一盖帽层410后,在所述第一盖帽层410中形成至少一个释放孔411,所述释放孔411露出所述牺牲层320,且在所述第一盖帽层410中形成第一互连孔412,所述第一互连孔412露出连接端310。
所述第一互连孔412用于为后续形成互连孔做准备。
本实施例中,所述第一盖帽层410的材料为干膜,因此,采用光刻工艺图形化所述第一盖帽层410,在所述牺牲层320上方的第一盖帽层410中形成释放孔411,同时,在连接端310上方的第一盖帽层410中形成第一互连孔412。
此时,所述第一盖帽层410上未覆盖其他膜层,即图形化所述第一盖帽层410的工艺不会受到其他膜层的影响,有利于降低图形化所述第一盖帽层410的工艺难度、提高所述第一互连孔412的形貌质量和尺寸精度。而且,通过在同一步骤中形成所述释放孔411和第一互连孔412,简化了工艺步骤。
参考图10,通过释放孔411去除牺牲层320(如图9所示),形成空腔405。
对形成所述空腔405的制程的具体描述,请参考前述实施例中的相关描述,在此不再赘述。
参考图11,去除所述牺牲层320(如图9所示)后,形成覆盖所述第一盖帽层410的第二盖帽层420,所述第二盖帽层420密封所述释放孔411。
所述第一盖帽层410中还形成有露出所述连接端310的第一互连孔412,因此,所述第二盖帽层420还密封所述第一互连孔412。作为一种示例,所述第二盖帽层仅密封所述第一互连孔的顶部。在其他实施例中,根据所述第二盖帽层的厚度、所述第一互连孔的横向尺寸、以及形成第二盖帽层的工艺,所述第二盖帽层还可以填充至所述第一互连孔中,或者,所述第二盖帽层覆盖所述第一互连孔的底部和侧壁。
本实施例中,所述第二盖帽层420的材料为干膜。对所述第二盖帽层420的具体描述,请参考前述实施例中的相应描述,在此不再赘述。
参考图12,形成所述第二盖帽层420后,在所述第二盖帽层420中形成与所述第一互连孔412相贯通的第二互连孔422,所述第二互连孔422和第一互连孔412用于构成互连孔430。
本实施例中,所述第二盖帽层420的材料为干膜,因此,采用光刻工艺图形化所述第二盖帽层420,形成所述第二互连孔422。
本实施例中,形成所述第二互连孔422的过程中,仅图形化所述第二盖帽层420,图形化所述第二盖帽层420的工艺不会受到其他膜层的影响。
后续制程还包括:在所述互连孔430中形成互连结构。形成互连结构的步骤与前述实施例相同,在此不再赘述。需要说明的是,对本实施例所述制造方法的具体描述,可参考第一实施例中的相应描述。
相应的,本发明实施例还提供一种谐振器。继续参考图8,示出了本发明谐振器第一实施例的结构示意图。
所述谐振器包括:衬底100,所述衬底100包括压电振荡有效区100s;声学换能器200,位于所述压电振荡有效区100s的衬底100上;第一盖帽层210,覆盖所述衬底100,所述第一盖帽层210和所述压电振荡有效区100s的衬底100围成空腔205,所述空腔205用于容纳所述声学换能器200;至少一个释放孔211,所述释放孔211贯穿所述压电振荡有效区100s的衬底100上方的第一盖帽层210,且所述释放孔211与所述空腔205相连通;第二盖帽层220,覆盖所述第一盖帽层210且密封所述释放孔205的顶部。
第一盖帽层210和压电振荡有效区100s的衬底100围成空腔205,在谐振器的制造过程中,所述空腔205的位置处形成有牺牲层,即所述空腔205通过去除牺牲层的方式所形成。通过采用去除牺牲层的方式,形成所述空腔205。一方面,通过牺牲层、第一盖帽层210和第二盖帽层220,利用半导体工艺实现了对谐振器的封装,与声学换能器200的形成具有较高的工艺兼容性。另一方面,空腔205、第一盖帽层210和第二盖帽层220通过半导体工艺所形成,且所述第一盖帽层210与衬底100的结合强度高,所述第二盖帽层220和第一盖帽层210的结合强度高,第一盖帽层210和第二盖帽层220对所述空腔205的密封性较好,这相应提高了谐振器的可靠性。
本实施例中,所述衬底100为晶圆级衬底100。通过将谐振器制作在晶圆上,可以降低工艺成本、实现批量生产,这有利于提高谐振器的可靠性、提高制造效率。在其他实施例中,所述衬底也可以为芯片级衬底。
本实施例中,所述衬底100包括压电振荡有效区100s,所述衬底100为晶圆级衬底100,因此,所述衬底100包括多个相隔离的压电振荡有效区100s,所述压电振荡有效区100s和空腔205一一对应。
本实施例中,所述谐振器为SAW谐振器,因此,所述衬底100为压电基板,所述衬底100的材料为铌酸锂、钽酸锂、石英或压电陶瓷。相应的,所述声学换能器200为金属IDT。IDT包括两组具有能量转换功能的叉指型电极,分别为输入叉指换能器和输出叉指换能器。所述叉指型电极的材料包括Mo、Al、Pt、W、Au、Al、Ni和Ag中的一种或多种。本实施例中,所述叉指型电极为叉指型铝电极。
需要说明的是,所述衬底100还包括环绕压电振荡有效区100s的外围区100e,所述外围区100e和压电振荡有效区100s一一对应。所述外围区100e的衬底100上形成有连接端110,所述连接端110电连接所述声学换能器200。所述连接端110作为声学换能器200的输入/输出端。在每一个压电振荡有效区100s对应的外围区100e中,所述衬底100上形成有两个连接端110,其中一个连接端110电连接输入叉指换能器,另一个连接端110电连接输出叉指换能器。
第一盖帽层210和压电振荡有效区100s的衬底100围成空腔205,所述空腔205用于容纳声学换能器200。第一盖帽层210为空腔205的形成提供工艺平台。通过所述空腔205,使声学换能器200与空气相接触,从而使谐振器在工作时能够正常产生振动。而且,声学换能器200与空气相接触,能有效地将谐振器的漏波从空气与声学换能器200的交界面处反射回衬底100(即压电基底)表面,从而提高电能与机械能的转换效率,也即提高了品质因子。
本实施例中,所述压电振荡有效区100s数量为多个,因此,所述声学换能器200和空腔205一一对应。
需要说明的是,所述空腔205顶面至声学换能器200顶面的距离不宜过小,也不宜过大。如果距离过小,在形成牺牲层后,容易导致所述牺牲层无法完全覆盖所述声学换能器200的顶面,从而导致第一盖帽层210和声学换能器200的顶面相接触,进而对谐振器的性能造成不良影响;如果距离过大,则相应会增大谐振器的体积,从而导致谐振器的制造工艺难以满足器件小型化的发展,而且,形成牺牲层和去除牺牲层时所需的工艺时间相应增加,从而造成工艺成本和时间的浪费。为此,本实施例中,所述空腔205顶面至所述声学换能器200顶面的距离为0.3微米至10微米。
所述第一盖帽层210中形成有至少一个释放孔211,所述释放孔211贯穿压电振荡有效区100s的衬底100上方的第一盖帽层210,且所述释放孔211与空腔205相连通。牺牲层通过所述释放孔211被去除,从而形成所述空腔205。本实施例中,为了提高去除所述牺牲层的效率,在每一个压电振荡有效区100s中,所述释放孔211的数量为多个。
需要说明的是,所述释放孔211的横向尺寸不宜过小,也不宜过大。如果所述释放孔211的横向尺寸过小,则容易降低去除牺牲层的效率;如果所述释放孔211的横向尺寸过大,所述第二盖帽层220容易通过所述释放孔211而填充至空腔205中,从而影响谐振器的性能,或者,为了使第二盖帽层220仅密封所述释放孔211,相应需要增大第二盖帽层220的厚度,从而导致谐振器的体积过大,而且,还会增加互连结构的形成难度。为此,本实施例中,所述释放孔211的横向尺寸为0.2微米至20微米。作为一种示例,所述释放孔211的横截面形状为圆形,所述释放孔211的横向尺寸指的是所述释放孔211的直径。
本实施例中,所述第一盖帽层210还覆盖所述连接端110,从而为形成电连接所述连接端110的互连结构提供工艺基础。第一盖帽层210选取易于实现图形化的材料,从而降低形成释放孔211和互连结构的工艺难度。而且,第一盖帽层210具有较好的覆盖能力,从而提高第一盖帽层210与衬底100以及连接端110的贴合度,一方面,这有利于保障空腔205的形貌质量和尺寸精度,另一方面,使第一盖帽层210与衬底100以及连接端110之间具有较高的结合强度,以上两个方面均有利于提高谐振器的可靠性。
本实施例中,所述第一盖帽层210的材料为光敏材料。具体地,所述光敏材料为干膜。干膜的粘结强度较高,从而使得第一盖帽层210与衬底100以及连接端110的结合强度得到保障。在其他实施例中,所述第一盖帽层的材料也可以为介电材料或有机材料,所述介电材料可以为氧化硅、磷硅酸玻璃或硼磷玻璃,所述有机材料可以为聚酰亚胺。
通过第二盖帽层220,实现谐振器的封装,并起到密封以及防潮的作用,相应减小后续工艺对声学换能器200的影响,从而提高谐振器的可靠性。而且,通过密封所述空腔205,还有利于使得所述空腔205与外界环境隔绝,从而维持所述声学换能器200的声学性能的稳定性。所述第二盖帽层220选取易于实现图形化的材料,从而降低形成互连结构的工艺难度。而且,所述第二盖帽层220具有较好的覆盖能力,从而提高第二盖帽层220与第一盖帽层210的贴合度和结合强度,从而提高谐振器的可靠性。
本实施例中,第二盖帽层220的材料为光敏材料。具体地,光敏材料为干膜。其他实施例中,第二盖帽层的材料还可以为介电材料或有机材料。对第二盖帽层220的具体描述,可参考对第一盖帽层210的相关描述,在此不再赘述。
本实施例中,所述第二盖帽层220和第一盖帽层210的结合强度较高,且所述第二盖帽层220和第一盖帽层210对空腔211的密封性高,这相应提高了谐振器的可靠性。
本实施例中,所述释放孔211的横向尺寸为0.2微米至20微米,因此,通过合理设定所述第二盖帽层220的厚度,所述第二盖帽层220通过所述释放孔211填充至空腔205中的概率较低。其中,基于所述释放孔211的横向尺寸,为了避免所述第二盖帽层220通过所述释放孔211填充至空腔205中,所述第二盖帽层220的厚度不会太小,从而使得第二盖帽层220的密封以及防潮作用得到保障,而且,所述第二盖帽层220的厚度也不需要太大,这使得谐振器的体积不会太大,从而满足器件小型化发展的趋势。作为一种示例,所述第二盖帽层220密封所述释放孔211顶部。在其他实施例中,所述第二盖帽层也可以填充部分深度的释放孔。
所述谐振器还包括:互连结构140,电连接所述连接端110。所述互连结构140用于实现所述连接端110与外部电路的电连接。本实施例中,所述互连结构140贯穿所述连接端110上方的所述第二盖帽层220和第一盖帽层210。
本实施例中,所述互连结构140采用凸点工艺所形成,即所述互连结构140为凸点结构,便于进行后续的封装制程。具体地,所述凸点工艺为金属柱工艺,相应的,所述互连结构140包括:金属柱141,贯穿所述连接端110上方的所述第二盖帽层220和第一盖帽层210;焊球142,位于所述金属柱141的表面。
所述金属柱141的材料可以包括铜、铝、镍、金、银和钛中的一种或多种,所述焊球142的材料可以为锡焊料、银焊料或金锡合金焊料。本实施例中,所述金属柱141的材料为铜,所述焊球142的材料为锡焊料。
在其他实施例中,所述凸点工艺也可以为微凸点工艺。相应的,所述金属柱的顶面低于所述第二盖帽层的表面。
图13是本发明谐振器第二实施例的结构示意图。
本实施例与前述实施例的相同之处,在此不再赘述。本实施例与前述实施例的不同之处在于:所述谐振器为体声波谐振器。
本实施例中,所述体声波谐振器为薄膜体声波谐振器(film bulk acoustic resonator,FBAR),FBAR主要由上下两层金属电极以及夹在两层金属电极之间的压电层构成,通过施加射频电压在电极上,在压电层中激励体声波,从而完成谐振。FBAR具有尺寸小、谐振频率高、Q值高、功率容量大、滚降效应好等优良特性。具体地,以所述体声波谐振器为横膈膜型薄膜体声波谐振器为例,所述声学换能器510包括底部电极(bottom electrode)511、位于所述底部电极511上的压电层512、以及位于所述压电层512上的顶部电极(top electrode)513,所述底部电极511和顶部电极513实现电连接。
所述压电层512的材料可以为压电晶体、压电陶瓷或压电聚合物等。其中,所述压电晶体可以为氮化铝、锆钛酸铅、石英晶体、镓酸锂、锗酸锂、锗酸钛、铌酸锂或钽酸锂等,所述压电聚合物可以为聚偏氟乙烯、偏氟乙烯-三氟乙烯共聚物、尼龙-11或亚乙烯基二氰-醋酸乙烯交替共聚物等。
本实施例中,所述压电层512的材料为氮化铝。氮化铝具有呈现大约6.5%的压电耦合系数并且呈现较低的声损耗和介电损耗的优点,从而使体声波谐振器呈现与大多数电信标准所要求的规格相匹配的通带。
本实施例中,所述衬底500为硅衬底。
本实施例中,所述谐振器还包括:背腔501,贯穿所述压电振荡有效区(未标示)的衬底500,所述背腔501露出所述底部电极511。通过所述背腔501,使所述底部电极511与空气接触,实现零声阻抗边界,从而使泄露的声波在底部电极511和空气的交界处实现全反射,进而提高谐振器的机电耦合系数和Q值,相应提高谐振器的性能。
对本实施例所述谐振器的具体描述,可参考前述实施例中的相应描述,在此不再赘述。
图14是本发明谐振器第三实施例的结构示意图。
本实施例与第二实施例的相同之处,在此不再赘述。本实施例与前述实施例的不同之处在于:所述体声波谐振器为空气隙型薄膜体声波谐振器。
相应的,所述声学换能器610相应也包括底部电极611、位于所述底部电极611上的压电层612、以及位于所述压电层612上的顶部电极613,且所述声学换能器610与衬底600之间形成有空气隙620。其中,所述声学换能器610通过所述空气隙620,实现零声阻抗边界。
对本实施例所述谐振器的具体描述,可参考前述实施例中的相应描述,在此不再赘述。
图15是本发明谐振器第四实施例的结构示意图。
本实施例与第二实施例的相同之处,在此不再赘述。本实施例与前述实施例的不同之处在于:所述体声波谐振器为反射阵型体声波谐振器。
所述声学换能器710也包括:位于所述衬底700上的底部电极711、位于所述底部电极711上的压电层712、以及位于所述压电层712上的顶部电极713。而且,所述谐振器相应还包括:堆叠的布拉格反射层(未标示),位于所述底部电极711和衬底700之间。
所述声学换能器710通过所述布拉格反射层,将泄露的声波反射至声学换能器710中,当满足布拉格谐振条件时,声波即可以在压电层712和布拉格反射层中形成驻波,从而实现谐振。而且,布拉格反射层通常包括交替堆叠的第一阻抗挡层和第二阻抗层,第一阻抗挡层的声阻抗大于第二阻抗层的声阻抗,在声波传播的过程中,当声阻抗不连续时,声波就会产生反射。
对本实施例所述谐振器的具体描述,可参考前述实施例中的相应描述,在此不再赘述。
相应的,本发明实施例还提供一种滤波器,所述滤波器包括前述实施例所述的谐振器。
前述实施例所述的谐振器具有较高的可靠性,这相应提高了滤波器的可靠性。
相应的,本发明实施例还提供一种电子设备,所述电子设备包括前述实施例所述的滤波器。
所述滤波器可以组装至各种电子设备中。由前述分析可知,所述滤波器的可靠性较高,这相应能够得到可靠性高的电子设备。其中,所述电子设备还可以为个人计算机、智能手机等移动终端、媒体播放器、导航设备、电子游戏设备、游戏用控制器、平板计算机、可穿戴设备、防门禁电子系统、POS终端、医疗设备、飞行模拟器等。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (20)

  1. 一种谐振器的制造方法,其特征在于,包括:
    提供晶圆级衬底,所述衬底包括压电振荡有效区,所述压电振荡有效区的衬底上形成有声学换能器;
    在所述压电振荡有效区的所述衬底上形成牺牲层,所述牺牲层覆盖所述声学换能器;
    形成覆盖所述牺牲层的第一盖帽层;
    在所述第一盖帽层中形成至少一个释放孔,所述释放孔露出所述牺牲层;
    通过所述释放孔去除所述牺牲层,形成空腔;
    去除所述牺牲层后,形成覆盖所述第一盖帽层的第二盖帽层,所述第二盖帽层密封所述释放孔。
  2. 如权利要求1所述的制造方法,其特征在于,形成所述牺牲层的步骤包括:形成覆盖所述衬底和声学换能器的牺牲材料层;
    图形化所述牺牲材料层,保留位于所述压电振荡有效区的牺牲材料层作为所述牺牲层。
  3. 如权利要求1所述的制造方法,其特征在于,所述衬底还包括环绕所述压电振荡有效区域的外围区,所述外围区的衬底上形成有连接端,所述连接端电连接所述声学换能器;
    所述制造方法还包括:形成互连结构,用于电连接所述连接端。
  4. 如权利要求3所述的制造方法,其特征在于,形成所述第一盖帽层的步骤中,所述第一盖帽层还覆盖所述连接端;
    形成所述互连结构之前,所述制造方法还包括:形成贯穿所述第二盖帽层和第一盖帽层的互连孔,所述互连孔露出所述连接端;
    在所述互连孔中形成所述互连结构。
  5. 如权利要求3所述的制造方法,其特征在于,形成所述第一盖帽层的步骤中,所述第一盖帽层还覆盖所述连接端;
    在所述第一盖帽层中形成释放孔的步骤中,还在所述第一盖帽层中形成第一互连孔,所述第一互连孔露出所述连接端;
    形成所述第二盖帽层的步骤中,所述第二盖帽层密封所述第一互连孔;
    形成所述第二盖帽层后,所述制造方法还包括:在所述第二盖帽层中形成与所述第一互连孔相贯通的第二互连孔,所述第二互连孔和第一互连孔用于构成互连孔;
    在所述互连孔中形成所述互连结构。
  6. 如权利要求2所述的制造方法,其特征在于,采用沉积工艺或涂布工艺,形成所述牺牲材料层;通过光刻工艺或干法刻蚀工艺图形化所述牺牲材料层。
  7. 如权利要求1所述的制造方法,其特征在于,通过光刻工艺或干法刻蚀工艺图形化所述第一盖帽层,形成所述释放孔。
  8. 如权利要求1所述的制造方法,其特征在于,采用干法刻蚀工艺或湿法刻蚀工艺,去除所述牺牲层。
  9. 如权利要求1所述的制造方法,其特征在于,去除所述牺牲层的步骤中,所述牺牲层和第一盖帽层的去除选择比大于或等于50:1。
  10. 如权利要求1所述的制造方法,其特征在于,所述牺牲层的材料包括光刻胶、聚酰亚胺、无定形碳或锗。
  11. 如权利要求4或5所述的制造方法,其特征在于,形成所述互连孔的步骤包括:通过光刻工艺或干法刻蚀工艺图形化所述第一盖帽层;通过光刻工艺或干法刻蚀工艺图形化所述第二盖帽层。
  12. 如权利要求1所述的制造方法,其特征在于,所述第一盖帽层的材料包括介电材料、有机材料或光敏材料;所述第二盖帽层的材料包括介电材料、有机材料或光敏材料;所述光敏材料为干膜。
  13. 如权利要求1所述的制造方法,其特征在于,采用贴膜工艺、沉积工艺或涂布工艺,形成所述第一盖帽层;
    采用贴膜工艺、沉积工艺或涂布工艺,形成所述第二盖帽层。
  14. 如权利要求1所述的制造方法,其特征在于,所述牺牲层顶面至所述声学换能器顶面的距离为0.3微米至10微米。
  15. 如权利要求1所述的制造方法,其特征在于,所述释放孔的横向尺寸为0.2微米至20微米。
  16. 如权利要求1所述的制造方法,其特征在于,所述谐振器为声表面波谐振器或体声波谐振器;所述体声波谐振器包括反射阵型体声波谐振器、横膈膜型薄膜体声波谐振器或空气隙型薄膜体声波谐振器。
  17. 一种谐振器,其特征在于,包括:
    衬底,所述衬底包括压电振荡有效区;
    声学换能器,位于所述压电振荡有效区的衬底上;
    第一盖帽层,覆盖所述衬底,所述第一盖帽层和所述压电振荡有效区的衬底围成空腔,所述空腔用于容纳所述声学换能器;
    至少一个释放孔,所述释放孔贯穿所述压电振荡有效区衬底上方的所述第一盖帽层,且所述释放孔与所述空腔相连通;
    第二盖帽层,覆盖所述第一盖帽层且密封所述释放孔。
  18. 如权利要求17所述的谐振器,其特征在于,所述衬底还包括环绕所述压电振荡有效区域的外围区,所述外围区的衬底上形成有连接端,所述连接端电连接所述声学换能器;
    所述谐振器还包括:互连结构,电连接所述连接端,所述互连结构贯穿所述连接端上方的所述第二盖帽层和第一盖帽层。
  19. 一种滤波器,其特征在于,包括如权利要求17至18任一项权利要求所述的谐振器。
  20. 一种电子设备,其特征在于,包括如权利要求19所述的谐振器。
PCT/CN2020/098836 2019-08-16 2020-06-29 谐振器及其制造方法、滤波器、电子设备 WO2021031700A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910760041.3A CN112117979B (zh) 2019-08-16 2019-08-16 谐振器及其制造方法、滤波器、电子设备
CN201910760041.3 2019-08-16

Publications (1)

Publication Number Publication Date
WO2021031700A1 true WO2021031700A1 (zh) 2021-02-25

Family

ID=73795266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/098836 WO2021031700A1 (zh) 2019-08-16 2020-06-29 谐振器及其制造方法、滤波器、电子设备

Country Status (2)

Country Link
CN (1) CN112117979B (zh)
WO (1) WO2021031700A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118083906A (zh) * 2024-04-23 2024-05-28 芯联越州集成电路制造(绍兴)有限公司 一种mems器件及其制备方法和电子装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113285685B (zh) * 2021-03-05 2022-12-09 广州乐仪投资有限公司 石英薄膜体声波谐振器及其加工方法、电子设备
CN115849297A (zh) * 2022-12-27 2023-03-28 上海铭锟半导体有限公司 一种mems空腔的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7492019B2 (en) * 2003-03-07 2009-02-17 Ic Mechanics, Inc. Micromachined assembly with a multi-layer cap defining a cavity
CN101385392A (zh) * 2006-03-20 2009-03-11 沃福森微电子股份有限公司 Mems器件
CN101946409A (zh) * 2008-02-18 2011-01-12 株式会社村田制作所 弹性波装置及其制造方法
US20140284729A1 (en) * 2013-03-22 2014-09-25 Kabushiki Kaisha Toshiba Electrical component and method of manufacturing the same
US20150170997A1 (en) * 2013-12-13 2015-06-18 Kabushiki Kaisha Toshiba Mems device and manufacturing method of the same
US20170288627A1 (en) * 2016-04-01 2017-10-05 Skyworks Filter Solutions Japan Co., Ltd. Electronic package including cavity formed by removal of sacrificial material from within a cap
CN110690872A (zh) * 2019-09-27 2020-01-14 无锡市好达电子有限公司 一种滤波器的新型封装结构和封装方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10110189B2 (en) * 2016-11-02 2018-10-23 Akoustis, Inc. Structure and method of manufacture for acoustic resonator or filter devices using improved fabrication conditions and perimeter structure modifications
CN105820338A (zh) * 2016-04-25 2016-08-03 全球能源互联网研究院 一种聚酰亚胺及其制备方法
US10153750B2 (en) * 2017-03-24 2018-12-11 Zhuhai Crystal Resonance Technologies Co., Ltd. RF resonators and filters
CN109586680B (zh) * 2017-09-29 2021-09-03 安华高科技股份有限公司 用于声谐振器结构的经锚定聚合物封装

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7492019B2 (en) * 2003-03-07 2009-02-17 Ic Mechanics, Inc. Micromachined assembly with a multi-layer cap defining a cavity
CN101385392A (zh) * 2006-03-20 2009-03-11 沃福森微电子股份有限公司 Mems器件
CN101946409A (zh) * 2008-02-18 2011-01-12 株式会社村田制作所 弹性波装置及其制造方法
US20140284729A1 (en) * 2013-03-22 2014-09-25 Kabushiki Kaisha Toshiba Electrical component and method of manufacturing the same
US20150170997A1 (en) * 2013-12-13 2015-06-18 Kabushiki Kaisha Toshiba Mems device and manufacturing method of the same
US20170288627A1 (en) * 2016-04-01 2017-10-05 Skyworks Filter Solutions Japan Co., Ltd. Electronic package including cavity formed by removal of sacrificial material from within a cap
US20200153407A1 (en) * 2016-04-01 2020-05-14 Skyworks Filter Solutions Japan Co., Ltd. Electronic package including cavity formed by removal of sacrificial material from within a cap
CN110690872A (zh) * 2019-09-27 2020-01-14 无锡市好达电子有限公司 一种滤波器的新型封装结构和封装方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118083906A (zh) * 2024-04-23 2024-05-28 芯联越州集成电路制造(绍兴)有限公司 一种mems器件及其制备方法和电子装置

Also Published As

Publication number Publication date
CN112117979A (zh) 2020-12-22
CN112117979B (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
US10819309B1 (en) Transversely-excited film bulk acoustic resonator package and method
JP5865944B2 (ja) 弾性波装置の製造方法
WO2021031700A1 (zh) 谐振器及其制造方法、滤波器、电子设备
US20210044275A1 (en) Transversely-excited film bulk acoustic resonator package
WO2021189965A1 (zh) 一种薄膜体声波谐振器及其制造方法
WO2021253757A1 (zh) 一种薄膜声波滤波器及其制造方法
US20210044277A1 (en) Transversely-excited film bulk acoustic resonator package
JP7246775B2 (ja) Baw共振器のパッケージングモジュールおよびパッケージング方法
WO2007080734A1 (ja) 弾性表面波装置の製造方法及び弾性表面波装置
US20230037168A1 (en) Metal cavity for transversely-excited film bulk acoustic resonator (xbar)
US20220029609A1 (en) Transversely-excited film bulk acoustic resonator package and method
JP4404450B2 (ja) 弾性表面波装置及びその製造方法
CN112039491B (zh) 一种薄膜压电声波滤波器及其制造方法
JP4496652B2 (ja) 弾性表面波装置とその製造方法
CN116846358A (zh) 一种滤波装置及其制作方法
KR20170020835A (ko) 체적 음향 공진기 구조 및 제조 방법
JP2009164884A (ja) 弾性波デバイス及びその製造方法
JP4825111B2 (ja) 圧電薄膜デバイスの製造方法
JP4693397B2 (ja) 薄膜バルク音響波共振子およびフィルタならびに通信装置
CN112039489B (zh) 一种薄膜压电声波滤波器及其制造方法
CN113381722A (zh) 一种抑制能量泄露和寄生的高q值薄膜体声波谐振器
US12040781B2 (en) Transversely-excited film bulk acoustic resonator package
US20230170867A1 (en) Transversely-excited film bulk acoustic resonator package and method
JP5111307B2 (ja) 共振器、フィルタおよびデュプレクサ、ならびに共振器の製造方法
CN114337579A (zh) 谐振器件及其制备方法、集成有谐振器件的集成电路板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20853972

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20853972

Country of ref document: EP

Kind code of ref document: A1