WO2021029389A1 - 量子ドット、及び、その製造方法 - Google Patents

量子ドット、及び、その製造方法 Download PDF

Info

Publication number
WO2021029389A1
WO2021029389A1 PCT/JP2020/030467 JP2020030467W WO2021029389A1 WO 2021029389 A1 WO2021029389 A1 WO 2021029389A1 JP 2020030467 W JP2020030467 W JP 2020030467W WO 2021029389 A1 WO2021029389 A1 WO 2021029389A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dots
silver
quantum
particle size
present
Prior art date
Application number
PCT/JP2020/030467
Other languages
English (en)
French (fr)
Inventor
俊明 島崎
惣一朗 荷方
Original Assignee
Nsマテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nsマテリアルズ株式会社 filed Critical Nsマテリアルズ株式会社
Publication of WO2021029389A1 publication Critical patent/WO2021029389A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/58Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing copper, silver or gold
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters

Definitions

  • the present invention relates to quantum dots that absorb or emit light in the near infrared region, and a method for producing the same.
  • Quantum dots are nanoparticles composed of hundreds to thousands of atoms. Quantum dots are also called fluorescent nanoparticles, semiconductor nanoparticles, or nanocrystals.
  • Quantum dots can have various emission wavelengths depending on the particle size and composition of nanoparticles. Further, examples of the performance and characteristics of the quantum dots include the fluorescence quantum yield (Quantum Yield: QY), the full width at half maximum (Full Width at Half Maximum: FWHM), the absorption wavelength, and the fluorescence wavelength.
  • QY fluorescence quantum yield
  • FWHM full width at half maximum
  • absorption wavelength the absorption wavelength
  • fluorescence wavelength the fluorescence wavelength
  • Non-Patent Document 1 and Non-Patent Document 2 have a description regarding silver chalcogenide quantum dots.
  • Non-Patent Document 1 reports a method for synthesizing Ag 2 Te quantum dots by a cation exchange method from CdTe. Further, Non-Patent Document 2 reports a method for synthesizing Ag 2 Te quantum dots via silver silylamide.
  • Non-Patent Document 1 it is a synthetic method via a cadmium intermediate, which is a toxic regulated heavy metal, and is not practically used.
  • silver silylamide used in Non-Patent Document 2 is a reactant having high reactivity when used in the atmosphere, and care must be taken in its handling.
  • quantum dots when quantum dots are used as an absorption material in the near-infrared region, it is important that a clear absorption peak exists in the near-infrared region and that the absorption wavelength can be freely adjusted according to the purpose. ..
  • a silver chalcogenide quantum dot whose absorption peak is clearly present in the near-infrared region and which can appropriately obtain an absorption wavelength according to the purpose, and a method for producing the same have not been established.
  • Non-Patent Document 1 and Non-Patent Document 2 are not specified, but are judged from the published spectra, and the full width at half maximum (Full Width at Half Maximum). : FWHM) seems to exceed 200 nm.
  • the present invention has been made in view of this point, and Ag 2 E (E is Te, Se) capable of showing a clear absorption peak in the near infrared region and obtaining an absorption wavelength according to a purpose.
  • Ag 2 E E is Te, Se
  • At least one of S) Quantum dots and mass production are possible, and the absorption wavelength can be freely controlled according to the purpose in the near infrared region, providing a highly safe method for producing quantum dots.
  • the purpose is to do.
  • the present invention has been made in view of the above points, and the Ag 2 E (E is at least one of Te, Se, and S) quantum dots exhibiting high-luminance near-infrared fluorescence, and It is an object of the present invention to provide a method for manufacturing quantum dots that can be mass-produced and has high safety.
  • the quantum dots in the present invention are nanocrystals represented by Ag 2 E (E is at least one of tellurium, selenium, or sulfur) containing silver and chalcogen, and have an average particle size of 1 nm. It is characterized by having a diameter of 15 nm or less.
  • quantum dots represented as Ag 2 E (E is at least one of tellurium, selenium, or sulfur) are formed from a silver raw material and a chalcogen-containing trioctylphosphine. It is characterized by synthesizing.
  • quantum dots represented as Ag 2 E (E is at least one of tellurium, selenium, or sulfur) are synthesized from a silver raw material and a dicalcogen compound. It is characterized by doing.
  • quantum dots of the present invention it is possible to show a clear absorption peak in the near infrared region and have an absorption wavelength according to the purpose.
  • the fluorescence half width in the near-infrared region can be narrowed, and high-infrared near-infrared fluorescence can be exhibited.
  • quantum dots of the present invention when the quantum dots are handled in the atmosphere, they can be synthesized by a mass-produced method without using a highly reactive reactant or a toxic regulated heavy metal. It is possible.
  • a method for synthesizing quantum dots a method of mixing a silver raw material and a chalcogen-containing trioctylphosphine, or a method of mixing a silver raw material and a chalcogen compound can be used.
  • the former synthesis method is suitable for the production of quantum dots, which can show a clear absorption peak in the near infrared region and can freely control the absorption wavelength according to the purpose.
  • the latter synthesis method is suitable for a method for producing quantum dots capable of narrowing the fluorescence half-value width in the near-infrared region and exhibiting high-luminance near-infrared fluorescence.
  • FIG. 9 is an Absorption spectrum of Ag 2 Te in Example 1.
  • FIG. 6 is an Absorption spectrum of Ag 2 Te in Example 2. It is an X ray diffraction (XRD spectrum) of Ag 2 Te in Example 2.
  • FIG. 3 is an Absorption spectrum of Ag 2 Te in Example 3. It is an X ray diffraction (XRD spectrum) of Ag 2 Te in Example 3.
  • FIG. 9 is an Absorption spectrum of Ag 2 Te in Example 4.
  • FIG. 4 is an X-ray diffraction (XRD spectrum) of Ag 2 Te in Example 4.
  • FIG. 10A is an Absorption spectrum of Ag 2 Te in Example 5.
  • 6 is a fluorescence (Photoluminescence: PL) spectrum of Ag 2 Te in Example 5.
  • FIG. 5 is a scanning transmission electron microscope (STEM) photograph of Ag 2 Te in Example 5.
  • STEM scanning transmission electron microscope
  • XRD spectrum X-ray Diffraction
  • the present invention is not limited to the following embodiments, and can be variously modified and implemented within the scope of the gist thereof.
  • the notation "-" includes a lower limit value and an upper limit value.
  • Quantum dot 1 shown in FIG. 1A is a nanocrystal containing silver (Ag) and chalcogen (referring to at least one of tellurium (Te), selenium (Se), and sulfur (S)). ..
  • the chemical formula of the quantum dot of this embodiment is represented by Ag 2 E (E is at least one of Te, Se, and S).
  • the quantum dots in this embodiment have fluorescence characteristics due to band-end emission, and exhibit a quantum size effect from the size of the particles.
  • the average particle size of the quantum dots of the present embodiment is 1 nm or more and 15 nm or less. Further, in the present embodiment, it is possible to satisfy the above average particle size and generate a large number of quantum dots with a uniform particle size. “Uniform” refers to a state in which 90% or more of particles are contained within ⁇ 30% of the average particle size. As described above, in the present embodiment, it is possible to mass-produce fine and uniform high-quality quantum dots.
  • Ag and Te, Ag and Se, or Ag and S contained in the quantum dots of the present embodiment are main components, and elements other than these elements may be contained.
  • a reactant such as a metal amide or an organolithium compound, which exhibits high reactivity when handled in the atmosphere, is not used, and Cd or Pb is used as a reaction intermediate.
  • Cd or Pb is used as a reaction intermediate.
  • Cadmium-containing and lead-containing compounds are toxic and regulated heavy metals, and are likely to cause cost increases, handling restrictions, and complicated manufacturing processes.
  • the quantum dots of the present embodiment do not contain substances derived from highly reactive reactants or regulated heavy metals. Further, in the present embodiment, two or more of Te, Se and S may be included.
  • ligands 2 are coordinated on the surface of the quantum dots. As a result, aggregation of quantum dots can be suppressed and the desired optical characteristics are exhibited.
  • the ligand that can be used in the reaction is not particularly limited, and examples thereof include the following ligands.
  • the quantum dot 1 may have a core-shell structure including a core 1a and a shell 1b coated on the surface of the core 1a. As shown in FIG. 1B, it is preferable that a large number of organic ligands 2 are coordinated on the surface of the quantum dots 1.
  • the core 1a shown in FIG. 1B is Ag 2 E.
  • the shell 1b does not contain regulated heavy metals such as Cd, Hg, and Pd, and substances derived from highly reactive reactants such as metal amides and organolithium compounds.
  • the shell 1b may be in a state of being dissolved on the surface of the core 1a.
  • the boundary between the core 1a and the shell 1b is shown by a dotted line, which means that the boundary between the core 1a and the shell 1b may or may not be confirmed by analysis.
  • only the core 1a without using the shell 1b that is, the quantum dot 1 of the core alone in FIG. 1A can have the absorption wavelength shown below, or the fluorescence wavelength shown below, and It can have a fluorescence half width.
  • the present inventors can mass-produce nanocrystals represented by Ag 2 E (E is at least one of tellurium, selenium, or sulfur) containing silver and chalcogen, and have excellent safety. When it was synthesized by a novel production method and its physical properties were elucidated, it was found that it had an absorption wavelength in the near infrared region of 800 nm to 1700 nm.
  • the “absorption wavelength” is the wavelength of the peak of the absorption spectrum, that is, the state in which the absorption peak appears in the near infrared region.
  • the present inventors have (1) flexible control of the absorption peak observed in the near-infrared region according to the purpose, and (2) the peak top and valley of the absorption peak observed in the near-infrared region.
  • the main purpose of the study was to clarify the contrast.
  • the above (1) is to meet the demand for adjusting the absorption peak wavelength in the near infrared region according to the purpose.
  • the above (2) is for clarifying on / off of absorption when used as a near-infrared absorbing material.
  • the quantum dot of the present embodiment has an absorption wavelength in the near infrared region of 800 nm to 1700 nm, and it is possible to freely control this absorption wavelength according to the purpose.
  • the amount of the solvent which can be said to be the concentration of silver and chalcogen
  • the absorbance ratio between the peak top of the absorption peak and the valley can be set to 1.0 or more.
  • the absorbance ratio is preferably 1.5 or more, and more preferably 2.0 or more. This makes it possible to clarify the on / off of absorption when used as a near-infrared absorbing material.
  • the longest absorption wavelength peak having the above-mentioned absorbance ratio exists in the near infrared region of 1000 to 1500 nm. Thereby, it is possible to clarify on / off of absorption according to a desired purpose.
  • the longest absorption wavelength in the near infrared region it is preferable to have the longest absorption wavelength in the near infrared region of 1100 nm to 1600 nm. Further, in the present embodiment, it is more preferable to have the longest absorption wavelength in the near infrared region of 1300 nm to 1500 nm.
  • the average particle size of the quantum dots of the present embodiment is 1 nm or more and 15 nm or less and is uniform, but a small particle size is also one of the factors for obtaining an absorption wavelength in the near infrared region. It becomes a factor.
  • ligand short ligand
  • MPA 3-mercaptopropionic acid
  • a large number of quantum dots are dispersed and arranged in the light absorption layer (or quantum dot layer) of the infrared sensor.
  • the ligand of the quantum dot contained in the light absorption layer is preferably shorter than the ligand when the quantum dot is formed by the synthetic method.
  • the roughness of the light absorption layer can be reduced and the efficiency of extracting electrons and holes can be improved.
  • a long ligand when forming the quantum dot by the liquid phase synthesis method the dispersion film forming property can be improved.
  • a composition containing quantum dots is applied before or after application of a short ligand (for example, 3-mercaptopropionic acid). ) Can be exchanged.
  • a short ligand for example, 3-mercaptopropionic acid
  • DDT dodecanethiol
  • the quantum dots of the present embodiment have a fluorescence wavelength in the near infrared region of 800 m to 1700 nm and a fluorescence half width of 200 nm or less.
  • the "fluorescence wavelength” refers to the wavelength of the peak of the fluorescence spectrum.
  • the quantum dots of the present embodiment can control the fluorescence wavelength in the range of 800 nm or more and 1700 nm or less, preferably 1000 nm or more and 1700 nm or less, and more preferably 1200 nm or more and 1700 nm or less.
  • full width at half maximum refers to the full width at half maximum (Full Width at Half Maximum), which indicates the spread of the fluorescence wavelength at half the intensity of the peak value of the fluorescence intensity in the fluorescence spectrum.
  • the fluorescence half width is preferably 150 nm or less, and more preferably 100 nm or less.
  • the fluorescence half width can be narrowed. Specifically, as shown in the experimental results described later, a fluorescence half width of 150 nm or less can be obtained.
  • the fluorescence quantum yield (Quantum Yield) of the quantum dots in this embodiment is 5% or more.
  • the fluorescence quantum yield is more preferably 10% or more, further preferably 20% or more, and even more preferably 30% or more.
  • the fluorescence quantum yield of the quantum dots can be increased.
  • the fluorescence wavelength can be freely controlled in the range of 800 nm or more and 1700 nm or less.
  • the quantum dots in the present embodiment are Ag 2 E-based solid solutions using chalcogen elements other than silver.
  • the fluorescence wavelength can be appropriately controlled by adjusting the average particle size of the quantum dots and the composition of the quantum dots.
  • the fluorescence wavelength is preferably 1000 nm or more, and more preferably 1200 nm or more.
  • the quantum dots of the present embodiment can satisfy both the absorption characteristics shown by the first quantum dots and the fluorescence characteristics shown by the second quantum dots.
  • quantum dots represented as Ag 2 E (E is at least one of tellurium, selenium, or sulfur) are synthesized from a silver raw material and a chalcogen-containing trioctylphosphine.
  • silver chloride (I): AgCl, silver bromide (I): AgBr, silver iodide (I): AgI and the like can be used.
  • the silver raw material in octadecene (ODE) as a solvent and trioctylphosphine (TOP).
  • ODE octadecene
  • TOP trioctylphosphine
  • the absorption peak wavelength can be freely controlled in the near infrared region according to the purpose by adjusting the amount (solvent amount) of ODE and TOP and the ratio of ODE / TOP. It is possible.
  • it is preferable to prepare the amount of solvent (which can be said to be the concentration of silver and chalcogen) in the range of 5 mL to 30 mL.
  • the amount of the solvent in the range of 10 mL to 25 mL.
  • the ratio of ODE / TOP is preferably in the range of 0.5 to 1.5. Further, it is more preferable that the ratio of ODE / TOP is in the range of 0.8 to 1.0.
  • trioctylphosphine terlide Te-TOP
  • Te-TOP trioctylphosphine selenide
  • S-TOP trioctylphosphine sulfide
  • chalcogen-containing trioctylphosphine is mixed with a solution in which a silver raw material is dissolved in a solvent, and further heated to synthesize the mixture.
  • the heating temperature can be lowered.
  • the heating temperature can be set to 200 ° C. or lower.
  • it can be set to 150 ° C. or lower.
  • the lower limit of the heating temperature is about 70 ° C.
  • the above production method it is a nanocrystal represented by Ag 2 E (E is at least one of tellurium, selenium, or sulfur) containing silver and chalcogen, and has an average particle size of 1 nm or more. It is possible to obtain quantum dots having an absorption wavelength of 15 nm or less and having an absorption wavelength in the near infrared region of 800 nm to 1700 nm. Further, according to the method for producing quantum dots of the present embodiment, when the quantum dots are handled in the atmosphere, they are synthesized by a method that can be mass-produced without using a reactant showing high reactivity or a toxic regulated heavy metal. Is possible.
  • DDT dodecanethiol
  • quantum dots represented as Ag 2 E (E is at least one of Te, Se, or S) are synthesized from the silver raw material and the dicalcogen compound.
  • silver chloride (I): AgCl, silver bromide (I): AgBr, silver iodide (I): AgI and the like can be used.
  • dichalcogen compounds can be used diorgano radical co Gen compound represented by R 1 -E 1 -E 2 -R 2 .
  • R 1 and R 2 may be a hydrocarbon group, and E 1 and E 2 may be at least one of Te, Se, or S.
  • R 1 and R 2 may be the same or different.
  • E 1 and E 2 may be the same or different.
  • an organic tellurium compound (organotellurium compound) or an inorganic tellurium compound dissolved in a high boiling point solvent can be used as a raw material.
  • organic tellurium compound organic tellurium compound
  • inorganic tellurium compound dissolved in a high boiling point solvent can be used as a raw material.
  • dialkyl ditelluride: R 2 Te 2 such as diphenyl ditelluride: (C 6 H 5 ) 2 Te 2 can be used.
  • an organic selenium compound (organoselenium compound) or an inorganic selenium compound dissolved in a high boiling point solvent is used as a raw material.
  • organic selenium compound organic selenium compound
  • inorganic selenium compound dissolved in a high boiling point solvent is used as a raw material.
  • the structure is not particularly limited, for example, a dialkyl diselenide such as (C 6 H 5 ) 2 Se 2 or a long-chain hydrocarbon such as R 2 Se 2 or octadecene.
  • a solution in which selenium is dissolved in a high boiling point solvent at a high temperature can be used.
  • an organic sulfur compound organic chalcogen compound
  • an inorganic sulfur compound dissolved in a high boiling point solvent is used as a raw material.
  • the structure is not limited, but for example, diphenyl disulfide: (C 6 H 5 ) 2 S 2 and other dialkyl disulfides: R 2 S 2 , or a long-chain hydrocarbon such as octadecene, which has a high boiling point.
  • a solution in which sulfur is dissolved in a solvent at a high temperature can be used.
  • a chalcogen compound as a precursor is obtained from the above-mentioned organic chalcogen or inorganic chalcogen.
  • the reaction temperature is preferably 100 ° C. or higher and 220 ° C. or lower at a lower temperature, more preferably 80 ° C. or higher and 200 ° C. or lower at a lower temperature, and 60 ° C. or higher and 200 ° C. or lower at a lower temperature. More preferred.
  • octadecene can be used as a saturated hydrocarbon having a high boiling point or an unsaturated hydrocarbon.
  • dodecylbenzene is used as an aromatic high-boiling solvent, and butyl butyrate: C 4 H 9 COOC 4 H 9 , benzyl butyrate: C 3 H 7 COOCH as a high-boiling ester-based solvent.
  • an aliphatic thiol-based compound an aliphatic amine-based compound, a fatty acid-based compound, or an aliphatic phosphorus-based compound can also be used as a solvent.
  • the thiol is not limited, but for example, octadecane thiol: C 18 H 37 SH, hexane decane thiol: C 16 H 33 SH, tetradecane thiol: C 14 H 29 SH, dodecane thiol: C 12 H 25 SH, decan.
  • the reaction method is not particularly limited, but Ag 2 Te, Ag 2 Se, and Ag 2 S having a uniform average particle size are synthesized in order to obtain quantum dots having a narrow half-width of fluorescence. This is very important. Therefore, it is preferable to quickly add a silver raw material to the precursor dicalcogenin compound in the heated solvent and heat it at 120 ° C. or higher and 250 ° C. or lower.
  • Examples of the compound having the above-mentioned role include a ligand capable of forming a complex with silver.
  • a ligand capable of forming a complex with silver For example, phosphorus-based ligands, amine-based ligands, thiol-based ligands, and carboxylic acid-based ligands are preferable, and among them, thiol-based ligands are particularly preferable because of their high efficiency.
  • quantum dots of the present embodiment a heavy metal subject to regulation represented by Cd, Hg, Pb, a metal amide, and a reactant exhibiting a high reaction in the atmosphere represented by an organolithium compound.
  • Quantum dots can be synthesized without including and as intermediates. As a result, quantum dots can be synthesized by a manufacturing method that can be put into practical use, can be mass-produced, and has excellent safety.
  • Example 1 In a 100 mL reaction vessel, 166.9 mg of silver acetate, 10.0 mL of ODE, and 10.0 mL of TOP were placed. Then, the raw material was dissolved by heating while stirring in an atmosphere of an inert gas (N 2 ). As described above, the total amount of the solvent of ODE and TOP was 20 mL. The ODE / TOP ratio was 1.0.
  • Te-TOP trioctylphosphinetellide
  • reaction solution (Ag 2 Te) was cooled to room temperature.
  • Ethanol was added to the obtained reaction solution to generate a precipitate, and the precipitate was collected by centrifugation. Then, toluene was added to the precipitate and dispersed to obtain a dispersion solution of Ag 2 Te quantum dots.
  • the obtained reaction solution was measured with an ultraviolet-visible spectrometer to obtain an ultraviolet-visible near-infrared absorption spectrum shown in FIG. As shown in FIG. 2, an absorption peak appeared at 1150.0 nm. The absorbance ratio of the peak top of this absorption peak to the valley was about 2.1.
  • the average particle size of many quantum dots was 3.1 to 3.5 nm, which was 1 nm or more and 15 nm or less. Further, each particle size of 90% or more of the quantum dots was included in the average particle size of ⁇ 0.7 nm. That is, each particle size of 90% or more of the quantum dots was included in the average particle size of ⁇ 30%, and the particle size of a large number of quantum dots could be uniformly generated.
  • Example 2 In a 100 mL reaction vessel, 166.9 mg of silver acetate, 8.5 mL of ODE, and 9.0 mL of TOP were placed. Then, the raw material was dissolved by heating while stirring in an atmosphere of an inert gas (N 2 ). As described above, the total amount of the solvent of ODE and TOP was 17.5 mL. The ODE / TOP ratio was about 0.94.
  • Ethanol was added to the obtained reaction solution to generate a precipitate, and the precipitate was collected by centrifugation. Then, toluene was added to the precipitate and dispersed to obtain a dispersion solution of Ag 2 Te quantum dots.
  • an absorption peak appeared at 1250.0 nm in the ultraviolet-visible near-infrared absorption spectrum when the obtained reaction solution was measured with an ultraviolet-visible spectrometer.
  • the absorbance ratio of the peak top of this absorption peak to the valley was about 2.0.
  • the average particle size of many quantum dots was 3.1 to 3.7 nm, which was 1 nm or more and 15 nm or less. Further, each particle size of 90% or more of the quantum dots was included in the average particle size of ⁇ 0.7 nm. That is, each particle size of 90% or more of the quantum dots was included in the average particle size of ⁇ 30%, and the particle size of a large number of quantum dots could be uniformly generated.
  • Example 3 166.9 mg of silver acetate, 7.5 mL of ODE, and 7.5 mL of TOP were placed in a 100 mL reaction vessel. Then, the raw material was dissolved by heating while stirring in an atmosphere of an inert gas (N 2 ). As described above, the total amount of the solvent of ODE and TOP was 15 mL. The ODE / TOP ratio was 1.0.
  • Ethanol was added to the obtained reaction solution to generate a precipitate, and the precipitate was collected by centrifugation. Then, toluene was added to the precipitate and dispersed to obtain a dispersion solution of Ag 2 Te quantum dots.
  • an absorption peak appeared at 1350.0 nm in the ultraviolet-visible near-infrared absorption spectrum when the obtained reaction solution was measured with an ultraviolet-visible spectrometer.
  • the absorbance ratio of the peak top of this absorption peak to the valley was about 1.8.
  • the average particle size of many quantum dots was 3.1 to 3.7 nm, which was 1 nm or more and 15 nm or less. Further, each particle size of 90% or more of the quantum dots was included in the average particle size of ⁇ 0.7 nm. That is, each particle size of 90% or more of the quantum dots was included in the average particle size of ⁇ 30%, and the particle size of a large number of quantum dots could be uniformly generated.
  • Example 4 166.9 mg of silver acetate, 5.0 mL of ODE, and 6.0 mL of TOP were placed in a 100 mL reaction vessel. Then, the raw material was dissolved by heating while stirring in an atmosphere of an inert gas (N 2 ). As described above, the total amount of the solvent of ODE and TOP was 11 mL. The ODE / TOP ratio was about 0.83.
  • reaction solution (Ag 2 Te) was cooled to room temperature.
  • Ethanol was added to the obtained reaction solution to generate a precipitate, and the precipitate was collected by centrifugation. Then, toluene was added to the precipitate and dispersed to obtain a dispersion solution of Ag 2 Te quantum dots.
  • an absorption peak appeared at 1450.0 nm in the ultraviolet-visible near-infrared absorption spectrum when the obtained reaction solution was measured with an ultraviolet-visible spectrometer.
  • the absorbance ratio of the peak top of this absorption peak to the valley was about 1.6.
  • the average particle size of many quantum dots was 3.1 to 3.7 nm, which was 1 nm or more and 15 nm or less. Further, each particle size of 90% or more of the quantum dots was included in the average particle size of ⁇ 0.7 nm. That is, each particle size of 90% or more of the quantum dots was included in the average particle size of ⁇ 30%, and the particle size of a large number of quantum dots could be uniformly generated.
  • Diphenyl ditelluride Made by Tokyo Chemical Industry (TCI) (Tellurium raw material) Tellurium (4N: 99.99%): Made by Shinko Kagaku Co., Ltd. or Aldrich ⁇ Measuring equipment> Fluorescence spectrometer: Ocean Optics NIRQuest 512-1.9 Ultraviolet-Visible Light Spectrophotometer: Hitachi, Ltd. V-770 X-ray diffractometer (XRD): Bruker D2 PHASER Scanning Transmission Electron Microscope (STEM): SU9000 manufactured by Hitachi, Ltd.
  • Example 5 123.0 mg of diphenyl ditelluride, 15.0 mL of dodecanethiol (DDT), and 15.0 mL of octadecene (ODE) were placed in a 100 mL reaction vessel. Then, the raw material was dissolved by heating while stirring in an atmosphere of an inert gas (N 2 ).
  • DDT dodecanethiol
  • ODE octadecene
  • reaction solution (Ag 2 Te) was cooled to room temperature.
  • Ethanol was added to the obtained reaction solution to generate a precipitate, and the precipitate was collected by centrifugation. Then, toluene was added to the precipitate and dispersed to obtain a dispersion solution of Ag 2 Te quantum dots.
  • the obtained reaction solution was measured with an ultraviolet-visible spectrometer.
  • absorption maximums were obtained at 1219.0 nm, 1400.0 nm, and 1420.0 nm.
  • the fluorescence maximum was obtained at 1322.5 nm.
  • the fluorescence half width was about 150 nm, which was smaller than 200 nm.
  • the average particle size of many quantum dots was 2.4 to 2.7 nm, which was 1 nm or more and 15 nm or less. Further, each particle size of 90% or more of the quantum dots was included in the average particle size of ⁇ 0.7 nm. That is, it was found that each particle size of 90% or more of the quantum dots was included in the average particle size of ⁇ 30%, and the particle size of a large number of quantum dots could be uniformly generated.
  • Example 6 In a 100 mL reaction vessel, 123.0 mg of diphenyl ditelluride and 30.0 mL of dodecanethiol (DDT) were placed. Then, the raw material was dissolved by heating while stirring in an atmosphere of an inert gas (N 2 ).
  • N 2 an inert gas
  • reaction solution (Ag 2 Te) was cooled to room temperature.
  • Ethanol was added to the obtained reaction solution to generate a precipitate, and the precipitate was collected by centrifugation. Then, toluene was added to the precipitate and dispersed to obtain a dispersion solution of Ag 2 Te quantum dots.
  • the ultraviolet-visible near-infrared absorption spectrum showed the maximum absorption at 1219.0 nm, 1400.0 nm, and 1420.0 nm, as in FIG. 11 of Example 5. was there. Further, in the near-infrared fluorescence spectrum of the reaction solution, as in FIG. 12 of Example 5, there was a fluorescence maximum at 1322.5 nm, and the fluorescence half width was about 150 nm, which was smaller than 200 nm.
  • the average particle size of many quantum dots was 2.4 to 2.7 nm, which was 1 nm or more and 15 nm or less, as in FIG. 13 of Example 5. .. Further, each particle size of 90% or more of the quantum dots was included in the average particle size of ⁇ 0.7 nm. That is, each particle size of 90% or more of the quantum dots was included in the average particle size of ⁇ 30%, and the particle size of a large number of quantum dots could be uniformly generated.
  • Example 7 In a 100 mL reaction vessel, 41.0 mg of diphenyl ditelluride, 10.0 mL of dodecanethiol (DDT), and 5 mL of octadecene (ODE) were placed. Then, the raw material was dissolved by heating while stirring in an atmosphere of an inert gas (N 2 ).
  • DDT dodecanethiol
  • ODE octadecene
  • reaction solution (Ag 2 Te) was cooled to room temperature.
  • Ethanol was added to the obtained reaction solution to generate a precipitate, and the precipitate was collected by centrifugation. Then, toluene was added to the precipitate and dispersed to obtain a dispersion solution of Ag 2 Te quantum dots.
  • the ultraviolet-visible near-infrared absorption spectrum showed the maximum absorption at 1219.0 nm, 1400.0 nm, and 1420.0 nm, as in FIG. 11 of Example 5. was there. Further, in the near-infrared fluorescence spectrum of the reaction solution, as in FIG. 12 of Example 5, there was a fluorescence maximum at 1322.5 nm, and the fluorescence half width was about 150 nm, which was smaller than 200 nm.
  • the average particle size of many quantum dots was 2.4 to 2.7 nm, which was 1 nm or more and 15 nm or less, as in FIG. 13 of Example 5. .. Further, each particle size of 90% or more of the quantum dots was included in the average particle size of ⁇ 0.7 nm. That is, each particle size of 90% or more of the quantum dots was included in the average particle size of ⁇ 30%, and the particle size of a large number of quantum dots could be uniformly generated.
  • reaction solution (Ag 2 Te) was cooled to room temperature.
  • the reaction solution turned into a black suspension, and no absorption peak was confirmed in the near infrared region from the obtained solution.
  • reaction solution (Ag 2 Te) was cooled to room temperature.
  • the reaction solution turned into a black suspension, and no absorption peak was confirmed in the near infrared region from the obtained solution.
  • the obtained quantum dots are all nanocrystals represented by Ag 2 Te, and the average particle size can be within the range of 1 nm or more and 15 nm or less. I understood. It was also found that the average particle size can be preferably adjusted to 1 nm or more and 10 nm or less, and more preferably 1 nm or more and 5 nm or less. It is presumed that similar results can be obtained for Ag 2 Se and Ag 2 S using the chalcogens Se and S from a chemical point of view.
  • Ag 2 Te is synthesized from the silver raw material and Te-TOP, and the absorption wavelength is in the near infrared region range of 800 nm to 1700 nm. all right. Further, in this embodiment, it is possible to preferably have an absorption wavelength in the near infrared region of 1100 nm to 1500 nm, and more preferably to have an absorption wavelength in the near infrared region of 1300 nm to 1450 nm. I found out that there is. In this example, it was found that the absorbance ratio between the peak top of the absorption peak and the valley (valley) can be about 1.5 or more, and the contrast can be further clarified.
  • the amount of solvent was prepared in the range of 5 mL to 30 mL. It is more preferable to prepare the amount of solvent in the range of 10 mL to 25 mL.
  • the ratio of ODE / TOP was prepared in the range of 0.5 to 1.5.
  • the ODE / TOP ratio is preferably in the range of 0.8 to 1.0.
  • quantum dots having an emission wavelength in the near infrared region can be synthesized.
  • a reactant exhibiting high reactivity in handling silver chalcogenide quantum dots having an absorption band in an arbitrary range of 800 nm to 1700 nm and exhibiting high-intensity near-infrared fluorescence in the atmosphere. Can be stably synthesized without using, and without passing through an intermediate containing a toxic regulated heavy metal. Then, by applying the quantum dots of the present invention to an optical communication device or the like, excellent near-infrared absorption and near-infrared emission characteristics can be obtained in the device.
  • the quantum dots of the present invention can be applied to the quantum dot layer of the light absorption layer of the infrared sensor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Luminescent Compositions (AREA)
  • Semiconductor Lasers (AREA)

Abstract

近赤外領域で、明確な吸収ピークを示すとともに、目的に応じた吸収波長を得ることができるAgE(Eは、Te、Se、Sの少なくともいずれか1種)量子ドット、及び、量産可能であり、更に、近赤外領域で、吸収波長を目的に応じて自在にコントロールでき、安全性の高い量子ドットの製造方法を提供することを目的とする。本発明の量子ドットは、銀とカルコゲンとを含有するAgE(Eは、テルル、セレン、或いは、硫黄の少なくともいずれか1種)で表されるナノクリスタルであり、平均粒径が、1nm以上15nm以下であることを特徴とする。本発明では、吸収波長が、800nm~1700nmの近赤外領域の範囲であることが好ましい。

Description

量子ドット、及び、その製造方法
 本発明は、近赤外領域で吸収、或いは発光する量子ドット、及び、その製造方法に関する。
 量子ドットは、数百~数千個程度の原子から構成されたナノ粒子である。量子ドットは、蛍光ナノ粒子、半導体ナノ粒子、または、ナノクリスタルとも呼ばれる。
 量子ドットは,ナノ粒子の粒径や組成によって,発光波長を種々変更することができる。また、量子ドットの性能や特性を表すものとして,蛍光量子収率(Quantum Yield:QY)、蛍光半値幅(Full Width at Half Maximum:FWHM)や、吸収波長、蛍光波長が挙げられる。
 例えば、下記の非特許文献1、及び、非特許文献2には、銀カルコゲニド量子ドットに関する記載がある。
 非特許文献1には、CdTeからのカチオン交換法によるAgTe量子ドットの合成法が報告されている。また、非特許文献2には、銀シリルアミドを経由するAgTe量子ドットの合成法が報告されている。
 しかしながら、非特許文献1では、有毒性の規制対象重金属であるカドミウム中間体を経由する合成法であり、実用化に乏しい。また、非特許文献2で用いる銀シリルアミドは、大気下での使用において高い反応性を有する反応剤であり、その取扱いに注意を要する。
ACS Appl. Mater. Interfaces 2013,VOL.5, pp 1149 - 1155 Cation Exchange-Based Facile Aqueous Synthesis of Small,Stable, and Nontoxic Near-Infrared Ag2Te/ZnS Core/Shell Quantum DotsEmitting in the Second Biological Window ACS NANO 2011, VOL.5,NO.5, pp 3758 - 3765 Infrared Emitting and Photoconducting Colloidal SilverChalcogenide Nanocrystal Quantum Dots from a Silylamide-Promoted Synthesis
 このため、AgE(Eは、Te、Se、Sの少なくともいずれか1種)量子ドットの実用化及び安全性の高い製造法の開発が求められた。加えて、以下のような課題があった。
 すなわち、量子ドットを、近赤外領域の吸収材料として使用する場合、近赤外領域に明確な吸収ピークが存在すること、また、吸収波長を目的に応じてコントロール自在に調整できることが重要となる。しかしながら、吸収ピークが近赤外領域に明確に存在し、さらには、目的に応じた吸収波長を適宜得ることができる銀カルコゲニド量子ドット、及びその製造法は確立していなかった。
 また、非特許文献1および非特許文献2に記載された銀カルコゲニド量子ドットの近赤外蛍光スペクトルは、明記されていないものの掲載されているスペクトルから判断すると、蛍光半値幅(Full Width at Half Maximum:FWHM)が200nmを超えていると思われる。
 以上により、銀カルコゲニド量子ドットの、実用化及び安全性の高い製造法の開発、及び、そのような方法によって製造された銀カルコゲニド量子ドットの物性解明が強く求められた。
 本発明は、かかる点に鑑みてなされたものであり、近赤外領域で、明確な吸収ピークを示すとともに、目的に応じた吸収波長を得ることができるAgE(Eは、Te、Se、Sの少なくともいずれか1種)量子ドット、及び、量産可能であり、更に、近赤外領域で、吸収波長を目的に応じて自在にコントロールでき、安全性の高い量子ドットの製造方法を提供することを目的とする。
 また、本発明は、かかる点に鑑みてなされたものであり、高輝度の近赤外蛍光を示すAgE(Eは、Te、Se、Sの少なくともいずれか1種)量子ドット、及び、量産可能であり、安全性の高い量子ドットの製造方法を提供することを目的とする。
 本発明における量子ドットは、銀とカルコゲンとを含有するAgE(Eは、テルル、セレン、或いは、硫黄の少なくともいずれか1種)で表されるナノクリスタルであり、平均粒径が、1nm以上15nm以下であることを特徴とする。
 本発明における量子ドットの製造方法は、銀原料と、カルコゲン含有トリオクチルホスフィンとから、AgE(Eは、テルル、セレン、或いは、硫黄の少なくともいずれか1種)として表される量子ドットを合成することを特徴とする。
 また、本発明における量子ドットの製造方法は、銀原料と、ジカルコゲン化合物とから、AgE(Eは、テルル、セレン、或いは、硫黄の少なくともいずれか1種)として表される量子ドットを合成することを特徴とする。
 本発明の量子ドットによれば、近赤外領域に、明確な吸収ピークを示すとともに、目的に応じた吸収波長を有することができる。
 或いは、本発明の量子ドットによれば、近赤外領域における蛍光半値幅を狭くでき、高輝度の近赤外蛍光を示すことができる。
 また、本発明の量子ドットの製造方法によれば、大気下にて取り扱うにあたり、高い反応性を示す反応剤や、有毒性の規制対象重金属を用いることなく、量産可能な方法で合成することが可能である。
 本発明では、量子ドットの合成法として、銀原料とカルコゲン含有トリオクチルホスフィンとを混合し、或いは、銀原料と、ジカルコゲン化合物とを混合する方法を用いることができる。前者の合成法は、近赤外領域に、明確な吸収ピークを示すとともに、目的に応じて、吸収波長を自在にコントロールすることができる量子ドットの製法に適している。また、後者の合成法は、近赤外領域における蛍光半値幅を狭くでき、高輝度の近赤外蛍光を示すことができる量子ドットの製法に適している。
本発明の実施形態における量子ドットの模式図である。 本発明の実施形態における量子ドットの模式図である。 実施例1におけるAgTeの吸収(Absorption)スペクトルである。 実施例1におけるAgTeのX線回折(Xray Diffraction:XRDスペクトルである。 実施例2におけるAgTeの吸収(Absorption)スペクトルである。 実施例2におけるAgTeのX線回折(Xray Diffraction:XRDスペクトルである。 実施例3におけるAgTeの吸収(Absorption)スペクトルである。 実施例3におけるAgTeのX線回折(Xray Diffraction:XRDスペクトルである。 実施例4におけるAgTeの吸収(Absorption)スペクトルである。 実施例4におけるAgTeのX線回折(Xray Diffraction:XRDスペクトルである。 本実施例で得た量子ドットの配位子交換実験における溶液の状態変化を示す画像である。 図10Aの一部を示す模式図である。 実施例5におけるAgTeの吸収(Absorption)スペクトルである。 実施例5におけるAgTeの蛍光(Photoluminescence:PL)スペクトルである。 実施例5におけるAgTeの走査透過電子顕微鏡(Scanning transmission electron microscope:STEM)写真である。 図13Aの一部を示す模式図である。 実施例5におけるAgTeのX線回折(Xray Diffraction:XRDスペクトルである。
 以下、本発明の一実施形態(以下、「実施形態」と略記する)について,詳細に説明する。尚,本発明は以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。本明細書中、「~」の表記は、下限値及び上限値を含む。
 図1A及び図1Bは、本実施形態における量子ドットの模式図である。図1Aに示す量子ドット1は、銀(Ag)と、カルコゲン(テルル(Te)、セレン(Se)、及び、硫黄(S)の少なくともいずれか1種を指す)とを含有するナノクリスタルである。以下では、本実施形態の量子ドットの化学式を、AgE(Eは、Te、Se、Sの少なくともいずれか1種)で表す。
 本実施形態における量子ドットは、バンド端発光による蛍光特性を有し、その粒子の大きさから量子サイズ効果を発現する。
 本実施形態の量子ドットの平均粒径は、1nm以上15nm以下であることを特徴とする。また、本実施の形態では、上記の平均粒径を満たすとともに、多数の量子ドットを、均一の粒径にて生成することができる。「均一」とは、平均粒径の±30%以内に、90%以上の粒子が含まれる状態を指す。このように、本実施形態では、微細で且つ均一な良質の量子ドットを量産することができる。
 本実施形態の量子ドットに含まれるAgとTe、AgとSe、或いは、AgとSは、主成分であり、これら元素以外の元素が含まれていてもよい。ただし、後述するように、本実施形態の量子ドットの製法では、大気下で取り扱うにあたり高い反応性を示す、金属アミドや有機リチウム化合物等の反応剤を用いず、反応中間体にCdやPbに代表される規制対象重金属を含まない。含カドミウム・含鉛化合物は、有毒性の規制対象重金属であり、コストの上昇や取り扱いの制限、製造工程の煩雑性を招きやすくなる。本実施形態の量子ドットには、高反応性反応剤由来の物質や規制対象重金属が含まれない。また、本実施形態では、Te、Se及びSのうち2種以上を含んでいてもよい。
 図1Aに示すように、量子ドットの表面には、多数の有機配位子2が配位していることが好ましい。これにより、量子ドット同士の凝集を抑制でき、目的とする光学特性が発現する。反応に用いることのできる配位子は、特に限定されないが、例えば、以下の配位子が代表的なものとして挙げられる。
(1)脂肪族1級アミン系
 オレイルアミン:C1835NH、ステアリル(オクタデシル)アミン:C1837NH、ドデシル(ラウリル)アミン:C1225NH、デシルアミン:C1021NH、オクチルアミン:C17NH
(2)脂肪酸系
 オレイン酸:C1733COOH、ステアリン酸:C1735COOH、パルミチン酸:C1531COOH、ミリスチン酸:C1327COOH、ラウリル酸:C1123COOH、デカン酸:C19COOH、オクタン酸:C15COOH
(3)チオール系
 オクタデカンチオール:C1837SH、ヘキサンデカンチオール:C1633SH、テトラデカンチオール:C1429SH、ドデカンチオール:C1225SH、デカンチオール:C1021SH、オクタンチオール:C17SH
(4)ホスフィン系
 トリオクチルホスフィン:(C17P、トリフェニルホスフィン:(CP、トリブチルホスフィン:(C
(5)ホスフィンオキシド系
 トリオクチルホスフィンオキシド:(C17P=O、トリフェニルホスフィンオキシド:(CP=O、トリブチルホスフィンオキシド:(CP=O
 本実施形態では、図1Bに示すように、量子ドット1は、コア1aと、コア1aの表面に被覆されたシェル1bと、を有するコアシェル構造であってもよい。図1Bに示すように、量子ドット1の表面には多数の有機配位子2が配位していることが好ましい。
 図1Bに示すコア1aが、AgEである。シェル1bは、コア1aと同様に、CdやHg、Pd等の規制対象重金属や、金属アミドや有機リチウム化合物に代表される高反応性反応剤由来の物質を含まない。
 なお、シェル1bは、コア1aの表面に固溶化した状態であってもよい。図1Bでは、コア1aとシェル1bとの境界を点線で示したが、これは、コア1aとシェル1bとの境界を分析により確認できてもできなくてもどちらでもよいことを指す。
 ただし、本実施形態では、シェル1bを用いずにコア1aのみ、すなわち図1Aのコア単体の量子ドット1にて、下記に示す吸収波長を有することができ、或いは、下記に示す蛍光波長、及び蛍光半値幅を有することができる。
[第1の量子ドット]
<吸収特性>
 本発明者らは、銀とカルコゲンとを含有するAgE(Eは、テルル、セレン、或いは、硫黄の少なくともいずれか1種)で表されるナノクリスタルを、量産可能で且つ安全性に優れた新規の製造法で合成し、物性解明したところ、800nm~1700nmの近赤外領域に、吸収波長を有することがわかった。
 「吸収波長」とは、吸収スペクトルのピークの波長であり、すなわち、吸収ピークが、近赤外領域に現れた状態を指す。本発明者らは、(1)近赤外領域に観測される吸収ピークの目的に応じた自在なコントロール、(2)近赤外領域に観測される吸収ピークのピークトップとバレー(谷)のコントラストを明確化すること、を主眼に検討を行った。上記(1)に関しては、目的に応じて吸収ピーク波長を近赤外領域で調節したい要望に応えるためである。また、上記(2)に関しては、近赤外線吸収材料として使用した際に、吸収のオン/オフを明確にするためである。
 本実施形態の量子ドットによれば、800nm~1700nmの近赤外領域に、吸収波長を有し、また、この吸収波長を目的に応じて自在にコントロールすることが可能である。コントロールの方法に関しては、後述する製造方法で示すように、溶媒の量(銀とカルコゲンの濃度とも言える)と、溶媒として用いるオクタデセン(ODE)と、トリオクチルホスフィン(TOP)との比率の調節を一例として示すことができる。
 本実施形態では、吸収ピークのピークトップとバレー(谷)の吸光度比を、1.0以上とすることができる。吸光度比は、1.5以上とすることが好ましく、2.0以上とすることがより好ましい。これにより、近赤外線吸収材料として使用した際に、吸収のオン/オフを明確にすることができる。
 本実施形態では、前記の吸光度比を有する最長吸収波長ピークが、1000~1500nmの近赤外領域内に存在することが好ましい。これにより、所望の目的に応じた吸収のオン/オフをより明確にすることができる。
 本実施形態では、1100nm~1600nmの近赤外領域に、最長吸収波長を有することが好ましい。また、本実施の形態では、1300nm~1500nmの近赤外領域に、最長吸収波長を有することがより好ましい。
 また、本実施形態の量子ドットの平均粒径は、1nm以上15nm以下であり、且つ均一化されているが、小さい粒径とすることも、近赤外領域で吸収波長を得るうえで一つのファクターとなる。
<配位子交換>
 本実施形態では、有機配位子2には、短い配位子(リガンド)を用いることが好ましい。限定するものではないが、有機配位子2には、3-メルカプトプロピオン酸(MPA)を用いることができる。
 量子ドットは、例えば、赤外線センサの光吸収層(或いは、量子ドット層)に多数、分散して配置される。このとき、光吸収層に含まれる量子ドットの配位子は、量子ドットを合成法で形成する際の配位子より短いことが好ましい。
 このように、光吸収層に含まれる量子ドットの配位子に短いものを使用することで、光吸収層のラフネスを小さくでき、電子、ホールの取り出し効率を向上させることができる。一方、量子ドットを液相合成法で形成する際の配位子には長いものを用いることで、分散成膜性を向上させることができる。
 本実施形態では、液相合成法により配位子の長い量子ドットで合成した後、量子ドットを含む組成物を、塗布する前、或いは、塗布した後に、短いリガンド(例えば、3-メルカプトプロピオン酸)に交換することが可能である。
 限定されるものではないが、本実施形態では、合成段階の最終工程で、ドデカンチオール(DDT)を添加することが好ましい。これにより、配位子交換を速やかに行うことが可能になる。
[第2の量子ドット]
<蛍光特性>
 本実施形態の量子ドットは、蛍光波長が、800m~1700nmの近赤外領域の範囲であり、蛍光半値幅が200nm以下である。ここで「蛍光波長」は、蛍光スペクトルのピークの波長をいう。本実施形態の量子ドットは、蛍光波長を800nm以上1700nm以下の範囲で制御でき、1000nm以上1700nm以下であることが好ましく、1200nm以上1700nm以下であることがより好ましい。また、「蛍光半値幅」とは、蛍光スペクトルにおける蛍光強度のピーク値の半分の強度での蛍光波長の広がりを示す半値全幅(Full Width at Half Maximum)を指す。また、蛍光半値幅は150nm以下であることが好ましく、100nm以下であることがより好ましい。
 本実施形態では、後述するように,量子ドットを合成する反応系として、ジカルコゲン化合物を前駆体として、前駆体に対してAgの導入を行う。このような、直接的かつシンプルな合成反応に基づいて量子ドットを製造することで、蛍光半値幅を狭くすることができる。後述する実験結果に示すように、具体的には、150nm以下の蛍光半値幅を得ることができる。
 本実施形態における量子ドットの蛍光量子収率(Quantum Yield)は、5%以上である。また、蛍光量子収率は、10%以上であることがより好ましく、20%以上であることが更に好ましく、30%以上であることが更により好ましい。このように、本実施形態では、量子ドットの蛍光量子収率を高めることができる。
 本実施形態では、蛍光波長を、800nm以上1700nm以下の範囲で自由に制御することができる。本実施形態における量子ドットは、銀以外にカルコゲン元素を用いたAgEをベースとする固溶体である。本実施形態では、量子ドットの平均粒径、及び、量子ドットの組成を調整することによって、蛍光波長を適宜制御することが可能である。蛍光波長は、1000nm以上であることが好ましく、1200nm以上であることがより好ましい。
 本実施形態の量子ドットは、上記の第1の量子ドットで示した吸収特性と、上記の第2の量子ドットで示した蛍光特性の双方を満たすことも可能である。
[第1の量子ドットの製造方法]
 次に、本実施形態の第1の量子ドットの製造方法について説明する。本実施形態では、銀原料と、カルコゲン含有トリオクチルホスフィンとから、AgE(Eは、テルル、セレン、或いは、硫黄の少なくともいずれか1種)として表される量子ドットを合成する。
 本実施形態では、Ag原料を、特に限定はしないが、例えば、下記の有機銀化合物や無機銀化合物を用いることができる。すなわち、酢酸塩として酢酸銀(I):Ag(OAc)、脂肪酸塩として,ステアリン酸銀:Ag(OC(=O)C1735)、オレイン酸銀:Ag(OC(=O)C1733)、ミリスチン酸銀:Ag(OC(=O)C1327)、ドデカン酸銀:Ag(OC(=O)C1123)、銀アセチルアセトネート:Ag(acac)、ハロゲン化物として1価の化合物が使用可能であり、塩化銀(I):AgCl、臭化銀(I):AgBr、ヨウ化銀(I):AgIなどを用いることができる。
 本実施形態では、銀原料を、溶媒としてのオクタデセン(ODE)と、トリオクチルホスフィン(TOP)に溶解させることが好ましい。なお、TOPに代えて、オレイルアミンを用いても合成は可能であるが、優れたP/V比(ピーク/バレー比)を得るには、TOPを用いることが好ましい。本実施形態では、ODEとTOPとの量(溶媒量)、及び、ODE/TOPの比率を調節することで、吸収ピーク波長を、近赤外領域内で目的に応じて自在にコントロールすることが可能である。限定するものではないが、溶媒量(銀とカルコゲンの濃度とも言える)を5mL~30mLの範囲内で調製することが好ましい。また、溶媒量を、10mL~25mLの範囲で調製することがより好ましい。また、限定するものではないが、ODE/TOPの比率を、0.5~1.5の範囲とすることが好ましい。また、ODE/TOPの比率を、0.8~1.0の範囲とすることがより好ましい。
 カルコゲン含有トリオクチルホスフィンには、トリオクチルホスフィンテルリド(Te-TOP)、トリオクチルホスフィンセレニド(Se-TOP)、及び、トリオクチルホスフィンスルフィド(S-TOP)を挙げることができる。
 本実施形態では、銀原料を溶媒に溶解した溶液に、カルコゲン含有トリオクチルホスフィンを混合し、更に加熱して、合成させる。本実施形態では、加熱温度を低温化することができる。具体的には、加熱温度を200℃以下に設定することができる。好ましくは、150℃以下に設定することができる。なお、加熱温度の下限値は70℃程度である。
 上記の製造方法により、銀とカルコゲンとを含有するAgE(Eは、テルル、セレン、或いは、硫黄の少なくともいずれか1種)で表されるナノクリスタルであり、平均粒径が、1nm以上15nm以下であること、更に、吸収波長が、800nm~1700nmの近赤外領域の範囲である量子ドットを得ることができる。また、本実施形態の量子ドットの製造方法によれば、大気下にて取り扱うにあたり、高い反応性を示す反応剤や、有毒性の規制対象重金属を用いることなく、量産可能な方法で合成することが可能である。
 また、本実施形態では、合成段階の最終工程で、ドデカンチオール(DDT)を添加することができる。DDTを加えることで、量子ドットの配位子交換を速やかに行うことが可能になる。
[第2の量子ドットの製造方法]
 次に、本実施形態の第2の量子ドットの製造方法について説明する。本実施形態では、銀原料と、ジカルコゲン化合物とから、AgE(Eは、Te、Se、或いは、Sの少なくともいずれか1種)として表される量子ドットを合成する。
 本実施形態では、Ag原料を、特に限定はしないが、例えば、下記の有機銀化合物や無機銀化合物を用いることができる。すなわち、酢酸塩として酢酸銀(I):Ag(OAc)、脂肪酸塩として,ステアリン酸銀:Ag(OC(=O)C1735)、オレイン酸銀:Ag(OC(=O)C1733)、ミリスチン酸銀:Ag(OC(=O)C1327)、ドデカン酸銀:Ag(OC(=O)C1123)、銀アセチルアセトネート:Ag(acac)、ハロゲン化物として1価の化合物が使用可能であり、塩化銀(I):AgCl、臭化銀(I):AgBr、ヨウ化銀(I):AgIなどを用いることができる。
 本実施形態では、ジカルコゲン化合物として、R-E-E-Rで表されるジオルガノジカルコゲン化合物を用いることができる。ここで、RおよびRは炭化水素基であってよく、EおよびEは、Te、Se、或いは、Sの少なくともいずれか1種であってよい。RとRとは同一であっても、異なってもよい。EとEとは同一であっても、異なってもよい。
 本実施形態では、テルルを固溶させる場合、有機テルル化合物(有機カルコゲン化合物)、又は、無機テルル化合物を高沸点溶媒に溶解したものを原料として用いることができる。特に、化合物の構造を限定するものではないが、例えば、ジフェニルジテルリド:(CTeなどのジアルキルジテルリド:RTeを用いることができる。
 また,本実施形態では、セレンを固溶させる場合、有機セレン化合物(有機カルコゲン化合物)、又は、無機セレン化合物を高沸点溶媒に溶解したものを原料として用いる。特に構造を限定するものでないが、例えば、ジフェニルジセレニド:(CSeなどのジアルキルジセレニド:RSe、又は、オクタデセンのような長鎖の炭化水素である高沸点溶媒にセレンを高温で溶解させた溶液等を用いることができる。
 また、本実施形態では、硫黄を固溶させる場合、有機硫黄化合物(有機カルコゲン化合物)、又は、無機硫黄化合物を高沸点溶媒に溶解したものを原料として用いる。特に、構造を限定するものでないが、例えば、ジフェニルジスルフィド:(Cなどのジアルキルジジスルフィド:R、又は、オクタデセンのような長鎖の炭化水素である高沸点溶媒に硫黄を高温で溶解させた溶液等を用いることができる。
 本実施形態では、上記した有機カルコゲンや無機カルコゲンより、前駆体としてのジカルコゲン化合物を得る。本実施形態では、前駆体としてのジカルコゲン化合物を、120℃以上で250℃以下の範囲で合成することが好ましい。また、反応温度を、より低温の100℃以上220℃以下とすることが好ましく、更に低温の80℃以上200℃以下とすることがより好ましく、更に低温の60℃以上200℃以下とすることが更に好ましい。
 そして、銀原料と、ジカルコゲン化合物とを混合し、溶解させる。溶媒としては、高沸点の飽和炭化水素または不飽和炭化水素として、オクタデセンを用いることができる。これ以外にも芳香族系の高沸点溶媒として,ドデシルベンゼン(dodecylbenzene)、高沸点のエステル系の溶媒として,ブチルブチレート:CCOOC,ベンジルブチレート:CCOOCHなどを用いることが可能であるが、脂肪族チオール系、脂肪族アミン系、又は、脂肪酸系の化合物や脂肪族リン系の化合物を溶媒として用いることも可能である。
 特に、蛍光強度の高いAgEを得るために前駆体であるジカルコゲン化合物と銀原料との反応において、チオールをTe、Se或いはSに対して1~200当量添加することが好ましく、蛍光強度の高い量子ドットを得るためには、5~1000当量添加することがより好ましく、50~10000当量添加することが更により好ましい。特に、チオールを限定するものでないが、例えば、オクタデカンチオール:C1837SH、ヘキサンデカンチオール:C1633SH、テトラデカンチオール:C1429SH、ドデカンチオール:C1225SH、デカンチオール:C1021SH、オクタンチオール:C17SH等である。
 また、本実施形態では、反応法に特に限定はないが、蛍光半値幅の狭い量子ドットを得るために、平均粒径が均一のAgTe、AgSe、及び、AgSを合成することが重要である。このため、加熱した溶媒中で前駆体であるジカルコゲニン化合物に対して、銀原料を手早く添加し、120℃以上250度以下で加熱するのが好ましい。
 また,本実施形態では、反応を行う際に、前駆体の金属を配位またはキレートなどにより反応溶液中に遊離させる補助的な役割をもつ化合物が必要である。
 上述の役割を有する化合物としては、銀と錯形成可能なリガンドが挙げられる。例えば、リン系リガンド、アミン系リガンド、チオール系リガンド、カルボン酸系リガンドが好ましく、その中でも、その効率の高さからチオール系リガンドが特に好ましい。
 これにより、Agとカルコゲンとの反応が適切に行われ、Agとカルコゲンとをベースとし、近赤外領域に発光性と狭い蛍光半値幅を有する量子ドットを製造することができる。
 また、本実施形態の量子ドットの製造方法によれば、Cd、Hg、Pbに代表される規制対象重金属と、金属アミド、及び、有機リチウム化合物に代表される大気下で高反応を示す反応剤と、を中間体として含むことなく、量子ドットを合成することができる。これにより、実用化でき、量産可能で、且つ安全性に優れた製法で、量子ドットを合成することができる。
 以下、本発明の実施例及び比較例により本発明の効果を説明する。なお、本発明は、以下の実施例によって何ら限定されるものではない。
[近赤外領域での吸収材料としての量子ドットの合成]
<原料>
 実験では、近赤外領域で吸収する銀カルコゲニド化合物(AgE系)量子ドットを合成するにあたり以下の原料を用いた。
(溶媒)
 オクタデセン:Aldrich株式会社製、出光興産株式会社製
 トリオクチルホスフィン:北興産業株式会社
 ドデカンチオール:アルケマ社製
(銀原料)
 酢酸銀:キシダ化学株式会社製
(テルル原料)
 テルル(4N:99.99%):新興化学株式会社製,またはAldrich社製
<測定機器>
 紫外-可視光分光光度計:日立株式会社製 V-770
 走査透過電子顕微鏡(STEM):日立株式会社製 SU9000
 X線回折装置(XRD):Bruker社製 D2 PHASER
 [実施例1]
 100mL反応容器に、酢酸銀を166.9mg、ODEを10.0mL、TOPを10.0mL入れた。そして、不活性ガス(N)雰囲気下で攪拌しながら加熱し、原料を溶解させた。このように、ODEとTOPを合わせた溶媒量は、20mLであった。また、ODE/TOPの比率は、1.0であった。
 この溶液に、0.25Mのトリオクチルホスフィンテルリド(Te-TOP)を2.0mL添加し、110℃で10分間、攪拌しつつ加熱した。
 この溶液に、DDTを2.0mL添加し、190℃で10分間、攪拌しつつ加熱した。得られた反応溶液(AgTe)を、室温まで冷却した。
 得られた反応液に、エタノールを加え沈殿を発生させ、遠心分離を施して沈殿を回収した。そして、その沈殿にトルエンを加えて分散させ、AgTe量子ドットの分散溶液を得た。
 得られた反応溶液を紫外可視分光計で測定し、図2に示す紫外可視近赤外吸収スペクトルを得た。図2に示すように、1150.0nmに吸収ピークが現れた。この吸収ピークのピークトップとバレー(谷)の吸光度比は、約2.1であった。
 実施例1で得た量子ドットをSTEMで観察すると、多数の量子ドットの平均粒径は3.1~3.5nmであり、1nm以上15nm以下であった。また、90%以上の量子ドットの各粒径が平均粒径±0.7nmに含まれていた。すなわち、90%以上の量子ドットの各粒径が平均粒径±30%に含まれており、多数の量子ドットの粒径を均一に生成できた。
 実施例1で得た量子ドットのXRDスペクトルには、図3に示すように、40°付近にピークが観察され、AgTe固溶体の生成が確認された。
 次に、実施例1で得た量子ドットについて配位子交換実験を行ったところ、図10A及び図10Bに示すように、3-メルカプトプロピオン酸(MPA)の添加により、上層のヘキサン層から下層のジメチルスルホキシド(DMSO)層への速やかな移動が起こった。
 このことから、本実施例で得た量子ドットの周囲に配位した配位子の速やかな交換が確認された。
 [実施例2]
 100mL反応容器に、酢酸銀を166.9mg、ODEを8.5mL、TOPを9.0mL入れた。そして、不活性ガス(N)雰囲気下で攪拌しながら加熱し、原料を溶解させた。このように、ODEとTOPを合わせた溶媒量は、17.5mLであった。また、ODE/TOPの比率は、約0.94であった。
 この溶液に、0.25MのTe-TOPを2.0mL添加し、110℃で10分間、攪拌しつつ加熱した。
 この溶液に、DDTを2.0mL添加し、190℃で10分間、攪拌しつつ加熱した。得られた反応溶液(AgTe)を、室温まで冷却した。得られた反応溶液(AgTe)を、室温まで冷却した。
 得られた反応液に、エタノールを加え沈殿を発生させ、遠心分離を施して沈殿を回収した。そして、その沈殿にトルエンを加えて分散させ、AgTe量子ドットの分散溶液を得た。
 得られた反応溶液を紫外可視分光計で測定したときの紫外可視近赤外吸収スペクトルには、図4に示すように、1250.0nmに吸収ピークが現れた。この吸収ピークのピークトップとバレー(谷)の吸光度比は、約2.0であった。
 実施例2で得た量子ドットをSTEMで観察すると、多数の量子ドットの平均粒径は3.1~3.7nmであり、1nm以上15nm以下であった。また、90%以上の量子ドットの各粒径が平均粒径±0.7nmに含まれていた。すなわち、90%以上の量子ドットの各粒径が平均粒径±30%に含まれており、多数の量子ドットの粒径を均一に生成できた。
 また,実施例2で得た量子ドットのXRDスペクトルには、図5に示すように、40°付近に、ピークが観察され、AgTe固溶体の生成が確認された。
 [実施例3]
 100mL反応容器に、酢酸銀を166.9mg、ODEを7.5mL、TOPを7.5mL入れた。そして、不活性ガス(N)雰囲気下で攪拌しながら加熱し、原料を溶解させた。このように、ODEとTOPを合わせた溶媒量は、15mLであった。また、ODE/TOPの比率は、1.0であった。
 この溶液に、0.25MのTe-TOPを2.0mL添加し、110℃で10分間、攪拌しつつ加熱した。
 この溶液に、DDTを2.0mL添加し、190℃で10分間、攪拌しつつ加熱した。得られた反応溶液(AgTe)を、室温まで冷却した。得られた反応溶液(AgTe)を、室温まで冷却した。
 得られた反応液に、エタノールを加え沈殿を発生させ、遠心分離を施して沈殿を回収した。そして、その沈殿にトルエンを加えて分散させ、AgTe量子ドットの分散溶液を得た。
 得られた反応溶液を紫外可視分光計で測定したときの紫外可視近赤外吸収スペクトルには、図6に示すように、1350.0nmに吸収ピークが現れた。この吸収ピークのピークトップとバレー(谷)の吸光度比は、約1.8であった。
 実施例3で得た量子ドットをSTEMで観察すると、多数の量子ドットの平均粒径は3.1~3.7nmであり、1nm以上15nm以下であった。また、90%以上の量子ドットの各粒径が平均粒径±0.7nmに含まれていた。すなわち、90%以上の量子ドットの各粒径が平均粒径±30%に含まれており、多数の量子ドットの粒径を均一に生成できた。
 また,実施例3で得た量子ドットのXRDスペクトルには、図7に示すように、39.9°付近にピークが観察され、AgTe固溶体の生成が確認された。
 [実施例4]
 100mL反応容器に、酢酸銀を166.9mg、ODEを5.0mL、TOPを6.0mL入れた。そして、不活性ガス(N)雰囲気下で攪拌しながら加熱し、原料を溶解させた。このように、ODEとTOPを合わせた溶媒量は、11mLであった。また、ODE/TOPの比率は、約0.83であった。
 この溶液に、0.25MのTe-TOPを2.0mL添加し、110℃で10分間、攪拌しつつ加熱した。
 この溶液に、DDTを2.0mL添加し、190℃で10分間、攪拌しつつ加熱した。得られた反応溶液(AgTe)を、室温まで冷却した。
 得られた反応液に、エタノールを加え沈殿を発生させ、遠心分離を施して沈殿を回収した。そして、その沈殿にトルエンを加えて分散させ、AgTe量子ドットの分散溶液を得た。
 得られた反応溶液を紫外可視分光計で測定したときの紫外可視近赤外吸収スペクトルには、図8に示すように、1450.0nmに吸収ピークが現れた。この吸収ピークのピークトップとバレー(谷)の吸光度比は、約1.6であった。
 実施例4で得た量子ドットをSTEMで観察すると、多数の量子ドットの平均粒径は3.1~3.7nmであり、1nm以上15nm以下であった。また、90%以上の量子ドットの各粒径が平均粒径±0.7nmに含まれていた。すなわち、90%以上の量子ドットの各粒径が平均粒径±30%に含まれており、多数の量子ドットの粒径を均一に生成できた。
 また,本実施例で得た量子ドットのXRDスペクトルには、図9に示すように、40.1°付近でピークが観察され、AgTe固溶体の生成が確認された。
[近赤外領域での蛍光材料としての量子ドットの合成]
<原料>
 実験では、近赤外領域で発光する銀カルコゲニド化合物(AgE系)量子ドットを合成するにあたり以下の原料を用いた。
(溶媒)
 オクタデセン:Aldrich株式会社製、出光興産株式会社製
 ドデカンチオール:アルケマ社製
(銀原料)
 酢酸銀:キシダ化学株式会社製
(ジカルコゲン化合物)
 ジフェニルジテルリド:東京化成(TCI)社製
(テルル原料)
 テルル(4N:99.99%):新興化学株式会社製、またはAldrich社製
<測定機器>
 蛍光分光計:オーシャンオプティクス製 NIRQuest512-1.9
 紫外-可視光分光光度計:日立株式会社製 V-770
 X線回折装置(XRD):Bruker社製 D2 PHASER
 走査透過電子顕微鏡(STEM):日立株式会社製 SU9000
 [実施例5]
 100mL反応容器に、ジフェニルジテルリドを123.0mg、ドデカンチオール(DDT)を15.0mL、オクタデセン(ODE)を15.0mL入れた。そして、不活性ガス(N)雰囲気下で攪拌しながら加熱し、原料を溶解させた。
 この溶液に、酢酸銀を204.0mg添加し、185℃で10分間、攪拌しつつ加熱した。得られた反応溶液(AgTe)を、室温まで冷却した。
 得られた反応液に、エタノールを加え沈殿を発生させ、遠心分離を施して沈殿を回収した。そして、その沈殿にトルエンを加えて分散させ、AgTe量子ドットの分散溶液を得た。
 得られた反応溶液を、紫外可視分光計で測定した。その結果、図11の紫外可視近赤外吸収スペクトルの測定結果に示すように、1219.0nm、1400.0nm、及び、1420.0nmに吸収極大が得られた。また、図12の近赤外蛍光スペクトルの測定結果に示すように、1322.5nmに蛍光極大が得られた。また、図12より、蛍光半値幅は、約150nmであり、200nmより小さかった。
 また、図13A及び図13Bに示すSTEM写真より、多数の量子ドットの平均粒径は2.4~2.7nmであり、1nm以上15nm以下であることがわかった。また、90%以上の量子ドットの各粒径が平均粒径±0.7nmに含まれていた。すなわち、90%以上の量子ドットの各粒径が平均粒径±30%に含まれており、多数の量子ドットの粒径を均一に生成できたことがわかった。
 また、図14に示すAgTeのXRDスペクトルのピーク値より、AgTe固溶体が生成していることが証明された。
 [実施例6]
 100mL反応容器に、ジフェニルジテルリドを123.0mg、ドデカンチオール(DDT)を30.0mL入れた。そして、不活性ガス(N)雰囲気下で攪拌しながら加熱し、原料を溶解させた。
 この溶液に、酢酸銀を204.0mg添加し、175℃で20分間、攪拌しつつ加熱した。得られた反応溶液(AgTe)を、室温まで冷却した。
 得られた反応液に、エタノールを加え沈殿を発生させ、遠心分離を施して沈殿を回収した。そして、その沈殿にトルエンを加えて分散させ、AgTe量子ドットの分散溶液を得た。
 得られた反応溶液を紫外可視分光計で測定したときの紫外可視近赤外吸収スペクトルには、実施例5の図11と同様、1219.0nm、1400.0nm、及び、1420.0nmに吸収極大があった。また、反応溶液の近赤外蛍光スペクトルには、実施例5の図12と同様、1322.5nmに蛍光極大があり、蛍光半値幅は約150nmであり、200nmより小さかった。
 本実施例で得た量子ドットをSTEMで観察すると、実施例5の図13と同様に、多数の量子ドットの平均粒径は2.4~2.7nmであり、1nm以上15nm以下であった。また、90%以上の量子ドットの各粒径が平均粒径±0.7nmに含まれていた。すなわち、90%以上の量子ドットの各粒径が平均粒径±30%に含まれており、多数の量子ドットの粒径を均一に生成できた。
 また,本実施例で得た量子ドットのXRDスペクトルには、実施例5の図14と同様のピークが観察され、AgTe固溶体の生成が確認された。
 [実施例7]
 100mL反応容器に、ジフェニルジテルリドを41.0mg、ドデカンチオール(DDT)を10.0mL、オクタデセン(ODE)を5mL入れた。そして、不活性ガス(N)雰囲気下で攪拌しながら加熱し、原料を溶解させた。
 この溶液に、酢酸銀を68.0mg添加し、180℃で15分間、攪拌しつつ加熱した。得られた反応溶液(AgTe)を、室温まで冷却した。
 得られた反応液に、エタノールを加え沈殿を発生させ、遠心分離を施して沈殿を回収した。そして、その沈殿にトルエンを加えて分散させ、AgTe量子ドットの分散溶液を得た。
 得られた反応溶液を紫外可視分光計で測定したときの紫外可視近赤外吸収スペクトルには、実施例5の図11と同様、1219.0nm、1400.0nm、及び、1420.0nmに吸収極大があった。また、反応溶液の近赤外蛍光スペクトルには、実施例5の図12と同様、1322.5nmに蛍光極大があり、蛍光半値幅は約150nmであり、200nmより小さかった。
 本実施例で得た量子ドットをSTEMで観察すると、実施例5の図13と同様に、多数の量子ドットの平均粒径は2.4~2.7nmであり、1nm以上15nm以下であった。また、90%以上の量子ドットの各粒径が平均粒径±0.7nmに含まれていた。すなわち、90%以上の量子ドットの各粒径が平均粒径±30%に含まれており、多数の量子ドットの粒径を均一に生成できた。
 また,本実施例で得た量子ドットのXRDスペクトルには、実施例5の図14と同様のピークが観察され、AgTe固溶体の生成が確認された。
[比較例1]
 100mL反応容器に、塩化銀を143.3mg、ODEを10.0mL、TOPを10.0mL入れた。そして、不活性ガス(N)雰囲気下で攪拌しながら加熱し、原料を溶解させた。
 この溶液に、テルル粉末を63.8mg添加し、115℃で10分間、攪拌しつつ加熱した。
 この溶液に、DDTを2.0mL添加し、200℃で10分間、攪拌しつつ加熱した。得られた反応溶液(AgTe)を、室温まで冷却した。反応溶液は、黒色懸濁液に変化し、得られた溶液からは近赤外領域に吸収ピークは全く確認されなかった。
[比較例2]
 100mL反応容器に、酸化銀を231.7mg、ODEを10.0mL、TOPを10.0mL入れた。そして、不活性ガス(N)雰囲気下で攪拌しながら加熱し、原料を溶解させた。
 この溶液に、テルル粉末を63.8mg添加し、115℃で10分間、攪拌しつつ加熱した。
 この溶液に、DDTを2.0mL添加し、200℃で10分間、攪拌しつつ加熱した。得られた反応溶液(AgTe)を、室温まで冷却した。反応溶液は、黒色懸濁液に変化し、得られた溶液からは近赤外領域に吸収ピークは全く確認されなかった。
[比較例3]
 100mL反応容器に、テルルを38.3mg、ドデカンチオールを15.0mL、オクタデセンを15mL入れた。そして、不活性ガス(N)雰囲気下で攪拌しながら加熱し、原料を溶解させた。
 この溶液に、酢酸銀を204.0mg添加し,185℃で10分間、攪拌しつつ加熱した。得られた反応溶液(AgTe)を、室温まで冷却した。反応溶液は、黒色懸濁液に変化し、得られた溶液からは近赤外領域に蛍光は全く確認されなかった。
 以上の実験結果により、実施例1~7によれば、得られた量子ドットは、いずれもAgTeで表されるナノクリスタルであり、平均粒径を、1nm以上15nm以下の範囲内にできることがわかった。また、平均粒径を、好ましくは、1nm以上10nm以下に調整することができ、より好ましくは、1nm以上5nm以下に調整できることがわかった。カルコゲンであるSeやSを用いたAgSeや、AgSに関しても化学的見地に基づいて、同様の結果が得られるものと推測される。
 また、実施例1~4によれば、銀原料と、Te-TOPとからAgTeを合成しており、いずれも、吸収波長が、800nm~1700nmの近赤外領域の範囲であることがわかった。また、本実施例では、好ましくは、1100nm~1500nmの近赤外領域に、吸収波長を有することができ、より好ましくは、1300nm~1450nmの近赤外領域に、吸収波長を有することが可能であるとわかった。本実施例では、吸収ピークのピークトップとバレー(谷)の吸光度比は、約1.5以上とすることができ、コントラストをより明確化できることがわかった。
 また、実施例1~4の実験では、ODEとTOPとの量(溶媒量)、及び、ODE/TOPの比率を種々変更しており、これにより、近赤外領域に観測される吸収ピーク波長を目的に応じて自在にコントロール可能となることがわかった。
 本実施例では、溶媒量を5mL~30mLの範囲内で調製した。なお、溶媒量を、10mL~25mLの範囲で調製することがより好ましい。また、ODE/TOPの比率を、0.5~1.5の範囲で調製した。なお、ODE/TOPの比率を、0.8~1.0の範囲とすることが好ましい。
 また、実施例5~7によれば、近赤外領域に発光波長を有する量子ドットが合成可能であるとわかった。
 本発明によれば、800nmから1700nmの任意の範囲の領域に吸収帯を有し、及び高輝度の近赤外蛍光を示す銀カルコゲニド量子ドットを、大気下で取り扱うにあたって高い反応性を示す反応剤を用いず、かつ有毒性の規制対象重金属を含む中間体を経ずに安定して合成することができる。そして本発明の量子ドットを、光通信装置等に適用することで、装置において優れた近赤外吸収および近赤外発光特性を得ることができる。特に、本発明の量子ドットを、赤外線センサの光吸収層の量子ドット層に適用することが可能である。
 本出願は、2019年8月15日出願の特願2019-149026に基づく。この内容は全てここに含めておく。
 
 
 

Claims (12)

  1.  銀とカルコゲンとを含有するAgE(Eは、テルル、セレン、或いは、硫黄の少なくともいずれか1種)で表されるナノクリスタルであり、
     平均粒径が、1nm以上15nm以下であることを特徴とする量子ドット。
  2.  吸収波長が、800nm~1700nmの近赤外領域の範囲であることを特徴とする請求項1に記載の量子ドット。
  3.  蛍光波長が、800~1700nmの近赤外領域の範囲であり、蛍光半値幅が、200nm以下であることを特徴とする請求項1又は請求項2に記載の量子ドット。
  4.  前記量子ドットの表面が、配位子で覆われていることを特徴とする請求項1から請求項3のいずれかに記載の量子ドット。
  5.  前記配位子は、ホスフィン系、脂肪族チオール系、脂肪族アミン系、及び、脂肪族カルボン酸系の少なくともいずれか1種または2種から選択されることを特徴とする請求項4に記載の量子ドット。
  6.  銀原料と、カルコゲン含有トリオクチルホスフィンとから、AgE(Eは、テルル、セレン、或いは、硫黄の少なくともいずれか1種)として表される量子ドットを、200℃以下で、合成することを特徴とする量子ドットの製造方法。
  7.  前記銀原料と、前記カルコゲン含有トリオクチルホスフィンとを、180℃以下で反応させることを特徴とする請求項6に記載の量子ドットの製造方法。
  8.  前記銀原料と前記カルコゲン含有トリオクチルホスフィンとを混合した溶液に、ドデカンチオール(DDT)を添加することを特徴とする請求項6又は請求項7に記載の量子ドットの製造方法。
  9.  銀原料と、ジカルコゲン化合物とから、AgE(Eは、テルル、セレン、或いは、硫黄の少なくともいずれか1種)として表される量子ドットを合成することを特徴とする量子ドットの製造方法。
  10.  チオールを含む溶媒中で、前記量子ドットを合成することを特徴とする請求項9に記載の量子ドットの製造方法。
  11.  前記ジカルコゲニド化合物と、前記銀原料とを、120℃以上250℃以下で反応させることを特徴とする請求項9又は請求項10に記載の量子ドットの製造方法。
  12.  カドミウム、水銀、及び、鉛に代表される規制対象重金属と、金属アミド、及び、有機リチウム化合物に代表される大気下で高反応性を示す反応剤と、を中間体として含むことなく、前記量子ドットを合成することを特徴とする請求項6から請求項11のいずれかに記載の量子ドットの製造方法。
     
     
PCT/JP2020/030467 2019-08-15 2020-08-07 量子ドット、及び、その製造方法 WO2021029389A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019149026 2019-08-15
JP2019-149026 2019-08-15

Publications (1)

Publication Number Publication Date
WO2021029389A1 true WO2021029389A1 (ja) 2021-02-18

Family

ID=74569586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/030467 WO2021029389A1 (ja) 2019-08-15 2020-08-07 量子ドット、及び、その製造方法

Country Status (2)

Country Link
TW (1) TWI838568B (ja)
WO (1) WO2021029389A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023008353A1 (ja) * 2021-07-29 2023-02-02 富士フイルム株式会社 光検出素子およびイメージセンサ
WO2023085180A1 (ja) * 2021-11-10 2023-05-19 富士フイルム株式会社 半導体膜、半導体膜の製造方法、光検出素子およびイメージセンサ

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100117A (ja) * 2005-09-30 2007-04-19 Kanto Chem Co Inc 金属ナノ粒子、それを含む触媒及びアルキン化合物の水素化方法
CN102517339A (zh) * 2011-11-29 2012-06-27 武汉大学 一种可控合成近红外Ag2Se纳米晶体的方法
WO2012103078A1 (en) * 2011-01-26 2012-08-02 Abb Technology Ag A transformer having a core frame with interlocking members
CN102826585A (zh) * 2012-09-21 2012-12-19 南开大学 一种超小尺寸水溶性近红外Ag2S量子点的制备方法
CN105110303A (zh) * 2015-07-23 2015-12-02 中国科学技术大学 一种纳米线及其制备方法
CN106190126A (zh) * 2015-05-04 2016-12-07 中国科学院苏州纳米技术与纳米仿生研究所 单分散近红外碲化银量子点及其制备方法
CN106520124A (zh) * 2016-03-02 2017-03-22 苏州影睿光学科技有限公司 一种荧光Ag2Te纳米晶的制备方法
KR20190111720A (ko) * 2018-03-22 2019-10-02 고려대학교 산학협력단 중적외선 영역에서 띠내 전이를 나타내는 콜로이드 양자점

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240031422A (ko) * 2017-07-27 2024-03-07 엔에스 마테리얼스 아이엔씨. 양자점 및, 양자점을 이용한 파장 변환 부재, 조명 부재, 백라이트 장치, 표시 장치, 및, 양자점의 제조 방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100117A (ja) * 2005-09-30 2007-04-19 Kanto Chem Co Inc 金属ナノ粒子、それを含む触媒及びアルキン化合物の水素化方法
WO2012103078A1 (en) * 2011-01-26 2012-08-02 Abb Technology Ag A transformer having a core frame with interlocking members
CN102517339A (zh) * 2011-11-29 2012-06-27 武汉大学 一种可控合成近红外Ag2Se纳米晶体的方法
CN102826585A (zh) * 2012-09-21 2012-12-19 南开大学 一种超小尺寸水溶性近红外Ag2S量子点的制备方法
CN106190126A (zh) * 2015-05-04 2016-12-07 中国科学院苏州纳米技术与纳米仿生研究所 单分散近红外碲化银量子点及其制备方法
CN105110303A (zh) * 2015-07-23 2015-12-02 中国科学技术大学 一种纳米线及其制备方法
CN106520124A (zh) * 2016-03-02 2017-03-22 苏州影睿光学科技有限公司 一种荧光Ag2Te纳米晶的制备方法
KR20190111720A (ko) * 2018-03-22 2019-10-02 고려대학교 산학협력단 중적외선 영역에서 띠내 전이를 나타내는 콜로이드 양자점

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHEN CHI, HE XUEWEN, GAO LI, MA NAN: "Cation Exchange-Based Facile Aqueous Synthesis of Small, Stable, and Nontoxic Near-Infrared Ag2Te/ZnS Core/Shell Quantum Dots Emitting in the Second Biological Window", ACS APPLIED MATERIALS & INTERFACES, vol. 5, 2013, pages 1149 - 1155, XP055793313 *
KUMAR NEERAJ, SINHA RAY SUPRAKAS, NGILA JANE CATHERINE: "Ionic liquid-assisted synthesis of Ag/Ag2Te nanocrystals via a hydrothermal route for enhanced photocatalytic performance", ROYAL SOCIETY OF CHEMISTRY, vol. 41, 2017, pages 14618 - 14626, XP055793319 *
MORE, D. S. ET AL.: "TOPO-Capped silver selenide nanoparticles and their incorporation into polymer nanofibers ising electrospinning technique", MATERIALS RESEARCH BULLET IN, vol. 65, 2015, pages 14 - 22, XP029143712, DOI: 10.1016/j.materresbull.2015.01.030 *
SCHLERCHT, S. ET AL.: "Synthesis and Characterization of nanoscale Bi2Te3, Sb2Te3, PbTe and Ag2Te powders: activated Metals and soluble Tellurium sources as synthetic Tools", INTERNATIONAL CONFERENCE ON THERMOELECTRICS, 2006, pages 646 - 648, XP031062520, DOI: 10.1109/ICT.2006.331224 *
YAREMA MAKSYM, PICHLER STEFAN, SYTNYK MYKHAILO, SEYRKAMMER ROBERT, LECHNER RAINER T., FRITZ-POPOVSKI GERHARD, JARZAB DOROTA, SZEND: "Infrared Emitting and Photoconducting clloidal Silver Chalcogenide Nanocrystal Quantun Dots from a Silylamide- Promoted Synthesis", ACS NANO, vol. 5, no. 5, 2011, pages 3758 - 3765, XP055793322 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023008353A1 (ja) * 2021-07-29 2023-02-02 富士フイルム株式会社 光検出素子およびイメージセンサ
WO2023085180A1 (ja) * 2021-11-10 2023-05-19 富士フイルム株式会社 半導体膜、半導体膜の製造方法、光検出素子およびイメージセンサ

Also Published As

Publication number Publication date
TW202113037A (zh) 2021-04-01
TWI838568B (zh) 2024-04-11

Similar Documents

Publication Publication Date Title
JP7148974B2 (ja) 量子ドット及び、量子ドットを用いた波長変換部材、照明部材、バックライト装置、表示装置、並びに、量子ドットの製造方法
WO2021039290A1 (ja) 量子ドット、及び、その製造方法
JP7473050B2 (ja) 量子ドット、量子ドットを用いた波長変換部材、照明部材、バックライト装置、並びに、表示装置
JP6293710B2 (ja) 半導体ナノ粒子およびその製造方法
WO2021029389A1 (ja) 量子ドット、及び、その製造方法
TW201313877A (zh) 以週期分類第ib、iib、iiia、via族元素為基礎之強螢光半導體核-殼奈米粒子的合成
CN113039257B (zh) 量子点及其制造方法
WO2021070858A1 (ja) 量子ドット、及び、その製造方法
WO2022138905A1 (ja) 量子ドットの製造方法、及び、量子ドット
WO2021065782A1 (ja) 量子ドット、及び、その製造方法
JP2021183681A (ja) 量子ドット、量子ドット前駆体、及び、量子ドットの製造方法
TW202432797A (zh) 量子點及其製造方法
US20240318076A1 (en) Quantum dot and method for producing the same
WO2013057134A1 (en) Synthesis of semiconductor nanoparticles using metal precursors comprising non- or weakly coordinating anions
CN116981753A (zh) 量子点的制造方法以及量子点
WO2022230481A1 (ja) コアシェル型量子ドット及びコアシェル型量子ドットの製造方法
JP2022076513A (ja) 量子ドット、量子ドット集合体、及び、その製造方法
CN117242034A (zh) 量子点的制造方法以及量子点
SG186498A1 (en) Synthesis of highly fluorescing semiconducting core-shell nanoparticles based on ib, iib, iiia, via elements of the periodic classification
SG189577A1 (en) Synthesis of highly fluorescing semiconducting core-shell nanoparticles based on ib, iib, iiia, via elements of the periodic classification

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20851979

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20851979

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP