WO2021029192A1 - 通信装置、通信方法、及び通信プログラム - Google Patents

通信装置、通信方法、及び通信プログラム Download PDF

Info

Publication number
WO2021029192A1
WO2021029192A1 PCT/JP2020/028179 JP2020028179W WO2021029192A1 WO 2021029192 A1 WO2021029192 A1 WO 2021029192A1 JP 2020028179 W JP2020028179 W JP 2020028179W WO 2021029192 A1 WO2021029192 A1 WO 2021029192A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
channel
transmission
terminal device
communication device
Prior art date
Application number
PCT/JP2020/028179
Other languages
English (en)
French (fr)
Inventor
直紀 草島
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to JP2021539185A priority Critical patent/JPWO2021029192A1/ja
Priority to CN202080056167.3A priority patent/CN114208349A/zh
Priority to EP20851439.8A priority patent/EP4017060A4/en
Priority to US17/629,789 priority patent/US20220256598A1/en
Publication of WO2021029192A1 publication Critical patent/WO2021029192A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0665Feed forward of transmit weights to the receiver

Definitions

  • This disclosure relates to communication devices, communication methods, and communication programs.
  • next-generation cellular communication technology using an unlicensed band is underway.
  • the communication device performs channel sensing, for example, LBT (Listen Before Talk) before transmission.
  • LBT Listen Before Talk
  • the LBT is successful, the information in the time domain is notified from the communication device to the communication device of the other party as an example of the channel occupancy information.
  • the communication device of one form according to the present disclosure includes a sensing unit that senses a channel in an unlicensed band, and channel occupancy information that occupies the channel when the sensing is successful. It is provided with a notification unit that notifies other communication devices of information in the spatial area.
  • a plurality of components having substantially the same functional configuration may be distinguished by adding different numbers after the same reference numerals.
  • the terminal device 40 1 a plurality of configuration, distinction or as the base station apparatus 20 1, 20 2 and 20 3 as necessary, or if desired having substantially the same functional configuration, 40 2 distinguish or and as of 40 3.
  • the terminal apparatus 40 1, 40 2 and 40 3 are particularly necessary to distinguish the If not, it is simply referred to as a terminal device 40.
  • Directional LBT Directional LBT
  • Receiver assisted LBT Receiver assisted LBT
  • Channel occupancy in this embodiment 5.
  • Time domain information 5-2. Frequency domain information 5-3.
  • Code area information 6.
  • Notification means of channel occupancy information 7-1. Shared PDCCH or group shared PDCCH 7-2.
  • DMRS DMRS associated with PDCCH
  • Terminal device specific PDCCH 7-6. Initial signal, initial channel 8. Operation of communication system 8-1.
  • Channel occupancy information notification procedure when acquired by the base station device 8-2 Channel occupancy information notification procedure when the terminal device acquires it 8-3. Exception handling in channel occupancy information acquisition 8-4. Notification of channel occupancy information in FBE (Frame Based Equipment) 9. Modification example 9-1. Notification means of channel occupancy information 9-2. Other modifications 10.
  • LTE and NR are a kind of cellular communication technology, and enable mobile communication of a terminal device by arranging a plurality of areas covered by a base station in a cell shape.
  • LTE includes LTE-A (LTE-Advanced), LTE-A Pro (LTE-Advanced Pro), and EUTRA (Evolved Universal Terrestrial Radio Access).
  • NR shall include NLAT (New Radio Access Technology) and FEUTRA (Further EUTRA).
  • a single base station may manage a plurality of cells.
  • NR is a RAT (Radio Access Technology) different from LTE as a next-generation (fifth generation) wireless access method for LTE.
  • NR is an access technology that can support various use cases including eMBB (Enhanced mobile broadband), mMTC (Massive machine type communications) and URLLC (Ultra reliable and low latency communications).
  • eMBB Enhanced mobile broadband
  • mMTC Massive machine type communications
  • URLLC Ultra reliable and low latency communications
  • the unlicensed band is, for example, a 2.4 GHz band, a 5 GHz band, and a 6 GHz band.
  • the license sharing band is, for example, a 3.5 GHz band or a 37 GHz band.
  • NR-U NR-Unlicensed
  • LAA Licensed Assisted Access
  • DL carrier DL carrier
  • UL carrier stand-alone operated only by unlicensed band, DL carrier or UL carrier. It is expected to support various use cases such as one being a licensed band and the other being an unlicensed band (eg, licensed DL + unlicensed UL).
  • NR-U unlicensed bands for physical channels and physical signals transmitted by PCell such as synchronization signal (Synchronization Signal: SS), PRACH, PUCCH, etc.
  • PCell Primary Cell
  • SS Synchronization Signal
  • PRACH Physical Uplink Control Channel
  • PUCCH Physical Uplink Control Channel
  • a communication device senses a physical channel and / or a physical signal before transmitting it to determine if the channel is clear or busy. If the channel is clear (LBT success), the communication device can transmit the physical channel and / or the physical signal. On the other hand, if the channel is busy (LBT failure), it is difficult for the communication device to transmit the physical channel and / or the physical signal.
  • the base station device After the success of the LBT, the base station device notifies the terminal device of the information on whether or not the channel can be occupied and the information on how long the channel can be occupied as channel occupancy information, so that the terminal device receives the information. It can be used for various processing in. For example, skipping reception processing such as PDCCH monitoring and downlink signal / channel buffering, improving accuracy by measurement that does not depend on blind signal detection, and simplifying part of transmission processing such as LBT by setting a transmission section. Or it can be used for skipping. As a result of such utilization, it is expected that the load on the terminal device will be reduced.
  • Directive LBT directional LBT
  • LBT directional LBT
  • LBT Long Term Evolution
  • CoMP Coordinatd Multiple Point
  • multi-TRP transmission is being considered as another example of multiplexing in the spatial region.
  • the license band when used for communication in the primary cell, only the time domain is notified as the above channel occupancy information.
  • high communication performance may not be realized only by notifying the time domain information as the channel occupancy information.
  • the problem in the case where the channel occupancy information is notified from the base station device to the terminal device will be taken as an example.
  • the terminal device can recognize only that a predetermined serving cell is transmitting, but the utilization status of the spatially divided channel of the serving cell is not notified. In such a situation, even if the base station device should not transmit in any direction other than a predetermined direction, the terminal device assumes that the terminal device transmits from all directions and attempts reception. At this time, as the number of direction candidates increases, the load on the terminal device also increases.
  • the terminal device recognizes that the channel is occupied in the subband to which the channel occupation information is sent. In this case, since it is necessary to send the channel occupancy information individually in all the sub-bands, the system overhead increases and the blind decoding load of the terminal device also increases.
  • the communication device notifies the communication device of the other party as channel occupancy information of information in a region other than the time domain when the channel sensing is successful.
  • the reception processing in the communication device of the other party is more than the case where only the information in the time domain is notified as the channel occupation information.
  • the load of transmission processing and the like is sufficiently reduced. As a result, high communication performance is achieved.
  • the communication device has at least (a) spatial domain information, (b) frequency domain information, and (c) code domain information as channel occupancy information relating to a region other than the time domain. Any one or a combination thereof can be notified.
  • the case where the channel occupancy information is notified from the base station device to the terminal device will be taken as an example.
  • (B) Spatial area information By notifying the spatial area information as the above channel occupancy information, the following effects can be obtained. For example, in a terminal device, the downlink monitoring load from a plurality of beams (multiple directions) can be reduced.
  • (B) Frequency domain information By notifying the frequency domain information as the above channel occupancy information, the following effects can be obtained. For example, it can be used for setting a band filter in a terminal device. Further, in the terminal device, the bandwidth to which the reference signal is sent from the base station device can be known in advance, and accurate channel measurement can be performed.
  • (C) Code area information By notifying the code area information as the above channel occupancy information, the following effects can be obtained. For example, it is possible to recognize the available code area and improve the reception success probability even if the transmissions of a plurality of links collide.
  • the communication system 1 includes a base station device and can be wirelessly connected to a terminal device.
  • the non-terrestrial network included in the communication system 1 is, for example, a wireless network using a wireless access method defined by NR.
  • the communication system 1 may include a wireless network of a wireless access system other than NR.
  • FIG. 1 is a diagram showing a configuration example of the communication system 1 according to the embodiment of the present disclosure.
  • the communication system 1 shown in FIG. 1 is a wireless communication system that provides a wireless access network to a terminal device.
  • communication system 1 is a cellular communication system using wireless access technology such as LTE and NR.
  • the communication system 1 includes a management device 10, a base station device 20, a relay device 30, and a terminal device 40.
  • the communication system 1 provides a user with a wireless network capable of mobile communication by operating the wireless communication devices constituting the communication system 1 in cooperation with each other.
  • the radio network of this embodiment is composed of a radio access network RAN and a core network CN.
  • the wireless communication device is a device having a wireless communication function, and in the example of FIG. 1, the base station device 20, the relay device 30, and the terminal device 40 correspond to each other.
  • the communication system 1 may include a plurality of management devices 10, a base station device 20, a relay device 30, and a terminal device 40, respectively.
  • the communication system 1 includes management devices 10 1 , 10 2 and the like as the management device 10.
  • the communication system 1 includes base station apparatus 20 1 as a base station apparatus 20 has a 20 2, 20 3, etc., and a relay apparatus 30 1, 30 2, etc. as the relay device 30.
  • the communication system 1 includes a terminal device 40 1, 40 2, 40 3, etc. as a terminal device 40.
  • the device in the figure may be considered as a device in a logical sense. That is, a part of the devices in the figure may be realized by a virtual machine (VM: Virtual Machine), a container (Container), a docker (Docker), etc., and they may be mounted on physically the same hardware.
  • VM Virtual Machine
  • Container Container
  • Docker docker
  • LTE base stations may be referred to as eNodeB (Evolved Node B) or eNB.
  • the base station of NR may be referred to as gNodeB or gNB.
  • a terminal device also referred to as a mobile station, mobile station device, or terminal
  • the terminal device is a kind of communication device, and is also referred to as a mobile station, a mobile station device, or a terminal.
  • the concept of a communication device includes not only a portable mobile device (terminal device) such as a mobile terminal, but also a device installed on a structure or a mobile body.
  • the structure or the moving body itself may be regarded as a communication device.
  • the concept of a communication device includes not only a terminal device but also a base station device and a relay device.
  • a communication device is a type of processing device and information processing device. Further, the communication device can be paraphrased as a transmission device or a reception device.
  • the management device 10 is a device that manages a wireless network.
  • the management device 10 is a device that manages the communication of the base station device 20.
  • the management device 10 is a device that functions as an MME (Mobility Management Entity), an AMF (Access and Mobility Management Function), or an SMF (Session Management Function).
  • MME Mobility Management Entity
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • the management device 10 constitutes a core network CN together with a gateway device and the like.
  • the core network CN is, for example, a network owned by a predetermined entity (subject) such as a mobile communication operator.
  • the core network CN is EPC (Evolved Packet Core) or 5GC (5G Core network).
  • the predetermined entity may be the same as the entity that uses, operates, and / or manages the base station apparatus 20, or may be different.
  • the management device 10 may have a gateway function.
  • the management device 10 may have a function as an S-GW or a P-GW.
  • the management device 10 may have a function as an UPF (User Plane Function).
  • the management device 10 does not necessarily have to be a device that constitutes the core network CN.
  • the core network CN is a core network of W-CDMA (Wideband Code Division Multiple Access) or cdma2000 (Code Division Multiple Access 2000).
  • the management device 10 may be a device that functions as an RNC (Radio Network Controller).
  • RNC Radio Network Controller
  • the management device 10 is connected to each of the plurality of base station devices 20 and manages the communication of the base station devices 20. For example, the management device 10 determines which base station device (or cell) the terminal device 40 is connected to, which base station device (or cell) is in the communication area, and the like. Grasp and manage every 40.
  • the cell may be a PCell or a SCell (Secondary Cell).
  • the cells may have different radio resources (for example, frequency channels, component carriers, etc.) that can be used by the terminal device 40 for each cell.
  • one base station apparatus may provide a plurality of cells.
  • the base station device 20 is a wireless communication device that wirelessly communicates with the terminal device 40.
  • the base station device 20 is a type of communication device.
  • the base station device 20 is, for example, a device corresponding to a radio base station (Base Station, Node B, eNB, gNB, etc.) or a radio access point (Access Point).
  • the base station device 20 may be a wireless relay station.
  • the base station device 20 may be a light overhanging device called an RRH (Remote Radio Head).
  • the base station device 20 may be a receiving station device such as an FPU (Field Pickup Unit).
  • the base station apparatus 20 is an IAB (Integrated Access and Backhaul) donor node or an IAB relay node that provides a wireless access line and a wireless backhaul line by time division multiplexing, frequency division multiplexing, or spatial division multiplexing. You may.
  • IAB Integrated Access and Backhaul
  • the wireless access technology used by the base station device 20 may be a cellular communication technology or a wireless LAN technology. Of course, the wireless access technology used by the base station apparatus 20 is not limited to these, and may be another wireless access technology.
  • the wireless access technology used by the base station device 20 may be LPWA (Low Power Wide Area) communication technology.
  • LPWA communication is communication conforming to the LPWA standard. Examples of LPWA standards include ELTRES, ZETA, SIGFOX, LoRaWAN, NB-IoT and the like. Of course, the LPWA standard is not limited to these, and may be another LPWA standard.
  • the wireless communication used by the base station apparatus 20 may be wireless communication using millimeter waves. Further, the wireless communication used by the base station device 20 may be wireless communication using radio waves, or wireless communication (optical wireless) using infrared rays or visible light.
  • the base station device 20 may be capable of NOMA communication with the terminal device 40.
  • NOMA communication refers to communication (transmission, reception, or both) using non-orthogonal resources. Non-orthogonal resources will be described later.
  • the base station device 20 may be configured to enable NOMA communication with another base station device 20 and a relay device 30.
  • the base station device 20 may be able to communicate with each other via an interface between the base station device and the core network (for example, S1 Interface, etc.). This interface may be wired or wireless. Further, the base station devices may be able to communicate with each other via an interface between the base station devices (for example, X2 Interface, S1 Interface, etc.). This interface may be wired or wireless.
  • the base station device 20 can be used, operated, and / or managed by various entities.
  • the entities include a mobile network operator (MNO: Mobile Network Operator), a virtual mobile network operator (MVNO: Mobile Virtual Network Operator), a virtual mobile communication enabler (MVNE: Mobile Virtual Network Enabler), and a neutral host.
  • MNO Mobile Network Operator
  • MVNO Mobile Virtual Network Operator
  • MVNE Virtual Mobile Network Enabler
  • NTN Neutral Host Network
  • operators enterprises, educational institutions (school corporations, local government education committees, etc.), real estate (buildings, condominiums, etc.) managers, individuals, etc. can be assumed.
  • the base station apparatus 20 may be installed and / or operated by one business operator, or may be installed and / or operated by one individual.
  • the installation / operation entity of the base station device 20 is not limited to these.
  • the base station device 20 may be jointly installed and operated by a plurality of businesses or a plurality of individuals.
  • the base station device 20 may be a shared facility used by a plurality of businesses or a plurality of individuals. In this case, the installation and / or operation of the equipment may be carried out by a third party different from the user.
  • a base station device also referred to as a base station
  • a base station device includes not only a donor base station but also a relay base station (also referred to as a relay station or a relay station device).
  • a base station includes not only a structure having a function of a base station but also a device installed in the structure.
  • Structures are, for example, high-rise buildings, houses, steel towers, station facilities, airport facilities, port facilities, stadiums, and other buildings.
  • the concept of a structure includes not only buildings but also non-building structures such as tunnels, bridges, dams, walls, and iron pillars, and equipment such as cranes, gates, and windmills.
  • the concept of structures includes not only structures on land (above ground in a narrow sense) or underground, but also structures on water such as piers and mega floats, and structures underwater such as ocean observation facilities.
  • the base station device can be rephrased as a processing device or an information processing device.
  • the base station device 20 may be a donor station or a relay station (relay station). Further, the base station device 20 may be a fixed station or a mobile station.
  • a mobile station is a wireless communication device (for example, a base station device) configured to be mobile.
  • the base station device 20 may be a device installed on the mobile body or may be the mobile body itself.
  • a relay station device having mobility can be regarded as a base station device 20 as a mobile station.
  • devices such as vehicles, drones, and smartphones that are originally mobile and equipped with the functions of the base station device (at least a part of the functions of the base station device) are also included in the base station device 20 as a mobile station. Applicable.
  • the mobile body may be a mobile terminal such as a smartphone or a mobile phone.
  • the moving body may be a moving body (for example, a vehicle such as a car, a bicycle, a bus, a truck, a motorcycle, a train, a linear motor car, etc.) that moves on land (ground in a narrow sense), or in the ground (for example, a vehicle).
  • a moving body for example, a subway moving in a tunnel.
  • the moving body may be a moving body moving on water (for example, a ship such as a passenger ship, a cargo ship, or a hovercraft), or a moving body moving underwater (for example, a submarine, a submarine, an unmanned submarine, etc.). It may be a submarine).
  • the moving body may be a moving body moving in the atmosphere (for example, an aircraft such as an airplane, an airship, or a drone), or a moving body moving outside the atmosphere (for example, an artificial satellite, a spaceship, or a space station).
  • An artificial celestial body such as a spacecraft).
  • a moving body that moves outside the atmosphere can be rephrased as a space moving body.
  • the base station device 20 may be a ground base station device (ground station device) installed on the ground.
  • the base station device 20 may be a base station device arranged on a structure on the ground, or may be a base station device installed on a mobile body moving on the ground.
  • the base station device 20 may be an antenna installed in a structure such as a building and a signal processing device connected to the antenna.
  • the base station device 20 may be a structure or a moving body itself. "Ground" is not only on land (ground in a narrow sense) but also on the ground in a broad sense including underground, water, and water.
  • the base station device 20 is not limited to the ground base station device.
  • the base station device 20 may be a non-ground base station device (non-ground station device) capable of floating in the air or space.
  • the base station device 20 may be an aircraft station device or a satellite station device.
  • the aircraft station device is a wireless communication device that can float in the atmosphere such as an aircraft.
  • the aircraft station device may be a device mounted on an aircraft or the like, or may be an aircraft itself.
  • the concept of an aircraft includes not only heavy aircraft such as airplanes and gliders, but also light aircraft such as balloons and airships.
  • the concept of an aircraft includes not only heavy aircraft and light aircraft, but also rotary-wing aircraft such as helicopters and autogyros.
  • the aircraft station device (or the aircraft on which the aircraft station device is mounted) may be an unmanned aerial vehicle such as a drone.
  • unmanned aerial vehicle also includes unmanned aerial vehicles (UAS: Unmanned Aircraft Systems) and tethered unmanned aerial vehicles (tethered UAS).
  • UAS Unmanned Aircraft Systems
  • tethered UAS tethered unmanned aerial vehicles
  • unmanned aerial vehicle includes a light unmanned aerial vehicle system (LTA: Lighter than Air UAS) and a heavy unmanned aerial vehicle system (HTA: Heavier than Air UAS).
  • HAPs High Altitude UAS Platforms.
  • the satellite station device is a wireless communication device that can float outside the atmosphere.
  • the satellite station device may be a device mounted on a space mobile body such as an artificial satellite, or may be a space mobile body itself.
  • the satellites that serve as satellite station equipment are low orbit (LEO: Low Earth Orbiting) satellites, medium orbit (MEO: Medium Earth Orbiting) satellites, geostationary (GEO: Geostationary Earth Orbiting) satellites, and high elliptical orbit (HEO: Highly Elliptical Orbiting). It may be any satellite.
  • the satellite station device may be a device mounted on a low earth orbit satellite, a medium earth orbit satellite, a geostationary satellite, or a high elliptical orbit satellite.
  • the size of the coverage of the base station apparatus 20 may be as large as a macro cell or as small as a pico cell. Of course, the size of the coverage of the base station apparatus 20 may be extremely small, such as a femtocell. Further, the base station apparatus 20 may have a beamforming capability. In this case, the base station apparatus 20 may form a cell or a service area for each beam.
  • the base station apparatus 20 1 is connected to the relay device 30 1
  • the base station apparatus 20 2 is connected to the relay device 30 2.
  • the base station apparatus 20 1 is able to indirectly communicate wirelessly with the terminal device 40 via the relay device 30 1.
  • the base station apparatus 20 2 it is possible to indirectly communicate wirelessly with the terminal device 40 via the relay device 30 2.
  • the relay device 30 is a device that serves as a relay station for the base station.
  • the relay device 30 is a type of base station device.
  • the relay device can be rephrased as a relay base station device (or a relay base station).
  • the relay device 30 can perform NOMA communication with the terminal device 40.
  • the relay device 30 relays communication between the base station device 20 and the terminal device 40.
  • the relay device 30 may be configured to enable NOMA communication with another relay device 30 and the base station device 20.
  • the relay device 30 may be a ground station device or a non-ground station device.
  • the relay device 30 and the base station device 20 form a radio access network RAN.
  • the terminal device 40 is a wireless communication device that wirelessly communicates with the base station device 20 or the relay device 30.
  • the terminal device 40 is, for example, a mobile phone, a smart device (smartphone or tablet), a PDA (Personal Digital Assistant), or a personal computer.
  • the terminal device 40 may be a device such as a commercial camera provided with a communication function, or may be a motorcycle, a mobile relay vehicle, or the like equipped with a communication device such as an FPU (Field Pickup Unit). ..
  • the terminal device 40 may be an M2M (Machine to Machine) device or an IoT (Internet of Things) device.
  • the terminal device 40 may be capable of side link communication with another terminal device 40.
  • the terminal device 40 may be able to use an automatic retransmission technique such as HARQ when performing side link communication.
  • the terminal device 40 may be capable of NOMA communication with the base station device 20 and the relay device 30.
  • the terminal device 40 may also be capable of NOMA communication in communication (side link) with another terminal device 40.
  • the terminal device 40 may be capable of LPWA communication with other communication devices (for example, the base station device 20, the relay device 30, and the other terminal device 40).
  • the wireless communication used by the terminal device 40 may be wireless communication using millimeter waves.
  • the wireless communication (including side link communication) used by the terminal device 40 may be wireless communication using radio waves or wireless communication using infrared rays or visible light (optical radio). Good.
  • the terminal device 40 may be a mobile device.
  • the mobile device is a mobile wireless communication device.
  • the terminal device 40 may be a wireless communication device installed on the mobile body or may be the mobile body itself.
  • the terminal device 40 may be a vehicle (Vehicle) moving on the road such as an automobile, a bus, a truck, or a motorcycle, or a wireless communication device mounted on the vehicle.
  • the moving body may be a mobile terminal, or may be a moving body that moves on land (ground in a narrow sense), in the ground, on the water, or in the water.
  • the moving body may be a moving body such as a drone or a helicopter that moves in the atmosphere, or a moving body that moves outside the atmosphere such as an artificial satellite.
  • the terminal device 40 may be connected to a plurality of base station devices or a plurality of cells at the same time to perform communication.
  • a plurality of cells for example, pCell, sCell
  • CA Carrier Aggregation
  • DC Dual Connectivity
  • MC multi-connectivity
  • the terminal device 40 and the plurality of base station devices 20 to communicate with each other via the cells of different base station devices 20 by the coordinated transmission / reception (CoMP: Coordinated Multi-Point Transmission and Reception) technology.
  • CoMP Coordinated Multi-Point Transmission and Reception
  • the terminal device 40 does not necessarily have to be a device directly used by a person.
  • the terminal device 40 may be a sensor installed in a machine or the like in a factory, such as a so-called MTC (Machine Type Communication).
  • the terminal device 40 may be an M2M (Machine to Machine) device or an IoT (Internet of Things) device.
  • the terminal device 40 may be a device having a relay communication function, as typified by D2D (Device to Device) and V2X (Vehicle to everything).
  • the terminal device 40 may be a device called CPE (Client Premises Equipment) used in a wireless backhaul or the like.
  • CPE Customer Premises Equipment
  • each device constituting the communication system 1 will be specifically described.
  • the configuration of each device shown below is just an example.
  • the configuration of each device may differ from the configuration below.
  • FIG. 2 is a diagram showing a configuration example of the management device 10 according to the embodiment of the present disclosure.
  • the management device 10 includes a communication unit 11, a storage unit 12, and a control unit 13.
  • the configuration shown in FIG. 2 is a functional configuration, and the hardware configuration may be different from this. Further, the functions of the management device 10 may be distributed and implemented in a plurality of physically separated configurations. For example, the management device 10 may be composed of a plurality of server devices.
  • the communication unit 11 is a communication interface for communicating with other devices.
  • the communication unit 11 may be a network interface or a device connection interface.
  • the communication unit 11 may be a LAN (Local Area Network) interface such as a NIC (Network Interface Card), or a USB interface composed of a USB (Universal Serial Bus) host controller, a USB port, or the like. May be good.
  • the communication unit 11 may be a wired interface or a wireless interface.
  • the communication unit 11 functions as a communication means of the management device 10.
  • the communication unit 11 communicates with the base station device 20 under the control of the control unit 13.
  • the storage unit 12 is a storage device capable of reading and writing data such as a DRAM (Dynamic Random Access Memory), a SRAM (Static Random Access Memory), a flash memory, and a hard disk.
  • the storage unit 12 functions as a storage means for the management device 10.
  • the storage unit 12 stores, for example, the connection state of the terminal device 40.
  • the storage unit 12 stores the RRC (Radio Resource Control) state and the ECM (EPS Connection Management) state of the terminal device 40.
  • the storage unit 12 may function as a home memory for storing the position information of the terminal device 40.
  • the control unit 13 is a controller that controls each unit of the management device 10.
  • the control unit 13 is realized by, for example, a processor such as a CPU (Central Processing Unit) or an MPU (Micro Processing Unit).
  • the control unit 13 is realized by the processor executing various programs stored in the storage device inside the management device 10 using a RAM (Random Access Memory) or the like as a work area.
  • the control unit 13 may be realized by an integrated circuit such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array).
  • the CPU, MPU, ASIC, and FPGA can all be regarded as controllers.
  • FIG. 3 is a diagram showing a configuration example of the base station device 20 according to the embodiment of the present disclosure.
  • the base station device 20 can perform NOMA communication with the terminal device 40.
  • the base station device 20 includes a wireless communication unit 21, a storage unit 22, and a control unit 23.
  • the configuration shown in FIG. 3 is a functional configuration, and the hardware configuration may be different from this. Further, the functions of the base station apparatus 20 may be distributed and implemented in a plurality of physically separated configurations.
  • the wireless communication unit 21 is a wireless communication interface that wirelessly communicates with other wireless communication devices (for example, a terminal device 40 and a relay device 30).
  • the wireless communication unit 21 operates according to the control of the control unit 23.
  • the wireless communication unit 21 corresponds to one or a plurality of wireless access methods.
  • the wireless communication unit 21 corresponds to both NR and LTE.
  • the wireless communication unit 21 may support W-CDMA and cdma2000 in addition to NR and LTE.
  • the wireless communication unit 21 supports communication using NOMA. NOMA will be described in detail later.
  • the wireless communication unit 21 includes a reception processing unit 211, a transmission processing unit 212, and an antenna 213.
  • the wireless communication unit 21 may include a plurality of reception processing units 211, transmission processing units 212, and antennas 213, respectively.
  • each unit of the wireless communication unit 21 may be individually configured for each wireless access method.
  • the reception processing unit 211 and the transmission processing unit 212 may be individually configured by LTE and NR.
  • the reception processing unit 211 processes the uplink signal received via the antenna 213.
  • the reception processing unit 211 includes a wireless reception unit 211a, a multiple separation unit 211b, a demodulation unit 211c, and a decoding unit 211d.
  • the radio receiver 211a performs down-conversion, removal of unnecessary frequency components, control of amplification level, orthogonal demodulation, conversion to digital signal, removal of guard interval, and fast Fourier transform of the frequency domain signal for the uplink signal. Extract, etc.
  • the multiplex separation unit 211b separates uplink channels such as PUSCH (Physical Uplink Shared Channel) and PUCCH (Physical Uplink Control Channel) and uplink reference signals from the signal output from the wireless reception unit 211a.
  • the demodulation unit 211c demodulates the received signal with respect to the modulation symbol of the uplink channel by using a modulation method such as BPSK (Binary Phase Shift Keying) or QPSK (Quadrature Phase Shift Keying).
  • BPSK Binary Phase Shift Keying
  • QPSK Quadrature Phase Shift Keying
  • the modulation method used by the demodulation unit 211c may be 16QAM (Quadrature Amplitude Modulation), 64QAM, or 256QAM. In this case, the signal points on the constellation do not necessarily have to be equidistant.
  • the constellation may be a non-uniform constellation (NUC: Non Uniform Constellation).
  • the decoding unit 211d performs decoding processing on the coded bits of the demodulated uplink channel. The decoded uplink data and uplink control information are output to the control unit 23.
  • the transmission processing unit 212 performs the transmission processing of the downlink control information and the downlink data.
  • the transmission processing unit 212 includes a coding unit 212a, a modulation unit 212b, a multiplexing unit 212c, and a wireless transmission unit 212d.
  • the coding unit 212a encodes the downlink control information and the downlink data input from the control unit 23 by using a coding method such as block coding, convolutional coding, or turbo coding.
  • the modulation unit 212b modulates the coding bits output from the coding unit 212a by a predetermined modulation method such as BPSK, QPSK, 16QAM, 64QAM, 256QAM and the like. In this case, the signal points on the constellation do not necessarily have to be equidistant.
  • the constellation may be a non-uniform constellation.
  • the multiplexing unit 212c multiplexes the modulation symbol of each channel and the downlink reference signal and arranges them in a predetermined resource element.
  • the wireless transmission unit 212d performs various signal processing on the signal from the multiplexing unit 212c.
  • the radio transmitter 212d converts to the time domain by fast Fourier transform, adds a guard interval, generates a baseband digital signal, converts to an analog signal, quadrature modulation, up-converts, and removes extra frequency components. Performs processing such as power amplification.
  • the signal generated by the transmission processing unit 212 is transmitted from the antenna 213.
  • the storage unit 22 is a storage device that can read and write data such as DRAM, SRAM, flash memory, and hard disk.
  • the storage unit 22 functions as a storage means for the base station device 20.
  • the storage unit 22 stores data to be referenced or registered by each block (sensing unit 231 to notification unit 232) constituting the control unit 23.
  • the control unit 23 is a controller that controls each unit of the base station device 20.
  • the control unit 23 is realized by, for example, a processor such as a CPU or MPU.
  • the control unit 23 is realized by the processor executing various programs stored in the storage device inside the base station device 20 with the RAM or the like as a work area.
  • the control unit 23 may be realized by an integrated circuit such as an ASIC or FPGA.
  • the CPU, MPU, ASIC, and FPGA can all be regarded as controllers.
  • the control unit 23 includes a sensing unit 231 and a notification unit 232.
  • the sensing unit 231 performs channel sensing in the unlicensed band, for example, LBT, as one aspect.
  • the notification unit 232 notifies the communication device of the other party of channel occupancy information and various other information when the LBT is successful.
  • Each block (sensing unit 231 to notification unit 232) constituting the control unit 23 is a functional block indicating the function of the control unit 23, respectively.
  • These functional blocks may be software blocks or hardware blocks.
  • each of the above-mentioned functional blocks may be one software module realized by software (including a microprogram), or may be one circuit block on a semiconductor chip (die).
  • each functional block may be one processor or one integrated circuit.
  • the method of configuring the functional block is arbitrary.
  • the control unit 23 may be configured in a functional unit different from the above-mentioned functional block. The details of the operation of the sensing unit 231 and the various information notified by the notification unit 232 and the notification method thereof will be described later.
  • FIG. 4 is a diagram showing a configuration example of the relay device 30 according to the embodiment of the present disclosure.
  • the relay device 30 is capable of NOMA communication with the terminal device 40.
  • the relay device 30 includes a wireless communication unit 31, a storage unit 32, a network communication unit 33, and a control unit 34.
  • the configuration shown in FIG. 4 is a functional configuration, and the hardware configuration may be different from this. Further, the functions of the relay device 30 may be distributed and implemented in a plurality of physically separated configurations.
  • the wireless communication unit 31 is a wireless communication interface that wirelessly communicates with other wireless communication devices (for example, the base station device 20 and the terminal device 40).
  • the wireless communication unit 31 operates according to the control of the control unit 34.
  • the wireless communication unit 31 includes a reception processing unit 311, a transmission processing unit 312, and an antenna 313.
  • the configurations of the wireless communication unit 31, the reception processing unit 311, the transmission processing unit 312, and the antenna 313 are the same as those of the wireless communication unit 21, the reception processing unit 211, the transmission processing unit 212, and the antenna 213 of the base station apparatus 20.
  • the storage unit 32 is a storage device that can read and write data such as DRAM, SRAM, flash memory, and hard disk.
  • the storage unit 32 functions as a storage means for the relay device 30.
  • the configuration of the storage unit 32 is the same as that of the storage unit 22 of the base station device 20.
  • the network communication unit 33 is a communication interface for communicating with other devices.
  • the network communication unit 33 is a LAN interface such as a NIC.
  • the network communication unit 33 may be a wired interface or a wireless interface.
  • the network communication unit 33 functions as a network communication means of the relay device 30.
  • the network communication unit 33 communicates with the base station device 20 under the control of the control unit 34.
  • the control unit 34 is a controller that controls each unit of the relay device 30.
  • the configuration of the control unit 34 is the same as that of the control unit 23 of the base station apparatus 20.
  • FIG. 5 is a diagram showing a configuration example of the terminal device 40 according to the embodiment of the present disclosure.
  • the terminal device 40 can perform NOMA communication with the base station device 20 and the relay device 30.
  • the terminal device 40 includes a wireless communication unit 41, a storage unit 42, a network communication unit 43, an input / output unit 44, and a control unit 45.
  • the configuration shown in FIG. 5 is a functional configuration, and the hardware configuration may be different from this. Further, the functions of the terminal device 40 may be distributed and implemented in a plurality of physically separated configurations.
  • the wireless communication unit 41 is a wireless communication interface that wirelessly communicates with other wireless communication devices (for example, the base station device 20 and the relay device 30).
  • the wireless communication unit 41 operates according to the control of the control unit 45.
  • the wireless communication unit 41 corresponds to one or a plurality of wireless access methods.
  • the wireless communication unit 41 corresponds to both NR and LTE.
  • the wireless communication unit 41 may support W-CDMA and cdma2000 in addition to NR and LTE.
  • the wireless communication unit 21 supports communication using NOMA. NOMA will be described in detail later.
  • the wireless communication unit 41 includes a reception processing unit 411, a transmission processing unit 412, and an antenna 413.
  • the wireless communication unit 41 may include a plurality of reception processing units 411, transmission processing units 412, and antennas 413, respectively.
  • each unit of the wireless communication unit 41 may be individually configured for each wireless access method.
  • the reception processing unit 411 and the transmission processing unit 412 may be individually configured by LTE and NR.
  • the reception processing unit 411 processes the downlink signal received via the antenna 413.
  • the reception processing unit 411 includes a wireless reception unit 411a, a multiple separation unit 411b, a demodulation unit 411c, and a decoding unit 411d.
  • the radio receiver 411a performs down-conversion, removal of unnecessary frequency components, control of amplification level, orthogonal demodulation, conversion to digital signal, removal of guard interval, and fast Fourier transform of the frequency domain signal for the downlink signal. Extract, etc.
  • the multiplex separation unit 411b separates the downlink channel, the downlink synchronization signal, and the downlink reference signal from the signal output from the radio reception unit 411a.
  • the downlink channel is, for example, a channel such as PBCH (Physical Broadcast Channel), PDSCH (Physical Downlink Shared Channel), PDCCH (Physical Downlink Control Channel), or the like.
  • the demodulation unit 211c demodulates the received signal with respect to the modulation symbol of the downlink channel by using a modulation method such as BPSK, QPSK, 16QAM, 64QAM, 256QAM. In this case, the signal points on the constellation do not necessarily have to be equidistant.
  • the constellation may be a non-uniform constellation.
  • the decoding unit 411d performs decoding processing on the coded bits of the demodulated downlink channel. The decoded downlink data and downlink control information are output to the control unit 45.
  • the transmission processing unit 412 performs the transmission processing of the uplink control information and the uplink data.
  • the transmission processing unit 412 includes a coding unit 412a, a modulation unit 412b, a multiplexing unit 412c, and a wireless transmission unit 412d.
  • the coding unit 412a encodes the uplink control information and the uplink data input from the control unit 45 by using a coding method such as block coding, convolutional coding, or turbo coding.
  • the modulation unit 412b modulates the coding bits output from the coding unit 412a by a predetermined modulation method such as BPSK, QPSK, 16QAM, 64QAM, 256QAM. In this case, the signal points on the constellation do not necessarily have to be equidistant.
  • the constellation may be a non-uniform constellation.
  • the multiplexing unit 412c multiplexes the modulation symbol of each channel and the uplink reference signal and arranges them in a predetermined resource element.
  • the wireless transmission unit 412d performs various signal processing on the signal from the multiplexing unit 412c.
  • the radio transmitter 412d converts to the time domain by inverse fast Fourier transform, adds a guard interval, generates a baseband digital signal, converts to an analog signal, orthogonal modulation, up-converts, and removes extra frequency components. , Performs processing such as power amplification.
  • the signal generated by the transmission processing unit 412 is transmitted from the antenna 413.
  • the storage unit 42 is a storage device that can read and write data such as DRAM, SRAM, flash memory, and hard disk.
  • the storage unit 42 functions as a storage means for the terminal device 40.
  • the storage unit 42 stores data to be referenced or registered by each block (sensing unit 451 to notification unit 452) constituting the control unit 43.
  • the network communication unit 43 is a communication interface for communicating with other devices.
  • the network communication unit 43 is a LAN interface such as a NIC.
  • the network communication unit 43 may be a wired interface or a wireless interface.
  • the network communication unit 43 functions as a network communication means of the terminal device 40.
  • the network communication unit 43 communicates with other devices according to the control of the control unit 45.
  • the input / output unit 44 is a user interface for exchanging information with the user.
  • the input / output unit 44 is an operation device for the user to perform various operations such as a keyboard, a mouse, operation keys, and a touch panel.
  • the input / output unit 44 is a display device such as a liquid crystal display (Liquid Crystal Display) or an organic EL display (Organic Electroluminescence Display).
  • the input / output unit 44 may be an audio device such as a speaker or a buzzer.
  • the input / output unit 44 may be a lighting device such as an LED (Light Emitting Diode) lamp.
  • the input / output unit 44 functions as an input / output means (input means, output means, operation means, or notification means) of the terminal device 40.
  • the control unit 45 is a controller that controls each unit of the terminal device 40.
  • the control unit 45 is realized by, for example, a processor such as a CPU or MPU.
  • the control unit 45 is realized by the processor executing various programs stored in the storage device inside the terminal device 40 using the RAM or the like as a work area.
  • the control unit 45 may be realized by an integrated circuit such as an ASIC or FPGA.
  • the CPU, MPU, ASIC, and FPGA can all be regarded as controllers.
  • the control unit 45 includes a sensing unit 451 and a notification unit 452.
  • the sensing unit 451 performs channel sensing in the unlicensed band, for example, LBT, as one aspect.
  • the notification unit 452 notifies the communication device of the other party of channel occupancy information and various other information when the LBT is successful.
  • Each block (sensing unit 451 to notification unit 452) constituting these control units 45 is a functional block indicating the function of the control unit 45, respectively.
  • These functional blocks may be software blocks or hardware blocks.
  • each of the above-mentioned functional blocks may be one software module realized by software (including a microprogram), or may be one circuit block on a semiconductor chip (die).
  • each functional block may be one processor or one integrated circuit.
  • the method of configuring the functional block is arbitrary.
  • the control unit 45 may be configured in a functional unit different from the above-mentioned functional block. The details of the operation of the sensing unit 451 and the various information notified by the notification unit 452 and the notification method thereof will be described later.
  • FIG. 6 is a diagram showing a radio frame configuration used in the radio access network RAN according to the embodiment of the present disclosure.
  • the radio access network RAN defines a radio frame consisting of 10 ms.
  • One radio frame is composed of 10 subframes.
  • the subframe time interval is 1 ms.
  • the subframe is composed of, for example, 14 symbols.
  • the symbol is, for example, an OFDM symbol or an SC-FDMA symbol.
  • LTE for example, one slot is composed of seven symbols.
  • NR for example, one slot is composed of 14 symbols.
  • LTE and NR subframe configurations will be described respectively.
  • FIG. 7 is a diagram showing an example of the LTE subframe configuration.
  • a resource grid is shown with the vertical axis representing frequency and the horizontal axis representing time.
  • the system bandwidth indicates the bandwidth of the LTE cell.
  • Each of the grids in the resource grid represents a resource element.
  • the size of one resource element is one subcarrier in the frequency direction and one symbol in the time direction.
  • one slot is defined by multiple symbols.
  • the number of symbols in one slot is determined by the type of CP (Cyclic Prefix).
  • the type of CP is normal CP or extended CP. In the normal CP, the number of symbols constituting one slot is 7. In the expansion CP, the number of symbols constituting one slot is six.
  • a resource block is used to map a certain physical channel (PDSCH, PUSCH, etc.) to a resource element.
  • One resource block is defined by a predetermined number of subcarriers continuous in the frequency domain and a predetermined number of symbols continuous in the time domain.
  • the number of symbols and the number of subcarriers (resource block bandwidth) in one resource block are determined based on the type of CP in the cell, the subcarrier interval and / or the parameters set by the upper layer and the like. For example, when the CP type is normal CP and the subcarrier interval is 15 kHz, the number of symbols in one resource block is 7, and the number of subcarriers is 12. In this case, one resource block is composed of (7 ⁇ 12) resource elements.
  • the predetermined parameter is, for example, a parameter (physical parameter) relating to a transmission signal.
  • the parameters related to the transmission signal are CP length, subcarrier interval, number of symbols in one subframe (predetermined time length), number of subcarriers in one resource block (predetermined frequency band), multiple access method, and signal waveform. And so on.
  • link signals (downlink signals and uplink signals) are generated for a given time length (eg, subframes) using one given parameter.
  • FIG. 8 is a diagram showing an example of the NR subframe configuration.
  • the system bandwidth indicates the bandwidth of the NR cell.
  • one or more predetermined parameters are used for a given time length (eg, subframe). That is, in the NR cell, the link signal is generated for a predetermined time length using one or more predetermined parameters.
  • the signals generated by using the predetermined parameters are multiplexed by a predetermined method.
  • the predetermined method is, for example, FDM (Frequency Division Multiplexing), TDM (Time Division Multiplexing), CDM (Code Division Multiplexing) and / or SDM (Spatial Division Multiplexing).
  • FIG. 9 is a diagram showing an example of a parameter set relating to a transmission signal in the NR cell.
  • the parameters are "subcarrier spacing", “maximum bandwidth” of component carriers, "CP length type”, “number of symbols” per subframe, and “number of subcarriers” per resource block in the NR cell. ".
  • One of the parameters may be "radio frame length”.
  • the "CP length type” is a CP length type used in the NR cell. For example, CP length type 1 corresponds to a normal CP in LTE, and CP length type 2 corresponds to an extended CP in LTE.
  • the parameter set for the transmission signal in the NR cell can be specified individually for the downlink and the uplink, respectively. Further, the parameter set related to the transmission signal in the NR cell can be set independently for the downlink and the uplink.
  • parameter set 0 15 kHz (subcarrier interval), 20 MHz (maximum bandwidth), type 1 (CP length type), 14 (number of symbols), 1 ms (subframe length), 10 ms (wireless frame). Long) and 12 (number of subcarriers) are specified.
  • parameter set 1 7.5 kHz (subcarrier interval), 1.4 MHz (maximum bandwidth), type 1 (CP length type), 70 (number of symbols), 10 ms (subframe length), 10 ms (wireless frame). Long) and 24 (number of subcarriers) are specified.
  • the parameter set 2 includes 30 kHz (subcarrier interval), 80 MHz (maximum bandwidth), type 1 (CP length type), 7 (number of symbols), 0.25 ms (subframe length), and 10 ms (wireless frame length). , 6 (number of subcarriers) is specified.
  • parameter set 3 15 kHz (subcarrier interval), 20 MHz (maximum bandwidth), type 2 (CP length type), 12 (number of symbols), 1 ms (subframe length), 10 ms (wireless frame length), 12 (Number of subcarriers) is specified.
  • FIG. 10 is a diagram showing an example of a downlink subframe of NR.
  • the signals generated using parameter set 1, parameter set 0, and parameter set 2 are frequency division multiplexing (FDM) to the cell bandwidth (system bandwidth).
  • FDM frequency division multiplexing
  • NOMA Orthogonal Multiple Access
  • data is transmitted and received using orthogonal frequency axes and time axes.
  • the frame configuration of the frequency and time resources is determined by the subcarrier interval, and more resources than the number of resource elements cannot be used.
  • orthogonal multiplex connection NOMA
  • a non-orthogonal axis for example, Interleave pattern axis, Spreading Pattern axis, Scrambling Pattern axis, Codebook axis, Power axis, etc.
  • a non-orthogonal axis for example, Interleave pattern axis, Spreading Pattern axis, Scrambling Pattern axis, Codebook axis, Power axis, etc.
  • FIG. 11 is an explanatory diagram showing an example of the NOMA transmission process according to the embodiment of the present disclosure.
  • a transmission device is shown to multiplex and transmit transmission signals on non-orthogonal axes.
  • the transmitting device is a communication device such as a base station device 20, a relay device 30, and a terminal device 40.
  • one transmitting device e.g., the terminal device 40 1 are multiplexed two transmit signal set.
  • the NOMA transmission process shown below is realized, for example, by the control unit 45 of the terminal device 40 controlling the transmission processing unit 412.
  • the following transmission processing is realized, for example, by the control unit 23 of the base station apparatus 20 controlling the transmission processing unit 212.
  • the transmission signal set is, for example, a signal generated by subjecting a part or all of the transmission data generated in the communication device to signal processing for wireless communication. That is, the transmission signal set is transmission data (part or all of transmission data) that has undergone signal processing for wireless communication.
  • the transmission data is data related to one process generated by the communication device.
  • the transmission data is data related to one transmission job generated in various programs (for example, an application program or an operating system) executed by a communication device.
  • the transmission data is divided into a plurality of data.
  • the data that is the transmission unit (division unit) of the transmission data is referred to as transmission unit data.
  • the transmission unit data may be one IP packet or one transport block.
  • the transmission unit data may be another transmission unit.
  • the transport block is, for example, a unit of error correction such as HARQ (Hybrid ARQ (Automatic Repeat reQuest)).
  • HARQ Hybrid ARQ (Automatic Repeat reQuest)
  • a transport block is a block of data in a transport channel (transport layer).
  • the transmission signal set may be a signal (transmission unit data) generated by performing signal processing on transmission unit data such as a transport block.
  • the transmission signal set is data in which transmission unit data such as a transport block is subjected to signal processing for wireless communication using OFDM.
  • the transmission signal set may be composed of a plurality of blocks or a plurality of elements.
  • the transmission unit data may be composed of a plurality of resource blocks or resource elements.
  • the transmission signal set is composed of a plurality of blocks.
  • the transmission signal sets D10 and D20 are composed of four blocks (for example, resource blocks).
  • the transmitting device applies the corresponding MA signature (MA signature: Multiple Access signature) to each of the transmission signal sets D10 and D20.
  • the MA signature is one of the information about non-orthogonal multiplexing.
  • the MA signature includes, for example, Interleave Pattern, Spreading Pattern, Scrambling Pattern, Codebook, Power Allocation, and the like.
  • the MA signature may be simply called a Pattern or Index.
  • the MA signature may be an identifier indicating the Pattern or Index used in the NOMA transmission as described above, or may represent the Pattern itself.
  • applying the MA signature to a predetermined transmission signal set may be referred to as NOMA transmission processing using the MA signature.
  • the transmitting device e.g., control unit 45 of the terminal device 40 1
  • the transmitting device is transmitted to the signal set D10 running NOMA transmission processing using MA signature # 0, MA signatures # 1 to the transmission signal set D20
  • the NOMA transmission process using is being executed.
  • MA signature # 0 and MA signature # 1 are corresponding non-orthogonal resources. For example, suppose the MA signature is Power Allocation (that is, the non-orthogonal axis is the Power axis).
  • the MA signature # 0 may be information to convert a predetermined transmission signal set into a transmission signal set having a small power (for example, power equal to or less than the first threshold value).
  • the MA signature # 1 may be information to convert a predetermined transmission signal set into a transmission signal set having a large power (for example, a power equal to or higher than a second threshold value larger than the first threshold value).
  • the transmitter multiplexes the signal after applying the MA signature on the same frequency and time resource.
  • the transmission device non-orthogonally multiplexes the transmission signal sets D11, D21 generated as a result of the NOMA transmission process on the same orthogonal resource.
  • the transmitting device e.g., control unit 45 of the terminal device 40 1) sends a transmission signal a non-orthogonal multiplexing to the antenna port.
  • FIG. 12 is an explanatory diagram showing an example of NOMA transmission processing according to the embodiment of the present disclosure.
  • two transmission signal sets with different parameter sets are multiplexed.
  • the transmission apparatus e.g., control unit 45 of the terminal device 40 1
  • MA signatures MA signature # 0, # 1 corresponding respectively to the transmission signal set D10, D30
  • the NOMA transmission process is being executed.
  • the transmission signal sets D30 and D40 are transmission signal sets having different parameter sets.
  • the transmission device non-orthogonally multiplexes the transmission signal sets D11 and D31 generated as a result of the NOMA transmission process on the same orthogonal resource. Thereafter, the transmitting device (e.g., control unit 45 of the terminal device 40 1) sends a transmission signal a non-orthogonal multiplexing to the antenna port.
  • the transmitting device e.g., control unit 45 of the terminal device 40 1
  • FIG. 13 is an explanatory diagram showing an example of the NOMA transmission process according to the embodiment of the present disclosure.
  • the two transmission signal sets are transmitted from different antennas.
  • the plurality of transmission signals set separately transmitting device e.g., the terminal device 40 1, 40 2
  • one transmission apparatus e.g., the terminal device 40 1
  • the terminal device 40 1 may be transmitted from different antennas.
  • the two transmission signal sets are transmitted from different transmission devices, but of course, the two transmission signal sets may be transmitted from one transmission device.
  • one of the transmitting device (e.g., the terminal device 40 1) is running NOMA transmission processing using MA signature # 0 in the transmission signal set D10.
  • the other transmitting device (e.g., terminal 40 2) is running NOMA transmission processing using MA signatures # 1 to the transmission signal set D20.
  • MA signature # 0 and MA signature # 1 are corresponding non-orthogonal resources.
  • MA signatures include, for example, Interleave Pattern, Spreading Pattern, Scrambling Pattern, Codebook, Power Allocation, Repetition and the like.
  • the transmitted signal sets D11, D21 after applying the MA signature are transmitted on the same frequency and time resource and are multiplexed through the propagation channel.
  • FIG. 14 is an explanatory diagram showing an example of the NOMA transmission process according to the embodiment of the present disclosure.
  • the multiplexed transmission signal set may be a transmission signal set with a different parameter set.
  • FIG. 14 is an explanatory diagram showing an example of the NOMA transmission process according to the embodiment of the present disclosure.
  • two transmission signal sets with different parameter sets are multiplexed.
  • one of the transmitting device e.g., the terminal device 40 1
  • the other transmitting device e.g., terminal 40 2
  • the transmission signal sets D10 and D30 are transmission signal sets having different parameter sets. Also, MA signature # 0 and MA signature # 1 are corresponding non-orthogonal resources.
  • the transmitted signal sets D11, D31 after applying the MA signature are transmitted on the same frequency and time resource and are multiplexed through the propagation channel.
  • FIG. 15 is an explanatory diagram showing an example of NOMA reception processing according to the embodiment of the present disclosure.
  • the NOMA reception process shown below is realized by the control unit 23 of the base station apparatus 20 controlling the reception processing unit 211.
  • the NOMA reception process shown below is realized, for example, by the control unit 45 of the terminal device 40 controlling the reception processing unit 411.
  • the received signal is received in a state in which a plurality of transmitted signals are multiplexed on the same frequency and time resource.
  • Receiving device e.g., control unit 23 of the base station apparatus 20 1
  • NOMA reception processing based on MA signatures used in the transmitting device (e.g., channel equalization and interference (Processing of signal canceller, etc.) is executed.
  • the receiving device extracts a desired signal from the received signal.
  • the receiving device executes NOMA reception processing using MA signature # 0 and MA signature # 1 for the received signal, and extracts the transmission signal sets D10 and D30. If the same MA signature is used for multiplexing, the influence of interference between the multiplexed signals becomes large, and decoding becomes difficult. Therefore, the base station apparatus 20 schedules the MA signature used by the terminal apparatus 40 and the like so that the MA signatures do not overlap.
  • a resource including all of the frequency, time, and MA signature may be referred to as a Multiple Access Resource (MA resource).
  • a resource having only frequency and time may be called a Multiple Access Physical Resource (MA physical resource).
  • the terminal device 40 1 of the three base station apparatus 20 1, 40 2, 40 3 is a diagram showing a state in which a wireless connection.
  • the terminal apparatus 40 1, 40 2, 40 3 functions as a transmission apparatus
  • the base station apparatus 20 1 functions as a receiving device.
  • the terminal apparatus 40 1, 40 2, 40 3, available MA signatures is limited.
  • the terminal apparatus 40 1 is capable of transmitting data using both MA signatures # 0 and MA signatures # 1.
  • the terminal device 40 2 can not use the MA signature # 0, it is possible to transmit data by using only MA signatures # 1.
  • the terminal device 40 3 can not use the MA signatures # 1 can transmit data by using only MA signature # 0.
  • the terminal device 40 2, 40 3 as shown in FIG.
  • the 16 may not necessarily terminal capable NOMA transmission process.
  • the terminal device 40 2, 40 3 is orthogonal multiple access (Orthogonal Multiple Access: OMA) is only capable terminal (OMA terminal), a terminal that can only data transmitted using MA signature # 0 or MA Signature # 1 It can also be regarded as an equivalent terminal.
  • OMA Orthogonal Multiple Access
  • FIG. 17 is an explanatory diagram showing an example of NOMA transmission processing according to the embodiment of the present disclosure.
  • the transmission signal set D10 is the transmission unit data terminal device 40 1 has acquired, is obtained by signal processing into transmittable signals using MA physical resources.
  • the transmission signal set D40 is the transmission unit data terminal device 40 2 acquires, is obtained by signal processing into transmittable signals using MA physical resources.
  • the transmission signal set D50 of the transmission unit data terminal device 40 2 acquires, is obtained by signal processing into transmittable signals using MA physical resources.
  • the terminal apparatus 40 1 (e.g., control unit 45 of the terminal device 40 1) applies the MA signature # 0 in the transmission signal set D10, and generates a transmission signal set D11.
  • the terminal device 40 2 applies the MA signatures # 1 to the transmission signal set D40, and generates a transmission signal set D41.
  • the terminal device 40 3 applies the MA signature # 0 in the transmission signal set D50, and generates a transmission signal set D51.
  • MA signature # 0 and MA signature # 1 indicate corresponding non-orthogonal resources.
  • the base station apparatus 20 1 forced assigned a transmission signal set D11 and transmit signal set D51 on different MA physical resources (frequency, time axis). As a result, the base station apparatus 20 1, 3 terminal devices 40 1, 40 2, 40 3 is to send the data, it forced ensure many MA physical resources. In the example of FIG. 17, the base station apparatus 20 1, forced ensure MA physical resources six blocks. As a result, the communication system 1 cannot efficiently use resources as a whole system.
  • the NOMA transmission process can be executed in a part range of the transmission data (or transmission unit data). At this time, the NOMA transmission process may or may not be executed in another range of the transmission data (or transmission unit data).
  • the transmission device divides one transmission unit data into a plurality of NOMA application ranges (NOMA application units), and executes a NOMA transmission process using a predetermined MA signature for each of the plurality of NOMA application ranges.
  • the NOMA application range is the range (unit) to which one MA signature is applied.
  • the NOMA application range can be rephrased as the NOMA application unit.
  • FIG. 18 is an explanatory diagram showing an example of NOMA transmission processing according to the embodiment of the present disclosure.
  • the NOMA transmission process shown below is realized by, for example, the control unit 45 of the terminal device 40 controlling the transmission processing unit 412, as in the case of the NOMA transmission process of FIGS. 11 to 14. If the transmission device is the base station device 20, the following transmission process may be realized, for example, by the control unit 23 of the base station device 20 controlling the transmission processing unit 212.
  • the terminal apparatus 40 1 is divided into two by two block transmission signal set D10 of 4 blocks in the time direction.
  • the first two blocks are the NOMA application range # 0, and the latter two blocks are the NOMA application range # 1.
  • the terminal device 40 1 executes a NOMA transmission process using the MA signature # 0 in the NOMA application range # 0, and executes a NOMA transmission process using the MA signature # 1 in the NOMA application range # 1.
  • the transmission signal set D12 is generated.
  • the base station apparatus 20 1 only needs to ensure the MA physical resources four blocks for three terminal devices 40 1, 40 2, 40 3 transmits the data, respectively.
  • FIG. 19 is an explanatory diagram showing an example of NOMA reception processing according to the embodiment of the present disclosure.
  • the NOMA reception process shown below is realized by the control unit 23 of the base station apparatus 20 controlling the reception processing unit 211, as in the case of the NOMA reception process shown in FIG.
  • the NOMA reception process shown below is realized, for example, by the control unit 45 of the terminal device 40 controlling the reception processing unit 411.
  • the base station apparatus 20 1 (e.g., control unit 23 of the base station apparatus 20 1) has a plurality of transmission signals on the same frequency and time resource to receive a reception signal in a state of being multiplexed ..
  • the base station apparatus 20 1 (e.g., control unit 23 of the base station apparatus 20 1), in order to decode the multiplexed transmitted signal set, executes the NOMA reception processing based on MA signatures used in the transmitting device.
  • the base station apparatus 20 1, the terminal apparatus 40 1 is fit to the classification used in NOMA transmission processing, divides the received signal.
  • the base station apparatus 20 1 is divided into two by two block incoming signals in the time direction.
  • the first two blocks are referred to as reception signal # 0, and the latter two blocks are referred to as reception signal # 1.
  • the base station apparatus 20 1 executes the NOMA reception processing using MA signature # 0 to the reception signal # 0, executes NOMA reception processing using MA signatures # 1 to the reception signal # 1.
  • the base station apparatus 20 1 extracts the transmission signal set D10 from the received signal. Further, the base station apparatus 20 1 executes NOMA reception processing using MA signatures # 1 to the reception signal # 0.
  • the base station apparatus 20 1 extracts the transmission signal set D40 from the received signal. Further, the base station apparatus 20 1 executes NOMA reception processing using MA signature # 0 to the reception signal # 1. Thus, the base station apparatus 20 1 extracts the transmission signal set D50 from the received signal.
  • the transmission unit data is composed of four blocks, but the transmission unit data may be composed of more than four blocks or less than four blocks. It may be composed of.
  • the transmission device divides one transmission unit data into a plurality of NOMA application ranges, and performs NOMA transmission processing using a predetermined MA signature for each of the plurality of NOMA application ranges.
  • the communication system 1 can flexibly allocate MA resources to each transmitting device according to the state of each transmitting device. As a result, the communication system 1 can efficiently use resources as a whole system.
  • the classification of transmission unit data is not limited to the example shown in FIG.
  • the communication system 1 classifies transmission unit data (for example, a transport block), and various classification patterns can be adopted.
  • the classification pattern is a classification pattern when the transmission unit data (or transmission data) is divided into a plurality of NOMA application ranges.
  • the transmitting device is the terminal device 40 and the receiving device is the base station device 20, but the transmitting device and the receiving device are not limited to this example.
  • the transmitting device may be a base station device 20 or a relay device 30.
  • the receiving device may be a relay device 30 or a terminal device 40.
  • the following processing is executed, for example, by the control unit 45 of the terminal device 40. If the transmitting device is the base station device 20, the following processing may be executed by the control unit 23 of the base station device 20.
  • the terminal device 40 divides the transmission unit data into two NOMA application ranges (NOMA application units), but the NOMA application range included in one transmission unit data is not limited to two.
  • the terminal device 40 may divide the transmission unit data into more than two NOMA application ranges.
  • the division direction of the transmission unit data may be the frequency direction or the time direction.
  • FIG. 20 is a diagram showing a specific example of the classification pattern.
  • the transmission unit data is a transport block.
  • FIG. 20 shows a state in which three transport blocks TB1, TB2, and TB3 are arranged on the MA physical resource.
  • the terminal device 40 divides the transport block TB1 into four NOMA application ranges A11, A12, A13, and A14 in the frequency direction. Further, the terminal device 40 divides the transport block TB2 into two NOMA application ranges A21 and A22 in the frequency direction.
  • the terminal device 40 does not necessarily have to divide the transmission unit data into a plurality of NOMA application ranges.
  • One transmission unit data may be directly covered by one NOMA application range.
  • the terminal device 40 has the transport block TB3 as one NOMA application range A31.
  • FIG. 21 is a diagram showing a specific example of the division pattern.
  • FIG. 21 shows a state in which three transport blocks TB4, TB5, and TB6 are arranged on the MA physical resource.
  • the terminal device 40 divides the transport block TB4 into four NOMA application ranges A41, A42, A43, and A44 in the time direction. Further, the terminal device 40 divides the transport block TB5 into two NOMA application ranges A51 and A52 in the time direction.
  • the terminal device 40 may use the transport block TB6 as it is as one NOMA application range A61.
  • the terminal device 40 does not necessarily have to use the same division pattern for all transmission unit data.
  • the terminal device 40 may switch the classification pattern according to a predetermined standard. For example, the terminal device 40 divides a certain transport block into four NOMA application ranges as shown in the transport TB4 of FIG. Further, the terminal device 40 divides another transport block into two NOMA application ranges as shown in the transport TB5 of FIG. At this time, the terminal device 40 may switch the classification pattern for each transmission unit data, or may switch the classification pattern at regular time intervals. Of course, the terminal device 40 may switch the division pattern according to other criteria.
  • one NOMA application range can be of various sizes.
  • the NOMA application range may be as follows (A1) to (A3).
  • the size of the NOMA application range is not limited to the following (A1) to (A3).
  • a plurality of NOMA application ranges included in one transmission unit data may all have the same size or may not have the same size.
  • the bandwidths B11, B12, B13, and B14 may have the same size.
  • the bandwidths B11, B12, B13, and B14 may each have the bandwidth of one resource block.
  • the bandwidths B11, B12, B13, and B14 may be partially or wholly different bandwidths.
  • the times T41, T42, T43, and T44 may have the same magnitude.
  • the times T41, T42, T43, and T44 may each be the time for one resource block (for example, 14 symbols).
  • the times T41, T42, T43, T44 may have partially or wholly different bandwidths.
  • the NOMA applicable ranges A41 and A43 may have 3 symbols
  • the NOMA applicable ranges A42 and A44 may have 4 symbols.
  • the NOMA transmission processes executed for each of the plurality of NOMA application ranges included in one transmission unit data may have the same processing contents or different processing contents. That is, the MA signatures applied to each of the plurality of NOMA scopes may be the same or different.
  • the MA signature applied to each NOMA application range may be, for example, the following (B1) to (B4).
  • the MA signature is not limited to the following (B1) to (B4).
  • the terminal device 40 may change the MA signature applied to the NOMA application range depending on the difference in the NOMA application range.
  • the terminal device 40 may change the MA signature to be applied depending on the size of the NOMA application range.
  • the terminal device 40 has different MA signatures to be applied depending on whether the size of the NOMA application range is 4 resource blocks or 1 resource block.
  • the MA signature to be applied is an interleaved pattern.
  • the terminal device 40 quadruples the interleave pattern length when the size of the NOMA application range is 4 resource blocks as compared with the interleave pattern length when the size of the NOMA application range is 1 resource block. .. This also applies when the MA signature is a diffuse code, a scramble code, or the like.
  • the terminal device 40 applies an MA signature different from the MA signature applied to the other NOMA applicable ranges to at least one of the plurality of NOMA applicable ranges included in the transmission unit data. That is, the terminal device 40 has a processing content different from that of the NOMA transmission process executed in at least one of the plurality of NOMA application ranges included in the transmission unit data and in the other NOMA application ranges included in the transmission unit data.
  • the NOMA transmission process was executed.
  • the terminal device 40 may apply the same MA signature to all the NOMA coverage included in the transmission unit data. That is, the terminal device 40 may apply the same NOMA transmission process to all the NOMA application ranges included in the transmission unit data.
  • Example of division pattern setting Various methods can be adopted as a method of setting the classification pattern used by the terminal device 40 in the terminal device 40.
  • the base station apparatus 20 may notify the terminal apparatus 40 of a candidate for a division pattern that can be used by the terminal apparatus 40 before the transmission data is generated in the terminal apparatus 40.
  • the base station apparatus 20 uses a control signal (eg, RRC signaling) before the transmission data is generated in the terminal apparatus 40 (for example, before receiving the resource allocation request from the terminal apparatus 40).
  • Notify 40 in advance of several types of classification pattern candidates.
  • information including classification pattern candidates is referred to as classification pattern candidate information.
  • the classification pattern candidate information may include, for example, information on the four classification patterns shown in the following (C1) to (C4).
  • the four classification patterns shown in (C1) to (C4) assume that the plurality of NOMA application ranges included in the transmission unit data are all the same size. Then, the size of one NOMA application range is shown as a division pattern.
  • the information of the classification pattern may include more information than the information shown in the following (C1) to (C4). Of course, the information on the classification pattern is not limited to the following (C1) to (C4).
  • the base station apparatus 20 may separately notify the terminal apparatus 40 which of the previously notified division pattern candidates to be used by the terminal apparatus 40 in the end. For example, after the transmission data is generated in the terminal device 40, the base station device 20 may specify one of the classification pattern candidates by using DCI (Downlink Control Information).
  • DCI Downlink Control Information
  • the base station device 20 transmits the classification pattern candidate information to the terminal device 40, but the classification pattern candidate information may be preset in the terminal device 40.
  • the storage unit 42 of the terminal device 40 may be set with a predetermined default division pattern and one division pattern for switching.
  • One division pattern for replacement with the default division pattern may be as shown in (D1) to (D2) below.
  • the base station apparatus 20 (for example, the base station apparatus 20) may separately notify the terminal apparatus 40 which one to use by using DCI or the like.
  • only the default division pattern may be preset in the terminal device 40.
  • the base station apparatus 20 may notify the terminal apparatus 40 of one division pattern by using a control signal (for example, RRC signaling) before the transmission data is generated in the terminal apparatus 40.
  • a control signal for example, RRC signaling
  • the terminal device 40 divides the transmission unit data using the notified division pattern. If the base station device 20 does not notify the classification pattern, the terminal device 40 may use the default classification pattern to classify the transmission unit data.
  • the default classification pattern may be one in which all resource blocks included in the transmission unit data are covered by one NOMA.
  • the division pattern notified from the base station apparatus 20 may have one resource block as one NOMA application range.
  • the terminal device 40 changes the division pattern to be used according to the size of the resource allocated for data transmission to the base station device 20 (for example, the size of all resource blocks allocated from the base station device 20). You may.
  • a plurality of NOMA application ranges included in one transmission unit data are all the same size.
  • the terminal device 40 sets the size of one NOMA application range to two resource blocks.
  • the terminal device 40 sets the size of one NOMA application range to four resource blocks.
  • the candidates for the classification pattern may be “1 resource block / NOMA application range”, “2 resource block / NOMA application range”, and “4 resource block / NOMA application range”.
  • the candidates for the division pattern may be "2 resource block / NOMA application range”, “4 resource block / NOMA application range”, and "8 resource block / NOMA application range”.
  • the two resource block / NOMA application range indicates that the size of each of the plurality of NOMA application ranges included in one transmission unit data is two resource blocks.
  • the division pattern used by the terminal device 40 may be determined by the terminal device 40 by itself based on the size of the resource allocated to the terminal device 40. Further, the division pattern used by the terminal device 40 may be determined by the base station device 20 based on the size of the resource allocated to the terminal device 40. In this case, the base station device 20 may specify the division pattern to be used for the terminal device 40.
  • the terminal device 40 may change the classification pattern to be used according to the difference in the data transmission mode (transmission sequence).
  • the transmission mode in which the communication device (for example, the terminal device 40) transmits data to another communication device is Grant-based transmission (first transmission mode).
  • Grant-free transmission (second transmission mode).
  • Grant-based transmission is, for example, transmission in which radio resources are allocated from another communication device after transmission data is generated in the communication device.
  • the Grant-free transmission is, for example, a transmission in which radio resources are not allocated from another communication device after transmission data is generated in the communication device. Grant-based and Grant-free transmissions will be described in detail later.
  • the terminal device 40 may change the classification pattern to be used depending on whether it is Grant-based transmission or Grant-free transmission. For example, in the case of Grant-based transmission, the terminal device 40 uses the first division pattern as the division pattern for dividing the transmission unit data. On the other hand, in the case of Grant-free transmission, the terminal device 40 uses a second division pattern different from the first division pattern as the division pattern for dividing the transmission unit data.
  • the first division pattern may be the division pattern designated by the base station apparatus 20.
  • the second division pattern may be one preset (quasi-statically set) in the terminal device 40 by the base station device 20 or the like before the transmission data is generated.
  • the base station device 20 gives the terminal device 40 a division pattern actually used by the terminal device 40 after transmission data is generated in the terminal device 40 (for example, after a resource allocation request is received from the terminal device 40). You may specify.
  • the base station device 20 may transmit the information for designating the division pattern used by the terminal device 40 to the terminal device 40 after the transmission data is generated in the terminal device 40.
  • the base station apparatus 20 has previously notified the candidates of the four division patterns using a control signal (for example, RRC signaling). Then, it is assumed that the storage unit 42 of the terminal device 40 stores the information of these four division patterns. At this time, the base station apparatus 20 notifies one of the four division patterns using two bits of the DCI after receiving a resource allocation request from the terminal apparatus 40. Then, the terminal device 40 executes the NOMA transmission process using the division pattern (any of the four division patterns) specified by DCI.
  • a control signal for example, RRC signaling
  • the base station apparatus 20 uses one bit of the DCI to notify whether to use the default division pattern or the switching division pattern. Then, the terminal device 40 executes the NOMA transmission process using the division pattern (default or division pattern for switching) specified by DCI.
  • the information for designating the classification pattern used by the terminal device 40 is referred to as the classification pattern designation information. If the base station device 20 uses 2 bits of the DCI to specify the classification pattern used by the terminal device 40, the 2 bits are the classification pattern designation information. If the base station device 20 uses one bit of the DCI to specify the classification pattern used by the terminal device 40, that one bit is the classification pattern designation information.
  • the terminal device 40 is connected to the base station device 20 in a non-orthogonal multiple manner (hereinafter, also referred to as an OMA terminal) by using an orthogonal resource used by another terminal device 40 (hereinafter, also referred to as an OMA terminal) that is orthogonally multiplexed to the base station device 20. It is also possible to do NOMA). For example, if the OMA terminal uses a large amount of power to transmit data to the base station device 20, the terminal device 40 uses a small amount of power to send data to the base station device 20 on the time and frequency resources used by the OMA terminal. It is possible to send.
  • the base station device 20 may use one bit of the DCI to notify whether or not the resource used by the terminal device 40 is the resource used by the OMA terminal.
  • This notification may be information for each of a plurality of NOMA applicable ranges included in the transmission unit data. For example, when the bit is 0, the transmission data of the OMA terminal is not multiplexed in the NOMA application range, and when the bit is 1, the transmission data of the OMA terminal is multiplexed in the NOMA application range. Show that.
  • the base station device 20 designates the division pattern actually used by the terminal device 40 to the terminal device 40 before the transmission data is generated in the terminal device 40 (for example, before the terminal device 40 requests the allocation of resources). You may.
  • the base station device 20 specifies the classification pattern used by the terminal device 40 only by notification using DCI without notifying the classification pattern candidate information using a control signal (for example, RRC signaling). May be good.
  • the base station apparatus 20 may notify the classification pattern identification information previously determined by the specifications or the like as the classification pattern designation information.
  • the division pattern identification information is information for identifying the division pattern.
  • the classification pattern identification information may be as follows.
  • P0 to P3 are classification pattern identification information, respectively.
  • all resource blocks / NOMA application range indicates that all resource blocks constituting one transmission unit data are one NOMA application range.
  • four resource blocks / NOMA application range is one. It is shown that the size of each of the plurality of NOMA application ranges included in the transmission unit data is 4 resource blocks.
  • the 2 resource blocks / NOMA application range is each of the plurality of NOMA application ranges included in one transmission unit data. Indicates that the size of is 2 resource blocks, and 1 resource block / NOMA application range indicates that the size of each of a plurality of NOMA application ranges included in one transmission unit data is 1 resource block.
  • the division pattern identification information may be simply a number.
  • the division pattern identification information can be paraphrased as an index or the like.
  • the sensing unit 231 of the base station device 20 and the sensing unit 251 of the terminal device 40 can be equipped with a function corresponding to a channel access (Listen before Talk) procedure.
  • the channel access procedure is performed to access the unlicensed channel that is transmitted by the base station device 20 or the terminal device 40.
  • a channel access procedure defined as a load-based equipment (LBE) channel sensing is performed once or multiple times. Based on the result of the sensing, it is determined whether the channel is idle (idle, unoccupied, available, enable) or busy (busy, occupied, unavailable, disabled) (vacancy determination). In channel sensing, the power of the channel at a predetermined latency is sensed.
  • LBE load-based equipment
  • Examples of the waiting time of the channel access procedure include the first waiting time (slot), the second waiting time, the third waiting time (postponement period), and the fourth waiting time.
  • a slot is a unit of waiting time of the base station device 20 and the terminal device 40 in the channel access procedure. Slots are defined, for example, in 9 microseconds.
  • the second latency is defined, for example, at 16 microseconds.
  • the defer period consists of a second waiting time and a plurality of consecutive slots following the second waiting time.
  • the number of consecutive slots following the second waiting time is determined based on the priority class (priority class, channel access priority class) used to satisfy QoS.
  • the fourth waiting time is composed of a second waiting time and one slot following it.
  • the base station device 20 or the terminal device 40 senses a predetermined channel during a predetermined slot period.
  • the predetermined slot is considered to be idle. It is regarded.
  • the predetermined slot is considered busy.
  • the channel access procedure includes a first channel access procedure and a second channel access procedure.
  • the first channel access procedure is performed with multiple slots and a deferral period.
  • the second channel access procedure is performed with one fourth latency.
  • Parameters related to channel access are determined based on the priority class. Parameters related to channel access include, for example, the minimum collision window, the maximum collision window, the maximum channel occupancy time, and the values that the collision window can take.
  • the priority class is determined by the value of QCI (QoS class identifier) that processes QoS (Quality of Service).
  • QCI QoS class identifier
  • FIG. 22 shows a correspondence table of parameters related to the priority class and channel access
  • FIG. 23 shows an example of mapping between the priority class and QCI.
  • FIG. 22 is a diagram showing an example of a correspondence table between priority classes and parameters.
  • priority class "1" corresponds to 3, 7, 2 ms, ⁇ 3, 7 ⁇ in the order of minimum collision window, maximum collision window, maximum channel occupancy time, and possible values of collision window.
  • priority class "2" corresponds to 7, 15, 3 ms, ⁇ 7, 15 ⁇ in the order of the minimum collision window, the maximum collision window, the maximum channel exclusive time, and the values that the collision window can take.
  • the priority class "3” corresponds to 15, 63, 8 or 10 ms, ⁇ 15, 31, 63 ⁇ in the order of the minimum collision window, the maximum collision window, the maximum channel exclusive time, and the values that the collision window can take.
  • the minimum collision window, the maximum collision window, the maximum channel occupied time, and the values that the collision window can take are in the order of 15,1023,8 or10ms, ⁇ 15,31,63,127,255,511. , 1023 ⁇ corresponds.
  • FIG. 23 is a diagram showing an example of mapping between the priority class and QCI.
  • the QCI “1,3,5,65,66,69,70” corresponds to the priority class “1”.
  • QCI “2,7” corresponds to the priority class "2”.
  • QCI “4,6,8,9” corresponds to the priority class "3”.
  • QCIs other than the above correspond to the priority class "4".
  • step (1) Acquire the initial value of the counter.
  • the value that the initial value of the counter can take is an integer between 0 and the collision window CW.
  • the initial value of the counter is randomly determined according to a uniform distribution.
  • the initial value of the counter is set in the counter N, and the process proceeds to step (2).
  • (2) When the counter N is larger than 0 and it is selected to subtract the counter N, 1 is subtracted from the counter N. After that, the process proceeds to step (3). (3) Wait for an additional slot period. Also, in that additional slot, the channel is sensed.
  • step (4) If the additional slot is idle, it proceeds to step (4), otherwise it proceeds to step (5).
  • step (4) If the counter N is 0, this procedure is stopped. If not, proceed to step (2). (5) Wait for an additional postponement period. Also, the channel is sensed until any one slot included in the additional deferral period is detected as busy, or until all slots included in the additional deferral period can be detected as idle. .. After that, the process proceeds to step (6). (6) If the channel is perceived as idle in all of the slots included in its additional deferral period, it proceeds to step (4), otherwise it proceeds to step (5). After the stop of step (4) in the above procedure, transmission including data such as PDSCH and PUSCH is performed on the channel.
  • transmission may not be performed on that channel after the stop of step (4) in the above procedure.
  • the transmission may be performed without performing the above procedure.
  • the procedure (1) above Proceed to step.
  • transmission may occur immediately after the channel is considered idle as a result of sensing at least the fourth latency. On the other hand, if the channel is deemed not to be idle as a result of sensing at least the fourth latency, no transmission is performed.
  • Collision window adaptation procedure The collision window CW (contention window) used in the first channel access procedure is determined based on the collision window adaptation procedure.
  • the value of the collision window CW is retained for each priority class. Further, the collision window CW takes a value between the minimum collision window and the maximum collision window. The minimum collision window and its maximum collision window are determined based on the priority class.
  • the adjustment of the value of the collision window CW is performed before the step (1) of the first channel access procedure. If the percentage of NACK is higher than the threshold in the HARQ response corresponding to at least the reference subframe in the collision window adaptation procedure or the shared channel of the reference HARQ process, increase the value of the collision window CW, otherwise the collision window CW Set the value to the minimum collision window.
  • the base station apparatus 20 accesses the channel based on the first channel access procedure and transmits the downlink. I do.
  • the base station apparatus 20 when performing downlink transmission including DRS but not PDSCH, accesses the channel based on the second channel access procedure and performs the downlink transmission. Do.
  • the period of the downlink transmission is preferably smaller than 1 millisecond.
  • the terminal device 40 performs the second channel access procedure before the uplink transmission including the PUSCH.
  • the terminal device 40 performs a second channel access procedure before the uplink transmission.
  • the terminal device 40 when the end of the uplink transmission instructed by the uplink grant is within the uplink period (UL duration), the terminal device 40 has the uplink regardless of the procedure type instructed by the uplink grant. Perform a second channel access procedure before sending.
  • the terminal apparatus 40 performs the second channel access procedure before the uplink transmission.
  • NR channel access procedure in this embodiment> The channel access procedure on an unlicensed channel using NR provides non-beam-formed channel sensing and beam-formed channel sensing.
  • Channel sensing that is not beam-formed is channel sensing by reception with uncontrolled directivity, or channel sensing that does not have direction information.
  • the channel sensing that does not have the direction information is, for example, the channel sensing in which the measurement results are averaged in all directions.
  • the transmitting station does not have to recognize the directivity (angle, direction) used in the channel sensing.
  • Beam-formed channel sensing is channel sensing by reception with controlled directivity, or channel sensing with direction information. That is, channel sensing in which the received beam is directed in a predetermined direction.
  • a transmitting station having a function of performing beam-formed channel sensing can perform one or more channel sensing using different directivities.
  • the transmitting station can reduce the frequency of detecting non-interfering communication links and alleviate the exposed terminal problem.
  • FIG. 24 is a diagram for explaining an outline of a frame-based device (FBE, Frame Based Equipment).
  • the upper part of FIG. 24 shows the timing of CCA (Channel Clear Assessment) with the horizontal axis as the time axis.
  • the lower part of FIG. 24 shows the transmission timing with the horizontal axis as the time axis.
  • channel access Channel access, Listen before Talk
  • FBE Frame Based Equipment
  • one channel sensing is performed before transmission. Based on the result of the sensing, it is determined whether the channel is idle (idle, unoccupied, available, enable) or busy (busy, occupied, unavailable, disabled) (vacancy determination).
  • the power of the channel at a predetermined latency is sensed.
  • the transmission and / or reception configuration used in the frame-based device has a periodic timing called a fixed frame period (Fixed Frame Period).
  • a fixed frame section is set in the channel access of the frame-based device.
  • the fixed frame section is set between 1 and 10 milliseconds.
  • the fixed frame section can only be changed once in 200 milliseconds.
  • the device senses the channel immediately before the start of transmission from the beginning of the fixed frame section.
  • the device performs sensing once using one slot composed of 9 microseconds or less. If the power value is greater than a predetermined power detection threshold as a result of channel sensing, the channel is considered busy. On the other hand, if the power value is less than a predetermined power detection threshold, the channel is clear and the device can transmit.
  • the device can transmit during the channel occupation time (Channel Occupancy Time).
  • the device can perform multiple transmissions without sensing as long as the gap between the plurality of transmissions is within the channel exclusive time and the gap between the plurality of transmissions is 16 microseconds or less. On the other hand, if the gap between multiple transmissions exceeds 16 microseconds, the device will need to perform additional channel sensing. Similarly, the additional channel sensing is performed once using one slot.
  • the channel occupancy time in the channel access of the frame-based device does not exceed 95% of the fixed frame section.
  • the idle section (Idle Period) in the channel access of the frame-based device is 5% or more of the fixed frame section.
  • the idle section is 100 microseconds or more.
  • the transmission of the response (ACK / NACK, HARQ-ACK) to the transmission from the device may be performed within the channel exclusive time.
  • Directional LBT Directional LBT
  • omnidirectional LBT Omnidirectional LBT
  • directional LBT can be mentioned.
  • the received power is measured in a predetermined direction. That is, the measurement of the orientation other than the predetermined orientation is not performed.
  • Receiver assisted LBT (Receiver assisted LBT)>
  • the reception assist LBT in the present embodiment is an LBT that also uses information from the receiving device, as opposed to an LBT that is originally performed only by the transmitting device.
  • reception assist LBT there is an LBT that uses feedback of the channel state from the receiving device.
  • the transmitting device adjusts the success / failure of the LBT and the LBT parameters based on the channel state information from the receiving device.
  • the channel state includes inter-cell interference between operators, inter-cell interference between different operators, inter-RAT interference, and the like.
  • the LBT parameters to be adjusted include, for example, the LBT threshold, the collision window, and the like.
  • An example of a reception assist LBT is an LBT that uses response information from a receiving device.
  • the transmitting device transmits a physical channel and / or a physical signal to the receiving device after the successful LBT.
  • the receiving device that has received the physical channel and / or the physical signal performs a predetermined LBT. If the predetermined LBT succeeds, the receiving device sends a response to the transmitting device, and if the predetermined LBT fails, the receiving device sends a non-response to the transmitting device, or nothing. Do not send.
  • the transmitting device determines whether or not the channel occupancy is successful based on the response information from the receiving device.
  • the base station apparatus 20 In the unlicensed band operation in LTE, the base station apparatus 20 notifies the terminal apparatus 40 of the channel occupancy information by the information of the PDCCH to which the CRC scrambled by CC-RNTI is added.
  • the PDCCH to which the CRC scrambled by CC-RNTI is added includes the transmitted subframe and the channel occupancy information for the next subframe.
  • the channel occupancy information is information indicating to which symbol the channel is occupied in the transmitted subframe and the next subframe.
  • the PDCCH to which the CRC scrambled by CC-RNTI is added can notify the information regarding the uplink resource.
  • the uplink information is notified by a combination of the uplink length and an offset indicating the starting position relative to the transmitted PDCCH.
  • the terminal device 40 is not required to receive the downlink in the resource (subframe) notified as the uplink by the PDCCH. As a result, the terminal device 40 can skip a part of the downlink reception process in the uplink resource.
  • Channel occupancy information in addition to time domain information, frequency domain, spatial domain and / or code domain information is notified.
  • time domain information in addition to time domain information, frequency domain, spatial domain and / or code domain information is notified.
  • the notification unit 232 of the base station device 20 notifies the terminal device 40 of the channel occupancy information will be given as an example.
  • An example in which the notification unit 452 of the terminal device 40 notifies the base station device 20 of the channel occupancy information will be described later in ⁇ Modification example> below.
  • Time domain information The following information is given as an example of the channel occupancy information for the time domain.
  • the channel occupancy information related to the above "section” and “time” includes information on whether or not the channel can be occupied in a predetermined section, and at least a part of the section that can occupy the channel occupies the channel. It may include information that is planned to be done, or information on the remaining time that can occupy the channel.
  • the channel occupancy information related to the above “number of slots” and “number of symbols” may include information on the number of slots and / or the number of symbols that can occupy the channel.
  • the channel occupancy information related to the above “maximum channel occupancy time” may include information on the maximum time that the channel can occupy from the channel acquisition timing.
  • the channel occupancy information related to the above-mentioned "channel access priority” may include information on the channel access priority of the LBT used for occupying the channel.
  • Frequency domain information The following information is given as an example of the channel occupancy information for the frequency domain.
  • Carrier The channel occupancy information related to the above “carrier” may include information on whether or not the channel can be occupied by a predetermined carrier, a center frequency, and the like.
  • the channel occupancy information related to the above “cell” may include information on whether or not the channel can be occupied by a predetermined cell, an index of a secondary cell, and the like.
  • the channel occupancy information related to the above "subband” may include information on whether or not the channel can be occupied by a predetermined subband.
  • the subband is composed of a 20 MHz bandwidth in the 5 GHz band as an example.
  • the subband is also used as the minimum unit bandwidth of the LBT. It is defined and notified as a new subband index.
  • the channel occupancy information related to the above "BWP" may include information on whether or not the channel can be occupied by a predetermined BWP.
  • the BWP index notifies the BWP.
  • BWP is set by RRC.
  • the channel occupancy information related to the above-mentioned "frequency portion" may include information on whether or not the channel can be occupied by a predetermined frequency portion.
  • a frequency portion can be represented by a combination of the lowest frequency point and the highest frequency point, or a combination of the lowest frequency position and the bandwidth.
  • the frequency portion can be represented by a combination of the lowest resource block index and the highest resource block index, a combination of the lowest resource block index and the number of resource blocks, and the like.
  • the frequency portion can also be represented by a combination of the lowest subcarrier index and the highest subcarrier index, a combination of the lowest subcarrier index and the number of subcarriers, and the like.
  • the channel occupancy information related to the above "channel number” may include information on whether or not a channel in a band indicating a predetermined channel number can be occupied.
  • the channel number is associated with the band, as shown in FIG.
  • FIG. 25 is a diagram showing an example of the correspondence between the channel number and the band.
  • a band occupied by 40 MHz and a band occupied by 80 MHz are shaded. That is, in the case of NR, since a maximum channel occupancy of 100 MHz is possible, 40 MHz channel occupancy and 80 MHz channel occupancy are possible as compared with LTE which could only occupy a channel of 20 MHz.
  • the channel numbers “23” and “24” can be notified as the channel occupancy information.
  • the 80 MHz channel occupancy shown by the vertical line shaded in FIG. 25 is performed, the channel numbers “21” to “24” can be notified as the channel occupancy information.
  • Spatial area information The following information is given as an example of the channel occupancy information for the spatial area.
  • Beam information may include information on whether or not the channel can be occupied by a predetermined transmission beam.
  • examples of transmitted beam information include a beam index, an SS / PBCH index, an index corresponding to a CSI-RS port, a TCI state, and information indicating a QCL assumption.
  • the "transmission point” refers to the base station device 20 when the channel occupancy information is transmitted from the base station device 20 to the terminal device 40, and the terminal.
  • channel occupancy information is transmitted from the device 40 to the base station device 20, it refers to the terminal device 40.
  • the channel occupancy information related to the "position", "altitude”, and “space” of the transmission point includes information on whether or not the channel can be occupied at a predetermined position and information on whether or not the channel can be occupied at a predetermined altitude. , Information on whether or not the channel could be occupied in a predetermined space, etc. may be included. In addition, it may be information as to whether or not the channel can be occupied by the predetermined zone ID.
  • the "zone ID" referred to here refers to identification information of a zone in which a two-dimensional plane is divided by latitude and longitude, or a zone in which a three-dimensional space is divided by latitude, longitude and altitude.
  • AoD Angle of Departure
  • the channel occupancy information related to the above "AoD information” includes information on whether or not the channel can be occupied at a predetermined horizontal angle and whether or not the channel can be occupied at a predetermined elevation angle. Information such as that may be included.
  • the channel occupancy information related to the above "adjacent base station”, “adjacent cell”, and “TRP” includes the source of the channel occupancy information. It contains information about not only the transmission point but also the transmission points adjacent to the transmission point. For example, information on whether or not a channel can be occupied by a predetermined base station, information on whether or not a channel can be occupied by a predetermined cell, information on whether or not a channel can be occupied by a predetermined TRP, in a predetermined TCI state. Information such as whether or not the channel could be occupied may be included.
  • the identification information of the adjacent base station, the adjacent cell, and the TRP is the cell ID, carrier ID, SS / PBCH (SSB) index, TRP ID, PDSCH scramble ID, PUSCH scramble ID, DMRS scramble ID, etc. Shown.
  • the channel occupancy information related to the above "polarization” may include information on whether or not a channel can be occupied using a predetermined polarization.
  • the polarization identification information is indicated by, for example, a transmitting antenna port.
  • Code area information The following information is given as an example of the channel occupancy information for the code area.
  • the channel occupancy information related to the above-mentioned "MA signature" may include information on whether or not the channel can be occupied using a predetermined MA signature.
  • the channel occupancy information related to the above "orthogonal code” may include information on whether or not a channel can be occupied by using a predetermined orthogonal code.
  • the channel occupancy information on the above "scramble” may include information on whether or not the channel can be occupied using a predetermined scramble sequence.
  • the channel occupancy information related to the above "diffusion code” may include information on whether or not the channel can be occupied by using a predetermined diffusion code.
  • the channel occupancy information on the above "superposition” may include information on whether or not the channel can be occupied using a predetermined power or power ratio.
  • the NOMA multiple dimension can be expressed in association with the orthogonal dimension of the demodulation reference signal.
  • the channel occupancy information related to the above-mentioned "reference signal for demodulation" includes information on whether or not the channel could be occupied using the predetermined DMRS port and whether the channel could be occupied using the predetermined DMRS sequence. Information on whether or not it can be included.
  • reception processing that can reduce the load include PDCCH monitoring, downlink channel buffering, downlink signal blind detection, downlink band filtering, downlink synchronization, and the like.
  • transmission processing LBT processing, transmission signal generation, transmission filtering setting, and the like can be mentioned.
  • reducing the load refers to skipping the above-mentioned reception processing or the processing exemplified as the above-mentioned transmission processing, or reducing the frequency.
  • the downlink information refers to information indicating that it is a downlink resource.
  • the downlink information may be further subdivided into the following ⁇ 6-1-1> to the following ⁇ 6-1-8> classifications.
  • the resource information to which the downlink is transmitted can be further subdivided into (1) information on the start position and section of the continuous downlink resource, and (2) the position of the symbol that can be used as the downlink.
  • Positions of symbols that can be used as downlinks are preferably notified by SFI.
  • the information on PDCCH monitoring can be further subdivided into (1) information instructing whether or not to perform PDCCH monitoring, and (2) information on PDCCH monitoring patterns.
  • the terminal device 40 performs PDCCH monitoring by using the PDCCH monitoring occasion corresponding to the information on the PDCCH monitoring pattern among the settings of a plurality of PDCCH monitoring occasions.
  • CSI-RS is sent from the aspects of CSI measurement, time / frequency tracking, RRM measurement, RLM measurement, and / or maintenance of channel occupancy. For example, when information on the time domain and frequency domain is sent in addition to the information on the above-mentioned CSI-RS transmission, the terminal device 40 receives that the CSI-RS is transmitted in the notified section and bandwidth. recognize.
  • (1) Information on predetermined terminal operation For example, when the terminal device 40 receives information on a predetermined terminal operation, the predetermined terminal operation using CSI-RS is performed, but other terminal operations using CSI-RS are performed. Does not have to be done. Specifically, when the terminal device 40 receives information on a predetermined terminal operation, RRM measurement and RLM measurement may be performed, but CSI measurement may not be performed. As a result, the operating load of the terminal device 40 is reduced, and as a result, the effect of reducing the power consumption of the terminal can be obtained.
  • the CSI-IM is sent from aspects such as interference measurement for RRM measurement, interference measurement for RLM measurement, interference measurement for CSI measurement, and the like. For example, when information about the time domain and the frequency domain is sent in addition to the information about the CSI-IM transmission, the terminal device 40 recognizes that the CSI-IM is transmitted in the notified section and bandwidth. ..
  • (1) Information on predetermined terminal operation For example, when the terminal device 40 receives information on a predetermined terminal operation, the predetermined terminal operation using the CSI-IM is performed, but other terminal operations using the CSI-IM. Does not have to be done. Specifically, when the terminal device 40 receives information on a predetermined terminal operation, RRM measurement and RLM measurement may be performed, but CSI measurement may not be performed. As a result, the operating load of the terminal device 40 is reduced, and as a result, the effect of reducing the power consumption of the terminal can be obtained.
  • the information regarding the SS / PBCH block can be further subdivided into (1) information regarding the transmission of the SS / PBCH block and (2) information regarding the QCL of the SS / PBCH block.
  • Information regarding transmission of SS / PBCH block may be information regarding an arrangement pattern of SS / PBCH block. For example, it is information indicating that any one of CaseA, CaseB, CaseC, CaseD, and CaseE is applied.
  • the arrangement pattern is not limited to CaseA, CaseB, CaseC, CaseD, and CaseE described above, and a new arrangement pattern may be applied.
  • the information regarding the transmission of the SS / PBCH block is whether or not the SS / PBCH block is transmitted at the position of the predetermined SS / PBCH block in the arrangement pattern of the SS / PBCH block (actual SS / PBCH block transmission). It may be information indicating.
  • the information on QCL of SS / PBCH block may be QCL (quasi-co-location) information of a predetermined SS / PBCH block.
  • QCL quadsi-co-location
  • information on the number of QCLs applied to the SS / PBCH block can be included.
  • the terminal device 40 recognizes that all the transmitted SS / PBCH blocks apply the same beam.
  • the beam used may be assumed to be an omni-beam.
  • Information about CORESET transmission can be further subdivided into (1) information regarding the CORESET setting and (2) information regarding the parameters of the CORESET setting.
  • the information on CORESET setting may include information indicating a CORESET setting that is valid while occupying the channel among a plurality of CORESET. By notifying the valid CORESET in this way, CCE-REG mapping can be performed using only the CORESET arranged in the subband that occupies the channel.
  • the information on the CORESET setting parameters may be information that specifies a part of the CORESET setting parameters for each channel occupancy.
  • the reservation signal is transmitted from at least the side of the AGC (Autonomous Gain Control) with respect to the terminal device 40.
  • the information regarding the transmission of the AGC symbol may be information regarding the transmission position of the AGC symbol.
  • the reservation signal is sent at least from the aspect of maintaining channel occupancy.
  • the information regarding the transmission of the reserved signal may be information regarding the transmission position of the reserved signal.
  • Uplink information refers to information indicating that it is an uplink resource.
  • the uplink information may be further subdivided into the following ⁇ 6-2-1> to the following ⁇ 6-2-6> classifications.
  • the resource information that can be transmitted by PUSCH is (1) information on resources that can be transmitted only by scheduled (granted) PUSCH, (2) information on resources that can be transmitted only by grant-free (configured grant) PUSCH, and (3). Both scheduled PUSCH and grant-free PUSCH can be further subdivided into information on resources that can be transmitted.
  • the information on the resources that can be transmitted by the PUCCH may be the information on the resources that can be transmitted for a predetermined PUCCH format.
  • the information on the transmittable resource for the predetermined PUCCH format may be the information on the transmittable PUCCH resource for the PUCCH formats 0 and 2.
  • the information on the transmittable resource for the predetermined PUCCH format may be the information on the transmittable PUCCH resource for the PUCCH formats 1, 3, and 4.
  • Information on resources that can be sent by SRS includes (1) information on resources that can be transmitted by periodic SRS or semi-persistent SRS, and (2) information on transmission of aperiodic SRS. Can be further subdivided into information.
  • An aperiodic SRS transmission trigger can be sent to the terminal device 40 as part of the channel occupancy information.
  • the terminal device 40 can recognize that the resource is an uplink resource.
  • the information on the LBT can be further subdivided into (1) information on the LBT type, (2) information on the LBT category, and (3) information on the LBT parameters.
  • the information on the LBT type may include information on whether the LBT performed before the transmission of the uplink performs type 1 or type 2.
  • the information on the LBT category may include information on whether the LBT performed before the transmission of the uplink is LBT category 1, LBT category 2, or LBT category 4.
  • the information on the LBT parameters may include information on the power detection threshold of the LBT performed before the uplink transmission.
  • the information regarding the LBT parameter may include information about the collision window of the LBT performed before the transmission of the uplink.
  • the information regarding the LBT parameter may include information regarding the preamble detection of the LBT performed before the transmission of the uplink.
  • the information regarding the LBT parameter may include information regarding the bandwidth for performing the LBT performed before the transmission of the uplink.
  • the information regarding the LBT parameter includes the information of the random backoff counter of the LBT performed before the transmission of the uplink.
  • the information about LBT is applied to the uplink transmission that occurs in the occupied channel.
  • Information on the LBT for uplink transmission that occurs outside the occupied channel may be notified separately.
  • the information regarding the uplink transmission timing may include information on the uplink transmission start timing.
  • the transmission start timing is represented by a slot index, a symbol index, an index indicating a sensing slot, or the like.
  • the terminal device 40 starts transmitting some signal and / or channel (for example, a reserved signal) at a designated transmission start timing.
  • the other information refers to information indicating that the resource is neither an uplink nor a downlink. This information can also be notified as information regarding channel occupation. Other information may be further subdivided into the following ⁇ 6-3-1> to the following ⁇ 6-3-9> classifications.
  • the information on the switching gap between the downlink and the uplink may include the information on the switching gap from the downlink to the uplink. Further, the information on the switching gap between the downlink and the uplink may include the information on the switching gap from the uplink to the downlink. Further, the information on the switching gap from the uplink to the downlink includes information on the gap section. For example, information representing 16us, 25us, one symbol, and the like is notified.
  • the pause information may include information about a section in which no signal is transmitted. In the pause and designated section, neither the transmitting device nor the receiving device that acquired the channel transmits the signal, but the channel can continue to be occupied even after the pause and the designated section.
  • the sidelink information may include information on the resources available to the sidelink.
  • the channel occupancy information of the same RAT and the same operator may include information indicating that any of the serving cell, the adjacent cell, and the other terminal device 40 occupies the channel. By using such information, it becomes possible to use it for measuring the channel state of the same operator base station apparatus.
  • the channel occupancy information of the same RAT other operator may include information indicating that the communication device of the other operator occupies the channel. By using such information, it becomes possible to use it for measuring the channel state from the communication device of another operator. Furthermore, it can be used for coordination between operators.
  • Channel occupancy information of other RATs As an example, 802.11 or the like may correspond to the "other RAT" referred to here.
  • the channel occupancy information of another RAT is information that the channel is busy. By using such information, it becomes possible to use it for measuring the channel state from another RAT communication device.
  • Information about the release of occupied channels can include information that a subsequent channel has been released, information about when the channel will be released, and so on. By notifying that the channel has been released in this way, it becomes easier for other communication devices to acquire the channel.
  • another communication device base station, uncamped UE, other RAT
  • the information that will occupy the channel includes information on which future section to try LBT, information on which channel is planned to be transmitted, information on which LBT category to perform LBT, and which channel access priority. Information on whether to perform LBT may be included. By notifying the timing of the LBT in this way, it is possible to prevent other communication devices from performing the LBT with the resource, and it becomes easier to acquire the channel.
  • Information about terminal device startup and sleep The information regarding the activation and sleep of the terminal device is further subdivided into (1) information on the timing at which the terminal device is activated and (2) information on the timing at which the terminal device is put to sleep.
  • the information on the timing at which the terminal device is started can correspond to the timing and period of waking up, the reset or stop of the sleep timer, and the like.
  • starting the terminal device means starting a predetermined operation.
  • the information on the timing at which the terminal device is put to sleep can correspond to the remaining time that must be awakened, the activation of the sleep timer, and the like.
  • the term "sleep of the terminal device" as used herein refers to stopping a predetermined operation.
  • Examples of the "predetermined operation” referred to in the above (1) and (2) include PDCCH monitoring, downlink synchronization, downlink tracking, channel state measurement, band filtering, PDSCH buffering, and the like.
  • Notification means of channel occupancy information >> An example of a means for notifying the channel occupancy information from the base station device 20 to the terminal device 40 will be given.
  • the carrier to which the channel occupancy information is notified there is a channel that can be occupied by the channel, an unlicensed channel different from the channel that can be occupied by the channel, or a licensed channel.
  • channel occupancy information can be notified immediately after the channel is acquired.
  • the channel occupancy information can notify the remaining length of the channel length that can be occupied.
  • ⁇ 7-1 Shared PDCCH or group shared PDCCH>
  • the channel occupancy information is notified according to the following ⁇ 7-1-1> to the following ⁇ 7-1-2>.
  • SFI Slot Format Indicator
  • the base station apparatus 20 transmits a PDCCH including SFI (DCI format 2_0)
  • the base station apparatus 20 notifies the channel occupancy information by the information of the PDCCH.
  • the terminal device 40 receives the PDCCH including the SFI (DCI format 2_0)
  • the terminal device 40 acquires the channel occupancy information from the information of the PDCCH. Based on the channel occupancy information acquired in this way, the terminal device 40 recognizes the channel and link information of the predetermined resource.
  • an example of the format configuration will be given in the order of time axis notification, frequency axis notification, spatial axis notification, and code axis notification.
  • SFI Channel occupancy information is notified using the symbol corresponding to the index indicated by SFI and the configuration of the link direction.
  • SFI format indexes 0-55 indicate the link direction configuration for one slot.
  • the format index defined after 55 can indicate the link-direction configuration for two or more consecutive slots.
  • the format of the frequency axis notification includes (A) bit map information corresponding to the frequency band, (B) the number of SFIs, (C) information on the start position and width of the frequency band, (D) BWP index, and (E). ) Subband index, (F) information indicated by SFI, (G) CORESET information, and (H) search space information can be used.
  • Bitmap information corresponding to a frequency band Information on a frequency band occupying a channel is notified by a set of bits (bitmap) corresponding to each frequency band, and channel occupancy information on a frequency axis is notified.
  • (B) Number of SFIs Information on the frequency band that occupies the channel is notified according to the number of SFIs. For example, by notifying two SFIs, it can be recognized that the two frequency bands are occupied.
  • (C) Information on the start position and width of the frequency band The channel occupancy information on the frequency axis can be notified by the information on the start position and width of the frequency band that occupies the channel.
  • Subband index A plurality of set subband combinations are set in advance as indexes in system information, RRC signaling, or the like, and an index corresponding to the subband combination that can be occupied by the channel is notified.
  • SFI format indexes 0 to 55 indicate the configuration of the link direction for one subband or band or cell.
  • the format index defined after 55 can indicate the link-direction configuration for two or more contiguous subbands or bands or cells.
  • CORESET information (for example, CORESET index) is notified.
  • the terminal device can recognize that the frequency band in which the notified COREST is placed occupies the channel.
  • (H) Search space information Search space information (for example, search space index, search space frequency position, etc.) is notified.
  • the terminal device can recognize that the frequency band in which the notified search space is placed occupies the channel.
  • the terminal device under initial access communicates using one initial sub-band.
  • the format of the spatial axis notification includes (A) bitmap information corresponding to spatial information (for example, beam or transmission point), (B) number of SFIs, (C) beam index or TCI state, and (D). Information indicated by SFI, (E) CORESET information, (F) search space information, and (G) DCI information can be used.
  • Bitmap information corresponding to spatial information Information on beams and transmission points that occupy a channel is notified as a set of bits (bitmap) corresponding to each beam and transmission point, and channel occupancy information on the spatial axis is notified.
  • SFI format indexes 0 to 55 indicate the configuration of the link direction with respect to one spatial region.
  • the format index defined after 55 can indicate the configuration of the link direction for two or more spatial regions.
  • CORESET information (for example, CORESET index) is notified.
  • Each CORESET corresponds to each spatial area.
  • CORESET # 0 corresponds to SSB # 0 (QCLed to SSB # 0)
  • CORESET # 1 corresponds to SSB # 1 (QCLed to SSB # 1).
  • the terminal device can recognize the channel-occupied space area through the information of CORESET.
  • Search space information (for example, search space index, search space cycle, etc.) is notified.
  • Each search space corresponds to each spatial area.
  • the search space # 0 corresponds to SSB # 0 (QCLed to SSB # 0) and the search space # 1 corresponds to SSB # 1 (QCLed to SSB # 1).
  • the terminal device can recognize the channel-occupied space area through the information of the search space.
  • DCI information (for example, DCI format, RNTI, etc.) is notified.
  • Each DCI corresponds to each spatial area.
  • a DCI sent by a predetermined RNTI corresponds to SSB # 0
  • a DCI sent by a different predetermined RNTI corresponds to SSB # 1.
  • the terminal device can recognize the channel-occupied space area through the DCI information.
  • the spatial axis notification does not have to be given during the initial access (idle state or inactive state).
  • the terminal device under initial access communicates using one initial beam.
  • Form configuration of code axis notification For example, as the format of the code axis notification, bitmap information corresponding to the code, the number of SFIs, information indicated by SFI, and the like can be used.
  • the code axis notification does not have to be given during the initial access (idle state or inactive state).
  • the terminal device under initial access communicates using one initial code.
  • a DRS Discovery Reference Signal
  • a DRS is a set of physical signals / channels including at least an SS / PBCH block, a PDSCH containing SIB1, and a PDCCH with a CRC scrambled by SI-RNTI.
  • DMRS DMRS associated with PDCCH
  • the base station apparatus 20 notifies that at least one of a predetermined frequency and a predetermined space or a combination thereof is a downlink for a predetermined period of time.
  • the terminal device 40 detects the DMRS, it recognizes that at least one of a predetermined frequency and a predetermined space or a combination thereof is a downlink.
  • predetermined period examples include the following (1) to the following (6).
  • predetermined frequency examples include the following (1) to the following (3).
  • predetermined space examples include the following (1) to the following (3).
  • Beam composed of SS / PBCH or CSI-RS QCLed to DMRS (2) Transmission point QCLed to DMRS (3) Beam or transmission point indicated by DMRS sequence
  • DMRS Downlink Reference Signal
  • A DMRS of shared PDCCH or group shared PDCCH
  • B DMRS of terminal device-specific PDCCH
  • C Wideband DMRS of shared PDCCH or group shared PDCCH
  • D Wideband DMRS of terminal device-specific PDCCH
  • the "broadband DMRS" in (C) above is the DMRS of PDCCH, which is the entire resource block (allContigousRBs) of CORESET in which the unit (precoderGranularity) of the PDCCH precoder is set.
  • the base station apparatus 20 may transmit only the DMRS without transmitting the PDCCH.
  • CSI-RS When the base station apparatus 20 transmits the CSI-RS, the base station apparatus 20 notifies that it is a downlink for a predetermined period. When the terminal device 40 detects CSI-RS, it recognizes that it is a downlink for a predetermined period. Examples of the above “predetermined period” include the following (1) to the following (2).
  • SS / PBCH block When the base station device 20 transmits the SS / PBCH block, the base station device 20 notifies the predetermined terminal device 40 that it is a downlink for a predetermined period. When the terminal device 40 receives the SS / PBCH block, it recognizes that it is a downlink for a predetermined period. Examples of the above “predetermined period” include the following (1) to the following (2).
  • Terminal device specific PDCCH When the base station device 20 transmits the terminal device-specific PDCCH, the base station device 20 notifies the predetermined terminal device 40 that it is a downlink for a predetermined period. When the terminal device 40 receives the terminal device-specific PDCCH, it recognizes that it is a downlink for a predetermined period. Examples of the above “predetermined period” include the following (1) to the following (2).
  • Initial signal initial channel>
  • the initial signal or initial physical channel is also referred to as a wake-up signal, a preamble.
  • the initial signal is sent at the beginning of the downlink burst.
  • the initial signal is assumed to be, for example, a preamble (Wi-Fi preamble) defined by 802.11, a signal or a physical channel that can be commonly received by the NR terminal device and the 802.11 device.
  • the preamble defined in 802.11 includes at least STF (Short Training Field), LTF (Long Training Field), and SIG (Signal).
  • STF Short Training Field
  • LTF Long Training Field
  • SIG Synignal
  • an extended SIG for example, VH-SIG, may be included.
  • Step1 Base station apparatus 20 attempts LBT for channel occupancy.
  • Step2 If the channel access is successful as a result of LBT, the base station apparatus 20 transmits a physical signal and / or a physical channel.
  • Step3 The base station apparatus 20 notifies the terminal apparatus 40 of the channel occupancy information in which the base station apparatus 20 has occupied the channel.
  • Step 4 The terminal device 40 performs uplink transmission processing and / or downlink reception processing based on the channel occupancy information received in Step 3.
  • Step1 Terminal device 40 attempts LBT to occupy the channel.
  • Step2 If the channel access is successful as a result of LBT, the terminal device 40 transmits a physical signal and / or a physical channel to the base station device 20.
  • Step3 The terminal device 40 notifies the base station device 20 of the channel occupancy information in which the terminal device 40 occupies the channel.
  • Step4 The base station apparatus 20 performs downlink transmission processing based on the channel occupancy information received in Step3.
  • the operation of the terminal device 40 when receiving channel occupancy information different from the previously received / set channel occupancy information can be as follows (1) and (2).
  • the operation of the terminal device 40 when the channel occupancy information cannot be received can be the following (1) and the following (2).
  • the terminal device 40 refers to the default channel occupancy information. (2) The terminal device 40 recognizes that neither the downlink nor the uplink is used in the resource area.
  • the operation of the terminal device 40 when a plurality of different channel occupancy information is received at the same time can be the following (1) and the following (2).
  • the case where a plurality of different channel occupancy information is received at the same time includes the case where SFI is simultaneously notified by a plurality of PDCCHs.
  • the priority is set lower than the SFI information sent from the carrier that occupies the channel. Further, in the above (2), when the SFI information is sent from the license carrier, the priority is set higher than the SFI information from the unlicensed carrier.
  • the channel occupancy information may include information notifying whether FBE or LBE is used in the communication device that supports both FBE and LBE.
  • a bit indicating FBE or LBE can be included in the channel occupancy information.
  • the terminal device 40 can recognize FBE when the predetermined bit indicates 0 and LBE when the predetermined bit is 1.
  • FBE / LBE-specific information can be included in the channel occupancy information.
  • the terminal device 40 can recognize the FBE when the cycle is notified, and the LBE otherwise. Further, as another example, it is possible to indicate whether it is FBE or LBE by the RNTI of the shared PDCCH.
  • the terminal device determines that it is FBE when notified by RNTI for FBE, and determines that it is LBE when notified by RNTI for LBE. Further, as another example, it can be indicated whether it is FBE or LBE depending on the notification timing. The terminal device determines that it is FBE when it is notified at the beginning of the frame of FBE, and determines that it is LBE when it is notified at other timings.
  • the FBE base station device may transmit a synchronization signal at the same time as occupying the channel.
  • the device corresponding to FBE performs frame synchronization based on the synchronization signal transmitted from the base station device.
  • the synchronization signal may include information about the clock.
  • the device corresponding to both the FBE and the LBE may acquire the channel by the LBE in the channel not occupied by the FBE base station device. ..
  • Notification means of channel occupancy information> Above ⁇ 7.
  • the channel occupancy information notification means> an example of means for notifying the channel occupancy information from the base station device 20 to the terminal device 40 is given, but as a matter of course, the notification unit 452 of the terminal device 40 to the base station device 20 Notification of channel occupancy information may be performed.
  • the same channel occupancy information as the channel occupancy information notified from the base station device 20 to the terminal device 40 described above can be used.
  • the following information (1) to the following (4) can also be notified.
  • Position Information of Terminal Device When the terminal device 40 notifies the base station device 20 of the position information of the terminal device 40, the base station device 20 can utilize the position information for cell control.
  • position information may be position information estimated by GNSS (Global Navigation Satellite System) or positioning RS, or may be position information estimated by using other positioning techniques. Absent.
  • the terminal device 40 notifies the base station device 20 of information on interference received by the terminal device 40, so that the base station device 20 transmits information on interference received by the terminal device 40. It can be used to control cells.
  • an average RSSI can be mentioned as an example of information regarding interference received by the terminal device 40.
  • the "average RSSI” mentioned here may be the average RSSI in all the sections, or may be the average RSSI in the predetermined section.
  • the channel occupancy rate can be mentioned.
  • the "channel occupancy rate” mentioned here may be the channel occupancy rate in the entire section, or may be the channel occupancy rate in a predetermined section.
  • RSRP of the adjacent cell can be mentioned.
  • the "RSRP of the adjacent cell” mentioned here may be the RSRP of the adjacent cell of the same operator, or may be the RSRP of the adjacent cell of another operator.
  • the information regarding the interference received by the terminal device 40 the information regarding the RSSI and RLM measurement of another operator can be mentioned.
  • RSSI of another RAT can be mentioned.
  • the "RSSI of another RAT" mentioned here may be an RSSI other than the same RAT in all sections, may be an RSSI of a predetermined RAT in all sections, or may be the same in a predetermined section. It may be an RSSI other than RAT, or it may be an RSSI of a predetermined RAT in a predetermined section.
  • the terminal device 40 can also notify the base station device 20 of CSI information and RSRP information as an example of the channel state information received by the terminal device 40.
  • the terminal device 40 can also notify the base station device 20 of information on the LBT used for channel occupancy.
  • (A) channel access priority class, (B) uplink success / failure count, and the like can be mentioned as an example of information on the LBT used for channel occupancy.
  • the channel access priority class may be information on the priority class of the LBT used when the channel was acquired.
  • the "uplink LBT success / failure count” mentioned here may be the uplink LBT success / failure count or the LBT success / failure frequency in a predetermined section. .. Further, the "uplink LBT success / failure count” may be the uplink LBT success / failure count for a predetermined channel. Further, the “uplink LBT success / failure count” may be the uplink LBT success / failure count for a predetermined LBT category. Further, the "uplink LBT success / failure count” may be information on the cause of the LBT failure. As an example of the information regarding the cause of such LBT failure, there is information on which device the channel occupancy caused the LBT to fail. For example, LTE or NR information (cell ID, SS / PBCH index, CSI-RS port, terminal device ID (RNTI)), 802.11 device identification information (BSS color), and the like can be used.
  • LTE or NR information cell ID, SS / PBCH index, CSI-RS port, terminal device ID (
  • Examples of the method of notifying the channel occupancy information from the terminal device 40 to the base station device 20 include the following (1) to (3).
  • the UCI is included in the PUSCH and transmitted.
  • the UCI may be included in the PUCCH and transmitted.
  • PRACH Channel occupancy information may be notified in association with a PRACH occasion, a PRACH preamble, or a PRACH sequence.
  • SRS Channel occupancy information may be notified in association with the SRS resource or SRS sequence.
  • the control device 10, the base station device 20, the relay device 30, or the control device that controls the terminal device 40 of the present embodiment may be realized by a dedicated computer system or a general-purpose computer system. Good.
  • a program for executing the above operation is stored and distributed in a computer-readable recording medium such as an optical disk, a semiconductor memory, a magnetic tape, or a flexible disk.
  • the control device is configured by installing the program on a computer and executing the above-mentioned processing.
  • the control device may be a management device 10, a base station device 20, a relay device 30, or an external device (for example, a personal computer) of the terminal device 40.
  • the control device may be a management device 10, a base station device 20, a relay device 30, or a device inside the terminal device 40 (for example, a control unit 23 or a control unit 45).
  • the above communication program may be stored in a disk device provided in a server device on a network such as the Internet so that it can be downloaded to a computer or the like.
  • the above-mentioned functions may be realized by collaboration between the OS (Operating System) and the application software.
  • the part other than the OS may be stored in a medium and distributed, or the part other than the OS may be stored in the server device so that it can be downloaded to a computer or the like.
  • each component of each device shown in the figure is a functional concept, and does not necessarily have to be physically configured as shown in the figure. That is, the specific form of distribution / integration of each device is not limited to the one shown in the figure, and all or part of the device is functionally or physically dispersed / physically distributed in arbitrary units according to various loads and usage conditions. It can be integrated and configured.
  • the communication device such as the base station device 20 and the terminal device 40 uses information in a region other than the time domain as channel occupancy information when channel sensing is successful. Notify the communication device of the other party.
  • the interference from the communication device of the secondary system to the aerial communication device of the primary system is controlled to a predetermined level or less.
  • the reception processing in the communication device of the other party is more than the case where only the information in the time domain is notified as the channel occupancy information.
  • the load of transmission processing and the like is sufficiently reduced. As a result, high communication performance is achieved.
  • the present technology can also have the following configurations.
  • a sensing unit that senses channels in an unlicensed band, As the channel occupancy information in which the channel is occupied when the sensing is successful, a notification unit for notifying other communication devices of information in the spatial area is provided.
  • Communication device (2)
  • the notification unit notifies the beam information transmitted by the communication device as the channel occupancy information.
  • the beam information may include at least one or a combination of beam index, SS / PBCH index, index corresponding to CSI-RS port and TCI state.
  • the notification unit notifies the horizontal angle or elevation angle information of the beam transmitted by the communication device as the channel occupancy information.
  • the notification unit notifies the communication device adjacent to the communication device, the cell adjacent to the cell assigned to the communication device, or the TRP information as the channel occupancy information.
  • the communication device according to (1) above. (6)
  • the notification unit notifies the polarization information of the beam transmitted by the communication device as the channel occupancy information.
  • the communication device according to (1) above. (7)
  • the notification unit notifies the bitmap information corresponding to the information in the spatial area as the channel occupancy information.
  • the communication device according to (1) above. As the channel occupancy information, the notification unit notifies the information in which the information in the spatial area is formatted by the number of SFIs.
  • the communication device according to (1) above. (9)
  • the notification unit further notifies the information of the uplink resource occupied by the communication device as the channel occupancy information.
  • the notification unit further notifies the information of the downlink resource occupied by the communication device as the channel occupancy information.
  • the communication device according to (1) above. (11) The notification unit further notifies a resource that is neither the uplink occupied by the communication device nor the downlink occupied by the communication device as the channel occupancy information.
  • the communication device according to (1) above. (12) The notification unit further notifies the frequency domain information as the channel occupancy information.
  • the communication device according to (1) above. (12)
  • the notification unit further notifies the information of the code area as the channel occupancy information.
  • Channel sensing in an unlicensed band Information on the spatial area is notified to other communication devices as channel occupancy information in which the channel is occupied when the sensing is successful. Communication method.
  • the notification notifies the beam information transmitted by the communication device as the channel occupancy information.
  • the beam information may include at least one or a combination of beam index, SS / PBCH index, index corresponding to CSI-RS port and TCI state.
  • the notification notifies the horizontal angle or elevation angle information of the beam transmitted by the communication device as the channel occupancy information.
  • the notification notifies the communication device adjacent to the communication device, the cell adjacent to the cell assigned to the communication device, or the TRP information as the channel occupancy information.
  • the notification unit notifies the beam information transmitted by the communication device as the channel occupancy information.
  • the communication program according to (19) above. (21)
  • the beam information may include at least one or a combination of beam index, SS / PBCH index, index corresponding to CSI-RS port and TCI state.
  • the notification unit notifies the horizontal angle or elevation angle information of the beam transmitted by the communication device as the channel occupancy information.
  • the communication program according to (19) above. (23)
  • the notification unit notifies the communication device adjacent to the communication device, the cell adjacent to the cell assigned to the communication device, or the TRP information as the channel occupancy information.
  • Communication system 10 Management device 20 Base station device 30 Relay device 40 Terminal device 12, 22, 32, 42 Storage unit 211, 311, 411 Reception processing unit 211a, 411a Wireless reception unit 211b, 411b Multiplex separation unit 211c, 411c Demodulation unit 211d, 411d Decoding unit 212, 312, 412 Transmission processing unit 212a, 412a Coding unit 212b, 412b Modulation unit 212c, 412c Multiplexing unit 212d, 412d Wireless transmission unit 213, 313, 413 Antenna 231, 451 Sensing unit 232, 452 Notification Department

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

通信装置(20)は、アンライセンスバンドでチャネルのセンシングを行うセンシング部(231)と、センシングの成功時にチャネルの占有が行われたチャネル占有情報として、空間領域の情報を他の通信装置に通知する通知部(232)と、を備える。

Description

通信装置、通信方法、及び通信プログラム
 本開示は、通信装置、通信方法、及び通信プログラムに関する。
 アンライセンスバンド(unlicensed band、免許不要帯域)を用いる次世代のセルラー通信技術の検討が進められている。例えば、アンライセンスバンドにおいて他のノードや他の無線システムとの共存を実現する側面から、通信装置は、送信前にチャネルのセンシング、例えばLBT(Listen Before Talk)などを行う。このとき、LBTの成功時には、チャネル占有情報の一例として、時間領域の情報が通信装置から相手先の通信装置へ通知される。
RP-172021, "Study on NR-based Access to Unlicensed Spectrum," 3GPP TSG RAN Meeting #77, Sapporo, Japan, September 11 - 14, 2017.
 しかしながら、上記のチャネル占有情報として時間領域の情報を通知しただけでは、高い通信パフォーマンスが実現されない可能性がある。
 そこで、本開示では、高い通信パフォーマンスを実現可能な通信装置、通信方法、及び通信プログラムを提案する。
 上記の課題を解決するために、本開示に係る一形態の通信装置は、アンライセンスバンドでチャネルのセンシングを行うセンシング部と、前記センシングの成功時にチャネルの占有が行われたチャネル占有情報として、空間領域の情報を他の通信装置に通知する通知部と、を備える。
本開示の実施形態に係る通信システムの構成例を示す図である。 本開示の実施形態に係る管理装置の構成例を示す図である。 本開示の実施形態に係る基地局装置の構成例を示す図である。 本開示の実施形態に係る中継装置の構成例を示す図である。 本開示の実施形態に係る端末装置の構成例を示す図である。 本開示の実施形態に係る無線アクセスネットワークRANで使用される無線フレーム構成を示す図である。 LTEのサブフレーム構成の一例を示す図である。 NRのサブフレーム構成の一例を示す図である。 NRセルにおける送信信号に関するパラメータセットの一例を示す図である。 NRの下りリンクサブフレームの一例を示す図である。 本開示の実施形態に係るNOMA送信処理の一例を示す説明図である。 本開示の実施形態に係るNOMA送信処理の一例を示す説明図である。 本開示の実施形態に係るNOMA送信処理の一例を示す説明図である。 本開示の実施形態に係るNOMA送信処理の一例を示す説明図である。 本開示の実施形態に係るNOMA受信処理の一例を示す説明図である。 基地局装置に3台の端末装置が無線接続した様子を示す図である。 本開示の実施形態に係るNOMA送信処理の一例を示す説明図である。 本開示の実施形態に係るNOMA送信処理の一例を示す説明図である。 本開示の実施形態に係るNOMA受信処理の一例を示す説明図である。 区分パターンの具体例を示す図である。 区分パターンの具体例を示す図である。 優先クラスとパラメータの対応表の一例を示す図である。 優先クラスとQCIのマッピングの一例を示す図である。 FBEの概要を説明するための図である。 チャネル番号と帯域の対応関係の一例を示す図である。
 以下に、本開示の実施形態について図面に基づいて詳細に説明する。なお、以下の各実施形態において、同一の部位には同一の符号を付することにより重複する説明を省略する。
 また、本明細書及び図面において、実質的に同一の機能構成を有する複数の構成要素を、同一の符号の後に異なる数字を付して区別する場合もある。例えば、実質的に同一の機能構成を有する複数の構成を、必要に応じて基地局装置20、20及び20のように区別したり、あるいは必要に応じて端末装置40、40及び40のように区別したりする。ただし、実質的に同一の機能構成を有する複数の構成要素の各々を特に区別する必要がない場合、同一符号のみを付する。例えば、基地局装置20、20及び20を特に区別する必要が無い場合には、単に基地局装置20と称したり、あるいは端末装置40、40及び40を特に区別する必要が無い場合には、単に端末装置40と称したりする。
 また、以下に示す項目順序に従って本開示を説明する。
 1.はじめに
 2.通信システムの構成
  2-1.通信システムの全体構成
  2-2.管理装置の構成
  2-3.基地局装置の構成
  2-4.中継装置の構成
  2-5.端末装置の構成
  2-6.無線フレーム構成
 3.NOMAについて
  3-1.NOMAを使ったデータの送受信
  3-2.MAリソースの効率的な利用
  3-3.NOMA適用範囲の具体例
 4.アンライセンスチャネルのチャネルアクセスプロシージャ
  4-1.第一のチャネルアクセスプロシージャの詳細
  4-2.第二のチャネルアクセスプロシージャの詳細
  4-3.衝突窓適応プロシージャ
  4-4.下りリンクにおけるチャネルアクセスプロシージャの詳細
  4-5.上りリンクにおけるチャネルアクセスプロシージャの詳細
  4-6.本実施形態におけるNRのチャネルアクセスプロシージャ
  4-7.フレームベース装置(FBE)のチャネルアクセス
  4-8.指向性LBT(Directional LBT)
  4-9.受信アシストLBT(Receiver assisted LBT)
  4-10.本実施形態におけるチャネル占有
 5.チャネル占有情報
  5-1.時間領域の情報
  5-2.周波数領域の情報
  5-3.空間領域の情報
  5-4.コード領域の情報
 6.チャネル占有内におけるリンクを示す情報
  6-1.下りリンクの情報
  6-2.上りリンクの情報
  6-3.その他の情報
 7.チャネル占有情報の通知手段
  7-1.共有PDCCHまたはグループ共有PDCCH
  7-2.PDCCHに対応するDMRS(DMRS associated with PDCCH)
  7-3.CSI-RS
  7-4.SS/PBCHブロック
  7-5.端末装置固有PDCCH
  7-6.初期信号(initial signal)、初期チャネル
 8.通信システムの動作
  8-1.基地局装置が取得した場合のチャネル占有情報通知プロシージャ
  8-2.端末装置が取得した場合のチャネル占有情報通知プロシージャ
  8-3.チャネル占有情報取得における例外処理
  8-4.FBE(Frame Based Equipment)におけるチャネル占有情報の通知
 9.変形例
  9-1.チャネル占有情報の通知手段
  9-2.その他の変形例
 10.むすび
<<1.はじめに>>
 LTE(Long Term Evolution)、NR(New Radio)等の無線アクセス技術(RAT:Radio Access Technology)が3GPP(3rd Generation Partnership Project)で検討されている。LTE及びNRは、セルラー通信技術の一種であり、基地局がカバーするエリアをセル状に複数配置することで端末装置の移動通信を可能にする。
 なお、以下の説明では、「LTE」には、LTE-A(LTE-Advanced)、LTE-A Pro(LTE-Advanced Pro)、及びEUTRA(Evolved Universal Terrestrial Radio Access)が含まれるものとする。また、NRには、NRAT(New Radio Access Technology)、及びFEUTRA(Further EUTRA)が含まれるものとする。なお、単一の基地局は複数のセルを管理してもよい。
 NRは、LTEに対する次世代(第5世代)の無線アクセス方式として、LTEとは異なるRAT(Radio Access Technology)である。NRは、eMBB(Enhanced mobile broadband)、mMTC(Massive machine type communications)およびURLLC(Ultra reliable and low latency communications)を含む様々なユースケースに対応できるアクセス技術である。NRは、それらのユースケースにおける利用シナリオ、要求条件、および配置シナリオなどに対応する技術フレームワークを目指して検討される。
 アンライセンスバンド(unlicensed band、免許不要帯域)及びライセンス共有帯域(license shared band)において、セルラー通信を基とした無線アクセス方式の運用が検討されている。そのような免許不要帯域において他のノードや無線システムとの共存が重要とされており、LTE及びNRなどの無線アクセス方式に対して、送信する前にチャネルのセンシングを行うLBT(Listen Before Talk)や断続的送信(discontinuous transmission)などの機能が要求されている。アンライセンスバンドにおけるNRを基にした無線アクセス方式の詳細は、上記の非特許文献1に開示されている。なお、アンライセンスバンドは、例えば、2.4GHz帯、5GHz帯、及び6GHz帯である。ライセンス共有バンドは、例えば、3.5GHz帯や37GHz帯である。
 第5世代移動通信システム(5G)においても、アンライセンスバンドを利用したNRによる無線通信の実現が検討されている。このようなアンライセンスバンドを利用したNRによる無線通信は、「NR-U(NR-Unlicensed)」とも称されている。NR-Uでは、キャリアアグリゲーションの仕組みを用いたLAA(Licensed Assisted Access)のみならず、デュアルコネクティビティ(Dual Connectivity)、アンライセンスバンドのみで運用されるスタンドアロン(Stand-alone)、DLキャリアまたはULキャリアのどちらか一方がライセンスバンドで他方がアンライセンスバンド(例えば、ライセンスDL+アンライセンスUL)、など様々なユースケースをサポートすることが想定されている。
 これらのユースケースをサポートする一面から、NR-Uでは、同期信号(Synchronization Signal:SS)、PRACH、PUCCH、など、PCell(Primary Cell)で送信される物理チャネルおよび物理信号の送信をアンライセンスバンドで行える仕組みが検討されている。
 一般的に、アンライセンスバンドにおいて、通信装置は、物理チャネルおよび/または物理信号を送信する前に、チャネルのセンシングを行い、そのチャネルがクリアまたはビジーかを判断する。そのチャネルがクリアであった場合(LBT成功)、通信装置は、物理チャネルおよび/または物理信号の送信を行うことができる。一方、そのチャネルがビジーであった場合(LBT失敗)、通信装置は、物理チャネルおよび/または物理信号の送信を行うことが困難である。
 LBT成功後、基地局装置は、チャネルを占有できたか否かの情報、および、いつまでチャネルを占有できたかの情報をチャネル占有(channel occupancy)情報として端末装置に通知することで、端末装置は、受信における様々な処理に活用することができる。例えば、PDCCHモニタリングや下りリンク信号/チャネルのバッファリング等の受信処理のスキップ、ブラインド信号検出に依存しない測定による精度向上、送信区間が設定されることによるLBT等の送信処理の一部の簡略化又はスキップ、などに活用できる。このような活用の結果、端末装置の負荷が軽減されることが見込まれる。
 さらに、アンライセンスバンドにおいても、空間領域に多重することが検討されている。空間領域での多重の一例として、指向性LBT(directional LBT)が検討されている。例えば、60GHz帯での通信など、ビームフォーミングを前提とした通信システムにおいて、指向性を絞ってLBTを行うことが検討されている。送信する方向に対してLBTを行い、送信しない方向に対してはLBTを行わないことで、物理信号および/または物理チャネルを送信する方向の絞り込みが期待される。この他、空間領域での多重の他の一例として、CoMP(Coordinated Multiple Point)またはマルチTRP送信が検討されている。
 しかしながら、現状では、プライマリセルでの通信にライセンスバンドが利用される場合、上記のチャネル占有情報として時間領域のみしか通知されていない。このように、上記のチャネル占有情報として時間領域の情報を通知しただけでは、高い通信パフォーマンスが実現されない可能性がある。なお、ここでは、あくまで一例として、基地局装置から端末装置へチャネル占有情報が通知される場合における課題を例に挙げる。
 例えば、従来の通知方法では、所定のサービングセルが送信していることのみ、端末装置は認知することができるが、サービングセルの空間分割されたチャネルの活用状況などは通知されていない。このような状況では、基地局装置が所定の方向以外は送信してはいけない場合であっても、端末装置は全ての方向から送信されると想定して受信を試みる。この際、方向の候補が多くなるに連れて端末装置の負荷も膨大になる。
 また、従来の周波数領域においては、チャネル占有情報が送られたサブバンドにおいて、チャネルが占有されていると、端末装置は認識する。この場合、全てのサブバンドにおいて、個別にチャネル占有情報を送る必要があるので、システムのオーバーヘッドが増大するし、端末装置のブラインド復号負荷も増大する。
 これらのケースのように、時間領域以外の他の領域の情報が相手先の通信装置で十分に活用できないので、高い通信パフォーマンスが実現されない可能性があるという課題がある。
 このような課題を解決する側面から、本実施形態では、通信装置は、チャネルのセンシングの成功時に時間領域以外の他の領域の情報をチャネル占有情報として相手先の通信装置へ通知する。これによって、時間領域以外の他の領域の情報が相手先の通信装置で活用される結果、チャネル占有情報として時間領域の情報だけが通知される場合よりも、相手先の通信装置における受信処理、あるいは送信処理などの負荷を十分に軽減する。結果として、高い通信パフォーマンスを実現する。
 ここで、本実施形態では、通信装置は、時間領域以外の他の領域に関するチャネル占有情報として、(イ)空間領域の情報、(ロ)周波数領域の情報、(ハ)コード領域の情報の少なくともいずれか1つもしくはこれらの組合せを通知できる。なお、ここでも、あくまで一例として、基地局装置から端末装置へチャネル占有情報が通知される場合を例に挙げる。
(イ)空間領域の情報
 上記のチャネル占有情報として、空間領域の情報を通知することで、以下の効果を得ることができる。例えば、端末装置において、複数ビーム(複数方向)からの下りリンクモニタリング負荷を軽減することができる。
(ロ)周波数領域の情報
 上記のチャネル占有情報として、周波数領域の情報を通知することで、以下の効果を得ることができる。例えば、端末装置において、帯域フィルタの設定に活用することができる。また、端末装置において、基地局装置から参照信号が送られる帯域幅を事前に知ることができ、正確なチャネル測定を行うことができる。
(ハ)コード領域の情報
 上記のチャネル占有情報として、コード領域の情報を通知することで、以下の効果を得ることができる。例えば、利用可能なコード領域を認知し、複数のリンクの送信が衝突したとしても受信成功確率を向上させることができる。
<<2.通信システムの構成>>
 以下、本開示の実施形態に係る通信システム1を説明する。通信システム1は、基地局装置を備え、端末装置と無線接続が可能である。通信システム1が備える非地上波ネットワークは、例えば、NRで規定される無線アクセス方式を使用した無線ネットワークである。勿論、通信システム1は、NR以外の無線アクセス方式の無線ネットワークを備えていてもよい。
<2-1.通信システムの全体構成>
 図1は、本開示の実施形態に係る通信システム1の構成例を示す図である。図1に示す通信システム1は、端末装置に無線アクセスネットワークを提供する無線通信システムである。例えば、通信システム1は、LTE、NR等の無線アクセス技術を使ったセルラー通信システムである。
 図1に示すように、通信システム1は、管理装置10と、基地局装置20と、中継装置30と、端末装置40と、を備える。通信システム1は、通信システム1を構成する各無線通信装置が連携して動作することで、ユーザに対し、移動通信が可能な無線ネットワークを提供する。本実施形態の無線ネットワークは、無線アクセスネットワークRANとコアネットワークCNとで構成される。なお、無線通信装置は、無線通信の機能を有する装置のことであり、図1の例では、基地局装置20、中継装置30、及び端末装置40が該当する。
 通信システム1は、管理装置10、基地局装置20、中継装置30、及び端末装置40をそれぞれ複数備えていてもよい。図1の例では、通信システム1は、管理装置10として管理装置10、10等を備えている。また、通信システム1は、基地局装置20として基地局装置20、20、20等を備えており、中継装置30として中継装置30、30等を備えている。また、通信システム1は、端末装置40として端末装置40、40、40等を備えている。
 なお、図中の装置は、論理的な意味での装置と考えてもよい。つまり、同図の装置の一部が仮想マシン(VM:Virtual Machine)、コンテナ(Container)、ドッカー(Docker)などで実現され、それらが物理的に同一のハードウェア上で実装されてもよい。
 なお、LTEの基地局は、eNodeB(Evolved Node B)又はeNBと称されることがある。また、NRの基地局は、gNodeB又はgNBと称されることがある。また、LTE及びNRでは、端末装置(移動局、移動局装置、又は端末ともいう。)はUE(User Equipment)と称されることがある。なお、端末装置は、通信装置の一種であり、移動局、移動局装置、又は端末とも称される。
 本実施形態において、通信装置という概念には、携帯端末等の持ち運び可能な移動体装置(端末装置)のみならず、構造物や移動体に設置される装置も含まれる。構造物や移動体そのものを通信装置とみなしてもよい。また、通信装置という概念には、端末装置のみならず、基地局装置及び中継装置も含まれる。通信装置は、処理装置及び情報処理装置の一種である。また、通信装置は、送信装置又は受信装置と言い換えることが可能である。
 [管理装置]
 管理装置10は、無線ネットワークを管理する装置である。例えば、管理装置10は基地局装置20の通信を管理する装置である。例えば、管理装置10は、MME(Mobility Management Entity)、AMF(Access and Mobility Management Function)、或いは、SMF(Session Management Function)として機能する装置である。
 管理装置10は、ゲートウェイ装置等とともに、コアネットワークCNを構成する。コアネットワークCNは、例えば、移動体通信事業者等の所定のエンティティ(主体)が有するネットワークである。例えば、コアネットワークCNは、EPC(Evolved Packet Core)や5GC(5G Core network)である。なお、所定のエンティティは、基地局装置20を利用、運用、及び/又は管理するエンティティと同じであってもよいし、異なっていてもよい。
 なお、管理装置10はゲートウェイの機能を有していてもよい。例えば、コアネットワークがEPCなのであれば、管理装置10は、S-GWやP-GWとしての機能を有していてもよい。また、コアネットワークが5GCなのであれば、管理装置10は、UPF(User Plane Function)としての機能を有していてもよい。なお、管理装置10は必ずしもコアネットワークCNを構成する装置でなくてもよい。例えば、コアネットワークCNがW-CDMA(Wideband Code Division Multiple Access)やcdma2000(Code Division Multiple Access 2000)のコアネットワークであるとする。このとき、管理装置10はRNC(Radio Network Controller)として機能する装置であってもよい。
 管理装置10は、複数の基地局装置20それぞれと接続され、基地局装置20の通信を管理する。例えば、管理装置10は、端末装置40が、どの基地局装置(或いはどのセル)に接続しているか、どの基地局装置(或いはどのセル)の通信エリア内に存在しているか、等を端末装置40ごとに把握して管理する。セルは、PCellやSCell(Secondary Cell)であってもよい。セルは、セルごとに、端末装置40が使用できる無線資源(例えば、周波数チャネル、コンポーネントキャリア(Component Carrier)等)が異なっていてもよい。また、ひとつの基地局装置が複数のセルを提供してもよい。
 [基地局装置]
 基地局装置20は、端末装置40と無線通信する無線通信装置である。基地局装置20は通信装置の一種である。基地局装置20は、例えば、無線基地局(Base Station、Node B、eNB、gNB、など)や無線アクセスポイント(Access Point)に相当する装置である。基地局装置20は、無線リレー局であってもよい。基地局装置20は、RRH(Remote Radio Head)と呼ばれる光張り出し装置であってもよい。また、基地局装置20は、FPU(Field Pickup Unit)等の受信局装置であってもよい。また、基地局装置20は、無線アクセス回線と無線バックホール回線を時分割多重、周波数分割多重、或いは、空間分割多重で提供するIAB(Integrated Access and Backhaul)ドナーノード、或いは、IABリレーノードであってもよい。
 なお、基地局装置20が使用する無線アクセス技術は、セルラー通信技術であってもよいし、無線LAN技術であってもよい。勿論、基地局装置20が使用する無線アクセス技術は、これらに限定されず、他の無線アクセス技術であってもよい。基地局装置20が使用する無線アクセス技術は、LPWA(Low Power Wide Area)通信技術であってもよい。ここで、LPWA通信は、LPWA規格に準拠した通信のことである。LPWA規格としては、例えば、ELTRES、ZETA、SIGFOX、LoRaWAN、NB-Iot等が挙げられる。勿論、LPWA規格はこれらに限定されず、他のLPWA規格であってもよい。その他、基地局装置20が使用する無線通信は、ミリ波を使った無線通信であってもよい。また、基地局装置20が使用する無線通信は、電波を使った無線通信であってもよいし、赤外線や可視光を使った無線通信(光無線)であってもよい。
 基地局装置20は、端末装置40とNOMA通信することが可能であってもよい。ここで、NOMA通信は、非直交リソースを使った通信(送信、受信、或いはその双方)のことである。非直交リソースについては後述する。なお、基地局装置20は、他の基地局装置20及び中継装置30とNOMA通信可能に構成されていてもよい。
 なお、基地局装置20は、基地局装置-コアネットワーク間インタフェース(例えば、S1 Interface等)を介してお互いに通信可能であってもよい。このインタフェースは、有線及び無線のいずれであってもよい。また、基地局装置は、基地局装置間インタフェース(例えば、X2 Interface、S1 Interface等)を介して互いに通信可能であってもよい。このインタフェースは、有線及び無線のいずれであってもよい。
 基地局装置20は、さまざまなエンティティ(主体)によって利用、運用、及び/又は管理されうる。例えば、エンティティとしては、移動体通信事業者(MNO:Mobile Network Operator)、仮想移動体通信事業者(MVNO:Mobile Virtual Network Operator)、仮想移動体通信イネーブラ(MVNE:Mobile Virtual Network Enabler)、ニュートラルホストネットワーク(NHN:Neutral Host Network)事業者、エンタープライズ、教育機関(学校法人、各自治体教育委員会、等)、不動産(ビル、マンション等)管理者、個人などが想定されうる。
 勿論、基地局装置20の利用、運用、及び/又は管理の主体はこれらに限定されない。基地局装置20は1事業者が設置及び/又は運用を行うものであってもよいし、一個人が設置及び/又は運用を行うものであってもよい。勿論、基地局装置20の設置・運用主体はこれらに限定されない。例えば、基地局装置20は、複数の事業者または複数の個人が共同で設置・運用を行うものであってもよい。また、基地局装置20は、複数の事業者または複数の個人が利用する共用設備であってもよい。この場合、設備の設置及び/又は運用は利用者とは異なる第三者によって実施されてもよい。
 なお、基地局装置(基地局ともいう。)という概念には、ドナー基地局のみならず、リレー基地局(中継局、或いは中継局装置ともいう。)も含まれる。また、基地局という概念には、基地局の機能を備えた構造物(Structure)のみならず、構造物に設置される装置も含まれる。
 構造物は、例えば、高層ビル、家屋、鉄塔、駅施設、空港施設、港湾施設、スタジアム等の建物である。なお、構造物という概念には、建物のみならず、トンネル、橋梁、ダム、塀、鉄柱等の構築物(Non-building structure)や、クレーン、門、風車等の設備も含まれる。また、構造物という概念には、陸上(狭義の地上)又は地中の構造物のみならず、桟橋、メガフロート等の水上の構造物や、海洋観測設備等の水中の構造物も含まれる。基地局装置は、処理装置、或いは情報処理装置と言い換えることができる。
 基地局装置20は、ドナー局であってもよいし、リレー局(中継局)であってもよい。また、基地局装置20は、固定局であってもよいし、移動局であってもよい。移動局は、移動可能に構成された無線通信装置(例えば、基地局装置)である。このとき、基地局装置20は、移動体に設置される装置であってもよいし、移動体そのものであってもよい。例えば、移動能力(Mobility)をもつリレー局装置は、移動局としての基地局装置20とみなすことができる。また、車両、ドローン、スマートフォンなど、もともと移動能力がある装置であって、基地局装置の機能(少なくとも基地局装置の機能の一部)を搭載した装置も、移動局としての基地局装置20に該当する。
 ここで、移動体は、スマートフォンや携帯電話等のモバイル端末であってもよい。また、移動体は、陸上(狭義の地上)を移動する移動体(例えば、自動車、自転車、バス、トラック、自動二輪車、列車、リニアモーターカー等の車両)であってもよいし、地中(例えば、トンネル内)を移動する移動体(例えば、地下鉄)であってもよい。
 また、移動体は、水上を移動する移動体(例えば、旅客船、貨物船、ホバークラフト等の船舶)であってもよいし、水中を移動する移動体(例えば、潜水艇、潜水艦、無人潜水機等の潜水船)であってもよい。
 また、移動体は、大気圏内を移動する移動体(例えば、飛行機、飛行船、ドローン等の航空機)であってもよいし、大気圏外を移動する移動体(例えば、人工衛星、宇宙船、宇宙ステーション、探査機等の人工天体)であってもよい。大気圏外を移動する移動体は宇宙移動体と言い換えることができる。
 また、基地局装置20は、地上に設置される地上基地局装置(地上局装置)であってもよい。例えば、基地局装置20は、地上の構造物に配置される基地局装置であってもよいし、地上を移動する移動体に設置される基地局装置であってもよい。より具体的には、基地局装置20は、ビル等の構造物に設置されたアンテナ及びそのアンテナに接続する信号処理装置であってもよい。勿論、基地局装置20は、構造物や移動体そのものであってもよい。「地上」は、陸上(狭義の地上)のみならず、地中、水上、水中も含む広義の地上である。なお、基地局装置20は、地上基地局装置に限られない。基地局装置20は、空中又は宇宙を浮遊可能な非地上基地局装置(非地上局装置)であってもよい。例えば、基地局装置20は、航空機局装置や衛星局装置であってもよい。
 航空機局装置は、航空機等、大気圏内を浮遊可能な無線通信装置である。航空機局装置は、航空機等に搭載される装置であってもよいし、航空機そのものであってもよい。なお、航空機という概念には、飛行機、グライダー等の重航空機のみならず、気球、飛行船等の軽航空機も含まれる。また、航空機という概念には、重航空機や軽航空機のみならず、ヘリコプターやオートジャイロ等の回転翼機も含まれる。なお、航空機局装置(又は、航空機局装置が搭載される航空機)は、ドローン等の無人航空機であってもよい。
 なお、無人航空機という概念には、無人航空システム(UAS:Unmanned Aircraft Systems)、つなぎ無人航空システム(tethered UAS)も含まれる。また、無人航空機という概念には、軽無人航空システム(LTA:Lighter than Air UAS)、重無人航空システム(HTA:Heavier than Air UAS)が含まれる。その他、無人航空機という概念には、高高度無人航空システムプラットフォーム(HAPs:High Altitude UAS Platforms)も含まれる。
 衛星局装置は、大気圏外を浮遊可能な無線通信装置である。衛星局装置は、人工衛星等の宇宙移動体に搭載される装置であってもよいし、宇宙移動体そのものであってもよい。衛星局装置となる衛星は、低軌道(LEO:Low Earth Orbiting)衛星、中軌道(MEO:Medium Earth Orbiting)衛星、静止(GEO:Geostationary Earth Orbiting)衛星、高楕円軌道(HEO:Highly Elliptical Orbiting)衛星の何れであってもよい。勿論、衛星局装置は、低軌道衛星、中軌道衛星、静止衛星、又は高楕円軌道衛星に搭載される装置であってもよい。
 基地局装置20のカバレッジの大きさは、マクロセルのような大きなものから、ピコセルのような小さなものであってもよい。勿論、基地局装置20のカバレッジの大きさは、フェムトセルのような極めて小さなものであってもよい。また、基地局装置20はビームフォーミングの能力を有していてもよい。この場合、基地局装置20はビームごとにセルやサービスエリアが形成されてもよい。
 図1の例では、基地局装置20は、中継装置30と接続されており、基地局装置20は、中継装置30と接続されている。基地局装置20は中継装置30を介して端末装置40と間接的に無線通信することが可能である。同様に、基地局装置20は、中継装置30を介して端末装置40と間接的に無線通信することが可能である。
 [中継装置]
 中継装置30は、基地局の中継局となる装置である。中継装置30は、基地局装置の一種である。中継装置は、リレー基地局装置(或いはリレー基地局)と言い換えることができる。中継装置30は、端末装置40とNOMA通信することが可能である。中継装置30は、基地局装置20と端末装置40との通信を中継する。なお、中継装置30は、他の中継装置30及び基地局装置20とNOMA通信可能に構成されていてもよい。中継装置30は、地上局装置であってもよいし、非地上局装置であってもよい。中継装置30は基地局装置20とともに無線アクセスネットワークRANを構成する。
 [端末装置]
 端末装置40は、基地局装置20或いは中継装置30と無線通信する無線通信装置である。端末装置40は、例えば、携帯電話、スマートデバイス(スマートフォン、又はタブレット)、PDA(Personal Digital Assistant)、パーソナルコンピュータである。また、端末装置40は、通信機能が具備された業務用カメラといった機器であってもよいし、FPU(Field Pickup Unit)等の通信機器が搭載されたバイクや移動中継車等であってもよい。また、端末装置40は、M2M(Machine to Machine)デバイス、又はIoT(Internet of Things)デバイスであってもよい。
 また、端末装置40は、他の端末装置40とサイドリンク通信が可能であってもよい。端末装置40は、サイドリンク通信を行う際、HARQ等の自動再送技術を使用可能であってもよい。端末装置40は、基地局装置20及び中継装置30とNOMA通信が可能であってもよい。なお、端末装置40は、他の端末装置40との通信(サイドリンク)においてもNOMA通信が可能であってもよい。また、端末装置40は、他の通信装置(例えば、基地局装置20、中継装置30、及び他の端末装置40)とLPWA通信が可能であってもよい。その他、端末装置40が使用する無線通信は、ミリ波を使った無線通信であってもよい。なお、端末装置40が使用する無線通信(サイドリンク通信を含む。)は、電波を使った無線通信であってもよいし、赤外線や可視光を使った無線通信(光無線)であってもよい。
 また、端末装置40は、移動体装置であってもよい。ここで、移動体装置は、移動可能な無線通信装置である。このとき、端末装置40は、移動体に設置される無線通信装置であってもよいし、移動体そのものであってもよい。例えば、端末装置40は、自動車、バス、トラック、自動二輪車等の道路上を移動する車両(Vehicle)、或いは、当該車両に搭載された無線通信装置であってもよい。なお、移動体は、モバイル端末であってもよいし、陸上(狭義の地上)、地中、水上、或いは、水中を移動する移動体であってもよい。また、移動体は、ドローン、ヘリコプター等の大気圏内を移動する移動体であってもよいし、人工衛星等の大気圏外を移動する移動体であってもよい。
 端末装置40は、同時に複数の基地局装置または複数のセルと接続して通信を実施してもよい。例えば、1つの基地局装置が複数のセル(例えば、pCell、sCell)を介して通信エリアをサポートしている場合に、キャリアアグリゲーション(CA:Carrier Aggregation)技術やデュアルコネクティビティ(DC:Dual Connectivity)技術、マルチコネクティビティ(MC:Multi-Connectivity)技術によって、それら複数のセルを束ねて基地局装置20と端末装置40とで通信することが可能である。或いは、異なる基地局装置20のセルを介して、協調送受信(CoMP:Coordinated Multi-Point Transmission and Reception)技術によって、端末装置40とそれら複数の基地局装置20が通信することも可能である。
 なお、端末装置40は、必ずしも人が直接的に使用する装置である必要はない。端末装置40は、いわゆるMTC(Machine Type Communication)のように、工場の機械等に設置されるセンサであってもよい。また、端末装置40は、M2M(Machine to Machine)デバイス、又はIoT(Internet of Things)デバイスであってもよい。また、端末装置40は、D2D(Device to Device)やV2X(Vehicle to everything)に代表されるように、リレー通信機能を具備した装置であってもよい。また、端末装置40は、無線バックホール等で利用されるCPE(Client Premises Equipment)と呼ばれる機器であってもよい。
 以下、実施形態に係る通信システム1を構成する各装置の構成を具体的に説明する。なお、以下に示す各装置の構成はあくまで一例である。各装置の構成は、以下の構成とは異なっていてもよい。
<2-2.管理装置の構成>
 図2は、本開示の実施形態に係る管理装置10の構成例を示す図である。管理装置10は、通信部11と、記憶部12と、制御部13と、を備える。なお、図2に示した構成は機能的な構成であり、ハードウェア構成はこれとは異なっていてもよい。また、管理装置10の機能は、複数の物理的に分離された構成に分散して実装されてもよい。例えば、管理装置10は、複数のサーバ装置により構成されていてもよい。
 通信部11は、他の装置と通信するための通信インタフェースである。通信部11は、ネットワークインタフェースであってもよいし、機器接続インタフェースであってもよい。例えば、通信部11は、NIC(Network Interface Card)等のLAN(Local Area Network)インタフェースであってもよいし、USB(Universal Serial Bus)ホストコントローラ、USBポート等により構成されるUSBインタフェースであってもよい。また、通信部11は、有線インタフェースであってもよいし、無線インタフェースであってもよい。通信部11は、管理装置10の通信手段として機能する。通信部11は、制御部13の制御に従って基地局装置20と通信する。
 記憶部12は、DRAM(Dynamic Random Access Memory)、SRAM(Static Random Access Memory)、フラッシュメモリ、ハードディスク等のデータ読み書き可能な記憶装置である。記憶部12は、管理装置10の記憶手段として機能する。記憶部12は、例えば、端末装置40の接続状態を記憶する。例えば、記憶部12は、端末装置40のRRC(Radio Resource Control)の状態やECM(EPS Connection Management)の状態を記憶する。記憶部12は、端末装置40の位置情報を記憶するホームメモリとして機能してもよい。
 制御部13は、管理装置10の各部を制御するコントローラ(controller)である。制御部13は、例えば、CPU(Central Processing Unit)、MPU(Micro Processing Unit)等のプロセッサにより実現される。例えば、制御部13は、管理装置10内部の記憶装置に記憶されている各種プログラムを、プロセッサがRAM(Random Access Memory)等を作業領域として実行することにより実現される。なお、制御部13は、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)等の集積回路により実現されてもよい。CPU、MPU、ASIC、及びFPGAは何れもコントローラとみなすことができる。
<2-3.基地局装置の構成>
 図3は、本開示の実施形態に係る基地局装置20の構成例を示す図である。基地局装置20は、端末装置40とNOMA通信可能である。基地局装置20は、無線通信部21と、記憶部22と、制御部23と、を備える。なお、図3に示した構成は機能的な構成であり、ハードウェア構成はこれとは異なっていてもよい。また、基地局装置20の機能は、複数の物理的に分離された構成に分散して実装されてもよい。
 無線通信部21は、他の無線通信装置(例えば、端末装置40、中継装置30)と無線通信する無線通信インタフェースである。無線通信部21は、制御部23の制御に従って動作する。無線通信部21は1又は複数の無線アクセス方式に対応する。例えば、無線通信部21は、NR及びLTEの双方に対応する。無線通信部21は、NRやLTEに加えて、W-CDMAやcdma2000に対応していてもよい。また、無線通信部21は、NOMAを使った通信に対応している。NOMAについては後に詳しく述べる。
 無線通信部21は、受信処理部211、送信処理部212、アンテナ213を備える。無線通信部21は、受信処理部211、送信処理部212、及びアンテナ213をそれぞれ複数備えていてもよい。なお、無線通信部21が複数の無線アクセス方式に対応する場合、無線通信部21の各部は、無線アクセス方式毎に個別に構成されうる。例えば、受信処理部211及び送信処理部212は、LTEとNRとで個別に構成されてもよい。
 受信処理部211は、アンテナ213を介して受信された上りリンク信号の処理を行う。受信処理部211は、無線受信部211aと、多重分離部211bと、復調部211cと、復号部211dと、を備える。
 無線受信部211aは、上りリンク信号に対して、ダウンコンバート、不要な周波数成分の除去、増幅レベルの制御、直交復調、デジタル信号への変換、ガードインターバルの除去、高速フーリエ変換による周波数領域信号の抽出等を行う。多重分離部211bは、無線受信部211aから出力された信号から、PUSCH(Physical Uplink Shared Channel)、PUCCH(Physical Uplink Control Channel)等の上りリンクチャネル及び上りリンク参照信号を分離する。復調部211cは、上りリンクチャネルの変調シンボルに対して、BPSK(Binary Phase Shift Keying)、QPSK(Quadrature Phase shift Keying)等の変調方式を使って受信信号の復調を行う。復調部211cが使用する変調方式は、16QAM(Quadrature Amplitude Modulation)、64QAM、又は256QAMであってもよい。この場合、コンステレーション上の信号点は必ずしも等距離である必要はない。コンステレーションは、不均一コンステレーション(NUC:Non Uniform Constellation)であってもよい。復号部211dは、復調された上りリンクチャネルの符号化ビットに対して、復号処理を行う。復号された上りリンクデータ及び上りリンク制御情報は制御部23へ出力される。
 送信処理部212は、下りリンク制御情報及び下りリンクデータの送信処理を行う。送信処理部212は、符号化部212aと、変調部212bと、多重部212cと、無線送信部212dと、を備える。
 符号化部212aは、制御部23から入力された下りリンク制御情報及び下りリンクデータを、ブロック符号化、畳み込み符号化、ターボ符号化等の符号化方式を用いて符号化を行う。変調部212bは、符号化部212aから出力された符号化ビットをBPSK、QPSK、16QAM、64QAM、256QAM等の所定の変調方式で変調する。この場合、コンステレーション上の信号点は必ずしも等距離である必要はない。コンステレーションは、不均一コンステレーションであってもよい。多重部212cは、各チャネルの変調シンボルと下りリンク参照信号とを多重化し、所定のリソースエレメントに配置する。無線送信部212dは、多重部212cからの信号に対して、各種信号処理を行う。例えば、無線送信部212dは、高速フーリエ変換による時間領域への変換、ガードインターバルの付加、ベースバンドのデジタル信号の生成、アナログ信号への変換、直交変調、アップコンバート、余分な周波数成分の除去、電力の増幅等の処理を行う。送信処理部212で生成された信号は、アンテナ213から送信される。
 記憶部22は、DRAM、SRAM、フラッシュメモリ、ハードディスク等のデータ読み書き可能な記憶装置である。記憶部22は、基地局装置20の記憶手段として機能する。例えば、記憶部22には、制御部23を構成する各ブロック(センシング部231~通知部232)が参照または登録するデータが記憶される。
 制御部23は、基地局装置20の各部を制御するコントローラである。制御部23は、例えば、CPU、MPU等のプロセッサにより実現される。例えば、制御部23は、基地局装置20内部の記憶装置に記憶されている各種プログラムを、プロセッサがRAM等を作業領域として実行することにより実現される。なお、制御部23は、ASICやFPGA等の集積回路により実現されてもよい。CPU、MPU、ASIC、及びFPGAは何れもコントローラとみなすことができる。
 制御部23は、図3に示すように、センシング部231と、通知部232と、を備える。このうち、センシング部231は、1つの側面として、アンライセンスバンドにおけるチャネルのセンシング、例えばLBTを行う。また、通知部232は、1つの側面として、LBT成功時にチャネル占有情報やその他の各種の情報を相手先の通信装置へ通知する。これら制御部23を構成する各ブロック(センシング部231~通知部232)はそれぞれ制御部23の機能を示す機能ブロックである。これら機能ブロックはソフトウェアブロックであってもよいし、ハードウェアブロックであってもよい。例えば、上述の機能ブロックが、それぞれ、ソフトウェア(マイクロプログラムを含む。)で実現される1つのソフトウェアモジュールであってもよいし、半導体チップ(ダイ)上の1つの回路ブロックであってもよい。勿論、各機能ブロックがそれぞれ1つのプロセッサ又は1つの集積回路であってもよい。機能ブロックの構成方法は任意である。なお、制御部23は上述の機能ブロックとは異なる機能単位で構成されていてもよい。センシング部231の動作、通知部232により通知される各種の情報やその通知方法などについては、その詳細を後述する。
<2-4.中継装置の構成>
 図4は、本開示の実施形態に係る中継装置30の構成例を示す図である。中継装置30は、端末装置40とNOMA通信可能である。中継装置30は、無線通信部31と、記憶部32と、ネットワーク通信部33と、制御部34と、を備える。なお、図4に示した構成は機能的な構成であり、ハードウェア構成はこれとは異なっていてもよい。また、中継装置30の機能は、複数の物理的に分離された構成に分散して実装されてもよい。
 無線通信部31は、他の無線通信装置(例えば、基地局装置20、及び端末装置40)と無線通信する無線通信インタフェースである。無線通信部31は、制御部34の制御に従って動作する。無線通信部31は、受信処理部311、送信処理部312、アンテナ313を備える。無線通信部31、受信処理部311、送信処理部312、及びアンテナ313の構成は、基地局装置20の無線通信部21、受信処理部211、送信処理部212及びアンテナ213と同様である。
 記憶部32は、DRAM、SRAM、フラッシュメモリ、ハードディスク等のデータ読み書き可能な記憶装置である。記憶部32は、中継装置30の記憶手段として機能する。記憶部32の構成は、基地局装置20の記憶部22と同様である。
 ネットワーク通信部33は、他の装置と通信するための通信インタフェースである。例えば、ネットワーク通信部33は、NIC等のLANインタフェースである。ネットワーク通信部33は、有線インタフェースであってもよいし、無線インタフェースであってもよい。ネットワーク通信部33は、中継装置30のネットワーク通信手段として機能する。ネットワーク通信部33は、制御部34の制御に従って基地局装置20と通信する。
 制御部34は、中継装置30の各部を制御するコントローラである。制御部34の構成は、基地局装置20の制御部23と同様である。
<2-5.端末装置の構成>
 図5は、本開示の実施形態に係る端末装置40の構成例を示す図である。端末装置40は、基地局装置20及び中継装置30とNOMA通信可能である。端末装置40は、無線通信部41と、記憶部42と、ネットワーク通信部43と、入出力部44と、制御部45と、を備える。なお、図5に示した構成は機能的な構成であり、ハードウェア構成はこれとは異なっていてもよい。また、端末装置40の機能は、複数の物理的に分離された構成に分散して実装されてもよい。
 無線通信部41は、他の無線通信装置(例えば、基地局装置20、及び中継装置30)と無線通信する無線通信インタフェースである。無線通信部41は、制御部45の制御に従って動作する。無線通信部41は1又は複数の無線アクセス方式に対応する。例えば、無線通信部41は、NR及びLTEの双方に対応する。無線通信部41は、NRやLTEに加えて、W-CDMAやcdma2000に対応していてもよい。また、無線通信部21は、NOMAを使った通信に対応している。NOMAについては後に詳しく述べる。
 無線通信部41は、受信処理部411、送信処理部412、アンテナ413を備える。無線通信部41は、受信処理部411、送信処理部412、及びアンテナ413をそれぞれ複数備えていてもよい。なお、無線通信部41が複数の無線アクセス方式に対応する場合、無線通信部41の各部は、無線アクセス方式毎に個別に構成されうる。例えば、受信処理部411及び送信処理部412は、LTEとNRとで個別に構成されてもよい。
 受信処理部411は、アンテナ413を介して受信された下りリンク信号の処理を行う。受信処理部411は、無線受信部411aと、多重分離部411bと、復調部411cと、復号部411dと、を備える。
 無線受信部411aは、下りリンク信号に対して、ダウンコンバート、不要な周波数成分の除去、増幅レベルの制御、直交復調、デジタル信号への変換、ガードインターバルの除去、高速フーリエ変換による周波数領域信号の抽出等を行う。多重分離部411bは、無線受信部411aから出力された信号から、下りリンクチャネル、下りリンク同期信号、及び下りリンク参照信号を分離する。下りリンクチャネルは、例えば、PBCH(Physical Broadcast Channel)、PDSCH(Physical Downlink Shared Channel)、PDCCH(Physical Downlink Control Channel)等のチャネルである。復調部211cは、下りリンクチャネルの変調シンボルに対して、BPSK、QPSK、16QAM、64QAM、256QAM等の変調方式を使って受信信号の復調を行う。この場合、コンステレーション上の信号点は必ずしも等距離である必要はない。コンステレーションは、不均一コンステレーションであってもよい。復号部411dは、復調された下りリンクチャネルの符号化ビットに対して、復号処理を行う。復号された下りリンクデータ及び下りリンク制御情報は制御部45へ出力される。
 送信処理部412は、上りリンク制御情報及び上りリンクデータの送信処理を行う。送信処理部412は、符号化部412aと、変調部412bと、多重部412cと、無線送信部412dと、を備える。
 符号化部412aは、制御部45から入力された上りリンク制御情報及び上りリンクデータを、ブロック符号化、畳み込み符号化、ターボ符号化等の符号化方式を用いて符号化を行う。変調部412bは、符号化部412aから出力された符号化ビットをBPSK、QPSK、16QAM、64QAM、256QAM等の所定の変調方式で変調する。この場合、コンステレーション上の信号点は必ずしも等距離である必要はない。コンステレーションは、不均一コンステレーションであってもよい。多重部412cは、各チャネルの変調シンボルと上りリンク参照信号とを多重化し、所定のリソースエレメントに配置する。無線送信部412dは、多重部412cからの信号に対して、各種信号処理を行う。例えば、無線送信部412dは、逆高速フーリエ変換による時間領域への変換、ガードインターバルの付加、ベースバンドのデジタル信号の生成、アナログ信号への変換、直交変調、アップコンバート、余分な周波数成分の除去、電力の増幅等の処理を行う。送信処理部412で生成された信号は、アンテナ413から送信される。
 記憶部42は、DRAM、SRAM、フラッシュメモリ、ハードディスク等のデータ読み書き可能な記憶装置である。記憶部42は、端末装置40の記憶手段として機能する。例えば、記憶部42には、制御部43を構成する各ブロック(センシング部451~通知部452)が参照または登録するデータが記憶される。
 ネットワーク通信部43は、他の装置と通信するための通信インタフェースである。例えば、ネットワーク通信部43は、NIC等のLANインタフェースである。ネットワーク通信部43は、有線インタフェースであってもよいし、無線インタフェースであってもよい。ネットワーク通信部43は、端末装置40のネットワーク通信手段として機能する。ネットワーク通信部43は、制御部45の制御に従って、他の装置と通信する。
 入出力部44は、ユーザと情報をやりとりするためのユーザインタフェースである。例えば、入出力部44は、キーボード、マウス、操作キー、タッチパネル等、ユーザが各種操作を行うための操作装置である。又は、入出力部44は、液晶ディスプレイ(Liquid Crystal Display)、有機ELディスプレイ(Organic Electroluminescence Display)等の表示装置である。入出力部44は、スピーカー、ブザー等の音響装置であってもよい。また、入出力部44は、LED(Light Emitting Diode)ランプ等の点灯装置であってもよい。入出力部44は、端末装置40の入出力手段(入力手段、出力手段、操作手段又は通知手段)として機能する。
 制御部45は、端末装置40の各部を制御するコントローラである。制御部45は、例えば、CPU、MPU等のプロセッサにより実現される。例えば、制御部45は、端末装置40内部の記憶装置に記憶されている各種プログラムを、プロセッサがRAM等を作業領域として実行することにより実現される。なお、制御部45は、ASICやFPGA等の集積回路により実現されてもよい。CPU、MPU、ASIC、及びFPGAは何れもコントローラとみなすことができる。
 制御部45は、図5に示すように、センシング部451と、通知部452と、を備える。このうち、センシング部451は、1つの側面として、アンライセンスバンドにおけるチャネルのセンシング、例えばLBTを行う。また、通知部452は、1つの側面として、LBT成功時にチャネル占有情報やその他の各種の情報を相手先の通信装置へ通知する。これら制御部45を構成する各ブロック(センシング部451~通知部452)はそれぞれ制御部45の機能を示す機能ブロックである。これら機能ブロックはソフトウェアブロックであってもよいし、ハードウェアブロックであってもよい。例えば、上述の機能ブロックが、それぞれ、ソフトウェア(マイクロプログラムを含む。)で実現される1つのソフトウェアモジュールであってもよいし、半導体チップ(ダイ)上の1つの回路ブロックであってもよい。勿論、各機能ブロックがそれぞれ1つのプロセッサ又は1つの集積回路であってもよい。機能ブロックの構成方法は任意である。なお、制御部45は上述の機能ブロックとは異なる機能単位で構成されていてもよい。センシング部451の動作、通知部452により通知される各種の情報やその通知方法などについては、その詳細を後述する。
<2-6.無線フレーム構成>
 次に、無線アクセスネットワークRANにおける無線フレーム構成を説明する。
 図6は、本開示の実施形態に係る無線アクセスネットワークRANで使用される無線フレーム構成を示す図である。無線アクセスネットワークRANでは、10msで構成される無線フレームが規定される。1つの無線フレームは10個のサブフレームから構成される。サブフレームの時間間隔は1msである。サブフレームは、例えば、14シンボルで構成される。ここで、シンボルは、例えば、OFDMシンボルやSC-FDMAシンボルである。LTEでは、例えば、7つのシンボルで1スロットが構成される。NRでは、例えば、14シンボルで1スロットが構成される。以下、LTEとNRのサブフレーム構成についてそれぞれ説明する。
[LTEのサブフレーム構成]
 図7は、LTEのサブフレーム構成の一例を示す図である。図7に示す例では、縦軸を周波数、横軸を時間としたリソースグリッドが示されている。図7に示す例では、システム帯域幅は、LTEセルの帯域幅のことを示す。リソースグリッド内の複数の格子それぞれはリソースエレメントを示している。1つのリソースエレメントの大きさは、周波数方向に1サブキャリア、時間方向に1シンボルである。LTEの場合、1つのスロットは複数のシンボルによって定義される。1つのスロットにおけるシンボル数は、CP(Cyclic Prefix)のタイプによって決まる。CPのタイプは、ノーマルCPまたは拡張CPである。ノーマルCPにおいて、1つのスロットを構成するシンボルの数は7である。拡張CPにおいて、1つのスロットを構成するシンボルの数は6である。
 リソースブロックは、ある物理チャネル(PDSCH、PUSCHなど)をリソースエレメントにマッピングするために用いられる。1つのリソースブロックは、周波数領域に連続する所定数のサブキャリア、時間領域に連続する所定数のシンボルで定義される。1つのリソースブロックにおけるシンボル数、及びサブキャリア数(リソースブロック帯域幅)は、そのセルにおけるCPのタイプ、サブキャリア間隔および/または上位層によって設定されるパラメータなどに基づいて決まる。例えば、CPのタイプがノーマルCPであり、サブキャリア間隔が15kHzである場合、1つのリソースブロックにおけるシンボル数は7であり、サブキャリア数は12である。この場合、1つのリソースブロックは(7×12)個のリソースエレメントから構成される。
 LTEセルのそれぞれにおいて、あるサブフレームでは、1つの所定のパラメータが用いられる。所定のパラメータは、例えば、送信信号に関するパラメータ(物理パラメータ)である。送信信号に関するパラメータは、CP長、サブキャリア間隔、1つのサブフレーム(所定の時間長)におけるシンボル数、1つのリソースブロック(所定の周波数帯域)におけるサブキャリア数、多元接続方式、および、信号波形などを含む。LTEセルでは、リンク信号(下りリンク信号および上りリンク信号)は、所定の時間長(例えば、サブフレーム)において、1つの所定のパラメータを用いて生成される。
[NRのフレーム構成]
 図8は、NRのサブフレーム構成の一例を示す図である。図8に示す例では、システム帯域幅は、NRセルの帯域幅のことを示す。NRセルの場合、ある所定の時間長(例えば、サブフレーム)では、1つ以上の所定のパラメータが用いられる。すなわち、NRセルでは、リンク信号は、所定の時間長において、1つ以上の所定のパラメータを用いて生成される。複数の所定のパラメータが用いられる場合、それらの所定のパラメータが用いられて生成される信号は、所定の方法により多重される。所定の方法は、例えば、FDM(Frequency Division Multiplexing)、TDM(Time Division Multiplexing)、CDM(Code Division Multiplexing)および/またはSDM(Spatial Division Multiplexing)などである。
 NRセルに設定される所定のパラメータの組み合わせは、パラメータセットとして、複数種類を予め規定できる。図9は、NRセルにおける送信信号に関するパラメータセットの一例を示す図である。図9の例では、パラメータは、「サブキャリア間隔」、コンポーネントキャリアの「最大帯域幅」、「CP長タイプ」、サブフレームあたりの「シンボル数」、NRセルにおけるリソースブロックあたりの「サブキャリア数」である。パラメータの1つに「無線フレーム長」があってもよい。なお、「CP長タイプ」は、NRセルで用いられるCP長のタイプである。例えば、CP長タイプ1はLTEにおけるノーマルCPに相当し、CP長タイプ2はLTEにおける拡張CPに相当する。NRセルにおける送信信号に関するパラメータセットは、下りリンクおよび上りリンクでそれぞれ個別に規定することができる。また、NRセルにおける送信信号に関するパラメータセットは、下りリンクおよび上りリンクでそれぞれ独立に設定できる。
 図9の例では、パラメータセット0として、15kHz(サブキャリア間隔)、20MHz(最大帯域幅)、タイプ1(CP長タイプ)、14(シンボル数)、1ms(サブフレーム長)、10ms(無線フレーム長)、12(サブキャリア数)が規定されている。また、パラメータセット1として、7.5kHz(サブキャリア間隔)、1.4MHz(最大帯域幅)、タイプ1(CP長タイプ)、70(シンボル数)、10ms(サブフレーム長)、10ms(無線フレーム長)、24(サブキャリア数)が規定されている。また、パラメータセット2として、30kHz(サブキャリア間隔)、80MHz(最大帯域幅)、タイプ1(CP長タイプ)、7(シンボル数)、0.25ms(サブフレーム長)、10ms(無線フレーム長)、6(サブキャリア数)が規定されている。また、パラメータセット3として、15kHz(サブキャリア間隔)、20MHz(最大帯域幅)、タイプ2(CP長タイプ)、12(シンボル数)、1ms(サブフレーム長)、10ms(無線フレーム長)、12(サブキャリア数)が規定されている。
 図10は、NRの下りリンクサブフレームの一例を示す図である。図10の例では、パラメータセット1、パラメータセット0およびパラメータセット2を用いて生成される信号が、セルの帯域幅(システム帯域幅)に周波数分割多重化(FDM)される。
<<3.NOMAについて>>
 直交多元接続(OMA:Orthogonal Multiple Access)では、例えば、直交する周波数軸および時間軸を用いてデータの送受信を行う。この時、サブキャリア間隔によって周波数および時間リソースのフレーム構成が決定され、リソースエレメント数以上のリソースを使用することはできない。一方、直交多元接続(NOMA)では、直交する周波数軸および時間軸に、非直交軸(例えば、Interleave pattern軸、Spreading Pattern軸、Scrambling Pattern軸、Codebook軸、Power軸など)を加えてフレーム構成が決定される。
<3-1.NOMAを使ったデータの送受信>
 図11は、本開示の実施形態に係るNOMA送信処理の一例を示す説明図である。図11の例では、送信装置が非直交軸で送信信号を多重して送信する様子が示されている。図11の例では、非直交軸で多重されるリソースが全て同一のパラメータセットとなっている。ここで、送信装置は、基地局装置20、中継装置30、端末装置40等の通信装置である。図11の例では、1つの送信装置(例えば、端末装置40)が、2つの送信信号セットを多重している。
 なお、以下に示すNOMA送信処理は、例えば、端末装置40の制御部45が送信処理部412を制御することにより実現される。又は、以下の送信処理は、例えば、基地局装置20の制御部23が送信処理部212を制御することにより実現される。
 送信信号セットは、例えば、通信装置に発生した送信データの一部又は全部を、無線通信のための信号処理を施して生成される信号である。すなわち、送信信号セットは、無線通信のための信号処理が施された送信データ(送信データの一部又は全部)である。ここで、送信データは、通信装置で発生した1つの処理に係るデータである。例えば、送信データは、通信装置で実行される各種プログラム(例えば、アプリケーションプログラムやオペレーティングシステム)に発生した1つの送信ジョブに係るデータである。
 なお、本実施形態では、送信データは複数のデータに分割される。以下の説明では、送信データの送信単位(分割単位)となるデータのことを送信単位データという。ここで、送信単位データは、1つのIPパケットであってもよいし、1つのトランスポートブロックであってもよい。勿論、送信単位データは、他の送信単位であってもよい。トランスポートブロックは、例えば、HARQ(Hybrid ARQ(Automatic Repeat reQuest))等の誤り訂正の単位である。例えば、トランスポートブロックは、トランスポートチャネル(トランスポートレイヤ)におけるデータのブロックである。なお、送信信号セットは、トランスポートブロック等の送信単位データに信号処理を施して生成される信号(送信単位データ)であってもよい。以下の説明では、送信信号セットは、トランスポートブロック等の送信単位データに、OFDMを使用した無線通信のための信号処理を施したデータであるものとする。
 送信信号セット(送信単位データ)は、複数のブロックや複数のエレメントで構成されていてもよい。例えば、送信信号セットがトランスポートブロックであるとする。このとき、送信信号セットは、送信単位データは複数のリソースブロックやリソースエレメントで構成されていてもよい。以下の例では、送信信号セットは複数のブロックで構成されているものとする。図11の例では、送信信号セットD10、D20は、4つのブロック(例えば、リソースブロック)で構成されている。
 図11の例では、送信装置は、送信信号セットD10、D20それぞれに、対応するMAシグネチャ(MA signature:Multiple Access signature)を適用している。MAシグネチャは、非直交多重に関する情報の一つである。MAシグネチャには、例えば、Interleave Pattern、Spreading Pattern、Scrambling Pattern、Codebook、Power Allocation、などが含まれる。なお、MAシグネチャは、単にPatternやIndexといった呼称でもよい。例えば、MAシグネチャは、上記に挙げたようなNOMA送信で使用されるPatternやIndexを示す識別子であってもよいし、Patternそのものを表すものであってもよい。以下の説明では、所定の送信信号セットにMAシグネチャを適用することを、MAシグネチャを使用したNOMA送信処理ということがある。MAシグネチャを使用したNOMA送信処理の例としては、所定の直交リソース上にマッピングされる所定の送信信号セットを、MAシグネチャが示す非直交リソースを使って送信可能な送信信号セットに変換する処理が挙げられる。
 図11の例では、送信装置(例えば、端末装置40の制御部45)は、送信信号セットD10にMAシグネチャ#0を使用したNOMA送信処理を実行し、送信信号セットD20にMAシグネチャ#1を使用したNOMA送信処理を実行している。MAシグネチャ#0とMAシグネチャ#1は、対応する非直交リソースである。例えば、MAシグネチャがPower Allocation(つまり、非直交軸がPower軸)であるとする。このとき、MAシグネチャ#0は、所定の送信信号セットを小さな電力(例えば、第1の閾値以下の電力)の送信信号セットに変換する旨の情報であってもよい。また、MAシグネチャ#1は、所定の送信信号セットを大きな電力(例えば、第1の閾値より大きな第2の閾値以上の電力)の送信信号セットに変換する旨の情報であってもよい。送信装置は、MAシグネチャ適用後の信号を同一の周波数および時間リソース上で多重する。例えば、送信装置は、NOMA送信処理の結果生成された送信信号セットD11、D21を同一の直交リソース上で非直交多重する。そして送信装置(例えば、端末装置40の制御部45)は、非直交多重した送信信号をアンテナポートへ送る。
 また、図11の例では、送信装置は、同一のパラメータセットの送信信号セットを多重した。しかし、送信装置は、異なるパラメータセットの送信信号セットを多重してもよい。図12は、本開示の実施形態に係るNOMA送信処理の一例を示す説明図である。図12の例では、異なるパラメータセットの2つの送信信号セットを多重している。具体的には、図12の例では、送信装置(例えば、端末装置40の制御部45)は、送信信号セットD10、D30にそれぞれ対応するMAシグネチャ(MAシグネチャ#0、#1)を使用したNOMA送信処理を実行している。送信信号セットD30、D40は、異なるパラメータセットの送信信号セットである。そして、送信装置は、NOMA送信処理の結果生成された送信信号セットD11、D31を同一の直交リソース上で非直交多重する。その後、送信装置(例えば、端末装置40の制御部45)は、非直交多重した送信信号をアンテナポートへ送る。
 なお、図11、図12の例では、複数の送信信号セットは送信装置内で非直交多重された。しかし、複数の送信信号セットは伝搬チャネルで非直交多重されてもよい。図13は本開示の実施形態に係るNOMA送信処理の一例を示す説明図である。図13の例では、2つの送信信号セットが異なるアンテナから送信されている。複数の送信信号セットは別々送信装置(例えば、端末装置40、40)から送信されてもよいし、1つの送信装置(例えば、端末装置40)の異なるアンテナから送信されもよい。以下の説明では、2つの送信信号セットは別々の送信装置から送信されるものとするが、勿論、2つの送信信号セットは1つの送信装置から送信されてもよい。
 図13の例では、一方の送信装置(例えば、端末装置40)は、送信信号セットD10にMAシグネチャ#0を使用したNOMA送信処理を実行している。また、他方の送信装置(例えば、端末装置40)は、送信信号セットD20にMAシグネチャ#1を使用したNOMA送信処理を実行している。MAシグネチャ#0とMAシグネチャ#1は、対応する非直交リソースである。MAシグネチャには、例えば、Interleave Pattern、Spreading Pattern、Scrambling Pattern、Codebook、Power Allocation、Repetitionなどが含まれる。MAシグネチャ適用後の送信信号セットD11、D21は同一の周波数および時間リソース上で送信され、伝搬チャネルを通って多重される。
 また、図13の例では同一のパラメータセットの送信信号セットが多重された。しかし、多重される送信信号セットは、異なるパラメータセットの送信信号セットであってもよい。図14は、本開示の実施形態に係るNOMA送信処理の一例を示す説明図である。図14の例では、異なるパラメータセットの2つの送信信号セットが多重されている。具体的には、図14の例では、一方の送信装置(例えば、端末装置40)は、送信信号セットD10にMAシグネチャ#0を使用したNOMA送信処理を実行している。他方の送信装置(例えば、端末装置40)は、送信信号セットD30にMAシグネチャ#1を使用したNOMA送信処理を実行している。送信信号セットD10、D30は、異なるパラメータセットの送信信号セットである。また、MAシグネチャ#0とMAシグネチャ#1は、対応する非直交リソースである。MAシグネチャ適用後の送信信号セットD11、D31は同一の周波数および時間リソース上で送信され、伝搬チャネルを通って多重される。
 図15は、本開示の実施形態に係るNOMA受信処理の一例を示す説明図である。なお、以下に示すNOMA受信処理は、基地局装置20の制御部23が受信処理部211を制御することにより実現される。又は、以下に示すNOMA受信処理は、例えば、端末装置40の制御部45が受信処理部411を制御することにより実現される。
 図15に示すように、受信信号は同一の周波数および時間リソース上で複数の送信信号が多重された状態で受信される。受信装置(例えば、基地局装置20の制御部23)は、多重された送信信号セットを復号するため、送信装置で使用されたMAシグネチャに基づいてNOMA受信処理(例えば、チャネル等化および干渉信号キャンセラ等の処理)を実行する。これにより、受信装置は受信信号から所望の信号を取り出す。図15の例では、受信装置は、受信信号にMAシグネチャ#0及びMAシグネチャ#1を使用したNOMA受信処理を実行し、送信信号セットD10、D30を取り出している。なお、同一のMAシグネチャが用いられて多重をしてしまった場合は、多重された信号間の干渉の影響が大きくなってしまい、復号をすることが難しくなる。そのため、基地局装置20は、MAシグネチャが重複しないように端末装置40等が使用するMAシグネチャをスケジュールする。
 以上のように、NOMA送信では送信装置および受信装置で適用されたMAシグネチャを送信装置および受信装置間で共有し、かつ、MAシグネチャが重複することなく適用される必要がある。なお、以下の説明では、リソース(無線リソース)という概念に、MAシグネチャも含まれるものとする。ここで、周波数、時間、MAシグネチャの全てを含むリソースをMultiple Access Resource(MAリソース)と呼ぶ場合がある。また、周波数・時間のみのリソースをMultiple Access Physical Resource(MA物理リソース)と呼ぶ場合がある。
<3-2.MAリソースの効率的な利用>
 図11~図15の例では、1つ送信信号セット(例えば、1つの送信単位データ)に同じMAシグネチャを適用している。しかし、これでは、通信システム1は、MAリソースを効率的に使用できない可能性がある。
 図16は、基地局装置20に3台の端末装置40、40、40が無線接続した様子を示す図である。図16の例では、端末装置40、40、40は送信装置として機能し、基地局装置20は受信装置として機能する。図16の例では、端末装置40、40、40は、使用可能なMAシグネチャが限定されている。図16の例では、端末装置40は、MAシグネチャ#0とMAシグネチャ#1の双方を使用してデータを送信可能である。また、端末装置40は、MAシグネチャ#0を使用できず、MAシグネチャ#1のみを使用してデータを送信可能である。また、端末装置40は、MAシグネチャ#1を使用できず、MAシグネチャ#0のみを使用してデータを送信可能である。なお、図16に示した端末装置40、40は必ずしもNOMA送信処理が可能な端末でなくてもよい。例えば、端末装置40、40は直交多重接続(Orthogonal Multiple Access:OMA)のみが可能な端末(OMA端末)であり、MAシグネチャ#0或いはMAシグネチャ#1を使用したデータ送信しかできない端末と同等の端末とみなすことも可能である。
 ここで、端末装置40が4ブロック分の送信単位データを取得し、端末装置40、40がそれぞれ2ブロック分の送信単位データを取得したとする。図17は、本開示の実施形態に係るNOMA送信処理の一例を示す説明図である。図17の例で、送信信号セットD10は、端末装置40が取得した送信単位データを、MA物理リソースを使って送信可能な信号に信号処理したものである。また、送信信号セットD40は、端末装置40が取得した送信単位データを、MA物理リソースを使って送信可能な信号に信号処理したものである。また、送信信号セットD50は、端末装置40が取得した送信単位データを、MA物理リソースを使って送信可能な信号に信号処理したものである。
 図17の例では、端末装置40(例えば、端末装置40の制御部45)は、送信信号セットD10にMAシグネチャ#0を適用し、送信信号セットD11を生成している。また、端末装置40は、送信信号セットD40にMAシグネチャ#1を適用し、送信信号セットD41を生成している。また、端末装置40は、送信信号セットD50にMAシグネチャ#0を適用し、送信信号セットD51を生成している。ここで、MAシグネチャ#0とMAシグネチャ#1は、対応する非直交リソースを示す。
 このとき、送信信号セットD11とD41は、対応するMAシグネチャでNOMA送信処理されたものであるので、同一のMA物理リソース上で非直交多重可能である。しかし、送信信号セットD11とD51は、対応するMAシグネチャでNOMA送信処理されたものでないので、同一のMA物理リソース上で非直交多重できない。そのため、基地局装置20は、送信信号セットD11と送信信号セットD51とを異なるMA物理リソース上(周波数、時間軸上)に割り当てせざるを得ない。この結果、基地局装置20は、3台の端末装置40、40、40がデータを送信するのに、多くのMA物理リソースを確保せざるを得ない。図17の例では、基地局装置20は、6ブロック分のMA物理リソースを確保せざるを得ない。結果として、通信システム1は、システム全体としてリソースを効率的に利用することができない。
 そこで、本実施形態では、送信データ(或いは送信単位データ)の一部範囲にNOMA送信処理を実行できるようにする。このとき、送信データ(或いは送信単位データ)の他の範囲にはNOMA送信処理を実行してもよいし、しなくてもよい。例えば、送信装置は、1つの送信単位データを複数のNOMA適用範囲(NOMA適用単位)に区分し、複数のNOMA適用範囲それぞれに所定のMAシグネチャを使用したNOMA送信処理を実行する。NOMA適用範囲は、1つのMAシグネチャが適用される範囲(単位)である。NOMA適用範囲は、NOMA適用単位と言い換えることができる。
 図18は、本開示の実施形態に係るNOMA送信処理の一例を示す説明図である。以下に示すNOMA送信処理は、図11~図14のNOMA送信処理の場合と同様に、例えば、端末装置40の制御部45が送信処理部412を制御することにより実現される。なお、送信装置が基地局装置20なのであれば、以下の送信処理は、例えば、基地局装置20の制御部23が送信処理部212を制御することにより実現されてもよい。
 図18の例では、端末装置40は、4ブロック分の送信信号セットD10を時間方向に2ブロックずつに区分している。図18の例では、前半の2ブロックがNOMA適用範囲#0であり、後半の2ブロックがNOMA適用範囲#1である。そして、端末装置40は、NOMA適用範囲#0にMAシグネチャ#0を使用したNOMA送信処理を実行し、NOMA適用範囲#1にMAシグネチャ#1を使用したNOMA送信処理を実行する。これにより送信信号セットD12が生成される。
 送信信号セットD12のNOMA適用範囲#0の部分は、MAシグネチャ#0を適用したものであるので、MAシグネチャ#1を適用して生成された送信信号セットD41と非直交多重可能である。また、送信信号セットD12のNOMA適用範囲#1の部分は、MAシグネチャ#1を適用したものであるので、MAシグネチャ#0を適用して生成された送信信号セットD51と非直交多重可能である。そのため、基地局装置20は、3台の端末装置40、40、40がそれぞれデータを送信するのに4ブロック分のMA物理リソースを確保するだけで済む。
 図19は、本開示の実施形態に係るNOMA受信処理の一例を示す説明図である。なお、以下に示すNOMA受信処理は、図15に示すNOMA受信処理の場合と同様に、基地局装置20の制御部23が受信処理部211を制御することにより実現される。又は、以下に示すNOMA受信処理は、例えば、端末装置40の制御部45が受信処理部411を制御することにより実現される。
 図19に示すように、基地局装置20(例えば、基地局装置20の制御部23)は、同一の周波数および時間リソース上で複数の送信信号が多重された状態の受信信号を受信する。基地局装置20(例えば、基地局装置20の制御部23)は、多重された送信信号セットを復号するため、送信装置で使用されたMAシグネチャに基づいてNOMA受信処理を実行する。
 例えば、基地局装置20は、端末装置40がNOMA送信処理に使用した区分に合わせ、受信信号を区分する。例えば、基地局装置20は、受信信号を時間方向に2ブロックずつに区分する。以下、前半の2ブロックを受信信号#0といい、後半の2ブロックが受信信号#1という。そして、基地局装置20は、受信信号#0にMAシグネチャ#0を使用したNOMA受信処理を実行し、受信信号#1にMAシグネチャ#1を使用したNOMA受信処理を実行する。これにより、基地局装置20は、受信信号から送信信号セットD10を取り出す。また、基地局装置20は、受信信号#0にMAシグネチャ#1を使用したNOMA受信処理を実行する。これにより、基地局装置20は、受信信号から送信信号セットD40を取り出す。また、基地局装置20は、受信信号#1にMAシグネチャ#0を使用したNOMA受信処理を実行する。これにより、基地局装置20は、受信信号から送信信号セットD50を取り出す。
 例えば、図18及び図19の例では、送信単位データは4つのブロックで構成されていたが、送信単位データは、4ブロックより多くのブロックで構成されていてもよいし、4ブロックより少ないブロックで構成されていてもよい。
 以上のように、送信装置は、1つの送信単位データを複数のNOMA適用範囲に区分し、複数のNOMA適用範囲それぞれに所定のMAシグネチャを使用したNOMA送信処理する。これにより、通信システム1は、各送信装置の状態に合わせて、各送信装置にMAリソースを柔軟に割り当てることができる。結果として、通信システム1は、システム全体としてリソースを効率的に利用することができる。
<3-3.NOMA適用範囲の具体例>
 なお、送信単位データの区分は図19に示す例に限定されない。通信システム1は送信単位データ(例えば、トランスポートブロック)の区分にあたり、様々な区分パターンを採用可能である。区分パターンは、送信単位データ(或いは送信データ)を複数のNOMA適用範囲に区分する際の区分のパターンである。
 以下の説明では、送信装置は端末装置40、受信装置は基地局装置20であるものとして説明するが、送信装置及び受信装置はこの例に限定されない。例えば、送信装置は、基地局装置20であってもよいし、中継装置30であってもよい。また、受信装置は、中継装置30であってもよいし、端末装置40であってもよい。以下の処理は、例えば、端末装置40の制御部45で実行される。送信装置が基地局装置20なのであれば、以下の処理は、基地局装置20の制御部23で実行されてもよい。
[送信単位データの区分例]
 図19の説明では、端末装置40は送信単位データを2つのNOMA適用範囲(NOMA適用単位)に区分したが、1つの送信単位データに含まれるNOMA適用範囲は2つに限定されない。端末装置40は、送信単位データを2つより多くのNOMA適用範囲に区分してもよい。また、送信単位データの区分方向は周波数方向であってもよいし、時間方向であってもよい。
 図20は、区分パターンの具体例を示す図である。図20の例では、送信単位データはトランスポートブロックとなっている。図20には、トランスポートブロックTB1、TB2、TB3の3つのトランスポートブロックがMA物理リソース上に配置された状態で示されている。端末装置40は、トランスポートブロックTB1を周波数方向に4つのNOMA適用範囲A11、A12、A13、A14に区分している。また、端末装置40は、トランスポートブロックTB2を周波数方向に2つのNOMA適用範囲A21、A22に分割している。なお、端末装置40は、必ずしも送信単位データを複数のNOMA適用範囲に区分する必要はない。1つの送信単位データがそのまま1つのNOMA適用範囲であってもよい。図20の例では、端末装置40は、トランスポートブロックTB3を1つのNOMA適用範囲A31としている。
 また、送信単位データの区分方向は周波数方向に限られない。図21は、区分パターンの具体例を示す図である。図21には、トランスポートブロックTB4、TB5、TB6の3つのトランスポートブロックがMA物理リソース上に配置された状態で示されている。端末装置40は、トランスポートブロックTB4を時間方向に4つのNOMA適用範囲A41、A42、A43、A44に区分している。また、端末装置40は、トランスポートブロックTB5を時間方向に2つのNOMA適用範囲A51、A52に区分している。なお、端末装置40は、トランスポートブロックTB6をそのまま1つのNOMA適用範囲A61としてもよい。
 なお、端末装置40は、必ずしも全ての送信単位データを同じ区分パターンとする必要はない。端末装置40は、所定の基準に従って区分パターンを切り替えてもよい。例えば、端末装置40は、あるトランスポートブロックについては、図21のトランスポートTB4に示すように、4つのNOMA適用範囲に区分する。また、端末装置40は、別のトランスポートブロックについては図21のトランスポートTB5に示すように、2つのNOMA適用範囲に区分する。このとき、端末装置40は、送信単位データ毎に区分パターンを切り替えてもよいし、一定時間毎に区分パターンを切り替えてもよい。勿論、端末装置40は、他の基準に従って区分パターンを切り替えてもよい。
 また、1つのNOMA適用範囲は様々な大きさとすることが可能である。例えば、NOMA適用範囲は以下の(A1)~(A3)のようなものであってもよい。勿論、NOMA適用範囲の大きさは以下の(A1)~(A3)に限定されない。
 (A1)1リソースブロック
 (A2)1サブキャリア×1スロット
 (A3)12サブキャリア×1シンボル
 1つの送信単位データに含まれる複数のNOMA適用範囲は、全て同じ大きさであってもよいし、同じ大きさでなくてもよい。例えば、図20の例で、帯域幅B11、B12、B13、B14は、同じ大きさあってもよい。例えば、帯域幅B11、B12、B13、B14は、それぞれ、1リソースブロック分の帯域幅であってもよい。また、帯域幅B11、B12、B13、B14は、一部或いは全部が異なる帯域幅であってもよい。また、図21の例で、時間T41、T42、T43、T44は、同じ大きさあってもよい。例えば、時間T41、T42、T43、T44は、それぞれ、1リソースブロック分の時間(例えば、14シンボル)であってもよい。また、時間T41、T42、T43、T44は、一部或いは全部が異なる帯域幅であってもよい。例えば、NOMA適用範囲A41とA43は3シンボルで、NOMA適用範囲A42とA44は4シンボルであってもよい。
[NOMA適用範囲に適用するMAシグネチャ]
 1つの送信単位データに含まれる複数のNOMA適用範囲それぞれに実行されるNOMA送信処理は同じ処理内容であってもよいし、異なる処理内容であってもよい。すなわち、複数のNOMA適用範囲それぞれに適用されるMAシグネチャは、同じものであってもよいし、異なるものであってもよい。
 図21のトランスポートブロックTB4を例にとり説明すると、各NOMA適用範囲に適用されるMAシグネチャは、例えば、以下の(B1)~(B4)のようなものであってもよい。勿論、MAシグネチャは以下の(B1)~(B4)に限定されない。
 (B1)NOMA適用範囲A41にはインタリーブを適用、NOMA適用範囲A42には拡散符号を適用、NOMA適用範囲A42にはスクランブリングを適用
 (B2)NOMA適用範囲A41には第1のインタリーブパターンを適用、NOMA適用範囲A42には第1のインタリーブパターンとは異なる第2のインタリーブパターンを適用
 (B3)NOMA適用範囲A41には第1の拡散符号を適用、NOMA適用範囲A42には第1の拡散符号とは異なる第2の拡散符号を適用
 (B4)NOMA適用範囲A41には第1の送信電力設定を適用、NOMA適用範囲A42には第1の送信電力設定とは異なる第2の送信電力設定を適用
 また、端末装置40は、NOMA適用範囲の違いにより、当該NOMA適用範囲に適用するMAシグネチャを変更してもよい。例えば、端末装置40は、NOMA適用範囲の大きさにより、適用するMAシグネチャを変更してもよい。一例として、端末装置40は、NOMA適用範囲の大きさが4リソースブロックの場合と1リソースブロックの場合とで、適用するMAシグネチャを異なるものとする。例えば、適用するMAシグネチャがインタリーブパターンであるとする。このとき、端末装置40は、NOMA適用範囲の大きさが4リソースブロックの場合のインタリーブパターン長を、NOMA適用範囲の大きさが1リソースブロックの場合のインタリーブパターン長と比較して4倍にする。これは、MAシグネチャが拡散符号やスクランブル符号などの場合にも同様に適用できる。
 なお、上記の例では、端末装置40は、送信単位データに含まれる複数のNOMA適用範囲の少なくとも1つに、他のNOMA適用範囲に適用されるMAシグネチャとは、異なるMAシグネチャを適用した。すなわち、端末装置40は、送信単位データに含まれる複数のNOMA適用範囲の少なくとも1つに、その送信単位データに含まれる他のNOMA適用範囲に実行するNOMA送信処理とは、異なる処理内容の前記NOMA送信処理を実行した。しかし、端末装置40は、送信単位データに含まれる全てのNOMA適用範囲に同じMAシグネチャを適用してもよい。すなわち、端末装置40は、送信単位データに含まれる全てのNOMA適用範囲に同じNOMA送信処理を適用してもよい。
[区分パターンの設定例]
 端末装置40が使用する区分パターンを端末装置40に設定する方法は様々な方法を採用可能である。
(設定例1)
 例えば、基地局装置20は、端末装置40に送信データが発生する前に、端末装置40が使用可能な区分パターンの候補を端末装置40に予め通知してもよい。例えば、基地局装置20は、端末装置40に送信データが発生する前に(例えば、端末装置40からリソースの割り当て要求を受信する前に)、制御信号(例えば、RRC signaling)を使って端末装置40に予め数種類の区分パターンの候補を通知する。以下の説明では、区分パターンの候補を含む情報のことを区分パターン候補情報という。
 区分パターン候補情報には、例えば、以下の(C1)~(C4)に示す4つの区分パターンの情報が含まれていてもよい。(C1)~(C4)に示す4つの区分パターンは、送信単位データに含まれる複数のNOMA適用範囲が全て同じ大きさであることを想定している。そして、1つのNOMA適用範囲の大きさを区分パターンとして示している。なお、区分パターンの情報は、以下の(C1)~(C4)に示した情報より多くの情報が含まれていてもよい。勿論、区分パターンの情報は以下の(C1)~(C4)に限定されない。
 (C1)区分パターン1:全リソースブロック分の帯域幅×1スロット
 (C2)区分パターン2:2リソースブロック分の帯域幅×1スロット
 (C3)区分パターン3:1リソースブロック分の帯域幅×1スロット
 (C4)区分パターン4:12サブキャリア分の帯域幅×7シンボル
 なお、最終的に端末装置40がどの事前に通知された区分パターンの候補のどれを使用するかは、基地局装置20が、別途、端末装置40に通知してもよい。例えば、端末装置40に送信データが発生した後に、基地局装置20がDCI(Downlink Control Information)を使って、区分パターン候補のいずれかを指定してもよい。
(設定例2)
 設定例1では、基地局装置20が端末装置40に区分パターン候補情報を送信したが、区分パターン候補情報は、端末装置40に予め設定されていてもよい。例えば、端末装置40の記憶部42に、予め決められたデフォルトの区分パターンと、切り替え用の1つの区分パターンが設定されていてもよい。デフォルトの区分パターンと替え用の1つの区分パターンは、以下の(D1)~(D2)に示すようなものであってもよい。どちらを利用するかは、基地局装置20(例えば、基地局装置20)が、別途、DCI等を使って端末装置40に通知してもよい。
 (D1)デフォルト:全リソースブロック分の帯域幅×1スロット
 (D2)切り替え用:2リソースブロック分の帯域幅×1スロット
(設定例3)
 また、端末装置40には、デフォルトの区分パターンのみが予め設定されていてもよい。例えば、端末装置40の記憶部42に、デフォルトの区分パターンのみが予め設定されていてもよい。そして、基地局装置20は、端末装置40に送信データが発生する前に、制御信号(例えば、RRC signaling)を使って、端末装置40に区分パターンを1パターン通知してもよい。基地局装置20から区分パターンが通知された場合、端末装置40は、通知された区分パターンを使用して送信単位データを区分する。なお、基地局装置20から区分パターンが通知されなかった場合、端末装置40は、デフォルトの区分パターンを使用して送信単位データを区分してもよい。
 このとき、デフォルトの区分パターンは、送信単位データに含まれる全リソースブロックを1つのNOMA適用範囲とするものであってもよい。また、基地局装置20から通知される区分パターンは、1リソースブロックを1つのNOMA適用範囲とするものであってもよい。
(設定例4)
 端末装置40は、基地局装置20へのデータ送信のために割り当てられたリソースのサイズ(例えば、基地局装置20から割り当てられた全リソースブロックのサイズ)に応じて、使用する区分パターンを変更してもよい。
 例えば、1つの送信単位データに含まれる複数のNOMA適用範囲がすべて同じ大きさであるとする。このとき、基地局装置20から割り当てられた全リソースブロックの数が4つなのであれば、端末装置40は、1つのNOMA適用範囲の大きさを2リソースブロックとする。一方、基地局装置20から割り当てられた全リソースブロックの数が8つなのであれば、端末装置40は、1つのNOMA適用範囲の大きさを4リソースブロックとする。
 なお、区分パターンの候補は複数あってもよい。例えば、基地局装置20から割り当てられた全リソースブロックの数が4つであるとする。このとき、区分パターンの候補は、「1リソースブロック/NOMA適用範囲」、「2リソースブロック/NOMA適用範囲」、「4リソースブロック/NOMA適用範囲」であってもよい。一方、基地局装置20から割り当てられた全リソースブロックの数が8つなのであるとする。このとき、区分パターンの候補は、「2リソースブロック/NOMA適用範囲」、「4リソースブロック/NOMA適用範囲」、「8リソースブロック/NOMA適用範囲」であってもよい。ここで、2リソースブロック/NOMA適用範囲は、1つの送信単位データに含まれる複数のNOMA適用範囲それぞれの大きさが2リソースブロックであることを示している。
 設定例4の場合も、端末装置40が使用する区分パターンは、端末装置40に割り当てられたリソースのサイズに基づいて、端末装置40が自ら決めてもよい。また、端末装置40が使用する区分パターンは、端末装置40に割り当てるリソースのサイズに基づいて、基地局装置20が決めてもよい。この場合、基地局装置20が、端末装置40に、使用する区分パターンを指定してもよい。
(設定例5)
 端末装置40は、データの送信モード(送信シーケンス)の違いに応じて、使用する区分パターンを変更してもよい。
 例えば、無線接続の場合、通信装置(例えば、端末装置40)が他の通信装置(例えば、基地局装置20)にデータを送信する送信モードには、Grant-based送信(第1の送信モード)と、Grant-free送信(第2の送信モード)とがある。Grant-based送信は、例えば、通信装置に送信データが発生した後に、他の通信装置から無線リソースが割り当てられる送信である。また、Grant-free送信は、例えば、通信装置に送信データが発生した後に、他の通信装置から無線リソースが割り当てられることのない送信である。Grant-based送信とGrant-free送信については後に詳しく述べる。
 端末装置40は、Grant-based送信の場合とGrant-free送信の場合とで、使用する区分パターンを変更してもよい。例えば、端末装置40は、Grant-based送信の場合には、送信単位データを区分する区分パターンとして、第1の区分パターンを使用する。一方、端末装置40は、Grant-free送信の場合には、送信単位データを区分する前記区分パターンとして、第1の区分パターンとは異なる第2の区分パターンを使用する。ここで、第1の区分パターンは基地局装置20から指定された区分パターンであってもよい。また、第2の区分パターンは、送信データの発生前に、基地局装置20等により端末装置40に予め設定されたもの(準静的に設定されたもの)であってもよい。
[区分パターンの指定例]
 基地局装置20が、端末装置40に対して、使用する区分パターンを指定する方法は様々な方法を採用可能である。
(指定例1)
 例えば、基地局装置20は、端末装置40に送信データが発生した後(例えば、端末装置40からリソースの割り当て要求があった後)、端末装置40が実際に使用する区分パターンを端末装置40に指定してもよい。
 例えば、端末装置40に送信データが発生する前に、端末装置40に複数の区分パターン候補が設定されたとする。この場合、基地局装置20は、端末装置40に送信データが発生した後、端末装置40が使用する区分パターンを指定するための情報を端末装置40に送信してもよい。
 例えば、上述の設定例1に示すように、基地局装置20が、事前に、制御信号(例えば、RRC signaling)を使って4つの区分パターンの候補を通知していたとする。そして、端末装置40の記憶部42がこれら4つの区分パターンの情報を記憶していたとする。このとき、基地局装置20は、端末装置40からリソースの割り当て要求があった後、DCIのうちの2ビットを使って4つの区分パターンのうち1つを通知する。そして、端末装置40は、DCIで指定された区分パターン(4つの区分パターンのうちのいずれか)を使ってNOMA送信処理を実行する。
 また、上述の設定例2に示すように、デフォルトと切り替え用の区分パターンがそれぞれ1パターンだけ端末装置40の記憶部42に設定されていたとする。このとき、基地局装置20は、DCIのうちの1ビットを使って、デフォルトの区分パターンを使用するか、切り替え用の区分パターンを使用するか、を通知する。そして、端末装置40は、DCIで指定された区分パターン(デフォルト若しくは切り替え用の区分パターン)を使ってNOMA送信処理を実行する。
 なお、以下の説明では、端末装置40が使用する区分パターンを指定するための情報のことを区分パターン指定情報という。基地局装置20が、DCIのうちの2ビットを使って、端末装置40が使用する区分パターンを指定したのであれば、当該2ビットが区分パターン指定情報である。また、基地局装置20が、DCIのうちの1ビットを使って、端末装置40が使用する区分パターンを指定したのであれば、当該1ビットが区分パターン指定情報である。
 なお、端末装置40は、基地局装置20に直交多重接続する他の端末装置40(以下、OMA端末ともいう。)が使用する直交リソースを使用して、基地局装置20に非直交多元接続(NOMA)をすることも可能である。例えば、OMA端末が大きな電力を使って基地局装置20にデータを送信するとすれば、端末装置40は、OMA端末が使用する時間・周波数リソース上で、小さな電力を使って基地局装置20にデータを送信することが可能である。
 この場合、基地局装置20は、DCIのうちの1ビットを使って、端末装置40が使用するリソースが、OMA端末が使用するリソースであるか否かを通知してもよい。この通知は、送信単位データに含まれる複数のNOMA適用範囲毎の情報であってもよい。例えば、ビットが0の場合は、当該NOMA適用範囲にはOMA端末の送信データは多重されておらず、ビットが1の場合は、当該NOMA適用範囲にはOMA端末の送信データが多重されていることを示す。
(指定例2)
 基地局装置20は、端末装置40に送信データが発生する前に(例えば、端末装置40からリソースの割り当て要求がある前に)、端末装置40が実際に使用する区分パターンを端末装置40に指定してもよい。
 例えば、基地局装置20は、制御信号(例えば、RRC signaling)を使っての区分パターン候補情報の通知無しに、DCIを使っての通知のみで、端末装置40が使用する区分パターンを指定してもよい。この場合、基地局装置20は、区分パターン指定情報として、あらかじめ仕様等で決定された区分パターン識別情報を通知してもよい。区分パターン識別情報は、区分パターンを識別するための情報である。一例として、区分パターン識別情報は以下の通りであってもよい。
 P0:全リソースブロック/NOMA適用範囲
 P1:4リソースブロック/NOMA適用範囲
 P2:2リソースブロック/NOMA適用範囲
 P3:1リソースブロック/NOMA適用範囲
 上述の例では、P0~P3がそれぞれ区分パターン識別情報である。ここで、「全リソースブロック/NOMA適用範囲は、1つの送信単位データを構成する全てのリソースブロックが1つのNOMA適用範囲であることを示す。また、4リソースブロック/NOMA適用範囲は、1つの送信単位データに含まれる複数のNOMA適用範囲それぞれの大きさが4リソースブロックであることを示す。また、2リソースブロック/NOMA適用範囲は、1つの送信単位データに含まれる複数のNOMA適用範囲それぞれの大きさが2リソースブロックであることを示す。また、1リソースブロック/NOMA適用範囲は、1つの送信単位データに含まれる複数のNOMA適用範囲それぞれの大きさが1リソースブロックであることを示す。なお、区分パターン識別情報は、単に番号であってもよい。区分パターン識別情報はインデックス等と言い換えることができる。
<<4.アンライセンスチャネルのチャネルアクセスプロシージャ>>
 基地局装置20のセンシング部231及び端末装置40のセンシング部251には、チャネルアクセス(Channel access, Listen before Talk)プロシージャに対応する機能を実装できる。
 チャネルアクセスプロシージャは、基地局装置20または端末装置40で送信を行うアンライセンスチャネルにアクセスするために行われる。ロードベース装置(LBE:Load-Based Equipment)と定義されるチャネルアクセスプロシージャでは、1回または複数回のチャネルのセンシング(sensing)が行われる。そのセンシングの結果に基づいてそのチャネルがアイドル(idle、unoccupied、available、enable)か、またはビジー(busy、occupied、unavailable、disable)かの判定(空き判定)が行われる。チャネルのセンシングでは、所定の待ち時間におけるチャネルの電力がセンス(sense)される。
 チャネルアクセスプロシージャの待ち時間の一例として、第一の待ち時間(スロット)、第二の待ち時間、および、第三の待ち時間(延期期間)、第四の待ち時間、が挙げられる。
 スロット(slot)は、チャネルアクセスプロシージャにおける、基地局装置20および端末装置40の待ち時間の単位である。スロットは、例えば、9マイクロ秒で定義される。
 第二の待ち時間には、1個のスロットが先頭に挿入されている。第二の待ち時間は、例えば、16マイクロ秒で定義される。
 延期期間(defer period)は、第二の待ち時間とその第二の待ち時間に続く複数個の連続したスロットで構成される。その第二の待ち時間に続く複数個の連続したスロットの個数は、QoSを満たすために用いられる優先クラス(priority class、チャネルアクセス優先クラス)に基づいて決定される。
 第四の待ち時間は、第二の待ち時間とその後に続く1つのスロットによって構成される。
 基地局装置20または端末装置40は、所定のスロットの期間に所定のチャネルをセンス(sense)する。その基地局装置20または端末装置40がその所定のスロット期間内の少なくとも4マイクロ秒に対して検出した電力が所定の電力検出閾値よりも小さい場合、その所定のスロットはアイドル(idle)であるとみなされる。一方で、その電力が所定の電力検出閾値よりも大きい場合、その所定のスロットはビジー(busy)であるとみなされる。
 チャネルアクセスプロシージャには、第一のチャネルアクセスプロシージャと第二のチャネルアクセスプロシージャがある。第一のチャネルアクセスプロシージャは、複数個のスロットおよび延期期間を用いて行われる。第二のチャネルアクセスプロシージャは、1つの第四の待ち時間を用いて行われる。
 チャネルアクセスに関するパラメータは、優先クラスに基づいて決定される。チャネルアクセスに関するパラメータは、例えば、最小衝突窓、最大衝突窓、最大チャネル専有時間、衝突窓が取り得る値、などが挙げられる。優先クラスは、QoS(Quality of Service)を処理するQCI(QoS class identifier)の値によって定められる。優先クラスとチャネルアクセスに関するパラメータの対応表を図22に示すと共に、優先クラスとQCIのマッピングの一例を図23に示す。
 図22は、優先クラスとパラメータの対応表の一例を示す図である。図22に示すように、優先クラス「1」には、最小衝突窓、最大衝突窓、最大チャネル専有時間、衝突窓が取り得る値の順に、3、7、2ms、{3,7}が対応する。また、優先クラス「2」には、最小衝突窓、最大衝突窓、最大チャネル専有時間、衝突窓が取り得る値の順に、7、15、3ms、{7,15}が対応する。また、優先クラス「3」には、最小衝突窓、最大衝突窓、最大チャネル専有時間、衝突窓が取り得る値の順に、15、63、8or10ms、{15,31,63}が対応する。また、優先クラス「4」には、最小衝突窓、最大衝突窓、最大チャネル専有時間、衝突窓が取り得る値の順に、15、1023、8or10ms、{15,31,63,127,255,511,1023}が対応する。
 図23は、優先クラスとQCIのマッピングの一例を示す図である。図23に示すように、優先クラス「1」には、QCI「1,3,5,65,66,69,70」が対応する。また、優先クラス「2」には、QCI「2,7」が対応する。また、優先クラス「3」には、QCI「4,6,8,9」が対応する。さらに、優先クラス「4」には、上記以外のQCIが対応する。
<4-1.第一のチャネルアクセスプロシージャの詳細>
 第一のチャネルアクセスプロシージャにおいて、以下に記した手順が行われる。
 (0)延期期間においてチャネルのセンシングが行われる。延期期間内のスロットにおいてチャネルがアイドルであった場合、(1)のステップに進み、そうでなければ、(6)のステップに進む。
 (1)カウンタの初期値を取得する。そのカウンタの初期値が取り得る値は、0から衝突窓CWまでの間の整数である。そのカウンタの初期値は、一様分布に従ってランダムに決定される。カウンタNにカウンタの初期値がセットされ、(2)のステップに進む。
 (2)カウンタNが0よりも大きく、かつ、そのカウンタNの減算を行うことが選択された場合、カウンタNから1が減算される。その後、(3)のステップに進む。
 (3)スロットの期間を追加して待機される。また、その追加のスロットにおいて、チャネルがセンスされる。その追加のスロットがアイドルであった場合は、(4)のステップに進み、そうでなければ、(5)のステップに進む。
 (4)カウンタNが0であった場合、このプロシージャを停止する。そうでなければ、(2)のステップに進む。
 (5)延期期間を追加して待機される。また、その追加の延期期間に含まれるいずれか1つのスロットでビジーと検出されるまで、または、その追加の延期期間に含まれる全てのスロットがアイドルであると検出できるまで、チャネルはセンスされる。その後、(6)のステップに進む。
 (6)チャネルがその追加の延期期間に含まれるスロットの全てでアイドルであるとセンスされた場合、(4)のステップに進み、そうでなければ、(5)のステップに進む。
 上記のプロシージャにおける(4)のステップの停止後、そのチャネルにおいて、PDSCHやPUSCHなどデータを含む送信が行われる。
 なお、上記のプロシージャにおける(4)のステップの停止後、そのチャネルにおいて、送信が行われなくてもよい。この場合、その後、送信直前にスロットおよび延期期間の全てにおいて、チャネルがアイドルであった場合に、上記のプロシージャを行わずに送信が行われてもよい。一方で、そのスロットおよびその延期期間のいずれかにおいて、チャネルがアイドルでなかった場合に、追加の延期期間内のスロットの全てでチャネルがアイドルであるとセンシングされた後、上記のプロシージャの(1)のステップに進む。
<4-2.第二のチャネルアクセスプロシージャの詳細>
 第二のチャネルアクセスプロシージャにおいて、少なくとも第四の待ち時間のセンシングの結果、チャネルがアイドルであるとみなされた直後、送信は行われてもよい。一方で、少なくとも第四の待ち時間のセンシングの結果、チャネルがアイドルでないとみなされた場合は、送信は行われない。
<4-3.衝突窓適応プロシージャ>
 第一のチャネルアクセスプロシージャで用いられる衝突窓CW(contention window)は、衝突窓適応プロシージャに基づいて決定される。
 衝突窓CWの値は、優先クラスごとに保持される。また、衝突窓CWは、最小衝突窓と最大衝突窓の間の値を取る。その最小衝突窓およびその最大衝突窓は、優先クラスに基づいて決定される。
 衝突窓CWの値の調整は、第一のチャネルアクセスプロシージャの(1)のステップの前に行われる。少なくとも衝突窓適応プロシージャにおける参照サブフレームまたは参照HARQプロセスの共用チャネルに対応するHARQ応答でNACKの割合が閾値よりも高い場合、衝突窓CWの値を増加させ、そうでなければ、衝突窓CWの値を最小衝突窓に設定する。
 衝突窓CWの値の増加は、例えば、CW=2・(CW+1)-1の式に基づいて行われる。
<4-4.下りリンクにおけるチャネルアクセスプロシージャの詳細>
 アンライセンスチャネルにおいて、PDSCH、PDCCH、および/または、EPDCCHを含んだ下りリンク送信を行う場合、基地局装置20は、第一のチャネルアクセスプロシージャに基づいて、そのチャネルにアクセスし、その下りリンク送信を行う。
 一方で、アンライセンスチャネルにおいて、DRSを含むがPDSCHを含まない下りリンク送信を行う場合、基地局装置20は、第二のチャネルアクセスプロシージャに基づいて、そのチャネルにアクセスし、その下りリンク送信を行う。なお、その下りリンク送信の期間は、1ミリ秒よりも小さいことが好ましい。
<4-5.上りリンクにおけるチャネルアクセスプロシージャの詳細>
 アンライセンスチャネルにおいて、PUSCHをスケジュールする上りリンクグラントで第一のチャネルアクセスプロシージャを行うことを指示された場合、端末装置40は、そのPUSCHを含んだ上りリンク送信の前に第一のチャネルアクセスプロシージャを行う。
 また、PUSCHをスケジュールする上りリンクグラントで第二のチャネルアクセスプロシージャを行うことを指示された場合、端末装置40は、そのPUSCHを含んだ上りリンク送信の前に第二のチャネルアクセスプロシージャを行う。
 また、PUSCHは含まないがSRSは含む上りリンク送信に対しては、端末装置40は、その上りリンク送信の前に第二のチャネルアクセスプロシージャを行う。
 また、上りリンクグラントで指示された上りリンク送信の末尾が上りリンク期間(UL duration)内であった場合、その上りリンクグラントで指示されたプロシージャタイプにかかわらず、端末装置40は、その上りリンク送信の前に第二のチャネルアクセスプロシージャを行う。
 また、基地局装置20からの下りリンク送信終了後に第四の待ち時間を挟んで上りリンク送信が続く場合、端末装置40は、その上りリンク送信の前に第二のチャネルアクセスプロシージャを行う。
<4-6.本実施形態におけるNRのチャネルアクセスプロシージャ>
 NRを用いたアンライセンスチャネルでのチャネルアクセスプロシージャでは、ビームフォームされていないチャネルセンシングとビームフォームされたチャネルセンシングが行われる。
 ビームフォームされていないチャネルセンシングは、指向性が制御されない受信によるチャネルセンシング、または、方向の情報を持たないチャネルセンシングである。方向の情報を持たないチャネルセンシングとは、例えば、全方位で測定結果を平均化されたチャネルセンシングである。送信局は、チャネルセンシングで用いられた指向性(角度、方向)を認知しなくてもよい。
 ビームフォームされたチャネルセンシングは、指向性が制御された受信によるチャネルセンシング、または、方向の情報を持つチャネルセンシングである。すなわち、受信ビームが所定の方向に向けられたチャネルセンシングである。ビームフォームされたチャネルセンシングを行う機能を有する送信局は、異なる指向性を用いた1回以上のチャネルセンシングを行うことができる。
 ビームフォームされたチャネルセンシングを行うことで、センシングによって検出されるエリアを狭める。これにより、送信局は、干渉を与えない通信リンクの検出の頻度を減らし、さらし端末問題を軽減することができる。
<4-7.フレームベース装置(FBE)のチャネルアクセス>
 図24は、フレームベース装置(FBE、Frame Based Equipment)の概要を説明するための図である。図24の上段は、横軸を時間軸としたCCA(Channel Clear Assessment)のタイミングを示している。図24の下段は、横軸を時間軸とした送信のタイミングを示している。
 図24に示すように、フレームベース装置(FBE、Frame Based Equipment)と定義されるチャネルアクセス(Channel access, Listen before Talk)プロシージャは、送信前に1回のチャネルのセンシング(sensing)が行われる。そのセンシングの結果に基づいてそのチャネルがアイドル(idle、unoccupied、available、enable)か、またはビジー(busy、occupied、unavailable、disable)かの判定(空き判定)が行われる。チャネルのセンシングでは、所定の待ち時間におけるチャネルの電力がセンス(sense)される。
 フレームベース装置に用いられる送信および/または受信構成は、固定フレーム区間(Fixed Frame Period)と称される周期的なタイミングを有する。
 フレームベース装置のチャネルアクセスにおいて、固定フレーム区間が設定される。固定フレーム区間は、1ミリ秒から10ミリ秒の間で設定される。固定フレーム区間は、200ミリ秒間で1度のみ変更可能である。
 フレームベース装置のチャネルアクセスでは、固定フレーム区間の先頭からの送信開始直前に、装置はチャネルのセンシングを行う。装置は、9マイクロ秒以下で構成される1スロットを用いて1度センシングを行う。チャネルのセンシングの結果、電力値が所定の電力検出閾値よりも大きい場合、チャネルはビジーであると思われる。一方、電力値が所定の電力検出閾値よりも小さい場合、チャネルはクリアであり、装置は送信することができる。装置は、チャネル専有時間(Channel Occupancy Time)の間、送信することができる。装置は、チャネル専有時間内かつ複数送信間のギャップが16マイクロ秒以下であれば、センシングを行わずに複数送信を行うことができる。一方で、複数送信間のギャップが16マイクロ秒を超える場合、装置は追加のチャネルセンシングを行う必要がある。追加のチャネルセンシングも同様に、1スロットを用いて1度センシングが行われる。
 フレームベース装置のチャネルアクセスにおけるチャネル専有時間は、固定フレーム区間の95%を超えない。フレームベース装置のチャネルアクセスにおけるアイドル区間(Idle Period)は、固定フレーム区間の5%以上である。なお、アイドル区間は、100マイクロ秒以上である。
 装置からの送信に対する応答(ACK/NACK、HARQ-ACK)の送信は、チャネル専有時間内で行われても良い。
<4-8.指向性LBT(Directional LBT)>
 無指向LBT(Omni-directional LBT)に対して、チャネルのセンシングに指向性を有する方法として、指向性LBTが挙げられる。指向性LBTでは、所定の指向における受信電力の測定が行われる。すなわち、所定の指向以外の指向の測定は行われない。
 これにより、測定する方向が限定されるため、影響の受けないデバイスからの送信によってビジーになる頻度を抑えることができる。
 指向性LBTでは、LBT成功した方向にのみ、物理信号および/または物理チャネルを送信することができる。
<4-9.受信アシストLBT(Receiver assisted LBT)>
 本来送信装置のみが行うLBTに対して、本実施形態における受信アシストLBTとは、受信装置からの情報も用いるLBTである。
 受信アシストLBTの一例として、受信装置からのチャネル状態のフィードバックを用いたLBTが挙げられる。送信装置は、受信装置からのチャネル状態の情報に基づいて、LBTの成否およびLBTパラメータを調整する。チャネル状態は、同オペレータ間セル間干渉、異オペレータ間セル間干渉、異RAT間干渉、などを含む。調整されるLBTパラメータは、例えば、LBT閾値、衝突窓、などが挙げられる。
 受信アシストLBTの一例として、受信装置からの応答情報を用いたLBTが挙げられる。
 送信装置は、LBT成功後に、受信装置に対して物理チャネルおよび/または物理信号を送信する。当該物理チャネルおよび/または物理信号を受信した受信装置は、所定のLBTを行う。当該所定のLBTが成功した場合は、受信装置は送信装置に対して応答を送信し、当該所定のLBTが失敗した場合は、受信装置は送信装置に対して非応答を送信、または、何も送信しない。送信装置は、受信装置からの応答情報に基づいて、チャネル占有が成功したか否かを判断する。
<4-10.本実施形態におけるチャネル占有>
 LTEにおけるアンライセンス帯運用において、基地局装置20は、端末装置40に対して、CC-RNTIでスクランブルされたCRCが付加されたPDCCHの情報によって、チャネル占有情報を通知する。
 CC-RNTIでスクランブルされたCRCが付加されたPDCCHは、送信されたサブフレームおよび次のサブフレームに対するチャネル占有情報が含まれる。チャネル占有情報は、送信されたサブフレームおよび次のサブフレームの中で、どのシンボルまでチャネルが占有されるかを示す情報である。
 更に、CC-RNTIでスクランブルされたCRCが付加されたPDCCHは、上りリンクのリソースに関する情報を通知することができる。上りリンクの情報は、上りリンクの長さおよび送信されたPDCCHからを基準とした開始位置を指示するオフセットの組み合わせによって、通知される。当該PDCCHによって上りリンクと通知されたリソース(サブフレーム)では、端末装置40は、下りリンクを受信することを要求されない。これにより、端末装置40は、該上りリンクのリソースにおいて、下りリンク受信処理の一部をスキップすることができる。
<<5.チャネル占有情報>>
 チャネル占有情報として、時間領域の情報に加え、周波数領域、空間領域および/またはコード領域の情報が通知される。ここでは、あくまで一例として、基地局装置20の通知部232から端末装置40へチャネル占有情報の通知が行われる場合を例に挙げる。なお、端末装置40の通知部452から基地局装置20へチャネル占有情報の通知が行われる例については下記の<変形例>で後述する。
<5-1.時間領域の情報>
 時間領域に対するチャネル占有情報とは、一例として、以下の情報が挙げられる。
(1)区間、時間
 上記の「区間」や「時間」に関するチャネル占有情報には、所定の区間でチャネルを占有できるか否かの情報、チャネルを占有できる区間のうちの一部は少なくともチャネル占有する予定である情報、あるいはチャネルを占有できる残り時間の情報などが含まれ得る。
(2)スロット数、シンボル数
 上記の「スロット数」や「シンボル数」に関するチャネル占有情報には、チャネルを占有できるスロット数および/またはシンボル数の情報が含まれ得る。
(3)最大チャネル占有時間
 上記の「最大チャネル占有時間」に関するチャネル占有情報には、チャネル取得タイミングからのチャネルが占有できる最大時間の情報などが含まれ得る。
(4)チャネルアクセスプライオリティ
 上記の「チャネルアクセスプライオリティ」に関するチャネル占有情報には、チャネルの占有に用いたLBTのチャネルアクセスプライオリティの情報などが含まれ得る。
<5-2.周波数領域の情報>
 周波数領域に対するチャネル占有情報とは、一例として、以下の情報が挙げられる。
(1)キャリア
 上記の「キャリア」に関するチャネル占有情報には、所定のキャリアでチャネルを占有できたか否かの情報や中心周波数などが含まれ得る。
(2)セル
 上記の「セル」に関するチャネル占有情報には、所定のセルでチャネルを占有できたか否かの情報やSecondary cellのindexなどが含まれ得る。
(3)サブバンド
 上記の「サブバンド」に関するチャネル占有情報には、所定のサブバンドでチャネルが占有できたか否かの情報などが含まれ得る。なお、サブバンドは、一例として、5GHz帯における20MHz帯域幅で構成される。また、サブバンドは、LBTの最小単位の帯域幅として、用いられる。新たなサブバンドインデックスとして定義され、通知される。
(4)BWP(Bandwidth Part)
 上記の「BWP」に関するチャネル占有情報には、所定のBWPでチャネルが占有できたか否かの情報などが含まれ得る。例えば、BWPインデックスによって、BWPが通知される。BWPは、RRCによって設定される。
(5)周波数ポーション
 上記の「周波数ポーション」に関するチャネル占有情報には、所定の周波数ポーションでチャネルが占有できたか否かの情報などが含まれ得る。例えば、周波数ポーションは、最低周波数位置(lowest frequency point)と最高周波数位置(highest frequency point)の組み合わせ、または、最低周波数位置と帯域幅の組み合わせ、などで表すことができる。さらに、周波数ポーションは、最低リソースブロックインデックスと最高リソースブロックインデックスの組み合わせ、または、最低リソースブロックインデックスとリソースブロック数の組み合わせ、などでも表すことができる。この他、周波数ポーションは、最低サブキャリアインデックスと最高サブキャリアインデックスの組み合わせ、または、最低サブキャリアインデックスとサブキャリア数の組み合わせ、などでも表すことができる。
(6)チャネル番号
 上記の「チャネル番号」に関するチャネル占有情報には、所定のチャネル番号を示す帯域のチャネルが占有できたか否かの情報などが含まれ得る。チャネル番号は、図25に示す通り、帯域と対応付けられる。
 図25は、チャネル番号と帯域の対応関係の一例を示す図である。図25には、周波数領域に対するチャネル占有の一例として、40MHzのチャネル占有が行われた帯域および80MHzのチャネル占有が行われた帯域が網掛けで示されている。すなわち、NRの場合、最大で100MHzのチャネル占有が可能であるので、20MHzのチャネル占有しかできなかったLTEに比べて、40MHzのチャネル占有や80MHzのチャネル占有が可能である。例えば、図25に斜線の網掛けで示す40MHzのチャネル占有が行われた場合、チャネル番号「23」及び「24」をチャネル占有情報として通知することができる。また、図25に縦線の網掛けで示す80MHzのチャネル占有が行われた場合、チャネル番号「21」~「24」をチャネル占有情報として通知することができる。
<5-3.空間領域の情報>
 空間領域に対するチャネル占有情報とは、一例として、以下の情報が挙げられる。
(1)ビームの情報
 上記の「ビームの情報」に関するチャネル占有情報には、所定の送信ビームでチャネルを占有できたか否かの情報などが含まれ得る。例えば、送信ビームの情報の例として、ビームインデックス、SS/PBCHインデックス、CSI-RSポートに対応するインデックス、TCI状態、QCL想定を示す情報、などが挙げられる。
(2)送信点の位置、高度、空間の情報
 以下、「送信点」とは、基地局装置20から端末装置40へチャネル占有情報が送信される場合、基地局装置20を指し、また、端末装置40から基地局装置20へチャネル占有情報が送信される場合、端末装置40を指すこととする。
 上記の送信点の「位置」や「高度」、「空間」に関するチャネル占有情報には、所定の位置でチャネルを占有できたか否かの情報、所定の高度でチャネルを占有できたか否かの情報、所定の空間でチャネルを占有できたか否かの情報などが含まれ得る。この他、所定のゾーンIDでチャネルを占有できたか否かの情報であってもかまわない。ここで言う「ゾーンID」とは、2次元平面が緯度および経度で分割されたゾーン、あるいは3次元空間が緯度、経度および標高で分割されたゾーンの識別情報を指す。
(3)AoD(Angle of Departure)の情報
 上記の「AoDの情報」に関するチャネル占有情報には、所定の水平角でチャネルを占有できたか否かの情報、所定の仰角でチャネルを占有できたか否かの情報などが含まれ得る。
(4)隣接基地局、隣接セル、TRP(transmission and reception point)の情報
 上記の「隣接基地局」、「隣接セル」、「TRP」に関するチャネル占有情報には、当該チャネル占有情報の送信元の送信点のみならず、その送信点に隣接する送信点に関する情報が含まれる。例えば、所定の基地局でチャネルを占有できたか否かの情報、所定のセルでチャネルを占有できたか否かの情報、所定のTRPでチャネルを占有できたか否かの情報、所定のTCIステートでチャネルを占有できたか否かの情報などが含まれ得る。隣接基地局、隣接セル、TRP(transmission and reception point)の識別情報は、セルID、キャリアID、SS/PBCH(SSB)インデックス、TRP ID、PDSCHスクランブルID、PUSCHスクランブルID、DMRSスクランブルID、などで示される。
(5)偏波の情報
 上記の「偏波」に関するチャネル占有情報には、所定の偏波を使ってチャネルを占有できたか否かの情報などが含まれ得る。偏波の識別情報は、例えば、送信アンテナポート、などで示される。
<5-4.コード領域の情報>
 コード領域に対するチャネル占有情報とは、一例として、以下の情報が挙げられる。
(1)MA signature
 上記の「MA signature」に関するチャネル占有情報には、所定のMA signatureを用いてチャネルを占有できたか否かの情報などが含まれ得る。
(2)直交コードの情報
 上記の「直交コード」に関するチャネル占有情報には、所定の直交コードを用いてチャネルを占有できたか否かの情報などが含まれ得る。
(3)スクランブルに関する情報
 上記の「スクランブル」に関するチャネル占有情報には、所定のスクランブルシーケンスを用いてチャネルを占有できたか否かの情報などが含まれ得る。
(4)拡散コードの情報
 上記の「拡散コード」に関するチャネル占有情報には、所定の拡散コードを用いてチャネルを占有できたか否かの情報などが含まれ得る。
(5)重畳(スーパーポジション)に関する情報
 上記の「重畳」に関するチャネル占有情報には、所定の電力または電力比を使ってチャネルを占有できたか否かの情報などが含まれ得る。
(6)復調用参照信号(Demodulation Reference Signal:DMRS)の情報
 NOMA多重次元は、復調用参照信号の直交次元に紐づいて表すことができる。このような側面から、上記の「復調用参照信号」に関するチャネル占有情報には、所定のDMRSポートを使ってチャネルを占有できたか否かの情報や所定のDMRSシーケンスを使ってチャネルを占有できたか否かの情報などを含めることができる。
<<6.チャネル占有内におけるリンクを示す情報>>
 チャネル占有情報に加え、以下のチャネル占有内におけるリンクを示す情報が通知される。
 以下のリンクを示す情報が通知されることによって、端末装置40の受信処理および送信処理の負荷を軽減することができるという効果を得ることができる。例えば、負荷が軽減可能な受信処理の一例として、PDCCHモニタリング、下りリンクチャネルのバッファリング、下りリンク信号のブラインド検出、下りリンク帯域のフィルタリング、下りリンクの同期、などが挙げられる。また、負荷が軽減可能な送信処理の一例として、LBT処理、送信信号生成、送信フィルタリング設定、などが挙げられる。ここで言う「負荷の軽減」とは、上記の受信処理や上記の送信処理として例示された処理のスキップ、または、頻度の低下、を指す。
<6-1.下りリンクの情報>
 下りリンクの情報とは、下りリンクのリソースであることを示す情報を指す。下りリンクの情報は、更に、下記の<6-1-1>~下記の<6-1-8>の分類に細分化されてもよい。
<6-1-1.下りリンクが送信されるリソースの情報>
 下りリンクが送信されるリソースの情報は、(1)連続する下りリンクリソースの開始位置および区間の情報、(2)下りリンクとして活用可能なシンボルの位置にさらに細分化できる。
(1)連続する下りリンクリソースの開始位置および区間の情報
 下りリンクリソースの開始位置および区間の情報は、開始および区間指示(start and length indicator:SLIV)によって、通知されることが好ましい。
(2)下りリンクとして活用可能なシンボルの位置
 下りリンクとして活用可能なシンボルの位置は、SFIによって通知されることが好ましい。
<6-1-2.PDCCHモニタリングに関する情報>
 PDCCHモニタリングに関する情報は、(1)PDCCHモニタリングを行うか否かを指示する情報、(2)PDCCHモニタリングパターンに関する情報にさらに細分化できる。
(1)PDCCHモニタリングを行うか否かを指示する情報
 端末装置40は、PDCCHモニタリングを行うか否かを指示する情報を受信した場合、設定されたPDCCHモニタリングオケージョンを用いて、PDCCHモニタリングを行う。一方で、端末装置40は、PDCCHモニタリングを行うか否かを指示する情報を受信しなかった場合、設定されたPDCCHモニタリングオケージョンでは、PDCCHモニタリングを行わない。
(2)PDCCHモニタリングパターンに関する情報
 端末装置40は、複数のPDCCHモニタリングオケージョンの設定のうち、PDCCHモニタリングパターンに関する情報に対応するPDCCHモニタリングオケージョンを用いて、PDCCHモニタリングを行う。
<6-1-3.CSI-RS送信に関する情報>
 CSI-RSは、CSI測定、時間/周波数トラッキング、RRM測定、RLM測定、および/または、チャネル占有の維持、の側面から送られる。例えば、上記のCSI-RS送信に関する情報に加えて、時間領域および周波数領域に関する情報が送られた場合、通知された区間かつ帯域幅において、CSI-RSが送信されていると、端末装置40は認識する。
(1)所定の端末動作に関する情報
 例えば、端末装置40が所定の端末動作に関する情報を受信した場合、CSI-RSを用いた所定の端末動作は行うが、CSI-RSを用いたその他の端末動作は行わなくてよい。具体的には、端末装置40が所定の端末動作に関する情報を受信した場合、RRM測定およびRLM測定は行うが、CSI測定は行わなくてよい。これにより、端末装置40の動作負荷が軽減される結果、端末消費電力の軽減につながるという効果を得ることができる。
<6-1-4.CSI-IM送信に関する情報>
 CSI-IMは、RRM測定のための干渉測定、RLM測定のための干渉測定、CSI測定のための干渉測定、などの側面から送られる。例えば、CSI-IM送信に関する情報に加えて、時間領域および周波数領域に関する情報が送られた場合、通知された区間かつ帯域幅において、CSI-IMが送信されていると、端末装置40は認識する。
(1)所定の端末動作に関する情報
 例えば、端末装置40が所定の端末動作に関する情報を受信した場合、CSI-IMを用いた所定の端末動作は行うが、CSI-IMを用いたその他の端末動作は行わなくてよい。具体的には、端末装置40が所定の端末動作に関する情報を受信した場合、RRM測定およびRLM測定は行うが、CSI測定は行わなくてよい。これにより、端末装置40の動作負荷が軽減される結果、端末消費電力の軽減につながるという効果を得ることができる。
<6-1-5.SS/PBCHブロックに関する情報>
 SS/PBCHブロック(SSB、SSブロック)は、セルサーチ、時間/周波数同期、RRM測定、および/または、チャネル占有の維持、の側面から送られる。ここで、SS/PBCHブロックに関する情報は、(1)SS/PBCHブロックの送信に関する情報、(2)SS/PBCHブロックのQCLに関する情報にさらに細分化できる。
(1)SS/PBCHブロックの送信に関する情報
 例えば、SS/PBCHブロックの送信に関する情報は、SS/PBCHブロックの配置パターンに関する情報であってよい。例えば、CaseA、CaseB、CaseC、CaseD、CaseEのいずれかの配置パターンを適用していることを示す情報である。なお、配置パターンは、上記のCaseA、CaseB、CaseC、CaseD、CaseEに限らず、新たな配置パターンも適用してもよい。
 また、SS/PBCHブロックの送信に関する情報は、SS/PBCHブロックの配置パターンにおける、所定のSS/PBCHブロックの位置において、SS/PBCHブロックが送信しているか否か(actual SS/PBCH block transmission)を示す情報であってもかまわない。
(2)SS/PBCHブロックのQCLに関する情報
 例えば、SS/PBCHブロックのQCLに関する情報には、所定のSS/PBCHブロックのQCL(quasi-co-location)の情報などであってよい。例えば、SS/PBCHブロックに適用されているQCL数の情報などを含めることができる。一例として、QCL数の情報が1である場合、送信されるSS/PBCHブロックの全てが同じビームを適用していると、端末装置40は認識する。この場合、用いられているビームはオムニビームと想定してもよい。
<6-1-6.CORESET送信に関する情報>
 CORESET送信に関する情報は、(1)CORESET設定に関する情報、(2)CORESET設定のパラメータに関する情報にさらに細分化できる。
(1)CORESET設定に関する情報
 例えば、CORESET設定に関する情報には、複数CORESETのうち、当該チャネル占有中において有効なCORESET設定を示す情報が含まれ得る。このように有効なCORESETが通知されることで、チャネルを占有したサブバンドに配置されるCORESETのみを用いて、CCE-REGマッピングを行うことができる。
(2)CORESET設定のパラメータに関する情報
 例えば、CORESET設定のパラメータに関する情報は、CORESET設定のパラメータの一部を、チャネル占有ごとに指定する情報であってよい。
<6-1-7.AGCシンボル送信に関する情報>
 予約信号は、少なくとも、端末装置40に対するAGC(Autonomous Gain Control)、の側面から送られる。例えば、AGCシンボル送信に関する情報は、AGCシンボルの送信位置に関する情報などであってかまわない。
<6-1-8.予約信号送信に関する情報>
 予約信号は、少なくとも、チャネル占有の維持、の側面から送られる。例えば、予約信号送信に関する情報は、予約信号の送信位置に関する情報などであってかまわない。
<6-2.上りリンクの情報>
 上りリンクの情報とは、上りリンクのリソースであることを示す情報を指す。上りリンクの情報は、更に、下記の<6-2-1>~下記の<6-2-6>の分類に細分化されてもよい。
<6-2-1.PUSCHが送信可能なリソースの情報>
 PUSCHが送信可能なリソースの情報は、(1)スケジュール(グラント)されたPUSCHのみ送信可能なリソースの情報、(2)グラントフリー(configured grant)のPUSCHのみ送信可能なリソースの情報、(3)スケジュールされたPUSCHとグラントフリーのPUSCHの両方とも送信可能なリソースの情報にさらに細分化できる。
(1)スケジュールされたPUSCHのみ送信可能なリソースの情報
 上記(1)のリソースでは、上りリンクグラントを受けたPUSCHのみ送信する。また、上記(1)のリソースでは、グラントフリーのPUSCHは送信することが禁止される。
(2)グラントフリーのPUSCHのみ送信可能なリソースの情報
 上記(2)のリソースとconfigured grantで設定されたリソースが被った場合に、configured grantのPUSCHは送信することができる。
(3)スケジュールされたPUSCHとグラントフリーのPUSCHの両方とも送信可能なリソースの情報
 上記(3)のリソースでは、スケジュールされたPUSCHとグラントフリーのPUSCHの両方とも送信する。
<6-2-2.PUCCHが送信可能なリソースの情報>
 PUCCHが送信可能なリソースの情報は、所定のPUCCHフォーマットに対する送信可能なリソースの情報などであってかまわない。例えば、所定のPUCCHフォーマットに対する送信可能なリソースの情報は、PUCCHフォーマット0および2に対する送信可能なPUCCHリソースの情報であってかまわない。また、所定のPUCCHフォーマットに対する送信可能なリソースの情報は、PUCCHフォーマット1、3、および4に対する送信可能なPUCCHリソースの情報であってもかまわない。
<6-2-3.PRACHが送信可能なリソースの情報>
 PRACHが送信可能なリソースの情報は、(1)所定のRACHオケージョンが有効か否かを示す情報、(2)所定のRACH設定が有効か否かを示す情報にさらに細分化できる。
(1)所定のRACHオケージョンが有効か否かを示す情報
 RACHオケージョンが有効であると上記(1)の情報で指示された場合、端末装置40は、PRACH送信を有している場合に、当該RACHオケージョンを用いてPRACHを送信する。
(2)所定のRACH設定が有効か否かを示す情報
 端末装置40に複数のRACH設定が設定された場合、上記(2)の情報によって、各RACH設定が有効であるか否かが示される。
<6-2-4.SRS(Sounding Reference Signal)が送信可能なリソースの情報>
 SRSが送信可能なリソースの情報は、(1)周期的(periodic)SRSまたは準永続的(semi-persistent)SRSの送信可能なリソースの情報、(2)非周期的(aperiodic)SRSの送信トリガの情報にさらに細分化できる。
(1)周期的SRSまたは準永続的SRSの送信可能なリソースの情報
 周期的SRSの送信が許可されない場合、SRSは送信しない。
(2)非周期的SRSの送信トリガの情報
 チャネル占有の情報の一部として、非周期的SRSの送信トリガを、端末装置40に送ることができる。非周期的SRSの送信トリガが送られた場合、そのリソースは上りリンクのリソースであると、端末装置40は認識することができる。
<6-2-5.LBTに関する情報>
 LBTに関する情報は、(1)LBTタイプに関する情報、(2)LBTカテゴリに関する情報、(3)LBTパラメータに関する情報にさらに細分化できる。
(1)LBTタイプに関する情報
 LBTタイプに関する情報には、上りリンクの送信前に行われるLBTが、タイプ1を行うか、タイプ2を行うか、の情報が含まれ得る。
(2)LBTカテゴリに関する情報
 LBTカテゴリに関する情報には、上りリンクの送信前に行われるLBTが、LBTカテゴリ1、LBTカテゴリ2、または、LBTカテゴリ4であるか、の情報が含まれ得る。
(3)LBTパラメータに関する情報
 LBTパラメータに関する情報には、上りリンクの送信前に行われるLBTの電力検出閾値に関する情報が含まれ得る。また、LBTパラメータに関する情報には、上りリンクの送信前に行われるLBTの衝突窓に関する情報が含まれ得る。また、LBTパラメータに関する情報には、上りリンクの送信前に行われるLBTのプリアンブル検出に関する情報が含まれ得る。また、LBTパラメータに関する情報には、上りリンクの送信前に行われるLBTを行う帯域幅に関する情報が含まれ得る。また、LBTパラメータに関する情報には、上りリンクの送信前に行われるLBTのランダムバックオフカウンタの情報が含まれる。
 このように、LBTに関する情報は、占有チャネル内で発生する上りリンク送信に対して適用される。なお、占有チャネル外で発生する上りリンク送信に対するLBTに関する情報は、別途、通知されてもよい。
<6-2-6.上りリンクの送信タイミングに関する情報>
 上りリンクの送信タイミングに関する情報には、上りリンクの送信開始タイミングの情報が含まれ得る。送信開始タイミングは、スロットインデックス、シンボルインデックス、または、センシングスロットを示すインデックス、などで表される。端末装置40は、指定された送信開始タイミングにおいて、何かしらの信号および/またはチャネル(例えば、予約信号)の送信を開始する。
<6-3.その他の情報>
 その他の情報とは、上りリンクでも下りリンクでもないリソースであることを示す情報を指す。この情報も、チャネル占有に関する情報として、通知することができる。その他の情報は、更に、下記の<6-3-1>~下記の<6-3-9>の分類に細分化されてもよい。
<6-3-1.下りリンク/上りリンク間のスイッチングギャップの情報>
 下りリンク/上りリンク間のスイッチングギャップの情報には、下りリンクから上りリンクへのスイッチングギャップの情報が含まれ得る。また、下りリンク/上りリンク間のスイッチングギャップの情報には、上りリンクから下りリンクへのスイッチングギャップの情報が含まれ得る。また、上りリンクから下りリンクへのスイッチングギャップの情報には、ギャップ区間の情報が含まれる。例えば、16us、25us、1シンボル、などを表す情報が通知される。
<6-3-2.ポーズの情報>
 ポーズの情報には、何の信号の送信も行わない区間の情報が含まれ得る。ポーズと指示された区間では、チャネルを取得した送信装置および受信装置の両方で信号の送信が行われないが、ポーズと指示された区間を過ぎてもチャネルを占有し続けることができる。
<6-3-3.サイドリンクの情報>
 サイドリンクの情報には、サイドリンクに利用可能なリソースの情報が含まれ得る。
<6-3-4.同一RAT同じオペレータのチャネル占有情報>
 同一RAT同じオペレータのチャネル占有情報には、サービングセル、隣接セル、他の端末装置40のいずれかががチャネルを占有していることを示す情報が含まれ得る。このような情報を用いることにより、同じオペレータ基地局装置のチャネル状態の測定、などに利用することが可能となる。
<6-3-5.同一RAT他のオペレータのチャネル占有情報>
 同一RAT他のオペレータのチャネル占有情報には、他のオペレータの通信装置が占有していることを示す情報が含まれ得る。このような情報を用いることにより、他のオペレータの通信装置からのチャネル状態の測定、などに利用することが可能となる。さらには、オペレータ間コーディネーションにも活用できる。
<6-3-6.他のRATのチャネル占有情報>
 ここで言う「他のRAT」には、一例として、802.11などが対応し得る。例えば、他のRATのチャネル占有情報は、チャネルがビジーである情報、である。このような情報を用いることにより、他のRATの通信装置からのチャネル状態の測定、などに利用することが可能となる。
<6-3-7.占有したチャネルのリリースに関する情報>
 占有したチャネルのリリースに関する情報には、以降のチャネルはリリースしたことを示す情報やいつからチャネルをリリースする予定であるかを示す情報などが含まれ得る。このようにチャネルをリリースしたことを通知することで、他の通信装置がチャネルを取得し易くなる。ここで、占有したチャネルのリリースに関する情報の宛先には、一例として、他の通信装置(基地局や、キャンプされてないUE、他のRAT)が設定される。
<6-3-8.チャネルを占有する(LBTを試みる)予定の情報>
 チャネルを占有する予定の情報には、どの将来の区間でLBTを試みるかの情報、どのチャネルを送信する予定であるかの情報、どのLBTカテゴリでLBTを行うかの情報、どのチャネルアクセスプライオリティでLBTを行うかの情報などが含まれ得る。このようにLBTのタイミングを通知することで、他の通信装置がそのリソースでLBTを行うことを避けることができ、チャネルを取得し易くなる。
<6-3-9.端末装置の起動およびスリープに関する情報>
 端末装置の起動およびスリープに関する情報は、(1)端末装置が起動されるタイミングの情報、(2)端末装置がスリープされるタイミングの情報にさらに細分化される。
(1)端末装置が起動されるタイミングの情報
 例えば、端末装置が起動されるタイミングの情報は、起きるタイミングおよび期間、スリープタイマのリセットまたは停止、などに対応し得る。ここで言う「端末装置の起動」とは、所定の動作を開始することを指す。
(2)端末装置がスリープされるタイミングの情報
 例えば、端末装置がスリープされるタイミングの情報は、起きなければならない残り時間、スリープタイマの起動、などに対応し得る。ここで言う「端末装置のスリープ」とは、所定の動作を停止することを指す。
 上記(1)および上記(2)で言う「所定の動作」の一例として、PDCCHモニタリング、下りリンク同期、下りリンクトラッキング、チャネル状態の測定、帯域のフィルタリング、PDSCHのバッファリング、などが挙げられる。
<<7.チャネル占有情報の通知手段>>
 基地局装置20から端末装置40へチャネル占有情報を通知する手段の例を挙げる。
 例えば、チャネル占有情報が通知されるキャリアの一例として、チャネルが占有できたチャネル、チャネルが占有できたチャネルとは異なるアンライセンスチャネル、あるいはライセンスチャネルが挙げられる。
 また、チャネル占有情報が通知されるタイミングの一例として、(1)チャネル取得時、(2)スロットの先頭が挙げられる。
(1)チャネル取得時
 例えば、チャネル占有情報は、チャネルが取得できた直後に通知することができる。
(2)スロットの先頭
 また、チャネル占有情報は、占有できるチャネル長の残りの長さなどを通知することができる。
<7-1.共有PDCCHまたはグループ共有PDCCH>
 例えば、チャネル占有情報は、下記の<7-1-1>~下記の<7-1-2>に従って通知される。
<7-1-1.SFI(Slot Format Indicator)の情報による通知>
 基地局装置20は、SFI(DCIフォーマット2_0)を含んだPDCCHを送信した場合、該PDCCHの情報によってチャネル占有情報を通知する。端末装置40は、SFI(DCIフォーマット2_0)を含んだPDCCHを受信した場合、該PDCCHの情報によってチャネル占有情報を取得する。このように取得されたチャネル占有情報に基づいて、端末装置40は、所定リソースのチャネルおよびリンク情報を認識する。以下、時間軸通知、周波軸通知、空間軸通知、コード軸通知の順にフォーマット構成の例を挙げる。
[時間軸通知のフォーマット構成]
 例えば、時間軸通知のフォーマットには、(A)SFIが示す情報、(B)SFIとチャネル占有長の情報の組み合わせ、(C)SFIの個数を用いることができる。
(A)SFIが示す情報
 SFIが示すインデックスに対応するシンボルとリンク方向の構成を用いて、チャネル占有情報を通知する。例えば、SFIのフォーマットインデックスの0から55は、1つのスロットに対するリンク方向の構成を示す。加えて、55以降に定義されるフォーマットインデックスによって、連続する2つ以上のスロットに対するリンク方向の構成を示すことができる。
(B)SFIとチャネル占有長の情報の組み合わせ
 SFIが示すインデックスに対応するシンボルとリンク方向の構成と、チャネル占有長の情報を用いて、チャネル占有情報を通知する。チャネル占有長を超えたSFIのリンク方向の指示は、無効であると、端末装置40は認識する。
(C)SFIの個数
 SFIの個数によって、チャネル占有の長さの情報を通知する。残りのチャネル占有の長さに応じて、通知するSFIの個数が決まる。
[周波数軸通知のフォーマット構成]
 例えば、周波数軸通知のフォーマットには、(A)周波数帯域に対応したビットマップ情報、(B)SFIの個数、(C)周波数帯域の開始位置および幅の情報、(D)BWPインデックス、(E)サブバンドインデックス、(F)SFIが示す情報、(G)CORESETの情報、(H)サーチスペースの情報を用いることができる。
(A)周波数帯域に対応したビットマップ情報
 チャネルを占有した周波数帯域の情報を、各周波数帯域に対応するビットの集合(ビットマップ)で、周波数軸におけるチャネル占有情報を通知する。
(B)SFIの個数
 SFIの個数によって、チャネルを占有した周波数帯域の情報を通知する。例えば、2個のSFIを通知することで、2個の周波数帯域を占有したと認識させることができる。
(C)周波数帯域の開始位置および幅の情報
 チャネルを占有した周波数帯域の開始位置および幅の情報によって、周波数軸におけるチャネル占有情報を通知することができる。
(D)BWPインデックス
 複数設定されたBWPのうち、チャネルが占有できたBWPインデックスが通知される。
(E)サブバンドインデックス
 複数設定されたサブバンド組み合わせが予めインデックスとしてシステム情報やRRCシグナリングなどで設定され、チャネルが占有できたサブバンド組み合わせに対応するインデックスが通知される。
(F)SFIが示す情報
 例えば、SFIのフォーマットインデックスの0から55は、1つのサブバンドまたはバンドまたはセルに対するリンク方向の構成を示す。加えて、55以降に定義されるフォーマットインデックスによって、連続する2つ以上のサブバンドまたはバンドまたはセルに対するリンク方向の構成を示すことができる。
(G)CORESETの情報
 CORESETの情報(例えば、CORESETインデックス)が通知される。通知されたCORESETが置かれる周波数帯域はチャネル占有したと端末装置は認識することができる。
(H)サーチスペースの情報
 サーチスペースの情報(例えば、サーチスペースインデックス、サーチスペースの周波数位置、など)が通知される。通知されたサーチスペースが置かれる周波数帯域はチャネル占有したと端末装置は認識することができる。
 なお、初期アクセス中(アイドル状態または非活動状態)は、周波数軸通知はされなくてもよい。初期アクセス中の端末装置は、1つの初期サブバンド(initial sub-band)を用いて通信を行う。
[空間軸通知のフォーマット構成]
 例えば、空間軸通知のフォーマットには、(A)空間情報(例えば、ビームや、送信点)に対応したビットマップ情報、(B)SFIの個数、(C)ビームインデックスまたはTCI状態、(D)SFIが示す情報、(E)CORESETの情報、(F)サーチスペースの情報、(G)DCIの情報、を用いることができる。
(A)空間情報に対応したビットマップ情報
 チャネルを占有したビームや送信点の情報を、各ビームや送信点に対応するビットの集合(ビットマップ)で、空間軸におけるチャネル占有情報を通知する。
(B)SFIの個数
 SFIの個数によって、チャネルを占有したビームや送信点の情報を通知する。
(C)ビームインデックスまたはTCI状態
 複数設定されたビームまたはTCI状態のうち、チャネルが占有できたビームインデックスまたはTCI状態のインデックスが通知される。
(D)SFIが示す情報
 例えば、SFIのフォーマットインデックスの0から55は、1つの空間領域に対するリンク方向の構成を示す。加えて、55以降に定義されるフォーマットインデックスによって、2つ以上の空間領域に対するリンク方向の構成を示すことができる。
(E)CORESETの情報
 CORESETの情報(例えば、CORESETインデックス)が通知される。各CORESETが各空間領域に対応する。例えば、CORESET#0はSSB#0に対応し(SSB#0とQCLされ)、CORESET#1はSSB#1に対応する(SSB#1とQCLされる)。端末装置は、CORESETの情報を通じて、チャネル占有された空間領域を認知することができる。
(F)サーチスペースの情報
 サーチスペースの情報(例えば、サーチスペースインデックス、サーチスペースの周期、など)が通知される。各サーチスペースが各空間領域に対応する。例えば、サーチスペース#0はSSB#0に対応し(SSB#0とQCLされ)、サーチスペース#1はSSB#1に対応する(SSB#1とQCLされる)。端末装置は、サーチスペースの情報を通じて、チャネル占有された空間領域を認知することができる。
(G)DCIの情報
 DCIの情報(例えば、DCIフォーマット、RNTI、など)が通知される。各DCIが各空間領域に対応する。例えば、所定のRNTIで送られるDCIは、SSB#0に対応し、異なる所定のRNTIで送られるDCIは、SSB#1に対応する。端末装置は、DCIの情報を通じて、チャネル占有された空間領域を認知することができる。
 なお、初期アクセス中(アイドル状態または非活動状態)は、空間軸通知はされなくてもよい。初期アクセス中の端末装置は、1つの初期ビームを用いて通信を行う。
[コード軸通知のフォーマット構成]
 例えば、コード軸通知のフォーマットには、コードに対応したビットマップ情報やSFIの個数、SFIが示す情報、などを用いることができる。
 なお、初期アクセス中(アイドル状態または非活動状態)は、コード軸通知はされなくてもよい。初期アクセス中の端末装置は、1つの初期コードを用いて通信を行う。
<7-1-2.SI-RNTIでスクランブルされたCRCが付加されたPDCCH検出>
 基地局装置20は、SI-RNTIでスクランブルされたCRCを付加したPDCCHを送信した場合、所定の期間は下りリンクであると通知する。端末装置40は、SI-RNTIでスクランブルされたCRCを付加したPDCCHを受信した場合、所定の期間は下りリンクである、と認識する。
 ここで言う「所定の期間」の一例として、DRSが送信される期間が挙げられる。例えば、DRS(Discovery Reference Signal)とは、少なくとも、SS/PBCHブロック、SIB1を含むPDSCH、SI-RNTIでスクランブルされたCRCを付加したPDCCH、を含んだ物理信号/チャネルのセットである。
<7-2.PDCCHに対応するDMRS(DMRS associated with PDCCH)>
 基地局装置20は、当該DMRSを送信した場合、所定の期間、所定の周波数および所定の空間のうち少なくともいずれか1つもしくはこれらの組み合わせが下りリンクである、と通知する。端末装置40は、当該DMRSを検出した場合、所定の期間、所定の周波数および所定の空間のうち少なくともいずれか1つもしくはこれらの組み合わせが下りリンクである、と認識する。
 上記の「所定の期間」として、下記(1)~下記(6)の例が挙げられる。
 (1)DMRSを検出したシンボルから、そのDMRSを検出したスロットのスロット境界まで
 (2)DMRSを検出したシンボルから、上位層から指定されたスロット数および/またはシンボル数経った後における直近のスロット境界まで
 (3)DMRSを検出したシンボルから、そのCORESETの終了シンボルまで
 (4)DMRSを検出したシンボルから、次のCORESETの開始シンボルまで
 (5)DMRSを検出したシンボルから、SFIを含むPDCCHが置かれる次のCORESETの開始シンボルまで
 (6)DMRSを検出したシンボルから、当該PDCCHの復号に要する時間まで
 上記の「所定の周波数」として、下記(1)~下記(3)の例が挙げられる。
 (1)DMRSを検出したチャネル
 (2)DMRSシーケンスによって指示されるチャネル
 (3)DMRSが置かれた帯域幅
 上記の「所定の空間」として、下記(1)~下記(3)の例が挙げられる。
 (1)DMRSにQCLされたSS/PBCHまたはCSI-RSが構成するビーム
 (2)DMRSにQCLされた送信点
 (3)DMRSシーケンスによって指示されたビームまたは送信点
 これら「所定の期間」、「所定の周波数」および「所定の空間」の間でチャネル占有情報を通知する手段として用いることが可能なDMRSの例として、下記(A)~下記(D)のタイプのDMRSが挙げられる。
 (A)共有PDCCHまたはグループ共有PDCCHのDMRS
 (B)端末装置固有PDCCHのDMRS
 (C)共有PDCCHまたはグループ共有PDCCHの広帯域DMRS
 (D)端末装置固有PDCCHの広帯域DMRS
 上記(C)における「広帯域DMRS」とは、PDCCHのプレコーダの単位(precoderGranularity)が設定されているCORESETのリソースブロックの全体(allContigousRBs)である、PDCCHのDMRSである。
 なお、基地局装置20は、PDCCHを送信せず、当該DMRSのみ送信してもよい。
<7-3.CSI-RS>
 基地局装置20は、CSI-RSを送信した場合、所定の期間は下りリンクであると通知する。端末装置40は、CSI-RSを検出した場合、所定の期間は下りリンクであると認識する。上記の「所定の期間」として、下記(1)~下記(2)の例が挙げられる。
 (1)CSI-RSを検出したシンボルから、スロット境界まで
 (2)DMRSを検出したシンボルから、上位層から指定されたスロット数および/またはシンボル数経った後における直近のスロット境界まで
<7-4.SS/PBCHブロック>
 基地局装置20は、SS/PBCHブロックを送信した場合、所定の端末装置40に対して所定の期間は下りリンクであると通知する。端末装置40は、SS/PBCHブロックを受信した場合、所定の期間は下りリンクであると認識する。上記の「所定の期間」として、下記(1)~下記(2)の例が挙げられる。
 (1)SS/PBCHブロックが配置されるシンボル
 (2)DRSが送信される期間
<7-5.端末装置固有PDCCH>
 基地局装置20は、端末装置固有PDCCHを送信した場合、所定の端末装置40に対して所定の期間は下りリンクであると通知する。端末装置40は、端末装置固有PDCCHを受信した場合、所定の期間は下りリンクであると認識する。上記の「所定の期間」として、下記(1)~下記(2)の例が挙げられる。
 (1)端末装置固有PDCCHが置かれたCORESETの期間
 (2)端末装置固有PDCCHがスケジュールPDSCHの期間
<7-6.初期信号(initial signal)、初期チャネル>
 初期信号または初期物理チャネルは、起動信号(wake-up signal)、プリアンブル(preamble)、とも呼称される。初期信号は、下りリンクバーストの先頭で送られる。初期信号は、例えば、802.11で規定されるプリアンブル(Wi-Fiプリアンブル)、NR端末装置および802.11デバイスが共通に受信可能な信号または物理チャネル、が想定される。
 802.11で規定されるプリアンブルには、少なくともSTF(Short Training Field)、LTF(Long Training Field)、SIG(Signal)が、含まれる。その他、拡張されたSIG(例えば、VH-SIG、)など、含まれても良い。
<<8.通信システムの動作>>
 ここでは、通信システムの動作例として、<8-1.基地局装置が取得した場合のチャネル占有情報通知プロシージャ>、<8-2.端末装置が取得した場合のチャネル占有情報通知プロシージャ>、<8-3.チャネル占有情報取得における例外処理>、<8-4.FBE(Frame Based Equipment)におけるチャネル占有情報の通知>について説明する。
<8-1.基地局装置が取得した場合のチャネル占有情報通知プロシージャ>
 Step1:基地局装置20は、チャネル占有のための、LBTを試みる。
 Step2:LBTの結果、チャネルアクセスに成功した場合、基地局装置20は、物理信号および/または物理チャネルを送信する。
 Step3:基地局装置20は、端末装置40に対して、基地局装置20がチャネル占有を行ったチャネル占有情報を通知する。
 Step4:端末装置40は、Step3で受け取ったチャネル占有情報に基づいて、上りリンクの送信処理および/または下りリンクの受信処理を行う。
<8-2.端末装置が取得した場合のチャネル占有情報通知プロシージャ>
 Step1:端末装置40は、チャネル占有のための、LBTを試みる。
 Step2:LBTの結果、チャネルアクセスに成功した場合、端末装置40は、基地局装置20に対して、物理信号および/または物理チャネルを送信する。
 Step3:端末装置40は、基地局装置20に対して、端末装置40がチャネル占有を行ったチャネル占有情報を通知する。
 Step4:基地局装置20は、Step3で受け取ったチャネル占有情報に基づいて、下りリンクの送信処理を行う。
<8-3.チャネル占有情報取得における例外処理>
 例えば、以前に受信・設定されたチャネル占有情報とは異なるチャネル占有情報を受信した場合の端末装置40の動作は、下記(1)および下記(2)とすることができる。
 (1)チャネル占有情報をアップデートする。
 (2)異なるチャネル占有情報を無視する。
 また、チャネル占有情報を受信できなかった場合の端末装置40の動作は、下記(1)および下記(2)とすることができる。
 (1)端末装置40は、デフォルトのチャネル占有情報を参照する。
 (2)端末装置40は、そのリソース領域において、下りリンクとも上りリンクとも使用されていないと認識する。
 さらに、異なるチャネル占有情報を複数同時に受信した場合の端末装置40の動作は、下記(1)および下記(2)とすることができる。ここで、異なるチャネル占有情報を複数同時に受信した場合とは、複数のPDCCHによってSFIが同時に通知された場合、などが挙げられる。
 (1)チャネル占有情報の共通部分のみをチャネル占有状態として認識し、その他の部分は無効であると認識する。
 (2)優先順位に基づいてSFIの情報を適用する。
 例えば、上記(2)において、異なるキャリアからSFIの情報が送られてきた場合には、チャネル占有したキャリアから送られるSFIの情報よりも優先順位が低く設定される。また、上記(2)において、ライセンスキャリアからSFIの情報が送られてきた場合には、アンライセンスキャリアからのSFIの情報よりも優先順位が高く設定される。
<8-4.FBE(Frame Based Equipment)におけるチャネル占有情報の通知>
 FBEにおいても、周波数領域、空間領域、および/または、コード領域におけるチャネル占有情報が通知される。例えば、基地局装置20は、当該チャネル占有情報を、端末装置40に対して通知する。一方、端末装置40は、当該チャネル占有情報から、チャネル占有された時間、周波数、空間、および/または、コード領域を認識する。
 ここで、FBEにおけるチャネル占有情報の通知の手法の一例として、(1)共有PDCCHまたはグループ共有PDCCH、(2)PDCCHに対応するDMRS(DMRS associated with PDCCH)などが挙げられる。
 また、FBEとLBEの両方をサポートする通信装置において、FBEまたはLBEのいずれかを用いているかを通知する情報を、チャネル占有情報に含めても良い。例えば、FBEかLBEかを示すビットをチャネル占有情報に含めることができる。あくまで一例として、所定のビットが0を示す場合にはFBE、1であった場合にはLBEと、端末装置40に認識させることができる。また、FBE/LBE特有な情報をチャネル占有情報に含めることもできる。あくまで一例として、周期が通知された場合にはFBE、そうでなければLBEと、端末装置40に認識させることができる。また、別の一例として、共有PDCCHのRNTIによって、FBEかLBEかを示すことができる。端末装置は、FBE用RNTIで通知された場合には、FBEと判断し、LBE用RNTIで通知された場合には、LBEと判断する。また、別の一例として、通知タイミングによって、FBEかLBEかを示すことができる。端末装置は、FBEのフレームの先頭で通知された場合には、FBEと判断し、それ以外のタイミングで通知された場合には、LBEと判断する。
 なお、FBEの基地局装置は、チャネル占有と同時に同期信号を送信してもよい。FBEに対応するデバイスは、基地局装置から送信される同期信号に基づいて、フレーム同期を行う。なお、当該同期信号にはクロックに関する情報が含まれても良い。
 なお、FBEの基地局装置によって、チャネル占有されていなくても、FBEとLBEの両方に対応するデバイスは、FBEの基地局装置に占有されていないチャネルにおいて、LBEによるチャネル取得を行ってもよい。
<<9.変形例>>
 上述の実施形態は一例を示したものであり、種々の変更及び応用が可能である。
<9-1.チャネル占有情報の通知手段>
 上記の<7.チャネル占有情報の通知手段>では、基地局装置20から端末装置40へチャネル占有情報を通知する手段の例を挙げたが、当然のことながら、端末装置40の通知部452から基地局装置20へチャネル占有情報の通知が行われてもよい。
 すなわち、端末装置40から基地局装置20へ通知されるチャネル占有情報は、上記で説明した基地局装置20から端末装置40へ通知されるチャネル占有情報と、同等のものを用いることができる。
 このようなチャネル占有情報に加えて、下記(1)~下記(4)の情報を通知することもできる。
(1)端末装置の位置情報
 端末装置40が端末装置40の位置情報を基地局装置20へ通知することで、基地局装置20は、当該位置情報をセルの制御に活用することができる。例えば、上記の「位置情報」は、GNSS(Global Navigation Satellite System)またはポジショニングRSによって推定された位置情報であってもよいし、他のポジショニング技術を用いて推定された位置情報であってもかまわない。
(2)端末装置が受ける干渉に関する情報
 端末装置40は、端末装置40が受ける干渉に関する情報を基地局装置20へ通知することで、基地局装置20は、当該端末装置40が受ける干渉に関する情報をセルの制御に活用することができる。
 例えば、端末装置40が受ける干渉に関する情報の一例として、平均RSSIが挙げられる。ここで挙げる「平均RSSI」は、全区間における平均RSSIであってもよいし、また、所定区間における平均RSSIであってもかまわない。
 また、端末装置40が受ける干渉に関する情報の他の一例として、チャネル占有率が挙げられる。ここで挙げる「チャネル占有率」は、全区間におけるチャネル占有率であってもよいし、また、所定区間におけるチャネル占有率であってもかまわない。
 また、端末装置40が受ける干渉に関する情報の更なる一例として、隣接セルのRSRPが挙げられる。ここで挙げる「隣接セルのRSRP」は、同オペレータの隣接セルのRSRPであってもよいし、また、他オペレータの隣接セルのRSRPであってもかまわない。
 また、端末装置40が受ける干渉に関する情報の他の一例として、他オペレータのRSSIやRLM測定に関する情報が挙げられる。
 また、端末装置40が受ける干渉に関する情報の更なる一例として、他RATのRSSIが挙げられる。ここで挙げる「他RATのRSSI」は、全区間における同RAT以外のRSSIであってもよいし、また、全区間における所定のRATのRSSIであってもよいし、また、所定の区間における同RAT以外のRSSIであってもよいし、所定の区間における所定のRATのRSSIであってもかまわない。
(3)端末装置が受信するチャネル状態情報
 端末装置40は、端末装置40が受信するチャネル状態情報の一例として、CSI情報やRSRPの情報を基地局装置20へ通知することもできる。
(4)チャネル占有に用いたLBTに関する情報
 端末装置40は、チャネル占有に用いたLBTに関する情報を基地局装置20へ通知することもできる。
 例えば、チャネル占有に用いたLBTに関する情報の一例として、(A)チャネルアクセスプライオリティクラス、(B)上りリンクのLBT成功/失敗回数などが挙げられる。
(A)チャネルアクセスプライオリティクラス
 例えば、チャネルアクセスプライオリティクラスは、チャネルを取得した際に用いたLBTのプライオリティクラスの情報であってかまわない。
(B)上りリンクのLBT成功/失敗回数
 ここで挙げる「上りリンクのLBT成功/失敗回数」は、所定の区間における上りリンクのLBT成功/失敗回数、または、LBT成功/失敗頻度であってよい。また、「上りリンクのLBT成功/失敗回数」は、所定のチャネルに対する上りリンクのLBT成功/失敗回数であってもよい。また、「上りリンクのLBT成功/失敗回数」は、所定のLBTカテゴリに対する上りリンクのLBT成功/失敗回数であってもよい。さらに、「上りリンクのLBT成功/失敗回数」は、LBT失敗の要因に関する情報であってもよい。このようなLBT失敗の要因に関する情報の一例として、どのデバイスからのチャネル占有によってLBT失敗したか、の情報が挙げられる。例えば、LTEまたはNRの情報(セルID、SS/PBCHインデックス、CSI-RSポート、端末装置ID(RNTI))や、802.11デバイスの識別情報(BSSカラー)、などを用いることができる。
 なお、端末装置40から基地局装置20へチャネル占有情報を通知する手法には、下記(1)~下記(3)の例が挙げられる。
(1)UCI
 当該UCIは、PUSCHに含まれて送信される。なお、当該UCIは、PUCCHに含まれて送信されてもよい。
(2)PRACH
 PRACHオケージョンまたはPRACHプリアンブルまたはPRACHシーケンスに紐づいて、チャネル占有情報が通知されてもよい。
(3)SRS
 SRSリソースまたはSRSシーケンスに紐づいて、チャネル占有情報が通知されてもよい。
<9-2.その他の変形例>
 本実施形態の管理装置10、基地局装置20、中継装置30、又は、端末装置40を制御する制御装置は、専用のコンピュータシステムで実現してもよいし、汎用のコンピュータシステムで実現してもよい。
 例えば、上述の動作を実行するためのプログラムを、光ディスク、半導体メモリ、磁気テープ、フレキシブルディスク等のコンピュータ読み取り可能な記録媒体に格納して配布する。そして、例えば、該プログラムをコンピュータにインストールし、上述の処理を実行することによって制御装置を構成する。このとき、制御装置は、管理装置10、基地局装置20、中継装置30、又は、端末装置40の外部の装置(例えば、パーソナルコンピュータ)であってもよい。また、制御装置は、管理装置10、基地局装置20、中継装置30、又は、端末装置40の内部の装置(例えば、制御部23、又は、制御部45)であってもよい。
 また、上記通信プログラムをインターネット等のネットワーク上のサーバ装置が備えるディスク装置に格納しておき、コンピュータにダウンロード等できるようにしてもよい。また、上述の機能を、OS(Operating System)とアプリケーションソフトとの協働により実現してもよい。この場合には、OS以外の部分を媒体に格納して配布してもよいし、OS以外の部分をサーバ装置に格納しておき、コンピュータにダウンロード等できるようにしてもよい。
 また、上記実施形態において説明した各処理のうち、自動的に行われるものとして説明した処理の全部又は一部を手動的に行うこともでき、あるいは、手動的に行われるものとして説明した処理の全部又は一部を公知の方法で自動的に行うこともできる。この他、上記文書中や図面中で示した処理手順、具体的名称、各種のデータやパラメータを含む情報については、特記する場合を除いて任意に変更することができる。例えば、各図に示した各種情報は、図示した情報に限られない。
 また、図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散・統合の具体的形態は図示のものに限られず、その全部又は一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的又は物理的に分散・統合して構成することができる。
 また、上記してきた実施形態は、処理内容を矛盾させない領域で適宜組み合わせることが可能である。また、本実施形態のシーケンス図或いはフローチャートに示された各ステップは、適宜順序を変更することが可能である。
 以上説明したように、本開示の一実施形態によれば、基地局装置20及び端末装置40等の通信装置は、チャネルのセンシングの成功時に時間領域以外の他の領域の情報をチャネル占有情報として相手先の通信装置へ通知する。
 このように選択されるプライマリシステムの空中通信装置は、セカンダリシステムの通信装置からプライマリシステムの空中通信装置への干渉が所定のレベル以下に制御される。
 これにより、時間領域以外の他の領域の情報が相手先の通信装置で活用される結果、チャネル占有情報として時間領域の情報だけが通知される場合よりも、相手先の通信装置における受信処理、あるいは送信処理などの負荷を十分に軽減する。結果として、高い通信パフォーマンスを実現する。
 以上、本開示の各実施形態について説明したが、本開示の技術的範囲は、上述の各実施形態そのままに限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。また、異なる実施形態及び変形例にわたる構成要素を適宜組み合わせてもよい。
 また、本明細書に記載された各実施形態における効果はあくまで例示であって限定されるものでは無く、他の効果があってもよい。
 なお、本技術は以下のような構成も取ることができる。
(1)
 アンライセンスバンドでチャネルのセンシングを行うセンシング部と、
 前記センシングの成功時にチャネルの占有が行われたチャネル占有情報として、空間領域の情報を他の通信装置に通知する通知部と、を備える、
 通信装置。
(2)
 前記通知部は、前記チャネル占有情報として、前記通信装置が送信するビームの情報を通知する、
 前記(1)に記載の通信装置。
(3)
 前記ビームの情報は、ビームインデックス、SS/PBCHインデックス、CSI-RSポートに対応するインデックス及びTCI状態のうち少なくともいずれか1つまたはこれらの組み合わせを含み得る、
 前記(2)に記載の通信装置。
(4)
 前記通知部は、前記チャネル占有情報として、前記通信装置が送信するビームの水平角又は仰角の情報を通知する、
 前記(1)に記載の通信装置。
(5)
 前記通知部は、前記チャネル占有情報として、前記通信装置と隣接する通信装置、前記通信装置に割り当てられたセルと隣接するセル、又は、TRPの情報を通知する、
 前記(1)に記載の通信装置。
(6)
 前記通知部は、前記チャネル占有情報として、前記通信装置が送信するビームの偏波の情報を通知する、
 前記(1)に記載の通信装置。
(7)
 前記通知部は、前記チャネル占有情報として、前記空間領域の情報に対応するビットマップ情報を通知する、
 前記(1)に記載の通信装置。
(8)
 前記通知部は、前記チャネル占有情報として、前記空間領域の情報がSFIの個数によってフォーマットされた情報を通知する、
 前記(1)に記載の通信装置。
(9)
 前記通知部は、前記チャネル占有情報として、前記通信装置が占有中である上りリンクのリソースの情報をさらに通知する、
 前記(1)に記載の通信装置。
(10)
 前記通知部は、前記チャネル占有情報として、前記通信装置が占有中である下りリンクのリソースの情報をさらに通知する、
 前記(1)に記載の通信装置。
(11)
 前記通知部は、前記チャネル占有情報として、前記通信装置が占有中である上りリンク、又は、前記通信装置が占有中である下りリンクのいずれでもないリソースをさらに通知する、
 前記(1)に記載の通信装置。
(12)
 前記通知部は、前記チャネル占有情報として、周波数領域の情報をさらに通知する、
 前記(1)に記載の通信装置。
(13)
 前記通知部は、前記チャネル占有情報として、コード領域の情報をさらに通知する、
 前記(1)に記載の通信装置。
(14)
 アンライセンスバンドでチャネルのセンシングを行い、
 前記センシングの成功時にチャネルの占有が行われたチャネル占有情報として、空間領域の情報を他の通信装置に通知する、
 通信方法。
(15)
 前記通知することは、前記チャネル占有情報として、前記通信装置が送信するビームの情報を通知する、
 前記(14)に記載の通信方法。
(16)
 前記ビームの情報は、ビームインデックス、SS/PBCHインデックス、CSI-RSポートに対応するインデックス及びTCI状態のうち少なくともいずれか1つまたはこれらの組み合わせを含み得る、
 前記(15)に記載の通信方法。
(17)
 前記通知することは、前記チャネル占有情報として、前記通信装置が送信するビームの水平角又は仰角の情報を通知する、
 前記(14)に記載の通信方法。
(18)
 前記通知することは、前記チャネル占有情報として、前記通信装置と隣接する通信装置、前記通信装置に割り当てられたセルと隣接するセル、又は、TRPの情報を通知する、
 前記(14)に記載の通信方法。
(19)
 通信装置が有するコンピュータを、
 アンライセンスバンドでチャネルのセンシングを行うセンシング部、
 前記センシングの成功時にチャネルの占有が行われたチャネル占有情報として、空間領域の情報を他の通信装置に通知する通知部、
 として機能させるための通信プログラム。
(20)
 前記通知部は、前記チャネル占有情報として、前記通信装置が送信するビームの情報を通知する、
 前記(19)に記載の通信プログラム。
(21)
 前記ビームの情報は、ビームインデックス、SS/PBCHインデックス、CSI-RSポートに対応するインデックス及びTCI状態のうち少なくともいずれか1つまたはこれらの組み合わせを含み得る、
 前記(20)に記載の通信プログラム。
(22)
 前記通知部は、前記チャネル占有情報として、前記通信装置が送信するビームの水平角又は仰角の情報を通知する、
 前記(19)に記載の通信プログラム。
(23)
 前記通知部は、前記チャネル占有情報として、前記通信装置と隣接する通信装置、前記通信装置に割り当てられたセルと隣接するセル、又は、TRPの情報を通知する、
 前記(19)に記載の通信プログラム。
 1 通信システム
 10 管理装置
 20 基地局装置
 30 中継装置
 40 端末装置
 12、22、32、42 記憶部
 211、311、411 受信処理部
 211a、411a 無線受信部
 211b、411b 多重分離部
 211c、411c 復調部
 211d、411d 復号部
 212、312、412 送信処理部
 212a、412a 符号化部
 212b、412b 変調部
 212c、412c 多重部
 212d、412d 無線送信部
 213、313、413 アンテナ
 231、451 センシング部
 232、452 通知部

Claims (20)

  1.  アンライセンスバンドでチャネルのセンシングを行うセンシング部と、
     前記センシングの成功時にチャネルの占有が行われたチャネル占有情報として、空間領域の情報を他の通信装置に通知する通知部と、を備える、
     通信装置。
  2.  前記通知部は、前記チャネル占有情報として、前記通信装置が送信するビームの情報を通知する、
     請求項1に記載の通信装置。
  3.  前記ビームの情報は、ビームインデックス、SS/PBCHインデックス、CSI-RSポートに対応するインデックス及びTCI状態のうち少なくともいずれか1つまたはこれらの組み合わせを含み得る、
     請求項2に記載の通信装置。
  4.  前記通知部は、前記チャネル占有情報として、前記通信装置が送信するビームの水平角又は仰角の情報を通知する、
     請求項1に記載の通信装置。
  5.  前記通知部は、前記チャネル占有情報として、前記通信装置と隣接する通信装置、前記通信装置に割り当てられたセルと隣接するセル、又は、TRPの情報を通知する、
     請求項1に記載の通信装置。
  6.  前記通知部は、前記チャネル占有情報として、前記通信装置が送信するビームの偏波の情報を通知する、
     請求項1に記載の通信装置。
  7.  前記通知部は、前記チャネル占有情報として、前記空間領域の情報に対応するビットマップ情報を通知する、
     請求項1に記載の通信装置。
  8.  前記通知部は、前記チャネル占有情報として、前記空間領域の情報がSFIの個数によってフォーマットされた情報を通知する、
     請求項1に記載の通信装置。
  9.  前記通知部は、前記チャネル占有情報として、前記通信装置が占有中である上りリンクのリソースの情報をさらに通知する、
     請求項1に記載の通信装置。
  10.  前記通知部は、前記チャネル占有情報として、前記通信装置が占有中である下りリンクのリソースの情報をさらに通知する、
     請求項1に記載の通信装置。
  11.  前記通知部は、前記チャネル占有情報として、前記通信装置が占有中である上りリンク、又は、前記通信装置が占有中である下りリンクのいずれでもないリソースをさらに通知する、
     請求項1に記載の通信装置。
  12.  前記通知部は、前記チャネル占有情報として、周波数領域の情報をさらに通知する、
     請求項1に記載の通信装置。
  13.  前記通知部は、前記チャネル占有情報として、コード領域の情報をさらに通知する、
     請求項1に記載の通信装置。
  14.  アンライセンスバンドでチャネルのセンシングを行い、
     前記センシングの成功時にチャネルの占有が行われたチャネル占有情報として、空間領域の情報を他の通信装置に通知する、
     通信方法。
  15.  前記通知することは、前記チャネル占有情報として、前記通信装置が送信するビームの情報を通知する、
     請求項14に記載の通信方法。
  16.  前記通知することは、前記チャネル占有情報として、前記通信装置が送信するビームの水平角又は仰角の情報を通知する、
     請求項14に記載の通信方法。
  17.  前記通知することは、前記チャネル占有情報として、前記通信装置と隣接する通信装置、前記通信装置に割り当てられたセルと隣接するセル、又は、TRPの情報を通知する、
     請求項14に記載の通信方法。
  18.  通信装置が有するコンピュータを、
     アンライセンスバンドでチャネルのセンシングを行うセンシング部、
     前記センシングの成功時にチャネルの占有が行われたチャネル占有情報として、空間領域の情報を他の通信装置に通知する通知部、
     として機能させるための通信プログラム。
  19.  前記通知部は、前記チャネル占有情報として、前記通信装置が送信するビームの情報を通知する、
     請求項18に記載の通信プログラム。
  20.  前記通知部は、前記チャネル占有情報として、前記通信装置が送信するビームの水平角又は仰角の情報を通知する、
     請求項18に記載の通信プログラム。
PCT/JP2020/028179 2019-08-15 2020-07-20 通信装置、通信方法、及び通信プログラム WO2021029192A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021539185A JPWO2021029192A1 (ja) 2019-08-15 2020-07-20
CN202080056167.3A CN114208349A (zh) 2019-08-15 2020-07-20 通信设备、通信方法和通信程序
EP20851439.8A EP4017060A4 (en) 2019-08-15 2020-07-20 COMMUNICATION DEVICE, COMMUNICATION METHOD AND COMMUNICATION PROGRAM
US17/629,789 US20220256598A1 (en) 2019-08-15 2020-07-20 Communication device, communication method, and communication program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-149220 2019-08-15
JP2019149220 2019-08-15

Publications (1)

Publication Number Publication Date
WO2021029192A1 true WO2021029192A1 (ja) 2021-02-18

Family

ID=74571053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028179 WO2021029192A1 (ja) 2019-08-15 2020-07-20 通信装置、通信方法、及び通信プログラム

Country Status (5)

Country Link
US (1) US20220256598A1 (ja)
EP (1) EP4017060A4 (ja)
JP (1) JPWO2021029192A1 (ja)
CN (1) CN114208349A (ja)
WO (1) WO2021029192A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114557077A (zh) * 2019-11-08 2022-05-27 华为技术有限公司 事件处理方法和装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019033375A (ja) * 2017-08-08 2019-02-28 シャープ株式会社 通信装置および通信方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108432329A (zh) * 2015-11-04 2018-08-21 株式会社Ntt都科摩 无线通信方法和用户设备
CN109479321B (zh) * 2017-03-21 2022-07-15 Lg 电子株式会社 用于终端在支持非授权频带的无线通信系统中发射上行链路信号的方法和支持该方法的装置
US10912128B2 (en) * 2018-01-23 2021-02-02 Samsung Electronics Co., Ltd. Listen-before-talk for wideband operations of NR unlicensed spectrum
CN110365438B (zh) * 2018-03-26 2021-05-11 华为技术有限公司 信号传输方法、相关设备及系统
US11979348B2 (en) * 2018-11-08 2024-05-07 Lg Electronics Inc. Method for reporting channel state information in unlicensed band and device for same
CN114009078A (zh) * 2019-06-21 2022-02-01 株式会社Ntt都科摩 终端及通信方法
KR20210019827A (ko) * 2019-08-13 2021-02-23 삼성전자주식회사 무선 통신 시스템에서 채널상태정보 보고 방법 및 장치

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019033375A (ja) * 2017-08-08 2019-02-28 シャープ株式会社 通信装置および通信方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Study on NR-based Access to Unlicensed Spectrum", 3GPP TSG RAN MEETING #77, SAPPORO, JAPAN, 11 September 2017 (2017-09-11)
See also references of EP4017060A4

Also Published As

Publication number Publication date
JPWO2021029192A1 (ja) 2021-02-18
EP4017060A1 (en) 2022-06-22
CN114208349A (zh) 2022-03-18
EP4017060A4 (en) 2023-04-12
US20220256598A1 (en) 2022-08-11

Similar Documents

Publication Publication Date Title
US20230070647A1 (en) Communication apparatus, base station apparatus, communication method, communication program, communication system
JP7347426B2 (ja) 通信装置、通信方法及び通信プログラム
WO2020235326A1 (ja) 通信装置、情報処理装置、通信方法、及び情報処理方法
CN116472733A (zh) 通信设备,通信方法,基站以及基站进行的方法
WO2020148264A1 (en) Nr v2x resource pool definitions within a band width part
WO2020235327A1 (ja) 通信装置及び通信方法
CN113615268B (zh) 通信装置和通信方法
WO2020218183A1 (ja) 基地局装置、基地局装置の制御方法、端末装置、及び端末装置の制御方法
CN114642030A (zh) 终端装置、基站装置、用于控制终端装置的方法和用于控制基站装置的方法
US11979922B2 (en) Communication device, communication method, and communication program
EP3927052A1 (en) Communication device, base station device, communication method, and communication program
WO2021029192A1 (ja) 通信装置、通信方法、及び通信プログラム
WO2020202799A1 (ja) 通信装置、基地局装置、通信方法、及び通信プログラム
US20230189107A1 (en) Communication device, non-geostationary satellite, ground station, and communication method
WO2021029159A1 (ja) 通信装置及び通信方法
CN114303422B (zh) 通信控制设备、通信设备、通信控制方法和通信方法
WO2023210484A1 (ja) 通信装置、及び通信方法
WO2023085125A1 (ja) 通信装置、及び通信方法
US20230142149A1 (en) Communication device, communication method, and communication program
WO2024116871A1 (ja) 端末装置、基地局、及び通信システム
KR20240102945A (ko) 통신 장치 및 통신 방법
WO2023162763A1 (ja) 通信装置、通信方法、及び通信システム
EP4280498A1 (en) Communication device, communication method, and communication system
WO2024033391A1 (en) User equipment, especially new radio user equipment and corresponding method
CN114503741A (zh) 终端装置、基站以及通信控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20851439

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021539185

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020851439

Country of ref document: EP

Effective date: 20220315