WO2021029153A1 - 超音波診断装置、及び超音波診断装置の制御方法 - Google Patents
超音波診断装置、及び超音波診断装置の制御方法 Download PDFInfo
- Publication number
- WO2021029153A1 WO2021029153A1 PCT/JP2020/025859 JP2020025859W WO2021029153A1 WO 2021029153 A1 WO2021029153 A1 WO 2021029153A1 JP 2020025859 W JP2020025859 W JP 2020025859W WO 2021029153 A1 WO2021029153 A1 WO 2021029153A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- blood vessel
- insert
- unit
- ultrasonic
- image
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/08—Detecting organic movements or changes, e.g. tumours, cysts, swellings
- A61B8/0833—Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
- A61B8/0841—Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures for locating instruments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B17/3403—Needle locating or guiding means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/54—Control of the diagnostic device
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/08—Detecting organic movements or changes, e.g. tumours, cysts, swellings
- A61B8/0833—Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
- A61B8/085—Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures for locating body or organic structures, e.g. tumours, calculi, blood vessels, nodules
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/13—Tomography
- A61B8/14—Echo-tomography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/44—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
- A61B8/4411—Device being modular
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/44—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
- A61B8/4444—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/44—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
- A61B8/4483—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
- A61B8/4488—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer the transducer being a phased array
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/46—Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
- A61B8/461—Displaying means of special interest
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/52—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/52—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/5215—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
- A61B8/5223—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B17/3403—Needle locating or guiding means
- A61B2017/3413—Needle locating or guiding means guided by ultrasound
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/46—Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
- A61B8/461—Displaying means of special interest
- A61B8/463—Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
Definitions
- the present invention relates to an ultrasonic diagnostic apparatus that displays a blood vessel of a subject and an insert inserted into the blood vessel in an ultrasonic image, and a control method of the ultrasonic diagnostic apparatus.
- an ultrasonic diagnostic apparatus has been known as a device for obtaining an image of the inside of a subject.
- An ultrasonic diagnostic apparatus generally has an ultrasonic probe provided with an oscillator array in which a plurality of ultrasonic oscillators are arranged.
- the ultrasonic probe When the ultrasonic probe is in contact with the body surface of the subject, the ultrasonic beam is transmitted from the transducer array toward the inside of the subject, and the ultrasonic echo generated in the subject is received by the transducer array.
- the electrical signal corresponding to the ultrasonic echo is acquired.
- the ultrasonic diagnostic apparatus processes the acquired electrical signal to generate an ultrasonic image of the site of the subject.
- an echo-guided puncture method By the way, a technique of inserting an insert such as a puncture needle and a catheter into a blood vessel of a subject while observing the inside of the subject using the above-mentioned ultrasonic diagnostic apparatus, specifically, an echo-guided puncture method and the like are known.
- the operator usually grasps the position and shape of a blood vessel in a subject through an ultrasonic image, but in order to accurately grasp the position and shape of a blood vessel, a certain level of skill is required. It takes a degree.
- the ultrasound probe In the echo-guided puncture method, the ultrasound probe is held in one hand, the ultrasound probe is moved to the position where the blood vessel is visualized in the ultrasound image, and the insert is inserted toward the blood vessel with the other hand. The work is extremely difficult and requires concentration.
- the operator in order to confirm that the insert has correctly entered the blood vessel, the operator can grasp the relative positional relationship between the blood vessel wall and the insert in the ultrasonic image. , It is necessary to judge whether or not the insert has been inserted into the blood vessel from the fine movement of the blood vessel wall.
- the operator alternately visually checks the insertion portion of the insert in the subject and confirms the ultrasonic image.
- the B-mode image which is an ultrasonic image
- is usually displayed in gray scale it is difficult to identify blood vessels and inserts in the ultrasonic image at a glance.
- an insert specifically, a medical device such as a needle
- an ultrasonic diagnostic device has been developed that displays an ultrasonic image emphasized in.
- the visibility of the insert in the ultrasonic image is improved.
- the present invention has been made in view of the above circumstances, and an object of the present invention is to solve the following object.
- the present invention provides an ultrasonic diagnostic apparatus capable of solving the above-mentioned problems of the prior art and appropriately highlighting blood vessels in an ultrasonic image according to the insertion state of an insert, and a control method thereof. The purpose is.
- the ultrasonic diagnostic apparatus of the present invention is an ultrasonic diagnostic apparatus that displays a blood vessel of a subject and an insert inserted into the blood vessel in an ultrasonic image, and is an ultrasonic diagnostic apparatus.
- An image acquisition unit that transmits an ultrasonic beam from the vibrator array toward the subject and receives an ultrasonic echo generated in the subject to acquire an ultrasonic image, and an image acquisition unit.
- a display device that displays the acquired ultrasonic image, an image analysis unit that analyzes the ultrasonic image acquired by the image acquisition unit and detects blood vessels and inserts in the ultrasonic image, and an ultrasonic image is displayed.
- the highlighting section highlights the blood vessels detected by the image analyzer when displayed on the device, and the blood vessels are highlighted according to the relative positional relationship between the blood vessels detected by the image analyzer and the insert. It is characterized by including a device control unit that controls a highlighting unit so that the display style changes.
- the image analysis unit specifies a physical quantity representing the relative positional relationship between the detected blood vessel and the insert
- the device control unit is the physical quantity specified by the image analysis unit.
- the highlighting unit is controlled so that the blood vessel is highlighted in the first mode, and when the physical quantity specified by the image analysis unit is smaller than the threshold value, the first mode is used. May control the highlighting section so that the blood vessels are highlighted in a different second mode. At this time, it is preferable that the second mode is a mode in which the blood vessels are highlighted while avoiding interference with the blood vessels detected by the image analysis unit.
- the image analysis unit may specify, as a physical quantity, the distance between the detected blood vessel and the insert, or the insertion angle of the insert with respect to the detected blood vessel.
- the first style is a style in which a blood vessel is filled with a highlight color and displayed, a style in which the outline of a blood vessel is displayed in a highlight color, and a character string is displayed at a position overlapping the blood vessel. It corresponds to at least one of the display style and the style of displaying the instruction mark of the blood vessel around the blood vessel, and the second style displays the instruction mark around the blood vessel away from the blood vessel in the ultrasonic image.
- the indicator mark is preferably a dotted border surrounding the blood vessel.
- the apparatus control unit controls the highlighting unit so that the blood vessels are highlighted in the first mode. be able to.
- the device control unit controls the highlighting unit so as to enlarge the blood vessel. May be good.
- the device control unit has an instruction mark consisting of a frame line surrounding the blood vessel between the blood vessel and the instruction mark. It is preferable to control the highlighting unit so that it is displayed around the blood vessel with an interval corresponding to the enlargement display threshold value.
- the apparatus control unit determines whether a part of the insert detected by the image analysis unit stays in the blood vessel, and a part of the insert stays in the blood vessel. If it is determined that the blood vessel is present, the highlighting unit can be controlled so that the blood vessel is continuously enlarged while a part of the insert remains in the blood vessel. On the other hand, the device control unit determines whether a part of the insert detected by the image analysis unit stays in the blood vessel, and if it determines that a part of the insert stays in the blood vessel, the blood vessel The highlighting unit may be controlled so as to stop the highlighting of.
- the device control unit determines an effective operating region in the ultrasonic image based on the position of the blood vessel detected by the image analysis unit. Is set, and it is determined whether the tip of the insert detected by the image analysis unit is within the effective operating region, and if it is determined that the tip of the insert is within the effective operating region, the blood vessel Is controlled so that is highlighted in the second style, and when it is determined that the tip of the insert is outside the effective working area, the blood vessel is highlighted in the first style.
- the highlighting unit can be controlled.
- the ultrasonic diagnostic apparatus when the image analysis unit detects the blood vessel and the insert, the insertion direction of the insert is estimated, and the device control unit estimates the position of the blood vessel detected by the image analysis unit and the image analysis unit. It is preferable that the effective operating area is set based on the insertion direction, and the highlighting unit highlights the blood vessel detected by the image analysis unit and the effective operating area set by the device control unit.
- the ultrasonic diagnostic apparatus further has an input device into which the identification information of the operator of the insert is input, and the apparatus control unit effectively operates in the width direction of the ultrasonic image when setting the effective operation region.
- the length of the region may be set to a length corresponding to the identification information input to the input device.
- the ultrasonic diagnostic apparatus of the present invention when the image analysis unit detects an insert and a plurality of blood vessels, the physical quantity is specified for each of the plurality of blood vessels, and the device control unit is detected by the image analysis unit. For each of the plurality of blood vessels, it is determined whether or not the insert is in a reachable position, and the device control unit identifies the blood vessels that are determined to be in a reachable position by the image analysis unit.
- the highlighting section can be controlled so that the physical quantity obtained is smaller than the threshold value and only the blood vessel closest to the insert is highlighted in the second mode.
- the image analysis unit estimates the insertion direction of the insert detected by the image analysis unit, and determines whether or not the insert is in a reachable position for each of the plurality of detected blood vessels. May be determined based on the insertion direction estimated by the image analysis unit.
- the image analysis unit when the image analysis unit detects an insert, the image analysis unit analyzes the ultrasonic image and performs measurement processing related to the insertion operation of the insert, and the device control unit is a highlighting unit.
- the highlighting unit can be controlled so that the display range or display size when highlighting a blood vessel in the second mode changes according to the measurement result of the measurement process.
- the ultrasonic diagnostic apparatus further has a learning unit that learns the correspondence between the display range or the display size and the measurement result of the measurement process, and the device control unit further has the correspondence and the measurement processing learned by the learning unit. It is preferable to control the highlighting unit so that the blood vessel is highlighted in the second mode with the display range or display size derived from the measurement result of.
- the ultrasonic diagnostic apparatus of the present invention may further include an input device into which identification information of the operator of the insert is input.
- the device control unit determines the display range or display size when the highlighting unit highlights the blood vessel in the second mode according to the information about the operator identified by the identification information input to the input device.
- the highlighting section can be controlled to change.
- the ultrasonic diagnostic apparatus of the present invention may have a storage unit that stores the usage history of the ultrasonic diagnostic apparatus by the operator as information about the operator in association with the identification information.
- the device control unit reads the usage history corresponding to the identification information input to the input device from the storage unit, and the display range or display size when the highlighting unit highlights the blood vessel in the second mode is determined.
- the highlighting unit can be controlled so as to change according to the read usage history.
- the ultrasonic diagnostic apparatus of the present invention may further include an input device for inputting setting information regarding a display range or display size when the highlighting unit highlights a blood vessel in the second mode.
- the device control unit can control the highlighting unit so that the blood vessels are highlighted in the second mode within the display range or display size indicated by the setting information input to the input device.
- the input device may further input the identification information of the operator of the insert.
- the ultrasonic diagnostic apparatus further has a storage unit that stores the setting information input by a certain operator in association with the identification information of the certain operator, and the apparatus control unit further inputs the identification information to the input device.
- the setting information associated with the input identification information is read out, and the blood vessel is emphasized in the second style in the display range or display size indicated by the read setting information. It is preferable to control the highlighting unit so that it is displayed.
- the ultrasonic diagnostic apparatus of the present invention may have an ultrasonic probe having an oscillator array and a processor to which the ultrasonic probe is connected.
- the image acquisition unit transmits a transmission circuit that transmits an ultrasonic beam from the transducer array toward the subject, and a signal output from the transducer array that receives the ultrasonic echo generated in the subject. It is composed of a receiving circuit that processes and generates a sound line signal, and an image generator that generates an ultrasonic image based on the sound line signal generated by the receiving circuit, and each of the transmitting circuit, the receiving circuit, and the image generating unit. May be provided on the ultrasonic probe or processor.
- the control method of the ultrasonic diagnostic apparatus of the present invention controls the ultrasonic diagnostic apparatus that displays the blood vessel of the subject and the insert inserted into the blood vessel in the ultrasonic image.
- This is a method in which an ultrasonic beam is transmitted from an transducer array toward a subject, and an ultrasonic echo generated in the subject is received to acquire an ultrasonic image, and the acquired ultrasonic waves are obtained.
- the image is displayed on the display device, the acquired ultrasonic image is analyzed, blood vessels and inserts in the ultrasonic image are detected, and when the ultrasonic image is displayed on the display device, the detected blood vessels are detected. It is characterized by highlighting and changing the mode of highlighting the blood vessels according to the relative positional relationship between the detected blood vessels and the inserts.
- the ultrasonic image is analyzed to detect blood vessels and inserts in the ultrasonic image, and when the ultrasonic image is displayed on the display device, the detected blood vessels are highlighted.
- the mode of highlighting the blood vessel is changed according to the relative positional relationship between the detected blood vessel and the insert. This makes it possible to appropriately highlight the blood vessels in the ultrasonic image according to the insertion status of the insert.
- the top, bottom, left and right of the ultrasonic image are the top, bottom, left and right when the operator views the ultrasonic image from the front.
- the insert C is located above the blood vessel B.
- the ultrasonic diagnostic apparatus of the present invention is used in a technique of inserting an insert such as a puncture needle and a catheter into a blood vessel of a subject while observing the inside of the subject, for example, an echo-guided puncture method. That is, the ultrasonic diagnostic apparatus of the present invention is a device that displays the blood vessel of the subject and the insert inserted into the blood vessel in the ultrasonic image, and the operator of the insert is in the process of inserting the insert. The ultrasonic image displayed by the ultrasonic diagnostic apparatus is appropriately observed.
- the ultrasonic image is a B-mode image (tomographic image) relating to the tissue in the subject.
- the insert is a catheter with a puncture needle
- the ultrasonic diagnostic apparatus of the present invention is also applicable to a case where an insert other than the catheter with a puncture needle is inserted into a blood vessel. It is possible.
- the insert is a linearly extending one that can be punctured on the body surface and the blood vessel wall of the subject.
- the ultrasonic diagnostic apparatus As shown in FIG. 1, the ultrasonic diagnostic apparatus according to the first embodiment of the present invention (hereinafter referred to as ultrasonic diagnostic apparatus 1) is connected to an ultrasonic probe 21 including an oscillator array 2 and an ultrasonic probe 21.
- the processor 22 is provided.
- a transmission circuit 3 and a reception circuit 4 are connected to the oscillator array 2, respectively.
- the transmission circuit 3 and the reception circuit 4 constitute a transmission / reception circuit 5, and are included in the ultrasonic probe 21 in the configuration shown in FIG.
- An image generation unit 6 is connected to the reception circuit 4
- a display control unit 7 is connected to the image generation unit 6, and a display device 8 is connected to the display control unit 7.
- an image analysis unit 9 is connected to the image generation unit 6, a highlighting unit 10 is connected to the image analysis unit 9, and a display control unit 7 is connected to the highlighting unit 10.
- a device control unit 13 is connected to each of the transmission / reception circuit 5, the image generation unit 6, the display control unit 7, the image analysis unit 9, and the highlighting unit 10, and the device control unit 13 is connected to the input device 14 and The storage unit 15 is connected.
- the device control unit 13 and the storage unit 15 are connected to each other in a state in which information can be exchanged between them.
- an image generation unit 6, a display control unit 7, an image analysis unit 9, a highlighting unit 10, and a device control unit 13 are provided (implemented) in the processor 22. Further, the transmission / reception circuit 5 (that is, the transmission circuit 3 and the reception circuit 4) of the ultrasonic probe 21 and the image generation unit 6 of the processor 22 cooperate with each other to form an image acquisition unit 11 for acquiring an ultrasonic image. ing.
- the oscillator array 2 has a plurality of oscillators arranged one-dimensionally or two-dimensionally.
- the plurality of oscillators may be arranged linearly like the linear type ultrasonic probe 21, or may be arranged curved like the convex type or sector type ultrasonic probe 21.
- Each of the plurality of oscillators transmits ultrasonic waves according to the drive signal supplied from the transmission circuit 3, receives the ultrasonic echo generated in the subject, and outputs an electric signal based on the ultrasonic echo.
- Each transducer is, for example, a piezoelectric ceramic represented by PZT (Lead Zirconate Titanate), a polymer piezoelectric element represented by PVDF (PolyVinylidene DiFluoride), and a PMN.
- -It is composed by forming electrodes at both ends of a piezoelectric body made of a piezoelectric single crystal represented by PT (Lead Magnesium Niobate-Lead Titanate: lead magnesiumidene fluoride-lead titanate solid solution).
- the transmission circuit 3 transmits an ultrasonic beam from the oscillator array 2 toward the subject.
- the transmission circuit 3 includes, for example, a plurality of pulse generators, and the oscillator array 2 has a plurality of transmission circuits 2 based on a transmission delay pattern selected according to a control signal from the device control unit 13.
- the drive signal for the oscillator is supplied by adjusting the respective delay amounts.
- Each drive signal is a pulse-shaped or continuous wave-shaped voltage signal, and when the electrodes of the vibrator of the vibrator array 2 are applied, the piezoelectric body expands and contracts.
- pulsed or continuous wave ultrasonic waves are generated from each oscillator, and an ultrasonic beam is formed from the combined waves of these ultrasonic waves.
- the transmitted ultrasonic beam is reflected by, for example, each part (for example, an organ and a blood vessel) in the subject and an instrument arranged in the subject.
- an ultrasonic echo is generated, propagates toward the vibrator array 2 in the subject, and finally received by a plurality of vibrators included in the vibrator array 2.
- each oscillator expands and contracts by receiving the ultrasonic echo to generate an electric signal, and outputs the electric signal to the receiving circuit 4.
- the receiving circuit 4 generates a sound line signal by performing predetermined processing on the signal output from the vibrator array 2 (strictly speaking, an analog electric signal) according to the control signal from the device control unit 13. ..
- the receiving circuit 4 has a configuration in which an amplification unit 23, an AD (Analog Digital) conversion unit 24, and a beam former 25 are connected in series.
- the amplification unit 23 amplifies the signals output from each of the plurality of oscillators of the oscillator array 2, and transmits the amplified signal to the AD conversion unit 24.
- the AD conversion unit 24 converts the amplified signal into digital reception data, and transmits each of the converted reception data to the beam former 25.
- the beam former 25 follows the sound velocity or sound velocity distribution set based on the reception delay pattern selected according to the control signal from the device control unit 13, and is used for each received data converted by the AD conversion unit 24, respectively.
- the reception focus process is performed by adding the delay of. By this reception focus processing, each received data converted by the AD conversion unit 24 is phase-adjusted and added, and a sound line signal in which the focus of the ultrasonic echo is narrowed down is acquired.
- the image generation unit 6 generates an ultrasonic image based on the sound line signal generated by the reception circuit 4, and as shown in FIG. 3, the signal processing unit 26, the DSC (Digital Scan Converter) 27, The image processing unit 28 and the image processing unit 28 are sequentially connected in series.
- the signal processing unit 26 corrects the attenuation due to the distance of the sound line signal generated by the receiving circuit 4 according to the depth of the reflection position of the ultrasonic wave, and then performs the envelope detection process to obtain the ultrasonic wave. Generates a B-mode image signal indicating an image.
- the DSC 27 converts the B-mode image signal generated by the signal processing unit 26 into an image signal according to a normal television signal scanning method (raster conversion).
- the image processing unit 28 performs various necessary image processing such as gradation processing on the B mode image signal input from the DSC 27, and then outputs the B mode image signal to the display control unit 7 and the image analysis unit 9.
- the B-mode image signal that has been image-processed by the image processing unit 28 corresponds to an ultrasonic image.
- the image acquisition unit 11 composed of the transmission / reception circuit 5 and the image generation unit 6 controls the device so that the ultrasonic image is continuously acquired a plurality of times at a constant frame rate during the acquisition period of the ultrasonic image. It is controlled by unit 13.
- the display control unit 7 performs a predetermined process on the ultrasonic image generated by the image generation unit 6 (in other words, the ultrasonic image acquired by the image acquisition unit 11).
- the ultrasonic image is displayed on the display device 8.
- the ultrasonic image displayed on the display device 8 (hereinafter referred to as the ultrasonic image U) is developed in the depth direction and the width direction as shown in FIG.
- the width direction of the ultrasonic image U is the direction in which a plurality of scanning lines constituting the ultrasonic image U are lined up.
- the depth direction of the ultrasonic image U is the direction in which the scanning line extends.
- Each part in the ultrasonic image U is displayed at a position corresponding to the distance (depth) from the body surface of the subject in contact with the ultrasonic probe 21 in the depth direction.
- the ultrasonic image U of FIG. 4 depicts the cross section of the blood vessel B and the cross section of the tip of the insert C observed by the short axis method (crossing method), of which the cross section of the blood vessel B is depicted.
- the surface is highlighted in the first style, which will be described later.
- the cross section of the blood vessel B is a cut surface of the blood vessel B by a plane orthogonal to the extension direction of the blood vessel B
- the cross section of the tip portion of the insert C is the extension direction of the insert C. It is a cut surface of the tip portion of the insert C due to the orthogonal planes.
- the display device 8 is a device that displays an ultrasonic image U or the like under the control of a display control unit 7, and is, for example, a display device such as an LCD (Liquid Crystal Display) or an organic EL display (Organic Electroluminescence Display). including.
- a display device such as an LCD (Liquid Crystal Display) or an organic EL display (Organic Electroluminescence Display). including.
- the image analysis unit 9 analyzes the ultrasonic image generated by the image generation unit 6 (in other words, the ultrasonic image acquired by the image acquisition unit 11) to obtain the blood vessel B and the insert in the ultrasonic image U. C and is detected.
- the image analysis unit 9 can detect the blood vessel B and the insert C in the ultrasonic image U by using a known algorithm.
- the image analysis unit 9 stores typical pattern data of the blood vessel B and the insert C as a template in advance, calculates the similarity to the pattern data while searching the ultrasonic image U with the template, and is similar. It can be considered that the blood vessel B and the insert C are present at the place where the degree is equal to or higher than the predetermined value and becomes maximum.
- the image analysis unit 9 can specify the relative positional relationship between the detected blood vessel B and the insert C. Specifically, as shown in FIG. 4, the detected insert C The distance D between the tip and the blood vessel B can be measured and specified.
- the distance D is a physical quantity representing the relative positional relationship between the detected blood vessel B and the insert C.
- the image analysis unit 9 sets the distance D as the center position of the tip of the insert C and the blood vessel B. It is possible to measure the shortest distance from the center position of.
- the highlighting unit 10 highlights the blood vessel B detected by the image analysis unit 9 when the ultrasonic image U is displayed on the display device 8.
- the mode in which the highlighting unit 10 highlights the blood vessel B includes a first mode and a second mode, and the mode is switched between these.
- the first style is a style that prioritizes the visibility (easiness of finding) of the blood vessel B, and as a specific example thereof, for example, as shown in FIG. 4, the blood vessel B in the ultrasonic image U is highlighted in color.
- the instruction mark M for example, a bounding box, an arrow, etc.
- the first form any one of the above three forms can be adopted as the first form.
- a style in which some of the above three styles are combined for example, a style in which the blood vessel B is filled with a highlight color and the instruction mark M is also displayed may be adopted.
- the blood vessel B is painted with a highlight color and highlighted is adopted as the first style will be described as an example.
- the highlight color is preferably a color that is easy for the operator to see, and more preferably a highly saturated color such as yellow, orange, light green, light blue, and pink. Further, when the blood vessel B is filled with the highlight color and displayed, the color of the display area of the blood vessel B in the ultrasonic image U is set as the highlight color, and the alpha channel (transmittance) of the display area is set as the blood vessel. The value is set so that the tomographic image of B (B mode image) cannot be visually recognized.
- the second style is different from the first style, and is a style in which the blood vessel B is highlighted while avoiding interference with the blood vessel B detected by the image analysis unit 9.
- "interfering with blood vessel B” means that all or part of the blood vessel wall of blood vessel B and the tomographic image (B mode image) inside the blood vessel wall cannot be visually recognized, and "interference with blood vessel B".
- the “avoided display style” means a style in which the blood vessel wall of the blood vessel B and the tomographic image (B mode image) inside the blood vessel B are displayed in a state in which the whole can be seen.
- a display style avoiding interference with blood vessel B although it temporarily interferes with blood vessel B or another object is displayed overlaid on blood vessel B, the inside of the blood vessel wall and blood vessel B of blood vessel B is displayed.
- a display format that allows the entire tomographic image to be visible ie, a display format that allows partial interference may also be included.
- the instruction mark M of the blood vessel B is displayed around the blood vessel B away from the blood vessel B in the ultrasonic image U as shown in FIG. 8, and the blood vessel B is displayed as shown in FIG. And a style in which the blood vessel B in the ultrasonic image U is displayed with a brightness brighter than the surroundings as shown in FIG.
- a style in which the filled layer Q of the above is superimposed on the blood vessel B, and a style in which the filled display of the blood vessel B and the display of the tomographic image of the blood vessel B are alternately repeated as shown in FIG. Be done.
- the border around the blood vessel B such as a bounding box and a circle (including an ellipse), and the four corners of the rectangle surrounding the blood vessel B.
- the arranged corner marks and the arrows arranged in the vicinity of the blood vessel B are displayed in a set color such as a highlight color so as not to interfere with the blood vessel B.
- the enlarged display image KU in which the blood vessel B in the ultrasonic image U is enlarged and displayed at a predetermined magnifying magnification is superimposed and displayed on the ultrasonic image U.
- the enlarged display image KU is a depiction of the entire blood vessel B of the ultrasonic image U. Therefore, even when the enlarged display image KU is displayed at a position outside the area where the blood vessel B is displayed in the ultrasonic image U, or when the enlarged display image KU is displayed superimposed on the display area of the blood vessel B, the blood vessel The blood vessel B of the ultrasonic image U can be highlighted while avoiding interference with B.
- the aspect of the enlarged display image KU may be a full-screen enlargement that matches the aspect of the ultrasonic image U which is the original image. Alternatively, it may be a quasi-full screen enlargement in which both aspects do not match. Further, although not particularly shown, even if the screen of the display device 8 is divided into two, the enlarged display image KU is displayed on one split screen, and the ultrasonic image U which is the original image is displayed on the other split screen. Good.
- the brightness of the display area of the blood vessel B in the ultrasonic image U may be higher than the brightness of the surroundings, or the blood vessel B The brightness of the surroundings is lowered (darkened) from the brightness of the display area.
- the spotlight display area H where the brightness is brighter than the surroundings in the ultrasonic image U the entire blood vessel B of the ultrasonic image U is drawn as shown in FIG. Therefore, even in the spotlight display mode described above, the blood vessel B of the ultrasonic image U can be highlighted while avoiding interference with the blood vessel B.
- the fill layer Q having the same shape and size as the detected blood vessel B is superimposed on the position directly above the blood vessel B. Blood vessel B is highlighted by displaying.
- the fill layer Q is an object in which the display color is the highlight color and the alpha channel (transmittance) is set to transparent or translucent.
- the detected blood vessel B is displayed in the highlight color (the state shown on the left side of FIG. 12).
- the state displayed in color in the normal B-mode image (the state shown on the right side of FIG. 12) are alternately switched to be highlighted as if they are blinking in a pseudo manner.
- any one of the above five styles can be adopted.
- a style in which some of the above five styles are combined for example, a style in which the blood vessel B is enlarged and displayed together with the instruction mark M, or a style in which the blood vessel B is enlarged and displayed with a brightness brighter than the surroundings is adopted. You may.
- the highlighting unit 10 displays the instruction mark display mode.
- a dotted frame line surrounding the blood vessel B in the ultrasonic image U is displayed as the instruction mark M. Since the frame line is a dotted line, it is possible to suppress a situation in which the tip of the insert C becomes difficult to see when the insert C is inserted close to the frame line.
- the frame line forming the instruction mark M is not limited to the dotted line, but may be a solid line.
- the highlighting unit 10 highlights the blood vessel B in the enlarged display style.
- the enlarged display image KU includes the blood vessel B into which the insert C is inserted and the tip of the insert C located near the blood vessel B.
- the device control unit 13 controls each part of the ultrasonic diagnostic device 1 based on a program stored in advance in the storage unit 15 or the like and information input by the operator via the input device 14. Further, the device control unit 13 changes the mode for highlighting the blood vessel B according to the relative positional relationship between the blood vessel B and the insert C in the ultrasonic image U detected by the image analysis unit 9. As described above, the highlighting unit 10 is controlled.
- the device control unit 13 highlights the blood vessel B in the first mode.
- the highlighting unit 10 is controlled so as to. In this case, the blood vessel B in the ultrasonic image U is filled with the highlight color and displayed.
- the image analysis unit 9 detects both the blood vessel B and the insert C in the ultrasonic image U, and the distance D between the blood vessel B and the insert C specified by the image analysis unit 9 is larger than the threshold value.
- the device control unit 13 still controls the highlighting unit 10 so that the blood vessel B is highlighted in the first mode.
- the threshold value is a value predetermined as a standard for determining the necessity of switching the highlighting mode, and is stored in, for example, the storage unit 15. That is, in the initial stage when the insert C is inserted into the subject, the tip of the insert C is located at a position away from the blood vessel B, so that the visibility (easiness of finding) of the blood vessel B in the ultrasonic image U).
- the blood vessel B is highlighted in the first style with an emphasis on. As a result, the operator can easily find the blood vessel B into which the insert C is inserted in the ultrasonic image U.
- the device control unit 13 controls the highlighting unit 10 so that the blood vessel B is highlighted in the second mode. That is, when the tip of the insert C is located near the blood vessel B, the blood vessel B is highlighted while avoiding interference with the blood vessel B, and the blood vessel wall of the blood vessel B and its movement are easily visible to the operator. As a result, the operator can bring the tip of the insert C closer to the blood vessel B while clearly checking both the blood vessel B and the insert C.
- the blood vessel B may be highlighted in the first style, or the blood vessel B may be highlighted in the second style.
- the device control unit 13 When the distance D is smaller than the threshold value and larger than the enlarged display threshold value, the device control unit 13 highlights the blood vessel B in the instruction mark display mode as the second mode.
- the highlighting unit 10 is controlled.
- the enlarged display threshold value is a value predetermined as a criterion for determining when the highlighting display style is switched from the instruction mark display style to the enlarged display style, and is smaller than the above-mentioned threshold value, and is stored in, for example, the storage unit 15. ing.
- the device control unit 13 starts from the frame line (strictly speaking, a circular frame) surrounding the blood vessel B in the ultrasonic image U, as shown in FIG.
- the highlighting unit 10 is controlled so that the instruction mark M is displayed around the blood vessel B in a state where an interval t corresponding to the above-mentioned enlargement display threshold value is provided between the blood vessel B and the instruction mark M. That is, the diameter of the instruction mark M composed of a circular frame has a length that reflects the enlargement display threshold value, and the instruction mark M is displayed in the vicinity of the blood vessel B in the ultrasonic image U, so that the enlargement display threshold value is displayed. Can be visualized. As a result, the operator can grasp that the highlighting style is switched to the enlarged display style when the tip of the insert C approaches the instruction mark M.
- the device control unit 13 displays the enlarged display image KU including the blood vessel B and the insert C in the ultrasonic image U, as shown in FIG.
- the highlighting unit 10 is controlled in this way.
- the blood vessel wall of the blood vessel B and the B mode image inside the blood vessel wall are enlarged and displayed. That is, when the tip of the insert C reaches the nearest position of the blood vessel B, the blood vessel B is highlighted so as to be easier to see, so that the blood vessel wall of the blood vessel B and its movement are easily visible to the operator. As a result, the operator can operate the insert C so that the tip of the insert C pierces the blood vessel wall of the blood vessel B well.
- the insert C is inserted by highlighting the blood vessel B in the ultrasonic image U in the first style.
- the blood vessel B to be formed can be easily found.
- the blood vessel B (particularly, the blood vessel wall) becomes difficult to see in the first mode, so that it interferes with the blood vessel B.
- Switch to the second mode avoiding the above and highlight the blood vessel B.
- the blood vessel wall of the blood vessel B can be clearly confirmed, so that the operator can appropriately allow the tip of the insert C to enter the blood vessel B.
- the input device 14 is for the operator to perform an input operation, and can be configured by, for example, a keyboard, a mouse, a trackball, a touch pad, a touch panel, or the like.
- the identification information of the operator is input to the input device 14.
- Examples of the operator's identification information include character string information such as the name and identification ID of the identifyr, as well as biological information such as fingerprints, voiceprints, and retinal patterns.
- biometric information is input as identification information
- the input device 14 may be equipped with a known biometric information acquisition device such as a scanner.
- the input device 14 is input with setting information regarding a display range or a display size when the highlighting unit 10 highlights the blood vessel B in the second mode.
- the setting information corresponds to, for example, the content set by the operator regarding the display range or the display size when the highlighting unit 10 highlights the blood vessel B in the enlarged display format.
- the display range means a range of the ultrasonic image U that is enlarged and displayed on the enlarged display image KU.
- the display size means the size of the enlarged display image KU, in other words, it corresponds to the magnifying magnification of the enlarged display image KU.
- the size of the instruction mark M may be set as the display size, and when the blood vessel B is highlighted in the spotlight display style, the spotlight display is used.
- the range of the area H may be set as the display range. Then, these set contents can be input to the input device 14 as setting information.
- the device control unit 13 highlights the blood vessel B so as to be highlighted in the second style in the display range or display size indicated by the input setting information.
- the unit 10 is controlled.
- the display range and the display size when the blood vessel B is highlighted in the second style can be changed (adjusted) for each operator according to the preference of the operator.
- the storage unit 15 stores the control program of the ultrasonic diagnostic apparatus 1 and various information, and includes a flash memory, an HDD (Hard Disc Drive), an SSD (Solid State Drive), and an FD.
- a flash memory an HDD (Hard Disc Drive), an SSD (Solid State Drive), and an FD.
- MO Disk Magnetic-Optical Disc: Magneto-Optical Disc
- MT Magnetic Tape
- RAM Random Access Memory: Random Access Memory
- CD Compact Disc: Compact Disc
- Recording media such as DVD (Digital Versatile Disc), SD card (Secure Digital card), and USB memory (Universal Serial Bus memory), or server computers can be used. it can.
- the information stored in the storage unit 15 includes the above-mentioned threshold value and the enlarged display threshold value. Further, the storage unit 15 stores the above-mentioned setting information input by an operator via the input device 14 in association with the identification information of the operator.
- the setting information stored in the storage unit 15 is read out by the device control unit 13 when the device control unit 13 causes the highlighting unit 10 to highlight the blood vessel B in the second mode. Specifically, for example, when the operator's identification information is input to the input device 14 before the start of ultrasonic image acquisition, the device control unit 13 inputs the setting information stored in the storage unit 15. Read the setting information associated with the identified identification information.
- the device control unit 13 controls the highlighting unit 10 so that the blood vessel is highlighted in the display range or display size indicated by the read setting information. ..
- the display range or display size set by the operator As setting information in the storage unit 15 as described above, when the ultrasonic image U is highlighted to the same operator thereafter, The blood vessel B can be highlighted in the display range or display size set by the operator.
- the processor 22 provided with the image generation unit 6, the display control unit 7, the image analysis unit 9, the highlighting unit 10, and the device control unit 13 described above includes, for example, a CPU (Central Processing Unit) and a CPU (Central Processing Unit). It is composed of a control program for causing the CPU to execute various processes.
- the processor 22 is not limited to this, and the processor 22 is an FPGA (Field Programmable Gate Array), a DSP (Digital Signal Processor), and an ASIC (Application Specific Integrated Circuit: Application Specific Integrated Circuit). It may be configured by using a circuit), a GPU (Graphics Processing Unit), or another IC (Integrated Circuit), or may be configured by combining these.
- the image generation unit 6, the display control unit 7, the image analysis unit 9, the highlighting unit 10, and the device control unit 13 provided in the processor 22 are partially or wholly integrated into one CPU or the like. It can also be configured. Further, the processor 22 may be mounted on a stationary device, for example, or may be mounted on a portable device such as a laptop PC (Personal Computer), a smartphone, or a tablet terminal.
- a laptop PC Personal Computer
- step S1 is performed, and in this step S1, the ultrasonic image U is generated.
- the ultrasonic probe 21 comes into contact with the body surface of the subject, and an ultrasonic beam is transmitted into the subject from a plurality of vibrators of the vibrator array 2 according to a drive signal from the transmission circuit 3.
- the received signal is output to the receiving circuit 4 from each vibrator that has received the ultrasonic echo from the subject.
- the received signal received by the receiving circuit 4 is amplified by the amplification unit 23, AD-converted by the AD conversion unit 24, and then phase-aligned and added by the beam former 25, and as a result, a sound line signal is generated. ..
- This sound line signal becomes a B-mode image signal when the signal processing unit 26 performs envelope detection processing in the image generation unit 6, and is output to the display control unit 7 via the DSC 27 and the image processing unit 28.
- the ultrasonic image U is generated (in other words, the ultrasonic image U is acquired).
- the ultrasonic image U is displayed on the display device 8 under the control of the display control unit 7.
- the ultrasonic image U generated in step S1 includes at least the blood vessel B of the subject.
- the image analysis unit 9 detects the blood vessel B and the insert C in the ultrasonic image U by analyzing the generated ultrasonic image U.
- the image analysis unit 9 applies a known algorithm such as a template matching, a machine learning method, or a general image recognition method using deep learning, to insert the blood vessel B in the ultrasonic image U and insert it.
- Object C can be detected. If the operator has not yet inserted the insert C into the subject at the time of performing this step S2, of course, the insert C is not detected in the ultrasonic image U, and only the blood vessel B is detected. ..
- step S3 is performed, and in this step S3, the device control unit 13 controls the highlighting unit 10 so that the blood vessel B in the ultrasonic image U is highlighted in the first mode.
- the blood vessel B is highlighted in the first style, and is, for example, filled with a highlight color and highlighted.
- step S4 is carried out, and in this step S4, the image analysis unit 9 determines the relative positional relationship between the detected blood vessel B and the insert C as the distance between the blood vessel B and the insert C. Measure and identify D.
- the device control unit 13 determines whether or not the distance D specified in step S4 is smaller than the threshold value.
- step S5 When it is determined in step S5 that the distance D is larger than the threshold value, the above-mentioned step S3 is performed so that the device control unit 13 highlights the blood vessel B in the ultrasonic image U in the first mode.
- the highlighting unit 10 is controlled.
- step S9 After the execution of step S3, the process proceeds to step S9, which will be described later.
- step S6 when it is determined that the distance D is smaller than the threshold value, the following step S6 is executed, and in this step S6, the device control unit 13 determines that the distance D specified in step S4 is larger than the enlarged display threshold value. Determine if it is small. If the distance D matches the threshold value, either step S3 or step S6 may be performed.
- step S7 is performed, and in this step S7, the device control unit 13 has the blood vessel B in the ultrasonic image U in the second mode. More specifically, the highlighting unit 10 is controlled so as to be highlighted in the designated mark display format. In the ultrasonic image U displayed on the display device 8, an instruction mark M composed of a dotted frame line surrounding the blood vessel B is displayed in the vicinity of the blood vessel B, and the blood vessel B is highlighted. Further, in this step S7, the device control unit 13 displays the instruction mark M around the blood vessel B in a state where an interval t corresponding to the enlargement display threshold value is provided between the blood vessel B and the instruction mark M.
- the highlighting unit 10 is controlled in this way (see FIG. 8). As a result, the enlarged display threshold value can be visualized and displayed as the instruction mark M in the ultrasonic image U.
- the display size of the instruction mark M can be changed through the input device 14 or can be changed for each operator in correspondence with the identification information of the operator. After the execution of step S7, the process proceeds to step S9.
- step S8 is executed, and in this step S8, the device control unit 13 has the blood vessel B in the ultrasonic image U as the first.
- the highlighting unit 10 is controlled so as to be highlighted in the two styles, and more specifically, to be highlighted in the enlarged display style.
- the enlarged display image KU including the blood vessel B is displayed on the display device 8, and in the enlarged display image KU, the blood vessel B is displayed in a larger size than the ultrasonic image U of the original image.
- the tip of the insert C is enlarged and displayed on the enlarged display image KU together with the blood vessel B (see FIG. 9).
- the setting contents of the display range enlarged and displayed by the enlarged display image KU and the display size of the enlarged display image KU can be changed through the input device 14 or the operator. It is possible to change it for each operator in correspondence with the identification information of.
- step S9 it is determined whether or not the operation of the ultrasonic diagnostic apparatus 1 is terminated. For example, when the operator inputs an instruction to end the operation of the ultrasonic diagnostic device 1 through the input device 14 or the like, it is determined that the operation of the ultrasonic diagnostic device 1 has ended, and the operation of the ultrasonic diagnostic device 1 is performed. If the end instruction is not input, it is determined that the operation of the ultrasonic diagnostic apparatus 1 is not terminated. If it is determined that the operation of the ultrasonic diagnostic apparatus 1 is not completed, the process returns to step S1, a new ultrasonic image U is generated, and then the steps after S2 are repeated. On the other hand, when it is determined that the operation of the ultrasonic diagnostic apparatus 1 is terminated, the operation of the ultrasonic diagnostic apparatus 1 is terminated.
- the blood vessel B and the insert C in the ultrasonic image U are detected, and the detected blood vessel B and the insert C
- the mode for highlighting blood vessel B is switched based on the relative positional relationship of.
- the blood vessel B of the ultrasonic image U is highlighted in an appropriate manner according to the insertion status of the insert C. More specifically, in the initial stage of the insertion operation of the insert C, the blood vessel B can be highlighted and displayed in the highlight color to make the blood vessel B stand out and be easily found in the ultrasonic image U.
- the blood vessel wall of the blood vessel B becomes rather difficult to see, and the operator inserts it. It can also hinder the insertion of the tip of the object C into the blood vessel wall. Therefore, when the tip of the insert C approaches the blood vessel B, the instruction mark M is displayed around the blood vessel B, the blood vessel B is enlarged, and so on, in a manner that does not interfere with the blood vessel B (second style). Highlight vessel B. As a result, the tomographic image of the blood vessel wall of the blood vessel B becomes clearly visible, and the operator can appropriately insert the tip of the insert C into the blood vessel wall.
- FIG. 14 shows an ultrasonic image U in which the vertical cross section of the blood vessel B is filled with a highlight color and highlighted.
- FIG. 15 shows an ultrasonic image U in which a portion of the blood vessel B where the insert C is presumed to enter is highlighted by being surrounded by an instruction mark M composed of a frame line.
- FIG. 16 shows an ultrasonic image U in which the portion of the blood vessel B where the insert C is presumed to enter is enlarged and highlighted.
- FIG. 17 shows an ultrasonic image U in which a portion of the blood vessel B where the insert C is presumed to enter is highlighted with a brightness brighter than the surroundings.
- the vertical cross section of the blood vessel B and the vertical cross section of the insert C are depicted.
- the longitudinal section of the blood vessel B refers to the cut surface of the blood vessel B along the extending direction of the blood vessel B
- the longitudinal section of the insert C refers to the insertion along the extending direction of the insert C. Refers to the cut surface of the object C.
- the distance D between the blood vessel B and the insert C is specified as the relative positional relationship between the blood vessel B and the insert C detected by the image analysis unit 9.
- the present invention is not limited to this, and a physical quantity other than the distance D may be specified.
- the insertion angle of the insert C with respect to the detected blood vessel B (the angle represented by the symbol ⁇ in FIG. 14) is specified. You may.
- the insertion angle ⁇ is an angle formed by the extension directions of the blood vessel B and the insert C observed in the long axis method (parallel method).
- a circular range separated from the contour of the detected blood vessel B by a predetermined distance is set in the ultrasonic image U, and the positional relationship between the range and the insert C (specifically). Specifically, whether or not the tip of the insert C is within the above range) may be specified. In this case, the highlighting mode of the blood vessel B may be changed based on the specified positional relationship.
- the ultrasonic probe 21 is provided with the transmission circuit 3 and the reception circuit 4, and the processor 22 is provided with the image generation unit 6.
- the ultrasonic probe 21 may be provided with a transmission circuit 3, a reception circuit 4, and an image generation unit 6.
- the ultrasonic probe 21 generates an ultrasonic image (B mode image signal), and the processor 22 receives the ultrasonic image sent from the ultrasonic probe 21.
- the ultrasonic probe 21 may be provided with the transmission circuit 3, and the processor 22 may be provided with the reception circuit 4 and the image generation unit 6.
- a transmission circuit 3, a reception circuit 4, and a transmission / reception circuit 5 may be provided on the processor 22 side.
- an electric signal (analog signal) output when the plurality of vibrators included in the vibrator array 2 receive the ultrasonic echo is transmitted from the ultrasonic probe 21 to the processor 22, and the electric signal is transmitted on the processor 22 side.
- AD conversion, sound line signal generation, and ultrasonic image (B mode image signal) generation are performed.
- the highlighting style of the blood vessel B changes in three stages. Specifically, as the insert C approaches the blood vessel B, the highlighting style changes to a highlight color filling style and an instruction mark display. It was decided to change in the order of style and enlarged display style.
- the number of times of switching the highlighting mode of the blood vessel B is not limited to this, and may be two times or four times or more.
- the threshold value for enlargement display is visualized and displayed together with the blood vessel B as an instruction mark M (frame line) (see FIG. 8).
- the above-mentioned threshold value may be visualized and displayed together with the blood vessel B as an instruction mark M (frame line) in the same manner.
- the blood vessel B is displayed in the instruction mark display style and then displayed in the enlarged display style. It is also possible to display with.
- the operator can perform the insertion operation of the insert C while grasping the tissue between the blood vessel B and the insert C.
- the highlighting by the spotlight display style may be stopped. By doing so, the blood vessel wall of the blood vessel B can be easily seen immediately before the tip of the insert C is inserted into the blood vessel B.
- the configuration in which the display device 8, the input device 14, and the ultrasonic probe 21 are directly connected to the processor 22 has been described.
- the display device 8, the input device 14, and the ultrasonic probe 21 have been described.
- the processor 22 may be indirectly connected via the network NW as shown in FIGS. 18A and 18B.
- the connection between each of the above devices and the network NW may be a wired connection or a wireless connection.
- the display device 8, the input device 14, and the ultrasonic probe 21 are connected to the ultrasonic diagnostic apparatus main body 41 via the network NW.
- the ultrasonic diagnostic apparatus main body 41 is the ultrasonic diagnostic apparatus 1 having the configuration shown in FIG. 1, excluding the display device 8, the input device 14, and the ultrasonic probe 21, and includes the transmission / reception circuit 5, the storage unit 15, and the processor. It is composed of 22.
- the above-mentioned ultrasonic diagnostic apparatus main body 41 may be used as a remote server.
- the operator can diagnose the subject by preparing only the display device 8, the input device 14, and the ultrasonic probe 21 in the operator's hand, and thus the ultrasonic diagnosis. It is possible to improve the convenience at the time of. Further, in the ultrasonic diagnostic apparatus 1A having the configuration shown in FIG. 18A, a smartphone or a tablet terminal may be used as the display device 8 and the input device 14. In this case, the operator can more easily perform the ultrasonic diagnosis of the subject, so that the convenience of the ultrasonic diagnosis can be further improved.
- the display device 8 and the input device 14 are mounted on the ultrasonic diagnostic apparatus main body 41, and the ultrasonic probe 21 is attached to the ultrasonic diagnostic apparatus main body 41 via the network NW. It is connected.
- the ultrasonic diagnostic apparatus main body 41 may be configured by a remote server, or may be configured by a smartphone or a tablet terminal.
- the blood vessel B detected in the ultrasonic image U is highlighted, and the highlighting mode is changed based on the distance D between the blood vessel B and the insert C.
- the insert C detected in the ultrasonic image U may be highlighted, and the highlighting mode may be changed based on the above distance D.
- the insert C can be filled with a highlight color and displayed, or an instruction mark M composed of a frame line or the like can be displayed near the tip of the insert C.
- the tomographic image (B mode image) of the blood vessel wall may be hidden. Therefore, when highlighting the tip of the insert C in the vicinity of the blood vessel B, the highlighting area is minimized by providing a high-intensity and highly saturated point in the insert C. It is preferable to highlight in a prominent format.
- Second Embodiment In the echo-guided puncture method, the operator superimposes to grasp the positions of the insert and the blood vessel during the period from the insertion of the insert into the body surface of the subject to the insertion into the blood vessel in the subject.
- the ultrasound image is checked, but the ultrasound image may be checked even after the insert has been inserted into the blood vessel.
- the insert is a catheter with a puncture needle
- the puncture needle and the catheter break through the blood vessel wall and enter the blood vessel wall
- the operator pulls out only the puncture needle which is the inner needle and pulls out the tip of the catheter. Place in a blood vessel.
- the operator confirms the ultrasonic image for a while after the catheter is inserted into the blood vessel in order to grasp the condition of the catheter placed in the blood vessel.
- the enlarged display of the blood vessel in the ultrasound image can be continued so that the inside of the blood vessel in the state where the catheter is placed can be seen more clearly.
- the configuration of the ultrasonic diagnostic apparatus according to the second embodiment is substantially the same as the configuration of the ultrasonic diagnostic apparatus according to the first embodiment described above.
- steps S21 to S28 are the same as steps S1 to S8 of the display flow according to the first embodiment.
- step S29 is performed, and in this step S29, the device control unit 13 determines whether or not a part of the insert C is inserted into the blood vessel B and stays in the blood vessel B. ..
- the state in which a part of the insert C remains in the blood vessel B means that, for example, after the catheter with a puncture needle breaks through the blood vessel wall of the blood vessel B, only the puncture needle is extracted and the tip of the catheter is the blood vessel B.
- the state of being detained inside is applicable.
- step S30 is performed.
- step S28 determines that a part of the insert C is not staying in the blood vessel B because a part of the insert C has not been inserted into the blood vessel B yet.
- step S30 the device control unit 13 controls the highlighting unit 10 so as to continue to magnify and display the blood vessel B in the ultrasonic image U.
- step S30 the device control unit 13 determines in the subsequent step S31 whether or not a part of the insert C has been removed from the blood vessel B.
- step S32 is executed, and in step S32, the device control unit 13 highlights the blood vessel B so that the highlighting is stopped.
- the unit 10 is controlled. As a result, in the ultrasonic image U, the blood vessel B is displayed in a normal manner (a style that is not highlighted).
- step S33 for determining whether or not to end the operation of the ultrasonic diagnostic apparatus is performed, and when it is determined that the operation of the ultrasonic diagnostic apparatus is not terminated, The process returns to step S21, and then steps S22 and subsequent steps are repeated. On the other hand, when it is determined that the operation of the ultrasonic diagnostic apparatus is terminated, the operation of the ultrasonic diagnostic apparatus is terminated.
- the blood vessel B is continuously enlarged and displayed, so that the operator can see the image.
- the blood vessel B in which a part of the insert C is inserted becomes easy to see (easy to confirm).
- the blood vessel B is continuously enlarged while a part of the insert C stays in the blood vessel B, but the present invention is not limited to this.
- the device control unit 13 determines that a part of the insert C stays in the blood vessel B
- the device control unit 13 sets the highlighting unit 10 so as to stop the highlighting of the blood vessel B in the ultrasonic image U. You may control it.
- the blood vessel B in the ultrasound image U is displayed in a normal fashion (non-highlighted style) while a portion of the insert C remains in the blood vessel B.
- the operator can confirm a relatively wide range of ultrasonic image U including the insert C and the blood vessel B, and can easily see, for example, tissues and phlebitis existing on the insertion path of the insert C. You can find out.
- the ultrasonic diagnostic apparatus can be used when observing the blood vessel B and the insert C by the short axis method, and when confirming the blood vessel B and the insert C by the long axis method. Is also available.
- the highlighting mode of the blood vessel B is changed based on the distance D between the blood vessel B and the insert C. Further, when the insert C is in the vicinity of the blood vessel B, the operator interferes with the blood vessel B in order to improve the operability (easiness of inserting the insert C) when the insert C is inserted into the blood vessel B. It was decided to display the blood vessel B in the second style avoiding. However, if the insert C is not inserted correctly, the insert C may not reach the blood vessel B even if it is located near the blood vessel B. In that case, the blood vessel B is not necessarily inserted in order to improve the operability. No need to highlight in the second style.
- the range in which the insert C can be inserted into the blood vessel B is set in the ultrasonic image U as the effective working region, and the tip of the insertion C in the ultrasonic image U is in the effective working region. Only in case, vessel B can be highlighted in the second style.
- Such an embodiment is referred to as a third embodiment, and the present embodiment will be described in detail below.
- the configuration of the ultrasonic diagnostic apparatus according to the third embodiment is substantially the same as the configuration of the ultrasonic diagnostic apparatus according to the first embodiment described above.
- the insertion direction of the insert C is estimated.
- the image analysis unit 9 detects the locus of the tip of the insert C by analyzing the ultrasonic images U of a plurality of frames continuously generated by the image generation unit 6, and the locus of the detected tip.
- the insertion direction of the insert C is estimated based on.
- the device control unit 13 determines the position of the blood vessel B detected by the image analysis unit 9 and the insert C estimated by the image analysis unit 9.
- the effective operating region R in the ultrasonic image U is set based on the insertion direction. As shown in FIGS. 20 and 21, the effective working region R is a region extending in a fan shape from the center of the blood vessel B, and the boundary positions (edges) on both sides thereof are a pair of boundary lines r1 separated from each other by about 120 degrees. Specified by r2.
- the direction of the effective operating region R (strictly speaking, the direction in which the center line of the effective operating region R extends) is the estimated insertion direction of the insert C (indicated by the white arrow in FIGS. 20 to 23). It changes according to it. For example, when the insertion direction is parallel or substantially parallel to the depth direction of the ultrasonic image U, the effective operating region R is set to face upward as shown in FIG. When the insertion direction is tilted with respect to the depth direction, the effective operating region R is set to face sideways (left or right) as shown in FIG.
- the device control unit 13 has the tip of the insert C in the effective operating region R.
- the blood vessel B is highlighted in the second mode as shown in FIGS. 20 and 21.
- the highlighting unit 10 is controlled.
- FIGS. 20 and 21 an example in which the blood vessel B is highlighted in the enlarged display style is shown as an example of the second style.
- the device control unit 13 determines that the tip of the insert C is outside the effective operating region R, the blood vessel B is highlighted in the first mode as shown in FIGS. 22 and 23.
- the highlighting unit 10 is controlled in this way. Note that, in FIGS. 22 and 23, as an example of the first mode, an example in which the blood vessel B is filled with a highlight color and highlighted is shown.
- the blood vessel B is provided only when the distance D between the blood vessel B and the insert C is smaller than the threshold value and the tip of the insert C is within the effective working region R.
- the highlighting style of is set to the second style. That is, when the insert C cannot be inserted into the blood vessel B even if the insert C is located near the blood vessel B (for example, when there is no blood vessel B in the traveling direction of the insert C, or the insert C If the blood vessel B is not reached even if the traveling direction of the blood vessel B is slightly changed), the highlighting style of the blood vessel B is maintained in the first style. As a result, the operator can be made aware that the insert C is not inserted into the blood vessel B as it is.
- the highlighting unit 10 highlights the effective operating region R set by the device control unit 13 together with the blood vessel B detected by the image analysis unit 9, for example.
- the pair of boundary lines r1 and r2 may be displayed in highlight color.
- the device control unit 13 connects the tips of the pair of boundary lines r1 and r2 with each other by an arc line r3, and sets the area surrounded by these lines as the effective operating area R. You may.
- the arc line r3 is provided at a position away from the contour line of the blood vessel B by a distance corresponding to the above threshold value, the effective operating region R reflecting the above threshold value can be set, and further, a circle. If the arc line r3 is displayed on the ultrasonic image U, the above threshold value can be visualized.
- pair of boundary lines r1 and r2 defining both ends of the effective working region R may extend from the center of the blood vessel B, respectively, or may extend from both ends of the blood vessel B as shown in FIG. 25. Good.
- the device control unit 13 may set the size of the effective operating area R to a constant length, or set the size to a size determined for each operator. May be good.
- the size of the effective operating region R is the length of the effective operating region R in the width direction of the ultrasonic image U (strictly speaking, the shortest distance between the tip positions of the pair of boundary lines r1 and r2 in the width direction. (Hereinafter referred to as the area width), or the angle formed by the pair of boundary lines r1 and r2 (hereinafter referred to as the area angle).
- the operator sets his / her own identification information and the size setting value of the effective operating area R (specifically, the area width and the area width) via the input device 14. Area angle value) and enter.
- the input set value is stored in the storage unit 15 in association with the identification information of the operator who input the set value.
- the device control unit 13 and the input identification information among the size setting values stored in the storage unit 15.
- the associated size setting value is read out, and the effective operating area R having the size indicated by the setting value is set.
- the size of the effective operating area R set in this way is a size corresponding to the identification information of the operator input to the input device 14, and the effective operating area R having that size is the skill level of the operator and the like. Will be reflected and set appropriately.
- the ultrasonic diagnostic apparatus can be used when observing the blood vessel B and the insert C in the short axis method, and the blood vessel B and the insert C in the long axis method. It can also be used to confirm.
- a plurality of blood vessels B may be displayed on the ultrasonic image U.
- the plurality of blood vessels B only one blood vessel (hereinafter, blood vessel Bx) in which the insert C is actually inserted is used, and the operator pays particular attention to the blood vessel Bx in the ultrasonic image U. ..
- blood vessel Bx only one blood vessel in which the insert C is inserted can be highlighted in the second mode.
- Such an embodiment is referred to as a fourth embodiment, and the present embodiment will be described in detail below.
- the configuration of the ultrasonic diagnostic apparatus according to the fourth embodiment is substantially the same as the configuration of the ultrasonic diagnostic apparatus according to the first embodiment described above. Further, in the fourth embodiment, the ultrasonic image U observed by the short axis method, that is, the ultrasonic image U including the cross section of the blood vessel B and the cross section of the insert C is processed.
- the image analysis unit 9 when the image analysis unit 9 detects a plurality of blood vessels B together with the insert C in the ultrasonic image U, the blood vessel B and the insert C are used for each of the detected blood vessels B. Specify the distance D between them. Further, the image analysis unit 9 estimates the insertion direction of the detected insert C. The procedure for estimating the insertion direction is the same as the procedure described in the third embodiment.
- the device control unit 13 determines whether or not the insert C is in a reachable position for each of the plurality of blood vessels B detected by the image analysis unit 9. To do. In this case, the device control unit 13 makes the above determination based on the insertion direction estimated by the image analysis unit 9. Specifically, the device control unit 13 states that the blood vessel B located in the insertion direction when viewed from the tip of the insert C in the ultrasonic image U is a blood vessel located at a position where the insert C can reach. judge.
- the device control unit 13 has a blood vessel B determined to be in a position where the insert C can be reached, the distance D specified by the image analysis unit 9 is smaller than the threshold value, and the insert C
- the blood vessel Bx closest to the tip is specified, and the highlighting unit 10 is controlled so that only this blood vessel Bx is highlighted in the second mode.
- the highlighting unit 10 is controlled so that only this blood vessel Bx is highlighted in the second mode.
- one blood vessel Bx specified by the device control unit 13 is highlighted in the instruction mark display style, but is highlighted in another second style (for example, an enlarged display style). You may.
- the blood vessels B whose distance D specified by the image analysis unit 9 is smaller than the threshold value are all in the second mode. It may be highlighted.
- all blood vessels B whose distance D specified by the image analysis unit 9 is smaller than the threshold value are emphasized in the second mode regardless of whether or not the insert C is in a reachable position. It may be displayed. Also, regardless of whether the insert C is in a reachable position, as shown in FIG. 29, only one blood vessel B closest to the tip of the insert C may be highlighted in the second style. ..
- the insertion direction of the insert C is estimated and the estimated insertion direction when determining whether or not the insert C is in a reachable position for each of the plurality of blood vessels B. It was decided to make a judgment based on.
- the present invention is not limited to this, and the above determination may be made based on the positional relationship between the blood vessel B and the insert C. For example, for a blood vessel B located above the tip of the insert C and a blood vessel B immediately beside the tip of the insert C and adjacent to the insert C, a blood vessel in which the insert C is not reachable. It may be determined that.
- the display range or display size (hereinafter, also referred to as “display range, etc.”) when the blood vessel B is enlarged and displayed is variable, and the setting information input by the operator through the input device 14 It was decided that the display range and the like would be changed accordingly.
- the display range, etc. can be automatically set according to the skill and skill level.
- Such an embodiment will be referred to as a fifth embodiment, and this embodiment will be described in detail with reference to FIG.
- the learning unit 12 is added to the processor 22.
- the learning unit 12 is connected to the image analysis unit 9, and the device control unit 13 is connected to the learning unit 12.
- the learning unit 12 learns about the correspondence between the display range or display size when the highlighting unit 10 highlights the blood vessel B in the second mode and the measurement result of the measurement process related to the insertion operation of the insert.
- the display range or display size is set for each operator by inputting setting information via the input device 14.
- the image analysis unit 9 detects the insert C in the ultrasonic image U
- the measurement process is performed by the image analysis unit 9 for each operator.
- the image analysis unit 9 analyzes the ultrasonic images U of a plurality of frames continuously generated by the image generation unit 6 and measures the matters related to the insertion operation of the insert C. Specifically, for example, , The range in which the tip of the insert C has moved within a predetermined time, the movement speed calculated from the movement range, the angle at which the insert C is inserted into the subject, and the like are measured.
- the learning unit 12 collects the display range or display size adopted by a certain operator and the measurement result of the measurement process related to the insertion operation of the insert C by a certain operator as learning data for each operator, and for each operator.
- Machine learning is carried out using the learning data collected in.
- a known algorithm can be used as the machine learning algorithm, for example, correlation rule learning, neural network, deep learning, genetic programming, functional logic programming, random forest, support vector machine, clustering, principal component analysis. Principal component analysis, cluster analysis, Basian networks, and extreme learning machines are available.
- machine learning algorithms that may be developed in the future are also available.
- the image analysis unit 9 performs the measurement process. Then, the device control unit 13 controls the highlighting unit 10 so that the display range or the display size when the blood vessel B is enlarged and displayed changes according to the measurement result of the measurement process. More specifically, the device control unit 13 derives a display range and the like corresponding to the measurement result of the measurement process based on the correspondence relationship learned by the learning unit 12, and the blood vessel B is enlarged and displayed in the derived display range and the like.
- the highlighting unit 10 is controlled in this way.
- the correspondence between the display range and the like when the blood vessel B is enlarged and displayed and the measurement result of the measurement process related to the insertion operation of the insert C is learned, and based on the correspondence. , Set the display range, etc. according to the measurement result.
- the appropriate display range and the like are automatically determined on the processor 22 side according to the skill and skill level of the operator, so that the usability for the operator is improved. For example, an operator with poor skill needs to observe the area around the blood vessel B into which the insert C is inserted more widely, and therefore, it is possible to set a wider display range for such an operator. it can.
- the display range or display size when the blood vessel B is enlarged and displayed is set according to the measurement result of the measurement process related to the insertion operation of the insert C, but the present invention is limited to this. is not it.
- Measurement result of measurement processing such as the display size of the instruction mark M when highlighting the blood vessel B in the instruction mark display format, or the display range of the spotlight display area H when highlighting the blood vessel B in the spotlight display format. It may be set according to.
- the display range or display size (display range, etc.) when the blood vessel B is enlarged and displayed is automatically set according to the skill and skill level of the operator.
- the display range and the like can be automatically set according to the information about the operator, for example, the information about the use of the ultrasonic diagnostic apparatus.
- Such an embodiment will be referred to as a sixth embodiment, and this embodiment will be described in detail with reference to FIG. 31.
- the configuration of the ultrasonic diagnostic apparatus 1C according to the sixth embodiment is substantially the same as the configuration of the ultrasonic diagnostic apparatus according to the first embodiment described above, but as shown in FIG. 31, the storage unit 15 is provided for each operator.
- the usage history K of the above is stored, which is different from the first embodiment.
- the usage history K is an example of information about the operator, and specifically represents the number of times of use or the frequency of use as the usage history of the ultrasonic diagnostic apparatus 1C by the operator.
- the storage unit 15 stores the usage history K of each operator in association with the identification information of the operator.
- the operator inputs his / her own identification information through the input device 14 when starting the ultrasonic image acquisition by the ultrasonic diagnostic apparatus 1C.
- the device control unit 13 displays a display range according to the information about the operator identified by the identification information input to the input device 14.
- the highlighting unit 10 is controlled so that the like changes. Specifically, the device control unit 13 reads the usage history K corresponding to the input identification information from the storage unit 15, and controls the highlighting unit 10 so that the display range and the like change according to the read usage history K. To do.
- the highlighting unit 10 can be controlled so that the display range and the like are gradually narrowed as the operator uses the ultrasonic diagnostic apparatus 1C more frequently.
- the display range and the like when the blood vessel B is enlarged and displayed are automatically set according to the information about the operator, specifically, the usage history K of the ultrasonic diagnostic apparatus 1C by the operator. Can be set to.
- the appropriate display range and the like are automatically determined on the processor 22 side according to the experience of the operator and the like, so that the usability for the operator is improved.
- the information about the operator is the usage history K of the ultrasonic diagnostic apparatus 1C by the operator, but the information is not limited to this.
- the display range or the like may be automatically set according to the profile of the operator (particularly, the content related to the use of the ultrasonic diagnostic apparatus) or the like.
- Ultrasonic diagnostic device 1,1A, 1B, 1C, 1D Ultrasonic diagnostic device 2 Transducer array 3 Transmission circuit 4 Reception circuit 5 Transmission / reception circuit 6 Image generation unit 7 Display control unit 8 Display device 9 Image analysis unit 10 Highlight display unit 11 Image acquisition unit 12 Learning unit 13 Device control unit 14 Input device 15 Storage unit 21 Ultrasonic probe 22 Processor 23 Amplification unit 24 AD conversion unit 25 Beamformer 26 Signal processing unit 27 DSC 28 Image processing unit 41 Ultrasound diagnostic equipment body B, Bx Blood vessel C Insert D Distance H Spotlight display area K Usage history KU Enlarged display image M Instruction mark NW network R Effective operating area r1, r2 Boundary line r3 Arc line t Interval Q Fill layer U Ultrasound image
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Surgery (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Radiology & Medical Imaging (AREA)
- Vascular Medicine (AREA)
- Gynecology & Obstetrics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physiology (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
挿入物の挿入状況に応じて超音波画像中の血管を適切に強調表示することが可能な超音波診断装置、及びその制御方法を提供する。 超音波診断装置1が、振動子アレイ2と、超音波画像を取得する画像取得部11と、超音波画像を表示する表示装置8と、超音波画像を解析して超音波画像中の血管及び挿入物を検出する画像解析部9と、超音波画像が表示される際に画像解析部9によって検出された血管を強調表示する強調表示部10と、強調表示部10を制御する装置制御部13と、を備える。装置制御部13は、血管と挿入物との相対的な位置関係に応じて、血管を強調表示する際の様式が変わるように強調表示部10を制御する。
Description
本発明は、被検体の血管と血管に挿入される挿入物とを超音波画像中に表示する超音波診断装置、及び超音波診断装置の制御方法に関する。
従来から、被検体の内部の画像を得るものとして、超音波診断装置が知られている。超音波診断装置は、一般的に、複数の超音波振動子が配列された振動子アレイが備えられた超音波プローブを有する。超音波プローブを被検体の体表面に接触させた状態において、振動子アレイから被検体内に向けて超音波ビームを送信し、被検体内で生じた超音波エコーを振動子アレイにおいて受信すると、超音波エコーに対応する電気信号が取得される。超音波診断装置は、取得された電気信号を処理して、被検体の当該部位の超音波画像を生成する。
ところで、上記の超音波診断装置を用いて被検体内を観察しながら、穿刺針及びカテーテル等の挿入物を被検体の血管内に挿入する手技、具体的にはエコーガイド下穿刺法等が知られている。エコーガイド下穿刺法では、通常、操作者が超音波画像を通じて被検体内の血管の位置及び形状等を把握するが、血管の位置及び形状等を正確に把握するためには、一定以上の熟練度を要する。また、エコーガイド下穿刺法では、片手に超音波プローブを持ち、超音波画像に血管が描出される位置に超音波プローブを移動させ、もう片方の手で挿入物を血管に向けて挿入するため、作業の難易度が極めて高く集中力を要する。
また、エコーガイド下穿刺法において、挿入物が正しく血管内に入ったことを確認するために、操作者は、超音波画像中の血管壁と挿入物との相対的な位置関係を把握したり、血管壁の細かな動き等から、挿入物が血管内に挿入されたか否かを判断したりする必要がある。ここで、操作者は、被検体における挿入物の挿入箇所の目視と、超音波画像の確認とを交互に行う。ただし、超音波画像であるBモード画像は、通常、グレースケールで表示されるため、超音波画像中の血管及び挿入物は、一目では識別しづらい。
そのため、例えば、特許文献1に開示されているように、超音波画像中の挿入物(具体的には、針のような医療器具)を自動的に検出し、検出された挿入物が視覚的に強調された超音波画像を表示する超音波診断装置が開発されている。このような装置を利用すれば、超音波画像中の挿入物の視認性が良くなる。特許文献1に記載の技術を応用すれば、例えば、超音波画像中の血管を検出し、検出された血管を強調表示することができ、これにより、超音波画像中の血管の視認性が向上する。
ところで、エコーガイド下穿刺法において超音波画像中の血管を強調表示する場合には、挿入物の挿入状況(具体的には、挿入物の先端位置の変化等)を踏まえて適切に強調表示することが望まれる。しかしながら、特許文献1に記載の技術を用いたとしても、検出された血管及び挿入物を強調表示できるものの、挿入物の挿入状況に応じた強調表示を実現することは難しい。
本発明は、上記の事情に鑑みてなされたものであり、以下に示す目的を解決することを課題とする。
本発明は、上記従来技術の問題点を解決し、挿入物の挿入状況に応じて超音波画像中の血管を適切に強調表示することが可能な超音波診断装置、及びその制御方法を提供することを目的とする。
本発明は、上記従来技術の問題点を解決し、挿入物の挿入状況に応じて超音波画像中の血管を適切に強調表示することが可能な超音波診断装置、及びその制御方法を提供することを目的とする。
上記の目的を達成するために、本発明の超音波診断装置は、被検体の血管と血管に挿入される挿入物とを超音波画像中に表示する超音波診断装置であって、振動子アレイと、振動子アレイから被検体に向けて超音波ビームの送信を行わせ、且つ、被検体内で生じた超音波エコーを受信して超音波画像を取得する画像取得部と、画像取得部によって取得された超音波画像を表示する表示装置と、画像取得部によって取得された超音波画像を解析して、超音波画像中の血管及び挿入物を検出する画像解析部と、超音波画像が表示装置に表示される際に、画像解析部によって検出された血管を強調表示する強調表示部と、画像解析部によって検出された血管と挿入物との相対的な位置関係に応じて、血管を強調表示する際の様式が変わるように、強調表示部を制御する装置制御部と、を備えることを特徴とする。
上述した本発明の超音波診断装置において、画像解析部は、検出された血管と挿入物との相対的な位置関係を表す物理量を特定し、装置制御部は、画像解析部によって特定された物理量が閾値よりも大きい場合には、第1様式にて血管が強調表示されるように強調表示部を制御し、画像解析部によって特定された物理量が閾値よりも小さい場合には、第1様式とは異なる第2様式にて血管が強調表示されるように強調表示部を制御してもよい。この際、第2様式は、画像解析部によって検出された血管との干渉を避けて血管を強調表示する様式であると、好適である。
また、上記の構成において、画像解析部は、物理量として、検出された血管と挿入物との距離、又は、検出された血管に対する挿入物の挿入角度を特定するとよい。
また、上記の構成において、画像解析部は、物理量として、検出された血管と挿入物との距離、又は、検出された血管に対する挿入物の挿入角度を特定するとよい。
また、本発明の超音波診断装置において、第1様式は、血管をハイライト色にて塗り潰して表示する様式、血管の輪郭をハイライト色にて表示する様式、血管と重なる位置に文字列を表示する様式、及び、血管の指示マークを血管周辺に表示する様式のうちの少なくとも一つに該当し、第2様式は、指示マークを超音波画像中の血管から離して血管の周辺に表示する様式、血管を拡大表示する様式、超音波画像中の血管を周囲よりも明るい明るさで表示する様式、血管の断層画像が視認可能となる透過率に設定されたハイライト色の塗り潰し層を血管に重畳して表示する様式、及び、ハイライト色による血管の塗り潰し表示と血管の断層画像の表示とを交互に繰り返す様式のうちの少なくとも一つに該当するとよい。
この場合、指示マークは、血管を囲む点線状の枠線であると、好適である。
この場合、指示マークは、血管を囲む点線状の枠線であると、好適である。
また、本発明の超音波診断装置において、画像解析部が超音波画像において血管のみを検出した場合、装置制御部は、血管が第1様式にて強調表示されるように強調表示部を制御することができる。
この場合、画像解析部によって特定された物理量が閾値よりも小さく、且つ、閾値より小さい拡大表示用閾値よりも小さい場合、装置制御部は、血管を拡大表示するように強調表示部を制御してもよい。
また、画像解析部によって特定された物理量が閾値よりも小さく、且つ、拡大表示用閾値よりも大きい場合、装置制御部は、血管を囲む枠線からなる指示マークが、血管と指示マークとの間に拡大表示用閾値に応じた間隔を設けた状態で、血管周辺に表示されるように強調表示部を制御すると、好適である。
この場合、画像解析部によって特定された物理量が閾値よりも小さく、且つ、閾値より小さい拡大表示用閾値よりも小さい場合、装置制御部は、血管を拡大表示するように強調表示部を制御してもよい。
また、画像解析部によって特定された物理量が閾値よりも小さく、且つ、拡大表示用閾値よりも大きい場合、装置制御部は、血管を囲む枠線からなる指示マークが、血管と指示マークとの間に拡大表示用閾値に応じた間隔を設けた状態で、血管周辺に表示されるように強調表示部を制御すると、好適である。
また、本発明の超音波診断装置において、装置制御部は、画像解析部によって検出された挿入物の一部が血管内で留まっているかを判定し、挿入物の一部が血管内で留まっていると判定した場合には、挿入物の一部が血管内に留まっている間は血管を拡大表示し続けるように強調表示部を制御することができる。
他方、装置制御部は、画像解析部によって検出された挿入物の一部が血管内で留まっているかを判定し、挿入物の一部が血管内で留まっていると判定した場合には、血管の強調表示を停止するように強調表示部を制御してもよい。
他方、装置制御部は、画像解析部によって検出された挿入物の一部が血管内で留まっているかを判定し、挿入物の一部が血管内で留まっていると判定した場合には、血管の強調表示を停止するように強調表示部を制御してもよい。
また、本発明の超音波診断装置において、画像解析部が血管及び挿入物を検出すると、装置制御部は、画像解析部によって検出された血管の位置に基づいて、超音波画像内の有効作動領域を設定し、且つ、画像解析部によって検出された挿入物の先端が有効作動領域内に在るかを判定し、挿入物の先端が有効作動領域内に在ると判定した場合には、血管が第2様式にて強調表示されるように強調表示部を制御し、挿入物の先端が有効作動領域外に在ると判定した場合には、血管が第1様式にて強調表示されるように強調表示部を制御することができる。
この場合、画像解析部は、血管及び挿入物を検出すると、挿入物の挿入方向を推定し、装置制御部は、画像解析部によって検出された血管の位置、及び、画像解析部によって推定された挿入方向に基づいて有効作動領域を設定し、強調表示部は、画像解析部によって検出された血管、及び、装置制御部によって設定された有効作動領域を強調表示すると、好適である。
また、超音波診断装置が、挿入物の操作者の識別情報が入力される入力装置をさらに有し、装置制御部は、有効作動領域を設定する際に、超音波画像の幅方向における有効作動領域の長さを、入力装置に入力された識別情報と対応する長さに設定してもよい。
この場合、画像解析部は、血管及び挿入物を検出すると、挿入物の挿入方向を推定し、装置制御部は、画像解析部によって検出された血管の位置、及び、画像解析部によって推定された挿入方向に基づいて有効作動領域を設定し、強調表示部は、画像解析部によって検出された血管、及び、装置制御部によって設定された有効作動領域を強調表示すると、好適である。
また、超音波診断装置が、挿入物の操作者の識別情報が入力される入力装置をさらに有し、装置制御部は、有効作動領域を設定する際に、超音波画像の幅方向における有効作動領域の長さを、入力装置に入力された識別情報と対応する長さに設定してもよい。
また、本発明の超音波診断装置において、画像解析部は、挿入物及び複数の血管を検出すると、複数の血管のそれぞれについて、物理量を特定し、装置制御部は、画像解析部によって検出された複数の血管のそれぞれについて、挿入物が到達可能な位置に在るかを判定し、装置制御部は、挿入物が到達可能な位置に在ると判定された血管のうち、画像解析部によって特定された物理量が閾値よりも小さく、且つ、挿入物に最も近い血管のみが第2様式にて強調表示されるように強調表示部を制御することができる。
この場合、画像解析部は、画像解析部によって検出された挿入物の挿入方向を推定し、検出された複数の血管のそれぞれについて、挿入物が到達可能な位置に在るかを判定する際には、画像解析部によって推定された挿入方向に基づいて判定してもよい。
この場合、画像解析部は、画像解析部によって検出された挿入物の挿入方向を推定し、検出された複数の血管のそれぞれについて、挿入物が到達可能な位置に在るかを判定する際には、画像解析部によって推定された挿入方向に基づいて判定してもよい。
また、本発明の超音波診断装置において、画像解析部は、挿入物を検出すると、超音波画像を解析して、挿入物の挿入操作に関する計測処理を実施し、装置制御部は、強調表示部が第2様式にて血管を強調表示する際の表示範囲又は表示サイズが、計測処理の計測結果に応じて変わるように強調表示部を制御することができる。
この場合、超音波診断装置は、表示範囲又は表示サイズと計測処理の計測結果との対応関係について学習する学習部をさらに有し、装置制御部は、学習部によって学習された対応関係と計測処理の計測結果とから導き出される表示範囲又は表示サイズで血管が第2様式にて強調表示されるように強調表示部を制御すると、好適である。
この場合、超音波診断装置は、表示範囲又は表示サイズと計測処理の計測結果との対応関係について学習する学習部をさらに有し、装置制御部は、学習部によって学習された対応関係と計測処理の計測結果とから導き出される表示範囲又は表示サイズで血管が第2様式にて強調表示されるように強調表示部を制御すると、好適である。
また、本発明の超音波診断装置は、挿入物の操作者の識別情報が入力される入力装置をさらに有してもよい。この場合、装置制御部は、強調表示部が第2様式にて血管を強調表示する際の表示範囲又は表示サイズが、入力装置に入力された識別情報によって識別される操作者に関する情報に応じて変わるように強調表示部を制御することができる。
さらに、本発明の超音波診断装置は、操作者に関する情報として、操作者による超音波診断装置の使用履歴を、識別情報と対応付けて格納する格納部を有してもよい。この場合、装置制御部は、入力装置に入力された識別情報と対応する使用履歴を格納部から読み出し、強調表示部が第2様式にて血管を強調表示する際の表示範囲又は表示サイズが、読み出された使用履歴に応じて変わるように強調表示部を制御することができる。
さらに、本発明の超音波診断装置は、操作者に関する情報として、操作者による超音波診断装置の使用履歴を、識別情報と対応付けて格納する格納部を有してもよい。この場合、装置制御部は、入力装置に入力された識別情報と対応する使用履歴を格納部から読み出し、強調表示部が第2様式にて血管を強調表示する際の表示範囲又は表示サイズが、読み出された使用履歴に応じて変わるように強調表示部を制御することができる。
また、本発明の超音波診断装置は、強調表示部が第2様式にて血管を強調表示する際の表示範囲又は表示サイズに関する設定情報が入力される入力装置をさらに有してもよい。この場合、装置制御部は、入力装置に入力された設定情報が示す表示範囲又は表示サイズで血管が第2様式にて強調表示されるように強調表示部を制御することができる。
さらに、入力装置には、挿入物の操作者の識別情報がさらに入力されてもよい。この場合、超音波診断装置は、ある操作者が入力した設定情報を、ある操作者の識別情報と関連付けて格納する格納部をさらに有し、装置制御部は、入力装置に識別情報が入力されると、格納部に格納された設定情報のうち、入力された識別情報と関連付けられた設定情報を読み出し、読み出された設定情報が示す表示範囲又は表示サイズで血管が第2様式にて強調表示されるように強調表示部を制御すると、好適である。
さらに、入力装置には、挿入物の操作者の識別情報がさらに入力されてもよい。この場合、超音波診断装置は、ある操作者が入力した設定情報を、ある操作者の識別情報と関連付けて格納する格納部をさらに有し、装置制御部は、入力装置に識別情報が入力されると、格納部に格納された設定情報のうち、入力された識別情報と関連付けられた設定情報を読み出し、読み出された設定情報が示す表示範囲又は表示サイズで血管が第2様式にて強調表示されるように強調表示部を制御すると、好適である。
また、本発明の超音波診断装置は、振動子アレイを有する超音波プローブと、超音波プローブが接続されるプロセッサを有してもよい。この場合、画像取得部は、振動子アレイから被検体に向けて超音波ビームの送信を行わせる送信回路と、被検体内で生じた超音波エコーを受信した振動子アレイから出力される信号を処理して音線信号を生成する受信回路と、受信回路によって生成された音線信号に基づいて超音波画像を生成する画像生成部とによって構成され、送信回路、受信回路及び画像生成部の各々は、超音波プローブ又はプロセッサに設けられてもよい。
また、前述の目的を達成するために、本発明の超音波診断装置の制御方法は、被検体の血管と血管に挿入される挿入物とを超音波画像中に表示する超音波診断装置の制御方法であって、振動子アレイから被検体に向けて超音波ビームの送信を行わせ、且つ、被検体内で生じた超音波エコーを受信して超音波画像を取得し、取得された超音波画像を表示装置に表示し、取得された超音波画像を解析して、超音波画像中の血管及び挿入物を検出し、超音波画像が表示装置に表示される際に、検出された血管を強調表示し、検出された血管と挿入物との相対的な位置関係に応じて、血管を強調表示する際の様式を変えることを特徴とする。
本発明によれば、超音波画像を解析して、超音波画像中の血管及び挿入物を検出し、超音波画像を表示装置に表示する際に、検出された血管を強調表示する。また、検出された血管と挿入物との相対的な位置関係に応じて、血管を強調表示する際の様式を変える。これにより、挿入物の挿入状況に応じて超音波画像中の血管を適切に強調表示することが可能になる。
以下、本発明の具体的な複数の実施形態(第1実施形態~第6実施形態)について、添付の図面を参照しながら説明する。以下に説明する実施形態は、本発明の理解を容易にするために挙げた一例に過ぎず、本発明を限定するものではない。本発明は、その趣旨を逸脱しない限りにおいて、以下に説明する実施形態から変更又は改良され得る。本発明には、その等価物が含まれる。
以下の説明において、超音波画像の上下及び左右は、操作者が超音波画像を正面から見るときの上下及び左右であることとする。例えば、図4に示す超音波画像Uでは、血管Bの上方に挿入物Cが位置している。
<<本発明の超音波診断装置の用途>>
本発明の各実施形態について説明するにあたり、本発明の超音波診断装置の用途について説明しておく。
本発明の超音波診断装置は、被検体内を観察しながら穿刺針及びカテーテル等の挿入物を被検体の血管内に挿入する手技、例えば、エコーガイド下穿刺法において用いられる。
つまり、本発明の超音波診断装置は、被検体の血管と血管に挿入される挿入物とを超音波画像中に表示する装置であり、挿入物の操作者は、挿入物の挿入操作中、超音波診断装置によって表示された超音波画像を適宜観察する。
本発明の各実施形態について説明するにあたり、本発明の超音波診断装置の用途について説明しておく。
本発明の超音波診断装置は、被検体内を観察しながら穿刺針及びカテーテル等の挿入物を被検体の血管内に挿入する手技、例えば、エコーガイド下穿刺法において用いられる。
つまり、本発明の超音波診断装置は、被検体の血管と血管に挿入される挿入物とを超音波画像中に表示する装置であり、挿入物の操作者は、挿入物の挿入操作中、超音波診断装置によって表示された超音波画像を適宜観察する。
以降の説明では、特記する場合を除いて、超音波画像は、被検体内の組織に関するBモード画像(断層画像)であることとする。
また、以下では、挿入物が穿刺針付きカテーテルである場合を例に挙げて説明するが、本発明の超音波診断装置は、穿刺針付きカテーテル以外の挿入物を血管に挿入する場合にも適用可能である。ここで、挿入物は、直線状に延出したものであり、被検体の体表面及び血管壁に穿刺可能なものである。
また、以下では、挿入物が穿刺針付きカテーテルである場合を例に挙げて説明するが、本発明の超音波診断装置は、穿刺針付きカテーテル以外の挿入物を血管に挿入する場合にも適用可能である。ここで、挿入物は、直線状に延出したものであり、被検体の体表面及び血管壁に穿刺可能なものである。
<<第1実施形態>>
本発明の第1実施形態に係る超音波診断装置(以下、超音波診断装置1)は、図1に示すように、振動子アレイ2を備える超音波プローブ21と、超音波プローブ21と接続されるプロセッサ22とを有する。振動子アレイ2には、送信回路3及び受信回路4が、それぞれ接続されている。送信回路3及び受信回路4は、送受信回路5を構成しており、図1に示す構成では、超音波プローブ21に含まれている。受信回路4には画像生成部6が接続され、画像生成部6には表示制御部7が接続され、表示制御部7には表示装置8が接続される。
本発明の第1実施形態に係る超音波診断装置(以下、超音波診断装置1)は、図1に示すように、振動子アレイ2を備える超音波プローブ21と、超音波プローブ21と接続されるプロセッサ22とを有する。振動子アレイ2には、送信回路3及び受信回路4が、それぞれ接続されている。送信回路3及び受信回路4は、送受信回路5を構成しており、図1に示す構成では、超音波プローブ21に含まれている。受信回路4には画像生成部6が接続され、画像生成部6には表示制御部7が接続され、表示制御部7には表示装置8が接続される。
また、画像生成部6には画像解析部9が接続されており、画像解析部9には強調表示部10が接続されており、強調表示部10には表示制御部7が接続されている。さらに、送受信回路5、画像生成部6、表示制御部7、画像解析部9及び強調表示部10の各々には装置制御部13が接続されており、装置制御部13には、入力装置14及び格納部15が接続されている。装置制御部13と格納部15とは、双方の間で互いに情報の受け渡しが可能な状態で接続されている。
なお、図1の構成では、画像生成部6、表示制御部7、画像解析部9、強調表示部10及び装置制御部13がプロセッサ22に設けられている(実装されている)。また、超音波プローブ21の送受信回路5(つまり、送信回路3及び受信回路4)、及びプロセッサ22の画像生成部6は、互いに協働し、超音波画像を取得する画像取得部11を構成している。
振動子アレイ2は、1次元又は2次元に配列された複数の振動子を有する。複数の振動子は、リニア型の超音波プローブ21のように直線状に配列されていてもよく、コンベックス型又はセクタ型の超音波プローブ21のように湾曲して配列されてもよい。複数の振動子の各々は、送信回路3から供給される駆動信号に従って超音波を送信するとともに、被検体内で生じた超音波エコーを受信して、超音波エコーに基づく電気信号を出力する。それぞれの振動子は、例えば、PZT(Lead Zirconate Titanate:チタン酸ジルコン酸鉛)に代表される圧電セラミック、PVDF(Poly Vinylidene Di Fluoride:ポリフッ化ビニリデン)に代表される高分子圧電素子、及び、PMN-PT(Lead Magnesium Niobate-Lead Titanate:マグネシウムニオブ酸鉛-チタン酸鉛固溶体)に代表される圧電単結晶等からなる圧電体の両端に電極を形成することによって構成される。
送信回路3は、振動子アレイ2から被検体に向けて超音波ビームの送信を行わせる。具体的に説明すると、送信回路3は、例えば、複数のパルス発生器を含んでおり、装置制御部13からの制御信号に応じて選択された送信遅延パターンに基づき、振動子アレイ2が有する複数の振動子に対する駆動信号を、それぞれの遅延量を調整して供給する。それぞれの駆動信号は、パルス状又は連続波状の電圧信号であり、振動子アレイ2の振動子の電極が印加されると、圧電体が伸縮する。以上の結果、それぞれの振動子からパルス状又は連続波状の超音波が発生し、それらの超音波の合成波から超音波ビームが形成される。
送信された超音波ビームは、例えば、被検体内の各部位(例えば、臓器及び血管等)及び被検体内に配置された器具等にて反射される。これにより、超音波エコーが発生し、振動子アレイ2に向かって被検体内で伝搬し、最終的には、振動子アレイ2が有する複数の振動子によって受信される。この際、それぞれの振動子は、超音波エコーを受信することにより伸縮して電気信号を発生させ、その電気信号を受信回路4に出力する。
受信回路4は、装置制御部13からの制御信号に従い、振動子アレイ2から出力される信号(厳密には、アナログの電気信号)に対して所定の処理を行って、音線信号を生成する。受信回路4は、例えば、図2に示すように増幅部23、AD(Analog Digital:アナログデジタル)変換部24、及びビームフォーマ25が直列に接続された構成を有する。
増幅部23は、振動子アレイ2が有する複数の振動子のそれぞれから出力された信号を増幅し、増幅後の信号をAD変換部24に送信する。AD変換部24は、増幅後の信号をデジタルの受信データに変換し、変換された各受信データをビームフォーマ25に送信する。ビームフォーマ25は、装置制御部13からの制御信号に応じて選択された受信遅延パターンに基づいて設定される音速又は音速の分布に従い、AD変換部24によって変換された各受信データに対してそれぞれの遅延を与えて加算して、受信フォーカス処理を行う。この受信フォーカス処理により、AD変換部24で変換された各受信データが整相加算され、且つ、超音波エコーの焦点が絞り込まれた音線信号が取得される。
画像生成部6は、受信回路4によって生成された音線信号に基づいて超音波画像を生成し、図3に示されるように信号処理部26、DSC(Digital Scan Converter:デジタルスキャンコンバータ)27、及び画像処理部28が順次直列に接続された構成を有する。
信号処理部26は、受信回路4によって生成された音線信号に対し、超音波の反射位置の深度に応じて距離による減衰の補正を施した後、包絡線検波処理を施すことにより、超音波画像を示すBモード画像信号を生成する。
DSC27は、信号処理部26で生成されたBモード画像信号を通常のテレビジョン信号の走査方式に従う画像信号に変換(ラスター変換)する。
画像処理部28は、DSC27から入力されるBモード画像信号に階調処理等の各種の必要な画像処理を施した後、Bモード画像信号を表示制御部7及び画像解析部9に出力する。画像処理部28によって画像処理が施されたBモード画像信号が、超音波画像に相当する。
信号処理部26は、受信回路4によって生成された音線信号に対し、超音波の反射位置の深度に応じて距離による減衰の補正を施した後、包絡線検波処理を施すことにより、超音波画像を示すBモード画像信号を生成する。
DSC27は、信号処理部26で生成されたBモード画像信号を通常のテレビジョン信号の走査方式に従う画像信号に変換(ラスター変換)する。
画像処理部28は、DSC27から入力されるBモード画像信号に階調処理等の各種の必要な画像処理を施した後、Bモード画像信号を表示制御部7及び画像解析部9に出力する。画像処理部28によって画像処理が施されたBモード画像信号が、超音波画像に相当する。
なお、送受信回路5及び画像生成部6によって構成される画像取得部11は、超音波画像の取得期間中、超音波画像が一定のフレームレートにて連続して複数回取得されるように装置制御部13によって制御される。
表示制御部7は、装置制御部13の制御の下、画像生成部6によって生成された超音波画像(換言すると、画像取得部11によって取得された超音波画像)に所定の処理を施して、超音波画像を表示装置8に表示する。表示装置8に表示される超音波画像(以下、超音波画像U)は、図4に示すように、深度方向及び幅方向に展開する。ここで、超音波画像Uの幅方向とは、超音波画像Uを構成する複数の走査線が並ぶ方向である。超音波画像Uの深度方向とは、走査線が延びる方向である。超音波画像U中の各部分は、深度方向において、超音波プローブ21が接触した被検体の体表面からの距離(深度)に応じた位置に表示される。
なお、図4の超音波画像Uには、短軸法(交差法)によって観察される血管Bの横断面及び挿入物Cの先端部の横断面が描出されており、そのうち、血管Bの横断面は、後述する第1様式にて強調表示されている。ここで、血管Bの横断面とは、血管Bの延出方向と直交する平面による血管Bの切断面であり、挿入物Cの先端部の横断面とは、挿入物Cの延出方向と直交する平面による挿入物Cの先端部の切断面である。
表示装置8は、表示制御部7による制御の下、超音波画像U等を表示する装置であり、例えば、LCD(Liquid Crystal Display:液晶ディスプレイ)、有機ELディスプレイ(Organic Electroluminescence Display)等のディスプレイ装置を含む。
画像解析部9は、画像生成部6によって生成された超音波画像(換言すると、画像取得部11によって取得された超音波画像)を解析することにより、超音波画像U中の血管Bと挿入物Cとを検出する。ここで、画像解析部9は、公知のアルゴリズムを用いて超音波画像U中の血管B及び挿入物Cを検出することができる。例えば、画像解析部9は、血管B及び挿入物Cの典型的なパターンデータをテンプレートとして予め記憶しておき、超音波画像U内をテンプレートでサーチしながらパターンデータに対する類似度を算出し、類似度が所定値以上で、且つ最大となった場所に血管B及び挿入物Cが存在するとみなすことができる。
また、類似度の算出には、単純なテンプレートマッチングの他に、例えば、Csurka et al.: Visual Categorization with Bags of Keypoints, Proc. of ECCV Workshop on Statistical Learning in Computer Vision, pp.59-74 (2004)に記載されている機械学習手法、あるいは、Krizhevsk et al.: ImageNet Classification with Deep Convolutional Neural Networks, Advances in Neural Information Processing Systems 25, pp.1106-1114 (2012)に記載されているディープラーニングを用いた一般画像認識手法等を用いることができる。
また、画像解析部9は、検出された血管Bと挿入物Cとの相対的な位置関係を特定することができ、具体的には、図4に示すように、検出された挿入物Cの先端と血管Bとの間の距離Dを計測して特定することができる。距離Dは、検出された血管Bと挿入物Cとの相対的な位置関係を表す物理量であり、例えば、画像解析部9は、この距離Dとして、挿入物Cの先端の中心位置と血管Bの中心位置との間の最短距離を計測することができる。
強調表示部10は、超音波画像Uが表示装置8に表示される際に、画像解析部9によって検出された血管Bを強調表示する。このように強調表示部10によって超音波画像U中の血管Bが強調表示されることにより、超音波画像Uにおいて、挿入物Cが挿入される血管Bが見つけ易くなり、操作者がその血管Bに挿入物Cを挿入する際の操作精度を向上させることができる。
強調表示部10が血管Bを強調表示する際の様式は、第1様式及び第2様式を含んでおり、これらの間で切り替えられる。第1様式は、血管Bの視認性(見つけ易さ)を優先した様式であり、その具体例としては、例えば、図4に示すように超音波画像U中の血管Bをハイライト色にて塗り潰して表示する様式、図5に示すように血管Bの輪郭をハイライト色にて表示する様式、図6に示すように血管Bと重なる位置に文字列を表示する様式、及び、図7に示すように血管Bの指示マークM(例えば、バウンディングボックス及び矢印等)を血管B周辺に表示する様式等が挙げられる。
第1実施形態において、第1様式としては、上記の3つの様式のうちのいずれか一つを採用することができる。あるいは、上記の3つの様式の中のいくつかを組み合わせた様式、例えば、血管Bをハイライト色で塗り潰しつつ指示マークMも併せて表示する様式を採用してもよい。
なお、以下では、血管Bをハイライト色にて塗り潰して強調表示する様式が第1様式として採用されるケースを例に挙げて説明する。
第1実施形態において、第1様式としては、上記の3つの様式のうちのいずれか一つを採用することができる。あるいは、上記の3つの様式の中のいくつかを組み合わせた様式、例えば、血管Bをハイライト色で塗り潰しつつ指示マークMも併せて表示する様式を採用してもよい。
なお、以下では、血管Bをハイライト色にて塗り潰して強調表示する様式が第1様式として採用されるケースを例に挙げて説明する。
なお、ハイライト色は、操作者が視認し易い色であることが望ましく、より好ましくは、イエロー、オレンジ、ライトグリーン、ライトブルー、及びピンク等のように彩度が高い色であるとよい。また、血管Bをハイライト色にて塗り潰して表示するとは、超音波画像U中の血管Bの表示領域の色をハイライト色とし、且つ、その表示領域のアルファチャンネル(透過率)を、血管Bの断層画像(Bモード画像)が視認できなくなる程度の値に設定することである。
第2様式は、第1様式とは異なる様式であり、画像解析部9によって検出された血管Bとの干渉を避けて血管Bを強調表示する様式である。ここで、「血管Bと干渉する」とは、血管Bの血管壁及びその内部の断層画像(Bモード画像)の全部または一部が視認できなくなることを意味し、「血管Bとの干渉を避けた表示様式」とは、血管Bの血管壁及びその内部の断層画像(Bモード画像)を、その全体が見える状態で表示する様式を意味する。なお、「血管Bとの干渉を避けた表示様式」には、一時的に血管Bと干渉したり別のオブジェクトを血管Bに重ねて表示したりするものの、血管Bの血管壁及び血管内部の断層画像の全体が視認可能となるような表示形式(すなわち、部分的な干渉を許容する表示形式)も含まれ得る。
第2様式の具体例としては、図8に示すように血管Bの指示マークMを超音波画像U中の血管Bから離して血管Bの周辺に表示する様式、図9に示すように血管Bを拡大表示する様式、及び、図10に示すように超音波画像U中の血管Bを周囲よりも明るい明るさで表示する様式が挙げられる。
また、第2様式の具体例としては、上述した3つの様式の他に、図11に示すように血管Bの断層画像(Bモード画像)が視認可能となる透過率に設定されたハイライト色の塗り潰し層Qを血管Bに重畳して表示する様式、及び、図12に示すようにハイライト色による血管Bの塗り潰し表示と血管Bの断層画像の表示とを交互に繰り返す様式等がさらに挙げられる。
また、第2様式の具体例としては、上述した3つの様式の他に、図11に示すように血管Bの断層画像(Bモード画像)が視認可能となる透過率に設定されたハイライト色の塗り潰し層Qを血管Bに重畳して表示する様式、及び、図12に示すようにハイライト色による血管Bの塗り潰し表示と血管Bの断層画像の表示とを交互に繰り返す様式等がさらに挙げられる。
指示マークMを血管Bの周辺に表示する様式(以下、指示マーク表示様式)では、バウンディングボックス及び円(楕円を含む)などのような血管Bを囲む枠線、血管Bを囲む長方形の四隅に配置されたコーナーマーク、及び、血管B近傍に配置された矢印等をハイライト色等の設定色で血管Bと干渉しないように表示する。
血管Bを拡大表示する様式(以下、拡大表示様式)では、超音波画像U中の血管Bを所定の拡大倍率で拡大表示した拡大表示画像KUを、超音波画像Uに重畳して表示する。ここで、拡大表示画像KUは、超音波画像Uの血管Bの全体を描出したものである。そのため、拡大表示画像KUが超音波画像Uにおいて血管Bが表示された領域から外れた位置に表示される場合でも、拡大表示画像KUが血管Bの表示領域に重ねて表示される場合でも、血管Bとの干渉を避けて超音波画像Uの血管Bを強調表示することができる。
なお、拡大表示画像KUを血管Bの表示領域に重ねて表示する際には、拡大表示画像KUのアスペクトが原画像である超音波画像Uのアスペクトと一致する全画面拡大であってもよく、あるいは、両アスペクトが不一致である準全画面拡大であってもよい。
また、特に図示はしないが、表示装置8の画面を二分割し、一方の分割画面に拡大表示画像KUを表示し、もう一方の分割画面に原画像である超音波画像Uを表示してもよい。
なお、拡大表示画像KUを血管Bの表示領域に重ねて表示する際には、拡大表示画像KUのアスペクトが原画像である超音波画像Uのアスペクトと一致する全画面拡大であってもよく、あるいは、両アスペクトが不一致である準全画面拡大であってもよい。
また、特に図示はしないが、表示装置8の画面を二分割し、一方の分割画面に拡大表示画像KUを表示し、もう一方の分割画面に原画像である超音波画像Uを表示してもよい。
血管Bを周囲よりも明るい明るさで表示する様式(以下、スポットライト表示様式)では、超音波画像U中、血管Bの表示領域の輝度を周囲の輝度よりも上げたり、あるいは、血管Bの表示領域の輝度よりも周囲の輝度を下げたりする(暗くする)。ここで、超音波画像U中、周囲よりも明るさが明るくなるスポットライト表示領域Hには、図10に示すように、超音波画像Uの血管Bの全体が描出される。そのため、上述したスポットライト表示様式においても、血管Bとの干渉を避けて超音波画像Uの血管Bを強調表示することができる。
ハイライト色の塗り潰し層Qを血管Bに重畳して表示する様式では、図11に示すように、検出された血管Bと同じ形状及び同じサイズの塗り潰し層Qを、血管Bの直上位置に重ねて表示することで血管Bを強調表示する。ここで、塗り潰し層Qは、表示色がハイライト色であり、且つ、アルファチャンネル(透過率)が透明又は半透明に設定されたオブジェクトである。
ハイライト色による血管Bの塗り潰し表示と血管Bの断層画像の表示とを交互に繰り返す様式では、検出された血管Bが、ハイライト色で表示された状態(図12の左側に図示された状態)と、通常のBモード画像における色で表示された状態(図12の右側に図示された状態)との間で交互に切り替わることで擬似的に点滅しているように強調表示される。
第2様式としては、上記の5つの様式のうちのいずれか一つを採用することができる。あるいは、上記の5つの様式の中のいくつかを組み合わせた様式、例えば、指示マークMとともに血管Bを拡大表示する様式、若しくは、血管Bを周囲よりも明るい明るさで拡大表示する様式を採用してもよい。
また、第1実施形態では、画像解析部9によって特定された超音波画像U中の血管Bと挿入物Cとの距離Dが後述の閾値よりも小さくなると、強調表示部10が指示マーク表示様式で血管Bを強調表示する。この場合、図8に示すように、指示マークMとして、超音波画像U中の血管Bを囲む点線状の枠線が表示される。この枠線が点線であることにより、枠線付近まで挿入物Cが挿入されたときに挿入物Cの先端が見え難くなる状況を抑えることができる。
なお、指示マークMをなす枠線は、点線に限らず、実線であってもよい。
なお、指示マークMをなす枠線は、点線に限らず、実線であってもよい。
また、上記の距離Dがさらに短くなって後述の拡大表示用閾値よりも小さくなると、強調表示部10が拡大表示様式で血管Bを強調表示する。この場合、拡大表示画像KUには、図9に示すように、挿入物Cが挿入される血管Bと、血管B付近に位置する挿入物Cの先端とが含まれる。
装置制御部13は、格納部15等に予め格納されたプログラム、及び、入力装置14を介して操作者が入力した情報等に基づいて、超音波診断装置1の各部の制御を行う。
また、装置制御部13は、画像解析部9によって検出された超音波画像U中の血管Bと挿入物Cとの相対的な位置関係に応じて、血管Bを強調表示する際の様式が変わるように、強調表示部10を制御する。
また、装置制御部13は、画像解析部9によって検出された超音波画像U中の血管Bと挿入物Cとの相対的な位置関係に応じて、血管Bを強調表示する際の様式が変わるように、強調表示部10を制御する。
より詳しく説明すると、画像解析部9が超音波画像U中の血管Bのみを検出して挿入物Cを検出しない場合には、装置制御部13は、第1様式にて血管Bが強調表示されるように強調表示部10を制御する。この場合、超音波画像U中の血管Bは、ハイライト色にて塗り潰して表示される。
画像解析部9が超音波画像U中の血管B及び挿入物Cの双方を検出し、且つ、画像解析部9によって特定された血管Bと挿入物Cとの間の距離Dが閾値よりも大きい場合には、装置制御部13は、引き続き第1様式にて血管Bが強調表示されるように強調表示部10を制御する。ここで、閾値は、強調表示様式の切り替え要否を判断するための基準として予め定められた値であり、例えば格納部15に格納されている。
つまり、挿入物Cが被検体内に挿入される初期の段階では、挿入物Cの先端が血管Bから離れた位置にあるので、超音波画像U中の血管Bの視認性(見つけ易さ)を重視した第1様式で血管Bを強調表示する。これにより、操作者は、超音波画像Uにおいて、挿入物Cが挿入される血管Bを容易に見つけ出すことができる。
つまり、挿入物Cが被検体内に挿入される初期の段階では、挿入物Cの先端が血管Bから離れた位置にあるので、超音波画像U中の血管Bの視認性(見つけ易さ)を重視した第1様式で血管Bを強調表示する。これにより、操作者は、超音波画像Uにおいて、挿入物Cが挿入される血管Bを容易に見つけ出すことができる。
一方、上記の距離Dが閾値よりも小さい場合には、装置制御部13は、第2様式にて血管Bが強調表示されるように強調表示部10を制御する。つまり、挿入物Cの先端が血管B付近に位置するようになると、血管Bとの干渉を避けて血管Bが強調表示され、血管Bの血管壁及びその動きが操作者にとって視認され易くなる。これにより、操作者は、血管B及び挿入物Cの双方を明瞭に確認しながら、挿入物Cの先端を血管Bにより近付けることができる。
なお、距離Dが閾値と一致する場合には、血管Bを第1様式で強調表示してもよく、あるいは、血管Bを第2様式で強調表示してもよい。
なお、距離Dが閾値と一致する場合には、血管Bを第1様式で強調表示してもよく、あるいは、血管Bを第2様式で強調表示してもよい。
また、上記の距離Dが閾値よりも小さく、且つ、拡大表示用閾値よりも大きい場合には、装置制御部13は、第2様式としての指示マーク表示様式にて血管Bが強調表示されるように強調表示部10を制御する。他方、上記の距離Dが閾値よりも小さく、且つ、拡大表示用閾値よりも小さい場合には、装置制御部13は、第2様式としての拡大表示様式にて血管Bが強調表示されるように強調表示部10を制御する。ここで、拡大表示用閾値は、強調表示様式を指示マーク表示様式から拡大表示様式に切り替える際の判断基準として予め定められた値であり、前述の閾値よりも小さく、例えば格納部15に格納されている。
指示マーク表示様式が第2様式として採用される場合には、装置制御部13は、図8に示すように、超音波画像U中の血管Bを囲む枠線(厳密には、円枠)からなる指示マークMが、血管Bと指示マークMとの間に上記の拡大表示用閾値に応じた間隔tを設けた状態で血管B周辺に表示されるように強調表示部10を制御する。つまり、円枠からなる指示マークMの径は、拡大表示用閾値を反映した長さになっており、超音波画像Uにおいて指示マークMが血管B付近に表示されることで、拡大表示用閾値を可視化することができる。これにより、操作者は、挿入物Cの先端が指示マークMに差し掛かったときに強調表示様式が拡大表示様式に切り替わることを把握することができる。
拡大表示様式が第2様式として採用される場合には、装置制御部13は、図9に示すように、超音波画像U中の血管B及び挿入物Cを含む拡大表示画像KUが表示されるように強調表示部10を制御する。拡大表示画像KUでは、血管Bの血管壁及びその内部のBモード画像が拡大して表示される。つまり、挿入物Cの先端が血管Bの直近位置に到達した時点では、血管Bがより見やすくなるように強調表示されるので、血管Bの血管壁及びその動きが操作者にとって視認され易くなる。これにより、操作者は、挿入物Cの先端が血管Bの血管壁を良好に貫くように挿入物Cを操作することができる。
以上までに説明したように、挿入物Cが被検体内にある程度挿入されるまでは、超音波画像U中の血管Bを第1様式で血管Bを強調表示することで、挿入物Cが挿入される血管Bを容易に見つけることができる。他方、挿入物Cの先端が血管B付近に到達してから血管Bに入り込む直前までの間は、第1様式のままでは血管B(特に、血管壁)が見づらくなるため、血管Bとの干渉を避けた第2様式に切り替えて血管Bを強調表示する。これにより、血管Bの血管壁が明瞭に確認できるので、操作者は、挿入物Cの先端を血管Bへ適切に進入させることができる。
入力装置14は、操作者が入力操作を行うためのものであり、例えば、キーボード、マウス、トラックボール、タッチパッド及びタッチパネル等によって構成することができる。入力装置14には、例えば、操作者の識別情報が入力される。操作者の識別情報としては、識別者の氏名及び識別ID等の文字列情報の他、指紋、声紋及び網膜パターン等の生体情報が挙げられる。なお、生体情報が識別情報として入力される場合、入力装置14は、スキャナ等をはじめとする公知の生体情報取得機器を備えているとよい。
また、入力装置14には、強調表示部10が第2様式で血管Bを強調表示する際の表示範囲又は表示サイズに関する設定情報が入力される。設定情報としては、例えば、強調表示部10が拡大表示様式で血管Bを強調表示する際の表示範囲又は表示サイズに関して操作者が設定した内容が該当する。ここで、表示範囲とは、超音波画像Uのうち、拡大表示画像KUにて拡大表示される範囲を意味する。また、表示サイズとは、拡大表示画像KUのサイズを意味し、換言すると、拡大表示画像KUにおける拡大倍率に相当する。
なお、血管Bを指示マーク表示様式で強調表示する場合には、指示マークMのサイズを表示サイズとして設定してもよく、血管Bをスポットライト表示様式で強調表示する場合には、スポットライト表示領域Hの範囲を表示範囲として設定してもよい。そして、設定されたこれらの内容を設定情報として入力装置14に入力することができる。
なお、血管Bを指示マーク表示様式で強調表示する場合には、指示マークMのサイズを表示サイズとして設定してもよく、血管Bをスポットライト表示様式で強調表示する場合には、スポットライト表示領域Hの範囲を表示範囲として設定してもよい。そして、設定されたこれらの内容を設定情報として入力装置14に入力することができる。
そして、入力装置14に設定情報が入力されると、装置制御部13は、その入力された設定情報が示す表示範囲又は表示サイズで血管Bが第2様式にて強調表示されるように強調表示部10を制御する。このように、第1実施形態では、血管Bを第2様式で強調表示する際の表示範囲及び表示サイズを、操作者の好みに合わせて操作者毎に変更(調整)することができる。
格納部15は、超音波診断装置1の制御プログラム、及び、各種情報を格納するものであり、フラッシュメモリ、HDD(Hard Disc Drive:ハードディスクドライブ)、SSD(Solid State Drive:ソリッドステートドライブ)、FD(Flexible Disc:フレキシブルディスク)、MOディスク(Magneto-Optical disc:光磁気ディスク)、MT(Magnetic Tape:磁気テープ)、RAM(Random Access Memory:ランダムアクセスメモリ)、CD(Compact Disc:コンパクトディスク)、DVD(Digital Versatile Disc:デジタルバーサタイルディスク)、SDカード(Secure Digital card:セキュアデジタルカード)、及びUSBメモリ(Universal Serial Bus memory:ユニバーサルシリアルバスメモリ)等の記録メディア、又はサーバコンピュータ等を用いることができる。
格納部15に格納される情報には、前述の閾値及び拡大表示用閾値が含まれている。また、格納部15は、ある操作者が入力装置14を介して入力した前述の設定情報を、ある操作者の識別情報と関連付けて格納する。格納部15に格納された設定情報は、装置制御部13が第2様式での血管Bの強調表示を強調表示部10に行わせる際に、装置制御部13によって読み出される。
具体的には、例えば、超音波画像取得開始前の時点で入力装置14に操作者の識別情報が入力されると、装置制御部13は、格納部15に格納された設定情報のうち、入力された識別情報と関連付けられた設定情報を読み出す。そして、装置制御部13は、血管Bを第2様式で強調表示する際に、読み出された設定情報が示す表示範囲又は表示サイズで血管が強調表示されるように強調表示部10を制御する。
以上のように、操作者が設定した表示範囲又は表示サイズを格納部15に設定情報として記憶しておくことで、それ以降に同じ操作者に対して超音波画像Uを強調表示するときに、その操作者が設定した表示範囲又は表示サイズにて血管Bを強調表示することができる。
具体的には、例えば、超音波画像取得開始前の時点で入力装置14に操作者の識別情報が入力されると、装置制御部13は、格納部15に格納された設定情報のうち、入力された識別情報と関連付けられた設定情報を読み出す。そして、装置制御部13は、血管Bを第2様式で強調表示する際に、読み出された設定情報が示す表示範囲又は表示サイズで血管が強調表示されるように強調表示部10を制御する。
以上のように、操作者が設定した表示範囲又は表示サイズを格納部15に設定情報として記憶しておくことで、それ以降に同じ操作者に対して超音波画像Uを強調表示するときに、その操作者が設定した表示範囲又は表示サイズにて血管Bを強調表示することができる。
ところで、上述した画像生成部6、表示制御部7、画像解析部9、強調表示部10及び装置制御部13が設けられたプロセッサ22は、例えば、CPU(Central Processing Unit:中央処理装置)と、CPUに各種の処理を実行させるための制御プログラムから構成される。ただし、これに限定されるものではなく、プロセッサ22は、FPGA(Field Programmable Gate Array:フィードプログラマブルゲートアレイ)、DSP(Digital Signal Processor:デジタルシグナルプロセッサ)、ASIC(Application Specific Integrated Circuit:アプリケーションスペシフィックインテグレイテッドサーキット)、GPU(Graphics Processing Unit:グラフィックスプロセッシングユニット)、若しくはその他のIC(Integrated Circuit:集積回路)を用いて構成されてもよく、又は、これらを組み合わせて構成されてもよい。
また、プロセッサ22に設けられた画像生成部6、表示制御部7、画像解析部9、強調表示部10及び装置制御部13は、部分的に、あるいは全体的に1つのCPU等に統合させて構成することもできる。
また、プロセッサ22は、例えば、据え置き型の装置に搭載されてもよく、あるいは、ラップトップ型のPC(Personal Computer)、スマートフォン及びタブレット端末のような持ち運び可能な装置に搭載されてもよい。
また、プロセッサ22に設けられた画像生成部6、表示制御部7、画像解析部9、強調表示部10及び装置制御部13は、部分的に、あるいは全体的に1つのCPU等に統合させて構成することもできる。
また、プロセッサ22は、例えば、据え置き型の装置に搭載されてもよく、あるいは、ラップトップ型のPC(Personal Computer)、スマートフォン及びタブレット端末のような持ち運び可能な装置に搭載されてもよい。
次に、図13に示すフローチャートを参照しながら、第1実施形態に係る超音波診断装置1の動作について詳細に説明する。
超音波診断装置1による超音波画像の表示フローでは、ステップS1が実施され、本ステップS1では、超音波画像Uが生成される。具体的には、先ず、被検体の体表面上に超音波プローブ21が接触し、送信回路3からの駆動信号に従って振動子アレイ2の複数の振動子から被検体内に超音波ビームが送信され、被検体からの超音波エコーを受信した各振動子から受信信号が受信回路4に出力される。次に、受信回路4によって受け取られた受信信号が増幅部23によって増幅され、AD変換部24によってAD変換された後、ビームフォーマ25によって整相加算され、この結果、音線信号が生成される。この音線信号は、画像生成部6において、信号処理部26で包絡線検波処理が施されることでBモード画像信号となり、DSC27及び画像処理部28を経て表示制御部7に出力される。これにより、超音波画像Uが生成される(換言すると、超音波画像Uが取得される)。超音波画像Uは、表示制御部7の制御の下で表示装置8に表示される。
なお、以下では、ステップS1にて生成される超音波画像Uが少なくとも被検体の血管Bを含んでいることを前提として説明する。
なお、以下では、ステップS1にて生成される超音波画像Uが少なくとも被検体の血管Bを含んでいることを前提として説明する。
次のステップS2では、画像解析部9が、生成された超音波画像Uを解析することにより、超音波画像U中の血管B及び挿入物Cを検出する。このとき、画像解析部9は、例えば、テンプレートマッチング、機械学習手法、又はディープラーニング等を用いた一般画像認識手法等の公知のアルゴリズムを適用することで、超音波画像U中の血管B及び挿入物Cを検出することができる。
本ステップS2の実施時点で操作者が挿入物Cを被検体内に未だ挿入していない場合には、当然ながら、超音波画像Uにおいて挿入物Cは検出されず、血管Bのみが検出される。この場合にはステップS3が実施され、このステップS3において、装置制御部13が、超音波画像U中の血管Bが第1様式にて強調表示されるように強調表示部10を制御する。これにより、表示装置8に表示された超音波画像Uにおいて、血管Bが第1様式で強調表示され、例えば、ハイライト色で塗り潰されて強調表示される。
ステップS3の実施後には、後述のステップS9に移行する。
本ステップS2の実施時点で操作者が挿入物Cを被検体内に未だ挿入していない場合には、当然ながら、超音波画像Uにおいて挿入物Cは検出されず、血管Bのみが検出される。この場合にはステップS3が実施され、このステップS3において、装置制御部13が、超音波画像U中の血管Bが第1様式にて強調表示されるように強調表示部10を制御する。これにより、表示装置8に表示された超音波画像Uにおいて、血管Bが第1様式で強調表示され、例えば、ハイライト色で塗り潰されて強調表示される。
ステップS3の実施後には、後述のステップS9に移行する。
他方、ステップS2の実施時点で操作者が挿入物Cを被検体内に挿入している場合には、超音波画像Uにおいて血管B及び挿入物Cの双方が検出される。この場合にはステップS4が実施され、このステップS4において、画像解析部9が、検出された血管Bと挿入物Cとの相対的な位置関係として、血管Bと挿入物Cとの間の距離Dを計測して特定する。続くステップS5では、装置制御部13が、ステップS4で特定された距離Dが閾値よりも小さいか否かを判定する。
ステップS5において距離Dが閾値より大きいと判定された場合には、前述のステップS3が実施され、装置制御部13が、超音波画像U中の血管Bが第1様式で強調表示されるように強調表示部10を制御する。ステップS3の実施後には、後述のステップS9に移行する。
一方、距離Dが閾値よりも小さいと判定された場合には、続くステップS6が実施され、このステップS6において、装置制御部13は、ステップS4で特定された距離Dが拡大表示用閾値よりも小さいか否かを判定する。
なお、距離Dが閾値と一致する場合には、ステップS3又はステップS6の何れを実施してもよい。
なお、距離Dが閾値と一致する場合には、ステップS3又はステップS6の何れを実施してもよい。
ステップS6において距離Dが拡大表示用閾値より大きいと判定された場合には、ステップS7が実施され、このステップS7において、装置制御部13は、超音波画像U中の血管Bが第2様式で強調表示されるように、より詳しくは指定マーク表示様式で強調表示されるように強調表示部10を制御する。表示装置8に表示された超音波画像Uにおいて、血管B付近に、血管Bを囲む点線状の枠線からなる指示マークMが表示されて血管Bが強調表示される。
また、本ステップS7において、装置制御部13は、指示マークMが、血管Bと指示マークMとの間に拡大表示用閾値に応じた間隔tを設けた状態で、血管B周辺に表示されるように強調表示部10を制御する(図8参照)。これにより、超音波画像Uにおいて拡大表示用閾値を指示マークMとして可視化して表示することができる。
なお、指示マークMの表示サイズについては、その設定内容を、入力装置14を通じて変更したり、若しくは操作者の識別情報と対応させて操作者毎に変えたりすることが可能である。
ステップS7の実施後には、ステップS9に移行する。
また、本ステップS7において、装置制御部13は、指示マークMが、血管Bと指示マークMとの間に拡大表示用閾値に応じた間隔tを設けた状態で、血管B周辺に表示されるように強調表示部10を制御する(図8参照)。これにより、超音波画像Uにおいて拡大表示用閾値を指示マークMとして可視化して表示することができる。
なお、指示マークMの表示サイズについては、その設定内容を、入力装置14を通じて変更したり、若しくは操作者の識別情報と対応させて操作者毎に変えたりすることが可能である。
ステップS7の実施後には、ステップS9に移行する。
一方、ステップS6において距離Dが拡大表示用閾値よりも小さいと判定された場合には、ステップS8が実施され、このステップS8において、装置制御部13は、超音波画像U中の血管Bが第2様式で強調表示されるように、より詳しくは拡大表示様式で強調表示されるように強調表示部10を制御する。これにより、血管Bを含む拡大表示画像KUが表示装置8に表示され、拡大表示画像KUでは、血管Bが原画像の超音波画像Uよりも拡大されて表示される。このとき、挿入物Cの挿入精度を向上させる目的で、挿入物Cの先端が血管Bとともに拡大表示画像KUに拡大表示されているのが好ましい(図9参照)。
なお、超音波画像Uのうち、拡大表示画像KUにて拡大表示される表示範囲、及び、拡大表示画像KUの表示サイズについては、その設定内容を、入力装置14を通じて変更したり、若しくは操作者の識別情報と対応させて操作者毎に変えたりすることが可能である。
ステップS7の実施後には、ステップS9に移行する。
なお、超音波画像Uのうち、拡大表示画像KUにて拡大表示される表示範囲、及び、拡大表示画像KUの表示サイズについては、その設定内容を、入力装置14を通じて変更したり、若しくは操作者の識別情報と対応させて操作者毎に変えたりすることが可能である。
ステップS7の実施後には、ステップS9に移行する。
ステップS9では、超音波診断装置1の動作を終了するか否かが判定される。例えば、操作者が、超音波診断装置1の動作を終了する旨の指示を、入力装置14等を通じて入力した場合に、超音波診断装置1の動作終了と判定され、超音波診断装置1の動作終了の指示が入力されない場合には、超音波診断装置1の動作を終了しないと判定される。超音波診断装置1の動作を終了しないと判定された場合には、ステップS1に戻り、新たに超音波画像Uが生成され、その後にS2以降のステップが繰り返される。
他方、超音波診断装置1の動作を終了すると判定された場合には、超音波診断装置1の動作が終了する。
他方、超音波診断装置1の動作を終了すると判定された場合には、超音波診断装置1の動作が終了する。
以上までに説明してきたように、第1実施形態に係る超音波診断装置1によれば、超音波画像U中の血管B及び挿入物Cを検出し、検出された血管Bと挿入物Cとの相対的な位置関係に基づいて、血管Bを強調表示する際の様式を切り替える。これにより、超音波画像Uの血管Bは、挿入物Cの挿入状況に応じて適切な様式にて強調表示されるようになる。具体的に説明すると、挿入物Cの挿入操作の初期段階では、血管Bをハイライト色で塗り潰して表示する等して、超音波画像Uにおいて血管Bを目立たせて見つけ易くすることができる。
他方、挿入操作が進んで挿入物Cの先端が血管Bに近付いた段階で血管Bがハイライト色で塗り潰して表示されていると、血管Bの血管壁が却って見難くなり、操作者が挿入物Cの先端を血管壁に差し込む際の妨げにもなり得る。そこで、挿入物Cの先端が血管Bに近付いた段階では、血管B周辺に指示マークMと表示したり、血管Bを拡大表示したりする等、血管Bと干渉しない様式(第2様式)で血管Bを強調表示する。これにより、血管Bの血管壁の断層画像が明瞭に視認されるようになり、操作者は、血管壁に挿入物Cの先端を適切に差し込むことができるようになる。
他方、挿入操作が進んで挿入物Cの先端が血管Bに近付いた段階で血管Bがハイライト色で塗り潰して表示されていると、血管Bの血管壁が却って見難くなり、操作者が挿入物Cの先端を血管壁に差し込む際の妨げにもなり得る。そこで、挿入物Cの先端が血管Bに近付いた段階では、血管B周辺に指示マークMと表示したり、血管Bを拡大表示したりする等、血管Bと干渉しない様式(第2様式)で血管Bを強調表示する。これにより、血管Bの血管壁の断層画像が明瞭に視認されるようになり、操作者は、血管壁に挿入物Cの先端を適切に差し込むことができるようになる。
なお、上述のケースでは、短軸法(交差法)において観察される血管の横断面を強調表示することとしたが、図14~17に示すように、長軸法(平行法)において観察される血管の縦断面を強調することができる。図14は、血管Bの縦断面をハイライト色にて塗り潰して強調表示した超音波画像Uを示している。図15は、血管Bのうち、挿入物Cが進入すると推定される部分を、枠線からなる指示マークMによって囲んで強調表示した超音波画像Uを示している。図16は、血管Bのうち、挿入物Cが進入すると推定される部分を拡大して強調表示した超音波画像Uを示している。図17は、血管Bのうち、挿入物Cが進入すると推定される部分を周囲よりも明るい明るさで強調表示した超音波画像Uを示している。
なお、図14~17に示す超音波画像Uには、血管Bの縦断面ととともに、挿入物Cの縦断面が描出されている。ここで、血管Bの縦断面とは、血管Bの延出方向に沿った血管Bの切断面のことを指し、挿入物Cの縦断面とは、挿入物Cの延出方向に沿った挿入物Cの切断面のことを指す。
なお、図14~17に示す超音波画像Uには、血管Bの縦断面ととともに、挿入物Cの縦断面が描出されている。ここで、血管Bの縦断面とは、血管Bの延出方向に沿った血管Bの切断面のことを指し、挿入物Cの縦断面とは、挿入物Cの延出方向に沿った挿入物Cの切断面のことを指す。
また、上述のケースでは、画像解析部9によって検出された血管Bと挿入物Cとの相対的な位置関係として、血管Bと挿入物Cとの間の距離Dを特定することした。ただし、これに限定されず、距離D以外の物理量を特定してもよく、例えば、検出された血管Bに対する挿入物Cの挿入角度(図14中、記号θで表される角度)を特定してもよい。ここで、挿入角度θとは、長軸法(平行法)において観察される血管B及び挿入物Cの各々の延出方向がなす角度である。
また、上記の物理量以外の位置関係として、検出された血管Bの輪郭から所定距離だけ離れた円状の範囲を超音波画像U内に設定し、その範囲と挿入物Cとの位置関係(具体的には、上記の範囲内に挿入物Cの先端が入っているか否か)を特定してもよい。この場合には、特定した位置関係に基づいて血管Bの強調表示様式を変えればよい。
また、上記の物理量以外の位置関係として、検出された血管Bの輪郭から所定距離だけ離れた円状の範囲を超音波画像U内に設定し、その範囲と挿入物Cとの位置関係(具体的には、上記の範囲内に挿入物Cの先端が入っているか否か)を特定してもよい。この場合には、特定した位置関係に基づいて血管Bの強調表示様式を変えればよい。
また、上記のケースでは、超音波プローブ21に送信回路3及び受信回路4が設けられ、プロセッサ22に画像生成部6が設けられていることとした。ただし、これに限定されず、超音波プローブ21に送信回路3、受信回路4及び画像生成部6が設けられてもよい。この場合には、超音波プローブ21で超音波画像(Bモード画像信号)が生成され、超音波プローブ21から送られてくる超音波画像をプロセッサ22が受信する形になる。
また、超音波プローブ21に送信回路3が設けられ、プロセッサ22に受信回路4及び画像生成部6が設けられてもよい。あるいは、プロセッサ22側に送信回路3、受信回路4及び送受信回路5が設けられてもよい。この場合には、振動子アレイ2が有する複数の振動子が超音波エコーを受信したときに出力する電気信号(アナログ信号)が超音波プローブ21からプロセッサ22に伝送され、プロセッサ22側で電気信号のAD変換、音線信号の生成、及び超音波画像(Bモード画像信号)の生成が行われる形になる。
また、超音波プローブ21に送信回路3が設けられ、プロセッサ22に受信回路4及び画像生成部6が設けられてもよい。あるいは、プロセッサ22側に送信回路3、受信回路4及び送受信回路5が設けられてもよい。この場合には、振動子アレイ2が有する複数の振動子が超音波エコーを受信したときに出力する電気信号(アナログ信号)が超音波プローブ21からプロセッサ22に伝送され、プロセッサ22側で電気信号のAD変換、音線信号の生成、及び超音波画像(Bモード画像信号)の生成が行われる形になる。
また、上記のケースでは、血管Bの強調表示様式が3段階で変化し、具体的には、挿入物Cが血管Bに近付くにつれて、強調表示様式が、ハイライト色による塗り潰し様式、指示マーク表示様式、及び拡大表示様式の順に変化することとした。ただし、これに限定されず、血管Bの強調表示様式の切り替え回数は、2回でもよく、あるいは4回以上であってもよい。
また、上記のケースでは、血管Bを強調表示した超音波画像Uにおいて、拡大表示用閾値を可視化して指示マークM(枠線)として血管Bとともに表示することとした(図8参照)。このときに、特に図示はしないが、同様の要領により、前述した閾値を可視化して指示マークM(枠線)として血管Bとともに表示してもよい。
また、上記のケースでは、血管Bを第2様式で強調表示する例として、血管Bを指示マーク表示様式で表示した後に拡大表示様式で表示する場合について説明したが、血管Bをスポットライト表示様式で表示する場合も考えられる。この場合には、例えば、図10に示すように、スポットライト表示領域Hに挿入物Cの先端と血管Bの両方を含めておくのが望ましい。これにより、操作者は、血管Bと挿入物Cとの間にある組織を把握しながら、挿入物Cの挿入操作を行うことができる。また、挿入物Cと血管Bとの距離Dが所定値(例えば、拡大表示用閾値に相当する値)よりも小さくなった段階で、スポットライト表示様式による強調表示を停止してもよい。こうすることで、挿入物Cの先端を血管Bに差し込む直前で血管Bの血管壁を見やすくすることができる。
また、上記のケースでは、表示装置8、入力装置14、超音波プローブ21がプロセッサ22に直接的に接続される構成について説明したが、例えば、表示装置8、入力装置14、超音波プローブ21、及びプロセッサ22が、図18A及び18Bに示すようにネットワークNWを介して間接的に接続された構成でもよい。この場合、上記の各機器とネットワークNWとの接続は、有線接続であってもよく、無線接続であってもよい。
図18Aに示す構成の超音波診断装置1Aでは、表示装置8、入力装置14、超音波プローブ21がネットワークNWを介して超音波診断装置本体41に接続されている。超音波診断装置本体41は、図1に示す構成の超音波診断装置1のうち、表示装置8、入力装置14、超音波プローブ21を除いたものであり、送受信回路5、格納部15及びプロセッサ22によって構成されている。
なお、図18Aに示す構成の超音波診断装置1Aにおいて、上述の超音波診断装置本体41を遠隔サーバとして使用してもよい。この場合には、例えば、操作者は、表示装置8、入力装置14、及び超音波プローブ21のみを操作者の手元に用意することにより、被検体の診断を行うことができるため、超音波診断の際の利便性を向上させることができる。
また、図18Aに示す構成の超音波診断装置1Aにおいて、スマートフォン又はタブレット端末を表示装置8及び入力装置14として使用してもよい。この場合には、操作者は、より容易に被検体の超音波診断を行うことができるので、超音波診断の利便性をさらに向上させることができる。
なお、図18Aに示す構成の超音波診断装置1Aにおいて、上述の超音波診断装置本体41を遠隔サーバとして使用してもよい。この場合には、例えば、操作者は、表示装置8、入力装置14、及び超音波プローブ21のみを操作者の手元に用意することにより、被検体の診断を行うことができるため、超音波診断の際の利便性を向上させることができる。
また、図18Aに示す構成の超音波診断装置1Aにおいて、スマートフォン又はタブレット端末を表示装置8及び入力装置14として使用してもよい。この場合には、操作者は、より容易に被検体の超音波診断を行うことができるので、超音波診断の利便性をさらに向上させることができる。
図18Bに示す構成の超音波診断装置1Dでは、表示装置8及び入力装置14が超音波診断装置本体41に搭載されており、超音波プローブ21がネットワークNWを介して超音波診断装置本体41に接続されている。この場合、超音波診断装置本体41を遠隔サーバによって構成してもよく、あるいは、スマートフォン又はタブレット端末によって構成することができる。
また、上記のケースでは、超音波画像Uにおいて検出された血管Bを強調表示し、強調表示の様式を、血管Bと挿入物Cとの間の距離Dに基づいて変えることとした。これと同様の要領で、超音波画像Uにおいて検出された挿入物Cを強調表示し、強調表示の様式を上記の距離Dに基づいて変えてもよい。この場合には、例えば、挿入物Cをハイライト色で塗り潰して表示したり、枠線等からなる指示マークMを挿入物Cの先端付近に表示したりすることができる。ただし、挿入物Cの先端が血管B付近に到達したときに、上記の様式で挿入物Cを強調表示すると、血管壁の断層画像(Bモード画像)が隠れてしまう可能性がある。そのため、血管B付近で挿入物Cの先端を強調表示する場合には、挿入物C中に高輝度で且つ高彩度な点を設けて表示する等、強調表示の面積を必要最小限に抑えながらも目立つような様式にて強調表示するのが好ましい。
<<第2実施形態>>
エコーガイド穿刺法において、操作者は、挿入物を被検体の体表面に穿刺してから被検体内の血管に挿入するまでの期間中、挿入物と血管のそれぞれの位置を把握するために超音波画像を確認するが、挿入物が血管に挿入された後にも超音波画像を確認する場合がある。例えば、挿入物が穿刺針付きカテーテルである場合、穿刺針及びカテーテルが血管壁を突き破って血管壁内に入った後、操作者は、内針である穿刺針のみを抜き取り、カテーテルの先端部を血管内に留置させる。その後、操作者は、血管内に留置されたカテーテルの状況を把握するため、カテーテルを血管に挿入してから暫くの期間、超音波画像を確認する。この場合、カテーテルが留置された状態の血管内部がより明瞭に見えるように、超音波画像中の血管の拡大表示を続行させることができる。かかる実施形態を第2実施形態とし、本実施形態について、図19に示すフローチャートを参照しながら説明する。
エコーガイド穿刺法において、操作者は、挿入物を被検体の体表面に穿刺してから被検体内の血管に挿入するまでの期間中、挿入物と血管のそれぞれの位置を把握するために超音波画像を確認するが、挿入物が血管に挿入された後にも超音波画像を確認する場合がある。例えば、挿入物が穿刺針付きカテーテルである場合、穿刺針及びカテーテルが血管壁を突き破って血管壁内に入った後、操作者は、内針である穿刺針のみを抜き取り、カテーテルの先端部を血管内に留置させる。その後、操作者は、血管内に留置されたカテーテルの状況を把握するため、カテーテルを血管に挿入してから暫くの期間、超音波画像を確認する。この場合、カテーテルが留置された状態の血管内部がより明瞭に見えるように、超音波画像中の血管の拡大表示を続行させることができる。かかる実施形態を第2実施形態とし、本実施形態について、図19に示すフローチャートを参照しながら説明する。
なお、第2実施形態に係る超音波診断装置の構成は、上述した第1実施形態に係る超音波診断装置の構成と略同様である。
第2実施形態に係る超音波診断装置による超音波画像の表示フローのうち、ステップS21~S28は、第1実施形態に係る表示フローのステップS1~S8と同様である。
ステップS28の実施後には、ステップS29が実施され、このステップS29において、装置制御部13は、挿入物Cの一部が血管B内に挿入され且つ血管B内で留まっているか否かを判定する。ここで、挿入物Cの一部が血管B内で留まっている状態とは、例えば、穿刺針付きカテーテルが血管Bの血管壁を突き破った後に穿刺針のみが抜き取られてカテーテルの先端が血管B内に留置されている状態が該当する。
挿入物Cの一部が血管B内で留まっていると装置制御部13が判定した場合には、次のステップS30が実施される。反対に、挿入物Cの一部が血管B内に未だ挿入されてないために、挿入物Cの一部が血管B内に留まっていないと装置制御部13が判定した場合には、ステップS28に戻る。
ステップS28の実施後には、ステップS29が実施され、このステップS29において、装置制御部13は、挿入物Cの一部が血管B内に挿入され且つ血管B内で留まっているか否かを判定する。ここで、挿入物Cの一部が血管B内で留まっている状態とは、例えば、穿刺針付きカテーテルが血管Bの血管壁を突き破った後に穿刺針のみが抜き取られてカテーテルの先端が血管B内に留置されている状態が該当する。
挿入物Cの一部が血管B内で留まっていると装置制御部13が判定した場合には、次のステップS30が実施される。反対に、挿入物Cの一部が血管B内に未だ挿入されてないために、挿入物Cの一部が血管B内に留まっていないと装置制御部13が判定した場合には、ステップS28に戻る。
ステップS30において、装置制御部13は、超音波画像U中の血管Bを拡大表示し続けるように強調表示部10を制御する。ステップS30が実施された後には、装置制御部13が、続くステップS31において、挿入物Cの一部が血管B内から抜かれているか否かを判定する。
挿入物Cの一部が血管B内から抜かれていない(つまり、血管B内で留まっている)と装置制御部13が判定した場合には、ステップS30に戻る。他方、挿入物Cの一部が血管B内から抜かれていると判定した場合、ステップS32が実施され、ステップS32において、装置制御部13は、血管Bの強調表示が停止されるように強調表示部10を制御する。これにより、超音波画像Uにおいて、血管Bが通常の様式(強調表示されない様式)で表示される。
挿入物Cの一部が血管B内から抜かれていない(つまり、血管B内で留まっている)と装置制御部13が判定した場合には、ステップS30に戻る。他方、挿入物Cの一部が血管B内から抜かれていると判定した場合、ステップS32が実施され、ステップS32において、装置制御部13は、血管Bの強調表示が停止されるように強調表示部10を制御する。これにより、超音波画像Uにおいて、血管Bが通常の様式(強調表示されない様式)で表示される。
その後、第1実施形態の場合と同様に、超音波診断装置の動作を終了するか否かを判定するステップS33が実施され、超音波診断装置の動作を終了しないと判定された場合には、ステップS21に戻り、その後にはステップS22以降が繰り返される。他方、超音波診断装置の動作を終了すると判定された場合には、超音波診断装置の動作が終了する。
以上のように第2実施形態では、挿入物Cが血管Bに挿入されて挿入物Cの一部が血管B内で留まっている間、血管Bを拡大表示し続けることにより、操作者にとって、挿入物Cの一部が入り込んだ状態の血管Bが見えやすくなる(確認し易くなる)。
なお、上記のケースでは、挿入物Cの一部が血管B内で留まっている間、血管Bを拡大表示し続けることとしたが、これに限定されない。例えば、装置制御部13は、挿入物Cの一部が血管B内で留まっていると判定した場合には、超音波画像U中の血管Bの強調表示を停止するように強調表示部10を制御してもよい。この場合には、挿入物Cの一部が血管B内で留まっている間、超音波画像U中の血管Bが、通常の様式(強調表示されない様式)で表示される。これにより、操作者は、挿入物C及び血管Bを含む比較的広範囲の超音波画像Uを確認することができ、例えば、挿入物Cの挿入経路上に存在する組織及び静脈炎等を容易に見つけ出すことができる。
また、第2実施形態に係る超音波診断装置は、短軸法において血管B及び挿入物Cを観察する場合に利用可能であり、且つ、長軸法において血管B及び挿入物Cを確認する場合にも利用可能である。
<<第3実施形態>>
先に説明した第1実施形態では、血管Bと挿入物Cとの間の距離Dに基づいて血管Bの強調表示様式を変えることとした。また、挿入物Cが血管B近傍にあるときには、操作者が挿入物Cを血管Bに挿入する際の操作性(挿入物Cの挿入し易さ)を向上させるために、血管Bとの干渉を避けた第2様式で血管Bを表示することとした。
しかし、挿入物Cが正しく挿入されないと、挿入物Cが血管B近傍に位置していても血管Bに辿り着かない場合もあり、その場合には、必ずしも、操作性向上のために血管Bを第2様式で強調表示することを要しない。そのことを考慮して、挿入物Cを血管Bに挿入可能な範囲を有効作動領域として超音波画像U内に設定し、超音波画像U中の挿入物Cの先端が有効作動領域内にある場合に限り、血管Bを第2様式で強調表示することができる。かかる実施形態を第3実施形態とし、本実施形態について以下に詳しく説明する。
先に説明した第1実施形態では、血管Bと挿入物Cとの間の距離Dに基づいて血管Bの強調表示様式を変えることとした。また、挿入物Cが血管B近傍にあるときには、操作者が挿入物Cを血管Bに挿入する際の操作性(挿入物Cの挿入し易さ)を向上させるために、血管Bとの干渉を避けた第2様式で血管Bを表示することとした。
しかし、挿入物Cが正しく挿入されないと、挿入物Cが血管B近傍に位置していても血管Bに辿り着かない場合もあり、その場合には、必ずしも、操作性向上のために血管Bを第2様式で強調表示することを要しない。そのことを考慮して、挿入物Cを血管Bに挿入可能な範囲を有効作動領域として超音波画像U内に設定し、超音波画像U中の挿入物Cの先端が有効作動領域内にある場合に限り、血管Bを第2様式で強調表示することができる。かかる実施形態を第3実施形態とし、本実施形態について以下に詳しく説明する。
なお、第3実施形態に係る超音波診断装置の構成は、上述した第1実施形態に係る超音波診断装置の構成と略同様である。
第3実施形態では、画像解析部9が、超音波画像U中の血管B及び挿入物Cを検出すると、挿入物Cの挿入方向を推定する。このとき、画像解析部9は、画像生成部6によって連続的に生成された複数フレームの超音波画像Uを解析することにより、挿入物Cの先端の軌跡を検出し、検出された先端の軌跡に基づいて、挿入物Cの挿入方向を推定する。
また、画像解析部9が血管B及び挿入物Cを検出すると、装置制御部13は、画像解析部9によって検出された血管Bの位置、及び、画像解析部9によって推定された挿入物Cの挿入方向に基づいて、超音波画像U内の有効作動領域Rを設定する。有効作動領域Rは、図20及び21に示すように、血管Bの中心から扇状に広がった領域であり、その両側の境界位置(エッジ)は、互いに120度程度離れた一対の境界線r1、r2によって規定されている。また、有効作動領域Rの向き(厳密には、有効作動領域Rの中心線が延びる方向)は、推定された挿入物Cの挿入方向(図20~23にて白抜き矢印にて表記)に応じて変わる。例えば、挿入方向が超音波画像Uの深度方向と平行又は略平行である場合には、図20に示すように、有効作動領域Rが上方を向くように設定される。また、挿入方向が深度方向に対して傾けられている場合には、図21に示すように、有効作動領域Rが側方(左又は右)を向くように設定される。
そして、装置制御部13は、画像解析部9によって特定された血管Bと挿入物Cとの間の距離Dが閾値よりも小さい場合に、挿入物Cの先端が有効作動領域R内に在るか否かを判定し、挿入物Cの先端が有効作動領域R内に在ると判定した場合には、図20及び21に示すように、血管Bが第2様式にて強調表示されるように強調表示部10を制御する。なお、図20及び21では、第2様式の一例として、血管Bが拡大表示様式で強調表示される例が示されている。
他方、装置制御部13は、挿入物Cの先端が有効作動領域R外に在ると判定した場合には、図22及び23に示すように、血管Bが第1様式にて強調表示されるように強調表示部10を制御する。なお、図22及び23では、第1様式の一例として、血管Bがハイライト色で塗り潰されて強調表示される例が示されている。
他方、装置制御部13は、挿入物Cの先端が有効作動領域R外に在ると判定した場合には、図22及び23に示すように、血管Bが第1様式にて強調表示されるように強調表示部10を制御する。なお、図22及び23では、第1様式の一例として、血管Bがハイライト色で塗り潰されて強調表示される例が示されている。
以上のように、第三実施形態では、血管Bと挿入物Cとの間の距離Dが閾値よりも小さく、且つ、挿入物Cの先端が有効作動領域R内にあるときにのみ、血管Bの強調表示様式を第2様式に設定する。すなわち、挿入物Cが血管B近傍に位置していても、挿入物Cを血管Bに挿入させることができない場合(例えば、挿入物Cの進行方向に血管Bがない場合、あるいは、挿入物Cの進行方向を少し変えたとしても血管Bに辿り着かない場合)には、血管Bの強調表示様式が第1様式で維持されることになる。これにより、このままでは挿入物Cが血管Bに挿入されない状況にあることを操作者に気付かせることができる。
なお、操作者にとっての使い勝手を考慮すると、強調表示部10が、画像解析部9によって検出された血管Bとともに、装置制御部13によって設定された有効作動領域Rを強調表示するのが好ましく、例えば、一対の境界線r1、r2をハイライト色で表示するとよい。
また、装置制御部13は、図24に示すように、一対の境界線r1、r2の各々の先端同士を円弧線r3で繋ぎ、これらの線で囲われる領域を有効作動領域Rとしても設定してもよい。このとき、上記の閾値に応じた距離だけ血管Bの輪郭線から離れた位置に円弧線r3を設ければ、上記の閾値を反映させた有効作動領域Rを設定することができ、さらに、円弧線r3を超音波画像U上に表示すれば、上記の閾値を可視化することができる。
また、有効作動領域Rの両端を規定する一対の境界線r1、r2は、それぞれ血管Bの中心から伸びていてもよく、あるいは、図25に示すように血管Bの両側端から伸びていてもよい。
また、装置制御部13は、有効作動領域Rを設定する際に、有効作動領域Rのサイズを一定の長さに設定してもよく、あるいは、操作者毎に決められたサイズに設定してもよい。ここで、有効作動領域Rのサイズとは、超音波画像Uの幅方向における有効作動領域Rの長さ(厳密には、幅方向における一対の境界線r1、r2の先端位置の間の最短距離であり、以下、領域幅と呼ぶ)、あるいは、一対の境界線r1、r2がなす角度(以下、領域角度と呼ぶ)を意味する。
有効作動領域Rのサイズを操作者毎に変える場合には、例えば、操作者が入力装置14を介して自己の識別情報と、有効作動領域Rのサイズ設定値(具体的には、領域幅及び領域角度の値)とを入力する。入力された設定値は、その設定値を入力した操作者の識別情報と関連付けられて格納部15に格納される。この場合、ある操作者が超音波画像の取得開始前に入力装置14に識別情報を入力すると、装置制御部13は、格納部15に格納されたサイズ設定値のうち、入力された識別情報と関連付けられたサイズ設定値を読み出し、その設定値が示すサイズを有する有効作動領域Rを設定する。このようにして設定された有効作動領域Rのサイズは、入力装置14に入力された操作者の識別情報と対応するサイズであり、そのサイズを有する有効作動領域Rは、操作者の熟練度等を反映して適切に設定されるようになる。
有効作動領域Rのサイズを操作者毎に変える場合には、例えば、操作者が入力装置14を介して自己の識別情報と、有効作動領域Rのサイズ設定値(具体的には、領域幅及び領域角度の値)とを入力する。入力された設定値は、その設定値を入力した操作者の識別情報と関連付けられて格納部15に格納される。この場合、ある操作者が超音波画像の取得開始前に入力装置14に識別情報を入力すると、装置制御部13は、格納部15に格納されたサイズ設定値のうち、入力された識別情報と関連付けられたサイズ設定値を読み出し、その設定値が示すサイズを有する有効作動領域Rを設定する。このようにして設定された有効作動領域Rのサイズは、入力装置14に入力された操作者の識別情報と対応するサイズであり、そのサイズを有する有効作動領域Rは、操作者の熟練度等を反映して適切に設定されるようになる。
以上までに説明してきた第3実施形態に係る超音波診断装置は、短軸法において血管B及び挿入物Cを観察する場合に利用可能であり、且つ、長軸法において血管B及び挿入物Cを確認する場合にも利用可能である。
<<第4実施形態>>
超音波画像Uには、図26に示すように、複数の血管Bが表示される場合がある。この場合、複数の血管Bのうち、挿入物Cが実際に挿入される血管(以下、血管Bx)は、一つのみであり、操作者は、超音波画像U中の血管Bxを特に注視する。そのことを踏まえて、超音波画像Uに複数の血管Bが含まれるときに、挿入物Cが挿入される一つの血管Bxのみを第2様式で強調表示することができる。かかる実施形態を第4実施形態とし、本実施形態について以下に詳しく説明する。
超音波画像Uには、図26に示すように、複数の血管Bが表示される場合がある。この場合、複数の血管Bのうち、挿入物Cが実際に挿入される血管(以下、血管Bx)は、一つのみであり、操作者は、超音波画像U中の血管Bxを特に注視する。そのことを踏まえて、超音波画像Uに複数の血管Bが含まれるときに、挿入物Cが挿入される一つの血管Bxのみを第2様式で強調表示することができる。かかる実施形態を第4実施形態とし、本実施形態について以下に詳しく説明する。
なお、第4実施形態に係る超音波診断装置の構成は、上述した第1実施形態に係る超音波診断装置の構成と略同様である。
また、第4実施形態では、短軸法にて観察される超音波画像U、すなわち、血管Bの横断面及び挿入物Cの横断面を含む超音波画像Uを処理対象とする。
また、第4実施形態では、短軸法にて観察される超音波画像U、すなわち、血管Bの横断面及び挿入物Cの横断面を含む超音波画像Uを処理対象とする。
第4実施形態では、画像解析部9が、超音波画像Uにおいて挿入物Cとともに複数の血管Bを検出した場合に、検出された複数の血管Bのそれぞれについて、血管Bと挿入物Cとの間の距離Dを特定する。また、画像解析部9は、検出された挿入物Cの挿入方向を推定する。挿入方向の推定手順は、第3実施形態で説明した手順と同様である。
画像解析部9が複数の血管Bを検出した場合、装置制御部13は、画像解析部9によって検出された複数の血管Bのそれぞれについて、挿入物Cが到達可能な位置に在るかを判定する。この場合、装置制御部13は、画像解析部9によって推定された挿入方向に基づいて上記の判定を行う。具体的に説明すると、装置制御部13は、超音波画像U中の挿入物Cの先端から見て挿入方向に位置する血管Bを、挿入物Cが到達可能な位置に在る血管であると判定する。
そして、装置制御部13は、挿入物Cが到達可能な位置に在ると判定された血管Bのうち、画像解析部9によって特定された距離Dが閾値よりも小さく、且つ、挿入物Cの先端に最も近い血管Bxを特定し、この血管Bxのみが第2様式にて強調表示されるように強調表示部10を制御する。これにより、図26に示すように、超音波画像U中の複数の血管Bのうち、装置制御部13によって特定された一つの血管Bxのみが第2様式にて強調表示され、残りの血管Bが第1様式にて強調表示される。このようにすれば、操作者は、超音波画像Uに複数の血管Bが表示されるときに、実際に挿入物Cが挿入される血管Bxを容易に見つけ出して注視することができる。
なお、図26に示すケースでは、装置制御部13によって特定された一つの血管Bxが指示マーク表示様式で強調表示されているが、それ以外の第2様式(例えば、拡大表示様式)で強調されてもよい。
なお、図26に示すケースでは、装置制御部13によって特定された一つの血管Bxが指示マーク表示様式で強調表示されているが、それ以外の第2様式(例えば、拡大表示様式)で強調されてもよい。
また、図27に示すように、挿入物Cが到達可能な位置に在る血管Bのうち、画像解析部9によって特定された距離Dが閾値よりも小さい血管Bについては、すべて第2様式で強調表示してもよい。
また、挿入物Cが到達可能な位置に在るかどうかを問わず、図28に示すように、画像解析部9によって特定された距離Dが閾値よりも小さい血管Bをすべて第2様式で強調表示してもよい。
また、挿入物Cが到達可能な位置に在るかどうかを問わず、図29に示すように、挿入物Cの先端に最も近い一つの血管Bのみを第2様式で強調表示してもよい。
また、挿入物Cが到達可能な位置に在るかどうかを問わず、図28に示すように、画像解析部9によって特定された距離Dが閾値よりも小さい血管Bをすべて第2様式で強調表示してもよい。
また、挿入物Cが到達可能な位置に在るかどうかを問わず、図29に示すように、挿入物Cの先端に最も近い一つの血管Bのみを第2様式で強調表示してもよい。
また、上記のケースでは、複数の血管Bのそれぞれについて、挿入物Cが到達可能な位置に在るか否かを判定する際に、挿入物Cの挿入方向を推定し、推定された挿入方向に基づいて判定することとした。ただし、これに限定されず、血管Bと挿入物Cとの位置関係に基づいて、上記の判定を行ってもよい。例えば、挿入物Cの先端よりも上方に位置する血管B、及び、挿入物Cの先端の真横で挿入物Cと隣り合っている血管Bについては、挿入物Cが到達可能な位置にない血管であると判定してもよい。
<<第5実施形態>>
先に説明した第1実施形態では、血管Bの拡大表示するときの表示範囲又は表示サイズ(以下、「表示範囲等」ともいう)が可変であり、操作者が入力装置14を通じて入力した設定情報に応じて、表示範囲等が変更されることとした。この構成を発展させて、操作者が挿入物Cの挿入操作を行う際に採用された表示範囲等と、その挿入操作に関する計測結果との対応関係を学習して特定することで、操作者の技能及び熟練度に応じた表示範囲等を自動設定することができる。かかる実施形態を第5実施形態とし、本実施形態について、図30を参照しながら詳しく説明する。
先に説明した第1実施形態では、血管Bの拡大表示するときの表示範囲又は表示サイズ(以下、「表示範囲等」ともいう)が可変であり、操作者が入力装置14を通じて入力した設定情報に応じて、表示範囲等が変更されることとした。この構成を発展させて、操作者が挿入物Cの挿入操作を行う際に採用された表示範囲等と、その挿入操作に関する計測結果との対応関係を学習して特定することで、操作者の技能及び熟練度に応じた表示範囲等を自動設定することができる。かかる実施形態を第5実施形態とし、本実施形態について、図30を参照しながら詳しく説明する。
第5実施形態に係る超音波診断装置1Bでは、図30に示すように、学習部12がプロセッサ22に追加されている。プロセッサ22において、学習部12は、画像解析部9に接続されており、また、学習部12には装置制御部13が接続されている。
学習部12は、強調表示部10が第2様式にて血管Bを強調表示する際の表示範囲又は表示サイズと、挿入物の挿入操作に関する計測処理の計測結果との対応関係について学習する。表示範囲又は表示サイズは、操作者が入力装置14を介して設定情報を入力することで操作者毎に設定される。計測処理は、画像解析部9が超音波画像U中の挿入物Cを検出した場合に、画像解析部9によって操作者毎に実施される。計測処理において、画像解析部9は、画像生成部6によって連続的に生成された複数フレームの超音波画像Uを解析し、挿入物Cの挿入操作に関する事項を計測し、具体的には、例えば、定められた時間内で挿入物Cの先端が移動した範囲、その移動範囲から割り出される移動速度、若しくは、挿入物Cが被検体内に挿入される角度等を計測する。
学習部12は、ある操作者が採用した表示範囲又は表示サイズと、ある操作者による挿入物Cの挿入操作に関する計測処理の計測結果と、を学習データとして操作者毎に収集し、操作者毎に収集した学習データを用いて機械学習を実施する。このとき、機械学習のアルゴリズムとしては、公知のアルゴリズムを利用することができ、例えば、相関ルール学習、ニューラルネットワーク、ディープラーニング、遺伝的プログラミング、機能論理プログラミング、ランダムフォレスト、サポートベクターマシン、クラスタリング、主成分分析、クラスタ分析、ベイジアンネットワーク、及びエクストリーム・ラーニング・マシン等が利用可能である。さらに、今後開発され得る機械学習アルゴリズムも利用可能である。
第5実施形態では、ある操作者が挿入物Cを被検体内に挿入すると、画像解析部9による計測処理が実施される。そして、装置制御部13は、計測処理の計測結果に応じて、血管Bを拡大表示するときの表示範囲又は表示サイズが変わるように強調表示部10を制御する。より詳しくは、装置制御部13は、学習部12によって学習された対応関係に基づいて、計測処理の計測結果と対応する表示範囲等を導き出し、導き出した表示範囲等で血管Bが拡大表示されるように強調表示部10を制御する。
以上のように、第5実施形態では、血管Bを拡大表示する際の表示範囲等と、挿入物Cの挿入操作に関する計測処理の計測結果との対応関係を学習し、その対応関係に基づいて、計測結果に応じた表示範囲等を設定する。これにより、操作者の技能及び熟練度等に応じて適切な表示範囲等がプロセッサ22側で自動的に決められるので、操作者にとっての使い勝手が向上する。例えば、熟練度に乏しい操作者は、挿入物Cが挿入される血管Bの周辺をより広く観察する必要があるため、そのような操作者に対して、より広範囲の表示範囲を設定することができる。
また、上記のケースでは、血管Bを拡大表示するときの表示範囲又は表示サイズを、挿入物Cの挿入操作に関する計測処理の計測結果に応じて設定することとしたが、これに限定されるものではない。血管Bを指示マーク表示様式で強調表示する際の指示マークMの表示サイズ、又は、血管Bをスポットライト表示様式で強調表示する際のスポットライト表示領域Hの表示範囲等を計測処理の計測結果に応じて設定してもよい。
<<第6実施形態>>
先に述べた第5実施形態では、血管Bの拡大表示するときの表示範囲又は表示サイズ(表示範囲等)を、操作者の技能及び熟練度に応じて自動的に設定することとした。その変形例として、操作者に関する情報、例えば超音波診断装置の使用に関する情報に応じて表示範囲等を自動的に設定することができる。かかる実施形態を第6実施形態とし、本実施形態について、図31を参照しながら詳しく説明する。
先に述べた第5実施形態では、血管Bの拡大表示するときの表示範囲又は表示サイズ(表示範囲等)を、操作者の技能及び熟練度に応じて自動的に設定することとした。その変形例として、操作者に関する情報、例えば超音波診断装置の使用に関する情報に応じて表示範囲等を自動的に設定することができる。かかる実施形態を第6実施形態とし、本実施形態について、図31を参照しながら詳しく説明する。
第6実施形態に係る超音波診断装置1Cの構成は、上述した第1実施形態に係る超音波診断装置の構成と略同様であるが、図31に示すように、格納部15が操作者毎の使用履歴Kを格納しており、かかる点では第1実施形態とは異なる。使用履歴Kは、操作者に関する情報の一例であり、操作者による超音波診断装置1Cの使用履歴として、具体的には、使用回数又は使用頻度を表している。格納部15は、操作者の識別情報と関連付けて各操作者の使用履歴Kを格納している。
第6実施形態では、超音波診断装置1Cによる超音波画像取得を開始するにあたり、操作者が入力装置14を通じて自己の識別情報を入力する。その後、超音波画像U中の血管Bが第2様式で強調表示される際に、装置制御部13は、入力装置14に入力された識別情報によって識別される操作者に関する情報に応じて表示範囲等が変わるように強調表示部10を制御する。詳しくは、装置制御部13は、入力された識別情報と対応する使用履歴Kを格納部15から読み出し、読み出された使用履歴Kに応じて表示範囲等が変わるように強調表示部10を制御する。この場合、例えば、超音波診断装置1Cの使用回数が多い操作者であるほど、表示範囲等が徐々に狭くなるように強調表示部10を制御することができる。
以上のように、第6実施形態では、血管Bを拡大表示する際の表示範囲等を、操作者に関する情報、具体的には操作者による超音波診断装置1Cの使用履歴Kに応じて自動的に設定することができる。これにより、第5実施形態と同様、操作者の経験等に応じて適切な表示範囲等がプロセッサ22側で自動的に決められるので、操作者にとっての使い勝手が向上する。
なお、上記のケースでは、操作者に関する情報が、操作者による超音波診断装置1Cの使用履歴Kであることとしたが、これに限定されるものではない。例えば、操作者のプロフィール(特に、超音波診断装置の利用に関連する内容)等に応じて表示範囲等を自動的に設定する構成であってもよい。
なお、上記のケースでは、操作者に関する情報が、操作者による超音波診断装置1Cの使用履歴Kであることとしたが、これに限定されるものではない。例えば、操作者のプロフィール(特に、超音波診断装置の利用に関連する内容)等に応じて表示範囲等を自動的に設定する構成であってもよい。
1,1A,1B,1C,1D 超音波診断装置
2 振動子アレイ
3 送信回路
4 受信回路
5 送受信回路
6 画像生成部
7 表示制御部
8 表示装置
9 画像解析部
10 強調表示部
11 画像取得部
12 学習部
13 装置制御部
14 入力装置
15 格納部
21 超音波プローブ
22 プロセッサ
23 増幅部
24 AD変換部
25 ビームフォーマ
26 信号処理部
27 DSC
28 画像処理部
41 超音波診断装置本体
B,Bx 血管
C 挿入物
D 距離
H スポットライト表示領域
K 使用履歴
KU 拡大表示画像
M 指示マーク
NW ネットワーク
R 有効作動領域
r1,r2 境界線
r3 円弧線
t 間隔
Q 塗り潰し層
U 超音波画像
2 振動子アレイ
3 送信回路
4 受信回路
5 送受信回路
6 画像生成部
7 表示制御部
8 表示装置
9 画像解析部
10 強調表示部
11 画像取得部
12 学習部
13 装置制御部
14 入力装置
15 格納部
21 超音波プローブ
22 プロセッサ
23 増幅部
24 AD変換部
25 ビームフォーマ
26 信号処理部
27 DSC
28 画像処理部
41 超音波診断装置本体
B,Bx 血管
C 挿入物
D 距離
H スポットライト表示領域
K 使用履歴
KU 拡大表示画像
M 指示マーク
NW ネットワーク
R 有効作動領域
r1,r2 境界線
r3 円弧線
t 間隔
Q 塗り潰し層
U 超音波画像
Claims (23)
- 被検体の血管と前記血管に挿入される挿入物とを超音波画像中に表示する超音波診断装置であって、
振動子アレイと、
前記振動子アレイから前記被検体に向けて超音波ビームの送信を行わせ、且つ、前記被検体内で生じた超音波エコーを受信して前記超音波画像を取得する画像取得部と、
前記画像取得部によって取得された前記超音波画像を表示する表示装置と、
前記画像取得部によって取得された前記超音波画像を解析して、前記超音波画像中の前記血管及び前記挿入物を検出する画像解析部と、
前記超音波画像が前記表示装置に表示される際に、前記画像解析部によって検出された前記血管を強調表示する強調表示部と、
前記画像解析部によって検出された前記血管と前記挿入物との相対的な位置関係に応じて、前記血管を強調表示する際の様式が変わるように、前記強調表示部を制御する装置制御部と、を備える超音波診断装置。 - 前記画像解析部は、検出された前記血管と前記挿入物との相対的な位置関係を表す物理量を特定し、
前記装置制御部は、前記画像解析部によって特定された前記物理量が閾値よりも大きい場合には、第1様式にて前記血管が強調表示されるように前記強調表示部を制御し、前記画像解析部によって特定された前記物理量が前記閾値よりも小さい場合には、前記第1様式とは異なる第2様式にて前記血管が強調表示されるように前記強調表示部を制御し、
前記第2様式は、前記画像解析部によって検出された前記血管との干渉を避けて前記血管を強調表示する様式である、請求項1に記載の超音波診断装置。 - 前記画像解析部は、前記物理量として、検出された前記血管と前記挿入物との距離、又は、検出された前記血管に対する前記挿入物の挿入角度を特定する、請求項2に記載の超音波診断装置。
- 前記第1様式は、前記血管をハイライト色にて塗り潰して表示する様式、前記血管の輪郭をハイライト色にて表示する様式、前記血管と重なる位置に文字列を表示する様式、及び、前記血管の指示マークを前記血管周辺に表示する様式のうちの少なくとも一つに該当し、
前記第2様式は、前記指示マークを前記血管から離して前記血管の周辺に表示する様式、前記血管を拡大表示する様式、前記超音波画像中の前記血管を周囲よりも明るい明るさで表示する様式、前記血管の断層画像が視認可能となる透過率に設定されたハイライト色の塗り潰し層を前記血管に重畳して表示する様式、及び、ハイライト色による前記血管の塗り潰し表示と前記血管の断層画像の表示とを交互に繰り返す様式のうちの少なくとも一つに該当する、請求項3に記載の超音波診断装置。 - 前記指示マークは、前記血管を囲む点線状の枠線である、請求項4に記載の超音波診断装置。
- 前記画像解析部が前記超音波画像において前記血管のみを検出した場合、前記装置制御部は、前記血管が前記第1様式にて強調表示されるように前記強調表示部を制御する、請求項4又は5に記載の超音波診断装置。
- 前記画像解析部によって特定された前記物理量が前記閾値よりも小さく、且つ、前記閾値より小さい拡大表示用閾値よりも小さい場合、前記装置制御部は、前記血管を拡大表示するように前記強調表示部を制御する、請求項4乃至6のいずれか一項に記載の超音波診断装置。
- 前記画像解析部によって特定された前記物理量が前記閾値よりも小さく、且つ、前記拡大表示用閾値よりも大きい場合、前記装置制御部は、前記血管を囲む枠線からなる前記指示マークが、前記血管と前記指示マークとの間に前記拡大表示用閾値に応じた間隔を設けた状態で、前記血管周辺に表示されるように前記強調表示部を制御する、請求項7に記載の超音波診断装置。
- 前記装置制御部は、前記画像解析部によって検出された前記挿入物の一部が前記血管内で留まっているかを判定し、前記挿入物の一部が前記血管内で留まっていると判定した場合には、前記挿入物の一部が前記血管内に留まっている間は前記血管を拡大表示し続けるように前記強調表示部を制御する、請求項7又は8に記載の超音波診断装置。
- 前記装置制御部は、前記画像解析部によって検出された前記挿入物の一部が前記血管内で留まっているかを判定し、前記挿入物の一部が前記血管内で留まっていると判定した場合には、前記血管の強調表示を停止するように前記強調表示部を制御する、請求項7又は8に記載の超音波診断装置。
- 前記画像解析部が前記血管及び前記挿入物を検出すると、前記装置制御部は、前記画像解析部によって検出された前記血管の位置に基づいて、前記超音波画像内の有効作動領域を設定し、且つ、前記画像解析部によって検出された前記挿入物の先端が前記有効作動領域内に在るかを判定し、前記挿入物の先端が前記有効作動領域内に在ると判定した場合には、前記血管が前記第2様式にて強調表示されるように前記強調表示部を制御し、前記挿入物の先端が前記有効作動領域外に在ると判定した場合には、前記血管が前記第1様式にて強調表示されるように前記強調表示部を制御する、請求項7乃至10のいずれか一項に記載の超音波診断装置。
- 前記画像解析部は、前記血管及び前記挿入物を検出すると、前記挿入物の挿入方向を推定し、
前記装置制御部は、前記画像解析部によって検出された前記血管の位置、及び、前記画像解析部によって推定された前記挿入方向に基づいて前記有効作動領域を設定し、
前記強調表示部は、前記画像解析部によって検出された前記血管、及び、前記装置制御部によって設定された前記有効作動領域を強調表示する、請求項11に記載の超音波診断装置。 - 前記挿入物の操作者の識別情報が入力される入力装置をさらに有し、
前記装置制御部は、前記有効作動領域を設定する際に、前記有効作動領域のサイズを、前記入力装置に入力された前記識別情報と対応するサイズに設定する、請求項11又は12に記載の超音波診断装置。 - 前記画像解析部は、前記挿入物及び複数の前記血管を検出すると、複数の前記血管のそれぞれについて、前記物理量を特定し、
前記装置制御部は、前記画像解析部によって検出された複数の前記血管のそれぞれについて、前記挿入物が到達可能な位置に在るかを判定し、
前記装置制御部は、前記挿入物が到達可能な位置に在ると判定された前記血管のうち、前記画像解析部によって特定された前記物理量が前記閾値よりも小さく、且つ、前記挿入物に最も近い前記血管のみが前記第2様式にて強調表示されるように前記強調表示部を制御する、請求項2乃至13のいずれか一項に記載の超音波診断装置。 - 前記画像解析部は、検出された前記挿入物の挿入方向を推定し、
前記装置制御部は、前記画像解析部によって検出された複数の前記血管のそれぞれについて、前記挿入物が到達可能な位置に在るかを判定する際には、前記画像解析部によって推定された前記挿入方向に基づいて判定する、請求項14に記載の超音波診断装置。 - 前記画像解析部は、前記挿入物を検出すると、前記超音波画像を解析して、前記挿入物の挿入操作に関する計測処理を実施し、
前記装置制御部は、前記強調表示部が前記第2様式にて前記血管を強調表示する際の表示範囲又は表示サイズが、前記計測処理の計測結果に応じて変わるように前記強調表示部を制御する、請求項2乃至15のいずれか一項に記載の超音波診断装置。 - 前記表示範囲又は表示サイズと前記計測処理の計測結果との対応関係について学習する学習部をさらに有し、
前記装置制御部は、前記学習部によって学習された前記対応関係と前記計測処理の計測結果とから導き出される前記表示範囲又は表示サイズで前記血管が前記第2様式にて強調表示されるように前記強調表示部を制御する、請求項16に記載の超音波診断装置。 - 前記挿入物の操作者の識別情報が入力される入力装置をさらに有し、
前記装置制御部は、前記強調表示部が前記第2様式にて前記血管を強調表示する際の表示範囲又は表示サイズが、前記入力装置に入力された前記識別情報によって識別される前記操作者に関する情報に応じて変わるように前記強調表示部を制御する、請求項2乃至15のいずれか一項に記載の超音波診断装置。 - 前記操作者に関する情報として、前記操作者による前記超音波診断装置の使用履歴を、前記識別情報と対応付けて格納する格納部を有し、
前記装置制御部は、前記入力装置に入力された前記識別情報と対応する前記使用履歴を前記格納部から読み出し、前記強調表示部が前記第2様式にて前記血管を強調表示する際の表示範囲又は表示サイズが、読み出された前記使用履歴に応じて変わるように前記強調表示部を制御する、請求項18に記載の超音波診断装置。 - 前記強調表示部が前記第2様式にて前記血管を強調表示する際の表示範囲又は表示サイズに関する設定情報が入力される入力装置をさらに有し、
前記装置制御部は、前記入力装置に入力された前記設定情報が示す前記表示範囲又は表示サイズで前記血管が前記第2様式にて強調表示されるように前記強調表示部を制御する、請求項2乃至15のいずれか一項に記載の超音波診断装置。 - 前記入力装置には、前記挿入物の操作者の識別情報がさらに入力され、
ある操作者が入力した前記設定情報を、ある操作者の前記識別情報と関連付けて格納する格納部をさらに有し、
前記装置制御部は、前記入力装置に前記識別情報が入力されると、前記格納部に格納された前記設定情報のうち、入力された前記識別情報と関連付けられた前記設定情報を読み出し、読み出された前記設定情報が示す前記表示範囲又は表示サイズで前記血管が前記第2様式にて強調表示されるように前記強調表示部を制御する、請求項20に記載の超音波診断装置。 - 前記振動子アレイを有する超音波プローブと、前記超音波プローブが接続されるプロセッサを有し、
前記画像取得部は、前記振動子アレイから前記被検体に向けて超音波ビームの送信を行わせる送信回路と、前記被検体内で生じた超音波エコーを受信した前記振動子アレイから出力される信号を処理して音線信号を生成する受信回路と、前記受信回路によって生成された前記音線信号に基づいて前記超音波画像を生成する画像生成部とによって構成され、
前記送信回路、前記受信回路及び前記画像生成部の各々は、前記超音波プローブ又は前記プロセッサに設けられている、請求項1乃至21のいずれか一項に記載の超音波診断装置。 - 被検体の血管と前記血管に挿入される挿入物とを超音波画像中に表示する超音波診断装置の制御方法であって、
振動子アレイから前記被検体に向けて超音波ビームの送信を行わせ、且つ、前記被検体内で生じた超音波エコーを受信して前記超音波画像を取得し、
取得された前記超音波画像を表示装置に表示し、
取得された前記超音波画像を解析して、前記超音波画像中の前記血管及び前記挿入物を検出し、
前記超音波画像が前記表示装置に表示される際に、検出された前記血管を強調表示し、
検出された前記血管と前記挿入物との相対的な位置関係に応じて、前記血管を強調表示する際の様式を変える
超音波診断装置の制御方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20851683.1A EP4014886B1 (en) | 2019-08-15 | 2020-07-01 | Ultrasonic diagnostic apparatus and control method for ultrasonic diagnostic apparatus |
CN202080057348.8A CN114222537B (zh) | 2019-08-15 | 2020-07-01 | 超声波诊断装置及超声波诊断装置的控制方法 |
JP2021539835A JP7176123B2 (ja) | 2019-08-15 | 2020-07-01 | 超音波診断装置、及び超音波診断装置の制御方法 |
EP23211658.2A EP4302697A3 (en) | 2019-08-15 | 2020-07-01 | Ultrasonic diagnostic apparatus and control method for ultrasonic diagnostic apparatus |
US17/669,051 US20220160335A1 (en) | 2019-08-15 | 2022-02-10 | Ultrasound diagnostic apparatus and method of controlling ultrasound diagnostic apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-149054 | 2019-08-15 | ||
JP2019149054 | 2019-08-15 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/669,051 Continuation US20220160335A1 (en) | 2019-08-15 | 2022-02-10 | Ultrasound diagnostic apparatus and method of controlling ultrasound diagnostic apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021029153A1 true WO2021029153A1 (ja) | 2021-02-18 |
Family
ID=74570555
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/025859 WO2021029153A1 (ja) | 2019-08-15 | 2020-07-01 | 超音波診断装置、及び超音波診断装置の制御方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20220160335A1 (ja) |
EP (2) | EP4302697A3 (ja) |
JP (1) | JP7176123B2 (ja) |
CN (1) | CN114222537B (ja) |
WO (1) | WO2021029153A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022181517A1 (ja) * | 2021-02-25 | 2022-09-01 | 富士フイルム株式会社 | 医療画像処理装置、方法及びプログラム |
WO2022195981A1 (ja) * | 2021-03-19 | 2022-09-22 | テルモ株式会社 | 穿刺状態識別システム |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11701492B2 (en) * | 2020-06-04 | 2023-07-18 | Covidien Lp | Active distal tip drive |
CN117495817B (zh) * | 2023-11-10 | 2024-09-03 | 佛山市禅一智能设备有限公司 | 一种腔镜下血管异常图像判断方法及装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014113481A (ja) * | 2012-11-16 | 2014-06-26 | Toshiba Corp | 超音波診断装置及び画像処理方法 |
JP2015013069A (ja) * | 2013-07-08 | 2015-01-22 | ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー | 超音波診断装置及びその制御プログラム |
JP2017503548A (ja) | 2013-12-20 | 2017-02-02 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 自動超音波ビームステアリング及びニードルアーチファクト抑制 |
JP2018023610A (ja) * | 2016-08-10 | 2018-02-15 | セイコーエプソン株式会社 | 超音波測定装置および制御方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6119033A (en) * | 1997-03-04 | 2000-09-12 | Biotrack, Inc. | Method of monitoring a location of an area of interest within a patient during a medical procedure |
US6132379A (en) * | 1998-11-04 | 2000-10-17 | Patacsil; Estelito G. | Method and apparatus for ultrasound guided intravenous cannulation |
US20040151358A1 (en) * | 2003-01-31 | 2004-08-05 | Akiko Yanagita | Medical image processing system and method for processing medical image |
US8852111B2 (en) * | 2005-09-02 | 2014-10-07 | Ultrasound Ventures, Llc | Ultrasound guidance system |
JP6483133B2 (ja) * | 2013-12-20 | 2019-03-13 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 刺入器具を追跡するシステム及び方法 |
JP5830576B1 (ja) * | 2014-06-04 | 2015-12-09 | 日立アロカメディカル株式会社 | 医療システム |
US10813624B2 (en) * | 2015-10-30 | 2020-10-27 | Carestream Health, Inc. | Ultrasound display method |
JP7215854B2 (ja) * | 2018-08-28 | 2023-01-31 | イリソ電子工業株式会社 | 可動コネクタ |
EP4005494B1 (en) * | 2019-07-23 | 2024-10-16 | FUJIFILM Corporation | Ultrasonic diagnostic device and method for controlling ultrasonic diagnostic device |
-
2020
- 2020-07-01 EP EP23211658.2A patent/EP4302697A3/en active Pending
- 2020-07-01 WO PCT/JP2020/025859 patent/WO2021029153A1/ja unknown
- 2020-07-01 EP EP20851683.1A patent/EP4014886B1/en active Active
- 2020-07-01 JP JP2021539835A patent/JP7176123B2/ja active Active
- 2020-07-01 CN CN202080057348.8A patent/CN114222537B/zh active Active
-
2022
- 2022-02-10 US US17/669,051 patent/US20220160335A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014113481A (ja) * | 2012-11-16 | 2014-06-26 | Toshiba Corp | 超音波診断装置及び画像処理方法 |
JP2015013069A (ja) * | 2013-07-08 | 2015-01-22 | ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー | 超音波診断装置及びその制御プログラム |
JP2017503548A (ja) | 2013-12-20 | 2017-02-02 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 自動超音波ビームステアリング及びニードルアーチファクト抑制 |
JP2018023610A (ja) * | 2016-08-10 | 2018-02-15 | セイコーエプソン株式会社 | 超音波測定装置および制御方法 |
Non-Patent Citations (3)
Title |
---|
CSURKA ET AL.: "Visual Categorization with Bags of Keypoints", PROC. OF ECCV WORKSHOP ON STATISTICAL LEARNING IN COMPUTER VISION, 2004, pages 59 - 74 |
KRIZHEVSK ET AL.: "ImageNet Classification with Deep Convolutional Neural Networks", ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS, vol. 25, 2012, pages 1106 - 1114 |
See also references of EP4014886A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022181517A1 (ja) * | 2021-02-25 | 2022-09-01 | 富士フイルム株式会社 | 医療画像処理装置、方法及びプログラム |
WO2022195981A1 (ja) * | 2021-03-19 | 2022-09-22 | テルモ株式会社 | 穿刺状態識別システム |
Also Published As
Publication number | Publication date |
---|---|
EP4014886A1 (en) | 2022-06-22 |
CN114222537A (zh) | 2022-03-22 |
EP4014886A4 (en) | 2022-09-14 |
EP4014886B1 (en) | 2024-01-10 |
EP4302697A3 (en) | 2024-03-06 |
CN114222537B (zh) | 2024-05-14 |
JP7176123B2 (ja) | 2022-11-21 |
JPWO2021029153A1 (ja) | 2021-02-18 |
US20220160335A1 (en) | 2022-05-26 |
EP4302697A2 (en) | 2024-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021029153A1 (ja) | 超音波診断装置、及び超音波診断装置の制御方法 | |
JP5842810B2 (ja) | 超音波診断装置および超音波診断システム | |
JP5486449B2 (ja) | 超音波画像生成装置及び超音波画像生成装置の作動方法 | |
WO2021033446A1 (ja) | 超音波診断装置、及び超音波診断装置の制御方法 | |
JP7022217B2 (ja) | 超音波システムのためのエコー窓のアーチファクト分類及び視覚的インジケータ | |
WO2021014767A1 (ja) | 超音波診断装置および超音波診断装置の制御方法 | |
JP7313359B2 (ja) | 超音波診断装置および超音波診断装置の制御方法 | |
JP6937914B2 (ja) | 音響波診断装置および音響波診断装置の制御方法 | |
EP3698722A1 (en) | Acoustic wave diagnostic apparatus and method for controlling acoustic wave diagnostic apparatus | |
CN112367921B (zh) | 声波诊断装置及声波诊断装置的控制方法 | |
JP7313446B2 (ja) | 超音波診断装置および超音波診断装置の制御方法 | |
JP6509374B2 (ja) | 超音波観測装置、処理装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム | |
JP2011010864A (ja) | 超音波診断装置 | |
WO2022244552A1 (ja) | 超音波診断装置および超音波診断装置の制御方法 | |
EP4356843A1 (en) | Ultrasound diagnostic apparatus and control method of ultrasound diagnostic apparatus | |
US20240130706A1 (en) | Ultrasound diagnostic apparatus and control method of ultrasound diagnostic apparatus | |
EP4344648A1 (en) | Ultrasound diagnostic apparatus and control method for ultrasound diagnostic apparatus | |
JP2002306481A (ja) | 超音波画像処理装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20851683 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021539835 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020851683 Country of ref document: EP Effective date: 20220315 |