WO2021027865A1 - 馈电结构、微波射频器件及天线 - Google Patents

馈电结构、微波射频器件及天线 Download PDF

Info

Publication number
WO2021027865A1
WO2021027865A1 PCT/CN2020/108821 CN2020108821W WO2021027865A1 WO 2021027865 A1 WO2021027865 A1 WO 2021027865A1 CN 2020108821 W CN2020108821 W CN 2020108821W WO 2021027865 A1 WO2021027865 A1 WO 2021027865A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
branch
transmission line
coupling
microwave
Prior art date
Application number
PCT/CN2020/108821
Other languages
English (en)
French (fr)
Inventor
贾皓程
丁天伦
王瑛
武杰
李亮
唐粹伟
李强强
Original Assignee
京东方科技集团股份有限公司
北京京东方传感技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方传感技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP20852132.8A priority Critical patent/EP4016733A4/en
Priority to US17/280,873 priority patent/US11949142B2/en
Publication of WO2021027865A1 publication Critical patent/WO2021027865A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced with unbalanced lines or devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/184Strip line phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters

Definitions

  • the present disclosure belongs to the field of communication technology, and specifically relates to a feed structure, a microwave radio frequency device and an antenna.
  • phase shifter is a device that regulates the phase of electromagnetic waves and is widely used in various communication systems, such as satellite communication systems, phased array radars, and remote sensing and telemetry systems.
  • Dielectric adjustable phase shifter is a device that uses the dielectric constant of the control dielectric layer to achieve the phase shift effect.
  • the embodiments of the present disclosure provide a feed structure, a microwave radio frequency device, and an antenna.
  • the first aspect of the present disclosure provides a power feeding structure, which includes a first substrate and a second substrate, a reference electrode which are arranged opposite to each other, and a filling between the first substrate and the second substrate. Dielectric layer; where,
  • the first substrate includes: a first substrate, and a coupling branch and a delay branch on a side of the first substrate close to the dielectric layer; the coupling branch and the delay branch are respectively connected to On the two output terminals of the power divider; and the delay branch and the coupling branch both form a current loop with the reference electrode;
  • the second substrate includes: a second substrate, and a receiving electrode on the side of the second substrate close to the dielectric layer; the receiving electrode and the coupling branch form a coupling structure, and the two are in the first
  • the orthographic projections on a substrate overlap at least partially;
  • the length of the orthographic projection of the coupling branch and the receiving electrode on the first substrate is different from the length of the time delay branch, so that the phase of the microwave signal transmitted on the coupling structure is the same as the time.
  • the phase of the microwave signal transmitted on the extension branch is different.
  • one of the delay branch, the coupling branch, and the receiving electrode includes a serpentine line, so that the phase of the microwave signal transmitted on the coupling structure and the delay are The phase of the microwave signal transmitted on the branch is different.
  • the delay branch includes a serpentine line.
  • the meandering line includes any one of a rectangular waveform, an S shape, and a Z shape.
  • the feed structure further includes the power divider; the power divider includes a signal input terminal, a first signal output terminal, and a second signal output terminal; wherein,
  • the signal input terminal is used to receive a microwave signal with a certain power
  • the first signal output terminal is connected to the delay branch
  • the second signal output terminal is connected to the coupling branch.
  • the feed structure further includes the power divider;
  • the power divider includes a signal input terminal, a signal matching terminal, a first signal output terminal, and a second signal output terminal;
  • the signal input terminal is used to receive a microwave signal with a certain power, the first signal output terminal is connected to the delay branch, and the second signal output terminal is connected to the coupling branch;
  • the signal matching terminal is used to adjust the microwave signal output by the first signal output terminal and the second signal output terminal through the signal introduced by it, so that the first signal output terminal and the second signal
  • the output microwave signal has a certain phase difference.
  • the power splitter includes any one of a 3DB bridge, a coupler, and an orthogonal hybrid network.
  • the power divider, the delay branch and the coupling branch are all arranged on the first substrate.
  • the delay branch, the coupling branch, and the reference electrode form a microstrip line transmission structure, a stripline transmission structure, a co-surface waveguide transmission structure, and a substrate integrated waveguide transmission structure. Any kind.
  • the feeding structure further includes a support assembly located between the first substrate and the second substrate, and the support assembly is used to maintain the relationship between the first substrate and the second substrate. The distance between.
  • the dielectric layer includes air.
  • a second aspect of the present disclosure provides a microwave radio frequency device including the feeding structure according to any one of the embodiments of the first aspect of the present disclosure.
  • the microwave radio frequency device further includes a phase shifting structure, and the phase shifting structure includes:
  • a second transmission line arranged on a side of the fourth substrate close to the first transmission line
  • a liquid crystal layer provided between the first transmission line and the second transmission line;
  • a ground electrode provided on a side of the third substrate away from the first transmission line.
  • At least one of the first transmission line and the second transmission line is a microstrip line.
  • each of the first transmission line and the second transmission line is a comb electrode, and the ground electrode is a plate electrode.
  • the delay branch of the feeding structure is connected to the first transmission line of the phase shifting structure, and the receiving electrode of the feeding structure is connected to the phase shifting structure.
  • the second transmission line is connected.
  • the reference electrode of the feeding structure is located on a side of the first substrate away from the dielectric layer, and is connected to the ground electrode of the phase shifting structure.
  • the liquid crystal layer includes positive liquid crystal molecules or negative liquid crystal molecules
  • the angle between the long axis direction of each positive liquid crystal molecule and the plane where the third substrate is located is greater than 0 degree and less than or equal to 45 degrees;
  • the angle between the long axis direction of each negative liquid crystal molecule and the plane where the third substrate is located is greater than 45 degrees and less than 90 degrees.
  • the microwave radio frequency device includes a phase shifter or a filter.
  • the third aspect of the present disclosure provides an antenna including the microwave radio frequency device according to any one of the embodiments of the second aspect of the present disclosure.
  • FIG. 1 is a schematic structural diagram of a feeding structure according to an embodiment of the present disclosure
  • FIG. 2 is a schematic top view of a feeding structure according to an embodiment of the present disclosure
  • FIG. 3 is a cross-sectional view of the power feeding structure taken along the line AA' in FIG. 2;
  • FIG. 4 is a cross-sectional view of the feeding structure taken along the line BB' in FIG. 2;
  • FIG. 5 is a cross-sectional view of a phase shift structure according to an embodiment of the present disclosure.
  • the inventor of the inventive concept found that the conventional phase shifter with adjustable refractive index of the medium uses a single-wire transmission structure, and the phase velocity of the signal is adjusted by the change of the refractive index of the medium to realize the phase shift effect.
  • the loss of this kind of phase shifter is relatively large, and the phase shift per unit loss is relatively low.
  • the embodiments of the present disclosure provide a feed structure, a microwave radio frequency device, and an antenna with a higher phase shift within a unit loss.
  • the feeding structure provided in the following embodiments of the present disclosure can be widely used for differential mode feeding of two-layer transmission lines inside a dual substrate.
  • it can be used in microwave radio frequency devices, and microwave radio frequency devices It can be a differential mode signal line, filter, phase shifter, etc.
  • a microwave radio frequency device as a phase shifter is taken as an example for description.
  • a phase shifter ie, a microwave radio frequency device not only includes a feed structure (as shown in FIGS. 1 to 4), but also includes a phase shift structure (as shown in FIG. 5).
  • the phase shift structure may include: a first substrate 10 and a second substrate 20 disposed opposite to each other, a first transmission line 4 disposed on the first substrate 10, and a second substrate 20 close to the first transmission line.
  • the second transmission line 5 on the side 4 the dielectric layer disposed between the layer of the first transmission line 4 and the second transmission line 5, and the ground electrode that can be disposed on the first substrate 10 on the side away from the first transmission line 4 40.
  • the medium layer includes but is not limited to the liquid crystal layer 6. In the following embodiments, the medium layer is the liquid crystal layer 6 as an example for description.
  • both the first transmission line 4 and the second transmission line 5 may be microstrip lines, and in this case, the ground electrode 40 may be disposed on the side of the first substrate 10 away from the first transmission line 4.
  • the first transmission line 4 and the second transmission line 5 may use comb-shaped electrodes, and the ground electrode 40 may use plate-shaped electrodes. That is, the first transmission line 4, the second transmission line 5 and the ground electrode 40 may constitute a microstrip line transmission structure.
  • the first transmission line 4, the second transmission line 5 and the ground electrode 40 may also constitute any one of a strip line transmission structure, a co-surface waveguide transmission structure, and a substrate integrated waveguide transmission structure, which are not listed here.
  • a feeding structure for example, a dual-substrate differential mode feeding structure
  • the power feeding structure includes a first substrate and a second substrate that are arranged oppositely, a dielectric layer filled between the first substrate and the second substrate, and a reference electrode.
  • the first substrate may include: a first substrate 10, a coupling branch 21 and a delay branch 1 arranged on a side of the first substrate 10 close to the dielectric layer, and the coupling branch 21 and the delay branch 1 are used for Are respectively connected to the two output terminals of the power divider 3 (for example, the first signal output terminal and the second signal output terminal described below); and the coupling branch 21 and the delay branch 1 are both connected to the reference electrode (for example, , The ground electrode 30) forms a current loop.
  • the second substrate may include: a second substrate 20, a receiving electrode 22 disposed on a side of the second substrate 20 close to the dielectric layer, the receiving electrode 22 and the coupling branch 21 constitute the coupling structure 2, the receiving electrode 22 and the coupling branch
  • the orthographic projections of 21 on the first substrate 10 at least partially overlap.
  • the overlapping area of the receiving electrode 22 and the coupling branch 21 may form a capacitive area (or capacitor area) 23, as shown in FIG. 4.
  • the length of the orthographic projection of the coupling branch 21 and the receiving electrode 22 on the first substrate 10 for example, the size of the orthographic projection of the coupling branch 21 and the receiving electrode 22 on the paper surface in the horizontal direction shown in FIG.
  • the length of the orthographic projection of the coupling branch 21 and the receiving electrode 22 on the first substrate 10 refers to the sum of the length of the coupling branch 21 and the receiving electrode 22 minus the length of the overlapping position of the two .
  • the dielectric layer in the power feeding structure includes but is not limited to air. In this embodiment, the dielectric layer is air as an example for description. Of course, the dielectric layer may also be an inert gas or the like.
  • the reference electrode usually adopts the ground electrode 30.
  • any reference electrode that can have a certain voltage difference with the coupling branch 21 and the delay branch 1 is acceptable.
  • the reference electrode is The ground electrode 30 is described as an example.
  • the microwave signal propagated on the delay branch 1 and the microwave signal propagated on the coupling branch 21 may be high-frequency signals.
  • the current loop refers to the time delay branch 1 and the coupling branch 21. There is a certain voltage difference between the branch 21 and the ground electrode 30.
  • Each of the time delay branch 1 and the coupling branch 21 forms a capacitance or conductance with the ground electrode 30, and the time delay branch 1 is similar to the one shown in FIG.
  • the first transmission line 4 in the phase shifting structure is connected, and the receiving electrode 22 is connected to the second transmission line 5 in the phase shifting structure as shown in FIG. 5 to transmit microwave signals.
  • the current eventually flows back to the ground electrode 30, which is Current loop.
  • the specific position of the ground electrode 30 depends on the transmission structure formed by the ground electrode 30, the coupling branch 21, and the delay branch 1.
  • the transmission structure formed by the delay branch 1, the coupling branch 21 and the ground electrode 30 includes, but is not limited to, a microstrip line transmission structure, a stripline transmission structure, a co-surface waveguide transmission structure, and Any of the substrate integrated waveguide transmission structures.
  • the feeding structure in this embodiment will be described.
  • the delay branch 1, the coupling branch 21 and the ground electrode 30 constitute a microstrip line transmission structure. Take an example.
  • the ground electrode 30 in the power feeding structure is located on the side of the first substrate 10 away from the dielectric layer, and is connected to the ground electrode 40 in the phase shift structure.
  • the ground electrode 30 in the power feeding structure and the ground electrode 40 in the phase shifting structure may also adopt an integrally formed structure.
  • the delay branch 1 is used to output the microwave signal transmitted thereon to the first transmission line 4 of the phase shift structure; the coupling branch 21 is used to couple the microwave signal transmitted thereon to the receiving The electrode 22, the receiving electrode 22 outputs the microwave signal to the second transmission line 5 of the phase shift structure.
  • the length of the orthographic projection of the coupling branch 21 and the receiving electrode 22 on the first substrate 10 is different from the length of the delay branch 1, so that the microwave transmitted on the coupling structure 2
  • the phase of the signal is different from the phase of the microwave signal transmitted on the delay branch 1.
  • the microwave signal (for example, high frequency signal) transmitted on the first transmission line 4 and the microwave signal (for example, high frequency signal) transmitted on the second transmission line 5 in the phase shift structure can form a certain voltage difference. So that the first transmission line 4 and the second transmission line 5 form a liquid crystal capacitor with a certain capacitance value at the position where they overlap.
  • the phase shifter using the feeding structure of this embodiment (for example, the dual-substrate differential mode feeding structure) has a larger phase shift.
  • the length of the delay branch 1 is greater than the length of the orthographic projection of the coupling branch 21 and the receiving electrode 22 on the first substrate 10 as an example.
  • the mode feed structure may also include a power divider 3. Input the microwave signal with the power of P to the power divider 3, and after the microwave signal with the power of P is processed by the power divider 3, the power of the microwave signal output by the power divider 3 to the delay branch 1 can be P /2, the phase can be 270°, the power of the microwave signal output by the power divider 3 to the coupling branch 21 can be P/2, and the phase can be 90°.
  • the phase difference of the microwave signals output from the two branches is 180°, that is, the phase difference of the microwave signals transmitted to the first transmission line 4 and the second transmission line 5 of the phase shift structure is 180°.
  • the voltage of the microwave signal input from the delay branch 1 to the first transmission line 4 of the phase shifting structure may be -1V, and the coupling branch 21 is coupled to the receiving electrode 22 and then input to the second transmission line 5 of the phase shifting structure.
  • the voltage of the microwave signal can be 1V to achieve a 180° phase shift of the microwave signal.
  • the liquid crystal capacitance generated by the first transmission line 4 and the second transmission line 5 is the largest, therefore, the maximum phase shift degree of the phase shifter is reached.
  • the microwave signal on the delay branch 1 and the microwave signal on the coupling branch 21 with a phase difference of 180° is not limited to this.
  • the microwave signal input to the first transmission line 4 and the receiving electrode 22 of the delay branch 1 can be adjusted by adjusting the length of one of the receiving electrodes 22 in the delay branch 1 and the coupling branch 21 as a serpentine line.
  • one of the delay branch 1, the coupling branch 21, and the receiving electrode 22 includes a serpentine line, so that the coupling structure 2 is The phase of the microwave signal is different from the phase of the microwave signal transmitted on the delay branch 1.
  • a serpentine line is used to make the length of the orthographic projection of the coupling branch 21 and the receiving electrode 22 on the first substrate is different from the length of the time delay branch 1 is because this does not increase the volume of the feeding structure.
  • the delay branch 1 in the feed structure can be designed as a serpentine line, that is, the length of the delay branch 1 is longer than the length of the coupling branch 21 and is longer than the receiving electrode.
  • the length of 22 is longer and/or longer than the length of the orthographic projection of the coupling branch 21 and the receiving electrode 22 on the first substrate 10. If the power divider 3 divides the microwave signal received by its signal input terminal (for example, the lower end of the power divider 3 shown in FIG. 1) into equal parts and outputs it to the delay branch 1 and the coupling branch 21.
  • the length of the extension branch 1 is longer than the length of the coupling branch 21. Therefore, the phase of the microwave signal output via the delay branch 1 is lagging behind the phase of the microwave signal output via the coupling branch 21.
  • the delay branch 1 in the feed structure can be designed as a serpentine line, that is, the length of the delay branch 1 is longer than the length of the coupling branch 21. .
  • the power divider 3 equally divides the microwave signal received at its signal input terminal and outputs it to the delay branch 1 and the coupling branch 21, at this time, the length of the delay branch 1 is longer than the length of the coupling branch 21. It is longer, and therefore, the phase of the microwave signal output via the delay branch 1 is lagging behind the phase of the microwave signal output via the coupling branch 21.
  • the reason for this setting is that the longer the signal line, the greater the loss of the microwave signal, and the microwave signal transmitted by the coupling branch 21 needs to be coupled to the receiving electrode 22 and then transmitted to the second transmission line 5. In this process, the microwave signal There will also be losses, which can make the losses on the two branches equal or substantially equal. If the length of the coupling branch 21 is increased, the loss of the transmitted microwave signal will increase, so the length of the delay branch is designed to be longer than the length of the coupling branch 21.
  • the coupling branch 21 and/or the receiving electrode 22 in the feeding structure can also be designed as a serpentine line, as long as the microwave signal transmitted to the first transmission line 4 is guaranteed It is sufficient that there is a certain phase difference between the phase and the phase of the microwave signal transmitted to the second transmission line 5.
  • the time delay branch 1 is a serpentine line as an example for description.
  • the power feeding structure includes not only the above-mentioned structure (for example, the first substrate, the second substrate, the reference electrode (for example, the ground electrode 30), but also the filling in the first substrate and the second substrate.
  • the dielectric layer between the bases also includes a power divider 3, which may adopt a three-port T-shaped structure, or may adopt a four-port structure power divider (as shown in FIG. 1).
  • the present disclosure is not limited to the power divider 3 of these two structures.
  • the power feed structure in this embodiment is described below by taking three-port and four-port power splitters as examples.
  • the power divider 3 includes a signal input terminal (the lower end shown in FIG.
  • the first signal output terminal is connected to the delay branch 1
  • the second signal output terminal is connected to the coupling branch 21 (as shown in FIG. 2).
  • the power divider 3 processes the microwave signal, and the microwave signal output by the first signal output terminal and the second signal output terminal of the power divider 3
  • the power can all be P/2. Since the delay branch 1 is a serpentine line, the microwave signal transmitted through the delay branch 1 is delayed in phase than the microwave signal transmitted through the coupling branch 21.
  • the power divider 3 When the power divider 3 adopts a four-port structure, the power divider 3 includes a signal input terminal (as shown in the lower end in FIG. 1), a signal matching terminal (as shown in the upper end in FIG. 1), and a first signal output terminal (as shown in The right end shown in Figure 1) and the second signal output end (the left end shown in Figure 1).
  • the first signal output terminal is connected to the delay branch 1
  • the second signal output terminal is connected to the coupling branch 21 (as shown in FIG. 2).
  • the power divider 3 processes the microwave signal, and the power of the microwave signal output by the first signal output terminal and the second signal output terminal of the power divider 3 can be Both are approximately P/2.
  • the signal matching terminal adjusts the microwave signals output by the first signal output terminal and the second signal output terminal through the signals introduced by the signal matching terminal, so that the microwave signals output by the two have a certain phase difference.
  • the first signal output terminal and the second signal output terminal transmit the microwave signal to the delay branch 1 and the coupling branch 21, the first signal output terminal and the second signal output terminal output There can be a certain phase difference between the microwave signals.
  • the delay branch 1 is a serpentine line, the microwave signal transmitted through the delay branch 1 is delayed in phase from the microwave signal transmitted through the coupling branch 21. Therefore, there is a certain phase difference between the microwave signal transmitted from the delay branch 1 to the first transmission line 4 and the microwave signal transmitted from the receiving electrode 22 to the second transmission line 5, so that the first transmission line 4 and the second transmission line 5 A certain liquid crystal capacitor is formed at the overlapping position, thereby realizing the corresponding phase shift of the phase shifter.
  • the aforementioned four-port power divider 3 includes, but is not limited to, the known 3DB bridge, coupler or quadrature hybrid network, the detailed description of which is omitted here to make this description brief.
  • the meandering line may have any one of a rectangular wave shape (for example, a square wave shape), an S shape (or a wave shape), and a Z shape (for example, a sawtooth shape).
  • a rectangular wave shape for example, a square wave shape
  • an S shape or a wave shape
  • a Z shape for example, a sawtooth shape
  • the serpentine line is not limited to these structures, and the shape of the serpentine line can be designed according to the impedance requirements of the feed structure.
  • the power divider 3, the delay branch 1 and the coupling branch 21 may all be arranged on the first substrate 10. In this way, the thickness of the feeding structure can be made smaller. Moreover, such a configuration can also use a patterning process to form the delay branch 1 and the coupling branch 21, thereby reducing process steps and improving production efficiency.
  • the power feeding structure may further include at least one support assembly 50 located between the first substrate and the second substrate, so as to maintain the connection between the first substrate and the second substrate. Distance, as shown in Figure 3 and Figure 4.
  • each of the first substrate 10 and the second substrate 20 may adopt a glass substrate with a thickness of 100 to 1000 ⁇ m, or a sapphire substrate, or a thickness of 10 to 500 ⁇ m.
  • at least one of the first substrate 10 and the second substrate 20 may be a high-purity quartz glass substrate with extremely low dielectric loss.
  • the use of quartz glass substrates for the first substrate 10 and the second substrate 20 can effectively reduce the loss of microwaves, so that the phase shifter has low power consumption and high signal-to-noise ratio.
  • high-purity quartz glass may refer to quartz glass in which the weight percentage of SiO 2 is greater than or equal to 99.9%.
  • each of the delay branch 1, the coupling branch 21, the receiving electrode 22, the first transmission line 4, the second transmission line 5, and the ground electrodes 30 and 40 may be aluminum, Made of metals such as silver, gold, chromium, molybdenum, nickel or iron.
  • each of the first transmission line 4 and the second transmission line 5 may also be made of a transparent conductive oxide (for example, indium tin oxide (ITO)).
  • ITO indium tin oxide
  • the liquid crystal molecules in the liquid crystal layer 6 may be positive liquid crystal molecules or negative liquid crystal molecules. It should be noted that when the liquid crystal molecules are positive liquid crystal molecules, the angle between the long axis direction of each liquid crystal molecule and the plane where the first substrate 10 or the second substrate 20 is located in the embodiment of the present disclosure is greater than zero and Less than or equal to 45 degrees. When the liquid crystal molecules are negative liquid crystal molecules, the angle between the long axis direction of each liquid crystal molecule and the plane where the first substrate 10 or the second substrate 20 is located in the embodiment of the present disclosure is greater than 45 degrees and less than 90 degrees. In this way, it is ensured that after the liquid crystal molecules are deflected, the dielectric constant of the liquid crystal layer is changed to achieve the purpose of phase shifting.
  • embodiments of the present disclosure also provide a microwave radio frequency device, which includes the dual substrate feed structure according to any one of the above embodiments.
  • the microwave radio frequency device may include, but is not limited to, a filter or a phase shifter.
  • the microwave radio frequency device may also include a phase shift structure as shown in FIG. 5.
  • embodiments of the present disclosure also provide a liquid crystal antenna, which includes a phase shifter (ie, the microwave radio frequency device) according to any one of the above-mentioned embodiments.
  • the liquid crystal antenna may also include at least two patch units arranged on the side of the second substrate 20 facing away from the liquid crystal medium layer, and the first transmission line 4 may be arranged on each side parallel to the plane where the first substrate 10 is located.
  • a plurality of electrode strips spaced apart from each other at a constant interval, the gap between every two adjacent patch units and the gap between two adjacent electrode strips are arranged correspondingly (for example, equal). In this way, the microwave signal after phase adjustment by any of the above-mentioned phase shifters can be radiated from the gap between the patch units.

Abstract

本公开提供一种馈电结构、微波射频器件及天线。所述馈电结构包括相对设置的第一基板和第二基板、参考电极,以及填充在所述第一基板和所述第二基之间的介质层。所述第一基板包括第一基底以及位于所述第一基底靠近所述介质层一侧的耦合支路和时延支路;所述耦合支路和所述时延支路用于分别连接在功率分配器的两个输出端上,且均与所述参考电极形成电流回路。所述第二基板包括第二基底以及位于所述第二基底靠近所述介质层一侧的接收电极,所述接收电极与所述耦合支路构成耦合结构,且二者在所述第一基底上的正投影至少部分重叠。所述耦合支路和所述接收电极在所述第一基底上的正投影的长度与所述时延支路的长度不同,以使所述耦合结构上传输的微波信号的相位和所述时延支路上传输的微波信号的相位不同。

Description

馈电结构、微波射频器件及天线
相关申请的交叉引用
本申请要求于2019年8月14日提交的中国专利申请No.201910750841.7的优先权,该专利申请的全部内容通过引用方式合并于此。
技术领域
本公开属于通信技术领域,具体涉及一种馈电结构、微波射频器件及天线。
背景技术
移相器是一种调控电磁波相位的器件,广泛应用于各种通信系统中,如卫星通信系统,相控阵雷达,遥感遥测系统等。介质可调移相器是一种利用控制介质层的介电常数来实现相移效果的器件。
发明内容
本公开的实施例提供了一种馈电结构、一种微波射频器件及一种天线。
本公开的第一方面提供了一种馈电结构,该馈电结构包括相对设置的第一基板和第二基板、参考电极,以及填充在所述第一基板和所述第二基之间的介质层;其中,
所述第一基板包括:第一基底,以及位于所述第一基底靠近所述介质层一侧的耦合支路和时延支路;所述耦合支路和所述时延支路分别连接在功率分配器的两个输出端上;且所述时延支路和所述耦合支路均与所述参考电极形成电流回路;
所述第二基板包括:第二基底,以及位于所述第二基底靠近 所述介质层一侧的接收电极;所述接收电极与所述耦合支路构成耦合结构,且二者在所述第一基底上的正投影至少部分重叠;以及
所述耦合支路和所述接收电极在所述第一基底上的正投影的长度与所述时延支路的长度不同,以使所述耦合结构上传输的微波信号的相位和所述时延支路上传输的微波信号的相位不同。
在一个实施例中,所述时延支路、所述耦合支路和所述接收电极中的一者包括蜿蜒线,以使所述耦合结构上传输的微波信号的相位和所述时延支路上传输的微波信号的相位不同。
在一个实施例中,所述时延支路包括蜿蜒线。
在一个实施例中,所述蜿蜒线包括矩形波形、S形和Z形中的任意一种。
在一个实施例中,所述馈电结构还包括所述功率分配器;所述功率分配器包括信号输入端、第一信号输出端和第二信号输出端;其中,
所述信号输入端用于接收具有一定功率的微波信号,所述第一信号输出端与所述时延支路连接,并且所述第二信号输出端与所述耦合支路连接。
在一个实施例中,所述馈电结构还包括所述功率分配器;所述功率分配器包括信号输入端、信号匹配端、第一信号输出端和第二信号输出端;其中,
所述信号输入端用于接收具有一定功率的微波信号,所述第一信号输出端与所述时延支路连接,并且所述第二信号输出端与所述耦合支路连接;以及
所述信号匹配端用于通过其所引入的信号,调节所述第一信号输出端和所述第二信号输出端所输出的微波信号,使所述第一信号输出端和所述第二信号输出的微波信号具有一定的相位差。
在一个实施例中,所述功率分配器包括3DB电桥、耦合器和正交混合网络中的任意一种。
在一个实施例中,所述功率分配器、所述时延支路和所述耦 合支路均设置在所述第一基底上。
在一个实施例中,所述时延支路、所述耦合支路和所述参考电极构成微带线传输结构、带状线传输结构、共表面波导传输结构和基片集成波导传输结构中的任意一种。
在一个实施例中,所述馈电结构还包括位于所述第一基板和所述第二基板之间的支撑组件,所述支撑组件用于维持所述第一基板和所述第二基板之间的距离。
在一个实施例中,所述介质层包括空气。
本公开的第二方面提供了一种微波射频器件,该微波射频器件包括根据本公开的第一方面的各个实施例中的任意一个所述的馈电结构。
在一个实施例中,所述微波射频器件还包括移相结构,所述移相结构包括:
彼此相对的第三基底和第四基底;
设置在所述第三基底上的第一传输线;
设置在所述第四基底靠近所述第一传输线一侧的第二传输线;
设置在所述第一传输线和所述第二传输线之间的液晶层;以及
设置在所述第三基底的远离所述第一传输线一侧上的接地电极。
在一个实施例中,所述第一传输线和所述第二传输线中的至少一个是微带线。
在一个实施例中,所述第一传输线和所述第二传输线中的每一个是梳状电极,并且所述接地电极是板状电极。
在一个实施例中,所述馈电结构的所述时延支路与所述移相结构的所述第一传输线连接,并且所述馈电结构的所述接收电极与所述移相结构的所述第二传输线连接。
在一个实施例中,所述馈电结构的所述参考电极位于所述第一基底背离所述介质层的一侧,且与所述移相结构的所述接地电极连接。
在一个实施例中,所述液晶层包括正性液晶分子或负性液晶分子;
每一个所述正性液晶分子的长轴方向与所述第三基底所在的平面之间的夹角大于0度小于等于45度;以及
每一个所述负性液晶分子的长轴方向与所述第三基底所在的平面之间的夹角大于45度小于90度。
在一个实施例中,所述微波射频器件包括移相器或滤波器。
本公开的第三方面提供了一种天线,该天线包括根据本公开的第二方面的各个实施例中的任意一个所述的微波射频器件。
附图说明
图1为根据本公开实施例的馈电结构的结构示意图;
图2为根据本公开实施例的馈电结构的俯视示意图;
图3为沿着图2中的线A-A'截取的馈电结构的剖视图;
图4为沿着图2中的线B-B'截取的馈电结构的剖视图;以及
图5为根据本公开实施例的移相结构的截面图。
具体实施方式
为使本领域技术人员更好地理解本公开的技术方案,下面结合附图和具体实施方式对本公开作进一步详细描述。
除非另外定义,否则本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同物,而不排除其他元件或者物件的存在。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的连接。 “上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
本发明构思的发明人发现,传统的介质的折射率可调的移相器使用单线传输的结构,通过介质的折射率的改变来调节信号的相速度从而实现移相效果。但这种移相器的损耗偏大,并且单位损耗内的移相度偏低。为此,本公开的实施例提供了单位损耗内的移相度更高的馈电结构、微波射频器件及天线。
在此需要说明的是,本公开的下述实施例中所提供的馈电结构可广泛用于双基板内侧两层传输线的差模馈电,例如可以用于微波射频器件中,而微波射频器件可以是差模信号线、滤波器、移相器等。在下述实施例中,以微波射频器件为移相器为例进行说明。
例如,移相器(即,微波射频器件)不仅包括馈电结构(如图1至图4所示),而且还包括移相结构(如图5所示)。如图5所示,该移相结构可以包括:彼此相对设置的第一基底10和第二基底20,设置在第一基底10上的第一传输线4,设置在第二基底20靠近第一传输线4一侧的第二传输线5,设置在第一传输线4和第二传输线5所在层之间的介质层,以及可以设置在第一基底10上的远离第一传输线4的一侧上的接地电极40。例如,该介质层包括但不限于液晶层6,在下述实施例中以该介质层为液晶层6为例进行说明。
例如,第一传输线4和第二传输线5均可以是微带线,且此时接地电极40可以是设置在第一基底10背离第一传输线4的一侧。第一传输线4和第二传输线5可以采用梳状电极,接地电极40则可以采用板状电极。也即,第一传输线4、第二传输线5和接地电极40可以构成微带线传输结构。可替换地,第一传输线4、第二传输线5和接地电极40也可以构成带状线传输结构、共表面波导传输结构、基片集成波导传输结构中任意一种,在此不一一列举。
第一方面,结合图1至图4所示,在本公开实施例中,提供一种馈电结构(例如,双基板差模馈电结构)。该馈电结构包括相对设置的第一基板和第二基板,填充在第一基板和第二基板之间的介质层,以及参考电极。例如,第一基板可以包括:第一基底10,设置在第一基底10靠近介质层的一侧上的耦合支路21和时延支路1,耦合支路21和时延支路1用于分别连接在功率分配器3的两个输出端(例如,下文所述的第一信号输出端和第二信号输出端)上;且耦合支路21和时延支路1均与参考电极(例如,接地电极30)形成电流回路。第二基板可以包括:第二基底20,设置在第二基底20靠近介质层的一侧上的接收电极22,该接收电极22和耦合支路21构成耦合结构2,接收电极22和耦合支路21在第一基底10上的正投影至少部分重叠。接收电极22和耦合支路21的重叠区域可以形成电容性区域(或电容器区域)23,如图4所示。而且耦合支路21和接收电极22在第一基底10上的正投影的长度(例如,图2所示的耦合支路21和接收电极22在纸面上的正投影在水平方向上的尺寸)与时延支路1的长度(例如,图2所示的时延支路1在纸面上的正投影所表示的曲线的长度)不同,以使耦合结构2上传输的微波信号的相位与时延支路1上传输的微波信号的相位不同。
在此需要说明的是,耦合支路21和接收电极22在第一基底10上的正投影的长度是指,耦合支路21和接收电极22的长度之和减去二者交叠位置的长度。馈电结构中的介质层包括但不限于空气,在本实施例中以该介质层为空气为例进行说明,当然介质层也可以是惰性气体等。
例如,在本公开实施例中参考电极通常采用接地电极30,当然只要能够与耦合支路21、时延支路1具有一定压差的任何参考电极均可,在本实施例中以参考电极为接地电极30为例进行说明。在此需要说明的是,时延支路1上传播的微波信号和耦合支路21上传播的微波信号可以为高频信号,在本实施例中电流回路是指,时延支路1和耦合支路21与接地电极30之间存在一定压差,时 延支路1和耦合支路21中的每一个与接地电极30形成电容或电导,同时时延支路1与如图5所示的移相结构中的第一传输线4连接,接收电极22与如图5所示的移相结构中的第二传输线5连接,以对微波信号进行传输,电流最终回流到接地电极30,也即形成电流回路。
在本实施例中接地电极30的具体位置取决于接地电极30和耦合支路21、时延支路1所构成的传输结构。具体的,在本公开实施例中时延支路1、耦合支路21和接地电极30构成的传输结构包括但不局限于微带线传输结构、带状线传输结构、共表面波导传输结构和基片集成波导传输结构中任意一种。而在下述实施例中为了与图5所示的移相结构相结合对本实施例中的馈电结构进行说明,以时延支路1、耦合支路21和接地电极30构成微带线传输结构为例进行说明。此时,馈电结构中的接地电极30位于第一基底10背离介质层的一侧,且与移相结构中的接地电极40连接。此外,馈电结构中的接地电极30和移相结构中的接地电极40也可以采用一体成型结构。
在本公开实施例中,时延支路1用于将其上所传输的微波信号输出至移相结构的第一传输线4上;耦合支路21用于将其上传输的微波信号耦合至接收电极22,接收电极22将该微波信号输出至移相结构的第二传输线5上。
如上所述,在本公开的实施例中的耦合支路21和接收电极22在第一基底10上的正投影的长度与时延支路1的长度不同,以使耦合结构2上传输的微波信号的相位和时延支路1上传输的微波信号的相位不同。这样一来,可以使得移相结构中的第一传输线4上传输的微波信号(例如,高频信号)和第二传输线5上传输的微波信号(例如,高频信号)形成一定的电压差,以使第一传输线4和第二传输线5在它们交叠的位置处形成一定的电容值的液晶电容。在图5所示的第一传输线4上的微波信号和第二传输线5上的微波信号之间的电压差,要大于现有技术中单传输线与接地电极的电压差。因此,第一传输线4和第二传输线5所形 成的液晶电容的电容值比现有技术中采用单传输线与接地电极所形成的液晶电容的电容值更大。因此,在给第一传输线4和第二传输线5施加不同的电压以使液晶层6中的液晶分子偏转,以对微波信号进行移相时,由于所述馈电结构使得液晶电容的电容值较大,故应用本实施例的馈电结构(例如,双基板差模馈电结构)的移相器的移相度较大。
为了使本实施例中的双基板差模馈电结构的有益效果更清楚,以时延支路1的长度大于耦合支路21和接收电极22在第一基底10上的正投影的长度为例进一步说明。所述模馈电结构还可以包括功率分配器3。将将功率为P的微波信号输入至功率分配器3中,经由功率分配器3将功率为P的微波信号处理后,功率分配器3向时延支路1输出的微波信号的功率可以为P/2,相位可以为270°,功率分配器3向耦合支路21输出的微波信号的功率可以为P/2,相位可以为90°。这样,两条支路上输出的微波信号的相位差为180°,也即传输至移相结构的第一传输线4和第二传输线5上的微波信号的相位差180°。此时,时延支路1输入至移相结构的第一传输线4的微波信号所带的电压可以为-1V,耦合支路21耦合至接收电极22之后输入至移相结构的第二传输线5的微波信号所带的电压可以为1V,以实现对微波信号执行180°的移相。相比其它移相度的液晶电容,上述第一传输线4和第二传输线5所产生的液晶电容最大,因此,达到移相器的最大移相度。
在此需要说明的是,上述实施例只是以时延支路1上的微波信号和耦合支路21上的微波信号之间具有相差180°为例进行说明的,但是本公开不限于此。实际上,可以通过调节时延支路1、耦合支路21中接收电极22中作为蜿蜒线的一个的长度,来调节时延支路1输入至第一传输线4的微波信号和接收电极22输入至第二传输线5的微波信号之间的相位差。
如上所述,在本公开的一些实施例中,所述时延支路1、所述耦合支路21和所述接收电极22中的一者包括蜿蜒线,以使耦合结构2上输的微波信号的相位和时延支路1上传输的微波信号 的相位不同。之所以采用蜿蜒线以使耦合支路21和接收电极22在第一基底上的正投影的长度与时延支路1的长度不同,是因为这样不会增加馈电结构的体积。
例如,在本公开实施例中,可以将馈电结构中的时延支路1设计为蜿蜒线,也即使得时延支路1的长度比耦合支路21的长度更长、比接收电极22的长度更长、和/或比所述耦合支路21和所述接收电极22在所述第一基底10上的正投影的长度更长。若功率分配器3将其信号输入端(例如,图1所示的功率分配器3的下端)所接收的微波信号等分并输出给时延支路1和耦合支路21,此时由于时延支路1的长度较耦合支路21的长度更长,因此,经由时延支路1输出的微波信号的相位相对经由耦合支路21输出的微波信号的相位滞后。
如上所述,在本公开的一些实施例中,可以将馈电结构中的时延支路1设计为蜿蜒线,也即使得时延支路1的长度比耦合支路21的长度更长。这样,若功率分配器3将其信号输入端所接收到的微波信号等分输出给时延支路1和耦合支路21,此时由于时延支路1的长度较耦合支路21的长度更长,因此,经由时延支路1输出的微波信号的相位相对经由耦合支路21输出的微波信号的相位滞后。
之所以如此设置是因为,信号线越长微波信号的损耗会越大,而耦合支路21所传输的微波信号需要耦合至接收电极22之后再传输至第二传输线5,在这个过程中微波信号也会有损耗,这样可以使得两个支路上的损耗相等或实质上相等。若将耦合支路21的长度增长,其所传输的微波信号的损耗会增大,故将时延支路的长度设计为比耦合支路21的长度要长一些。
在此需要说明的是,在本公开实施例中也可以将馈电结构中的耦合支路21和/或接收电极22设计为蜿蜒线,只要保证传输至第一传输线4上的微波信号的相位和传输至第二传输线5上的微波信号的相位存在一定的相位差即可。而在下述实施例中仅以时延支路1为蜿蜒线为例进行说明。
在本公开的一些实施例中,馈电结构不仅包括上述结构(例如,第一基板、第二基板、参考电极(例如,接地电极30),以及填充在所述第一基板和所述第二基之间的介质层)还包括功率分配器3,该功率分配器3可以采用三端口的T型结构,或者可以采用四端口结构的功率分配器(如图1所示)。但是,本公开不局限于这两种结构的功率分配器3。以下分别以三端口和四端口的功率分配器为例对本实施例中的馈电结构进行说明。当功率分配器3为三端口结构时,该功率分配器3包括信号输入端(如图1所示的下端)、第一信号输出端(如图1所示的右端)、第二信号输出端(如图1所示的左端)。例如,第一信号输出端连接时延支路1,第二信号输出端连接耦合支路21(如图2所示)。当向信号输入端接收到功率为P的微波信号时,功率分配器3将该微波信号进行处理,并且该功率分配器3的第一信号输出端和第二信号输出端所输出的微波信号的功率可以均为P/2。而由于时延支路1为蜿蜒线,经由时延支路1所传输的微波信号要比经由耦合支路21所传输的微波信号的相位滞后。因此,从时延支路1传输至第一传输线4的微波信号,与从接收电极22传输至第二传输线5的微波信号之间存在一定的相位差,以使第一传输线4和第二传输线5交叠的位置处形成一定的液晶电容,从而实现了移相器的相应移相度。
当功率分配器3采用四端口结构时,该功率分配器3包括信号输入端(如图1所示的下端)、信号匹配端(如图1所示的上端)、第一信号输出端(如图1所示的右端)和第二信号输出端(如图1所示的左端)。例如,第一信号输出端连接时延支路1,第二信号输出端连接耦合支路21(如图2所示)。当向信号输入端输入功率为P的微波信号时,功率分配器3将该微波信号进行处理,该功率分配器3的第一信号输出端和第二信号输出端所输出的微波信号的功率可以均近似为P/2。信号匹配端通过其所引入的信号,调节所述第一信号输出端和所述第二信号输出端所输出的微波信号,使二者输出的微波信号具有一定的相位差。例如, 在所述第一信号输出端和所述第二信号输出端中的每一个所输出的微波信号为sinΦ1的情况下,信号匹配端所引入的信号可以为sinΦ2(Φ2-Φ1=120度),并且上述“调节”可以是将sinΦ2与所述第一信号输出端或所述第二信号输出端所输出的微波信号sinΦ1相加,这样,sinΦ2+sinΦ1=2sin((Φ2+Φ1)/2)cos((Φ2-Φ1)/2)=sin((Φ2+Φ1)/2)。也即,在第一信号输出端和第二信号输出端将微波信号分别传输至时延支路1和耦合支路21之前,所述第一信号输出端和所述第二信号输出端所输出的微波信号之间可以具有一定的相位差。同时,由于时延支路1为蜿蜒线,经由时延支路1所传输的微波信号要比经由耦合支路21所传输的微波信号的相位滞后。因此,从时延支路1传输至第一传输线4的微波信号与从接收电极22传输至第二传输线5的微波信号之间存在一定的相位差,以使第一传输线4和第二传输线5交叠的位置处形成一定的液晶电容,从而实现了移相器的相应移相度。
例如,上述的四端口功率分配器3包括但不限于已知的3DB电桥、耦合器或正交混合网络,其详细说明在此省略以使本说明书简短。
在本公开的一些实施例中,蜿蜒线具体可以具有矩形波形(例如,方波形)、S形(或波浪形)、Z形(例如,锯齿形)中的任意一种。当然,蜿蜒线也不局限于这几种结构,可以根据馈电结构的阻抗需求来设计蜿蜒线的形状。
在本公开的一些实施例中,功率分配器3、时延支路1与耦合支路21可以均设置在第一基底10上。这样一来,可以使得馈电结构的厚度较小。而且如此设置还可以采用一次构图工艺形成时延支路1和耦合支路21,从而可以减少工艺步骤,提供生产效率。
在本公开的一些实施例中,馈电结构还可以包括位于第一基板和第二基板之间的至少一个支撑组件50,以用于维持所述第一基板和所述第二基板之间的距离,如图3和图4所示。
在本公开的一些实施例中,第一基底10和第二基底20中的 每一个可以采用厚度为100微米至1000微米的玻璃基底,也可采用蓝宝石基底,还可以使用厚度为10微米至500微米的聚对苯二甲酸乙二酯基底、三聚氰酸三烯丙酯基底或聚酰亚胺透明柔性基底。此外,第一基底10和第二基底20中的至少一个可以采用介电损耗极低的高纯度石英玻璃基底。相比于普通玻璃基底,第一基底10和第二基底20采用石英玻璃基底时可以有效减小对微波的损耗,使移相器具有低的功耗和高的信噪比。例如,高纯度石英玻璃可以指的是其中SiO 2的重量百分比大于或等于99.9%的石英玻璃。
在本公开的一些实施例中,时延支路1、耦合支路21、接收电极22、第一传输线4、第二传输线5以及接地电极30和40中的每一个的材料均可以采用铝、银、金、铬、钼、镍或铁等金属制成。而且第一传输线4和第二传输线5中的每一个还可以采用透明导电氧化物(例如,铟锡氧化物(ITO))制成。
例如,液晶层6中的液晶分子可以为正性液晶分子或负性液晶分子。需要说明的是,当液晶分子为正性液晶分子时,本公开的实施例的每一个液晶分子的长轴方向与第一基底10或第二基底20所在的平面之间的夹角大于零度且小于等于45度。当液晶分子为负性液晶分子时,本公开的实施例的每一个液晶分子的长轴方向与第一基底10或第二基底20所在的平面之间的夹角大于45度且小于90度。这样,保证了液晶分子发生偏转后,改变液晶层的介电常数,以达到移相的目的。
第二方面,本公开实施例还提供一种微波射频器件,其包括根据上述的任一实施例的双基板馈电结构,该微波射频器件可以包括但不限于滤波器或者移相器。此外,该微波射频器件还可以包括如图5所示的移相结构。
第三方面,本公开实施例还提供一种液晶天线,该液晶天线包括根据上述的任意一个实施例的移相器(即,所述微波射频器件)。此外,该液晶天线还可以包括设置在第二基底20的背离液晶介质层的一侧的至少两个贴片单元,第一传输线4在平行于第 一基底10所在平面的每一侧可以设置有以恒定间隔彼此间隔开的多个电极条(未示出),每相邻两个贴片单元之间的间隙与相邻两个电极条之间的间隙对应(例如,相等)设置。这样一来,可以使得经过上述的任意一种移相器进行相位调整后的微波信号从贴片单元之间的间隙辐射出去。
应当理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离由所附权利要求所限定的本公开的保护范围的情况下,可以做出各种变型和改进,这些变型和改进也属于本公开的保护范围。

Claims (20)

  1. 一种馈电结构,包括相对设置的第一基板和第二基板、参考电极,以及填充在所述第一基板和所述第二基之间的介质层;其中,
    所述第一基板包括:第一基底,以及位于所述第一基底靠近所述介质层一侧的耦合支路和时延支路;所述耦合支路和所述时延支路用于分别连接在功率分配器的两个输出端上;且所述时延支路和所述耦合支路均与所述参考电极形成电流回路;
    所述第二基板包括:第二基底,以及位于所述第二基底靠近所述介质层一侧的接收电极;所述接收电极与所述耦合支路构成耦合结构,且二者在所述第一基底上的正投影至少部分重叠;以及
    所述耦合支路和所述接收电极在所述第一基底上的正投影的长度与所述时延支路的长度不同,以使所述耦合结构上传输的微波信号的相位和所述时延支路上传输的微波信号的相位不同。
  2. 根据权利要求1所述的馈电结构,其中,所述时延支路、所述耦合支路和所述接收电极中的一者包括蜿蜒线,以使所述耦合结构上传输的微波信号的相位和所述时延支路上传输的微波信号的相位不同。
  3. 根据权利要求2所述的馈电结构,其中,所述时延支路包括蜿蜒线。
  4. 根据权利要求2或3所述的馈电结构,其中,所述蜿蜒线包括矩形波形、S形和Z形中的任意一种。
  5. 根据权利要求1至4中任一项所述的馈电结构,还包括所述功率分配器;所述功率分配器包括信号输入端、第一信号输出 端和第二信号输出端;其中,
    所述信号输入端用于接收具有一定功率的微波信号,所述第一信号输出端与所述时延支路连接,并且所述第二信号输出端与所述耦合支路连接。
  6. 根据权利要求1至4中任一项所述的馈电结构,还包括所述功率分配器;所述功率分配器包括信号输入端、信号匹配端、第一信号输出端和第二信号输出端;其中,
    所述信号输入端用于接收具有一定功率的微波信号,所述第一信号输出端与所述时延支路连接,并且所述第二信号输出端与所述耦合支路连接;以及
    所述信号匹配端用于通过其所引入的信号,调节所述第一信号输出端和所述第二信号输出端所输出的微波信号,使所述第一信号输出端和所述第二信号输出的微波信号具有一定的相位差。
  7. 根据权利要求6所述的馈电结构,其中,所述功率分配器包括3DB电桥、耦合器和正交混合网络中的任意一种。
  8. 根据权利要求5至7中任一项所述的馈电结构,其中,所述功率分配器、所述时延支路和所述耦合支路均设置在所述第一基底上。
  9. 根据权利要求1至7中任一项所述的馈电结构,其中,所述时延支路、所述耦合支路和所述参考电极构成微带线传输结构、带状线传输结构、共表面波导传输结构和基片集成波导传输结构中的任意一种。
  10. 根据权利要求1至9中任一项所述的馈电结构,还包括位于所述第一基板和所述第二基板之间的支撑组件,所述支撑组件用于维持所述第一基板和所述第二基板之间的距离。
  11. 根据权利要求1至10中任一项所述的馈电结构,其中,所述介质层包括空气。
  12. 一种微波射频器件,包括根据权利要求1至11中任一项所述的馈电结构。
  13. 根据权利要求12所述的微波射频器件,还包括移相结构,所述移相结构包括:
    彼此相对的第三基底和第四基底;
    设置在所述第三基底上的第一传输线;
    设置在所述第四基底靠近所述第一传输线一侧的第二传输线;
    设置在所述第一传输线和所述第二传输线之间的液晶层;以及
    设置在所述第三基底的远离所述第一传输线一侧上的接地电极。
  14. 根据权利要求13所述的微波射频器件,其中,所述第一传输线和所述第二传输线中的至少一个是微带线。
  15. 根据权利要求13或14所述的微波射频器件,其中,所述第一传输线和所述第二传输线中的每一个是梳状电极,并且所述接地电极是板状电极。
  16. 根据权利要求13至15中任一项所述的微波射频器件,其中,所述馈电结构的所述时延支路与所述移相结构的所述第一传输线连接,并且所述馈电结构的所述接收电极与所述移相结构的所述第二传输线连接。
  17. 根据权利要求13至16中任一项所述的微波射频器件, 其中,所述馈电结构的所述参考电极位于所述第一基底背离所述介质层的一侧,且与所述移相结构的所述接地电极连接。
  18. 根据权利要求13至17中任一项所述的微波射频器件,其中,所述液晶层包括正性液晶分子或负性液晶分子;
    每一个所述正性液晶分子的长轴方向与所述第三基底所在的平面之间的夹角大于0度小于等于45度;以及
    每一个所述负性液晶分子的长轴方向与所述第三基底所在的平面之间的夹角大于45度小于90度。
  19. 根据权利要求12至18中任一项所述的微波射频器件,其中,所述微波射频器件包括移相器或滤波器。
  20. 一种天线,包括根据权利要求12至19中任一项所述的微波射频器件。
PCT/CN2020/108821 2019-08-14 2020-08-13 馈电结构、微波射频器件及天线 WO2021027865A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20852132.8A EP4016733A4 (en) 2019-08-14 2020-08-13 POWER STRUCTURE, MICROWAVE RADIO FREQUENCY DEVICE AND ANTENNA
US17/280,873 US11949142B2 (en) 2019-08-14 2020-08-13 Feeding structure, microwave radio frequency device and antenna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910750841.7 2019-08-14
CN201910750841.7A CN112397893A (zh) 2019-08-14 2019-08-14 馈电结构、微波射频器件及天线

Publications (1)

Publication Number Publication Date
WO2021027865A1 true WO2021027865A1 (zh) 2021-02-18

Family

ID=74570533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108821 WO2021027865A1 (zh) 2019-08-14 2020-08-13 馈电结构、微波射频器件及天线

Country Status (4)

Country Link
US (1) US11949142B2 (zh)
EP (1) EP4016733A4 (zh)
CN (1) CN112397893A (zh)
WO (1) WO2021027865A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022178800A1 (zh) * 2021-02-26 2022-09-01 京东方科技集团股份有限公司 天线
CN115250641A (zh) * 2021-02-26 2022-10-28 京东方科技集团股份有限公司 移相器及天线
CN115693156B (zh) * 2021-07-29 2024-02-27 北京京东方技术开发有限公司 天线、天线阵列及通信系统
CN113690554B (zh) * 2021-08-24 2022-08-02 电子科技大学 基于矢量正交法的液晶移相器及调控方法
CN114006163A (zh) * 2021-11-22 2022-02-01 上海天马微电子有限公司 液晶天线及其制作方法
WO2023137690A1 (zh) * 2022-01-21 2023-07-27 京东方科技集团股份有限公司 天线及天线系统
CN116941136A (zh) * 2022-02-23 2023-10-24 京东方科技集团股份有限公司 相控阵天线
CN117136468A (zh) * 2022-03-28 2023-11-28 京东方科技集团股份有限公司 移相器及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170093363A1 (en) * 2015-09-24 2017-03-30 Google Inc. Phase Shifter
CN108808181A (zh) * 2018-07-20 2018-11-13 成都天马微电子有限公司 液晶移相器和天线
CN208654481U (zh) * 2018-08-10 2019-03-26 北京京东方传感技术有限公司 液晶移相器及液晶天线
CN110011038A (zh) * 2018-01-05 2019-07-12 京东方科技集团股份有限公司 相控阵天线、显示面板及显示装置
CN210628497U (zh) * 2019-08-14 2020-05-26 京东方科技集团股份有限公司 馈电结构、微波射频器件及天线

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4356462A (en) * 1980-11-19 1982-10-26 Rca Corporation Circuit for frequency scan antenna element
US6496147B1 (en) * 1998-12-14 2002-12-17 Matsushita Electric Industrial Co., Ltd. Active phased array antenna and antenna controller
US6278340B1 (en) * 1999-05-11 2001-08-21 Industrial Technology Research Institute Miniaturized broadband balun transformer having broadside coupled lines
JPWO2014083948A1 (ja) * 2012-11-27 2017-01-05 国立大学法人佐賀大学 アンテナ装置
CN105896082A (zh) * 2016-02-23 2016-08-24 电子科技大学 一种基于液晶材料的频率和方向图可重构天线
CN108615962B (zh) * 2018-07-18 2020-06-30 成都天马微电子有限公司 液晶移相器和天线
EP3609017A1 (en) * 2018-08-06 2020-02-12 ALCAN Systems GmbH Radio frequency phase shifting device
CN110824735A (zh) * 2018-08-10 2020-02-21 京东方科技集团股份有限公司 液晶移相器及液晶天线
CN109921190B (zh) * 2019-02-25 2020-06-30 北京京东方传感技术有限公司 信号调节器、天线装置和制造方法
CN113675551B (zh) * 2021-09-03 2023-07-04 上海天马微电子有限公司 液晶移相器和液晶天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170093363A1 (en) * 2015-09-24 2017-03-30 Google Inc. Phase Shifter
CN110011038A (zh) * 2018-01-05 2019-07-12 京东方科技集团股份有限公司 相控阵天线、显示面板及显示装置
CN108808181A (zh) * 2018-07-20 2018-11-13 成都天马微电子有限公司 液晶移相器和天线
CN208654481U (zh) * 2018-08-10 2019-03-26 北京京东方传感技术有限公司 液晶移相器及液晶天线
CN210628497U (zh) * 2019-08-14 2020-05-26 京东方科技集团股份有限公司 馈电结构、微波射频器件及天线

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4016733A4 *
YU XUE: "Microwave Characteristics Modeling of Liquid Crystal Material and Application of Design Method for Polarization Antenna", CHINESE MASTER’S THESES FULL-TEXT DATABASE, 1 June 2018 (2018-06-01), pages 1 - 70, XP055780930 *

Also Published As

Publication number Publication date
EP4016733A1 (en) 2022-06-22
EP4016733A4 (en) 2022-09-14
US11949142B2 (en) 2024-04-02
CN112397893A (zh) 2021-02-23
US20220006165A1 (en) 2022-01-06

Similar Documents

Publication Publication Date Title
WO2021027865A1 (zh) 馈电结构、微波射频器件及天线
WO2021037132A1 (zh) 馈电结构、微波射频器件及天线
WO2021027870A1 (zh) 移相器及天线
WO2021088663A1 (zh) 馈电结构、微波射频器件及天线
US11158916B2 (en) Phase shifter and liquid crystal antenna
JP7424977B2 (ja) 液晶移相器およびその操作方法、液晶アンテナ、通信機器
CN210628497U (zh) 馈电结构、微波射频器件及天线
CN209913001U (zh) 移相器及天线
WO2021189238A1 (zh) 移相器及天线
US11264684B2 (en) Liquid crystal phase shifter comprising a liquid crystal cell with first and second substrates separated by a partition plate having first and second microstrips on opposing surfaces of the plate
WO2020173176A1 (zh) 信号调节器、天线装置和制造方法
WO2021073500A1 (zh) 液晶移相器及天线
US11189920B2 (en) Control substrate, liquid crystal phase shifter and method of forming control substrate
WO2019223647A1 (zh) 一种移相器及其操作方法、天线和通信设备
WO2022061746A1 (zh) 巴伦组件、微波射频器件及天线
WO2023184078A1 (zh) 移相器及电子设备
WO2024000289A1 (zh) 一种移相器单元及移相器
WO2022111170A1 (zh) 天线及其制作、驱动方法、天线系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20852132

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020852132

Country of ref document: EP

Effective date: 20220314