WO2021027579A1 - 中心频率收敛趋势作用下的故障诊断方法 - Google Patents

中心频率收敛趋势作用下的故障诊断方法 Download PDF

Info

Publication number
WO2021027579A1
WO2021027579A1 PCT/CN2020/105689 CN2020105689W WO2021027579A1 WO 2021027579 A1 WO2021027579 A1 WO 2021027579A1 CN 2020105689 W CN2020105689 W CN 2020105689W WO 2021027579 A1 WO2021027579 A1 WO 2021027579A1
Authority
WO
WIPO (PCT)
Prior art keywords
center frequency
modal
decomposition
dynamic signal
fault
Prior art date
Application number
PCT/CN2020/105689
Other languages
English (en)
French (fr)
Inventor
江星星
沈长青
周建芹
宋冬淼
郭文军
杜贵府
王俊
石娟娟
黄伟国
朱忠奎
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Priority to US17/414,939 priority Critical patent/US11644391B2/en
Publication of WO2021027579A1 publication Critical patent/WO2021027579A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • G01M99/005Testing of complete machines, e.g. washing-machines or mobile phones
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/08Feature extraction

Definitions

  • the invention belongs to the technical field of mechanical weak fault diagnosis, and relates to a fault diagnosis method under the action of a central frequency convergence trend.
  • Rotating machinery and equipment have been widely used in industrial production, and the status of mechanical parts directly affects the operating status and safety status of machinery and equipment. When mechanical parts fail, they will produce periodic transient impulse response. How to effectively extract and accurately evaluate them is the key to bearing fault diagnosis.
  • the dynamic signal collected from the equipment site contains a lot of noise, and the weak fault characteristics of the signal are often submerged by the noise, which seriously affects the identification of the fault characteristic signal. Therefore, it is of practical significance to carry out transient feature extraction and discrimination of mechanical weak faults.
  • Variational modal decomposition method is a signal adaptive decomposition method based on variational model, which has strong anti-noise performance, and uses non-screening decomposition method to decompose signals to reduce transmission errors.
  • the embodiment of the present invention provides a fault diagnosis method under the action of the central frequency convergence trend.
  • the central frequency convergence trend-guided decomposition method is adopted to realize the intelligent decomposition of the original dynamic signal of the diagnostic target device, and overcome
  • the difficulty of the initial parameter setting of the traditional variational modal decomposition method can adaptively analyze the collected equipment dynamic signals, which reduces the difficulty for technicians to use the variational modal decomposition method to diagnose mechanical faults.
  • the present invention provides a fault diagnosis method under the effect of the center frequency convergence trend, which includes the following steps:
  • step (3) using the alternating direction multiplier method to solve the constraint model in the variational model:
  • x(t) is the dynamic signal
  • * represents the convolution operator
  • ⁇ (t) is the Dirichlet distribution function
  • the exponential adjustment term Used to shift the frequency spectrum of each component
  • the iterative decomposition process of the dynamic signal x(t) guided by the convergence trend of the center frequency is:
  • the corresponding modal component is output as the optimized mode m n , and the corresponding center frequency ⁇ n is the extracted optimal center frequency;
  • step (4) when searching for the fault-related modal m I from the obtained optimized modal ⁇ m 1 ...m n ...m N ⁇ , the optimization is performed by calculation It is determined by the Gini index value of the mode ⁇ m 1 ...m n ...m N ⁇ .
  • step (4) using the center frequency ⁇ I of the fault-related mode m I to guide parameter optimization, and extract the optimal target component containing the fault information
  • the process is:
  • is the step length of the change of the balance parameter ⁇
  • step (S52) Use the two sets of initial decomposition parameters set in step (S51) to decompose the original dynamic signal x(t) to obtain two sets of modal components Ur 1 and Ul 1 ;
  • the incremental balance parameter optimization solution further includes:
  • step (S62) using the step (S61) set by the parameter decomposition decompose the original dynamic signal x (t), the modal component Ur i, and calculates modal component Ur i Gini index value Gnir i;
  • further including the decreasing balance parameter optimization scheme includes:
  • step (S72) using the step (S71) set by the parameter decomposition decompose the original dynamic signal x (t), the modal components Ul i, and calculates modal components Ul i Gini index value Gnil i;
  • the fault diagnosis method under the effect of the central frequency convergence trend of the embodiment of the present invention based on the variational modal decomposition method, adopts the central frequency convergence trend-guided decomposition method to realize the intelligent decomposition of the original dynamic signal of the diagnostic target device.
  • the fault diagnosis method under the effect of the central frequency convergence trend of the embodiment of the present invention, based on the variational modal decomposition method, adopts the central frequency convergence trend-guided decomposition method to realize the intelligent decomposition of the original dynamic signal of the diagnostic target device.
  • Overcoming the difficulty of setting the initial parameters of traditional variational modal decomposition methods it can adaptively analyze the collected equipment dynamic signals, which reduces the difficulty for technicians to use variational modal decomposition methods to diagnose mechanical faults.
  • the fault diagnosis method under the effect of the central frequency convergence trend of the embodiment of the present invention adopts the decomposition method guided by the central frequency convergence trend based on the variational modal decomposition method, which can accelerate the convergence process of the decomposition algorithm while avoiding The problems of modal aliasing and false components caused by the preset number of improperly decomposed modal components in the existing decomposition methods are discussed.
  • the fault diagnosis method under the effect of the center frequency convergence trend of the embodiment of the present invention uses the center frequency to guide the adaptive optimization of the balance parameters, which can make the bandwidth of the final component match the bandwidth of the actual fault component to the maximum extent, and reduce the amount of calculation. .
  • Figure 1 is a flowchart of a fault diagnosis method in an embodiment of the present invention
  • FIG. 2 is a flow chart of the dynamic signal decomposition process guided by the center frequency convergence trend in an embodiment of the present invention
  • Fig. 3 is a flow chart of center frequency guide parameter optimization and extraction of the optimal target component containing fault information in an embodiment of the present invention
  • Figure 4 is a collection of waveform diagrams of a group of gearbox damage dynamic signals
  • Figure 5 is an intelligent decomposition of the four component waveforms of the dynamic signal of Figure 4 using the fault diagnosis method in the embodiment of the present invention
  • Figure 6 is a histogram of using the Gini index to judge the fault-related components
  • Fig. 7 is the envelope spectrum of the optimal target component containing fault information extracted by optimization of the center frequency guide parameter.
  • This embodiment provides a fault diagnosis method under the effect of the center frequency convergence trend guided by the center frequency convergence trend.
  • the method includes the following steps:
  • the dynamic signal x(t) decomposes the dynamic signal x(t) once by using a variational model with initial decomposition parameters to determine the convergence trend of the center frequency, and iteratively decompose the dynamic signal x( t), get the optimized mode ⁇ m 1 ...m n ...m N ⁇ and the corresponding center frequency ⁇ 1 ... ⁇ n ... ⁇ N ⁇ .
  • the signal analysis frequency band is half of the sampling frequency f s .
  • the alternate direction multiplier method is used to solve the constraint model in the variational model:
  • x(t) is the dynamic signal
  • * represents the convolution operator
  • ⁇ (t) is the Dirichlet distribution function
  • the exponential adjustment term Used to shift the frequency spectrum of each component
  • the corresponding modal component is output as the optimized mode m n , and the corresponding center frequency ⁇ n is the extracted optimal center frequency;
  • the parameter optimization is guided by the center frequency ⁇ I of the fault-related mode m I , and the optimal target component containing the fault information is extracted
  • the process is:
  • is the step length of the change of the balance parameter ⁇
  • step (S52) Use the two sets of initial decomposition parameters set in step (S51) to decompose the original dynamic signal x(t) to obtain two sets of modal components Ur 1 and Ul 1 ;
  • the above-mentioned incremental balance parameter optimization scheme includes,
  • step (S62) using the step (S61) set by the parameter decomposition decompose the original dynamic signal x (t), the modal component Ur i, and calculates modal component Ur i Gini index value Gnir i;
  • the above-mentioned decreasing balance parameter optimization scheme includes,
  • step (S72) using the step (S71) set by the parameter decomposition decompose the original dynamic signal x (t), the modal components Ul i, and calculates modal components Ul i Gini index value Gnil i;
  • the fault diagnosis method is used to diagnose the gearbox damage dynamic signal x(t) shown in Fig. 4, x(t) is decomposed to obtain the four modal components shown in Fig. 5, and then the Gini index is used
  • the indication of the fault related component is shown in Figure 6, and the second component can be obtained as the fault component.
  • the envelope spectrum of the optimal target component is shown in Fig. 7, from which the characteristic frequency of gear faults can be clearly observed as f g .
  • the fault diagnosis method in the technical solution of this embodiment has the ability to process weak mechanical fault signals, the extraction result has high precision, strong anti-interference ability, and good robustness.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

本发明公开了一种中心频率收敛趋势作用下的故障诊断方法,包括(1)采集旋转机械设备的动态信号x(t);(2)设置变分模型的初始分解参数;(3)使用设定初始分解参数的变分模型分解动态信号x(t),在中心频率收敛趋势引导下遍历信号分析频带迭代分解动态信号x(t),得到优化模态{m1...mn...mN}和相应的中心频率{ω1...ωn...ωN};(4)搜索故障相关模态mI,以故障相关模态mI的中心频率ωI引导参数优化,提取包含故障信息的最优目标分量 aa;(5)包络分析最优目标分量 aa,根据包络谱诊断旋转机械设备。本发明的故障诊断方法,采用中心频率收敛趋势引导的分解方式实现诊断目标设备原始动态信号的智能分解,能够对采集的设备动态信号自适应地分析,降低了技术人员使用变分模态分解方法进行机械故障诊断的难度。

Description

中心频率收敛趋势作用下的故障诊断方法 技术领域
本发明属于机械微弱故障诊断技术领域,涉及一种中心频率收敛趋势作用下的故障诊断方法。
背景技术
旋转机械设备在工业生产中得到了广泛的应用,机械零部件的状态直接影响到机械设备的运行状态及其安全状况。当机械零部件出现故障时,会产生周期性的瞬态冲击响应,如何对其进行有效提取和准确评估是轴承故障诊断的关键。但是,由于实际运行环境的复杂性,从设备现场采集的动态信号是包含大量噪声的,信号的微弱故障特征往往被噪声所淹没,从而严重影响了故障特征信号的识别。因此,开展机械微弱故障瞬态特征提取与判别具有实际意义。
目前已发展了许多机械故障诊断方法,例如时频域分析方法、经验模态分解、局部均值分解等传统微弱故障诊断方法。可是,这些传统方法因为其自身的局限性,如停止准则选取困难或抗噪性能较差等问题,导致其应用范围受限。变分模态分解方法是一种基于变分模型的信号自适应分解方法,具有较强的抗噪性,采用非筛选分解方式分解信号减少传递误差。近年来,逐渐有学者将变分模态分解方法引入到机械信号处理领域,发展出了基于变分模态分解和分类模型的结合的轴承故障诊断方法;利用变分模态分解方法在多级离心泵滚动轴承故障诊断中的应用;扩展了变分模态分解在结构系统识别中的适用性。但,目前利用变分模态分解方法处理机械信号时,很难预知设备原始动态信号中的实际中心频率、模态分量的个数以及很难完整提取出相应目标分量的最佳平衡参数。
发明内容
本发明实施例提供一种中心频率收敛趋势作用下的故障诊断方法,在变分模态分解方法的基础上,采用中心频率收敛趋势引导的分解方式实现诊断目标设备原始动态信号的智能分解,克服传统变分模态分解方法初始参数设置的难题,能够对采集的设备动态信号自适应地分析,降低了技术人员使用变分模态分解方法进行机械故障诊断的难度。
为了解决上述技术问题,本发明提供了一种中心频率收敛趋势作用下的故障诊断方法,包括以下步骤,
(1)以f s为采样频率采集诊断目标的动态信号x(t);
(2)设置变分模型的初始分解参数:初始中心频率ω 0为0、初始中心频率的增长步长Δω为100Hz、初始计步数z为1、平衡参数α为[1000,4000]和模态分量个数K为1;
(3)使用设定初始分解参数的变分模型对所述动态信号x(t)进行一次分解,判断中心频率的收敛趋势,在中心频率收敛趋势引导下遍历信号分析频带迭代分解动态信号x(t),得到优化模态{m 1...m n...m N}和相应的中心频率{ω 1...ω n...ω N};
(4)从获取的优化模态{m 1...m n...m N}中搜索故障相关模态m I,以故障相关模态m I的中心频率ω I引导参数优化,提取包含故障信息的最优目标分量
Figure PCTCN2020105689-appb-000001
(5)对提取的最优目标分量
Figure PCTCN2020105689-appb-000002
进行包络分析,根据其包络谱诊断所述旋转机械设备。
本发明一个较佳实施例中,进一步包括步骤(3)中,使用交替方向乘子法求解变分模型中的约束模型:
Figure PCTCN2020105689-appb-000003
式中,x(t)为动态信号,*表示卷积算子,
Figure PCTCN2020105689-appb-000004
表示对时间t求偏导数,δ(t)为狄利克雷分布函数,指数调节项
Figure PCTCN2020105689-appb-000005
用于平移各分量的频谱;
信号x(t)被分解为K个模态分量m k(k=1,2,3......K),每个模态分量m k都围绕其中心频率ω k
本发明一个较佳实施例中,进一步包括所述动态信号x(t)在中心频率收敛趋势引导下迭代分解过程为:
(S31)使用设定初始分解参数的变分模型对所述动态信号x(t)进行一次分解,得到更新后的中心频率ω 1
(S32)判断中心频率的收敛趋势e=ω 10
若收敛趋势e=ω 10为上升趋势,则输出相应的模态分量作为优化模态m n,相应的中心频率ω n为提取的最优中心频率;
若收敛趋势e=ω 10为下降趋势,则令ω 0=ω 0+zΔω,并同时判断是否遍历整个频带,若ω 0=(ω 0+zΔω)<f s/2,返回步骤(S31),否则停止迭代分解;
(S33)以提取的最优中心频率ω n更新初始中心频率ω 0,若新的中心频率ω 0<f s/2,返回步骤(S31),否则停止迭代分解。
本发明一个较佳实施例中,进一步包括步骤(4)中,从获取的优化模态{m 1...m n...m N}中搜索故障相关模态m I时,通过计算优化模态{m 1...m n...m N}的基尼指数值来确定。
本发明一个较佳实施例中,进一步包括步骤(4)中,以故障相关模态m I的中心频率ω I引导参数优化,提取包含故障信息的最优目标分量
Figure PCTCN2020105689-appb-000006
的过程为:
(S51)设置两组初始分解参数:平衡参数α=α 0+Δα、模态分量个数K=1、初始中心频率为ω I;平衡参数α=α 0-Δα、模态分量个数K=1、初始中心频率为ω I
其中,Δα为平衡参数α变化的步长;
(S52)分别使用步骤(S51)中设置的两组初始分解参数分解原始动态信号x(t),得到两组模态分量Ur 1、Ul 1
(S53)分别计算模态分量Ur 1、Ul 1的基尼指数值Gnir 1、Gnil 1
(S54)判断Gnir 1、Gnil 1的大小:
若Gnir 1>Gnil 1,执行递增平衡参数优化方案;
否则,执行递减平衡参数优化方案。
本发明一个较佳实施例中,进一步包括所述递增平衡参数优化方案包括,
(S61)设置分解参数:平衡参数α=α 0+iΔα(i=2),模态分量个数K=1,初始中心频率为ω I
(S62)使用步骤(S61)中设置的分解参数分解原始动态信号x(t),得到模态分量Ur i,并计算模态分量Ur i的基尼指数值Gnir i
(S63)判断Gnir i、Gnir i-1的大小,
若Gnir i>Gnir i-1,则令i=i+1,并返回步骤(S61);
否则,令
Figure PCTCN2020105689-appb-000007
本发明一个较佳实施例中,进一步包括所述递减平衡参数优化方案包括,
(S71)设置分解参数:平衡参数α=α 0-iΔα(i=2),模态分量个数K=1,初始中心频率为ω I
(S72)使用步骤(S71)中设置的分解参数分解原始动态信号x(t),得到模态分量Ul i,并计算模态分量Ul i的基尼指数值Gnil i
(S73)判断Gnil i、Gnil i-1的大小,
若Gnil i>Gnil i-1,则令i=i+1,并返回步骤(S71);
否则,令
Figure PCTCN2020105689-appb-000008
本发明的有益效果:
其一、本发明实施例的中心频率收敛趋势作用下的故障诊断方法,在变分模态分解方法的基础上,采用中心频率收敛趋势引导的分解方式实现诊断目标设备原始动态信号的智能分解,克服传统变分模态分解方法初始参数设置的难题,能够对采集的设备动态信号自适应地分析,降低了技术人员使用变分模态分解方法进行机械故障诊断的难度。
其二、本发明实施例的中心频率收敛趋势作用下的故障诊断方法,在变分模态分解方法的基础上,采用中心频率收敛趋势引导的分解方式,能够加速分解算法的收敛过程,同时避免了现有分解方法中因预设的不恰当分解模态分量个数而导致的模态混叠和虚假分量问题。
其三、本发明实施例的中心频率收敛趋势作用下的故障诊断方法,使用中心频率引导平衡参数自适应优化,可以使得最终得到分量的带宽最大限度的匹配实际故障分量的带宽,同时减少计算量。
附图说明
图1是本发明实施例中故障诊断方法的流程图;
图2是本发明实施例中中心频率收敛趋势引导动态信号分解过程的流程图;
图3是本发明实施例中中心频率引导参数优化提取包含故障信息的最优目标分量的流程图;
图4是采集的一组齿轮箱损伤动态信号波形图;
图5是使用本发明实施例中故障诊断方法智能分解图4动态信号的四个分量波形图;
图6是利用基尼指数判断故障相关分量的直方图;
图7是中心频率引导参数优化提取包含故障信息的最优目标分量的包络谱。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
实施例
本实施例提供一种中心频率收敛趋势引导下的中心频率收敛趋势作用下的故障诊断方法,参照图1所示,该方法包括以下步骤,
(1)借助动态信号传感器以f s为采样频率采集一组齿轮箱的损伤动态信号x(t),其波形图参照图4所示。
(2)设置变分模型的初始分解参数:设置初始中心频率ω 0为0、初始中心频率的增长步长Δω为100Hz、初始计步数z为1、平衡参数α为[1000,4000]、模态分量个数K为1。
(3)使用设定初始分解参数的变分模型对所述动态信号x(t)进行一次分 解,判断中心频率的收敛趋势,在中心频率收敛趋势引导下遍历信号分析频带迭代分解动态信号x(t),得到优化模态{m 1...m n...m N}和相应的中心频率{ω 1...ω n...ω N}。其中,信号分析频带为采样频率f s的一半。
具体的,使用交替方向乘子法求解变分模型中的约束模型:
Figure PCTCN2020105689-appb-000009
式中,x(t)为动态信号,*表示卷积算子,
Figure PCTCN2020105689-appb-000010
表示对时间t求偏导数,δ(t)为狄利克雷分布函数,指数调节项
Figure PCTCN2020105689-appb-000011
用于平移各分量的频谱;
信号x(t)被分解为K个模态分量m k(k=1,2,3......K),每个模态分量m k都围绕其中心频率ω k
参照图2所示,动态信号x(t)在中心频率收敛趋势引导下迭代分解过程为:
(S31)使用步骤(2)中设定的初始分解参数的变分模型对动态信号x(t)进行一次分解,得到更新后的中心频率ω 1
(S32)判断中心频率的收敛趋势e=ω 10
若收敛趋势e=ω 10为上升趋势,则输出相应的模态分量作为优化模态m n,相应的中心频率ω n为提取的最优中心频率;
若收敛趋势e=ω 10为下降趋势,则令ω 0=ω 0+zΔω,并同时判断是否遍历整个频带,若ω 0=(ω 0+zΔω)<f s/2,返回步骤(S31),否则停止迭代分解;
(S33)以提取的最优中心频率ω n更新初始中心频率ω 0,若新的中心频率ω 0<f s/2,返回步骤(S31),否则停止迭代分解。
(4)从获取的优化模态{m 1...m n...m N}中搜索故障相关模态m I,以故障相关模 态m I的中心频率ω I引导参数优化,提取包含故障信息的最优目标分量
Figure PCTCN2020105689-appb-000012
具体的,参照图3所示,以故障相关模态m I的中心频率ω I引导参数优化,提取包含故障信息的最优目标分量
Figure PCTCN2020105689-appb-000013
的过程为:
(S51)设置两组初始分解参数:平衡参数α=α 0+Δα、模态分量个数K=1、初始中心频率为ω I;平衡参数α=α 0-Δα、模态分量个数K=1、初始中心频率为ω I
其中,Δα为平衡参数α变化的步长;
(S52)分别使用步骤(S51)中设置的两组初始分解参数分解原始动态信号x(t),得到两组模态分量Ur 1、Ul 1
(S53)分别计算模态分量Ur 1、Ul 1的基尼指数值Gnir 1、Gnil 1
(S54)判断Gnir 1、Gnil 1的大小:
若Gnir 1>Gnil 1,执行递增平衡参数优化方案;
否则,执行递减平衡参数优化方案。
上述递增平衡参数优化方案包括,
(S61)设置分解参数:平衡参数α=α 0+iΔα(i=2),模态分量个数K=1,初始中心频率为ω I
(S62)使用步骤(S61)中设置的分解参数分解原始动态信号x(t),得到模态分量Ur i,并计算模态分量Ur i的基尼指数值Gnir i
(S63)判断Gnir i、Gnir i-1的大小,
若Gnir i>Gnir i-1,则令i=i+1,并返回步骤(S61);
否则,令
Figure PCTCN2020105689-appb-000014
上述递减平衡参数优化方案包括,
(S71)设置分解参数:平衡参数α=α 0-iΔα(i=2),模态分量个数K=1,初始中心频率为ω I
(S72)使用步骤(S71)中设置的分解参数分解原始动态信号x(t),得到模态分量Ul i,并计算模态分量Ul i的基尼指数值Gnil i
(S73)判断Gnil i、Gnil i-1的大小,
若Gnil i>Gnil i-1,则令i=i+1,并返回步骤(S71);
否则,令
Figure PCTCN2020105689-appb-000015
(5)对提取的最优目标分量
Figure PCTCN2020105689-appb-000016
进行包络分析,根据其包络谱诊断旋转机械设备的健康状态。
本实施例技术方案中,使用故障诊断方法诊断图4所示的齿轮箱损伤动态信号x(t),x(t)被分解得到参照图5所示的四个模态分量,然后利用基尼指数指示得到故障相关分量如图6所示,可以得到第二分量为故障分量。进一步利用中心频率引导参数优化提取包含故障信息的最优目标分量,最优目标分量的包络谱如图7所示,从中可以清晰地观察齿轮故障特征频率为f g
本实施例技术方案中的故障诊断方法具有机械微弱故障信号处理能力,提取结果精度高,抗干扰能力强、鲁棒性好。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (7)

  1. 一种中心频率收敛趋势作用下的故障诊断方法,其特征在于:包括以下步骤,
    (1)以f s为采样频率采集诊断目标的动态信号x(t);
    (2)设置变分模型的初始分解参数:初始中心频率ω 0为0、初始中心频率的增长步长Δω为100Hz、初始计步数z为1、平衡参数α为[1000,4000]和模态分量个数K为1;
    (3)使用设定初始分解参数的变分模型对所述动态信号x(t)进行一次分解,判断中心频率的收敛趋势,在中心频率收敛趋势引导下遍历信号分析频带迭代分解动态信号x(t),得到优化模态{m 1...m n...m N}和相应的中心频率{ω 1...ω n...ω N};
    (4)从获取的优化模态{m 1...m n...m N}中搜索故障相关模态m I,以故障相关模态m I的中心频率ω I引导参数优化,提取包含故障信息的最优目标分量
    Figure PCTCN2020105689-appb-100001
    (5)对提取的最优目标分量
    Figure PCTCN2020105689-appb-100002
    进行包络分析,根据其包络谱诊断所述旋转机械设备。
  2. 如权利要求1所述的中心频率收敛趋势作用下的故障诊断方法,其特征在于:步骤(3)中,使用交替方向乘子法求解变分模型中的约束模型:
    Figure PCTCN2020105689-appb-100003
    式中,x(t)为动态信号,*表示卷积算子,
    Figure PCTCN2020105689-appb-100004
    表示对时间t求偏导数,δ(t)为狄利克雷分布函数,指数调节项
    Figure PCTCN2020105689-appb-100005
    用于平移各分量的频谱;
    信号x(t)被分解为K个模态分量m k(k=1,2,3......K),每个模态分量m k都围绕其中心频率ω k
  3. 如权利要求1所述的中心频率收敛趋势作用下的故障诊断方法,其特征在于:所述动态信号x(t)在中心频率收敛趋势引导下迭代分解过程为:
    (S31)使用设定初始分解参数的变分模型对所述动态信号x(t)进行一次分解,得到更新后的中心频率ω 1
    (S32)判断中心频率的收敛趋势e=ω 10
    若收敛趋势e=ω 10为上升趋势,则输出相应的模态分量作为优化模态m n,相应的中心频率ω n为提取的最优中心频率;
    若收敛趋势e=ω 10为下降趋势,则令ω 0=ω 0+zΔω,并同时判断是否遍历整个频带,若ω 0=(ω 0+zΔω)<f s/2,返回步骤(S31),否则停止迭代分解;
    (S33)以提取的最优中心频率ω n更新初始中心频率ω 0,若新的中心频率ω 0<f s/2,返回步骤(S31),否则停止迭代分解。
  4. 如权利要求1所述的中心频率收敛趋势作用下的故障诊断方法,其特征在于:步骤(4)中,从获取的优化模态{m 1...m n...m N}中搜索故障相关模态m I时,通过计算优化模态{m 1...m n...m N}的基尼指数值来确定。
  5. 如权利要求4所述的中心频率收敛趋势作用下的故障诊断方法,其特征在于:步骤(4)中,以故障相关模态m I的中心频率ω I引导参数优化,提取包含故障信息的最优目标分量
    Figure PCTCN2020105689-appb-100006
    的过程为:
    (S51)设置两组初始分解参数:平衡参数α=α 0+Δα、模态分量个数K=1、初始中心频率为ω I;平衡参数α=α 0-Δα、模态分量个数K=1、初始中心频率为 ω I
    其中,Δα为平衡参数α变化的步长;
    (S52)分别使用步骤(S51)中设置的两组初始分解参数分解原始动态信号x(t),得到两组模态分量Ur 1、Ul 1
    (S53)分别计算模态分量Ur 1、Ul 1的基尼指数值Gnir 1、Gnil 1
    (S54)判断Gnir 1、Gnil 1的大小:
    若Gnir 1>Gnil 1,执行递增平衡参数优化方案;
    否则,执行递减平衡参数优化方案。
  6. 如权利要求5所述的中心频率收敛趋势作用下的故障诊断方法,其特征在于:所述递增平衡参数优化方案包括,
    (S61)设置分解参数:平衡参数α=α 0+iΔα(i=2),模态分量个数K=1,初始中心频率为ω I
    (S62)使用步骤(S61)中设置的分解参数分解原始动态信号x(t),得到模态分量Ur i,并计算模态分量Ur i的基尼指数值Gnir i
    (S63)判断Gnir i、Gnir i-1的大小,
    若Gnir i>Gnir i-1,则令i=i+1,并返回步骤(S61);
    否则,令
    Figure PCTCN2020105689-appb-100007
  7. 如权利要求5所述的中心频率收敛趋势作用下的故障诊断方法,其特征在于:所述递减平衡参数优化方案包括,
    (S71)设置分解参数:平衡参数α=α 0-iΔα(i=2),模态分量个数K=1,初 始中心频率为ω I
    (S72)使用步骤(S71)中设置的分解参数分解原始动态信号x(t),得到模态分量Ul i,并计算模态分量Ul i的基尼指数值Gnil i
    (S73)判断Gnil i、Gnil i-1的大小,
    若Gnil i>Gnil i-1,则令i=i+1,并返回步骤(S71);
    否则,令
    Figure PCTCN2020105689-appb-100008
PCT/CN2020/105689 2019-08-14 2020-07-30 中心频率收敛趋势作用下的故障诊断方法 WO2021027579A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/414,939 US11644391B2 (en) 2019-08-14 2020-07-30 Fault diagnosis method under convergence trend of center frequency

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910750064.6A CN110427916B (zh) 2019-08-14 2019-08-14 中心频率收敛趋势作用下的故障诊断方法
CN201910750064.6 2019-08-14

Publications (1)

Publication Number Publication Date
WO2021027579A1 true WO2021027579A1 (zh) 2021-02-18

Family

ID=68416277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/105689 WO2021027579A1 (zh) 2019-08-14 2020-07-30 中心频率收敛趋势作用下的故障诊断方法

Country Status (3)

Country Link
US (1) US11644391B2 (zh)
CN (1) CN110427916B (zh)
WO (1) WO2021027579A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113361205A (zh) * 2021-06-23 2021-09-07 合肥工业大学 基于遗传算法和ceemd的轴承振动信号故障诊断优化设计方法
CN114742111A (zh) * 2022-05-24 2022-07-12 南京林业大学 基于参数自适应特征模态分解故障诊断方法和系统

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110427916B (zh) * 2019-08-14 2020-05-01 苏州大学 中心频率收敛趋势作用下的故障诊断方法
CN112367063B (zh) * 2020-11-13 2022-02-01 苏州大学 自适应中心频率模式分解方法及系统
CN113625164A (zh) * 2021-08-02 2021-11-09 南京航空航天大学 航空发电机故障特征提取方法、系统、介质及计算设备
CN113702038B (zh) * 2021-08-02 2022-08-02 新黎明科技股份有限公司 防爆电机轴承故障诊断方法及系统
CN114216676B (zh) * 2021-11-30 2024-06-25 上海海事大学 一种时变工况下无转速计的行星齿轮箱复合故障诊断方法
CN114742097B (zh) * 2022-03-23 2023-05-23 大连理工大学 一种基于轴承振动信号自动确定变分模态分解参数的优化方法
CN115434872A (zh) * 2022-08-11 2022-12-06 兰州理工大学 一种基于avmd与改进rssd的风电机组齿轮箱复合故障诊断方法
CN116881676B (zh) * 2023-09-08 2023-11-21 昆明理工大学 一种露天坑涌水量的预测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7864484B2 (en) * 2008-05-30 2011-01-04 Hitachi Global Storage Technologies, Netherlands, B.V. Hard-disk drive
CN108152025A (zh) * 2017-12-19 2018-06-12 苏州大学 自适应变分模式分解的机械微弱故障诊断方法
CN109613399A (zh) * 2018-12-13 2019-04-12 西安理工大学 一种基于vmd能量相对熵的线路故障选线方法
CN110427916A (zh) * 2019-08-14 2019-11-08 苏州大学 中心频率收敛趋势作用下的故障诊断方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108152020A (zh) * 2017-09-19 2018-06-12 北京西门子西伯乐斯电子有限公司 直行程执行器的测试装置
CN108387373A (zh) * 2017-12-06 2018-08-10 上海电力学院 基于相关系数改进变分模态分解的滚动轴承故障诊断方法
CN107944199B (zh) * 2017-12-22 2020-12-01 浙江工业大学 一种基于频谱趋势和变分模态分解的齿轮箱故障识别方法
CN109282985A (zh) * 2018-08-16 2019-01-29 昆明理工大学 一种基于VMD和Wigner-Ville的高压隔膜泵单向阀故障诊断方法
CN109100146A (zh) * 2018-08-29 2018-12-28 北京信息科技大学 用于检测电机轴承故障的方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7864484B2 (en) * 2008-05-30 2011-01-04 Hitachi Global Storage Technologies, Netherlands, B.V. Hard-disk drive
CN108152025A (zh) * 2017-12-19 2018-06-12 苏州大学 自适应变分模式分解的机械微弱故障诊断方法
CN109613399A (zh) * 2018-12-13 2019-04-12 西安理工大学 一种基于vmd能量相对熵的线路故障选线方法
CN110427916A (zh) * 2019-08-14 2019-11-08 苏州大学 中心频率收敛趋势作用下的故障诊断方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIANG XINGXING, CHANGQING SHEN, JUANJUAN SHI, ZHONGKUI ZHU: "Initial center frequency-guided VMD for fault diagnosis of rotating machines", JOURNAL OF SOUND AND VIBRATION, pages 36 - 55, XP055780539 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113361205A (zh) * 2021-06-23 2021-09-07 合肥工业大学 基于遗传算法和ceemd的轴承振动信号故障诊断优化设计方法
CN114742111A (zh) * 2022-05-24 2022-07-12 南京林业大学 基于参数自适应特征模态分解故障诊断方法和系统
CN114742111B (zh) * 2022-05-24 2023-04-07 南京林业大学 基于参数自适应特征模态分解故障诊断方法和系统

Also Published As

Publication number Publication date
US20220050024A1 (en) 2022-02-17
US11644391B2 (en) 2023-05-09
CN110427916A (zh) 2019-11-08
CN110427916B (zh) 2020-05-01

Similar Documents

Publication Publication Date Title
WO2021027579A1 (zh) 中心频率收敛趋势作用下的故障诊断方法
WO2023035869A1 (zh) 一种训练齿轮箱故障诊断模型方法、齿轮箱故障诊断方法
US11630034B2 (en) Method for diagnosing and predicting operation conditions of large-scale equipment based on feature fusion and conversion
CN110135492B (zh) 基于多高斯模型的设备故障诊断与异常检测方法及系统
CN109668733B (zh) 变分非线性模式分解变转速轴承故障诊断方法
CN104048825B (zh) 一种多传感器融合的风电机组齿轮箱故障定位方法
CN109374293B (zh) 一种齿轮故障诊断方法
CN111504645B (zh) 一种基于频域多点峭度的滚动轴承故障诊断方法
CN103034170B (zh) 一种基于区间的数控机床性能预测方法
CN107255563A (zh) 实现齿轮箱混合故障信号盲源分离方法
CN108444696A (zh) 一种齿轮箱故障分析方法
CN111428386B (zh) 基于复杂网络的电梯曳引机转子故障诊断信息融合方法
CN107657110A (zh) 大型风力机叶片的疲劳损伤评价方法
CN111077386A (zh) 一种电气设备早期故障信号降噪方法
CN116432071A (zh) 一种滚动轴承剩余寿命预测方法
CN112686279B (zh) 一种基于k均值聚类和证据融合的齿轮箱故障诊断方法
CN114781466B (zh) 基于旋转机械振动信号谐波基频的故障诊断方法及系统
CN109580218B (zh) 一种基于似然学习机的风机齿轮箱状态识别方法
CN107727392B (zh) 基于信号检测和roc分析的状态指数评估和优化方法
Zhang et al. A novel hybrid compound fault pattern identification method for gearbox based on NIC, MFDFA and WOASVM
WO2023029382A1 (zh) 一种强鲁棒的信号早期退化特征提取及设备运行状态监测方法
CN115310497A (zh) 用于数控机床轴承的异常识别方法
Duan et al. A novel adaptive fault diagnosis method for wind power gearbox
CN114417514A (zh) 一种风电机组齿轮箱故障诊断系统、方法、计算机设备、存储介质
CN114184375A (zh) 齿轮箱常见故障智能诊断方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20852486

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20852486

Country of ref document: EP

Kind code of ref document: A1