WO2021027560A1 - 一种振动电机 - Google Patents
一种振动电机 Download PDFInfo
- Publication number
- WO2021027560A1 WO2021027560A1 PCT/CN2020/105180 CN2020105180W WO2021027560A1 WO 2021027560 A1 WO2021027560 A1 WO 2021027560A1 CN 2020105180 W CN2020105180 W CN 2020105180W WO 2021027560 A1 WO2021027560 A1 WO 2021027560A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- shaft
- motor
- spiral
- vibration motor
- eccentric block
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B06—GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
- B06B—METHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
- B06B1/00—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
- B06B1/10—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of mechanical energy
- B06B1/16—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of mechanical energy operating with systems involving rotary unbalanced masses
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/06—Means for converting reciprocating motion into rotary motion or vice versa
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/06—Means for converting reciprocating motion into rotary motion or vice versa
- H02K7/075—Means for converting reciprocating motion into rotary motion or vice versa using crankshafts or eccentrics
Definitions
- the invention belongs to the technical field of vibration devices, and specifically relates to a vibration motor.
- the vibration motor is an excitation source that combines a power source and a vibration source.
- the vibration motor is equipped with a set of adjustable eccentric blocks at both ends of the rotor shaft, and the excitation force is obtained by the centrifugal force generated by the high-speed rotation of the shaft and the eccentric block.
- Vibration motors are the excitation source of all kinds of vibration machinery. They are widely used in vibrating feeders and vibrating conveyors in electric power, building materials, grain, coal, mining, metallurgy, chemical, light industry, casting, railway, cement, ports and other industries. , Vibrating dryer, vibrating concentrator, vibrating shake-out machine, vibrating section sub-machine and silo vibration anti-clogging machine, etc.
- the present invention provides a vibration motor with adjustable excitation force at any time.
- a vibration motor comprising a motor (1), the right shaft of the motor shaft (3) of the motor (1) is fixedly connected to the right eccentric block (2) in the circumferential direction, and the motor shaft (3) of the motor (1) )
- the left shaft is fixedly connected to the left eccentric block (5) in the circumferential direction
- the left shaft end of the motor shaft (3) of the motor (1) is provided with a spiral mandrel (13), and the spiral mandrel (13) and
- the left shaft end of the motor shaft (3) is fixedly connected in the circumferential direction and movably connected in the axial direction
- the end surface of the left eccentric block (5) is fixedly installed with a screw cover (14), and the screw mandrel (13) It is connected with the screw cap (14) through a spiral groove and a boss structure.
- the screw mandrel (13) is moved axially to the left or right to drive the screw cover (14) to rotate axially relative to the motor shaft (3) to drive the
- the left eccentric block (5) axially rotates relative to the motor shaft (3), so that the angle between the right eccentric block (2) and the left eccentric block (5) changes in the circumferential direction, which realizes the adjustment of eccentricity and excitation The purpose of vibration.
- a further improvement is that the right eccentric block (2) is connected to the right motor shaft of the motor (1) through a flat key (4), so that the right eccentric block (2) and the motor (1) can be connected )
- the right side shaft end of the motor shaft (3) is fixedly connected in the circumferential direction.
- the left eccentric block (5) and the left shaft of the motor shaft (3) of the motor (1) are connected by a first bearing (6), and the inner ring of the first bearing (6) is connected to the The outer shaft surface of the left shaft of the motor shaft (3) is fixedly connected, and the outer ring of the first bearing (6) is fixedly connected with the inner hole surface of the left eccentric block (5), which can realize the left eccentric block (5).
- an elastic retaining ring (15) is arranged on the left side of the first bearing (6), and a spacer (7) is arranged on the right side of the first bearing (6) for positioning.
- the spiral mandrel (13) and the left shaft end of the motor shaft (3) can be fixedly connected in the circumferential direction in a manner that the outer shaft surface of the right end of the spiral mandrel (13) is axially provided with a first straight line Groove (132), the left shaft end of the motor shaft (3) is provided with a shaft inner hole, and the inner surface of the shaft inner hole is provided with a first linear convex that is matched and installed with the first linear groove (132) Taiwan (31).
- the outer shaft surface of the right end of the spiral mandrel (13) is axially provided with a second linear boss
- the left shaft end of the motor shaft (3) is provided with a shaft inner hole
- the inner surface of the shaft inner hole is provided with the The second linear boss cooperates with the second linear groove installed.
- the first specific manner in which the spiral mandrel (13) and the screw cap (14) are connected by a spiral groove and a boss structure is that the first outer shaft surface of the middle section of the spiral mandrel (13) is axially arranged Spiral groove (131), the screw cap (14) is provided with an end cap inner hole, and the inner surface of the end cap inner hole is provided with a first spiral boss (141) cooperating with the first spiral groove (131) ).
- the second specific method is: a second spiral boss is axially provided on the outer shaft surface of the middle section of the spiral mandrel (13), the spiral cover (14) is provided with an end cover inner hole, and the inner surface of the end cover inner hole is provided A second spiral groove fitted with the second spiral boss.
- a further solution is to provide a servo linear motion system (8) at the left end of the spiral mandrel (13), the servo linear motion system (8) of the servo linear motion system (8)
- the actuator (9) is fixedly connected with the spiral mandrel (13) in the axial direction and movably connected in the circumferential direction.
- the left end of the spiral core shaft (13) and the inner hole of the servo linear actuator (9) are connected by a second bearing (11), and the inner ring of the second bearing (11) is connected to the The left end of the spiral mandrel (13) is fixedly connected, and the outer ring of the second bearing (11) is fixedly connected with the servo linear actuator (9).
- This structure enables the servo linear actuator (9) to act synchronously with the spiral mandrel (13) in the axial direction, but does not rotate with the spiral mandrel (13) in the circumferential direction, which prevents the motor (1) from turning The rotation is transmitted to the servo linear actuator (9) through the spiral mandrel (13).
- the inner ring of the second bearing (11) is fixedly connected with the left end of the spiral mandrel (13) through a round nut (10).
- the fixed connection between the outer ring of the second bearing (11) and the servo linear actuator (9) may be as follows: the end of the servo linear actuator (9) is provided with a terminal inner hole, and the inner surface of the terminal inner hole It is fixedly connected with the outer ring of the second bearing (11). It may also be: a bearing outer fixing seat (12) is provided, and the end of the servo linear actuator (9) is fixedly connected to the second bearing (11) outer fixing seat (12) using bolts or other fixing parts.
- the vibration motor may also be provided with a fixing frame (16), and the fixing frame (16) is fixedly connected to the housing of the motor (1),
- the servo linear motion system (8) is fixedly installed on the fixed frame (16).
- the servo linear motion system (8) controls the axial position of the servo linear actuator (9) and locks it at any position within the stroke range.
- the servo linear motion system (8) can be a hydraulic cylinder, an air cylinder or a servo linear motor, and correspondingly, the servo linear actuator (9) is a hydraulic rod, a cylinder rod or a screw.
- the centrifugal force calculation formula of the right eccentric block (2) and the left eccentric block (5) is as follows:
- m is the mass of the rotating part
- e is the diameter of the center of mass
- ⁇ is the angular velocity of rotation
- m1 is the mass of the left eccentric block (5)
- e1 is the diameter of the left eccentric block (5)
- m2 is the right eccentric block ( 2)
- the mass, e2 is the centroid diameter of the right eccentric block (2)
- ⁇ is the angular velocity of the rotation of the left eccentric block (5) and the right eccentric block (2).
- the working process is: start the motor (1), the motor shaft (3) rotates, and drive the right eccentric block (2) to rotate synchronously; because the screw mandrel (13) is locked in axial position, the motor shaft (3) The rotation drives the spiral mandrel (13) to rotate synchronously, and drives the left eccentric block (5) to rotate synchronously.
- the entire vibrating motor controls the servo linear motion system (8) under static or arbitrary speed to make its servo linear actuator (9) move in the axial direction, and the servo linear actuator (9) drives the spiral mandrel (13) ) Moves to the left or right in the axial direction, under the action of the spiral groove and boss structure between the spiral mandrel (13) and the screw cap (14) and the left eccentric block (5) ,
- the left eccentric block (5) and the motor shaft (3) and the right eccentric block (2) are relatively rotated in the circumferential direction, that is, the left eccentric block (5) and the right eccentric block (2) are adjusted )
- the vibration motor provided by the present invention can adjust the eccentricity and the excitation force in real time during the working process, and the adjustment process does not require any state conditions.
- the angle between the eccentric blocks on both sides of the motor can be adjusted when the vibration motor is stationary or at any speed to achieve the purpose of adjusting the excitation force of the vibration motor.
- the excitation force can be steplessly adjusted from 0 to the maximum. It has the following technical effects:
- the present invention can adjust the eccentricity at any rotating speed when the vibration motor is working, that is, adjust the excitation force.
- the vibration motor is adjusted to the minimum eccentricity when starting, and the eccentricity is adjusted to the set value after the startup reaches the set speed, which effectively protects the electrical components and the motor and avoids damage due to excessive current.
- the excitation force can be adjusted to quickly pass the resonance point of the equipment to effectively protect the equipment.
- Figure 1 is a schematic diagram of the structure of the vibration motor of the present invention.
- Figure 2 is a schematic diagram of the exploded structure of the vibration motor of the present invention.
- Figure 3 is a schematic diagram of the spiral mandrel structure
- FIG. 4 is a schematic diagram of the structure of the vibration motor of the present invention.
- Figure 5 is a schematic diagram of the positional relationship of the vibration motor when the excitation force is maximum.
- a vibration motor includes a motor 1.
- the right shaft of the motor shaft 3 of the motor 1 is fixedly connected to the right eccentric block 2 through a flat key 4, and the left shaft of the motor shaft 3 of the motor 1 is on the circumference.
- the left eccentric block 5 is fixedly connected in the direction, the left side of the motor shaft 3 of the motor 1 is provided with a spiral mandrel 13, and the spiral mandrel 13 is fixedly connected to the left side of the motor shaft 3 in the circumferential direction.
- the screw cap 14 is fixedly installed on the end surface of the left eccentric block 5, and the screw mandrel 13 and the screw cap 14 are connected by a spiral groove and a boss structure.
- the left eccentric block 5 is connected to the left side of the motor shaft 3 of the motor 1 through a first bearing 6.
- the inner ring of the first bearing 6 is fixedly connected to the outer shaft surface of the motor shaft 3.
- the first bearing 6 The outer ring is fixedly connected with the inner hole surface of the left eccentric block 5, which can realize the movable connection between the left eccentric block 5 and the left side of the motor shaft 3 of the motor 1 in the circumferential direction.
- an elastic retaining ring 15 is provided on the left side of the first bearing 6, and a spacer 7 is provided on the left side of the first bearing 6 for positioning.
- the spiral mandrel 13 is fixedly connected to the left shaft end of the motor shaft 3 in the circumferential direction: the outer shaft surface of the right end of the spiral mandrel 13 is axially arranged first
- the linear groove 132 is provided with a shaft inner hole at the left end of the motor shaft 3, and the inner surface of the shaft inner hole is provided with a first linear boss 31 that cooperates with the first linear groove 132.
- a first spiral groove 131 is axially provided on the outer axial surface of the middle section of the spiral mandrel 13, and the screw cap 14 is provided with an inner hole of an end cover, and the inner surface of the inner hole of the end cover is provided with a first spiral boss 141 that is installed in cooperation with the first spiral groove 131.
- a servo linear motion system 8 is provided at the left end of the spiral mandrel 13, and the servo linear actuator 9 axis of the servo linear motion system 8 It is fixedly connected with the spiral mandrel 13 and movably connected in the circumferential direction.
- the specific connection method is: the left end of the spiral mandrel 13 and the inner hole of the servo linear actuator 9 are connected through a second bearing 11, and the inner ring of the second bearing 11 is connected to the left end of the spiral mandrel 13
- the round nut 10 is fixedly connected, and the outer ring of the second bearing 11 is fixedly connected to the servo linear actuator 9.
- This structure enables the servo linear actuator 9 to act synchronously with the spiral mandrel 13 in the axial direction, but does not rotate with the spiral mandrel 13 in the circumferential direction, which prevents the motor 1 from transmitting the rotation to the spiral mandrel 13 Servo linear actuator 9.
- the vibration motor is also provided with a fixing frame 16, which is fixedly connected to the housing of the motor 1.
- the servo linear motion system 8 is fixedly installed on the fixed frame 16.
- the servo linear motion system 8 controls the axial position of the servo linear actuator 9 and locks it at any position within the stroke range.
- the servo linear motion system 8 is a servo linear motor, and the servo linear actuator 9 is a screw.
- the centrifugal force calculation formula of the right eccentric block 2 and the left eccentric block 5 is as follows:
- m is the mass of the rotating part
- e is the diameter of the center of mass
- ⁇ is the angular velocity of rotation
- m1 is the mass of the left eccentric mass 5
- e1 is the mass of the left eccentric mass 5
- m2 is the mass of the right eccentric mass 2
- e2 Is the centroid radial of the right eccentric block 2
- ⁇ is the angular velocity of the rotation of the left eccentric block 5 and the right eccentric block 2.
- the motor shaft 3 rotates, driving the right eccentric block 2 to rotate synchronously; since the axial position of the screw mandrel 13 is locked, the rotation of the motor shaft 3 drives the screw mandrel 13 to rotate synchronously, driving The left eccentric block 5 rotates synchronously.
- the entire vibrating motor controls the servo linear motion system 8 to make its servo linear actuator 9 move in the axial direction under static or arbitrary speed.
- the servo linear actuator 9 drives the spiral mandrel 13 to the left or to the left in the axial direction.
- the spiral mandrel 13 is fixedly connected to the shaft end of the left motor shaft 3 in the circumferential direction: the outer shaft surface of the right end of the spiral mandrel 13 is axially arranged
- the left end of the motor shaft 3 is provided with a shaft inner hole, and the inner surface of the shaft inner hole is provided with a second linear groove that cooperates with the second linear boss.
- the difference is that the specific way in which the spiral mandrel 13 and the screw cap 14 are connected by the spiral groove and the boss structure is: the outer axis of the middle section of the spiral mandrel 13 is axially arranged
- the second spiral boss, the screw cover 14 is provided with an end cover inner hole, and the inner surface of the end cover inner hole is provided with a second spiral groove that is matched and installed with the second spiral boss.
- the difference is that the outer ring of the second bearing 11 is fixedly connected to the servo linear actuator 9 as follows: the end of the servo linear actuator 9 is provided with a terminal inner hole, and the end The inner surface of the inner hole is fixedly connected with the outer ring of the second bearing 11. It may also be: a bearing outer fixing seat 12 is provided, and the end of the servo linear actuator 9 is fixedly connected to the second bearing 11 outer fixing seat 12 using bolts or other fixing parts.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
- Apparatuses For Generation Of Mechanical Vibrations (AREA)
Abstract
一种振动电机,属于振动装置技术领域,包括电机,所述电机的电机轴右侧轴在圆周方向上固定连接右偏心块,所述电机轴左侧轴端设置螺旋芯轴,所述螺旋芯轴与所述电机轴左侧轴端在圆周方向上固定连接、在轴向上活动连接;所述左偏心块端面固定安装螺旋盖,所述螺旋芯轴与所述螺旋盖通过螺旋凹槽和凸台结构连接。本发明提供的所述振动电机,轴向上向左或者向右移动所述螺旋芯轴,可带动所述螺旋盖轴向上相对电机轴转动,带动所述左偏心块轴向上相对电机轴转动,从而所述右偏心块和左偏心块之间圆周方向上夹角产生变化,实现了调整偏心量和激振力大小的目的。
Description
本发明属于振动装置技术领域,具体涉及一种振动电机。
振动电机是动力源与振动源结合为一体的激振源,振动电机是在转子轴两端各安装一组可调偏心块,利用轴及偏心块高速旋转产生的离心力得到激振力。振动电机是各类振动机械的激振源,广泛应用于电力、建材、粮食、煤炭、矿山、冶金、化工、轻工、铸造、铁道、水泥、港口等行业的振动给料机,振动输送机、振动烘干机、振动选矿机、振动落砂机、振动节分机及料仓的振动防堵塞机等。
现有的振动电机可通过调整电机转子轴两端的偏心块夹角来调节激振力和振幅的大小,但是调整需要停车并且拆下防护罩手动调整。每次调整费时费力,反复拆装也带来安全隐患。
发明内容
针对现有技术的不足,本发明提供一种激振力随时可调的振动电机。
一种振动电机,包括电机(1),所述电机(1)的电机轴(3)右侧轴在圆周方向上固定连接右偏心块(2),所述电机(1)的电机轴(3)左侧轴在圆周方向上固定连接左偏心块(5),所述电机(1)的电机轴(3)左侧轴端设置螺旋芯轴(13),所述螺旋芯轴(13)与所述电机轴(3)左侧轴端在圆周方向上固定连接、在轴向上活动连接;所述左偏心块(5)端面固定安装螺旋盖(14),所述螺旋芯轴(13)与所述螺旋盖(14)通过螺旋凹槽和凸台结构连接。
本发明提供的所述振动电机,轴向上向左或者向右移动所述螺旋芯轴(13),可带动所述螺旋盖(14)轴向上相对电机轴(3)转动,带动所述左偏心块(5)轴向上相对电机轴(3)转动,从而所述右偏心块(2)和左偏心块(5)之间圆周方向上夹角产生变化,实现了调整偏心量和激振力大小的目的。
进一步的改进方案是,所述右偏心块(2)与所述电机(1)的右侧电机轴通过平键(4)连接,可实现所述右偏心块(2)与所述电机(1)的电机轴(3)右侧轴端在圆周方向上固定连接。
进一步的,所述左偏心块(5)与所述电机(1)的电机轴(3)左侧轴通过第一轴承(6)连接,所述第一轴承(6)的内圈与所述电机轴(3)的左侧轴外 轴面固定连接,所述第一轴承(6)的外圈与所述左偏心块(5)内孔表面固定连接,可实现所述左偏心块(5)与所述电机轴(3)在圆周方向上的活动连接。
为了稳定所述第一轴承(6)的位置,所述第一轴承(6)左侧设置弹性挡圈(15),所述第一轴承(6)右侧设置隔套(7)进行定位。
所述螺旋芯轴(13)与所述电机轴(3)左侧轴端在圆周方向上固定连接的方式可以是:所述螺旋芯轴(13)右端外轴面轴向设置第一直线凹槽(132),所述电机轴(3)左侧轴端设置轴内孔,所述轴内孔内表面设置与所述第一直线凹槽(132)配合安装的第一直线凸台(31)。
或者,所述螺旋芯轴(13)右端外轴面轴向设置第二直线凸台,所述电机轴(3)左侧轴端设置轴内孔,所述轴内孔内表面设置与所述第二直线凸台配合安装的第二直线凹槽。
所述螺旋芯轴(13)与所述螺旋盖(14)通过螺旋凹槽和凸台结构连接的第一种具体方式是:所述螺旋芯轴(13)中段外轴面轴向设置第一螺旋凹槽(131),所述螺旋盖(14)设置端盖内孔,所述端盖内孔内表面设置与所述第一螺旋凹槽(131)配合安装的第一螺旋凸台(141)。
第二种具体方式是:所述螺旋芯轴(13)中段外轴面轴向设置第二螺旋凸台,所述螺旋盖(14)设置端盖内孔,所述端盖内孔内表面设置与所述第二螺旋凸台配合安装的第二螺旋凹槽。
为了能够自动左右移动所述螺旋芯轴(13),进一步的方案是,在所述螺旋芯轴(13)左端设置伺服直线运动系统(8),所述伺服直线运动系统(8)的伺服直线执行机构(9)轴向与所述螺旋芯轴(13)固定连接、圆周方向上活动连接。
进一步的,所述螺旋芯轴(13)左端与所述伺服直线执行机构(9)的内孔之间通过第二轴承(11)连接,所述第二轴承(11)的内圈与所述螺旋芯轴(13)的左端固定连接,所述第二轴承(11)的外圈与所述伺服直线执行机构(9)固定连接。这种结构使得伺服直线执行机构(9)在轴线方向上能与螺旋芯轴(13)同步动作,但圆周方向上不与螺旋芯轴(13)一起转动,避免了所述电机(1)将转动通过螺旋芯轴(13)传递给伺服直线执行机构(9)。
进一步的,所述第二轴承(11)的内圈与所述螺旋芯轴(13)的左端通过圆 螺母(10)固定连接。
所述第二轴承(11)的外圈与所述伺服直线执行机构(9)固定连接的方式可以是:所述伺服直线执行机构(9)末端设置末端内孔,所述末端内孔内表面与所述第二轴承(11)的外圈固定连接。也可以是:设置轴承外固定座(12),所述伺服直线执行机构(9)末端使用螺栓或者其他固定件与所述第二轴承(11)外固定座(12)固定连接。
为了将所述伺服直线执行机构(9)固定在所述振动电机上,所述振动电机还可以设置固定架(16),所述固定架(16)与所述电机(1)外壳固定连接,所述伺服直线运动系统(8)固定安装在所述固定架(16)上。所述伺服直线运动系统(8)控制所述伺服直线执行机构(9)的轴向位置,并在行程范围内的任意位置锁定。所述的伺服直线运动系统(8)可以是液压缸,气缸或者伺服直线电机,相应的,所述伺服直线执行机构(9)是液压杆,气缸杆或者螺杆。
其中右偏心块(2)和左偏心块(5)的离心力计算公式如下:
F=meω
2;
其中,m为回转件质量,e为质心向径,ω为旋转的角速度;m1为左偏心块(5)的质量,e1为左偏心块(5)的质心向径;m2为右偏心块(2)的质量,e2为右偏心块(2)的质心向径,ω为左偏心块(5)和右偏心块(2)的旋转的角速度。
调整所述左偏心块(5)与所述右偏心块(2)之间的夹角,当左偏心块(5)调整到与右偏心块(2)成180度时,F=m1e1ω
2-m2e2ω
2,此时激振力最小。当m1e1ω
2=m2e2ω
2时,此时整个振动电机的激振力最小为0。
当左偏心块(5)调整到与右偏心块成0度时,整个振动电机的激振力为F=m1e1ω
2+m2e2ω
2,整个激振器激振力最大。
其工作过程是:启动所述电机(1),所述电机轴(3)转动,带动所述右偏心块(2)同步旋转;由于螺旋芯轴(13)轴向位置锁定,所述电机轴(3)转动带动所述螺旋芯轴(13)同步转动,带动所述左偏心块(5)同步转动。整个振动电机在静止或任意转速下,控制伺服直线运动系统(8),使其伺服直线执行机构(9)沿轴向动作,所述伺服直线执行机构(9)带动所述螺旋芯轴(13)沿轴向向左或者向右运动,在所述螺旋芯轴(13)与所述螺旋盖(14)进而与所述左 偏心块(5)之间的螺旋凹槽和凸台结构作用下,所述左偏心块(5)与所述电机轴(3)和所述右偏心块(2)之间圆周方向上相对转动,即调整左偏心块(5)与所述右偏心块(2)的夹角,达到调整个振动电机整激振力的目的。
与现有技术相比,本发明提供的振动电机可在工作过程中实时对偏心量和激振力进行调整,并且调整过程不需要任何状态条件。可在振动电机静止或任意转速下调整电机两侧的偏心块夹角来达到调整振动电机激振力的目的,激振力可从0到最大无级调整。具有如下技术效果:
(1)本发明可在振动电机工作时任意转速下调整偏心大小,即调整激振力大小。
(2)振动电机在启动时调到偏心最小,启动达到设定速度后调整偏心到设定值,有效保护了电气元件和电机,避免电流过大损坏。
(3)在振动电机启动和停止时通过调整激振力来快速通过设备共振点,有效保护设备。
(4)可配合传感器通过电气来自动控制振动电机的激振力,达到节能、高效的目的。
(5)振动电机激振力调整配合电气控制将变得简单方便,更适合自动化程度较高的设备。
图1是本发明振动电机结构示意图;
图2是本发明振动电机分解结构示意图;
图3是螺旋芯轴结构示意图;
图4是本发明振动电机结构示意图;
图5是振动电机激振力最大时的位置关系示意图。
其中:1、电机 2、右偏心块 3、电机轴 31、第一直线凸台 4、平键 5、左偏心块 6、第一轴承 7、隔套 8、伺服直线运动系统 9、伺服直线执行机构 10、圆螺母 11、第二轴承 12、轴承外固定座 13、螺旋芯轴 131、第一螺旋凹槽 132、第一直线凹槽 14、螺旋盖 141、第一螺旋凸台 15、弹性挡圈 16、固定架
实施例1:
如图1所示,一种振动电机,包括电机1,所述电机1的电机轴3右侧轴通过平键4固定连接右偏心块2,所述电机1的电机轴3左侧轴在圆周方向上固定连接左偏心块5,所述电机1的电机轴3左侧轴端设置螺旋芯轴13,所述螺旋芯轴13与所述电机轴3左侧轴端在圆周方向上固定连接、在轴向上活动连接;所述左偏心块5端面固定安装螺旋盖14,所述螺旋芯轴13与所述螺旋盖14通过螺旋凹槽和凸台结构连接。
所述左偏心块5与所述电机1的电机轴3左侧通过第一轴承6连接,所述第一轴承6的内圈与电机轴3的外轴面固定连接,所述第一轴承6的外圈与所述左偏心块5内孔表面固定连接,可实现所述左偏心块5与所述电机1的电机轴3左侧在圆周方向上的活动连接。
为了稳定所述第一轴承6的位置,所述第一轴承6左侧设置弹性挡圈15,所述第一轴承6左侧设置隔套7进行定位。
如图2,图3所示,所述螺旋芯轴13与所述电机轴3左侧轴端在圆周方向上固定连接的方式是:所述螺旋芯轴13右端外轴面轴向设置第一直线凹槽132,所述电机轴3左端设置轴内孔,所述轴内孔内表面设置与所述第一直线凹槽132配合安装的第一直线凸台31。
所述螺旋芯轴13与所述螺旋盖14通过螺旋凹槽和凸台结构连接的具体方式是:所述螺旋芯轴13中段外轴面轴向设置第一螺旋凹槽131,所述螺旋盖14设置端盖内孔,所述端盖内孔内表面设置与所述第一螺旋凹槽131配合安装的第一螺旋凸台141。
为了能够自动左右移动所述螺旋芯轴13,如图4和图1所示,在所述螺旋芯轴13左端设置伺服直线运动系统8,所述伺服直线运动系统8的伺服直线执行机构9轴向与所述螺旋芯轴13固定连接、圆周方向上活动连接。具体连接方式是:所述螺旋芯轴13左端与所述伺服直线执行机构9的内孔之间通过第二轴承11连接,所述第二轴承11的内圈与所述螺旋芯轴13的左端通过圆螺母10固定连接,所述第二轴承11的外圈与所述伺服直线执行机构9固定连接。这种结构使得伺服直线执行机构9在轴线方向上能与螺旋芯轴13同步动作,但圆周方向上不与螺旋芯轴13一起转动,避免了所述电机1将转动通过螺旋芯轴13传递 给伺服直线执行机构9。
如图4所述,为了将所述伺服直线执行机构9固定在所述振动电机上,所述振动电机还设置了固定架16,所述固定架16与所述电机1外壳固定连接,所述伺服直线运动系统8固定安装在所述固定架16上。所述伺服直线运动系统8控制所述伺服直线执行机构9的轴向位置,并在行程范围内的任意位置锁定。其中伺服直线运动系统8是伺服直线电机,所述伺服直线执行机构9是螺杆。
其中右偏心块2和左偏心块5的离心力计算公式如下:
F=meω
2;
其中,m为回转件质量,e为质心向径,ω为旋转的角速度;m1为左偏心块5的质量,e1为左偏心块5的质心向径;m2为右偏心块2的质量,e2为右偏心块2的质心向径,ω为左偏心块5和右偏心块2的旋转的角速度。
启动伺服直线运动系统8,调整所述左偏心块5与所述右偏心块2之间的夹角,当左偏心块5调整到与右偏心块成180度时,如图1所示,F=m1e1ω
2-m2e2ω
2,此时激振力最小。当m1e1ω
2=m2e2ω
2时,此时整个振动电机的激振力最小为0。当左偏心块5调整到与右偏心块成0度时,如图5所示,整个振动电机的激振力为F=m1e1ω
2+m2e2ω
2,整个激振器激振力最大。
本实施例提供的振动电机,其工作过程如下:
启动所述电机1,所述电机轴3转动,带动所述右偏心块2同步旋转;由于螺旋芯轴13轴向位置锁定,所述电机轴3转动带动所述螺旋芯轴13同步转动,带动所述左偏心块5同步转动。整个振动电机在静止或任意转速下,控制伺服直线运动系统8,使其伺服直线执行机构9沿轴向动作,所述伺服直线执行机构9带动所述螺旋芯轴13沿轴向向左或者向右运动,在所述螺旋芯轴13与所述螺旋盖14进而与所述左偏心块5之间的螺旋凹槽和凸台结构作用下,所述左偏心块5与所述电机轴3和所述右偏心块2之间圆周方向上相对转动,即调整左偏心块5与所述右偏心块2的夹角,达到调整个振动电机整激振力的目的。
实施例2:
与实施例1相同,不同之处是,所述螺旋芯轴13与所述左侧电机轴3轴端在圆周方向上固定连接的方式是:所述螺旋芯轴13右端外轴面轴向设置第二直线凸台,所述电机轴3左端设置轴内孔,所述轴内孔内表面设置与所述第二直线 凸台配合安装的第二直线凹槽。
实施例3:
与实施例1相同,不同之处是,所述螺旋芯轴13与所述螺旋盖14通过螺旋凹槽和凸台结构连接的具体方式是:所述螺旋芯轴13中段外轴面轴向设置第二螺旋凸台,所述螺旋盖14设置端盖内孔,所述端盖内孔内表面设置与所述第二螺旋凸台配合安装的第二螺旋凹槽。
实施例4:
与实施例1相同,不同之处是,所述第二轴承11的外圈与所述伺服直线执行机构9固定连接的方式是:所述伺服直线执行机构9末端设置末端内孔,所述末端内孔内表面与所述第二轴承11的外圈固定连接。也可以是:设置轴承外固定座12,所述伺服直线执行机构9末端使用螺栓或者其他固定件与所述第二轴承11外固定座12固定连接。
Claims (16)
- 一种振动电机,包括电机(1),所述电机(1)的电机轴(3)右侧轴在圆周方向上固定连接右偏心块(2),所述电机(1)的电机轴(3)左侧轴在圆周方向上固定连接左偏心块(5),其特征在于,所述电机(1)的电机轴(3)左侧轴端设置螺旋芯轴(13),所述螺旋芯轴(13)与所述电机轴(3)左侧轴端在圆周方向上固定连接、在轴向上活动连接;所述左偏心块(5)端面固定安装螺旋盖(14),所述螺旋芯轴(13)与所述螺旋盖(14)通过螺旋凹槽和凸台结构连接。
- 根据权利要求1所述的振动电机,其特征在于,所述右偏心块(2)与所述电机(1)的电机轴(3)右侧轴端通过平键(4)固定连接。
- 根据权利要求2所述的振动电机,其特征在于,所述左偏心块(5)与所述电机(1)的电机轴(3)左侧轴通过第一轴承(6)连接,所述第一轴承(6)的内圈与所述电机轴(3)的左侧轴外轴面固定连接,所述第一轴承(6)的外圈与所述左偏心块(5)内孔表面固定连接。
- 根据权利要求3所述的振动电机,其特征在于,所述第一轴承(6)左侧设置弹性挡圈(15),所述第一轴承(6)右侧设置隔套(7)进行定位。
- 根据权利要求4所述的振动电机,其特征在于,所述螺旋芯轴(13)右端外轴面轴向设置第一直线凹槽(132),所述电机轴(3)左端设置轴内孔,所述轴内孔内表面设置与所述第一直线凹槽(132)配合安装的第一直线凸台(31)。
- 根据权利要求4所述的振动电机,其特征在于,所述螺旋芯轴(13)右端外轴面轴向设置第二直线凸台,所述电机轴(3)左端设置轴内孔,所述轴内孔内表面设置与所述第二直线凸台配合安装的第二直线凹槽。
- 根据权利要求5或者6所述的振动电机,其特征在于,所述螺旋芯轴(13)中段外轴面轴向设置第一螺旋凹槽(131),所述螺旋盖(14)设置端盖内孔,所述端盖内孔内表面设置与所述第一螺旋凹槽(131)配合安装的第一螺旋凸台(141)。
- 根据权利要求5或者6所述的振动电机,其特征在于,所述螺旋芯轴(13)中段外轴面轴向设置第二螺旋凸台,所述螺旋盖(14)设置端盖内孔,所述端盖内孔内表面设置与所述第二螺旋凸台配合安装的第二螺旋凹槽。
- 根据权利要求7所述的振动电机,其特征在于,在所述螺旋芯轴(13) 左端设置伺服直线运动系统(8),所述伺服直线运动系统(8)的伺服直线执行机构(9)轴向与所述螺旋芯轴(13)固定连接、圆周方向上活动连接。
- 根据权利要求9所述的振动电机,其特征在于,所述螺旋芯轴(13)左端与所述伺服直线执行机构(9)的内孔之间通过第二轴承(11)连接,所述第二轴承(11)的内圈与所述螺旋芯轴(13)的左端固定连接,所述第二轴承(11)的外圈与所述伺服直线执行机构(9)固定连接。
- 根据权利要求10所述的振动电机,其特征在于,所述伺服直线执行机构(9)末端设置末端内孔,所述末端内孔内表面与所述第二轴承(11)的外圈固定连接。
- 根据权利要求10所述的振动电机,其特征在于,设置轴承外固定座(12),所述伺服直线执行机构(9)末端与所述第二轴承(11)外固定座(12)固定连接。
- 根据权利要求12所述的振动电机,其特征在于,所述振动电机设置固定架(16),所述固定架(16)与所述电机(1)外壳固定连接,所述伺服直线运动系统(8)固定安装在所述固定架(16)上。
- 根据权利要求13所述的振动电机,其特征在于,所述的伺服直线运动系统(8)是液压缸,所述伺服直线执行机构(9)是液压杆。
- 根据权利要求13所述的振动电机,其特征在于,所述的伺服直线运动系统(8)是气缸,所述伺服直线执行机构(9)是气缸杆。
- 根据权利要求13所述的振动电机,其特征在于,所述的伺服直线运动系统(8)是伺服直线电机,所述伺服直线执行机构(9)是螺杆。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201921288226.0U CN211296446U (zh) | 2019-08-09 | 2019-08-09 | 一种振动电机 |
CN201921288226.0 | 2019-08-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021027560A1 true WO2021027560A1 (zh) | 2021-02-18 |
Family
ID=72020967
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/105180 WO2021027560A1 (zh) | 2019-08-09 | 2020-07-28 | 一种振动电机 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN211296446U (zh) |
WO (1) | WO2021027560A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118074419B (zh) * | 2024-04-24 | 2024-08-20 | 新乡市通用电机有限公司 | 气动振动电机 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2204467Y (zh) * | 1993-12-25 | 1995-08-02 | 文思仁 | 电动动态调幅振动电机 |
JP2002066458A (ja) * | 2000-08-30 | 2002-03-05 | Chowa Kogyo Kk | 複数の回転系統を有する機械の位相制御装置、および同制御方法 |
JP2006212608A (ja) * | 2005-02-02 | 2006-08-17 | Yuichi Ono | 振動発生装置 |
CN102747670A (zh) * | 2012-07-09 | 2012-10-24 | 池州腾虎机械科技有限公司 | 一种可连续调整偏心矩的振动压路机的激振器振动机构 |
CN111262385A (zh) * | 2019-08-09 | 2020-06-09 | 济南豪特创新管理咨询合伙企业(有限合伙) | 一种振动电机 |
-
2019
- 2019-08-09 CN CN201921288226.0U patent/CN211296446U/zh active Active
-
2020
- 2020-07-28 WO PCT/CN2020/105180 patent/WO2021027560A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2204467Y (zh) * | 1993-12-25 | 1995-08-02 | 文思仁 | 电动动态调幅振动电机 |
JP2002066458A (ja) * | 2000-08-30 | 2002-03-05 | Chowa Kogyo Kk | 複数の回転系統を有する機械の位相制御装置、および同制御方法 |
JP2006212608A (ja) * | 2005-02-02 | 2006-08-17 | Yuichi Ono | 振動発生装置 |
CN102747670A (zh) * | 2012-07-09 | 2012-10-24 | 池州腾虎机械科技有限公司 | 一种可连续调整偏心矩的振动压路机的激振器振动机构 |
CN111262385A (zh) * | 2019-08-09 | 2020-06-09 | 济南豪特创新管理咨询合伙企业(有限合伙) | 一种振动电机 |
Also Published As
Publication number | Publication date |
---|---|
CN211296446U (zh) | 2020-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021027560A1 (zh) | 一种振动电机 | |
CN104964134B (zh) | 一种采用超声波振子驱动的云台 | |
CN105251687B (zh) | 一种可调节偏心质量的旋转激振器 | |
CN105729303A (zh) | 摆动磨头驱动装置 | |
WO2015058327A1 (zh) | 一种柔性动力传递装置 | |
CN109450154A (zh) | 一种方便维修的永磁电机 | |
CN116191760A (zh) | 一种激振力在线可调式振动电机 | |
CN116260276A (zh) | 一种在线可调式振动电机 | |
CN103480558B (zh) | 激振器和振动筛 | |
CN111262385A (zh) | 一种振动电机 | |
CN111229580A (zh) | 一种激振装置 | |
CN111229586A (zh) | 一种振动筛装置 | |
WO2021027558A1 (zh) | 一种激振装置 | |
CN102343328A (zh) | 可在线调节型激振设备 | |
WO2021027561A1 (zh) | 一种振动筛装置 | |
WO2021027557A1 (zh) | 一种激振器 | |
CN111229579A (zh) | 一种激振器 | |
BRPI0622178A2 (pt) | mÉtodo de gerar rotaÇço em torno de um eixo de saÍda, mÉtodo de fabricar um veÍculo, mÉtodo para obter um suprimento de Água pura da atmosfera, mÉtodo de remover poluiÇço da atmosfera, motor para gerar rotaÇço sobre um eixo de saÍda, conjunto de motores, veÍculo e gerador de eletricidade | |
CN211275349U (zh) | 一种激振器 | |
CN106762698A (zh) | 快速维修的离心泵 | |
CN213054309U (zh) | 一种压缩机壳体加工工作平台 | |
CN111250377A (zh) | 一种激振器 | |
CN211275351U (zh) | 一种激振装置 | |
CN111250378A (zh) | 一种激振装置 | |
CN209344984U (zh) | 一种单驱双动盘式永磁调速器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20852619 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20852619 Country of ref document: EP Kind code of ref document: A1 |