WO2015058327A1 - 一种柔性动力传递装置 - Google Patents
一种柔性动力传递装置 Download PDFInfo
- Publication number
- WO2015058327A1 WO2015058327A1 PCT/CN2013/001540 CN2013001540W WO2015058327A1 WO 2015058327 A1 WO2015058327 A1 WO 2015058327A1 CN 2013001540 W CN2013001540 W CN 2013001540W WO 2015058327 A1 WO2015058327 A1 WO 2015058327A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conductor
- permanent magnet
- spline
- ring
- threaded rod
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K49/00—Dynamo-electric clutches; Dynamo-electric brakes
- H02K49/06—Dynamo-electric clutches; Dynamo-electric brakes of the synchronous type
Definitions
- the invention patent belongs to the technical field of transmission, and in particular relates to a power transmission device.
- the power transmission device is mainly a mechanical transmission system.
- the mechanical transfer system can be mainly divided into mechanical rigid transfer mode and mechanical flexible transfer mode.
- Mechanical rigid transmission methods mainly include various types of mechanical couplings.
- the advantage is that synchronous transmission can be realized, and the transmission efficiency is high.
- the mechanical rigidity transmission method has high requirements on the alignment of the motor shaft and the load shaft, and often affects the service life due to vibration and wear. For large equipment or high-precision transmission systems, it is very difficult to install in the center. Once there is an error in the alignment, the transmission system may be twisted during the work to cause a major accident.
- the speed is from zero. Gradually reach the rated speed, the current will burn out the motor coil and damage the motor.
- the mechanical elastic transmission mode can avoid the disadvantages of some mechanical rigid transmission modes to a certain extent, allowing the alignment error within a certain range, but the transmission efficiency is low.
- the magnetic flexible power transmission system has no mechanical contact, friction and wear, and has overload protection function and high transmission efficiency. Therefore, in some fields of high torque vibration, the mechanical rigid transmission mode has been gradually replaced to transmit torque and power.
- a two-stage series permanent magnet governor which comprises a cylindrical conductor rotor body, a permanent magnet rotor and a regulator, a permanent magnet rotor and a cylindrical conductor rotor body.
- the conductor rotor can adjust the effective area to 0 or 100% by moving the width of one conductor, which greatly shortens the adjustment distance.
- This governor can realize torque contactless transmission, which is adjusted by the thrust bearing set.
- the shape and characteristics of the regulator are rarely involved in the patent.
- the regulator is mounted on the load shaft due to the large dynamic load of the output shaft. The vibration has a significant influence on the adjustment accuracy of the regulator, and the axial adjustment using the thrust bearing set is not easy to perform precise adjustment.
- a permanent magnet coupling governor which comprises: a cylindrical conductor rotor, a cylindrical magnetic shield, a cylindrical permanent magnet rotor, and a regulator.
- the cylindrical magnetic shield is located between the cylindrical conductor rotor and the cylindrical permanent magnet rotor, and the cylindrical magnetic shield has a gap with the cylindrical conductor rotor and the cylindrical permanent magnet rotor; the cylindrical conductor rotor and the cylindrical permanent magnet rotor
- the respective rotating shafts rotate independently, and the axial position is unchanged; under the action of the regulator, the cylindrical magnetic shield slides in the axial direction, thereby realizing the change of the magnetic field area between the cylindrical permanent magnet rotor and the cylindrical conductor rotor, and the result is
- the load torque changes and the speed changes.
- the device is biased to force the device to be in an unbalanced state, affecting the dynamic balance of the input and output components, and is prone to vibration and noise. At the same time, the device is too simplistic and the reliability is poor.
- a permanent magnet governor which comprises: a cage conductor rotor, a permanent magnet rotor, a fixed rotor and an adjusting mechanism; the cage conductor rotor surrounds the permanent magnet rotor; The magnetic rotor is moved in the axial direction by the adjusting mechanism; the adjusting mechanism is connected to the fixed rotor; and the fixed rotor is connected to the permanent magnet rotor through the rack and pinion mechanism.
- the working area of the permanent magnet governor of the utility model is a conductor ring of a cage conductor rotor
- the air gap between the ring magnet and the ring magnet of the permanent magnet rotor has no axial force, and the pushing force required for the adjusting mechanism is small.
- the axial movement distance is large, and the bearing structure is used more, which increases the difficulty of manufacturing and assembly, the structure is relatively complicated, the reliability is poor, and the outer diameter of the driving component is increased, which affects the dynamic balance and is easy to cause Large vibration and noise.
- the invention provides a flexible power transmission device for solving the problem of flexible power transmission regulation, which is used to solve the problem that the flexible power transmission stably adjusts the transmission torque, and realizes the stable adjustment of the flexible power transmission.
- a flexible power transmission device comprising an input shaft, a conductor tube, a conductor ring, a permanent magnet barrel, a permanent magnet, an output shaft, a spline, a spline sleeve, and the conductor ring is mounted on the inner wall of the conductor tube
- the permanent magnet is mounted on the outer wall of the permanent magnet cylinder, and there is an air gap between the permanent magnet and the conductor ring, the permanent magnet barrel is connected with the output shaft, the spline is connected with the input shaft, and the spline sleeve is connected with the conductor tube, the flower
- the key is connected to the spline sleeve.
- the spline sleeve can move axially on the spline, and since the spline sleeve is connected to the conductor ring through the conductor barrel, the movement of the conductor ring is driven by the movement of the spline sleeve, thereby changing the function of the conductor ring and the permanent magnet. Area, further changes the output torque.
- the spline sleeve can be fixed to the spline by screws.
- the spline sleeve can be fixed to the spline by other known methods.
- the spline connection has the advantages of high carrying capacity, good neutrality and easy guiding.
- the spline Since the spline is located in the spline sleeve, it has the characteristics of convenient manufacture, low cost, simple structure, good stability and low noise.
- the device in the invention rotates synchronously with other components, and adjusts the flexible power transmission by driving the conductor tube, thereby reducing the interference of the dynamic load caused by the change of the rotational speed difference when adjusting the load device, so that the adjustment becomes simple and stable. Efficient.
- a support surface is disposed on a side of the conductor tube adjacent to the spline sleeve, and a threaded hole is disposed at a center position of the support surface, the threaded rod is installed in the threaded hole, and a cavity is disposed at a center portion of the other end of the input shaft.
- a motor is arranged in the cavity, and the motor is connected to the other end of the threaded rod.
- the threaded rod can be used to more accurately adjust the output torque. Rotating the threaded rod by the motor makes it easy and quick to adjust the output torque. When the motor is stopped, the self-locking of the conductor tube is realized by the interaction of the threaded rod and the nut, thereby achieving accurate axial positioning of the conductor tube.
- one end of the threaded rod is coupled to the output shaft, and the threaded rod is rotatable relative to the output shaft and is not movable in the axial direction. Since a part of the weight of the conductor tube and the spline sleeve is received by the threaded rod, one end of the threaded rod is connected with the output shaft, so that the force of the threaded rod can be changed from the original cantilever beam structure to the simple beam structure, so that the thread The force of the rod is more uniform.
- the threaded rod can only be driven by the motor and cannot be driven by the output shaft.
- a central portion of one end of the output shaft is provided with a cavity in which a bearing is mounted, and one end of the threaded rod is mounted in the bearing.
- the motor slip ring is mounted on the input shaft, and the motor slip ring is coupled to the motor.
- At least one ring of permanent magnets is mounted on the outer wall of the permanent magnet cylinder, and at least a ring of conductor rings is mounted on the inner wall of the conductor barrel at a position corresponding to the permanent magnet.
- the purpose of this setting is to make the output shaft evenly stressed.
- a ring of permanent magnets is respectively mounted on the left and right outer walls of the permanent magnet cylinder, and there is a space between the permanent magnets.
- conductor rings are respectively installed on the left and right sides of the conductor tube, and between the permanent magnets The spacing is greater than the width of the conductor loop, and the spacing between the conductor loops is greater than the width of the permanent magnet. Therefore, the conductor ring can be moved above the interval between the permanent magnets, and the permanent magnet is located below the spacing of the conductor rings, so that the conductor ring and the permanent magnet do not interact at all, thereby realizing The output torque is adjusted from 0-100%.
- the permanent magnet is the same width as the conductor loop. This design makes the structure more compact, and the output torque can be adjusted from 0-100% when the conductor barrel moves the width of a conductor loop.
- the side wall of the spline is provided with a heat dissipation hole
- the support surface of the conductor tube is provided with a heat dissipation hole
- the support tube of the permanent magnet tube is provided with a heat dissipation hole.
- the center of gravity of the spline sleeve and the conductor barrel is located within the inner cavity of the spline sleeve. This allows the majority of the weight of the combination of the spline sleeve and the conductor barrel to be received by the spline, which is more conducive to the stability of the structure.
- the device of the present invention rotates synchronously with other components, and adjusts the flexible power transmission by driving the conductor tube, thereby reducing the interference of the dynamic load caused by the change of the rotational speed difference when adjusting the load device. Adjustments are simple, stable and efficient.
- the invention controls the rotation speed and the steering of the embedded motor by the transmission signal to drive the axial movement speed of the conductor tube and the forward and reverse movement.
- the self-locking of the conductor tube is realized by the interaction of the threaded rod nut, thereby realizing the shaft of the conductor tube.
- Accurate positioning, synchronization of the device with the power components and adjustment of the flexible power transmission through the drive conductor barrel reduces the interference of the dynamic load caused by the change in the rotational speed difference when the load device is adjusted, making the adjustment simple, stable and efficient.
- FIG. 1 is a schematic structural view of a flexible power transmission device.
- Figure 2 is a schematic view of the structure of the conductor barrel.
- Figure 3 is a schematic diagram of the structure of the input device.
- Figure 4 is a schematic view of the structure of the spline and spline sleeve.
- Figure 5 is a schematic view of the structure of a permanent magnet cylinder.
- Figure 6 is a schematic diagram of the structure of the output device.
- Figure 7 is a schematic view showing the structure of the adjusting device.
- a flexible power transmission device includes an input device, an output device, and an adjustment device.
- the input device comprises an input shaft 1, a conductor barrel 7, and a conductor ring 1 1 ;
- the adjusting device comprises a spline 5, a spline sleeve 4, a motor 26, a threaded rod 17, a nut 19;
- the output device comprises a permanent magnet 10, a permanent magnet barrel 12, Output shaft.
- the input shaft 1 has a stepped shape, and one end of the input shaft 1 (the left side in Fig. 1) is connected to the transmission.
- the spline 5 has a cylindrical shape, and splines are evenly distributed on the outer surface of the cylinder, the spline 5 is connected to the other end of the input shaft 1, and the spline 5 is fitted on the input shaft 1 and passed through the screw.
- the pin 6 securely mounts the spline 5 on the input shaft 1.
- the spline sleeve 4 is also cylindrical, and the inner surface of the spline sleeve 4 is uniformly provided with a spline groove corresponding to the spline on the spline 5, and the spline 5 is installed in the spline sleeve 4, the spline 5 and The spline sleeves 4 are connected to form a spline connection, and the spline sleeve 4 can be moved left and right in the axial direction on the splines 5.
- the spline sleeve 4 has a threaded hole, and the threaded hole is provided with a screw 31.
- the screw 31 is tightened to make the spline sleeve 4 and the spline 5 Fixedly connected together.
- the left side of the spline sleeve 4 is also provided with a limit retaining ring 3, and the limit retaining ring 3 is fixedly mounted on the left side of the spline sleeve 4 by bolts 24.
- the spline groove has a certain gap from the rightmost side of the spline sleeve 4, so that the spline sleeve 4 cannot slide out from the spline 5 when sliding to the left side, thereby functioning as a limit on the spline sleeve 4.
- the spline sleeve 4 and the conductor barrel 7 are connected by a concave-convex structure, and the spline sleeve 4 is fixedly coupled to the conductor barrel 7 by bolts 20.
- the conductor barrel 7 is also cylindrical, and at least one conductor ring 11 is mounted on the inner surface of the conductor barrel 7, and the conductor ring 11 is electrically conductive and has magnetic permeability, and copper is preferably used as a material for fabrication. Thereby, the conductor barrel 7 is freely slidable in the axial direction while transmitting the torque of the input shaft 1 through the spline sleeve 4.
- a support cylinder is disposed in the cylinder of the permanent magnet cylinder 12.
- the support cylinder is integrated with the permanent magnet cylinder 12.
- the permanent magnet cylinder 12 is fitted on one end of the output shaft 13 through the support cylinder, and the two are fixedly connected by bolts 16. .
- the other end of the output shaft 13 is connected to a load.
- At least one permanent magnet 10 is mounted on the outer surface of the permanent magnet cylinder 12 at a position corresponding to the conductor ring 11 , and a certain air gap exists between the permanent magnet 10 and the conductor ring 11 .
- the permanent magnet cylinder 12 may be a metal material or a non-metal material as long as it has a certain strength and rigidity; the permanent magnet 10 is made of a strong permanent magnet material.
- a permanent magnet retaining ring 9 is also mounted on both sides of the permanent magnet cylinder 12, and the permanent magnet retaining ring 9 is fixedly mounted on the permanent magnet cylinder 12 by bolts 8 to prevent the permanent magnet 10 from being strung to the two sides.
- a side of the conductor barrel 7 adjacent to the spline sleeve is provided with a support surface disposed therein.
- the support surface is disposed on the left side of the conductor barrel 7, and the support surface is integral with the conductor barrel 7.
- a through hole is provided in a central portion of the support surface, and a center line of the through hole overlaps with a center line of the input shaft 1.
- a nut 19 is embedded in the through hole, and the nut 19 is fixedly mounted on the support surface by bolts 18, so that the nut 19 and the conductor barrel 7 are integrated.
- the threaded rod 17 is mounted in a nut 19 which forms a threaded rod nut pair with the threaded rod 17.
- a threaded hole directly at the center of the support surface so that the threaded rod 17 is mounted in the threaded hole.
- One end of the threaded rod 17 is connected to the input shaft 1 or the output shaft 13 through a bearing, so that the threaded rod 17 cannot move axially with respect to the input shaft 1 or the output shaft 13, but the threaded rod 17 can be relative to the input shaft 1 or the output shaft 13 Rotate.
- a cavity 28 is disposed in the middle portion of the output shaft 13 near one end of the output shaft 1, and a bearing 14 is mounted in the cavity 28. The outer ring of the bearing 14 and the cavity 28 in the output shaft are tightly closed.
- the other end of the threaded rod 17 is mounted in the inner ring of the bearing 14, and the other end of the threaded rod 17 is tightly fitted with the inner ring of the bearing 14, and the axial engagement of the threaded rod is prevented by the tight fit.
- the bearing end cover 15 is also mounted on the left side of the bearing 14. The left and right movement of the conductor ring 11 is adjusted by the rotational adjustment of the threaded rod 17.
- the use of the threaded rod 17 allows for a more accurate adjustment of the output torque, avoiding the inaccuracy of the torque transfer directly by moving the spline sleeve 4.
- the middle portion of the other end of the input shaft 1 has a cavity 32, and the motor 26 is fixedly mounted in the cavity 32 by bolts 23.
- the center line of the output shaft of the motor 26 is located on the center line of the input shaft 1.
- One end of the threaded rod 17 is connected to the output shaft of the motor 26.
- a flat key 25 is disposed on the input shaft of the motor, and a flat key 21 is disposed on the threaded rod 17.
- the sleeve 22 is provided with a key groove corresponding to the flat key 25 and the flat key 21, and is passed through the sleeve 22, the flat key 25, and the flat
- the key 21 connects the threaded rod 17 to the input shaft 1.
- the motor Since the motor is stopped After the operation, it has a self-locking function, the threaded rod 17 does not rotate, and the output torque is stable. Further, the motor 26 can be accurately rotated, and the output torque can be precisely adjusted. In this configuration, since a part of the weight of the conductor barrel 7 and the spline sleeve 4 acts on the threaded rod 17, the force of the threaded rod is further strengthened by the cooperation of the motor 26 and the bearing 14 to further strengthen the stability of the threaded rod 17. More even. The overall deformation of the threaded rod is reduced, thereby reducing noise and vibration and improving transmission accuracy.
- the motor 26 When the device is not adjusted, the motor 26, the threaded rod 17, the nut 19, the spline 5, the spline sleeve 4, and the conductor barrel 7 rotate together with the input shaft 1, and there is no relative movement between them.
- the motor 26 receives the control signal, the threaded rod 17 is driven to rotate. Since the threaded rod 17 itself does not move, the driving nut 19 moves axially. Since the spline sleeve 4, the conductor barrel 7, and the nut 19 are connected to each other to form a whole, the nut The axial movement drives the spline sleeve 4 and the conductor barrel 7 to move axially.
- the area of action between the conductor ring 11 on the conductor barrel 7 and the permanent magnet 10 is changed, and the magnitude of the output torque is changed.
- the conductor ring 11 is at least one turn, and may be one turn or multiple turns. In the present embodiment, two turns are used, and a ring of conductor rings 1 1 is respectively disposed on the left and right sides of the conductor barrel 7. Each ring of conductor rings 1 1 can be a complete circle. It may also be a segmented one, that is, the segmented conductor plate is wound into a ring to be annularly mounted on the inner wall of the conductor barrel 7.
- the permanent magnet 10 disposed on the permanent magnet cylinder 12 is at least one turn, and may be one turn or multiple turns. In the present embodiment, two turns are used, and one turn is set on the left and right sides of the permanent magnet cylinder 12.
- the permanent magnet 10 and the two-ring permanent magnet 10 are separated by a certain interval.
- the permanent magnet 10 per revolution can be a complete one turn. It may also be a segmented one, that is, the divided permanent magnet plates are wound into a ring to be annularly mounted on the outer wall of the permanent magnet cylinder 10.
- the number of turns of the conductor ring 11 , the size of the width, and the number of conductor plates can be adjusted according to the required load; likewise, the number of turns of the permanent magnet 10, the size of the width, the number of permanent magnet plates, and the size of the magnet are also It can be adjusted according to the size of the load.
- the conductor ring 11 is mounted directly above the permanent magnet 10, and the width of the conductor ring 11 is the same as the width of the permanent magnet 10.
- the spacing between the two permanent magnets 10 is greater than the width of the single conductor ring 11.
- the spline 5 and the spline sleeve 4 are advantages of high spline connection capacity, good neutrality and easy guiding, and are suitable for the dynamic coupling of the device.
- the conductor barrel 7 and the spline sleeve 4 maintain the center of gravity of the combination of the conductor barrel 7 and the spline sleeve 4 within the inner cavity of the spline sleeve 4 during the structural design process, since the spline 5 has a certain The width is such that the total weight of the combined body falls on the spline 5, and the threaded rod 17 does not have to bear the weight of the spline sleeve 4 and the conductor barrel 7, thereby reducing the deformation of the threaded rod 17 due to the force, thereby The accuracy of the adjustment of the threaded rod 7 is further ensured.
- the motor 26 is in the form of a slip ring 2 energized in the manner in which it transmits electrical energy and electrical signals.
- the slip ring 2 is mounted on the input shaft 1 and the slip ring 2 is connected to the motor 26 via wires.
- a plurality of heat dissipation holes 30 are formed on the support surface of the conductor tube 7, and the purpose is to convect air on both sides of the support surface to achieve heat dissipation.
- the support surface of the spline 5 is provided with a plurality of heat dissipation holes 29 for the purpose of convection of the air on both sides of the spline 5, thereby achieving the purpose of heat dissipation.
- a plurality of heat dissipation holes 27 are formed in the support cylinder of the permanent magnet cylinder 12, The purpose is to support the air on the two sides of the cylinder to generate convection, so as to achieve the purpose of heat dissipation.
- the working principle of the present invention is as follows: the permanent magnet 10 disposed outside the permanent magnet cylinder 12 forms a certain magnetic field in the air gap, and when the conductor barrel 7 rotates with the input shaft, the conductor ring 1 disposed on the inner side thereof cuts the magnetic induction line. The movement generates an induced current in the conductor loop 11, which interacts with the original magnetic field, so that the permanent magnet cylinder 12 is subjected to an electromagnetic torque that coincides with the direction of rotation of the conductor cylinder 7, and the permanent magnet cylinder 12 is rotated. To the role of flexible transmission torque.
- the threaded rod 17 is rotated to generate a relative movement, and the threaded rod and the nut are rotated to move axially, thereby driving the conductor barrel 7 and the spline sleeve 4 to be axially connected.
- Moving left and right causes a change in the working area between the conductor ring 11 and the permanent magnet 10.
- the output torque can be changed to 0-100%. The adjustment range thus achieves the purpose of adjusting the output torque.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)
Abstract
一种柔性动力传递装置,包括输入轴(1)、导体筒(7)、导体环(11)、永磁体筒(12)、永磁体(10)、输出轴(13)、花键(5)、花键套(4),导体环安装在导体筒的内壁上,永磁体安装在永磁体筒的外壁上,永磁体与导体环之间有气隙,永磁体筒与输出轴相连接,花键与输入轴相连接,花键套与导体筒相连接,花键与花键套相连接,该装置可以对传递的动力进行调节。
Description
一种柔性动力传递装置
技术领域
本发明专利属于传动技术领域, 尤其涉及一种动力传递装置。
背景技术
目前,动力传递装置主要为机械式传递系统。而机械式的传递系统主要可分为机械刚 性传递方式与机械柔性传递方式。
机械刚性传递方式主要有各类的机械联轴器,优点在于能实现同步传动,传递效率很 高。但机械刚性传递方式对电机轴和负载轴的对中性要求很高,常因振动磨损影响其使用 寿命。对于大型设备或高精度传动系统来说对中安装难度很大, 一旦对中存在误差, 传动 系统则可能在工作过程中被扭断从而造成重大事故; 另外, 当电机在负载启动时转速从零 逐渐达到额定转速, 电流发热会烧坏电机线圈, 损坏电机。
机械弹性传递方式能在一定程度上避免一些机械式刚性传递方式的缺点,允许一定范 围内的对中误差, 但传递效率较低。
而磁柔性动力传递系统则不存在机械接触、 摩擦和磨损, 同时具有过载保护功能,传 递效率较高, 因而, 在一些大扭矩振动领域, 已逐步取代机械刚性传递方式来传递扭矩和 动力。
在申请公布号为 CN101834513A的发明专利申请中公布了一种二级串联型永磁调速 器, 它包括筒形导体转子体, 永磁转子和调节器, 永磁转子和筒形导体转子体均为二级串 联型, 导体转子只要移动一个导体的宽度即可将作用面积调节为 0或 100%, 大大缩短了 调节距离。此调速器可实现转矩无接触传递, 是利用推力轴承组进行调节, 但专利中对调 节器的形状, 特征涉及很少, 将调节器安装在负载轴上, 由于输出轴动载荷较大, 振动对 调节器调节精度影响明显, 并且利用推力轴承组进行轴向调节不易于进行精确调节。
在申请公布号为 CN202034886U的实用新型专利中公布了一种永磁耦合调速器, 它 包括: 筒形导体转子、 筒形隔磁罩、 筒形永磁转子、 调节器。 筒形隔磁罩位于筒形导体转 子和筒形永磁转子之间, 筒形隔磁罩与筒形导体转子和筒形永磁转子均有间隙; 筒形导体 转子与筒形永磁转子沿各自旋转轴独立转动, 轴向位置不变; 在调节器的作用下, 筒形隔 磁罩沿轴向滑动,实现筒形永磁转子和筒形导体转子之间的作用磁场面积改变,其结果使 得负载扭矩变化, 转速变化。 但该装置偏心受力, 使装置处于非平衡受力状态, 影响输入 输出部件的动平衡, 易产生振动和噪音, 同时该装置过于简陋, 可靠性也较差。
在申请公布号为 CN202586711U的实用新型专利中公布了一种永磁调速器, 它包括: 笼形导体转子、 永磁转子、 固定转子和调节机构; 笼形导体转子包围着永磁转子; 永磁转 子通过调节机构沿着轴向方向张、合运动; 调节机构与固定转子相连; 固定转子通过齿轮 齿条机构与永磁转子相连。该实用新型的永磁调速器的作用面积为笼形导体转子的导体环
与永磁转子的环形磁座之间的空气间隙, 故没有轴向力, 其调节机构所需的推拉力小。但 其轴向移动距离较大,使用轴承结构的地方较多,增加了制造和装配难度,结构相对复杂, 可靠性较差, 同时增加了驱动部件的外径, 影响了动平衡, 易引起较大的振动和噪声。 发明内容
本发明针对柔性动力传递调节问题,提出了一种柔性动力传递装置,用以解决柔性动 力传递稳定调节传递扭矩的问题, 实现了柔性动力传递的稳定调节。
一种柔性动力传递装置, 一种柔性动力传递装置, 包括输入轴、 导体筒、 导体环、永 磁体筒、 永磁体、 输出轴、 花键、 花键套, 导体环安装在导体筒的内壁上, 永磁体安装在 永磁体筒的外壁上, 永磁体与导体环之间有气隙, 永磁体筒与输出轴相连接, 花键与输入 轴相连接, 花键套与导体筒相连接, 花键与花键套相连接。 由于花键套可以在花键上沿轴 向移动,且由于花键套通过导体筒与导体环连接在一起,通过花键套的移动带动导体环的 移动, 从而改变导体环与永磁体的作用面积, 进一步的改变输出的扭矩。通过花键套移动 使输出扭矩达到所需的扭矩后,可以通过螺丝把花键套固定在花键上, 当然也可以用其他 的公知的方法使花键套固定在花键上。花键连接承载能力高,对中性好且便于导向的优点。 由于花键位于花键套内, 具有制造方便、 成本低、 结构简单、 稳定性好、 噪声低的特点。 本发明中的装置与其他部件同步旋转, 并通过驱动导体筒进行柔性动力传递的调节,减少 了通过调节负载装置时因转速差变化带来的动载荷的干扰,使调节变得简单,稳定且高效。
优选地:导体筒上靠近花键套的一侧设置有支撑面,支撑面的中心位置上设置有螺纹 孔,螺纹杆安装在螺纹孔内,输入轴的另一端的中心部位设置有空腔,空腔内设置有电机, 电机与螺纹杆的另一端相连接。使用螺纹杆可以更准确的调节输出扭矩的大小。通过电机 使螺纹杆旋转可以方便迅速、精确的调节输出扭矩的大小。电机停止时通过螺纹杆螺母相 互作用实现导体筒的自锁, 从而实现导体筒的轴向精确定位。
优选地:螺纹杆的一端与输出轴相连接,螺纹杆可以相对于输出轴旋转且不能沿轴向 移动。由于导体筒和花键套的一部分重量会有螺纹杆来承受,螺紋杆的一端与输出轴相连 接,这样可以使螺纹杆的受力由原来的悬臂梁结构变为简支梁结构,使螺纹杆的受力更为 均匀。 螺纹杆只能由电机来传动, 不能由输出轴传动。
优选地: 输出轴的一端的中心部位设置有空腔, 空腔内安装有轴承, 螺纹杆的一端安 装在轴承内。 这种结构更为简单, 容易维修。
优选地: 还包括电机滑环, 电机滑环安装在输入轴上, 电机滑环与电机相连接。 此方 案解决了高速旋转轴内嵌电机的供电和信号传输的问题。
优选地: 永磁体筒外壁上至少安装有一圈永磁体, 在与永磁体相对应的位置上, 导体 筒的内壁上至少安装有一圈导体环。 这样设置的目的在于使输出轴受力均匀。
优选地: 永磁体筒的左右外壁上分别安装有一圈永磁体, 永磁体之间存在间隔, 在与 永磁体相对应的位置上,导体筒的左右二侧分别安装有导体环,永磁体之间的间隔大于导 体环的宽度, 导体环之间的间隔大于永磁体的宽度。因此导体环可以移动到永磁体之间的 间隔上方, 永磁体位于导体环间隔的下方, 使导体环与永磁体完全不相互作用, 从而实现
输出扭矩从 0- 100%的调节。
优选地: 永磁体与导体环的宽度相同。这样设计可以使结构更为紧凑, 且当导体筒移 动一个导体环的宽度即可实现输出扭矩从 0-100%的调节。
优选地: 花键的侧壁上设置有散热孔, 导体筒的的支撑面上设置有散热孔, 永磁体筒 的支撑筒上设置有散热孔。上述一系列散热孔的设置使一种柔性动力传递装置内部热气可 以与左右二侧的空气对流, 起到散热的效果。
优选地:花键套和导体筒形成的整体的重心位于花键套的内腔范围内。这样做可以使 花键套与导体筒的结合体的重量的大部分由花键来承受, 更有利于本结构的稳定。
有益效果:
与现有技术相比,本发明中的装置与其他部件同步旋转,并通过驱动导体筒进行柔性 动力传递的调节,减少了通过调节负载装置时因转速差变化带来的动载荷的干扰,使调节 变得简单, 稳定且高效。
本发明通过传输信号控制内嵌电机的转速,转向,来驱动导体筒轴向移动速度与正反 向移动, 电机停止时通过螺纹杆螺母相互作用实现导体筒的自锁,从而实现导体筒的轴向 精确定位,装置与动力部件同步并通过驱动导体筒进行柔性动力传递的调节,减少了通过 调节负载装置时因转速差变化带来的动载荷的干扰, 使调节变得简单, 稳定且高效。 附图说明
图 1为一种柔性动力传递装置结构示意图。
图 2为导体筒结构示意图。
图 3为输入装置结构示意图。
图 4为花键和花键套结构示意图。
图 5为永磁体筒结构示意图。
图 6为输出装置结构示意图。
图 7为调节装置结构示意图。
附图标记名称如下:
1、 输入轴; 2、 滑环; 3、 限位挡圈; 4、 花键套; 5、 花键; 6、 螺栓; 7、 导体筒; 8、螺 栓; 9、 永磁体挡圈: 10、 永磁体; 1 1、 导体环; 12、 永磁体筒; 13、 输出轴; 14、 轴承; 15、 轴承端盖; 16、 螺栓; 17、 螺纹杆; 18、 螺栓; 19、 螺母; 20、 螺栓; 21、 平键; 22、 套筒; 23、 螺栓; 24、 螺栓; 25、 平键; 26、 内嵌电机; 27、 散热孔; 28、 空腔; 29、散 热孔; 30、 散热孔; 31、 螺丝; 32、 空腔。
具体实施方式
如图所示, 一种柔性动力传递装置, 包括输入装置, 输出装置和调节装置。 输入装置 包括输入轴 1、 导体筒 7、 导体环 1 1 ; 调节装置包括花键 5、 花键套 4、 电机 26、 螺纹杆 17、螺母 19; 输出装置包括永磁体 10、 永磁体筒 12、输出轴。输入轴 1的截面为阶梯状, 输入轴 1的一端(图 1中的左侧)与传动装置相连接。 花键 5为圆筒状, 在筒状的外表面 上均布有花键, 花键 5与输入轴 1的另一端相连接, 花键 5套装在输入轴 1上, 并通过螺
栓 6使花键 5固定安装在输入轴 1上。花键套 4也为圆筒状,花键套 4的内表面上均布有 与花键 5上的花键相对应的花键槽,花键 5安装在花键套 4内,花键 5和花键套 4相连接 形成花键连接, 花键套 4可以在花键 5上沿轴向左右移动。 花键套 4上开有螺纹孔, 螺纹 孔中安装有螺丝 31, 当花键套 4在花键 5上移动到所需要的位置上以后, 拧紧螺丝 31, 使花键套 4与花键 5固定连接在一起。 花键套 4的左侧还安装有限位挡圈 3, 限位挡圈 3 通过螺栓 24固定安装在花键套 4的左侧, 当花键套 4向右侧移动到最右端时, 限位挡圈 3使花键套 4不能从花键 5上滑出。 花键槽距离花键套 4的最右侧有一定的间隙, 使得花 键套 4向左侧滑动时不能从花键 5上滑出,起到对花键套 4的限位作用。花键套 4和导体 筒 7通过凹凸结构相连接, 并使用螺栓 20把花键套 4与导体筒 7固定连接在一起。 导体 筒 7亦为圆筒状, 在导体筒 7的内表面上安装有至少一个导体环 11, 导体环 1 1为导电体 且具有导磁性,最好使用铜作为制作材料。从而使得导体筒 7通过花键套 4在传递输入轴 1的扭矩的同时也可以沿轴向自由滑动。 永磁体筒 12的筒内设置有支撑筒, 支撑筒与永 磁体筒 12为一整体, 永磁体筒 12通过支撑筒套装于输出轴 13的一端上, 并通过螺栓 16 使二者固定连接在一起。输出轴 13的另一端与负载相连接。永磁体筒 12的外表面上与导 体环 1 1相对应的位置上安装有至少一个永磁体 10, 永磁体 10与导体环 1 1之间存在一定 的气隙。 永磁体筒 12可为金属材料或非金属材料, 只要有一定强度和刚度即可; 永磁体 10采用强永磁材料做成。 永磁体筒 12的两侧还分别安装有永磁体挡圈 9, 永磁体挡圈 9 通过螺栓 8固定安装在永磁体筒 12上, 以防止永磁体 10向二侧串动。导体筒 7上靠近花 键套的一侧设置有内部设置有支撑面,在本实施例中支撑面设置在导体筒 7的左侧,支撑 面与导体筒 7为一整体。支撑面的中心部位设置有通孔,通孔的中心线与输入轴 1的中心 线相重叠。 所述通孔内内嵌有螺母 19, 螺母 19通过螺栓 18固定安装在支撑面上, 使螺 母 19与导体筒 7成为一整体。 螺纹杆 17安装在螺母 19内, 螺母 19与螺纹杆 17形成螺 纹杆螺母副。 当然也可以直接在支撑面的中心位置上直接设置螺纹孔, 使螺纹杆 17安装 在螺纹孔内。 螺纹杆 17的一端通过轴承与输入轴 1或者输出轴 13相连接, 使螺纹杆 17 不能相对于输入轴 1或者输出轴 13轴向移动,但螺纹杆 17可以相对于输入轴 1或者输出 轴 13旋转。 在本实施例中输出轴 13靠近输出轴 1的一端的中间部位设置一空腔 28, 并 在空腔 28内安装一轴承 14, 所述轴承 14的外圈与输出轴内的空腔 28采用紧配合, 螺纹 杆 17的另一端安装在轴承 14的内圈中,螺纹杆 17的另一端与轴承 14的内圈采用紧配合, 采用紧配合可以防止螺纹杆 Π的轴向串动。为了更好地保护轴承 14的使用寿命及防止轴 承 14的串动, 轴承 14的左侧还安装有轴承端盖 15。 通过螺纹杆 17的转动调节来调节导 体环 1 1的左右移动。使用螺纹杆 17可以更准确的调节输出扭矩的大小,避免了直接通过 移动花键套 4带来的扭矩传递大小的不准确性。更进一步的输入轴 1的另一端的中间部位 有一空腔 32, 电机 26通过螺栓 23固定安装在空腔 32内, 电机 26的输出轴的中心线位 于输入轴 1的中心线上。螺纹杆 17的一端与电机 26的输出轴相连接。在电机输入轴上设 置有平键 25, 螺纹杆 17上设置有平键 21, 套筒 22上设置有与平键 25、 平键 21相对应 的键槽, 通过套筒 22、 平键 25、 平键 21把螺纹杆 17与输入轴 1相连接。 由于电机在停
止运转后具有自锁作用, 螺纹杆 17也不会旋转, 输出扭矩的大小是稳定的, 更进一步的 电机 26可以精确的转动, 可以精确的调节输出扭矩的大小。 在此结构中, 由于导体筒 7 及花键套 4的一部分重量作用在螺纹杆 17上, 由于电机 26与轴承 14的配合使用更进一 步的加强螺纹杆 17的稳定性, 使螺纹杆的受力更加均匀。 减小了螺纹杆整体变形量, 从 而减小了噪声和振动并提高了传递精度。
所述装置在未进行调节时, 电机 26、 螺纹杆 17、 螺母 19、 花键 5、 花键套 4、 导体 筒 7随输入轴 1共同旋转运动,相互之间不存在相对运动。当电机 26接收到控制信号后, 带动螺纹杆 17转动, 由于螺纹杆 17本身不移动, 驱动螺母 19作轴向运动, 由于花键套 4、 导体筒 7、 螺母 19相互连接形成一个整体, 螺母的轴向运动带动花键套 4及导体筒 7 作轴向移动。使导体筒 7上导体环 11与永磁体 10之间的作用面积发生变化,起到了输出 扭矩的大小发生了改变。
所述导体环 1 1至少为一圈, 可以为一圈, 也可以是多圈, 在本实施例中采用了二圈, 在导体筒 7的左右二侧分别设置一圈导体环 1 1。 每圈导体环 1 1可以是完整的一圈。 也可 以是分段式的一圈, 也就是说将分块的导体板绕成一圈形成环状安装在导体筒 7的内壁 上。 设置在永磁体筒 12上的永磁体 10至少为一圈, 可以为一圈, 也可以是多圈, 在本实 施例中采用了二圈, 在永磁体筒 12的左右二侧分别设置一圈永磁体 10, 二圈永磁体 10 之间相隔一定的间隔。 每圈永磁体 10可以是完整的一圈。 也可以是分段式的一圈, 也就 是说将分块的永磁体板绕成一圈形成环状安装在永磁体筒 10的外壁上。导体环 11圈数的 多少、 宽度的大小以及导体板的数量可以根据所需负载的大小来调整; 同样永磁体 10的 圈数的多少、宽度的大小、永磁体板的数量以及磁性的大小也可以根据负载的大小来调整。
在本实施例中导体环 11安装在永磁体 10的正上方, 导体环 1 1的宽度与永磁体 10 的宽度相同。二个永磁体 10之间的间隔大于单个导体环 11的宽度, 当导体筒 7向左移动 时, 只需移动一个导体环 1 1的宽度就可以使导体环 11与永磁体 10的作用面积变为 0。 因此本实施例可以实现导体环 1 1与永磁体 10之间的作用面积从 0变化为 100%, 大大缩 短了调节距离。
所述花键 5以及花键套 4,是利用花键连接承载能力高,对中性好且便于导向的优点, 适用于本装置的动联接的特点。
所述导体筒 7和花键套 4, 在结构设计过程中, 使导体筒 7和花键套 4的结合体的重 心保持在位于花键套 4的内腔范围内, 由于花键 5具有一定的宽度,这样可以使结合体的 全部重量落在花键 5上, 螺纹杆 17无须承受花键套 4及导体筒 7的重量, 减小了螺纹杆 17由于受力而产生的变形,从而更进一步的保证了螺纹杆 7调节的精确性。所述电机 26, 在其传递电能以及电信号方式上采用滑环 2通电形式,滑环 2安装在输入轴 1上,并且滑 环 2与电机 26通过导线相连接。
导体筒 7的支撑面上开有多个散热孔 30,其目的在于使支撑面二侧的空气产生对流, 从而达到散热的目的。 花键 5的支撑面上开有多个散热孔 29, 其目的在于使花键 5二侧 的空气产生对流, 从而达到散热的目的。 永磁体筒 12的支撑筒上开有多个散热孔 27,其
目的在于支撑筒二侧的空气产生对流, 从而达到散热的目的。
本发明的工作原理如下:永磁体筒 12外侧布置的永磁体 10会在气隙中形成一定的磁 场, 当导体筒 7随输入轴旋转时, 其内侧布置的导体环 1 1做切割磁感线运动便会在导体 环 11中产生感应电流, 该电流和原先磁场相互作用, 可使永磁体筒 12受到一个和导体筒 7旋转方向一致的电磁转矩, 而使永磁体筒 12转动, 从而起到柔性传递扭矩的作用。 当 内嵌电机 26接收到控制信号后, 带动螺纹杆 17转动, 产生了相对运动, 通过螺纹杆与螺 母变转动为轴向运动, 从而带动导体筒 7和花键套 4固连体沿轴向左右移动, 使导体环 11和永磁体 10之间的作用面积发生变化,在本实施例中由于作用面积可以实现从 0-100% 的调节范围, 那么输出扭矩的变化也可以实现 0-100%的调节范围, 从而实现了调节输出 扭矩的目的。
Claims
权 利 要 求 书
1、一种柔性动力传递装置, 包括输入轴(1)、 导体筒(7)、 导体环(11)、永磁体筒(12)、 永磁体 (10)、 输出轴 (13), 导体环 (11) 安装在导体筒 (7) 的内壁上, 永磁体 (10) 安装在永磁体筒(12)的外壁上,永磁体(10)与导体环(11)之间有气隙,永磁体筒(12) 与输出轴 (13) 相连接, 其特征在于: 还包括花键 (5)、 花键套 (4), 花键 (5) 与输入 轴 (1) 相连接, 花键套 (4) 与导体筒 (7) 相连接, 花键 (5) 与花键套 (4) 相连接。
2、 根据权利要求 1所述的装置, 其特征在于: 还包括电机 (26)、 螺纹杆 (17), 导体筒 (7)上靠近花键套(4) 的一侧设置有支撑面, 支撑面的中心位置上设置有螺纹孔, 螺纹 杆(17)安装在螺纹孔内, 输入轴(1)的另一端的中心部位设置有空腔(32), 空腔(32) 内设置有电机 (26), 电机 (26) 与螺纹杆 (17) 的另一端相连接。
3、 根据权利要求 2所述的装置, 其特征在于: 螺纹杆 (17) 的一端与输出轴 (13) 相连 接, 螺纹杆 (17) 可以相对于输出轴 (13) 旋转且不能沿轴向移动。
4、 根据权利要求 3所述的装置, 其特征在于: 输出轴 (13) 的一端的中心部位设置有空 腔 (28), 空腔 (28) 内安装有轴承 (14), 螺纹杆 (17) 的一端安装在轴承 (14) 内。
5、 根据权利要求 2所述的装置, 其特征在于: 还包括电机滑环 (2), 电机滑环(2)安装 在输入轴 (1) 上, 电机滑环 (2) 与电机 (26) 相连接。
6、 根据权利要求 1所述的装置, 其特征在于: 永磁体筒 (12) 外壁上至少安装有一圈永 磁体(10), 在与永磁体(10)相对应的位置上, 导体筒 (7) 的内壁上至少安装有一圈导 体环 (11)。
7、 根据权利要求 6所述的装置, 其特征在于: 永磁体筒 (12) 的左右外壁上分别安装有 一圈永磁体 (10), 永磁体 (10) 之间存在间隔, 在与永磁体 (10) 相对应的位置上, 导 体筒(7)的左右二侧分别安装有导体环(11), 永磁体(10)之间的间隔大于导体环(11) 的宽度, 导体环 (11) 之间的间隔大于永磁体 (10) 的宽度。
8、 根据权利要求 7所述的装置, 其特征在于: 永磁体(10) 与导体环 (11) 的宽度相同。
9、 根据权利要求 1所述的装置, 其特征在于: 花键 (5) 的侧壁上设置有散热孔 (29), 导体筒 (7) 的的支撑面上设置有散热孔(30), 永磁体筒 (12) 的支撑筒上设置有散热孔
(27)。
10、 根据权利要求 1所述的装置, 其特征在于: 花键套 (4)和导体筒 (7)形成的结合体 的重心位于花键套 (4) 的内腔范围内。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310498689.0A CN103532339B (zh) | 2013-10-21 | 2013-10-21 | 一种柔性动力传递装置 |
CN201310498689.0 | 2013-10-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015058327A1 true WO2015058327A1 (zh) | 2015-04-30 |
Family
ID=49934109
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2013/001540 WO2015058327A1 (zh) | 2013-10-21 | 2013-12-11 | 一种柔性动力传递装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103532339B (zh) |
WO (1) | WO2015058327A1 (zh) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015184564A1 (zh) * | 2014-06-04 | 2015-12-10 | 李启飞 | F型滚珠丝杠电动调速盘式磁力耦合器 |
WO2015184562A1 (zh) * | 2014-06-04 | 2015-12-10 | 李启飞 | E型滚珠丝杠电动调速盘式磁力耦合器 |
WO2015184563A1 (zh) * | 2014-06-04 | 2015-12-10 | 李启飞 | D型滚珠丝杠电动调速盘式磁力耦合器 |
WO2015184565A1 (zh) * | 2014-06-04 | 2015-12-10 | 李启飞 | 滚珠丝杠电动调速筒式磁力耦合器 |
CN105281538A (zh) * | 2014-07-22 | 2016-01-27 | 李启飞 | G型滚珠丝杠电动调速盘式磁力耦合器 |
CN105896893A (zh) * | 2014-11-25 | 2016-08-24 | 李启飞 | T型滚珠丝杠电动调速盘式磁力耦合器 |
CN105896897A (zh) * | 2014-12-03 | 2016-08-24 | 李启飞 | Tx型滚珠丝杠电动调速筒式磁力耦合器 |
CN109962599A (zh) * | 2017-12-22 | 2019-07-02 | 南京艾凌节能技术有限公司 | 一种台阶式永磁调速器 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040051413A1 (en) * | 2002-09-16 | 2004-03-18 | Abraham Liran | Kinetic energy transmission by using an electromagnetic clutch |
CN101222172A (zh) * | 2006-12-22 | 2008-07-16 | 通用电气公司 | 旋转机械的可变磁性联接 |
CN102624198A (zh) * | 2012-04-20 | 2012-08-01 | 林贵生 | 带冷却和润滑装置的永磁耦合传动、制动或负载装置 |
CN203537212U (zh) * | 2013-10-21 | 2014-04-09 | 苏州科睿特能源科技有限公司 | 一种柔性动力传递装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2104606C1 (ru) * | 1994-06-24 | 1998-02-10 | Иван Дмитриевич Сизов | Электропривод |
CN201478983U (zh) * | 2009-06-22 | 2010-05-19 | 余亚莉 | 一种筒型传动轴永磁耦合装置 |
CN201560315U (zh) * | 2009-10-30 | 2010-08-25 | 江西华腾地毯产业园有限公司 | 提花簇绒机的针梁伺服横动装置 |
CN102367764A (zh) * | 2011-04-01 | 2012-03-07 | 湖南华强电气有限公司 | 汽车发动机 |
-
2013
- 2013-10-21 CN CN201310498689.0A patent/CN103532339B/zh active Active
- 2013-12-11 WO PCT/CN2013/001540 patent/WO2015058327A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040051413A1 (en) * | 2002-09-16 | 2004-03-18 | Abraham Liran | Kinetic energy transmission by using an electromagnetic clutch |
CN101222172A (zh) * | 2006-12-22 | 2008-07-16 | 通用电气公司 | 旋转机械的可变磁性联接 |
CN102624198A (zh) * | 2012-04-20 | 2012-08-01 | 林贵生 | 带冷却和润滑装置的永磁耦合传动、制动或负载装置 |
CN203537212U (zh) * | 2013-10-21 | 2014-04-09 | 苏州科睿特能源科技有限公司 | 一种柔性动力传递装置 |
Also Published As
Publication number | Publication date |
---|---|
CN103532339B (zh) | 2016-05-18 |
CN103532339A (zh) | 2014-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015058327A1 (zh) | 一种柔性动力传递装置 | |
US11239738B2 (en) | Variable-speed magnetic coupling having radially movable magnet | |
WO2015058326A1 (zh) | 一种柔性扭矩传递装置 | |
CN110460221B (zh) | 一种磁体旋转型筒式可调速磁力耦合器 | |
CN101917112B (zh) | 远程自动控制可调速式盘式磁力联轴器 | |
CN103701256B (zh) | 一种柔性动力传递调节装置 | |
CN104539134A (zh) | 径向间隙可调型永磁调速器 | |
CN101951116A (zh) | 永磁调速器 | |
CN107546954B (zh) | 一种单永磁盘永磁调速器 | |
CN203827156U (zh) | 一种永磁调速器 | |
CN104052217A (zh) | 一种盘式永磁调速器 | |
EP3072226B1 (en) | Magnetic coupling assembly | |
CN102931806B (zh) | 一种啮合面积可调式异步磁力变矩器及其调速方法 | |
CN103915972A (zh) | 一种自馈式永磁电涡流调速器 | |
WO2015137814A1 (en) | Magnetic coupling assembly | |
CN104660007A (zh) | 双支撑永磁涡流柔性变速器 | |
CN104467359A (zh) | 一种永磁调速节能联轴器 | |
CN203537212U (zh) | 一种柔性动力传递装置 | |
CN103107679B (zh) | 一种圆盘式时滞效应较小的永磁涡流联轴器 | |
EP3117509B1 (en) | Magnetic coupling assembly | |
CN204244053U (zh) | 径向间隙可调型永磁调速器 | |
CN203660754U (zh) | 一种柔性动力传递调节装置 | |
CN204652202U (zh) | 永磁节能调速一体化电机 | |
CN204481667U (zh) | 双支撑永磁涡流柔性变速器 | |
CN204886607U (zh) | 矿用自动调速磁力耦合器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13895807 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC , EPO FORM 1205A DATED 16.09.2016 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13895807 Country of ref document: EP Kind code of ref document: A1 |