WO2021027402A1 - 一种1400MPa级耐延迟断裂高强度螺栓及制造方法 - Google Patents

一种1400MPa级耐延迟断裂高强度螺栓及制造方法 Download PDF

Info

Publication number
WO2021027402A1
WO2021027402A1 PCT/CN2020/097868 CN2020097868W WO2021027402A1 WO 2021027402 A1 WO2021027402 A1 WO 2021027402A1 CN 2020097868 W CN2020097868 W CN 2020097868W WO 2021027402 A1 WO2021027402 A1 WO 2021027402A1
Authority
WO
WIPO (PCT)
Prior art keywords
strength
bolt
tempering
stage
delayed fracture
Prior art date
Application number
PCT/CN2020/097868
Other languages
English (en)
French (fr)
Inventor
王磊
郑宏伟
刘文学
陈兆勇
Original Assignee
南京钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京钢铁股份有限公司 filed Critical 南京钢铁股份有限公司
Priority to KR1020217043398A priority Critical patent/KR102668982B1/ko
Publication of WO2021027402A1 publication Critical patent/WO2021027402A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21HMAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
    • B21H3/00Making helical bodies or bodies having parts of helical shape
    • B21H3/02Making helical bodies or bodies having parts of helical shape external screw-threads ; Making dies for thread rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/32Soft annealing, e.g. spheroidising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/58Oils
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0093Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for screws; for bolts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B35/00Screw-bolts; Stay-bolts; Screw-threaded studs; Screws; Set screws
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the invention relates to a high-strength bolt and a manufacturing method, in particular to a 1400MPa grade delayed fracture resistant high-strength bolt containing Cu and a manufacturing method.
  • the present invention provides a 1400MPa-class delayed fracture-resistant high-strength bolt.
  • Another object of the present invention is to provide a method for manufacturing the above-mentioned high-strength bolt.
  • the 1400MPa grade delayed fracture resistant high-strength bolt of the present invention contains C: 0.38-0.45%; Si ⁇ 0.25%; Mn: 0.30-0.60%; P ⁇ 0.015%; S ⁇ 0.010%; Cr: 0.90-1.10%; Mo: 0.50-0.60%; V: 0.15-0.35%; Nb: 0.02-0.04%; Cu: 0.5-0.8%; Al ⁇ 0.030%; Ti ⁇ 0.01%, N: 0.009-0.018%, the balance is Fe and inevitable impurities; the metallographic structure of the bolt is tempered martensite and retained austenite.
  • the raw material steel wire rod of the bolt has a passivation film on the surface of the base body, and the passivation film includes ⁇ -FeOOH and ⁇ -FeOOH.
  • the tempered martensite structure accounts for 98%, and the retained austenite structure accounts for 2%.
  • the C content In order to obtain the required strength level after quenching and tempering, the C content must be above 0.25%, but as the C content increases, the strength of the steel increases, and the plasticity decreases, making it difficult to form, thereby further increasing the delayed fracture of the steel Sensitivity, such as the 1300MPa grade delayed fracture resistant high-strength bolt steel ADS3 developed by Japan’s Sumitomo Metals is due to the high C content (0.49%), which deteriorates the cold workability of the test steel. Based on the above reasons, the C content of this patent is controlled at 0.38-0.45%.
  • Si It can promote the oxidation of austenite grain size and the grain boundary segregation of impurity elements P and S at high temperature, which will deteriorate the delayed fracture resistance of the steel, and also deteriorate the cold workability of the steel, thus controlling Si ⁇ 0.25%.
  • Mn It is an austenite forming element and a weak carbon forming element. Almost all steels contain Mn element. Mn is an effective element for deoxidation and desulfurization during steelmaking, and can also improve the hardenability and strength of steel. However, when the Mn content is less than 0.3%, the above effects cannot be achieved. When the Mn element content in the steel is high, the quenched steel is tempered, and Mn and P have a strong tendency of grain boundary co-segregation, so the Mn element content is controlled between 0.30-0.60%.
  • P is easy to form micro-segregation during the solidification of molten steel, and then segregates at the grain boundary when heated at austenitizing temperature, which increases the brittleness of the steel and reduces the delayed fracture performance, so the content of P should be controlled at 0.015% the following.
  • S It is an unavoidable impurity during steelmaking. S element will form MnS inclusions with Mn element in steel. At the same time, S element is easy to segregate at the grain boundary, so the content of the controller is required to be below 0.010%.
  • Cr has the effect of improving the flame resistance and corrosion resistance of steel, and can be precipitated as carbides during tempering to improve the strength and delayed fracture resistance.
  • Cr In order to make full use of the Cr element composition, Cr must be higher than 0.90%. At the same time, if the Cr content is excessive, the cold workability will be affected. Therefore, the upper limit of the Cr element content must be controlled, and the preferable lower limit is 1.10% or less.
  • Mo It can effectively improve the hardenability of steel. At the same time, Mo is a medium-strength carbide forming element. When tempering in an appropriate tempering interval, it can effectively precipitate special carbides, in order to make the Mo component play the above role , The content of Mo must be 0.50-0.60%.
  • V It is a strong carbide forming element, which can effectively refine grains, and can precipitate special carbides during tempering. These special carbides can effectively improve the strength of steel, and at the same time can be used as a hydrogen trap to capture free hydrogen in steel.
  • the content of V element In order to improve the delayed fracture resistance of steel, in order to exert the above-mentioned effects, the content of V element must be above 0.15%, but the excessive V content will cause the formation of coarse carbides during rolling of the steel and reduce the cold workability of the steel. Control it below 0.35%.
  • Nb It is a strong carbide forming element that can refine grains and improve the toughness and strength of steel. When its content is less than 0.02%, the above effects cannot be achieved. When it exceeds 0.04%, it is saturated and increases costs.
  • Cu can improve the corrosion resistance and inhibit the intrusion of hydrogen, thereby further improving the delayed fracture resistance of steel.
  • the content of Cu is less than 0.5%, the above effect cannot be achieved.
  • the content of Cu is more than 0.8%, the content of Cu is saturated. It will reduce the strength and delayed fracture resistance of steel, and will increase the cost of steel.
  • Al In addition to forming AlN refined grains, it can also effectively remove oxygen from steel. It is a good deoxidizer. However, with the increase of Al element content, the content of carbonitride inclusions increases, and the delayed fracture resistance decline. Therefore, the Al element content is preferably 0.030% or less.
  • TiN and TiC are easy to form in the rolling stage. These special second phases can serve as hydrogen traps, but because their hydrogen trapping effect is not as good as V and Nb elements, the amount added here is not much, less than 0.01%.
  • N It can form fine nitrides with Al, Nb, V and other elements to refine the grains. However, the addition of a large amount of N elements will cause N segregation and grain boundaries to reduce the strength of the grain boundaries. Coarse inclusions will be formed, so their content should be controlled between 0.009-0.018%.
  • the technical solution adopted in the manufacturing method of the above-mentioned high-strength bolt of the present invention is that the manufacturing process includes raw material spheroidizing annealing ⁇ cold drawing ⁇ spheroidizing annealing ⁇ cold heading forming ⁇ high temperature quenching ⁇ two-stage tempering treatment ⁇ Machining ⁇ Thread rolling ⁇ Surface phosphating treatment; wherein, the high temperature quenching is austenitizing by heating at 940-960°C, holding for more than 1h and then quenching and cooling, the quenching medium is oil; in the two-stage tempering treatment The first stage of tempering is to reheat the sample to 450-550°C after high temperature quenching and cooling, and keep it for 1-5h to fully disperse and precipitate the copper-rich phase ⁇ -Cu in the tempered matrix; the second stage of tempering After the first stage of tempering, continue to be heated to 590-600°C with the furnace without cooling, and keep it for 1-2h to fully dispers
  • the holding time is 1 h; for high-strength bolts with a diameter of 16 mm or more, the holding time is greater than 1 h.
  • the dispersed and precipitated fine second-phase particles include VC and Mo 2 C.
  • the chemical elements of the high-strength bolts contain alloying elements such as Mo, Cu, and V.
  • the high-temperature quenching and two-stage tempering treatment methods are adopted to fully disperse and precipitate the copper-rich phase ( ⁇ -Cu) in the tempered matrix structure.
  • VC, Mo 2 C and other fine second phase particles make the bolts have high delayed fracture resistance and corrosion resistance when they reach the strength level of 1400 MPa.
  • Figure 1 is a photomicrograph of the metallographic structure of the high-strength bolt of the present invention.
  • the present invention discloses a 1400MPa grade delayed fracture resistant high-strength bolt. Its chemical composition contains C: 0.38-0.45%; Si ⁇ 0.25%; Mn: 0.30-0.60%; P ⁇ 0.015%; S ⁇ 0.010%; Cr: 0.90-1.10%; Mo: 0.50-0.60%; V: 0.15-0.35%; Nb: 0.02-0.04%; Cu: 0.5-0.8%; Al ⁇ 0.030%; Ti ⁇ 0.01%, N: 0.009-0.018%, the balance is Fe and unavoidable impurities.
  • the manufacturing process includes raw material spheroidizing annealing ⁇ cold drawing ⁇ spheroidizing annealing ⁇ cold heading forming ⁇ high temperature quenching ⁇ two-stage tempering treatment ⁇ machining ⁇ thread rolling ⁇ surface phosphating treatment.
  • the high-temperature quenching is based on the characteristics of alloying elements such as Mo, Cu, and V in the raw material bolt steel, heating austenitizing at a higher temperature of 940-960 °C, and holding for more than 1 h to make the Mo, Alloying elements such as Cu and V are completely or partly dissolved in the austenite, and quenched and cooled by oil, after quenching and cooling, the martensite and retained austenite with higher alloy content are obtained;
  • the first stage of tempering is to reheat the sample to 450-550°C after high temperature quenching and cooling, and keep it for 1-5h to make the copper-rich phase ⁇ -Cu in the tempered matrix sufficiently Dispersion precipitation causes dispersion strengthening.
  • precipitation of Cu element and Cu element segregation can induce the precipitation of elemental carbides such as Mo and V, which enhances the hydrogen trapping effect and improves the delayed fracture resistance and corrosion resistance of the bolt;
  • the second-stage tempering is to continue heating to 590-600°C in the furnace without cooling after the first-stage tempering, and keep it for 1-2h.
  • the heat preservation at this stage makes the fine second-phase particles such as VC and Mo 2 C fully dispersed in the steel. Precipitation causes dispersion strengthening, so that the bolt obtains higher toughness and plasticity through higher tempering temperature and still has higher strength.
  • the holding time is 1h; for high-strength bolts with a diameter of more than 16mm, the holding time is more than 1h.
  • Example 1 Preparation of 14mm high-strength bolts, the mass percentage of the chemical composition is: C: 0.43%; Si: 0.14%; Mn: 0.30%; P: 0.003%; S: 0.010%; Cr: 1.10%; Mo: 0.50%; V: 0.33%; Nb: 0.04%; Cu: 0.53%; Al: 0.01%; Ti ⁇ 0.01%; N: 0.009-0.018%, the balance being Fe and impurities.
  • High temperature quenching and two-stage tempering treatment mainly include: heating to 940°C, holding for 1h, then oil quenching, after cooling to room temperature, reheating to 450°C, holding for 1.5h, and continuing to heat up to 590°C after holding for 1.5h After the heat preservation, take out air cooling.
  • the tensile strength of the bolt is 1503MPa
  • the reduction of area is 51.26%
  • the elongation after fracture is 12.2%
  • the delayed fracture strength ratio of the constant load notch tensile test is 0.63.
  • Example 2 Preparation of 16mm high-strength bolts, the mass percentage of the chemical composition is: C: 0.45%; Si: 0.25%; Mn: 0.30%; P: 0.003%; S: 0.010%; Cr: 1.00%; Mo: 0.55%; V: 0.35%; Nb: 0.037%; Cu: 0.65%; Al: 0.03%; Ti ⁇ 0.01%; N: 0.009-0.018%, the balance being Fe and unavoidable impurities.
  • High temperature quenching and two-stage tempering treatment mainly include: heating to 940°C and holding for 1.5h, then oil quenching, after cooling to room temperature, reheating to 500°C, holding for 2h, and then continuing to heat up to 590°C, holding for 1h, After the heat preservation is finished, take out air cooling.
  • the tensile strength of the bolt is 1467MPa
  • the reduction of area is 53.12%
  • the elongation after fracture is 13.1%
  • the delayed fracture strength ratio of the constant load notch tensile test is 0.66.
  • Example 3 Preparation of 20mm high-strength bolts, the mass percentage of the chemical composition is: C: 0.38%; Mn: 0.60%; P: 0.015%; S: 0.010%; Cr: 0.9%; Mo: 0.6%; V: 0.25%; Nb: 0.03%; Cu: 0.8%; Al: 0.01%; Ti ⁇ 0.01%; N: 0.009-0.018%, the balance is Fe and unavoidable impurities.
  • High temperature quenching and two-stage tempering treatment mainly include: heating to 950°C and holding for 1.5h, then oil quenching, after cooling to room temperature, reheating to 520°C, holding for 3h, and then continuing to heat up to 600°C, holding for 2h, After the heat preservation, take out the air cooling.
  • the tensile strength of the bolt is 1445MPa
  • the reduction of area is 55.34%
  • the elongation after fracture is 14.1%
  • the delayed fracture strength ratio of the constant load notch tensile test is 0.68.
  • Example 4 Preparation of 16mm high-strength bolts, the mass percentage of the chemical composition is: C: 0.40%; Si: 0.14%; Mn: 0.45%; P: 0.003%; S: 0.010%; Cr: 1.10%; Mo: 0.55%; V: 0.15%; Nb: 0.02%; Cu: 0.75%; Al: 0.01%; Ti ⁇ 0.01%; N: 0.009-0.018%, high temperature quenching and two-stage tempering treatment mainly include: heating to 960°C After heat preservation for 1.2h, then oil quenching, after cooling to room temperature, reheat to 550°C, heat preservation for 5h, after the heat preservation, continue to heat up to 600°C, heat preservation for 2h, after the heat preservation, take out air cooling, after the above process, the bolt resistance
  • the tensile strength is 1456 MPa
  • the reduction of area is 54.27%
  • the elongation after fracture is 15.2
  • Comparative Example 1 does not contain Cu: After the above process, the tensile strength of the bolt is 1486MPa, the reduction of area is 52.13%, and the delayed fracture strength ratio of the constant load notch tensile test is 0.52. It can be seen that the strength of the steel has decreased, but The decrease is not large. Since Comparative Example 1 does not contain Cu element, when the bolt surface is corroded by the outside, the passive film that protects the substrate cannot be formed on the surface of the bolt, which increases the possibility of hydrogen intrusion into the steel substrate, thereby reducing its delayed fracture resistance.
  • the Cu content of Comparative Example 2-1 is less than 0.5%: the tensile strength of the bolt after the above process is 1507 MPa, and the delayed fracture strength ratio of the constant load notch tensile test is 0.54. It can be seen that the Cu content is too low to enhance the strength of the steel itself and improve the corrosion resistance of the steel. At this time, although the strength of the steel is not much different from that of Comparative Example 1, its delayed fracture resistance is poor.
  • the Cu content of Comparative Example 2-2 is greater than 0.8%: the tensile strength of the bolt after the above process is 1386 MPa. It can be seen that the Cu content is too high, and the strength of the steel is further reduced, and it can no longer meet the performance requirements of the 1400MPa strength level.
  • the 14mm bolt is not manufactured according to the manufacturing process of the present invention: its high temperature quenching and two-stage tempering treatment mainly include: heating to 940°C, holding for 1 hour, then oil quenching, and then heating to 450°C after cooling to room temperature, and holding After the heat preservation, take out the air cooling, and then continue to heat up to 590°C for 1.5h. After the heat preservation, take out the air cooling.
  • the tensile strength of the bolt is 1389MPa, and the constant load notch tensile test is delayed.
  • the breaking strength ratio is 0.56, its strength can no longer meet the performance requirements of the 1400MPa strength level, and the delayed fracture performance is also weak.
  • the tempering temperature of the first stage is not within the limit of the present invention: the preparation of 14mm high-strength bolts, high-temperature quenching and two-stage tempering treatment mainly include: heat preservation after heating to 940°C 1h, then oil quenching, after cooling to room temperature, reheat to 580°C, keep for 1.5h, continue to heat up to 590°C, keep for 1.5h after keeping warm, take out air cooling after keeping warm, and after the above process, the bolt tensile strength The strength is 1452MPa, and the delayed fracture strength ratio of the constant load notch tensile test is 0.55. Although the strength of the steel meets the requirements at this time, its delayed fracture resistance is poor.
  • the second-stage tempering temperature of Comparative Example 5 is not within the scope of the present invention: the preparation of 14mm high-strength bolts, high-temperature quenching and two-stage tempering treatment mainly include: heating to 940°C, holding for 1 hour, then oil quenching, and cooling to room temperature Then reheat to 450°C for 1.5h. After the heat preservation, continue to heat up to 620°C for 1.5h. After the heat preservation, take out air cooling. After the above process, the tensile strength of the bolt is 1483MPa, and the constant load notch tensile test The delayed fracture strength ratio is 0.51, which is similar to Comparative Example 4. Although the strength of steel meets the requirements at this time, its delayed fracture resistance is poor.
  • the high-strength bolt prepared by the composition design and preparation method of the present invention has obvious advantages in tensile strength and delayed fracture resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

一种1400MPa级耐延迟断裂高强度螺栓及制造方法,其化学元素中含有Mo、Cu、V等合金元素,采用高温淬火、两阶段回火处理方法,使回火基体组织中充分弥散析出富铜相ε-Cu以及VC、Mo 2C等细小第二相颗粒,使得螺栓在达到1400MPa强度级别时,具有较高的耐延迟断裂性能和耐腐蚀能力。该高强度螺栓充分利用合金元素Cu的析出相作用以及Mo、V、Nb、Ti等形成特殊碳、氮化合物的析出相作用,使螺栓的抗拉强度在1445MPa-1510MPa之间,断面收缩率在50-56%,断后伸长率不小于10%,恒载荷缺口拉伸试验的延迟断裂强度比在0.63-0.71,未添加稀土元素成本较低。

Description

一种1400MPa级耐延迟断裂高强度螺栓及制造方法 技术领域
本发明涉及一种高强度螺栓及制造方法,具体涉及一种含Cu元素的1400MPa级耐延迟断裂高强度螺栓及制造方法。
背景技术
汽车、机械、建筑、轻工等产业的发展,对制造各类紧固件(如螺栓、螺钉、螺母等)使用的材料提出了愈来愈高的要求。如汽车的高性能化和轻量化、建筑结构的高层化以及大桥的超长化等,对作为联接部件的螺栓提出了更高设计应力和轻量化的要求。对此,最有效的措施便是螺栓钢的高强度化。在螺栓使用过程中由于外部环境侵入的氢或在螺栓生产过程中表面磷化处理时侵入螺栓中的氢易使高强度螺栓发生延迟断裂,即使纳入各国标准中的12.9级甚至11.9级螺栓,在实际服役过程中亦发生了多次延迟断裂事故,因而其使用范围受到了限制。
发明内容
发明目的:为了提高高强度螺栓在实际使用时的耐延迟断裂性能以及耐腐蚀性能,本发明提供一种1400MPa级耐延迟断裂高强度螺栓。
本发明的另一目的是提供一种上述高强度螺栓的制造方法。
技术方案:本发明所述的一种1400MPa级耐延迟断裂高强度螺栓,该螺栓的元素组成以质量百分比计含有C:0.38-0.45%;Si≤0.25%;Mn:0.30-0.60%;P≤0.015%;S≤0.010%;Cr:0.90-1.10%;Mo:0.50-0.60%;V:0.15-0.35%;Nb:0.02-0.04%;Cu:0.5-0.8%;Al≤0.030%;Ti≤0.01%,N:0.009-0.018%,余量为Fe和不可避免的杂质;该螺栓的金相组织为回火马氏体和残余奥氏体。
该螺栓的原材料钢盘条的基体表面具有钝化膜,所述钝化膜的成分包括α-FeOOH和γ-FeOOH。
进一步的,该螺栓的金相组织中回火马氏体组织占98%,残余奥氏体组织占2%。
具体的,该高强度螺栓的元素控制原理说明如下:
C:为了在淬火,回火后获得所需的强度级别,C含量须0.25%以上,但随着C含量的增加,钢的强度增加,塑性降低,使得成型困难,从而进一步增加钢的 延迟断裂敏感性,如日本的住友金属开发的1300MPa级耐延迟断裂的高强度螺栓钢ADS3就是由于C含量较高(0.49%),恶化了试验钢的冷加工性能。基于上述原因本专利的C含量控制在0.38-0.45%。
Si:能促进钢高温时奥氏体晶粒度的氧化以及杂质元素的P、S的晶界偏聚,会恶化钢的耐延迟断裂性能,同时还会恶化钢的冷加工性能,因而控制Si≤0.25%。
Mn:是奥氏体形成元素,也是弱碳形成元素,几乎所有的钢中都含有Mn元素。Mn元素是炼钢时脱氧、脱硫的有效元素,还可以提高钢的淬透性以及强度,但当Mn含量小于0.3%时,无法起到上述效果。当钢中的Mn元素含量较高时,淬火钢回火,Mn和P有强烈的晶界共偏聚倾向,因而Mn元素含量控制在0.30-0.60%之间。
P:在钢液凝固时P易形成微观偏析,随后在奥氏体化温度加热时在晶界偏聚,使钢的脆性增大,延迟断裂性能降低,所以应将P的含量控制在0.015%以下。
S:为炼钢时不可避免的杂质物,S元素在钢中会与Mn元素形成MnS夹杂,同时S元素易在晶界处偏聚,因而需控制器含量在0.010%以下。
Cr:具有提高钢的悴火性和耐腐蚀性的作用,在回火时可作为碳化物析出,使强度和耐延迟断裂性提高。为了使Cr元素成分发挥总用,需使Cr高于0.90%,同时若Cr含量过剩将影响冷加工性能,所以需控制Cr元素含量的上限,优选的下限在1.10%以下。
Mo:能有效的提高钢的淬透性,同时Mo元素属于中强碳化物形成元素,在适当的回火区间进行回火时,能有效的析出特殊碳化物,为使Mo成分起到上述作用,需使Mo元素含量在0.50-0.60%。
V:为强碳化物形成元素,能有效细化晶粒,并且在回火时能析出特殊碳化物,这些特殊碳化物能有效提高钢的强度,同时可作为氢陷阱捕捉钢中的游离氢,以提高钢的耐延迟断裂性能,为了发挥上述这些作用,V元素的含量需在0.15%以上,但过剩的V含量,会使钢在轧制时生成粗大碳化物,降低钢的冷加工性,应控制在0.35%以下。
Nb:为强碳化物形成元素,能细化晶粒,提高钢的韧性和强度,其含量低于 0.02%时,则无法起到上述效果,当超过0.04%则饱和,增加成本。
Cu:能提高耐腐蚀性,抑制氢的侵入,从而进一步提高钢的耐延迟断裂性能,当Cu元素的含量低于0.5%时则无法达到上述效果,当超过0.8%时Cu元素含量则饱和,将降低钢的强度以及耐延迟断裂性能,同时将增加钢的成本。
Al:除了能形成AlN细化晶粒外,还能有效的去除钢中的氧,是很好的脱氧剂,但随着Al元素含量的增加碳氮化物系夹杂物含量增多,耐延迟断裂性能下降。因此Al元素含量优选为0.030%以下。
Ti:在轧制阶段易形成TiN和TiC,这些特殊的第二相能作为氢陷阱,但由于其捕捉氢的效果没有V、Nb元素好,此处加入的量不多,在0.01%以下。
N:能够和Al、Nb、V等元素形成细小的氮化物,以起到细化晶粒的作用,但大量N元素的加入,会使N偏聚与晶界降低晶界处的强度,同时会形成粗大的夹杂物,所以其含量应控制在0.009-0.018%之间。
而本发明所述的一种上述高强度螺栓的制造方法所采用的技术方案是,制造工序包括原材料球化退火→冷拔→球化退火→冷镦成型→高温淬火→两阶段回火处理→机加工→滚丝→表面磷化处理;其中,所述高温淬火是在940-960℃下加热奥氏体化,保温1h以上后淬火冷却,淬火介质为油;所述两阶段回火处理中,第一阶段回火是在高温淬火冷却后,将试样重新加热到450-550℃,保温1-5h使回火基体组织中的富铜相ε-Cu充分弥散析出;第二阶段回火是在第一阶段回火后不经冷却继续随炉加热至590-600℃,保温1-2h使钢中细小第二相颗粒充分弥散析出。
进一步的,在高温淬火工序中,对于直径小于16mm的高强度螺栓,保温时间为1h;对于直径16mm以上的高强度螺栓,保温时间大于1h。
在第二阶段回火工序中,弥散析出的细小第二相颗粒包括VC和Mo 2C。
有益效果:该高强度螺栓的化学元素中含有Mo、Cu、V等合金元素,采用高温淬火、两阶段回火处理方法,使回火基体组织中充分弥散析出富铜相(ε-Cu)以及VC、Mo 2C等细小第二相颗粒,使得螺栓在达到1400MPa强度级别时,具有较高的耐延迟断裂性能和耐腐蚀能力。其充分利用合金元素Cu的析出相作用以及Mo、V、Nb、Ti等元素形成特殊碳、氮化合物的析出相作用,使螺栓的抗拉强度在1445MPa-1510MPa之间,断面收缩率在50-56%,断后伸长率不小于10%,恒 载荷缺口拉伸试验的延迟断裂强度比在0.63-0.71,且未添加稀土元素,成本相对较低。
附图说明
图1是本发明高强度螺栓的金相结构显微照片。
具体实施方式
下面结合实施例对本发明做进一步详细说明。
本发明所公开的一种1400MPa级耐延迟断裂高强度螺栓,其化学成分以质量百分比计含有C:0.38-0.45%;Si≤0.25%;Mn:0.30-0.60%;P≤0.015%;S≤0.010%;Cr:0.90-1.10%;Mo:0.50-0.60%;V:0.15-0.35%;Nb:0.02-0.04%;Cu:0.5-0.8%;Al≤0.030%;Ti≤0.01%,N:0.009-0.018%,余量为Fe和不可避免的杂质。制造工序包括原材料球化退火→冷拔→球化退火→冷镦成型→高温淬火→两阶段回火处理→机加工→滚丝→表面磷化处理。
具体而言,所述高温淬火是根据原材料螺栓钢中含有Mo、Cu、V等合金元素的特点,在940-960℃的较高温度下加热奥氏体化,保温1h以上使钢中Mo、Cu、V等合金元素完全或部分溶入奥氏体中,采用油进行淬火冷却,淬火冷却后得到上述合金含量较高的马氏体和残余奥氏体;
所述两阶段回火处理中,第一阶段回火是在高温淬火冷却后,将试样重新加热到450-550℃,保温1-5h使回火基体组织中的富铜相ε-Cu充分弥散析出引起弥散强化作用,同时在Cu元素沉淀析出和Cu元素偏聚时可诱导Mo、V等元素碳化物的析出,增强其氢陷阱作用,提高螺栓的耐延迟断裂性能和耐腐蚀性能;第二阶段回火是在第一阶段回火后不经冷却继续随炉加热至590-600℃,保温1-2h,该阶段的保温使钢中VC、Mo 2C等细小第二相颗粒充分弥散析出,引起弥散强化作用,使得螺栓通过较高的回火温度获得更高的韧塑性且仍具有较高的强度。
更为具体的,在高温淬火工序中,对于直径小于16mm的高强度螺栓,保温时间为1h;对于直径16mm以上的高强度螺栓,保温时间大于1h。
采用上述方法分别制备四组高强度螺栓作为实施例,具体如下:
实施例1:制备14mm高强度螺栓,其化学成分的质量百分数为:C:0.43%;Si:0.14%;Mn:0.30%;P:0.003%;S:0.010%;Cr:1.10%;Mo:0.50%;V:0.33%;Nb:0.04%;Cu:0.53%;Al:0.01%;Ti≤0.01%;N:0.009-0.018%,余 量为Fe和杂质。高温淬火及两阶段回火处理主要包括:升温到940℃后保温1h,然后油淬,待冷至室温后重新加热至450℃,保温1.5h,保温结束后继续升温至590℃,保温1.5h,保温结束后取出空冷,在经过上述工艺过程后螺栓的抗拉强度为1503MPa,断面收缩率为51.26%,断后伸长率为12.2%,恒载荷缺口拉伸试验的延迟断裂强度比为0.63。
实施例2:制备16mm高强度螺栓,其化学成分的质量百分数为:C:0.45%;Si:0.25%;Mn:0.30%;P:0.003%;S:0.010%;Cr:1.00%;Mo:0.55%;V:0.35%;Nb:0.037%;Cu:0.65%;Al:0.03%;Ti≤0.01%;N:0.009-0.018%,余量为Fe和不可避免的杂质。高温淬火及两阶段回火处理主要包括:升温到940℃后保温1.5h,然后油淬,待冷至室温后重新加热至500℃,保温2h,保温结束后继续升温至590℃,保温1h,保温结束后取出空冷,在经过上述工艺过程后螺栓的抗拉强度为1467MPa,断面收缩率为53.12%,断后伸长率为13.1%,恒载荷缺口拉伸试验的延迟断裂强度比为0.66。
实施例3:制备20mm高强度螺栓,其化学成分的质量百分数为:C:0.38%;Mn:0.60%;P:0.015%;S:0.010%;Cr:0.9%;Mo:0.6%;V:0.25%;Nb:0.03%;Cu:0.8%;Al:0.01%;Ti≤0.01%;N:0.009-0.018%,余量为Fe和不可避免的杂质。高温淬火及两阶段回火处理主要包括:升温到950℃后保温1.5h,然后油淬,待冷至室温后重新加热至520℃,保温3h,保温结束后继续升温至600℃,保温2h,保温结束后取出空冷,在经过上述工艺过程后螺栓的抗拉强度为1445MPa,断面收缩率为55.34%,断后伸长率为14.1%,恒载荷缺口拉伸试验的延迟断裂强度比为0.68。
实施例4:制备16mm高强度螺栓,其化学成分的质量百分数为:C:0.40%;Si:0.14%;Mn:0.45%;P:0.003%;S:0.010%;Cr:1.10%;Mo:0.55%;V:0.15%;Nb:0.02%;Cu:0.75%;Al:0.01%;Ti≤0.01%;N:0.009-0.018%,高温淬火及两阶段回火处理主要包括:升温到960℃后保温1.2h,然后油淬,待冷至室温后重新加热至550℃,保温5h,保温结束后继续升温至600℃,保温2h,保温结束后取出空冷,在经过上述工艺过程后螺栓的抗拉强度为1456MPa,断面收缩率为54.27%,断后伸长率为15.2,恒载荷缺口拉伸试验的延迟断裂强度比为0.71。
为了体现本发明的1400MPa级耐延迟断裂高强度螺栓的性能优势,以下还提供了五组对比例。该五组对比例的成分以及制备工艺方案大致与实施例1一致,所不同的是:对比例1中不含有Cu;对比例2-1和2-2中虽然含有Cu,但是其含量不在本发明的限定范围内;对比例3中未按照本发明的制造工序制造螺栓;对比例4中虽然与本发明的制造工序一致,但是其第一阶段回火温度不在本发明限定范围内;相应的,对比例5的第二阶段回火温度不在本发明限定范围内。
如上所述的对比例1-6的高强度螺栓成品技术参数如下:
对比例1不含Cu:在经过上述工艺过程后螺栓的抗拉强度为1486MPa,断面收缩率为52.13%,恒载荷缺口拉伸试验的延迟断裂强度比0.52,可见钢的强度有所下降,但下降幅度不大,由于比对例1不含Cu元素,受外界腐蚀时,螺栓表面不能生成保护基体的钝化膜,增加氢侵入钢基体的可能性,从而降低其耐延迟断裂性能。
对比例2-1的Cu含量小于0.5%:在经过上述工艺过程后螺栓的抗拉强度为1507MPa,恒载荷缺口拉伸试验的延迟断裂强度比0.54。可见含Cu含量过低,无法起到增强钢材本身强度以及提高钢材的耐蚀性,此时钢的强度与对比例1虽然相差不大,但是其耐延迟断裂性能较差。
对比例2-2的Cu含量大于0.8%:在经过上述工艺过程后螺栓的抗拉强度为1386MPa。可见含Cu含量过高,钢材的强度进一步下降,已无法满足1400MPa强度级别的性能要求。
对比例3未按照本发明的制造工序制造14mm螺栓:其高温淬火及两阶段回火处理主要包括:升温到940℃后保温1h,然后油淬,待冷至室温后重新加热至450℃,保温1.5h,保温结束后取出空冷,然后再1继续升温至590℃,保温1.5h,保温结束后取出空冷,在经过上述工艺过程后螺栓的抗拉强度为1389MPa,恒载荷缺口拉伸试验的延迟断裂强度比0.56,其强度已无法满足1400MPa强度级别的性能要求,且延迟断裂性能也较弱。
对比例4虽然与本发明的制造工序一致,但是第一阶段回火温度不在本发明的限定范围内:制备14mm高强度螺栓,高温淬火及两阶段回火处理主要包括:升温到940℃后保温1h,然后油淬,待冷至室温后重新加热至580℃,保温1.5h,保温结束后继续升温至590℃,保温1.5h,保温结束后取出空冷,在经过上述工 艺过程后螺栓的抗拉强度为1452MPa,恒载荷缺口拉伸试验的延迟断裂强度比0.55,此时钢的强度虽然满足要求,但是其耐延迟断裂性能较差。
对比例5的第二阶段回火温度不在本发明限定范围内:制备14mm高强度螺栓,高温淬火及两阶段回火处理主要包括:升温到940℃后保温1h,然后油淬,待冷至室温后重新加热至450℃,保温1.5h,保温结束后继续升温至620℃,保温1.5h,保温结束后取出空冷,在经过上述工艺过程后螺栓的抗拉强度为1483MPa,恒载荷缺口拉伸试验的延迟断裂强度比0.51,与对比例4类似,此时钢的强度虽然满足要求,但是其耐延迟断裂性能较差。
可见,采用本发明的成分设计和制备方法制备的高强度螺栓,在抗拉强度和耐延迟断裂性能上有明显的优势。

Claims (6)

  1. 一种1400MPa级耐延迟断裂高强度螺栓,其特征在于,该螺栓的元素组成以质量百分比计含有C:0.38-0.45%;Si≤0.25%;Mn:0.30-0.60%;P≤0.015%;S≤0.010%;Cr:0.90-1.10%;Mo:0.50-0.60%;V:0.15-0.35%;Nb:0.02-0.04%;Cu:0.5-0.8%;Al≤0.030%;Ti≤0.01%,N:0.009-0.018%,余量为Fe和不可避免的杂质;该螺栓的金相组织为回火马氏体和残余奥氏体。
  2. 据权利要求1所述的1400MPa级耐延迟断裂高强度螺栓,其特征在于,所述螺栓的原材料钢盘条的基体表面具有钝化膜,所述钝化膜的成分包括α-FeOOH和γ-FeOOH。
  3. 据权利要求1所述的1400MPa级耐延迟断裂高强度螺栓,其特征在于,所述回火马氏体组织占98%,残余奥氏体组织2%。
  4. 一种根据权利要求1-3任一项所述的1400MPa级耐延迟断裂高强度螺栓的制造方法,其特征在于,工序包括原材料球化退火→冷拔→球化退火→冷镦成型→高温淬火→两阶段回火处理→机加工→滚丝→表面磷化处理;
    其中,所述高温淬火是在940-960℃下加热奥氏体化,保温1h以上后淬火冷却,淬火介质为油;
    所述两阶段回火处理中,第一阶段回火是在高温淬火冷却后,将试样重新加热到450-550℃,保温1-5h使回火基体组织中的富铜相ε-Cu充分弥散析出;第二阶段回火是在第一阶段回火后不经冷却继续随炉加热至590-600℃,保温1-2h使钢中细小第二相颗粒充分弥散析出。
  5. 根据权利要求4所述的制造方法,其特征在于,在高温淬火工序中,对于直径小于16mm的高强度螺栓,保温时间为1h;对于直径16mm以上的高强度螺栓,保温时间大于1h。
  6. 根据权利要求4所述的制造方法,其特征在于,在第二阶段回火工序中,弥散析出的细小第二相颗粒包括VC和Mo 2C。
PCT/CN2020/097868 2019-08-13 2020-06-24 一种1400MPa级耐延迟断裂高强度螺栓及制造方法 WO2021027402A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020217043398A KR102668982B1 (ko) 2019-08-13 2020-06-24 내지연파괴 고강도 볼트의 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910746593.9 2019-08-13
CN201910746593.9A CN110468341B (zh) 2019-08-13 2019-08-13 一种1400MPa级耐延迟断裂高强度螺栓及制造方法

Publications (1)

Publication Number Publication Date
WO2021027402A1 true WO2021027402A1 (zh) 2021-02-18

Family

ID=68510621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/097868 WO2021027402A1 (zh) 2019-08-13 2020-06-24 一种1400MPa级耐延迟断裂高强度螺栓及制造方法

Country Status (2)

Country Link
CN (1) CN110468341B (zh)
WO (1) WO2021027402A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114231703A (zh) * 2021-11-09 2022-03-25 马鞍山钢铁股份有限公司 一种高强度简化退火冷镦钢生产方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110468341B (zh) * 2019-08-13 2020-09-25 南京钢铁股份有限公司 一种1400MPa级耐延迟断裂高强度螺栓及制造方法
KR102250333B1 (ko) * 2019-12-09 2021-05-10 현대제철 주식회사 초고강도 냉연강판 및 이의 제조방법
CN111155031A (zh) * 2020-01-15 2020-05-15 南京福贝尔五金制品有限公司 一种耐大气腐蚀高强度螺栓及其制造方法
CN112575256B (zh) * 2020-11-26 2021-12-31 博耀能源科技有限公司 具有贝/马复相组织的高强韧大直径风电螺栓及制备方法
CN114892089B (zh) * 2022-05-21 2023-09-05 湖南华菱湘潭钢铁有限公司 一种提高耐磨钢截面硬度均匀性的方法
CN115679227A (zh) * 2022-11-04 2023-02-03 中铁隆昌铁路器材有限公司 一种高强度强韧化螺栓及其热处理工艺
CN115537670B (zh) * 2022-11-14 2023-08-18 鞍钢股份有限公司 桥梁用低成本高强度耐海洋大气环境腐蚀螺栓及制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1900344A (zh) * 2005-07-22 2007-01-24 新日本制铁株式会社 耐延迟断裂特性优良的高强度螺栓及其制造方法
WO2007104117A1 (en) * 2006-03-10 2007-09-20 Ipqm- Instituto De Pesquisas Da Marinha Composition intended to be applied in steels for corrosion protection of their surfaces and process for preparing the same
CN102597543A (zh) * 2009-09-10 2012-07-18 独立行政法人物质·材料研究机构 高强度螺栓
CN102876965A (zh) * 2012-09-11 2013-01-16 中国钢研科技集团有限公司 一种高强锚固螺栓及其生产方法
JP2019077911A (ja) * 2017-10-23 2019-05-23 大同特殊鋼株式会社 鋼部材および鋼部材の製造方法
CN110468341A (zh) * 2019-08-13 2019-11-19 南京钢铁股份有限公司 一种1400MPa级耐延迟断裂高强度螺栓及制造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109112257A (zh) * 2018-11-02 2019-01-01 佛山市顺德区中重金属制品有限公司 一种热轧模具钢及其制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1900344A (zh) * 2005-07-22 2007-01-24 新日本制铁株式会社 耐延迟断裂特性优良的高强度螺栓及其制造方法
WO2007104117A1 (en) * 2006-03-10 2007-09-20 Ipqm- Instituto De Pesquisas Da Marinha Composition intended to be applied in steels for corrosion protection of their surfaces and process for preparing the same
CN102597543A (zh) * 2009-09-10 2012-07-18 独立行政法人物质·材料研究机构 高强度螺栓
CN102876965A (zh) * 2012-09-11 2013-01-16 中国钢研科技集团有限公司 一种高强锚固螺栓及其生产方法
JP2019077911A (ja) * 2017-10-23 2019-05-23 大同特殊鋼株式会社 鋼部材および鋼部材の製造方法
CN110468341A (zh) * 2019-08-13 2019-11-19 南京钢铁股份有限公司 一种1400MPa级耐延迟断裂高强度螺栓及制造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114231703A (zh) * 2021-11-09 2022-03-25 马鞍山钢铁股份有限公司 一种高强度简化退火冷镦钢生产方法
CN114231703B (zh) * 2021-11-09 2023-07-25 马鞍山钢铁股份有限公司 一种高强度简化退火冷镦钢生产方法

Also Published As

Publication number Publication date
CN110468341B (zh) 2020-09-25
KR20220035340A (ko) 2022-03-22
CN110468341A (zh) 2019-11-19

Similar Documents

Publication Publication Date Title
WO2021027402A1 (zh) 一种1400MPa级耐延迟断裂高强度螺栓及制造方法
CN111763881B (zh) 一种高强度低碳贝氏体耐火钢及其制备方法
JP6163197B2 (ja) 高強度冷間圧延鋼板およびそのような鋼板を作製する方法
JP6479527B2 (ja) 酸洗性、および焼入れ焼戻し後の耐遅れ破壊性に優れたボルト用線材、並びにボルト
CN113862558B (zh) 一种屈服强度700MPa级低成本高韧性高强调质钢及其制造方法
WO2001048258A1 (fr) Produit en barre ou en fil a utiliser dans le forgeage a froid et procede de production de ce produit
CN109628836A (zh) 一种高强度建筑结构用抗震耐火钢及其制备方法
JP2009521600A (ja) 耐遅れ破壊特性に優れた高強度ボルト及びその製造方法
CN111748739B (zh) 一种抗拉强度>2100MPa耐热弹簧钢及其生产方法
CN111074148B (zh) 一种800MPa级热冲压桥壳钢及其制造方法
WO2020062564A1 (zh) 一种超高钢q960e厚板及制造方法
CN113322410B (zh) 一种耐延迟断裂性能优异的高强度螺栓用钢及其制备方法
CN111155025B (zh) 一种高强度高韧性且抗高速冲击的贝氏体钢及其制备方法
US10119185B2 (en) Low specific gravity steel for forging use excellent in machineability
WO2019122963A1 (en) Cold rolled and heat treated steel sheet and a method of manufacturing thereof
CN114058974B (zh) 一种15.9级耐腐蚀高强度螺栓用钢及其生产方法和热处理方法
JP6684353B2 (ja) 低温靭性と耐水素誘起割れ性に優れた厚板鋼材、及びその製造方法
KR101546154B1 (ko) 유정용 강관 및 그 제조 방법
CN114231703B (zh) 一种高强度简化退火冷镦钢生产方法
CN115466905A (zh) 一种具有良好耐蚀性10.9级大规格风电螺栓用非调质钢及其生产方法
JP4344126B2 (ja) ねじり特性に優れる高周波焼もどし鋼
CN114086083B (zh) 一种1100MPa级抗硫高压气瓶钢、高压气瓶及其制造方法
JP2001032044A (ja) 高強度ボルト用鋼及び高強度ボルトの製造方法
KR100435481B1 (ko) 표면 탈탄깊이가 적은 고실리콘 첨가 고탄소강 선재의제조방법
JP2023508314A (ja) 超高強度ばね用線材、鋼線及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20853336

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20853336

Country of ref document: EP

Kind code of ref document: A1