WO2021026703A1 - 信息传输方法、装置、设备及存储介质 - Google Patents

信息传输方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2021026703A1
WO2021026703A1 PCT/CN2019/100091 CN2019100091W WO2021026703A1 WO 2021026703 A1 WO2021026703 A1 WO 2021026703A1 CN 2019100091 W CN2019100091 W CN 2019100091W WO 2021026703 A1 WO2021026703 A1 WO 2021026703A1
Authority
WO
WIPO (PCT)
Prior art keywords
time period
side link
available
preset time
target resource
Prior art date
Application number
PCT/CN2019/100091
Other languages
English (en)
French (fr)
Inventor
卢前溪
林晖闵
赵振山
林亚男
吴作敏
石聪
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN201980099161.1A priority Critical patent/CN114208319A/zh
Priority to PCT/CN2019/100091 priority patent/WO2021026703A1/zh
Publication of WO2021026703A1 publication Critical patent/WO2021026703A1/zh
Priority to US17/561,836 priority patent/US20220116995A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to an information transmission method, device, device, and storage medium.
  • the Internet of Vehicles system is based on a terminal-to-device (device to device, D2D) sidelink (SL) transmission technology. It adopts terminal-to-terminal direct communication, which has high spectrum efficiency and relatively high spectrum efficiency. Low transmission delay.
  • D2D device to device
  • SL sidelink
  • an energy detection mechanism that is, a listen before talk (LBT) mechanism
  • LBT listen before talk
  • the transmitting end Before transmitting data on the unlicensed spectrum, it is necessary to listen for a period of time as required. If the result of the listening indicates that the channel is idle, the transmitting end can transmit data to the receiving end. If the listening result indicates that the channel is in an occupied state, the transmitting end needs to back off for a period of time according to regulations before continuing to listen to the channel until the channel listening result is idle before transmitting data to the receiving end.
  • the aforementioned energy detection mechanism can ensure fair coexistence between systems on the unlicensed spectrum, when the communication system is in a high load state, the service quality of each system cannot be guaranteed, and there is a problem of low communication performance.
  • the embodiments of the present application provide an information transmission method, device, equipment, and storage medium, which are used to solve the problem that the service quality of each system on the unlicensed spectrum cannot be guaranteed, resulting in low communication performance.
  • an embodiment of the present application provides an information transmission method applied to a terminal device, including:
  • an embodiment of the present application provides an information transmission device, which is applied to a terminal device, and the device includes: a listening module, a processing module, and a sending module;
  • the listening module is configured to perform channel listening on the side link, and determine whether the side link is available within a preset time period;
  • the processing module is configured to determine the available resource set of the side link in the preset time period when the side link is available in the preset time period;
  • the sending module is configured to occupy a target resource in the available resource set to send data information within the preset time period.
  • an embodiment of the present application provides a terminal device, including:
  • the memory stores computer execution instructions
  • the processor executes the computer-executable instructions stored in the memory, so that the processor executes the method described in the first aspect.
  • the foregoing processor may be a chip.
  • the embodiments of the present application may provide a computer-readable storage medium having computer-executable instructions stored in the computer-readable storage medium, and when the computer-executable instructions are executed by a processor, they are used to implement the first aspect. The method described.
  • an embodiment of the present application provides a program, which is used to execute the method described in the first aspect when the program is executed by a processor.
  • an embodiment of the present application provides a computer program product, including program instructions, which are used to implement the method described in the first aspect.
  • an embodiment of the present application provides a chip including: a processing module and a communication interface, and the processing module can execute the method described in the first aspect.
  • the chip also includes a storage module (eg, memory), the storage module is used to store instructions, the processing module is used to execute the instructions stored in the storage module, and the execution of the instructions stored in the storage module causes the processing module to execute the first aspect The method described.
  • a storage module eg, memory
  • the storage module is used to store instructions
  • the processing module is used to execute the instructions stored in the storage module
  • the execution of the instructions stored in the storage module causes the processing module to execute the first aspect The method described.
  • An eighth aspect of the present application provides a communication system, including: a first terminal device and a second terminal device;
  • the first terminal device is the device described in the second aspect or the terminal device described in the third aspect, and the first terminal device communicates with the second terminal device;
  • the communication system may further include: a network device, the network device being used to provide services for the first terminal device and/or the second terminal device.
  • the terminal device performs channel sensing on the side-link to determine whether the side-link is available within a preset time period, When the side link is available within a preset time period, determine the available resource set of the side link in the preset time period, and occupy the target resource in the available resource set to send data information within the preset time period. That is, when the channel is idle, the terminal device determines the available resource set of the channel in the preset time period, and sends data information on the target resource in the available resource set, so that the service quality of each system does not interfere with each other, which improves the system stability.
  • FIG. 1 is a schematic diagram of the V2X communication architecture
  • FIG. 2 is a schematic diagram of the system architecture applicable to Mode 1;
  • FIG. 3 is a schematic diagram of the system architecture applicable to Mode 2;
  • Figure 4 is a schematic diagram of information transmission between terminal devices in a communication group
  • Figure 5 is a schematic diagram of the frame structure in the FBE-based channel access mode
  • Embodiment 1 of an information transmission method provided by an embodiment of this application.
  • FIG. 7 is a schematic diagram of the distribution of the side link corresponding to the first time period and the preset time period
  • FIG. 8 is a schematic flowchart of Embodiment 2 of an information transmission method provided by an embodiment of this application.
  • FIG. 9 is a schematic flowchart of Embodiment 3 of an information transmission method according to an embodiment of this application.
  • Embodiment 4 is a schematic flowchart of Embodiment 4 of an information transmission method provided by an embodiment of this application;
  • FIG. 11 is a schematic structural diagram of an embodiment of an information transmission device provided by an embodiment of this application.
  • FIG. 12 is a schematic structural diagram of an embodiment of a terminal device provided by an embodiment of the application.
  • FIG. 13 is a schematic structural diagram of an embodiment of a communication system provided by an embodiment of this application.
  • the Internet of Vehicles system is a side link transmission technology based on D2D. It is different from the traditional LTE system in the way that communication data is received or sent through the base station.
  • the Internet of Vehicles system adopts terminal-to-terminal direct communication, which has higher Spectrum efficiency and lower transmission delay.
  • D2D is divided into different stages for research, as follows:
  • Proximity based services Mainly used to improve spectrum utilization and reduce base station load. Specifically, the terminal communicates directly through the spectrum resources allocated by the base station, thereby improving the utilization of wireless spectrum resources. After the adjacent service between the terminals is successfully established, the device-to-device communication can be performed, and the load of the base station can be reduced. Security business. Optionally, in ProSe, resource selection can be performed by an equal probability random selection method, which is not described here.
  • V2X Internet of Vehicles
  • Wearable devices Mainly used in scenarios where wearable devices access the network through mobile terminals, which are mainly oriented to scenarios with low moving speed and low power access.
  • the Internet of Vehicles terminal realizes the interaction of intelligent information between the vehicle and X (vehicle, human, roadside infrastructure and network) through vehicle-to-everything (V2X).
  • the interaction modes of V2X communication include: between vehicle and vehicle (V2V), between vehicle and roadside infrastructure (V2I), vehicle and pedestrian (V2P), vehicle Communication with the vehicle to network (V2N).
  • the roadside infrastructure may be a roadside unit (RSU).
  • V2X in the NR system is called NR-V2X.
  • NR-V2X The following explains the application scenarios of NR-V2X.
  • V2X sidelink communication mode In the NR-V2X system, communication through the side link is called the V2X sidelink communication mode. In this communication mode, the vehicle-mounted terminal can work in a scene with or without network coverage.
  • the V2X sidelink communication mode is further divided into centralized scheduling transmission mode and distributed transmission mode.
  • the transmission resources for the terminal equipment to transmit V2X services on the side link are allocated by the network equipment.
  • mode 1 also called mode1
  • the network device is configured with a V2X sidelink resource pool.
  • This mode is called mode 2 in the NR-V2X system, and is also called mode 2.
  • the terminal device may also be in a hybrid mode, that is, the terminal device can obtain resources through mode 1 and mode 2 as well.
  • the embodiment of the present application does not limit the communication mode for the terminal device to obtain the resource, which can be determined according to the actual situation.
  • Figure 2 is a schematic diagram of the system architecture applicable to Mode 1.
  • Figure 3 is a schematic diagram of the system architecture applicable to Mode 2.
  • the first terminal device and the second terminal device are terminal devices with V2X communication capabilities for performing V2X communication.
  • the first terminal device and the second terminal device perform V2X communication through a wireless communication interface.
  • the first terminal device and the network device, or the second terminal device and the network device communicate through a wireless communication interface.
  • the wireless communication interface between the first terminal device and the second terminal device is referred to as a first air interface.
  • the first air interface is, for example, a sidelink, which is between the first terminal device and the network device or the second terminal device and the network
  • the wireless communication interface between the devices is called a second air interface
  • the second air interface is, for example, a Uu interface.
  • the transmission resources of the first terminal device and the second terminal device are allocated by the network device, and the first terminal device and the second terminal device are on the side link according to the resources allocated by the network device.
  • the network device can allocate resources for a single transmission to the first terminal device and the second terminal device, or allocate resources for semi-static transmission to the first terminal device and the second terminal device, which will not be repeated here.
  • the first terminal device and the second terminal device may select a resource from the resource pool to perform data transmission.
  • the first terminal device and the second terminal device can select transmission resources in the resource pool by listening, or select transmission resources in the resource pool by random selection.
  • the method of selecting the transmission resource can be determined according to the actual situation and will not be repeated here.
  • the terminal device uses the above-mentioned mode 2 for transmission.
  • the resource pool is obtained through a pre-configuration method.
  • the specific transmission mode is the same as the above-mentioned mode 2, and will not be repeated here.
  • the first terminal device for example, UE1
  • the second terminal device for example, UE2
  • UE1 sends sideline data to UE2
  • UE2 sends feedback information to UE1 according to the detection result of the received sideline data.
  • the feedback information may be hybrid automatic repeat request (HARQ ACK) or HARQ non-acknowledgement information (HARQ NACK).
  • UE1 decides whether to retransmit the data sent to UE2 according to the received feedback information of UE2.
  • the feedback information between terminal devices is also applicable to multicast communication.
  • a terminal when a terminal sends multicast information, other terminals in the group send to the sender according to the status of the received data Feedback.
  • the content of the feedback information may include the following two methods: only HARQ NACK feedback, HARQ ACK feedback or HARQ NACK feedback.
  • the specific analysis is as follows:
  • Method 1 Only feedback HARQ NACK. That is, only the receiving terminal (for example, UE2 to UE4) is within a certain distance from the sending terminal (for example, UE1), and the physical sidelink shared channel (PSSCH) is not received correctly, that is, HARQ feedback is required Only the receiving terminal of NACK sends feedback information; further, all receiving terminals that need to send HARQ NACK use the same transmission resource to send feedback information.
  • the receiving terminal for example, UE2 to UE4
  • PSSCH physical sidelink shared channel
  • Method 2 Feed back HARQ ACK or HARQ NACK.
  • the receiver terminal in the communication group sends HARQ ACK if it receives the PSSCH correctly, and sends HARQ NACK if it does not receive the PSSCH correctly.
  • different receiver terminals use different transmission resources to send feedback information, among which, different transmission resources Including different time domain resources, frequency domain resources or code domain resources.
  • FIG. 4 is a schematic diagram of information transmission between terminal devices in a communication group.
  • a communication group includes 4 terminal devices (UE1 to UE4).
  • UE1 sends sideline data
  • UE2, UE3, and UE4 are the data receivers, and send feedback to the sender UE1 according to whether the data is received correctly information.
  • the embodiment of the present application does not limit the resource selection mechanism for the terminal device to send feedback information, and it can be limited according to actual conditions.
  • the radio frequency spectrum is the carrier of mobile communication signals. It is a limited, non-renewable natural resource and a valuable strategic resource of the country. Therefore, all countries have special management agencies for the radio frequency spectrum and issue special policies and regulations to realize the radio frequency spectrum. Unified planning and management. At present, most countries' spectrum management adopts a fixed spectrum allocation strategy, that is, spectrum resources are managed by government authorities and allocated to fixed authorized users, which can ensure that users avoid excessive mutual interference and make better use of spectrum resources. Currently, spectrum resources can be divided into two categories: licensed spectrum and unlicensed spectrum.
  • the authorized spectrum is strictly restricted and protected. Only authorized users and their qualified devices are allowed to access, and users have to pay for this.
  • important departments such as public security, railways, civil aviation, radio and television, and telecommunications all have certain authorized spectrum.
  • the communication of equipment in these departments is running on their authorized spectrum, especially in the telecommunications industry.
  • Terminal equipment such as mobile phones is through operators.
  • the three major operators all have dedicated frequency bands authorized by the National Radio Administration to protect the public mobile communications from interference.
  • Unlicensed spectrum is the spectrum that can be used for radio equipment communication divided by the country and region. This spectrum is usually considered to be a shared spectrum, that is, the communication equipment in different communication systems can meet the regulatory requirements set by the country or region on the spectrum. To access and use the spectrum, there is no need to apply for a proprietary spectrum authorization from the government. For example, WiFi and Bluetooth, which are often used in daily life, are transmitted through unlicensed spectrum.
  • the unlicensed working mode of NR is specified, and its goal is to make NR work in unlicensed frequency bands.
  • the NR-U system can include the following work scenarios:
  • Scenario A In a carrier aggregation work scenario, a primary serving cell (primary cell, Pcell) works on a licensed spectrum, and a secondary serving cell (secondary cell, Scell) aggregates to work on an unlicensed spectrum through carrier aggregation.
  • primary cell primary cell
  • secondary cell secondary cell
  • the base station will specify a primary component carrier (PCC) for the UE through explicit configuration or according to the agreement.
  • the component carrier is called the secondary component carrier (secondary component carrier, SCC)
  • the serving cell on the primary component carrier (PCC) is called the primary serving cell (Pcell)
  • the serving cell on the secondary component carrier (SCC) is called the secondary service Cell (Scell).
  • Scenario B LTE and NR dual connection working scenario, that is, when the terminal device is working in the LTE and NR dual connection scenario, the primary serving cell PCell of the terminal device can be LTE authorized spectrum, and the secondary serving cell PScell of the terminal device can be NR unlicensed Spectrum.
  • the dual-connection technology can realize the cooperative work between the LTE and NR systems, which helps to increase the user rate and reduce the handover delay.
  • Scenario C Independent work scenario, the NR system works as an independent cell in an unlicensed spectrum.
  • Scenario D NR single-cell scenario, the uplink (UL) transmission of the terminal equipment works in the licensed spectrum, and the downlink (DL) works in the unlicensed spectrum.
  • the working frequency band (Band) of NR-U is 5GHz unlicensed spectrum and 6GHz unlicensed spectrum.
  • the design of NR-U should ensure fairness with other systems that are already working on these unlicensed spectrums, such as WiFi.
  • the principle of fairness is that the impact of NR-U on systems that have been deployed on unlicensed spectrum (such as WiFi) cannot exceed the impact between these systems.
  • the energy detection mechanism has been agreed as a basic coexistence mechanism.
  • the general energy detection mechanism is the listen before talk (LBT) mechanism.
  • the basic principle of the mechanism is that the base station or terminal (transmitting end) needs to listen for a period of time before transmitting data on the unlicensed spectrum. . If the listening result indicates that the channel is idle, the transmitting end can transmit data to the receiving end. If the listening result indicates that the channel is in an occupied state, the transmitting end needs to back off for a period of time according to the regulations before continuing to listen to the channel until the channel listening result is idle before transmitting data to the receiving end. Among them, the fallback is proposed to effectively solve the collision.
  • the duration of signal transmission by a communication device using an unlicensed spectrum channel cannot exceed the maximum channel occupancy time (MCOT).
  • MCOT maximum channel occupancy time
  • Mechanism 1 Direct transmission mechanism
  • the direct transmission mechanism that is, the transmitting end can quickly transmit after the switching gap in the channel occupation time COT.
  • the switching time slot refers to the switching time when the transmission is received. Normally, the switching time is sufficient. Short, the typical value does not exceed 16us.
  • this mechanism means that the time for the transmitter to listen to the channel is determined, which is generally short, such as 25 us.
  • Mechanism 3 LBT mechanism with random backoff (the length of the competition window is fixed)
  • the transmitting end randomly selects a random value in the contention window to determine the time to listen to the channel.
  • Mechanism 4 LBT mechanism with random fallback (the competition window is not fixed)
  • Table 1 shows the parameter values corresponding to the channel access priority. For details, refer to Table 1.
  • Table 1 Values of parameters corresponding to channel access priority
  • the priority of channel access can be divided into 4 levels, and the parameters corresponding to the priority of each level are m p , CW min,p , CW max,p , T mcot,p , CW p .
  • m p is a random number, which determines the listening channel time for channel access.
  • CW p is a random number, which represents the variable of the number of times to listen to the channel. Specifically, after the transmitting end listens for Td time, when it is determined that the channel is in an idle state, it needs to listen to the channel again N times, each with a duration of 9 us. Among them, N is a random number from 0 to CW p , and CW min,p ⁇ CW p ⁇ CW max,p . Therefore, CW min,p and CW max,p are related to the channel listening time in the channel access process, CW min,p represents the minimum number of times to monitor the channel during channel access, and CW max,p represents channel access The maximum number of times to listen to the channel during the process.
  • T mcot,p is the longest time that the transmitting end occupies the channel after seizing the channel, and it is related to the channel priority adopted by the transmitting end. For example, if the priority is 1, after the channel is successfully listened to, the channel will be occupied at most 2ms.
  • the network device needs to transmit data to the terminal device within the time T mcot,p . If the network device does not seize the channel, that is , outside the time T mcot,p , the terminal device does not The scheduling data sent by the network device to the terminal device will be received.
  • the way for the network equipment to obtain the channel occupation time may be a load-based equipment (LBE) channel access method, that is, the communication equipment can perform LBT on the unlicensed spectrum after the service arrives, and succeed in the LBT Then, the signal transmission is started; it can also be a channel access method of frame-based equipment (FBE), that is, the communication device periodically performs LBT on the unlicensed spectrum.
  • LBE load-based equipment
  • FBE frame-based equipment
  • the network equipment can obtain the channel occupation time through the LBT of mechanism 4.
  • the LBT of mechanism 4 can refer to the channel detection method of the communication device as the multi-slot channel detection with random backoff based on the adjustment of the contention window size.
  • the LBT of mechanism 4 may include different channel access priorities according to the priority of the transmission service, as shown in Table 1 above.
  • FIG. 5 is a schematic diagram of the frame structure in the FBE-based channel access method.
  • the frame structure appears periodically.
  • a frame structure includes a fixed frame period (the length does not exceed 200ms) and the channel occupation time COT segment (the length does not exceed the fixed frame 95% of the period), idle time period (the length is at least 5% of the channel occupation time, the minimum value is 100us, and it is located at the end of the fixed frame period).
  • the communication device performs channel clear channel assessment (CCA) during the idle time period, for example, before the start of the COT segment. If the channel detection succeeds, the next fixed frame period The channel occupancy time COT can be used for signal transmission; if the channel detection fails, the channel occupancy time COT in the next fixed frame period cannot be used for signal transmission. That is, in this implementation manner, the channel resource opportunities that the communication device can use for service transmission appear periodically.
  • CCA channel clear channel assessment
  • LBT energy detection mechanism
  • the embodiments of the present application provide an information transmission method.
  • the terminal device performs channel sensing on the side link to determine whether the side link is available within a preset time period.
  • the uplink is available within the preset time period, determine the available resource set of the side uplink within the preset time period, and occupy the target resource in the available resource set to send data information within the preset time period.
  • the available resource set of the channel in the preset time period is determined when the channel is idle, and data information is sent on the target resource in the available resource set, so that the service quality of each system does not interfere with each other, and the system is improved. stability.
  • the information transmission method provided in the embodiments of this application can be used in the 3rd generation mobile communication (3G), long term evolution (LTE) system, and the 4th generation mobile communication (4G) System, advanced long term evolution (LTE-A), the 3rd generation partnership project (the 3rd generation partnership project, 3GPP) related cellular systems, the 5th generation mobile communication (the 5th generation mobile communication, 5G) systems and subsequent evolutionary communication systems.
  • 3G 3rd generation mobile communication
  • LTE long term evolution
  • 4G 4th generation mobile communication
  • LTE-A advanced long term evolution
  • 3rd generation partnership project the 3rd generation partnership project, 3GPP
  • 5th generation mobile communication the 5th generation mobile communication, 5G systems and subsequent evolutionary communication systems.
  • the information transmission method provided in the embodiments of the present application can be used in a car networking system, and can also be used in any D2D system.
  • the network equipment involved in the embodiments of this application may be a common base station (such as a NodeB or eNB or gNB), a new radio controller (NR controller), a centralized network element (centralized unit), a new radio base station, Remote radio module, micro base station, relay, distributed unit, reception point (TRP), transmission point (TP) or any other equipment, but this application is implemented Examples are not limited to this.
  • the terminal device involved in the embodiments of this application is a terminal device with V2X communication capabilities, and is a device that provides users with voice and/or data connectivity, for example, with wireless Connected handheld devices, in-vehicle devices, roadside units, etc.
  • Common terminal devices include: mobile phones, tablet computers, notebook computers, handheld computers, mobile internet devices (MID), wearable devices, such as smart watches, smart bracelets, pedometers, etc.
  • FIG. 6 is a schematic flowchart of Embodiment 1 of an information transmission method provided by an embodiment of this application.
  • the execution subject of this method is the terminal device. Referring to FIG. 6, in this embodiment, the method may include the following steps:
  • Step 61 Perform channel sensing on the side link to determine whether the side link is available within a preset time period.
  • the side link is firstly channeled according to the regulations. Determine whether the side link is in an idle state, and then determine whether the side link is available within a preset time period.
  • the terminal device if the terminal device does not detect that other devices are sending and receiving data on the side link within a given time period, it is determined that the side link is in an idle state within the given time period, or It is considered that the side link is also in an idle state within the preset time period after the current moment, and therefore, the terminal device can use the side link within the preset time period. If the terminal device detects that other devices are sending and receiving data on the side link within a given period of time, it will retry the process again after a period of random avoidance, which can effectively avoid conflicts on the wireless channel.
  • step 61 may be implemented in the following feasible ways:
  • A1 Perform channel monitoring on the side link to determine whether the side link is in an idle state.
  • the time period for each communication device to perform channel listening can be pre-defined. Therefore, in this embodiment, the terminal device can perform channel monitoring within a specified time period before transmitting information on the side link. Listen to determine whether the side link is in an idle state, and use the listening result to determine whether the side link is available within a preset time period.
  • the time period for channel listening may be called a listening window, and the preset time period may also be called a selection window. That is, based on the channel listening result in the listening window, it is determined whether the side link is available in the selection window.
  • FIG. 7 is a schematic diagram of the distribution of the listening window and the preset time period corresponding to the side link.
  • the terminal device can perform channel listening in the listening window, and based on the listening result in the listening window, select resources on the side link within a preset time period.
  • the listening window is [n-1000,n]
  • the embodiment of the present application does not limit the specific duration of the listening window and the preset time period, which can be determined according to the situation, and will not be repeated here.
  • A2 When the side link is in an idle state, it is determined that the side link is available within the aforementioned preset time period.
  • the terminal device determines that the side link is in the idle state through channel monitoring, it can be considered that the side link is also in the idle state within the preset time period. At this time, it can be determined that the side link is in the idle state. Available within the above preset time period.
  • the listening window when data needs to be transmitted at the end of the listening window, it can be at a certain time within the preset time period. Use this side link for data transmission within the segment.
  • a frame structure includes a fixed frame period (the length does not exceed 200ms), channel occupation Time period (length does not exceed 95% of the fixed frame period), idle time period (length is at least 5% of the channel occupation time, the minimum value is 100us, and it is located at the end of the fixed frame period).
  • the terminal device performs a clear channel assessment (CCA) on the channel during an idle time period of a fixed frame period to determine whether a signal can be transmitted in the COT section of the next fixed frame period.
  • CCA clear channel assessment
  • step 61 can also be implemented in the following feasible ways:
  • Channel listening is performed in the idle time period of the first fixed frame period to determine whether the side link is in an idle state
  • the above-mentioned listening window may be an idle time period of the first fixed frame period
  • the preset time period is the channel occupation time period of the second fixed frame period
  • the first fixed frame period and the first fixed frame period Two fixed frame periods are two fixed frame periods that are adjacent in time.
  • the total duration of the listening window and the preset time period in this embodiment is equal to the duration of one fixed frame period.
  • the terminal device may also perform channel sensing and sidelink signal detection in sequence during the idle time of a fixed frame period, and the channel sensing and sidelink signal detection are not limited in this embodiment.
  • the sequence can be determined according to the actual situation.
  • the terminal device may also perform side-link signal detection during all or part of the channel occupation period of the first fixed frame period to determine the side-line Whether the link has reserved resources during the channel occupation time period of the second fixed frame period, perform channel sensing during the idle time period of the first fixed frame period to determine whether the side link is in the second fixed frame period. Whether the channel is available during the occupied time period. It is worth noting that the embodiment of the present application does not limit the time period occupied by channel listening and sidelink signal detection, which can be determined according to actual conditions, and will not be repeated here.
  • the listening window is the time period of the first fixed frame period (including: the channel occupation time period and the idle time period), and the preset time period is the channel occupation time period of the second fixed frame period.
  • the first fixed frame period and the second fixed frame period are two fixed frame periods adjacent in time. At this time, the total duration of the listening window and the preset time period is greater than the duration of one fixed frame period.
  • Step 62 When the side link is available in the preset time period, determine the available resource set of the side link in the preset time period.
  • the terminal device determines that the side link is available in the preset time period through channel listening, which is a conclusion estimated based on the listening result, and the available resources of the side link in the preset time period Information also needs to be determined based on actual conditions.
  • the terminal device determines that there is no listening result on some subframes when performing channel sensing on the side link, it indicates that the resources on these subframes may be used for other purposes, and within the preset time period It may also be unavailable. Therefore, the available resource set of the side link within the preset time period should not include the resources associated with these subframes.
  • the terminal device when the terminal device determines that the side link is available within the preset time period by performing channel sensing, it can also detect whether there is a side link signal to determine whether the side link is blocked within the preset time period.
  • the reserved resources therefore, the available resource set of the side link in the preset time period should not include the resources reserved in the preset time period.
  • the listening window may include a channel listening sub-period and a signal detection sub-period, that is, the terminal device performs channel sensing in the channel listening sub-period of the listening window to determine the side link Whether it is idle or not, it can also perform signal detection in the signal detection sub-period of the listening window to determine whether there is a side-link signal on the side-link to determine the resources reserved for the side-link in the preset time period .
  • step 62 may be implemented in the following feasible ways:
  • the signals transmitted between terminal devices are called side-link signals, and the side-link signals can be used to indicate the resources reserved for the side-link within a preset time period. Therefore, in this embodiment, when the terminal device determines that the side link is available within the preset time period, it can also detect whether there is a side link signal on the side link, and based on the detected side link The signal determines whether there are reserved resources on the side link within a preset time period.
  • the terminal device determines that the side link is busy through channel monitoring, it can also detect whether there is a side link signal on the side link. If the side link signal is not detected, it is considered as Different systems occupy channel resources.
  • the terminal device can process the side link signal to determine that the outbound link may be used by other terminals within the preset time period. Resources used or reserved by other terminals. Therefore, in this embodiment, the terminal device can determine that the outbound link is not reserved within the preset time period based on the resources reserved by other devices in the preset time period indicated by the side link signal The resources, that is, the collection of available resources.
  • Step 63 Occupy the target resource in the available resource set to send data information within the preset time period.
  • the terminal device when the terminal device determines the available resource set of the side uplink within a preset time period, it can directly occupy the target resource within the preset time period and send data information through the side uplink, It is also possible to first determine the target resource and the sub-time period in which the target resource is occupied from the available resource set, and then to occupy the determined time period within the preset time period to occupy the target resource to send data information through the side link.
  • the information transmission method provided by the embodiment of the present application detects whether the side uplink is available within a preset time period by performing channel sensing on the side uplink, and when the side uplink is available within the preset time period , Determine the available resource set of the side link within a preset time period, and finally occupy the target resource in the available resource set to send data information within the preset time period.
  • the terminal equipment is based on the channel listening results and the availability of the side link in a preset time period, and finally occupies the target resource within the preset time period to send data information, so that the service quality of each system does not interfere with each other and improves Improved system stability.
  • FIG. 8 is a schematic flowchart of Embodiment 2 of the information transmission method provided by an embodiment of this application. As shown in FIG. 8, in this embodiment, before the foregoing step 63, the method may further include the following steps:
  • Step 81 Determine the target resource and the first time period during which the target resource is occupied from the set of available resources.
  • the terminal device before the terminal device occupies the target resource within a preset time period to send data information, it may first determine the target resource and the first time period during which the target resource is occupied from the available resource set.
  • the terminal may perform sidelink received signal strength indicator (S-RSSI) detection on the resources in the available resource set, and sort according to the signal strength from high to low, and determine based on the sorting result
  • S-RSSI sidelink received signal strength indicator
  • Step 82 Send first information, where the first information is used to indicate that the target resource is occupied in the first time period within the preset time period.
  • the terminal device when the terminal device needs to occupy the target resource in the first time period within the preset time period, it may send the first information before the start of the first time period to notify other devices that the terminal device will
  • the first time period of the preset time period occupies the target resource, thereby effectively avoiding resource conflicts.
  • the first information sent by the terminal device can also be used to inform the receiving end of the data information that it needs to be in the first time period within the preset time period. Receive the data information by detecting the target resource for a period of time.
  • the terminal device may also occupy the target resource to send data in the first time period Before information, perform resource listening.
  • the method further includes the following steps:
  • Step 83 Perform resource monitoring on the side link, and determine that the target resource is available in the first time period, and the monitoring parameters of the resource monitoring are different from the monitoring parameters of the channel monitoring.
  • the implementation principle of resource sensing is similar to the implementation principle of channel sensing in step 61, except that the sensing parameters of resource sensing in this step are the same as those of channel sensing in step 61.
  • the listening parameters are different, for example, the listening duration is different, and the listening signal strength threshold is different.
  • the listening duration of resource sensing in this step is less than the listening duration of channel sensing in step 61, and the signal strength threshold of resource sensing in this step is less than the signal strength threshold of channel sensing in step 61.
  • the terminal device performs resource monitoring on the side link, and when it is determined that the side link is in an idle state, it can indicate that the target resource of the side link is available in the first time period. Therefore, the terminal The device can occupy the target resource to send data information within the first time period.
  • step 63 can be implemented through the following steps:
  • Step 84 Occupy the target resource in the available resource set to send data information in the first time period within the preset time period.
  • the terminal device after the terminal device performs resource monitoring on the side link, if it is determined that the side link is in an idle state, it can indicate that the target resource of the side link is available in the first time period. Therefore, the terminal device can occupy the target resource within the first time period to send data information.
  • the terminal device before the terminal device occupies the target resource in the available resource set to send data information within the preset time period, it first determines the target resource from the available resource set and the first one occupying the target resource. Time period, and send the first message to indicate that the terminal device will occupy the target resource in the first time period, which not only effectively avoids resource conflicts, but also informs the receiving end in time so that it can monitor the target at the corresponding time
  • the resource receives data information and improves the efficiency of information reception.
  • FIG. 9 is a schematic flowchart of Embodiment 3 of an information transmission method according to an embodiment of this application.
  • the difference between this embodiment and the embodiment shown in FIG. 8 is that the terminal device in the embodiment shown in FIG. 8 only occupies the target resource in the first time period of the preset time period, and the terminal device in this embodiment It is assumed that the target resource is occupied in the first time period and the second time period in the time period.
  • the method may further include the following steps:
  • Step 91 Determine the target resource and the first time period and the second time period in which the target resource is occupied from the set of available resources, where the first time period and the second time period are time periods without intersection in the preset time period .
  • the terminal device before the terminal device occupies the target resource within a preset time period to send data information, it may determine the target resource and the first time period and the second time period in which the target resource is occupied from the available resource set.
  • the first time period and the second time period are two sub-time periods that have no intersection in the preset time period. That is, the terminal device may occupy the target resource to send data information in a plurality of different sub-time periods within a preset time period.
  • this embodiment of the application does not limit the number of time periods and specific time periods for occupying the target resource, that is, the terminal device can also occupy other time periods except the first time period and the second time period.
  • the number of time periods and the specific duration of the time period for the specific occupation of the target resource can be determined according to actual conditions, and will not be repeated here.
  • the specific implementation manner of determining the target resource can be referred to the record in step 81 shown in FIG. 8, which will not be repeated here.
  • Step 92 Send second information, which is used to indicate that the target resource is occupied in the first time period and the second time period.
  • the terminal device when the terminal device needs to occupy the target resource in the first time period and the second time period within the preset time period, it can be in the time period before the start of the first time period and the second time period.
  • Send the second information to notify other devices that the terminal device will occupy the target resource in the first time period and the second time period of the preset time period, thereby effectively avoiding resource conflicts.
  • the second information can also be used to inform the receiving end of the data information that the data information needs to be received by detecting the target resource in the first time period and the second time period within the preset time period.
  • the terminal device sends an indication of occupying the target resource in the first time period and the second time period to other devices through a piece of instruction information.
  • a terminal device when a terminal device occupies the target resource in multiple time periods within a preset time period, it can also send an indication of occupancy of the target resource in these multiple time periods to other devices through an indication message .
  • Step 93 Perform resource monitoring on the side link, and determine that the target resource is available in the first time period and the second time period.
  • the monitoring parameters of the resource monitoring are different from the monitoring parameters of the channel monitoring.
  • the terminal device if the terminal device is to occupy the target resource to send data information in the first time period and the second time period, in order to ensure that the target resource of the side link is in the first time period and the second time period
  • the second time period is availability, and the terminal device also needs to perform resource listening before sending data information.
  • the implementation principle of resource sensing is similar to the implementation principle of channel sensing in step 61, except that the sensing parameters of resource sensing in this step are the same as those of channel sensing in step 61. The parameters are different.
  • the listening parameters of resource listening in this embodiment may be the same as or different from the parameters of resource listening in step 83 above.
  • the specific values of the listening parameters can be determined according to actual conditions, and will not be here any more. Repeat.
  • step 63 can be implemented through the following steps:
  • Step 94 Occupy the target resource in the available resource set to send data information in the first time period and the second time period in the preset time period.
  • the terminal device after the terminal device performs resource monitoring on the side link, if it is determined that the side link is idle, it can indicate that the target resource of the side link is in the first time period and the second time period. Both are available within, therefore, the terminal device can occupy the target resource to send data information in the first time period and the second time period.
  • the terminal device determines the target resource from the available resource set and the first time period for occupying the target resource before occupying the target resource in the available resource set to send data information within the preset time period And a second time period, where the first time period and the second time period are time periods without intersection in the preset time period, and the second information is sent, and the second information is used to indicate that the first time period and the second time period Internally occupy the target resource, perform resource monitoring on the side link, and determine that the target resource is available in the first time period and the second time period.
  • the monitoring parameters of the resource monitoring are different from those of the channel monitoring , And occupy the target resource in the available resource set to send data information in the first time period and the second time period in the preset time period.
  • the terminal device sends the indication of occupying the target resource in the first time period and the second time period through the second information, which saves signaling overhead and reduces resource utilization.
  • FIG. 10 is a schematic flowchart of Embodiment 4 of an information transmission method provided by an embodiment of this application.
  • the difference between this embodiment and the embodiment shown in FIG. 9 is that the terminal device in the embodiment shown in FIG. 9 sends an indication message to occupy the target resource in the first time period and the second time period in the preset time period.
  • the terminal device in this embodiment sends the indication of occupying the target resource in the first time period and the second time period in the preset time period through two pieces of instruction information respectively.
  • the method may further include the following steps:
  • Step 101 Determine a target resource and a first time period and a second time period that occupy the target resource from the set of available resources, where the first time period and the second time period are time periods that have no intersection in the preset time period .
  • Step 102 Send third information and fourth information, where the third information is used to indicate that the target resource is occupied in the first time period, and the fourth information is used to indicate that the target resource is occupied in the second time period.
  • the terminal device when it needs to occupy the target resource in the first time period and the second time period within the preset time period, it may send the third information before the start of the first time period , Send the fourth message before the start of the second time period to notify other devices that the terminal device will occupy the target resource in the first time period and the second time period of the preset time period to avoid resource conflicts and inform data
  • the receiving end of the information needs to receive the data information by detecting the target resource in the first time period and the second time period within the preset time period.
  • the terminal device sends the indication of occupying the target resource in the first time period and the second time period to other devices through two pieces of indication information.
  • the terminal device when the terminal device occupies the target resource in multiple time periods within the preset time period, it can send instructions to other devices to occupy the target resource in the multiple time periods through multiple pieces of instruction information. .
  • the time period in which the fourth information is sent can also be the first time period, that is, the terminal device occupies the target in the first time period Before sending the data information, first integrate the fourth information and the data information to be sent in the first time period into one message and send it out to indicate that the terminal device will occupy the target in the second time period of the preset time period Resources.
  • the embodiment of the present application does not limit the sending manner and the sending time period of the fourth information, as long as it is sent before the second time period starts.
  • Step 103 Perform resource monitoring on the side link, and determine that the target resource is available in the first time period and the second time period, and the monitoring parameters of the resource monitoring are different from the monitoring parameters of the channel monitoring.
  • step 63 can be implemented through the following steps:
  • Step 104 Occupy the target resource in the available resource set to send data information in the first time period and the second time period in the preset time period.
  • step 101, step 103, and step 104 are the same as those of step 91, step 93, and step 94 in the embodiment shown in FIG. 9 respectively.
  • step 91, step 93, and step 94 are the same as those of step 91, step 93, and step 94 in the embodiment shown in FIG. 9 respectively.
  • step 104 refers to the record in the foregoing embodiment, and will not be repeated here.
  • the terminal device determines the target resource from the available resource set and the first time period for occupying the target resource before occupying the target resource in the available resource set to send data information within the preset time period
  • the second time period, the first time period and the second time period are the time periods without intersection in the preset time period, the third information and the fourth information are sent, and the third information is used to indicate the occupation in the first time period
  • the target resource, the fourth information is used to indicate that the target resource is occupied in the second time period.
  • the side link can also be monitored for resources to determine that the target resource is available in the second time period, and in the preset The first time period and the second time period within the time period occupy the target resource in the available resource set to send data information.
  • the terminal device sends an indication of occupying the target resource in the first time period and the second time period through two pieces of information, and sends it after the resource listening, which improves the probability of resource availability and further improves system stability Sex.
  • FIG. 11 is a schematic structural diagram of an embodiment of an information transmission device provided by an embodiment of the application.
  • the device can be integrated in the terminal device, and can also be implemented by the terminal device.
  • the device may include: a listening module 111, a processing module 112, and a sending module 113.
  • the listening module 111 is configured to perform channel listening on the side link, and determine whether the side link is available within a preset time period;
  • the processing module 112 is configured to determine the available resource set of the side link in the preset time period when the side link is available in the preset time period;
  • the sending module 113 is configured to occupy the target resource in the available resource set to send data information within the preset time period.
  • the listening module 111 is specifically configured to perform channel listening on the side link, determine whether the side link is in an idle state, and perform channel monitoring on the side link. When the link is in an idle state, it is determined that the side link is available within the preset time period.
  • the listening module is specifically configured to perform channel listening during the idle time period of the first fixed frame period to determine whether the side link is in an idle state, and when the side link is in an idle state When determining that the side link is available in the channel occupation time period of the second fixed frame period, the first fixed frame period and the second fixed frame period are two adjacent fixed frame periods.
  • the processing module 112 is specifically configured to detect whether there is a side link on the side link when the side link is available within the preset time period.
  • Link signal the side link signal is used to indicate the resources reserved for the side link within the preset time period; when there is a side link signal on the side link, Determine the set of available resources according to the side link signal, where the set of available resources includes resources that are not reserved by the side link within the preset time period.
  • the processing module 112 is further configured to send data information from the target resource in the available resource set before the sending module 113 occupies the target resource in the set of available resources within the preset time period. Determining the target resource and the first time period in which the target resource is occupied in the available resource set;
  • the sending module 113 is further configured to send first information, where the first information is used to indicate that the target resource is occupied in a first time period within the preset time period;
  • the sending module 113 is specifically configured to occupy a target resource in the available resource set to send data information in the first time period within the preset time period.
  • the listening module 111 is also used for the sending module 113 to occupy the target resource in the available resource set in the first time period within the preset time period Before sending the data information, perform resource listening on the side link to determine that the target resource is available within the first time period, the listening parameters of the resource listening and the channel listening The parameters are different.
  • the processing module 112 is also configured to send data information from the target resource in the set of available resources before the sending module 113 occupies the target resource in the set of available resources within the preset time period.
  • the target resource and the first time period and the second time period in which the target resource is occupied are determined in the available resource set, and the first time period and the second time period are in the preset time period Time periods without intersection;
  • the sending module 113 is further configured to send second information, and the second information is used to indicate that the target resource is occupied within the first time period and the second time period.
  • the processing module 112 is also configured to send data information from the target resource in the set of available resources before the sending module 113 occupies the target resource in the set of available resources within the preset time period.
  • the target resource and the first time period and the second time period in which the target resource is occupied are determined in the available resource set, and the first time period and the second time period are in the preset time period Time periods without intersection;
  • the sending module 113 is also used to send third information and fourth information, the third information is used to indicate that the target resource is occupied within the first time period, and the fourth information is used to indicate that the The target resource is occupied in the second time period.
  • the sending module 113 is specifically configured to occupy the first time period and the second time period within the preset time period.
  • the target resource in the available resource set sends data information.
  • the aforementioned listening module 111 is further configured to occupy the target resource in the available resource set during the first time period and the second time period of the preset time period by the sending module 113 Before sending data information, perform resource listening on the side link to determine that the target resource is available in the second time period, the listening parameters of the resource listening and the channel listening The parameters are different.
  • the device provided in this embodiment is used to implement the technical solutions in the embodiments shown in Figs. 7-9.
  • the implementation principles and technical effects are similar.
  • the terminal equipment performs channel monitoring on the side-links and judges the side-links. Whether the road is available in the preset time period, when the side link is available in the preset time period, determine the available resource set of the side link in the preset time period, and occupy the available resources in the preset time period
  • the target resource in the collection sends data information.
  • the available resource set of the channel in the preset time period is determined when the channel is idle, and data information is sent on the target resource in the available resource set, so that the service quality of each system does not interfere with each other, and the system is improved. stability.
  • the division of the various modules of the above device is only a division of logical functions, and may be fully or partially integrated into a physical entity in actual implementation, or may be physically separated.
  • these modules can all be implemented in the form of software called by processing elements; they can also be implemented in the form of hardware; some modules can be implemented in the form of calling software by processing elements, and some of the modules can be implemented in the form of hardware.
  • the processing module may be a separately established processing element, or it may be integrated in a chip of the above-mentioned device for implementation.
  • each step of the above method or each of the above modules can be completed by hardware integrated logic circuits in the processor element or instructions in the form of software.
  • the above modules may be one or more integrated circuits configured to implement the above methods, for example: one or more application specific integrated circuits (ASIC), or one or more microprocessors (digital signal processor, DSP), or, one or more field programmable gate arrays (FPGA), etc.
  • ASIC application specific integrated circuit
  • DSP digital signal processor
  • FPGA field programmable gate arrays
  • the processing element may be a general-purpose processor, such as a central processing unit (CPU) or other processors that can call program codes.
  • CPU central processing unit
  • these modules can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • FIG. 12 is a schematic structural diagram of an embodiment of a terminal device provided by an embodiment of the application.
  • the device may include: a processor 121, a memory 122, a communication interface 123, and a system bus 124.
  • the memory 122 and the communication interface 123 are connected to the processor 121 through the system bus 124 and To complete mutual communication, the memory 122 is used to store computer-executed instructions, the communication interface 123 is used to communicate with other devices, and the processor 121 executes the computer-executed instructions so that the processor 121 executes
  • the solution of the method embodiment shown in FIG. 7 to FIG. 9 is realized.
  • the above-mentioned processor can be a general-purpose processor, including a central processing unit CPU, a network processor (NP), etc.; it can also be a digital signal processor DSP, an application specific integrated circuit ASIC, a field programmable gate array FPGA or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • a general-purpose processor including a central processing unit CPU, a network processor (NP), etc.; it can also be a digital signal processor DSP, an application specific integrated circuit ASIC, a field programmable gate array FPGA or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • FIG. 13 is a schematic structural diagram of an embodiment of a communication system provided by an embodiment of this application. As shown in FIG. 13, the communication system may include: a first terminal device 131 and a second terminal device 132.
  • the first terminal device 131 may be the information transmission apparatus in the embodiment shown in FIG. 10 or the terminal device in the embodiment shown in FIG. 11, and the first terminal device 131 and the second terminal device 132 may communicate.
  • the second terminal device 132 may execute the technical solution of the first terminal device 131 described above.
  • the communication system may be called a car networking system or a D2D system.
  • the communication system of the present application may further include: a network device 173.
  • the network device 173 may provide services for the first terminal device 171 and/or the second terminal device 172.
  • an embodiment of the present application provides a computer-readable storage medium that stores instructions in the computer-readable storage medium, and when it runs on a computer, the computer executes the method shown in FIGS. 7 to 9 above. Implementation scheme of the embodiment.
  • an embodiment of the present application further provides a chip for executing instructions, including a processing module and a communication interface, and the processing module can execute the implementation solutions of the method embodiments shown in FIGS. 7 to 9.
  • the chip also includes a storage module (such as a memory), the storage module is used to store instructions, the processing module is used to execute the instructions stored in the storage module, and the execution of the instructions stored in the storage module causes the processing module to perform the aforementioned method implementation Examples of technical solutions.
  • a storage module such as a memory
  • the storage module is used to store instructions
  • the processing module is used to execute the instructions stored in the storage module
  • the execution of the instructions stored in the storage module causes the processing module to perform the aforementioned method implementation Examples of technical solutions.
  • the embodiment of the present application also provides a program, when the program is executed by the processor, it is used to execute the implementation solutions of the method embodiments shown in FIGS. 7 to 9.
  • An embodiment of the present application further provides a program product, the program product includes a computer program, the computer program is stored in a storage medium, at least one processor can read the computer program from the storage medium, and the at least one When the processor executes the computer program, the implementation solutions of the method embodiments shown in FIGS. 7 to 9 can be implemented.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, both A and B exist, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship; in the formula, the character “/” indicates that the associated objects before and after are in a “division” relationship.
  • “The following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or plural items (a).
  • At least one of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple One. It can be understood that the various numerical numbers involved in the embodiments of the present application are only for easy distinction for description, and are not used to limit the scope of the embodiments of the present application.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not be implemented in this application.
  • the implementation process of the example constitutes any limitation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种信息传输方法、装置、设备及存储介质,其中,该方法包括:对侧行链路进行信道侦听,判断该侧行链路在预设时间段内是否可用(61);当侧行链路在预设时间段内可用时,确定该侧行链路在预设时间段内的可用资源集合(62);在该预设时间段内占用可用资源集合中的目标资源发送数据信息(63)。该方法中,终端设备在信道空闲时再确定出信道在预设时间段内的可用资源集合,并在可用资源集合中的目标资源上发送数据信息,使得各个系统的服务质量互不干扰,提高了系统稳定性。

Description

信息传输方法、装置、设备及存储介质 技术领域
本申请实施例涉及通信技术领域,尤其涉及一种信息传输方法、装置、设备及存储介质。
背景技术
车联网系统是基于终端到终端(device to device,D2D)的一种侧行链路(sidelink,SL)传输技术形成的,其采用终端到终端直接通信的方式,具有较高的频谱效率和较低的传输时延。
现有技术中,为了保证非授权频谱上各系统之间的公平性共存,通常利用能量检测机制(也即,先听后说(listen before talk,LBT)机制)来保证,具体的,传输端在非授权频谱上传输数据之前,需要先按照规定侦听一段时间。如果侦听的结果表示该信道为空闲状态,则传输端可以给接收端传输数据。如果侦听的结果表示该信道为占用状态,则传输端需要根据规定回退一段时间再继续侦听信道,直到信道侦听结果为空闲状态,才向接收端传输数据。
然而,上述能量检测机制虽然能够保证非授权频谱上各系统之间的公平性共存,但是在通信系统处于高负荷状态时,无法保证各个系统的服务质量,存在通信性能低的问题。
发明内容
本申请实施例提供一种信息传输方法、装置、设备及存储介质,用于解决非授权频谱上各个系统的服务质量无法保证,导致通信性能低的问题。
第一方面,本申请实施例提供一种信息传输方法,应用于终端设备,包括:
对侧行链路进行信道侦听,判断所述侧行链路在预设时间段内是否可用;
当所述侧行链路在所述预设时间段内可用时,确定所述侧行链路在所述预设时间段内的可用资源集合;
在所述预设时间段内占用所述可用资源集合中的目标资源发送数据信息。
第二方面,本申请实施例提供一种信息传输装置,应用于终端设备,所述装置包括:侦听模块、处理模块和发送模块;
所述侦听模块,用于对侧行链路进行信道侦听,判断所述侧行链路在预设时间段内是否可用;
所述处理模块,用于在所述侧行链路在所述预设时间段内可用时,确定所述侧行链路在所述预设时间段内的可用资源集合;
所述发送模块,用于在所述预设时间段内占用所述可用资源集合中的目标资源发送数据信息。
第三方面,本申请实施例提供一种终端设备,包括:
处理器、存储器、通信接口和系统总线;
所述存储器存储计算机执行指令;
所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如上述第一方面所述的方法。
可选地,上述处理器可以为芯片。
第四方面,本申请实施例可提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现第一方面所述 的方法。
第五方面,本申请实施例提供一种程序,当该程序被处理器执行时,用于执行如第一方面所述的方法。
第六方面,本申请实施例提供一种计算机程序产品,包括程序指令,程序指令用于实现如第一方面所述的方法。
第七方面,本申请实施例提供了一种芯片,包括:处理模块与通信接口,该处理模块能执行第一方面所述的方法。
进一步地,该芯片还包括存储模块(如,存储器),存储模块用于存储指令,处理模块用于执行存储模块存储的指令,并且对存储模块中存储的指令的执行使得处理模块执行第一方面所述的方法。
本申请第八方面提供一种通信系统,包括:第一终端设备和第二终端设备;
所述第一终端设备为上述第二方面所述的装置或者上述第三方面所述的终端设备,所述第一终端设备和所述第二终端设备进行通信;
可选的,该通信系统还可以包括:网络设备,所述网络设备用于为所述第一终端设备和/或第二终端设备提供服务。
本申请实施例提供的信息传输方法、装置、设备及存储介质,在NR-V2X中,终端设备对侧行链路进行信道侦听,判断该侧行链路在预设时间段内是否可用,当侧行链路在预设时间段内可用时,确定该侧行链路在预设时间段内的可用资源集合,在预设时间段内占用可用资源集合中的目标资源发送数据信息,也即,终端设备在信道空闲时再确定出信道在预设时间段内的可用资源集合,并在可以资源集合中的目标资源上发送数据信息,使得各个系统的服务质量互不干扰,提高了系统稳定性。
附图说明
图1为V2X通信的架构示意图;
图2是模式1所适用的系统架构示意图;
图3是模式2所适用的系统架构示意图;
图4为一个通信组中终端设备之间的信息传输示意图;
图5为基于FBE的信道接入方式中帧结构的示意图;
图6为本申请实施例提供的信息传输方法实施例一的流程示意图;
图7为侧行链路对应第一时间段和预设时间段的分布示意图;
图8为本申请实施例提供的信息传输方法实施例二的流程示意图;
图9为本申请实施例提供的信息传输方法实施例三的流程示意图;
图10为本申请实施例提供的信息传输方法实施例四的流程示意图;
图11为本申请实施例提供的信息传输装置实施例的结构示意图;
图12为本申请实施例提供的终端设备实施例的结构示意图;
图13为本申请实施例提供的通信系统实施例的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的说明书、权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里本申请的实施例能够以除了在这里图示或描述之外的顺序实施。 此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
随着网络技术及智能车辆技术的发展,车联网越来越受到广泛关注。车联网系统是基于D2D的一种侧行链路传输技术,其与传统的LTE系统中通信数据通过基站接收或者发送的方式不同,车联网系统采用终端到终端直接通信的方式,具有更高的频谱效率以及更低的传输时延。
在第三代合作伙伴计划(3rd generation partnership project,3GPP)中,D2D分成了不同的阶段进行研究,如下:
邻近服务(proximity based services,ProSe):主要用来提高频谱利用率和降低基站负荷。具体的,终端通过基站分配的频谱资源进行直接通信,从而提高无线频谱资源的利用率,而终端间邻近业务成功建立后,可以执行设备到设备的通信,基站的负荷得以降低,其主要针对公共安全类的业务。可选的,在ProSe中,可以通过等概率随机选择方法进行资源选择,这里不做具体描述。
车联网(V2X):车联网系统针对车车通信的场景进行了研究,其主要面向相对高速移动的车车、车人通信的业务。
可穿戴设备(FeD2D):主要用于可穿戴设备通过移动终端接入网络的场景,其主要面向是低移动速度以及低功率接入的场景。
下面简要介绍一下V2X通信的架构示意图。
目前,在车联网通信系统中,车联网终端通过车用无线通信技术(vehicle-to-everything,V2X)实现车与X(车、人、交通路侧基础设施和网络)智能信息的交互。V2X通信的交互模式包括:车辆与车辆(vehicle to vehicle,V2V)之间、车辆与路边基础设施(vehicle to infrastructure,V2I)之间、车辆与行人(vehicle to pedestrian,V2P)之间、车辆与网络(vehicle to network,V2N)之间的通信。示例性的,路边基础设施可以是路边单元(road side unit,RSU)。
图1为V2X通信的架构示意图。如图1所示,V2X通信包括V2V通信、V2P通信、V2I通信和V2N通信,V2X通信过程中,V2X业务通过侧行链路(sidelink)或者Uu口进行传输。
在实际应用中,V2X借助与人、车、路、云平台之间的全方位连接和高效信息交互,实现信息服务、交通安全、交通效率等典型应用场景。车联网终端通过V2I和V2N通信可以获取各种信息服务,包括交通信号灯信息,附近区域车辆信息,车辆导航,紧急救援,信息娱乐服务等。通过V2V和V2P通信可以实时获取周围车辆的车速、位置、行车情况及行人活动等信息,并通过智能算法实现碰撞预警功能,避免交通事故。通过V2I通信可以实现车速引导等功能,提高交通效率。
随着技术的不断发展,目前引入新无线(new radio,NR)通信系统,NR系统中V2X称之为NR-V2X。下面对于NR-V2X的应用场景进行解释说明。
在NR-V2X系统中,需要支持自动驾驶,因此,对车载终端之间数据交互提出了更高的要求,如更高的吞吐量、更低的时延、更高的可靠性、更大的覆盖范围、更灵活的资源分配等。
在NR-V2X系统中,通过侧行链路进行通信称之为V2X sidelink通信模式。该种通信模式下,车载终端可以工作在有网络覆盖的场景,或者没有网络覆盖的场景。
在有网络覆盖的场景中,V2X sidelink通信模式进一步的划分为集中调度传输模式和分布式传输模式。
在集中调度传输模式下,终端设备在侧行链路传输V2X业务的传输资源是由网络设备分配的,在NR-V2X系统中称为模式1,也称为mode1;在分布式传输模式下,网络设备配置V2X sidelink资源池,终端设备每次传输V2X业务时,在网络配置的资源池中获取资源,无需网络设备调度,该模式在NR-V2X系统中称为模式2,也称为mode2。详见图2和图3所示示意图的记载。
值得说明的是,终端设备也可以处于一个混合模式下,即,终端设备既可以通过模式1获取资源,也可以通过模式2获取资源。本申请实施例并不对终端设备获取资源的通信模式进行限定,其可以根据实际情况确定。
图2是模式1所适用的系统架构示意图。图3是模式2所适用的系统架构示意图。参照图2和图3所示,第一终端设备和第二终端设备是具备V2X通信能力的终端设备,用于执行V2X通信,第一终端设备与第二终端设备之间通过无线通信接口进行V2X通信,第一终端设备与网络设备,或者,第二终端设备与网络设备之间通过无线通信接口进行通信。为清楚起见,将第一终端设备和第二终端设备之间的无线通信接口称之为第一空口,该第一空口例如为sidelink,第一终端设备和网络设备之间或第二终端设备与网络设备之间的无线通信接口称之为第二空口,该第二空口例如为Uu口。
参照图2所示,作为一种示例,第一终端设备与第二终端设备的传输资源是由网络设备分配,第一终端设备与第二终端设备根据网络设备分配的资源在侧行链路上进行数据的发送;网络设备可以为第一终端设备与第二终端设备分配单次传输的资源,也可以为第一终端设备与第二终端设备分配半静态传输的资源,此处不再赘述。
参照图3所示,作为另一种示例,第一终端设备与第二终端设备可以在资源池中选取一个资源进行数据的传输。具体的,第一终端设备与第二终端设备可以通过侦听的方式在资源池中选取传输资源,或者通过随机选取的方式在资源池中选取传输资源,关于第一终端设备与第二终端设备选取传输资源的方式,其可以根据实际情况确定,此处不再赘述。
在没有网络覆盖的场景中,终端设备采用上述的模式2进行传输,这时,资源池是通过预配置的方式获取的。具体的传输方式同上述的模式2,这里不再赘述。
更进一步的,在NR-V2X中,为了提高传输可靠性,在侧行链路上引入了反馈信道,如图2和图3所示,第一终端设备(例如,UE1)与第二终端设备(例如,UE2)构成一个单播链路,UE1向UE2发送侧行数据,UE2根据接收到的侧行数据的检测结果,向UE1发送反馈信息。示例性的,该反馈信息可以是混合自动重传请求确认信息(hybrid automatic repeat request,HARQ ACK)或HARQ非确认信息(HARQ NACK)。
UE1根据接收到的UE2的反馈信息,决定是否重传向UE2发送的数据。
值得说明的是,终端设备之间的反馈信息同样适用于组播通信中,在一个通信组中,当一个终端发送组播信息时,该组内的其他终端根据接收数据的状态向发送方发送反馈信息。
示例性的,对于组播通信方式,反馈信息的内容可以包括如下两种方式:只反馈HARQ NACK、反馈HARQ ACK或者HARQ NACK。具体分析如下:
方式1:只反馈HARQ NACK。即,只有接收方终端(例如,UE2至UE4)距离发送方终端(例如,UE1)在一定距离范围内,并且没有正确接收物理侧行共享信道(physical sidelink shared channel,PSSCH),即需要反馈HARQ NACK的接收方终端才发送反馈信息;进一步地,所有需要发送HARQ NACK的接收方终端使用相同的传输资源发送反馈信息。
方式2:反馈HARQ ACK或者HARQ NACK。通信组内的接收方终端,如果正确接收PSSCH就发送HARQ ACK,如果没有正确接收PSSCH就发送HARQ NACK,进一步地,不同的接收方终端使用不同的传输资源发送反馈信息,其中,不同的传输资源包括不同的时域资源、频域资源或者码域资源。
示例性的,图4为一个通信组中终端设备之间的信息传输示意图。如图4所示,一个通信组包括4个终端设备(UE1至UE4),当UE1发送侧行数据时,UE2、UE3、UE4是数据接收方,并且根据数据是否正确接收向发送方UE1发送反馈信息。
本申请实施例并不对终端设备发送反馈信息的资源选择机制进行限定,其可以根据实际情况进行限定。
以上对本申请实施例中的V2X通信的架构和NR-V2X的应用场景进行了介绍,以下对非授权频谱以及非授权频谱上的新空口(new radio based access to unlicensed spectrum,NR-U)系统的相关背景进行介绍。
无线电频谱是移动通信信号传播的载体,其是一个有限、不可再生的自然资源,也是国家宝贵的战略资源,因此,各国对于无线电频谱有专门的管理机构,出台专门的政策法规,实现无线电频谱的统一规划管理。目前,各国的频谱管理大多数采用固定频谱分配策略,即频谱资源由政府主管部门管理并分配给固定的授权用户,这样能够确保各用户之间避免过多相互干扰,更好利用频谱资源。目前频谱资源可分为两类:授权频谱(licensed spectrum)和非授权频谱(unlicensed spectrum)。
授权频谱受到严格的限制和保护,只允许授权用户及其符合规范的设备接入,而且用户要为此进行付费。目前,公安、铁路、民航、广电、电信等重要的部门均拥有一定的授权频谱,这些部门内设备的通信是运行在其授权频谱上的,尤其是电信行业,手机等终端设备就是通过运营商拥有的授权频谱来通信的,三大运营商都拥有国家无线电管理局授权的专用频段,保障公众移动通信不受干扰。
非授权频谱是国家和地区划分的可用于无线电设备通信的频谱,该频谱通常被认为是共享频谱,即不同通信系统中的通信设备只要满足国家或地区在该频谱上设置的法规要求,就可以接入和使用该频谱,不需要向政府申请专有的频谱授权。例如,日常生活中经常使用的WiFi、蓝牙均是通过非授权频谱进行传输。
在3GPP的某个立项中,规定了NR非授权的工作方式,其目标是使得NR工作在非授权频段。具体的,NR-U系统可以包括如下几种工作场景:
场景A:在载波聚合工作场景,主服务小区(primary cell,Pcell)工作在为授权频谱上,辅服务小区(secondary cell,Scell)通过载波聚合方式聚合工作在非授权频谱上。
在该工作场景下,UE进入连接态后可以同时通过多个分量载波与基站进行通信,基站会通过显式配置或者按照协议约定为UE指定一个主分量载波(primary component carrier,PCC),其他的分量载波称为辅分量载波(secondary component carrier,SCC),在主分量载波(PCC)上的服务小区称为主服务小区(Pcell),在辅分量载波(SCC)上的服务小区称为辅服务小区(Scell)。
场景B:LTE和NR双连接工作场景,即终端设备工作在LTE和NR双连接的场景时,终端设备的主服务小区PCell可以为LTE授权频谱,终端设备的辅服务小区PScell可以为NR非授权频谱。通过双连接技术可以实现LTE与NR系统间的协同工作,有助于提升用户速率,降低切换时延。
场景C:独立工作场景,NR系统作为一个独立小区工作在非授权频谱。
场景D:NR单小区场景,终端设备的上行(uplink,UL)传输工作在授权频谱,下行(downlink,DL)工作在非授权频谱。
场景E:LTE和NR双连接工作场景下,终端设备的主服务小区PCell可以为NR授权频谱,辅服务小区PScell为NR非授权频谱。
一般来说,NR-U的工作频带(Band)为5GHz非授权频谱和6GHz非授权频谱。在非授权频谱上,NR-U的设计应该保证与其他已经工作在这些非授权频谱上的系统之间的公平性,比如WiFi等。公平性的原则是,NR-U对于已经部署在非授权频谱上的系统(比如WiFi)的影响不能超过这些系统之间的影响。
为了保证在非授权频谱上各系统之间的公平性共存,能量检测机制已经被同意作为一个基本的共存机制。一般的能量检测机制为先听后说(listen before talk,LBT)机制,该机制的基本原理为:基站或者终端(传输端)在非授权频谱上传输数据之前,需要先按照规定侦听一段时间。如果侦听结果表示该信道为空闲状态,则传输端可以给接收端传输数据。如果侦听结果表示该信道为占用状态,则传输端需要根据规定回退一段时间再继续侦听信道,直到信道侦听结果为空闲状态,才能向接收端传输数据。其中,回退是为有效解决碰撞发生而提出的。
通常情况下,为了保证公平性,在一次传输中,通信设备使用非授权频谱的信道进行信号传输的时长不能超过最大信道占用时间(maximum channel occupancy time,MCOT)。
下面简要介绍一下NR-U中规定的四种信道接入机制:
机制1:直接传输机制
具体的,直接传输机制也即传输端可以在信道占用时间COT内的转换时隙(switching gap)之后迅速传输,该转换时隙是指接收到传输的转换时间,通常情况下,该转换时间足够短,典型值不超过16us。
机制2:不需要随机回退的LBT机制
可选的,这种机制是指传输端侦听信道的时间是确定的,一般比较短,比如25us。
机制3:随机回退的LBT机制(竞争窗口长度固定)
在LBT流程中,传输端随机的在竞争窗口中取一个随机值来决定侦听信道的时间。
机制4:随机回退的LBT机制(竞争窗口不固定)
在LBT流程中,传输端随机的在竞争窗口中取一个随机值来决定侦听信道的时间,竞争窗口是可变的。
值得说明的是,该机制4中引入了信道接入优先级。可选的,表1为信道接入优先级对应的参数取值,具体可以参照表1所示。
表1 为信道接入优先级对应的参数取值
Figure PCTCN2019100091-appb-000001
示例性的,参照表1所示,信道接入的优先级可以分为4个等级,每个等级的优先级对应的参数有m p、CW min,p、CW max,p、T mcot,p、CW p
其中,m p是一个随机数,其决定了执行信道接入的侦听信道时间。具体的,传输端在传输数据之前,需要先执行Td时间的信道侦听,其中,侦听信道时间Td=16us+m p×9us,9us为每次侦听的时长。
CW p是一个随机数,其表示侦听信道的次数变量。具体的,在传输端侦听Td时间后,确定信道处于空闲状态时,需要再侦听N次信道,每次时长为9us。其中,N为一个从0到CW p之间的随机数,且CW min,p≤CW p≤CW max,p。因而,CW min,p和CW max,p与信道接入过程中的侦听信道时间有关系,CW min,p表示信道接入过程中侦听信道的最小次数,CW max,p表示信道接入过程中侦听信道的最大次数。
T mcot,p为传输端抢占到信道之后占用信道的最长时间,它与传输端采用的信道优先级有关系,比如,优先级为1,则信道侦听成功之后,最多占用信道2ms。
示例性的,对于终端设备而言,网络设备给终端设备传输数据需要在T mcot,p时间之内,如果网络设备没有抢占到信道,也就是在T mcot,p时间之外,终端设备是不会收到网络设备发送给该终端设备的调度数据。
应理解,网络设备获得信道占用时间的方式可以是基于负载的设备(load based equipment,LBE)的信道接入方式,即通信设备可以在业务到达后进行非授权频谱上的LBT,并在LBT成功后开始信号的发送;也可以是基于帧结构的设备(frame based equipment,FBE)的信道接入方式,即通信设备周期性地进行非授权频谱上的LBT。
如果是基于LBE的信道接入方式,网络设备可以通过机制4的LBT来获得信道占用时间。机制4的LBT可以指通信设备的信道检测方式为基于竞争窗口大小调整的随机回退的多时隙信道检测。具体地,机制4的LBT根据传输业务的优先级可以包括不同的信道接入优先级,如上述表1所示。
如果是基于FBE的信道接入方式,例如,图5为基于FBE的信道接入方式中帧结构的示意图。如图5所示,在基于FBE的信道接入方式中,帧结构是周期出现的,在一个帧结构内包括固定帧周期(长度不超过200ms)、信道占用时间COT段(长度不超过固定帧周期的95%)、空闲时间段(长度至少为信道占用时间的5%,最小值为100us,且位于固定帧周期的尾部)。
在实际应用中,如图5所示,通信设备在空闲时间段内例如COT段开始前对信道做信道空闲检测(Clear Channel Assessment,CCA),如果信道检测成功,则下一个固定帧周期内的信道占用时间COT内可以用于传输信号;如果信道检测失败,下一个固定帧周期内的信道占用时间COT内不能用于传输信号。也即,该种实现方式中,通信设备可以用于业务发送的信道资源机会是周期性出现的。
但是,上述能量检测机制(LBT)虽然能够保证非授权频谱上各系统之间的公平性共存,但是在通信系统处于高负荷状态时,无法保证各个系统的服务质量,存在通信性能低的问题。
针对上述问题,本申请实施例提供了一种信息传输方法,在NR-V2X中终端设备对侧行链路进行信道侦听,判断该侧行链路在预设时间段内是否可用,当侧行链路在预设时间段内可用时,确定该侧行链路在预设时间段内的可用资源集合,在预设时间段内占用可用资源集合中的目标资源发送数据信息。该技术方案,在信道空闲时再确定出信道在预设时间段内的可用资源集合,并在可以资源集合中的目标资源上发送数据信息,使得各个系统的服务质量互不干扰,提高了系统稳定性。
本申请实施例提供的信息传输方法可用于第三代移动通信(the 3rd generation mobile communication,3G)、长期演进(long term evolution,LTE)系统,第四代移动通信(the4th generation mobile communication,4G)系统、先进的长期演进系统(advanced long term evolution,LTE-A)、第三代合作伙伴计划(the 3rd generation partnership project,3GPP)相关的蜂窝系统、第五代移动通信(the 5th generation mobile communication,5G)系统以及后续演进的通信系统。
本申请实施例提供的信息传输方法可用于车联网系统中,也可以用于任意的D2D系统中。
本申请实施例中涉及的网络设备,可以是普通的基站(如NodeB或eNB或者gNB)、新无线控制器(new radio controller,NR controller)、集中式网元(centralized unit)、新无线基站、射频拉远模块、微基站、中继(relay)、分布式网元(distributed unit)、接收点(transmission reception point,TRP)、传输点(transmission point,TP)或者任何其它设备,但本申请实施例不限于此。
本申请实施例中涉及的终端设备,如第一终端设备或第二终端设备,是具备V2X通信能力的终端设备,是一种向用户提供语音和/或数据连通性的设备,例如,具有无线连接功 能的手持式设备、车载设备、路边单元等。常见的终端设备包括:手机、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,例如智能手表、智能手环、计步器等。
下面,通过具体实施例对本申请的技术方案进行详细说明。需要说明的是,下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。
图6为本申请实施例提供的信息传输方法实施例一的流程示意图。该方法的执行主体为终端设备。参照图6所示,在本实施例中,该方法可以包括如下步骤:
步骤61:对侧行链路进行信道侦听,判断该侧行链路在预设时间段内是否可用。
在NR-U系统中,终端设备使用非授权频谱的侧行链路传输信息之前,为了保证各通信设备在非授权频谱上的公平性共存,首先按照规定对侧行链路进行信道侦听,判断该侧行链路是否处于空闲状态,进而确定该侧行链路在预设时间段内是否可用。
示例性的,若终端设备在给定的时间段内未检测到其他设备在该侧行链路上收发数据,则确定该侧行链路在给定的时间段内均处于空闲状态,也可以认为侧行链路在当前时刻之后的预设时间段内也处于空闲状态,因而,终端设备可以在预设时间段内使用该侧行链路。若终端设备在给定的时间段内检测到其他设备在该侧行链路上收发数据,则随机避让一段时间后再次重试此过程,其能够有效地避免无线信道上的冲突。
示例性的,在本实施例中,该步骤61可以通过如下可行方式实现:
A1:对侧行链路进行信道侦听,判断该侧行链路是否处于空闲状态。
示例性的,在通信系统中,各通信设备进行信道侦听的时长可以预先规定好,因而,在本实施例中,终端设备在侧行链路传输信息之前,可以在规定时间段内进行信道侦听,判断该侧行链路是否处于空闲状态,并以侦听结果确定侧行链路在预设时间段内是否可用。
可选的,在本实施例中,进行信道侦听的时间段可以称为侦听窗,预设时间段也可以称为选择窗。也即,基于在侦听窗内的信道侦听结果,确定侧行链路在选择窗内是否可用。
例如,图7为侧行链路对应侦听窗和预设时间段的分布示意图。如图7所示,终端设备可以在侦听窗内进行信道侦听,并基于在侦听窗内的侦听结果,在预设时间段内选择侧行链路上的资源。
可选的,在图7中,例如,当侦听窗的时长为1s时,侦听窗的为[n-1000,n],预设时间段即选择窗,例如,[n+T1,n+T2],其中,T1<=4;20<=T2<=100。
值得说明的是,本申请实施例并不限定侦听窗和预设时间段的具体时长,其可以根据情况确定,此处不再赘述。
A2:在该侧行链路处于空闲状态时,确定侧行链路在上述预设时间段内可用。
在本实施例中,终端设备通过信道侦听确定侧行链路处于空闲状态时,则可以认为侧行链路在预设时间段内也处于空闲状态,这时,可以确定侧行链路在上述预设时间段内可用。
示例性的,如图7所示,若进行信道侦听的时间段称为侦听窗,那么在侦听窗的结束时刻需要传输数据时,这时可以在预设时间段内的某个时间段内利用该侧行链路进行数据传输。
示例性的,如果终端设备获得信道占用时间的方式是基于FBE的信道接入方式,根据上述图5对帧结构的介绍可知,一个帧结构内包括固定帧周期(长度不超过200ms)、信道占用时间段(长度不超过固定帧周期的95%)、空闲时间段(长度至少为信道占用时间的5%,最小值为100us,且位于固定帧周期的尾部)。
作为一种示例,终端设备在一个固定帧周期的空闲时间段内对信道做信道空闲检测(clear channel assessment,CCA),以判断是否可以在下一个固定帧周期内的COT段内传输信号。
具体的,上述步骤61还可以通过如下可行方式实现:
在第一固定帧周期的空闲时间段进行信道侦听,判断该侧行链路是否处于空闲状态;
在该侧行链路处于空闲状态时,确定侧行链路在第二固定帧周期的信道占用时间段可用,该第一固定帧周期和所述第二固定帧周期为相邻的两个固定帧周期。
例如,在本申请的实施例中,上述侦听窗可以为第一固定帧周期的空闲时间段,预设时间段为第二固定帧周期的信道占用时间段,且第一固定帧周期和第二固定帧周期为时间上相邻的两个固定帧周期,本实施例的侦听窗和预设时间段的总时长等于一个固定帧周期的时长。
作为另一种示例,终端设备还可以在一个固定帧周期的空闲时间内依次执行信道侦听和侧行链路信号检测,且本实施例中不限定信道侦听和侧行链路信号检测的先后顺序,其可以根据实际情况确定。
可以理解的是,在本申请的另一种可能设计中,终端设备还可以在第一固定帧周期的信道占用时间段的全部或部分时间段内执行侧行链路信号检测,以判断侧行链路在第二固定帧周期的信道占用时间段内是否存在被预留的资源,在第一固定帧周期的空闲时间段执行信道侦听,以判断侧行链路在第二固定帧周期的信道占用时间段内是否可用。值得说明的是,本申请实施例并不限定信道侦听和侧行链路信号检测占用的时间段,其可以根据实际情况确定,此处不再赘述。
因而,在这种可能设计中,侦听窗为第一固定帧周期的时间段(包括:信道占用时间段和空闲时间段),预设时间段为第二固定帧周期的信道占用时间段,且第一固定帧周期和第二固定帧周期为时间上相邻的两个固定帧周期,此时,侦听窗和预设时间段的总时长大于一个固定帧周期的时长。
步骤62:当侧行链路在该预设时间段内可用时,确定该侧行链路在预设时间段内的可用资源集合。
在本实施例中,终端设备通过信道侦听确定该侧行链路在预设时间段可用,其是根据侦听结果估计的结论,而该侧行链路在预设时间段内的可用资源信息还需要根据实际情况确定。
例如,如果终端设备对侧行链路进行信道侦听时,确定在某些子帧上没有侦听结果,其表明这些子帧上的资源可能被用于其他的用途,在预设时间段内也可能不可用,因而,侧行链路在预设时间段内的可用资源集合不应该包括这些子帧相关联的资源。
再比如,终端设备通过进行信道侦听确定侧行链路在该预设时间段内可用时,还可以在检测是否存在侧行链路信号,以确定侧行链路在预设时间段内被预留的资源,因而,侧行链路在预设时间段内的可用资源集合也不应该包括在预设时间段内被预留的资源。
值得说明的是,侦听窗可以包括信道侦听子时间段和信号检测子时间段,也即,终端设备在侦听窗的信道侦听子时间段执行信道侦听,以判断侧行链路是否空闲,也可以在侦听窗的信号检测子时间段执行信号检测,判断侧行链路上是否存在侧行链路信号,以确定侧行链路在预设时间段内被预留的资源。
示例性的,在本实施例中,该步骤62可以通过如下可行方式实现:
B1:当侧行链路在预设时间段内可用时,检测侧行链路上是否存在侧行链路信号,该侧行链路信号用于指示该侧行链路在预设时间段内被预留的资源。
在车联网系统中,终端设备之间传输的信号称为侧行链路信号,该侧行链路信号可以用于指示该侧行链路在预设时间段内被预留的资源。因而,在本实施例中,终端设备确定侧行链路在预设时间段内可用时,还可以检测该侧行链路上是否存在侧行链路信号,并基于检测到的侧行链路信号确定侧行链路在预设时间段内是否存在被预留的资源。
值得说明的是,终端设备通过信道侦听确定侧行链路处于忙碌状态时,也可以检测侧行链路上是否存在侧行链路信号,若未检测到侧行链路信号,则认为是异系统占用信道资 源。
B2:在该侧行链路上存在侧行链路信号时,根据该侧行链路信号,确定可用资源集合,该可用资源集合包括该侧行链路在预设时间段内未被预留的资源。
在本实施例中,如果终端设备检测到侧行链路信号,这时,终端设备可以通过对侧行链路信号进行处理,以确定出侧行链路在预设时间段内可能被其他终端使用的资源或者被其他终端预留的资源。所以,在本实施例中,终端设备可以基于该侧行链路信号指示的其他设备在预设时间段内被预留的资源,确定出侧行链路在预设时间段内未被预留的资源,也即,可用资源集合。
步骤63:在该预设时间段内占用可用资源集合中的目标资源发送数据信息。
在本实施例中,当终端设备确定出侧行链路在预设时间段内的可用资源集合时,可以直接在该预设时间段内占用目标资源上通过该侧行链路发送数据信息,还可以首先从该可用资源集合中确定出目标资源以及占用该目标资源的子时间段,再在该预设时间段内占用确定的时间段占用目标资源通过该侧行链路发送数据信息。
本申请实施例提供的信息传输方法,通过对侧行链路进行信道侦听,检测该侧行链路在预设时间段内是否可用,当该侧行链路在预设时间段内可用时,确定该侧行链路在预设时间段内的可用资源集合,最后在预设时间段内占用该可用资源集合中的目标资源发送数据信息。该技术方案,终端设备基于信道侦听结果和侧行链路在预设时间段内的可用性,最后在预设时间段内占用目标资源发送数据信息,使得各个系统的服务质量互不干扰,提高了系统稳定性。
可选的,作为一种示例,图8为本申请实施例提供的信息传输方法实施例二的流程示意图。如图8所示,在本实施例中,在上述步骤63之前,该方法还可以包括如下步骤:
步骤81:从该可用资源集合中确定目标资源以及占用该目标资源的第一时间段。
在本实施例中,终端设备在预设时间段内占用目标资源发送数据信息之前,可以首先从可用资源集合中确定目标资源以及占用该目标资源的第一时间段。
具体的,终端可以对可用资源集合中的资源进行侧行链路接收信号强度指示(sidelink received signal strength indicator,S-RSSI)检测,并且按照信号强度由高到低进行排序,基于排序结果确定出发送数据信息占用的目标资源以及在预设时间段内占用该目标资源的时间段,例如,第一时间段。
步骤82:发送第一信息,该第一信息用于指示在预设时间段内的第一时间段占用该目标资源。
在本实施例中,当终端设备需要在预设时间段内的第一时间段占用目标资源时,其可以在第一时间段开始之前发送第一信息,以通知其他的设备该终端设备会在预设时间段的第一时间段占用该目标资源,从而有效的避免了资源冲突,终端设备发送的该第一信息还可以用于告知数据信息的接收端,需要在预设时间段内的第一时间段通过检测目标资源接收该数据信息。
可选的,在本申请的实施例中,为了保证侧行链路的目标资源在预设时间段内的第一时间段内的可用性,终端设备还可以在第一时间段占用目标资源发送数据信息之前,执行资源侦听。具体的,参照图8所示,该方法还包括如下步骤:
步骤83:对侧行链路进行资源侦听,确定该目标资源在第一时间段可用,该资源侦听的侦听参数与信道侦听的侦听参数不同。
可选的,在本实施例中,资源侦听的实现原理与步骤61中信道侦听的实现原理类似,区别在于,本步骤中资源侦听的侦听参数与步骤61中信道侦听的侦听参数不同,例如,侦听的时长不同,侦听的信号强度阈值不同。可选的,本步骤中资源侦听的侦听时长小于步骤61中信道侦听的侦听时长,本步骤中资源侦听的信号强度阈值小于步骤61中信道侦听的信号强度阈值。
在本实施例中,终端设备对侧行链路进行资源侦听,确定该侧行链路处于空闲状态时,则可以表明侧行链路的目标资源在第一时间段内可用,所以,终端设备可以在第一时间段内占用该目标资源发送数据信息。
相应的,上述步骤63可以通过如下步骤实现:
步骤84:在该预设时间段内的第一时间段内占用可用资源集合中的目标资源发送数据信息。
在本实施例中,终端设备对侧行链路进行资源侦听后,若确定该侧行链路处于空闲状态,则可以表明侧行链路的目标资源在第一时间段内是可用的,因而,终端设备可以在第一时间段内占用该目标资源发送数据信息。
本申请实施例提供的信息传输方法,终端设备在该预设时间段内占用可用资源集合中的目标资源发送数据信息之前,首先从该可用资源集合中确定目标资源以及占用该目标资源的第一时间段,并发送第一信息,以指示该终端设备会在第一时间段内占用该目标资源,不仅有效的避免了资源冲突,而且及时通知了接收端,以使其在对应的时刻监测目标资源接收数据信息,提高了信息接收效率。
可选的,作为另一种示例,图9为本申请实施例提供的信息传输方法实施例三的流程示意图。本实施例与上述图8所示实施例的区别在于:图8所示实施例中终端设备只在预设时间段的第一时间段内占用该目标资源,本实施例中的终端设备在预设时间段内的第一时间段内和第二时间段内占用该目标资源。
具体的,如图9所示,在本实施例中,在上述步骤63之前,该方法还可以包括如下步骤:
步骤91:从可用资源集合中确定目标资源以及占用该目标资源的第一时间段和第二时间段,该第一时间段和第二时间段为所述预设时间段中无交集的时间段。
在本实施例中,终端设备在预设时间段内占用目标资源发送数据信息之前,可以从可用资源集合中确定目标资源以及占用该目标资源的第一时间段和第二时间段。
其中,第一时间段和第二时间段为该预设时间段中无交集的两个子时间段。也即,终端设备可以在预设时间段内的多个不同的子时间段占用该目标资源发送数据信息。
值得说明的是,本申请实施例并不限定占用该目标资源的时间段数量和具体时间段,也即,终端设备还可以在除了第一时间段和第二时间段之外的其他时间段占用该目标资源,关于具体占用该目标资源的时间段数量和时间段的具体时长均可以根据实际情况确定,此处不再赘述。
在本实施例中,确定目标资源的具体实现方式可以参见上述图8所示步骤81中的记载,此处不再赘述。
步骤92:发送第二信息,该第二信息用于指示在第一时间段内和第二时间段内占用该目标资源。
在本实施例中,当终端设备需要在预设时间段内的第一时间段内和第二时间段内占用目标资源时,其可以在第一时间段和第二时间段开始之前的时间段发送第二信息,以通知其他的设备该终端设备会在预设时间段的第一时间段内和第二时间段内占用该目标资源,从而有效的避免了资源冲突,终端设备发送的该第二信息还可以用于告知数据信息的接收端,需要在预设时间段内的第一时间段内和第二时间段内通过检测目标资源接收该数据信息。
也即,在本实施例中,终端设备通过一条指示信息将在第一时间段内和第二时间段内占用该目标资源的指示发送给其他设备。
可以理解的是,当终端设备在预设时间段内的多个时间段内占用该目标资源时,也可以通过一条指示信息将在这多个时间段内占用该目标资源的指示发送给其他设备。
步骤93:对该侧行链路进行资源侦听,确定该目标资源在第一时间段和第二时间段内 可用,该资源侦听的侦听参数与信道侦听的侦听参数不同。
可选的,在本实施例中,如果终端设备将要在第一时间段和第二时间段内占用该目标资源发送数据信息,那么为了保证侧行链路的目标资源在第一时间段和第二时间段内是可用性,终端设备还需要在发送数据信息之前,执行资源侦听。
同理,在本实施例中,资源侦听的实现原理与步骤61中信道侦听的实现原理类似,区别在于,本步骤中资源侦听的侦听参数与步骤61中信道侦听的侦听参数不同。
可选的,本实施例中资源侦听的侦听参数与上述步骤83中资源侦听的参数可以相同,也可以不同,关于侦听参数的具体取值可以根据实际情况确定,此处不再赘述。
相应的,上述步骤63可以通过如下步骤实现:
步骤94:在预设时间段内的第一时间段和第二时间段内占用该可用资源集合中的目标资源发送数据信息。
在本实施例中,终端设备对侧行链路进行资源侦听后,若确定该侧行链路处于空闲状态,则可以表明侧行链路的目标资源在第一时间段和第二时间段内均是可用的,因而,终端设备可以在第一时间段和第二时间段内占用该目标资源发送数据信息。
本申请实施例提供的信息传输方法,终端设备在该预设时间段内占用可用资源集合中的目标资源发送数据信息之前,从可用资源集合中确定目标资源以及占用该目标资源的第一时间段和第二时间段,该第一时间段和第二时间段为预设时间段中无交集的时间段,发送第二信息,该第二信息用于指示在第一时间段和第二时间段内占用该目标资源,对该侧行链路进行资源侦听,确定目标资源在第一时间段和第二时间段内可用,该资源侦听的侦听参数与信道侦听的侦听参数不同,以及在预设时间段内的第一时间段和第二时间段内占用该可用资源集合中的目标资源发送数据信息。该技术方案中,终端设备通过第二信息发送在第一时间段和第二时间段内占用该目标资源的指示,节省了信令开销,降低了资源利用率。
可选的,作为再一种示例,图10为本申请实施例提供的信息传输方法实施例四的流程示意图。本实施例与上述图9所示实施例的区别在于:图9所示实施例中终端设备通过一条指示信息发送在预设时间段内的第一时间段和第二时间段内占用该目标资源的指示,本实施例中终端设备分别通过两条指示信息发送在预设时间段内的第一第一时间段和所述第二时间段内占用该目标资源的指示。
具体的,如图10所示,在本实施例中,在上述步骤63之前,该方法还可以包括如下步骤:
步骤101:从可用资源集合中确定目标资源以及占用该目标资源的第一时间段和第二时间段,该第一时间段和第二时间段为所述预设时间段中无交集的时间段。
步骤102:发送第三信息和第四信息,该第三信息用于指示在第一时间段内占用目标资源,第四信息用于指示在第二时间段内占用目标资源。
可选的,在本实施例中,当终端设备需要在预设时间段内的第一时间段内和第二时间段内占用目标资源时,其可以在第一时间段开始之前发送第三信息、在第二时间段开始之前发送第四信息,以通知其他的设备该终端设备会在预设时间段的第一时间段内和第二时间段内占用该目标资源,避免资源冲突和告知数据信息的接收端,需要在预设时间段内的第一时间段内和第二时间段内通过检测目标资源接收该数据信息。
也即,在本实施例中,终端设备通过两条指示信息将在第一时间段和第二时间段内占用该目标资源的指示发送给其他设备。
可以理解的是,当终端设备在预设时间段内的多个时间段内占用该目标资源时,可以分别通过多条指示信息将在这多个时间段占用该目标资源的指示发送给其他设备。
值得说明的是,若第一时间段在时间上早于第二时间段时,发送第四信息所在的时间段还可以为第一时间段,也即,终端设备在第一时间段内占用目标发送数据信息之前,首 先将该第四信息与第一时间段内将要发送的数据信息整合到一条消息中发送出去,以指示该终端设备会在预设时间段的第二时间段内占用该目标资源。
本申请实施例并不限定第四信息的发送方式和发送时间段内,只要在第二时间段开始之前发送出去即可。
步骤103:对该侧行链路进行资源侦听,确定该目标资源在第一时间段和第二时间段内可用,该资源侦听的侦听参数与信道侦听的侦听参数不同。
相应的,上述步骤63可以通过如下步骤实现:
步骤104:在预设时间段内的第一时间段和第二时间段内占用该可用资源集合中的目标资源发送数据信息。
关于步骤101、步骤103以及步骤104的实现原理分别与图9所示实施例中步骤91、步骤93以及步骤94的一致,具体可以参见上述实施例中的记载,此处不再赘述。
本申请实施例提供的信息传输方法,终端设备在该预设时间段内占用可用资源集合中的目标资源发送数据信息之前,从可用资源集合中确定目标资源以及占用该目标资源的第一时间段和第二时间段,第一时间段和第二时间段为预设时间段中无交集的时间段,发送第三信息和第四信息,该第三信息用于指示在第一时间段内占用目标资源,第四信息用于指示在第二时间段内占用目标资源,此外,还可以对该侧行链路进行资源侦听,确定该目标资源在第二时间段内可用,以及在预设时间段内的第一时间段和第二时间段内占用该可用资源集合中的目标资源发送数据信息。该技术方案中,终端设备通过两条信息分别发送在第一时间段和第二时间段内占用该目标资源的指示,并且在资源侦听后发送,提高了资源可用性概率,进一步提高了系统稳定性。
图11为本申请实施例提供的信息传输装置实施例的结构示意图。该装置可以集成在终端设备中,也可以通过终端设备实现。如图11所示,该装置可以包括:侦听模块111、处理模块112和发送模块113。
其中,侦听模块111,用于对侧行链路进行信道侦听,判断所述侧行链路在预设时间段内是否可用;
处理模块112,用于在所述侧行链路在所述预设时间段内可用时,确定所述侧行链路在所述预设时间段内的可用资源集合;
发送模块113,用于在所述预设时间段内占用所述可用资源集合中的目标资源发送数据信息。
在本申请实施例的一种可能设计中,侦听模块111,具体用于对所述侧行链路进行信道侦听,判断所述侧行链路是否处于空闲状态,并在所述侧行链路处于空闲状态时,确定所述侧行链路在所述预设时间段内可用。
可选的,所述侦听模块,具体用于在第一固定帧周期的空闲时间段进行信道侦听,判断所述侧行链路是否处于空闲状态,在所述侧行链路处于空闲状态时,确定所述侧行链路在第二固定帧周期的信道占用时间段可用,所述第一固定帧周期和所述第二固定帧周期为相邻的两个固定帧周期。
在本申请实施例的另一种可能设计中,处理模块112,具体用于当所述侧行链路在所述预设时间段内可用时,检测所述侧行链路上是否存在侧行链路信号,所述侧行链路信号用于指示所述侧行链路在所述预设时间段内被预留的资源;在所述侧行链路上存在侧行链路信号时,根据所述侧行链路信号,确定所述可用资源集合,所述可用资源集合包括所述侧行链路在所述预设时间段内未被预留的资源。
在本申请实施例的再一种可能设计中,该处理模块112,还用于在发送模块113在所述预设时间段内占用所述可用资源集合中的目标资源发送数据信息之前,从所述可用资源集合中确定所述目标资源以及占用所述目标资源的所述第一时间段;
该发送模块113,还用于发送第一信息,所述第一信息用于指示在所述预设时间段内 的第一时间段内占用所述目标资源;
该发送模块113,具体用于在所述预设时间段内的所述第一时间段内占用所述可用资源集合中的目标资源发送数据信息。
在本实施例的该种可能设计中,侦听模块111,还用于所述发送模块113在所述预设时间段内的所述第一时间段内占用所述可用资源集合中的目标资源发送数据信息之前,对所述侧行链路进行资源侦听,确定所述目标资源在所述第一时间段内可用,所述资源侦听的侦听参数与所述信道侦听的侦听参数不同。
在本申请实施例的又一种可能设计中,该处理模块112,还用于在发送模块113在所述预设时间段内占用所述可用资源集合中的目标资源发送数据信息之前,从所述可用资源集合中确定所述目标资源以及占用所述目标资源的所述第一时间段和第二时间段,所述第一时间段和所述第二时间段为所述预设时间段中无交集的时间段;
该发送模块113,还用于发送第二信息,所述第二信息用于指示在所述第一时间段内和所述第二时间段内占用所述目标资源。
在本申请实施例的又一种可能设计中,该处理模块112,还用于在发送模块113在所述预设时间段内占用所述可用资源集合中的目标资源发送数据信息之前,从所述可用资源集合中确定所述目标资源以及占用所述目标资源的所述第一时间段和第二时间段,所述第一时间段和所述第二时间段为所述预设时间段中无交集的时间段;
该发送模块113,还用于发送第三信息和第四信息,所述第三信息用于指示在所述第一时间段内占用所述目标资源,所述第四信息用于指示在所述第二时间段内占用所述目标资源。
可选的,在本申请实施例的该种可能设计中,该发送模块113,具体用于在所述预设时间段内的所述第一时间段和所述第二时间段内占用所述可用资源集合中的目标资源发送数据信息。
可选的,上述侦听模块111,还用于在发送模块113在所述预设时间段内的所述第一时间段和所述第二时间段内占用所述可用资源集合中的目标资源发送数据信息之前,对所述侧行链路进行资源侦听,确定所述目标资源在所述第二时间段内可用,所述资源侦听的侦听参数与所述信道侦听的侦听参数不同。
本实施例提供的装置,用于执行前述图7至图9所示实施例中的技术方案,其实现原理和技术效果类似,终端设备对侧行链路进行信道侦听,判断该侧行链路在预设时间段内是否可用,当侧行链路在预设时间段内可用时,确定该侧行链路在预设时间段内的可用资源集合,在预设时间段内占用可用资源集合中的目标资源发送数据信息。该技术方案,在信道空闲时再确定出信道在预设时间段内的可用资源集合,并在可以资源集合中的目标资源上发送数据信息,使得各个系统的服务质量互不干扰,提高了系统稳定性。
需要说明的是,应理解以上装置的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,处理模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(application specific integrated circuit,ASIC), 或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(central processing unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘solid state disk(SSD))等。
图12为本申请实施例提供的终端设备实施例的结构示意图。如图12所示,该装置可以包括:处理器121、存储器122、通信接口123和系统总线124,所述存储器122和所述通信接口123通过所述系统总线124与所述处理器121连接并完成相互间的通信,所述存储器122用于存储计算机执行指令,所述通信接口123用于和其他设备进行通信,所述处理器121执行所述计算机执行指令,使得所述处理器121执行时实现如图7至图9所示方法实施例的方案。
该图12中提到的系统总线可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。所述系统总线可以分为地址总线、数据总线、控制总线等。为便于表示,图中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。通信接口用于实现数据库访问装置与其他设备(例如客户端、读写库和只读库)之间的通信。存储器可能包含随机存取存储器(random access memory,RAM),也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。
上述的处理器可以是通用处理器,包括中央处理器CPU、网络处理器(network processor,NP)等;还可以是数字信号处理器DSP、专用集成电路ASIC、现场可编程门阵列FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。
图13为本申请实施例提供的通信系统实施例的结构示意图。如图13所示,该通信系统可以包括:第一终端设备131和第二终端设备132。
其中,该第一终端设备131可以是上述图10所示实施例的信息传输装置或者上述图11所示实施例的终端设备,该第一终端设备131和第二终端设备132可以进行通信。
值得说明的是,在本申请的另一实施例中,该第二终端设备132可以执行上述第一终端设备131的技术方案。
示例性的,该通信系统可以称为车联网系统或者D2D系统。
可选的,本申请的通信系统还可以包括:网络设备173。该网络设备173可以为第一终端设备171和/或第二终端设备172提供服务。
在本实施例中,关于第一终端设备171的具体实现方式可参见上述实施例中的记载,此处不再赘述。
可选的,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质中存 储有指令,当其在计算机上运行时,使得计算机执行如上述图7至图9所示方法实施例的实现方案。
可选的,本申请实施例还提供一种运行指令的芯片,包括:处理模块与通信接口,该处理模块能执行上述图7至图9所示方法实施例的实现方案。
进一步地,该芯片还包括存储模块(如,存储器),存储模块用于存储指令,处理模块用于执行存储模块存储的指令,并且对存储模块中存储的指令的执行使得处理模块执行前述方法实施例的技术方案。
本申请实施例还提供一种程序,当该程序被处理器执行时,用于执行前述图7至图9所示方法实施例的实现方案。
本申请实施例还提供一种程序产品,所述程序产品包括计算机程序,所述计算机程序存储在存储介质中,至少一个处理器可以从所述存储介质读取所述计算机程序,所述至少一个处理器执行所述计算机程序时可实现上述图7至图9所示方法实施例的实现方案。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系;在公式中,字符“/”,表示前后关联对象是一种“相除”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中,a,b,c可以是单个,也可以是多个。可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。
可以理解的是,在本申请的实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请的实施例的实施过程构成任何限定。

Claims (22)

  1. 一种信息传输方法,应用于终端设备,其特征在于,包括:
    对侧行链路进行信道侦听,判断所述侧行链路在预设时间段内是否可用;
    当所述侧行链路在所述预设时间段内可用时,确定所述侧行链路在所述预设时间段内的可用资源集合;
    在所述预设时间段内占用所述可用资源集合中的目标资源发送数据信息。
  2. 根据权利要求1所述的方法,其特征在于,所述对侧行链路进行信道侦听,判断所述侧行链路在预设时间段内是否可用,包括:
    对所述侧行链路进行信道侦听,判断所述侧行链路是否处于空闲状态;
    在所述侧行链路处于空闲状态时,确定所述侧行链路在所述预设时间段内可用。
  3. 根据权利要求2所述的方法,其特征在于,所述对侧行链路进行信道侦听,判断所述侧行链路在预设时间段内是否可用,包括:
    在第一固定帧周期的空闲时间段进行信道侦听,判断所述侧行链路是否处于空闲状态;
    在所述侧行链路处于空闲状态时,确定所述侧行链路在第二固定帧周期的信道占用时间段可用,所述第一固定帧周期和所述第二固定帧周期为相邻的两个固定帧周期。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述当所述侧行链路在所述预设时间段内可用时,确定所述侧行链路在所述预设时间段内的可用资源集合,包括:
    当所述侧行链路在所述预设时间段内可用时,检测所述侧行链路上是否存在侧行链路信号,所述侧行链路信号用于指示所述侧行链路在所述预设时间段内被预留的资源;
    在所述侧行链路上存在侧行链路信号时,根据所述侧行链路信号,确定所述可用资源集合,所述可用资源集合包括所述侧行链路在所述预设时间段内未被预留的资源。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述在所述预设时间段内占用所述可用资源集合中的目标资源发送数据信息之前,所述方法还包括:
    从所述可用资源集合中确定所述目标资源以及占用所述目标资源的第一时间段;
    发送第一信息,所述第一信息用于指示在所述预设时间段内的第一时间段内占用所述目标资源;
    所述在所述预设时间段内占用所述可用资源集合中的目标资源发送数据信息,包括:
    在所述预设时间段内的所述第一时间段内占用所述可用资源集合中的目标资源发送数据信息。
  6. 根据权利要求5所述的方法,其特征在于,所述在所述预设时间段内的所述第一时间段内占用所述可用资源集合中的目标资源发送数据信息之前,所述方法还包括:
    对所述侧行链路进行资源侦听,确定所述目标资源在所述第一时间段内可用,所述资源侦听的侦听参数与所述信道侦听的侦听参数不同。
  7. 根据权利要求1-4任一项所述的方法,其特征在于,所述在所述预设时间段内占用所述可用资源集合中的目标资源发送数据信息之前,所述方法还包括:
    从所述可用资源集合中确定所述目标资源以及占用所述目标资源的第一时间段和第二时间段,所述第一时间段和所述第二时间段为所述预设时间段中无交集的时间段;
    发送第二信息,所述第二信息用于指示在所述第一时间段内和所述第二时间段内占用所述目标资源。
  8. 根据权利要求1-4任一项所述的方法,其特征在于,所述在所述预设时间段内占用所述可用资源集合中的目标资源发送数据信息之前,所述方法还包括:
    从所述可用资源集合中确定所述目标资源以及占用所述目标资源的第一时间段和第二时间段,所述第一时间段和所述第二时间段为所述预设时间段中无交集的时间段;
    发送第三信息和第四信息,所述第三信息用于指示在所述第一时间段内占用所述目标资源,所述第四信息用于指示在所述第二时间段内占用所述目标资源。
  9. 根据权利要求7或8所述的方法,其特征在于,所述在所述预设时间段内占用所述可用资源集合中的目标资源发送数据信息,包括:
    在所述预设时间段内的所述第一时间段和所述第二时间段内占用所述可用资源集合中的目标资源发送数据信息。
  10. 根据权利要求9所述的方法,其特征在于,所述在所述预设时间段内的所述第一时间段和所述第二时间段内占用所述可用资源集合中的目标资源发送数据信息之前,所述方法还包括:
    对所述侧行链路进行资源侦听,确定所述目标资源在所述第一时间段和所述第二时间段内可用,所述资源侦听的侦听参数与所述信道侦听的侦听参数不同。
  11. 一种信息传输装置,应用于终端设备,其特征在于,所述装置包括:侦听模块、处理模块和发送模块;
    所述侦听模块,用于对侧行链路进行信道侦听,判断所述侧行链路在预设时间段内是否可用;
    所述处理模块,用于在所述侧行链路在所述预设时间段内可用时,确定所述侧行链路在所述预设时间段内的可用资源集合;
    所述发送模块,用于在所述预设时间段内占用所述可用资源集合中的目标资源发送数据信息。
  12. 根据权利要求11所述的装置,其特征在于,所述侦听模块,具体用于对所述侧行链路进行信道侦听,判断所述侧行链路是否处于空闲状态,并在所述侧行链路处于空闲状态时,确定所述侧行链路在所述预设时间段内可用。
  13. 根据权利要求12所述的装置,其特征在于,所述侦听模块,具体用于在第一固定帧周期的空闲时间段进行信道侦听,判断所述侧行链路是否处于空闲状态,在所述侧行链路处于空闲状态时,确定所述侧行链路在第二固定帧周期的信道占用时间段可用,所述第一固定帧周期和所述第二固定帧周期为相邻的两个固定帧周期。
  14. 根据权利要求11-13任一项所述的装置,其特征在于,所述处理模块,具体用于当所述侧行链路在所述预设时间段内可用时,检测所述侧行链路上是否存在侧行链路信号,所述侧行链路信号用于指示所述侧行链路在所述预设时间段内被预留的资源;在所述侧行链路上存在侧行链路信号时,根据所述侧行链路信号,确定所述可用资源集合,所述可用资源集合包括所述侧行链路在所述预设时间段内未被预留的资源。
  15. 根据权利要求11-14任一项所述的装置,其特征在于,所述处理模块,还用于在所述发送模块在所述预设时间段内占用所述可用资源集合中的目标资源发送数据信息之前,从所述可用资源集合中确定所述目标资源以及占用所述目标资源的第一时间段;
    所述发送模块,还用于发送第一信息,所述第一信息用于指示在所述预设时间段内的第一时间段内占用所述目标资源;
    所述发送模块,具体用于在所述预设时间段内的所述第一时间段内占用所述可用资源集合中的目标资源发送数据信息。
  16. 根据权利要求15所述的装置,其特征在于,所述侦听模块,还用于所述发送模块在所述预设时间段内的所述第一时间段内占用所述可用资源集合中的目标资源发送数据信息之前,对所述侧行链路进行资源侦听,确定所述目标资源在所述第一时间段内可用,所述资源侦听的侦听参数与所述信道侦听的侦听参数不同。
  17. 根据权利要求11-14任一项所述的装置,其特征在于,所述处理模块,还用于在所述发送模块在所述预设时间段内占用所述可用资源集合中的目标资源发送数据信息之前,从所述可用资源集合中确定所述目标资源以及占用所述目标资源的所述第一时间段和第二时间段,所述第一时间段和所述第二时间段为所述预设时间段中无交集的时间段;
    所述发送模块,还用于发送第二信息,所述第二信息用于指示在所述第一时间段内和 所述第二时间段内占用所述目标资源。
  18. 根据权利要求11-14任一项所述的装置,其特征在于,所述处理模块,还用于在所述发送模块在所述预设时间段内占用所述可用资源集合中的目标资源发送数据信息之前,从所述可用资源集合中确定所述目标资源以及占用所述目标资源的所述第一时间段和第二时间段,所述第一时间段和所述第二时间段为所述预设时间段中无交集的时间段;
    所述发送模块,还用于发送第三信息和第四信息,所述第三信息用于指示在所述第一时间段内占用所述目标资源,所述第四信息用于指示在所述第二时间段内占用所述目标资源。
  19. 根据权利要求17或18所述的装置,其特征在于,所述发送模块,具体用于在所述预设时间段内的所述第一时间段和所述第二时间段内占用所述可用资源集合中的目标资源发送数据信息。
  20. 根据权利要求19所述的装置,其特征在于,所述侦听模块,还用于在所述发送模块在所述预设时间段内的所述第一时间段和所述第二时间段内占用所述可用资源集合中的目标资源发送数据信息之前,对所述侧行链路进行资源侦听,确定所述目标资源在所述第二时间段内可用,所述资源侦听的侦听参数与所述信道侦听的侦听参数不同。
  21. 一种终端设备,其特征在于,包括:
    处理器、存储器、通信接口和系统总线;
    所述存储器存储计算机执行指令;
    所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如上述权利要求1-10任一项所述的方法。
  22. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现如权利要求1-10任一项所述的方法。
PCT/CN2019/100091 2019-08-09 2019-08-09 信息传输方法、装置、设备及存储介质 WO2021026703A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980099161.1A CN114208319A (zh) 2019-08-09 2019-08-09 信息传输方法、装置、设备及存储介质
PCT/CN2019/100091 WO2021026703A1 (zh) 2019-08-09 2019-08-09 信息传输方法、装置、设备及存储介质
US17/561,836 US20220116995A1 (en) 2019-08-09 2021-12-24 Information transmission method, apparatus, device and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/100091 WO2021026703A1 (zh) 2019-08-09 2019-08-09 信息传输方法、装置、设备及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/561,836 Continuation US20220116995A1 (en) 2019-08-09 2021-12-24 Information transmission method, apparatus, device and storage medium

Publications (1)

Publication Number Publication Date
WO2021026703A1 true WO2021026703A1 (zh) 2021-02-18

Family

ID=74570810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100091 WO2021026703A1 (zh) 2019-08-09 2019-08-09 信息传输方法、装置、设备及存储介质

Country Status (3)

Country Link
US (1) US20220116995A1 (zh)
CN (1) CN114208319A (zh)
WO (1) WO2021026703A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113242609A (zh) * 2021-05-11 2021-08-10 哈尔滨海能达科技有限公司 数据传输的方法及系统、电子设备及计算机可读存储介质
WO2023155205A1 (zh) * 2022-02-21 2023-08-24 北京小米移动软件有限公司 一种侧行链路干扰消除的方法及其装置
WO2023168697A1 (zh) * 2022-03-11 2023-09-14 Oppo广东移动通信有限公司 侧行传输方法、装置、设备、介质及程序产品
WO2023199780A1 (en) * 2022-04-13 2023-10-19 Sony Group Corporation Terminal device and communication method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022125886A1 (en) * 2020-12-10 2022-06-16 Ofinno, Llc Sidelink sensing procedure
CN115515234A (zh) * 2021-06-22 2022-12-23 华为技术有限公司 通信方法及通信装置
CN116887227A (zh) * 2022-03-28 2023-10-13 维沃移动通信有限公司 非授权频段的周期性资源的使用方法、装置及终端
US20230336280A1 (en) * 2022-04-15 2023-10-19 Samsung Electronics Co., Ltd. Method and apparatus for contention window adjustment on sidelink
WO2024045011A1 (en) * 2022-08-31 2024-03-07 Qualcomm Incorporated Channel access techniques for frame-based equipment in sidelink communications using shared spectrum
CN117835401A (zh) * 2022-09-30 2024-04-05 维沃移动通信有限公司 传输资源的确定方法、装置、ue及可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018133720A1 (zh) * 2017-01-17 2018-07-26 华为技术有限公司 反馈信息传输方法及装置
CN108347313A (zh) * 2017-01-24 2018-07-31 华为技术有限公司 反馈方法及用户设备
CN109219131A (zh) * 2017-07-03 2019-01-15 华为技术有限公司 一种数据的传输方法、终端设备和接入网设备
CN109565793A (zh) * 2017-10-31 2019-04-02 Oppo广东移动通信有限公司 一种终端选择资源的方法及装置、计算机存储介质
CN109803431A (zh) * 2017-11-17 2019-05-24 华为技术有限公司 通信方法和终端设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI660642B (zh) * 2017-08-10 2019-05-21 財團法人工業技術研究院 車聯網資源分配方法及用戶設備
CN110312307B (zh) * 2018-03-20 2023-04-07 大唐移动通信设备有限公司 一种载波中的资源选择方法及设备
US11723068B2 (en) * 2018-05-25 2023-08-08 Lg Electronics Inc. Method for terminal to transmit and receive sidelink signal in wireless communication system supporting sidelink, and device for same
US20220201764A1 (en) * 2019-02-15 2022-06-23 Lg Electronics Inc. Method for transmitting and receiving signal in wireless communication system and apparatus supporting same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018133720A1 (zh) * 2017-01-17 2018-07-26 华为技术有限公司 反馈信息传输方法及装置
CN108347313A (zh) * 2017-01-24 2018-07-31 华为技术有限公司 反馈方法及用户设备
CN109219131A (zh) * 2017-07-03 2019-01-15 华为技术有限公司 一种数据的传输方法、终端设备和接入网设备
CN109565793A (zh) * 2017-10-31 2019-04-02 Oppo广东移动通信有限公司 一种终端选择资源的方法及装置、计算机存储介质
CN109803431A (zh) * 2017-11-17 2019-05-24 华为技术有限公司 通信方法和终端设备

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113242609A (zh) * 2021-05-11 2021-08-10 哈尔滨海能达科技有限公司 数据传输的方法及系统、电子设备及计算机可读存储介质
WO2023155205A1 (zh) * 2022-02-21 2023-08-24 北京小米移动软件有限公司 一种侧行链路干扰消除的方法及其装置
WO2023168697A1 (zh) * 2022-03-11 2023-09-14 Oppo广东移动通信有限公司 侧行传输方法、装置、设备、介质及程序产品
WO2023199780A1 (en) * 2022-04-13 2023-10-19 Sony Group Corporation Terminal device and communication method

Also Published As

Publication number Publication date
US20220116995A1 (en) 2022-04-14
CN114208319A (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
WO2021026703A1 (zh) 信息传输方法、装置、设备及存储介质
EP3497996B1 (en) Selecting radio resource
EP3294022A1 (en) Method and device for resource allocation
CN111615192B (zh) 传输数据的方法和通信装置
WO2017177699A1 (zh) 通信间隔的配置方法及装置、存储介质、设备
WO2017026463A1 (ja) ユーザ装置及び信号送信方法
CN109391918B (zh) 配置无线资源池的方法及装置
WO2021204173A1 (zh) 一种资源确定的方法、装置及终端设备
US20220110075A1 (en) Information transmission method and apparatus, and storage medium
CN114223285A (zh) 一种通信方法及装置
WO2024036671A1 (zh) 侧行通信的方法及装置
CN110178432B (zh) 业务数据传输方法及装置
WO2019061103A1 (zh) 直连链路数据传输的方法、终端设备和网络设备
CN110622555B (zh) 实现无线通信网络中的无线设备的通信
WO2021168826A1 (zh) 资源排除方法、装置、设备及存储介质
CN116058059A (zh) 针对多链路设备的信道接入
WO2022213828A1 (zh) 用于资源确定的方法及装置
JP2024511225A (ja) Nr sidelinkでの省電力ユーザのためのリソース選択
WO2020259293A1 (zh) 一种通信方法和装置
WO2022067611A1 (zh) 先侦听后传输失败上报的方法、终端设备和网络设备
CN115734202A (zh) 旁链路通信方法及设备
WO2021056366A1 (zh) 信息传输方法及装置
WO2023108477A1 (zh) 资源选择的控制方法、装置、设备及存储介质
WO2022151397A1 (zh) 一种通信方法及装置
WO2023165468A9 (zh) 一种资源确定方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19941233

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19941233

Country of ref document: EP

Kind code of ref document: A1