WO2021025443A1 - 이차 전지용 전지 케이스 및 파우치 형 이차 전지 - Google Patents

이차 전지용 전지 케이스 및 파우치 형 이차 전지 Download PDF

Info

Publication number
WO2021025443A1
WO2021025443A1 PCT/KR2020/010292 KR2020010292W WO2021025443A1 WO 2021025443 A1 WO2021025443 A1 WO 2021025443A1 KR 2020010292 W KR2020010292 W KR 2020010292W WO 2021025443 A1 WO2021025443 A1 WO 2021025443A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
flame retardant
layer
battery case
flame
Prior art date
Application number
PCT/KR2020/010292
Other languages
English (en)
French (fr)
Inventor
윤여민
정범영
하정호
김기재
안용건
이규빈
Original Assignee
주식회사 엘지화학
건국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학, 건국대학교 산학협력단 filed Critical 주식회사 엘지화학
Publication of WO2021025443A1 publication Critical patent/WO2021025443A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/14Primary casings; Jackets or wrappings for protecting against damage caused by external factors
    • H01M50/143Fireproof; Explosion-proof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/40Closed containers
    • B32B2439/46Bags
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • H01M50/129Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery case and a pouch-type secondary battery for a secondary battery, and more particularly, even if an explosion or fire occurs due to abnormal operations such as internal short circuit, external short circuit, overcharge, overdischarge, etc. It relates to a battery case and pouch-type secondary battery for secondary batteries that can secure safety by preventing the spread of fire.
  • types of secondary batteries include nickel cadmium batteries, nickel hydride batteries, lithium ion batteries, and lithium ion polymer batteries.
  • These secondary batteries are not only small products such as digital cameras, P-DVDs, MP3Ps, mobile phones, PDAs, portable game devices, power tools, and E-bikes, but also large-scale products requiring high output such as electric vehicles and hybrid vehicles, and surplus power generation. It is also applied and used in power storage devices for storing electric power or renewable energy and power storage devices for backup.
  • a cathode, a separator, and an anode are manufactured, and these are stacked. Specifically, a positive electrode active material slurry is applied to a positive electrode current collector, and a negative electrode active material slurry is applied to a negative electrode current collector to prepare a cathode and a negative electrode.
  • a separator is interposed between the prepared anode and the cathode to be stacked, unit cells are formed, and the unit cells are stacked on top of each other to form an electrode assembly.
  • a secondary battery is manufactured.
  • the problem to be solved by the present invention is that even if an explosion or fire occurs due to abnormal operations such as internal short circuit, external short circuit, overcharge, overdischarge, etc., it becomes flame retardant to prevent the spread of fire to other surrounding secondary batteries to ensure safety. It is to provide a battery case and a pouch type secondary battery for secondary batteries that can be used.
  • a battery case for a secondary battery according to an embodiment of the present invention for solving the above problem is a pouch-type battery case that houses an electrode assembly formed by stacking a positive electrode, a separator, and a negative electrode, comprising: a gas barrier layer made of metal; A surface protective layer made of a first polymer and positioned on an outer layer of the gas barrier layer; A sealant layer made of a second polymer and positioned on the inner layer of the gas barrier layer; It has flame retardancy, and includes a flame-retardant film layer positioned on an outer layer than the surface protection layer or an inner layer than the sealant layer, and the flame-retardant film layer is formed by surrounding a core including a flame retardant in a shell made of a third polymer Microcapsules; And a polymer substrate made of a fourth polymer, wherein the microcapsules are applied to at least one surface or contained therein.
  • the flame retardant may include a halogen-based flame retardant, a phosphorus-based flame retardant, or an inorganic compound flame retardant.
  • the flame retardant may include calcium bromide (CaBr2).
  • the third polymer may be one or more materials selected from the group consisting of polystyrene resin, ABS resin, polyether resin, polycarbonate resin, polyacrylate resin, polymethyl methacrylate resin, and acrylonitrile resin. .
  • the third polymer may include polymethyl methacrylate (PMMA).
  • the fourth polymer is polyethylene terephthalate (PET), polyester (Polyester, PE), polytetrafluoroethylene (PTFE), polydimethylsiloxane (PDMS), Kapton, Polyimide (PI), nylon (Nylon), polyvinylalcohol (PVA), polyisobutylene, polyurethane elastic sponge, polyvinyl butyral, polychloroprene, Natural rubber, Polyacrylonitrile, Polydiphenolcarbonate, Polyetherchloride, Polyvinylidene Chloride, Polystylene (PS), Polyethylene, Polypropylene It may be one or more materials selected from the group consisting of Polypropylene, PP) and Polyvinyl Chloride (PVC).
  • the fourth polymer may include polydimethylsiloxane (PDMS).
  • PDMS polydimethylsiloxane
  • a method for manufacturing a flame retardant film according to an embodiment of the present invention for solving the above problem includes the steps of liquefying a polymer substrate made of a fourth polymer; Forming a mixed solution by adding microcapsules containing a flame retardant to the liquefied polymer substrate; Stirring the mixed solution; Injecting the mixed solution into a frame in a film shape or coating a substrate; And curing the mixed solution.
  • a curing agent may be further added to the mixed solution.
  • microcapsules may have a ratio of 10 to 50 wt%.
  • the method of manufacturing the microcapsules preparing a third polymer solution; Adding a flame retardant to the solution; Stirring the solution to emulsify the third polymer and the flame retardant; And it may include the step of evaporating the solvent solvent.
  • the flame retardant may include calcium bromide (CaBr2).
  • the third polymer may include polymethyl methacrylate (PMMA).
  • the fourth polymer may include polydimethylsiloxane (PDMS).
  • PDMS polydimethylsiloxane
  • a pouch-type secondary battery for solving the above problems includes an electrode assembly formed by stacking a positive electrode, a separator, and a negative electrode; And a pouch-type battery case accommodating the electrode assembly, wherein the battery case includes: a gas barrier layer made of metal; A surface protective layer made of a first polymer and positioned on an outer layer of the gas barrier layer; A sealant layer made of a second polymer and positioned on the inner layer of the gas barrier layer; It has flame retardancy, and includes a flame-retardant film layer positioned on an outer layer than the surface protection layer or an inner layer than the sealant layer, and the flame-retardant film layer is formed by surrounding a core including a flame retardant in a shell made of a third polymer Microcapsules; And a polymer substrate made of a fourth polymer, wherein the microcapsules are applied to at least one surface or contained therein.
  • the present invention also provides a battery module including the pouch-type secondary battery as a unit battery.
  • the present invention also, a battery pack comprising the battery module.
  • the present invention further comprises the battery pack.
  • the devices include computers, notebooks, smartphones, mobile phones, tablet PCs, wearable electronic devices, power tools, electric vehicles (EV), hybrid electric vehicles (HEVs), and plug-in hybrids.
  • EV electric vehicles
  • HEV hybrid electric vehicles
  • plug-in hybrids An electric vehicle (Plug-in Hybrid Electric Vehicle, PHEV) or a power storage device may be mentioned, but is not limited thereto.
  • the flame retardant included in the flame retardant film layer becomes micro-encapsulated surrounded by a shell, even if the flame retardant film layer is formed on the outermost layer of the secondary battery, it may be prevented from reacting with the atmosphere.
  • the flame-retardant film has electrolyte resistance, even if the flame-retardant film layer is formed on the innermost layer of the secondary battery, damage to the flame-retardant film may be prevented.
  • FIG. 1 is an assembly diagram of a pouch-type secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a pouch film according to an embodiment of the present invention.
  • FIG 3 is a schematic diagram of a flame retardant film layer according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a microcapsule according to an embodiment of the present invention.
  • FIG. 5 is a flowchart illustrating a method of manufacturing a microcapsule according to an embodiment of the present invention.
  • FIG. 6 is a flow chart showing a method of manufacturing a flame retardant film according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a flame retardant film layer according to another embodiment of the present invention.
  • FIG. 1 is an assembly diagram of a pouch-type secondary battery 1 according to an embodiment of the present invention.
  • the pouch-type secondary battery 1 includes an electrode assembly 10 formed by stacking a positive electrode, a separator, and a negative electrode, and accommodating the electrode assembly 10, as shown in FIG. 1. It includes a pouch-type battery case 13.
  • a slurry obtained by mixing an electrode active material, a binder, and a plasticizer is first applied to a positive electrode current collector and a negative electrode current collector to prepare electrodes such as a positive electrode and a negative electrode.
  • the electrode assembly 10 having a predetermined shape is formed by stacking this on both sides of a separator, and then the electrode assembly 10 is inserted into the battery case 13, and the electrolyte is injected and then sealed.
  • the electrode assembly 10 is a laminated structure having two types of electrodes, an anode and a cathode, and a separator interposed between the electrodes to insulate the electrodes from each other, or disposed on the left or right side of any one electrode.
  • the laminated structure may have various shapes without limitation, such as a positive electrode and a negative electrode of a predetermined standard may be laminated with a separator interposed therebetween, or may be wound in a jelly roll form.
  • Two types of electrodes, that is, a positive electrode and a negative electrode have a structure in which an active material slurry is coated on an electrode current collector in the form of a metal foil or metal mesh including aluminum and copper, respectively.
  • the slurry may be formed by stirring a particulate active material, an auxiliary conductor, a binder, a plasticizer, and the like in a state in which a solvent is added. The solvent is removed in a subsequent process.
  • the electrode assembly 10 includes an electrode tab 11, as shown in FIG. 1.
  • the electrode tabs 11 are respectively connected to the anode and the cathode of the electrode assembly 10, protrude to the outside of the electrode assembly 10, and become a path through which electrons can move between the inside and the outside of the electrode assembly 10. .
  • the current collector of the electrode assembly 10 includes a portion coated with an electrode active material and a terminal portion to which the electrode active material is not applied, that is, a non-coated portion.
  • the electrode tab 11 may be formed by cutting the uncoated portion or by connecting a separate conductive member to the uncoated portion by ultrasonic welding or the like. As shown in FIG. 1, the electrode tabs 11 may protrude from one side of the electrode assembly 10 in the same direction, but are not limited thereto and may protrude in different directions.
  • An electrode lead 12 is connected to the electrode tab 11 of the electrode assembly 10 by spot welding or the like.
  • a part of the electrode lead 12 is surrounded by an insulating portion 14.
  • the insulating part 14 is located limited to the sealing part 134 in which the upper case 131 and the lower case 132 of the battery case 13 are thermally fused, and is adhered to the battery case 13.
  • electricity generated from the electrode assembly 10 is prevented from flowing to the battery case 13 through the electrode lead 12 and the sealing of the battery case 13 is maintained.
  • the insulating portion 14 is made of a non-conductive non-conductor that does not conduct electricity well.
  • an insulating tape that is easy to attach to the electrode lead 12 and has a relatively thin thickness is often used, but it is not limited thereto, and various members can be used as long as the electrode lead 12 can be insulated. have.
  • the electrode lead 12 has one end connected to the positive electrode tab 111, and one end connected to the positive electrode lead 121 and the negative electrode tab 112 extending in a direction in which the positive electrode tab 111 protrudes, and the negative electrode tab 112 ) Includes a cathode lead 122 extending in the protruding direction. Meanwhile, the other ends of the positive lead 121 and the negative lead 122 protrude to the outside of the battery case 13, as shown in FIG. 1. Accordingly, electricity generated inside the electrode assembly 10 can be supplied to the outside.
  • the anode tab 111 and the cathode tab 112 are formed to protrude in various directions, respectively, the anode lead 121 and the cathode lead 122 may also extend in various directions, respectively.
  • the anode lead 121 and the cathode lead 122 may have different materials from each other. That is, the positive lead 121 may be made of the same aluminum (Al) material as the positive current collector, and the negative lead 122 may be made of the same copper (Cu) material as the negative current collector or a copper material coated with nickel (Ni). In addition, a portion of the electrode lead 12 protruding to the outside of the battery case 13 becomes a terminal portion and is electrically connected to the external terminal.
  • the battery case 13 is a pouch made of a flexible material.
  • the battery case 13 accommodates and seals the electrode assembly 10 so that a part of the electrode lead 12, that is, the terminal portion is exposed.
  • the battery case 13 includes an upper case 131 and a lower case 132 as shown in FIG. 1.
  • a cup portion 133 is formed to provide an accommodation space 1331 capable of accommodating the electrode assembly 10, and in the upper case 131, the electrode assembly 10 is a battery case 13
  • the accommodation space 1331 is covered from the top so as not to be separated from the outside of the unit.
  • a cup portion 133 in which an accommodation space 1331 is provided is also formed in the upper case 131, so that the electrode assembly 10 may be accommodated from the top.
  • the cup portion 133 may be formed only in the lower case 132 and may be variously formed.
  • the upper case 131 and the lower case 132 may be manufactured by having one side connected to each other as shown in FIG. 1, but are not limited thereto and may be manufactured in various ways such as being separated from each other and manufactured separately.
  • the cup portion 133 of the lower case 132 When the electrode lead 12 is connected to the electrode tab 11 of the electrode assembly 10 and the insulating portion 14 is formed on a part of the electrode lead 12, the cup portion 133 of the lower case 132 The electrode assembly 10 is accommodated in the accommodation space 1331, and the upper case 131 covers the space from above. Then, an electrolyte is injected into the inside, and sealing portions 134 formed on the edges of the upper case 131 and the lower case 132 are sealed.
  • the electrolyte is for moving lithium ions generated by the electrochemical reaction of the electrode during charging and discharging of the secondary battery 1, and is a non-aqueous organic electrolyte or a polymer using a polymer electrolyte, which is a mixture of a lithium salt and a high-purity organic solvent. It may include. Through this method, a pouch-type secondary battery 1 may be manufactured.
  • FIG 2 is a cross-sectional view of a pouch film 135 according to an embodiment of the present invention.
  • the flame retardant film layer 1354 having flame retardancy in the pouch-type battery case 13 explosions and fires occur due to abnormal operations such as internal short circuit, external short circuit, overcharge, overdischarge, etc. Even if it is flame-retardant, it is possible to secure safety by preventing the spread of fire to other secondary batteries 1 around it.
  • the pouch-type battery case 13 accommodating the electrode assembly 10 formed by stacking a positive electrode, a separator, and a negative electrode, a gas made of metal Barrier layer 1351; A surface protection layer 1352 made of a first polymer and positioned on an outer layer of the gas barrier layer 1351; A sealant layer (1353) made of a second polymer and positioned on the inner layer of the gas barrier layer (1351); It has flame retardancy and includes a flame retardant film layer 1354 positioned on an outer layer than the surface protection layer 1352 or an inner layer than the sealant layer 1352, and the flame retardant film layer 1354 is made of a third polymer.
  • the shell 222 is a microcapsule 22 formed by surrounding the core 221 containing a flame retardant; And a polymer substrate 21 made of a fourth polymer and coated on at least one surface of the microcapsules 22 or included therein.
  • the battery case 13 is manufactured by drawing the pouch film 135. That is, it is manufactured by stretching the pouch film 135 to form the cup portion 133. As shown in FIG. 3, the pouch film 135 includes a gas barrier layer 1351, a surface protection layer 1352, a sealant layer 1353, and a flame retardant film layer. Flame Retardant Film Layer, 1354).
  • the gas barrier layer 1351 secures the mechanical strength of the battery case 13, blocks entry of gas or moisture from the outside of the secondary battery 1, and prevents leakage of an electrolyte solution.
  • the gas barrier layer 1351 includes a metal, and it is preferable that an aluminum thin film (Al Foil) is mainly used.
  • Al Foil aluminum can secure a mechanical strength of a predetermined level or higher, it is light in weight, and complements the electrochemical properties of the electrode assembly 10 and the electrolyte, and can secure heat dissipation.
  • the present invention is not limited thereto, and various materials may be included in the gas barrier layer 1351.
  • it may be one or more materials selected from the group consisting of iron (Fe), carbon (C), chromium (Cr), manganese (Mn), nickel (Ni), and aluminum (Al).
  • Fe iron
  • C carbon
  • Cr chromium
  • Mn manganese
  • Ni nickel
  • Al aluminum
  • the gas barrier layer 1351 is made of a material containing iron, mechanical strength is improved, and when a material containing aluminum is made of a material, flexibility is improved, so it may be used in consideration of each characteristic.
  • the surface protection layer 1352 is made of a first polymer and is located on the outer layer of the gas barrier layer 1351 to protect the secondary battery 1 from friction and collision with the outside, while protecting the electrode assembly 10 from the outside. Insulate electrically.
  • the outer layer refers to a layer located in a direction opposite to the direction in which the electrode assembly is located based on the gas barrier layer.
  • the first polymer for preparing the surface protective layer 1352 is polyethylene, polypropylene, polycarbonate, polyethylene terephthalate, polyvinyl chloride, acrylic polymer, polyacrylonitrile, polyimide, polyamide, cellulose, aramid, nylon , Polyester, polyparaphenylenebenzobisoxazole, polyarylate, Teflon, and may be one or more materials selected from the group consisting of glass fibers.
  • a polymer such as nylon resin or polyethylene terephthalate (PET) mainly having abrasion resistance and heat resistance.
  • the surface protection layer 1352 may have a single layer structure made of any one material, or may have a composite layer structure formed by each layer of two or more materials.
  • the sealant layer 1352 is made of a second polymer, and is positioned on the inner layer of the gas barrier layer 1351.
  • the inner layer refers to a layer positioned in a direction in which the electrode assembly is positioned based on the gas barrier layer.
  • the gas barrier layer 1351 is stacked between the surface protection layer 1352 and the sealant layer 1352, as shown in FIG. 2.
  • the sealant layers 1351 are adhered to each other, thereby sealing the battery case 13.
  • the sealant layer 1352 since the sealant layer 1352 directly contacts the electrode assembly 10, it must have insulation, and since it contacts the electrolyte, it must have corrosion resistance.
  • the inside since the inside must be completely sealed to block material movement between the inside and outside, it must have high sealing properties. That is, the sealing portions 134 to which the sealant layers 1352 are bonded to each other should have excellent thermal bonding strength.
  • the second polymer for producing the sealant layer 1352 is polyethylene, polypropylene, polycarbonate, polyethylene terephthalate, polyvinyl chloride, acrylic polymer, polyacrylonitrile, polyimide, polyamide, cellulose, aramid, It may be one or more materials selected from the group consisting of nylon, polyester, polyparaphenylenebenzobisoxazole, polyarylate, Teflon, and fiberglass.
  • a polyolefin resin such as polypropylene (PP) or polyethylene (PE) is mainly used.
  • Polypropylene (PP) is excellent in mechanical properties such as tensile strength, stiffness, surface hardness, abrasion resistance, heat resistance, and chemical properties such as corrosion resistance, and is mainly used to manufacture the sealant layer 1351. Further, it may be composed of non-stretched polypropylene (Cated Polypropylene) or polypropylene-butylene-ethylene terpolymer. In addition, the sealant layer 1351 may have a single layer structure made of any one material, or may have a composite layer structure formed by each of two or more materials.
  • FIG 3 is a schematic diagram of a flame retardant film layer 1354 according to an embodiment of the present invention.
  • the flame retardant film layer 1354 has flame retardancy, and is positioned on an outer layer of the surface protection layer 1352 or an inner layer of the sealant layer 1352.
  • the flame retardant film layer 1354 may be located on the outermost layer or the innermost layer of the pouch film 135. If the flame retardant film layer 1354 is located on the innermost layer of the pouch film 135, the flame retardant film layer 1354 is preferably removed from the sealing portion 134. This is because, when thermal compression is performed on the sealing portion 134, the sealant layers 1351 are adhered to each other, and the battery case 13 can be sealed.
  • the flame retardant film layer 1354 includes a flame retardant that does not burn easily, and even if an explosion or fire occurs due to abnormal operation of the secondary battery 1, it becomes flame-retardant to prevent the spread of fire to other secondary batteries 1 in the vicinity. Thus, safety can be secured.
  • the flame-retardant film 2 which becomes the flame-retardant film layer 1354, has a shell 222 made of a third polymer surrounded by a core 221 including a flame retardant. Capsule 22; And a polymer substrate 21 made of a fourth polymer and in which the microcapsules 22 are included.
  • the polymer substrate 21 is made of a fourth polymer, and the microcapsules 22 are included therein.
  • a polymer substrate 21 becomes a substrate for the flame retardant film layer 1354, and is preferably flexible in order to be easily attached to the outermost layer or the innermost layer of the pouch film 135.
  • the fourth polymer is polyethylene terephthalate (PET), polyester (PE), polytetrafluoroethylene (PTFE), polydimethylsiloxane (PDMS), Kapton, and polyimide.
  • PI polyvinylalcohol
  • PVA polyvinylalcohol
  • polyisobutylene polyurethane elastic sponge
  • polyvinyl butyral polychloroprene
  • natural rubber poly Acrylonitrile
  • Polydiphenolcarbonate Polyetherchloride
  • Polyvinylidene Chloride Polystylene
  • PS Polyethylene
  • Polypropylene PP
  • PVC polyvinyl chloride
  • PVC polyvinyl chloride
  • PDMS polydimethylsiloxane
  • PDMS polydimethylsiloxane having high insulation, low thermal conductivity, and flame retardancy. Since such polydimethylsiloxane (PDMS) corresponds to a thermosetting resin, it does not melt again even if a fire occurs inside the secondary battery 1.
  • FIG. 4 is a schematic diagram of a microcapsule 22 according to an embodiment of the present invention.
  • the microcapsule 22 is formed by enclosing a shell 222 made of a third polymer and a core 221 containing a flame retardant.
  • the shell 222 is melted and the core 221 is discharged to the outside.
  • the flame retardant included in the core 221 is flame retardant, so that the spread of fire to the surrounding secondary battery 1 can be prevented.
  • the third polymer may be one or more materials selected from the group consisting of polystyrene resin, ABS resin, polyether resin, polycarbonate resin, polyacrylate resin, polymethyl methacrylate resin, and acrylonitrile resin.
  • PMMA polymethyl methacrylate
  • the flame retardant is a substance that inhibits the combustion reaction, and may include various flame retardants such as a halogen-based flame retardant, a phosphorus-based flame retardant, or an inorganic compound flame retardant.
  • Halogen-based flame retardants generally exhibit a flame retardant effect by substantially stabilizing radicals generated in the gas phase.
  • Halogen-based flame retardants are, for example, tribromo phenoxyethane, tetra bromo bisphenol-A (TBBA), octabromo diphenyl ether (OBDPE), calcium bromide (CaBr 2 ), brominated epoxy oligomer, brominated polycarbonate oligomer, Chlorinated paraffin, chlorinated polyethylene, and alicyclic chlorine-based flame retardants.
  • Phosphorus-based flame retardants generally produce polymetaphosphoric acid by thermal decomposition, which forms a protective layer or exerts a flame retardant effect by blocking oxygen by a carbon film produced by dehydration when polymetaphosphoric acid is produced.
  • phosphorus-based flame retardants include phosphates such as red, ammonium phosphate, phosphine oxide, phosphine oxide diols, phosphites, phosphonates, triaryl phosphate, alkyldiaryl phosphate, trialkyl phosphate, and resorcinaol bisdiphenyl phosphate (RDP).
  • Inorganic compound flame retardants are generally decomposed by heat to release non-combustible gases such as water, carbon dioxide, sulfur dioxide, and hydrogen chloride and cause endothermic reactions, thereby diluting the combustible gas to prevent access to oxygen, and cooling and pyrolysis by endothermic reactions. By reducing the production of products, it exerts a flame retardant effect.
  • Inorganic compound flame retardants are, for example, aluminum hydroxide (Al(OH) 3 ), magnesium hydroxide (Mg(OH) 2 ), boric acid (BH 3 O 3 ), antimony oxide, tin hydroxide, tin oxide, molybdenum oxide, zirconium compound , Borate, calcium salt, etc.
  • various flame retardants may be used, but it is preferable to use a halogen-based flame retardant among the flame retardants, and in particular, it is more preferable to use calcium bromide (CaBr 2 ).
  • CaBr 2 calcium bromide
  • Such calcium bromide (CaBr 2 ) may be used as an anhydride to which water molecules are not bound, but may be used as a hydrate to which water molecules are bound. And in some cases, it may further include other additives that induce a flame retardant synergistic effect when mixed with the flame retardant illustrated above.
  • Calcium bromide (CaBr 2 ) is generally very excellent in preventing flame propagation among flame retardants.
  • [Table 1] is a table measuring SET (Self-Extinguishing Time) of various types of flame retardants. Specifically, 0.8 g of each of the above substances is added to 2 g of an electrolytic solution of 3:7 mixture of EC (Ethylene carbonate) and EMC (Ethyl methyl carbonate), followed by combustion, and the time until combustion is completed is measured. I did it. As disclosed in [Table 1], compared to other substances of calcium bromide (CaBr 2 ), the SET is the shortest at 5 seconds. Therefore, it can be seen that the flame retardant effect is the most excellent.
  • SET Self-Extinguishing Time
  • calcium bromide (CaBr 2 ) may be damaged by reacting with the electrolyte solution of the secondary battery 1.
  • the flame retardant film layer 1354 is the innermost layer of the secondary battery 1 Even if it is formed in the flame retardant film 2 may be prevented from being damaged.
  • FIG. 5 is a flowchart illustrating a method of manufacturing the microcapsule 22 according to an embodiment of the present invention.
  • a method of manufacturing a microcapsule 22 according to an embodiment of the present invention includes the steps of preparing a third polymer solution; Adding a flame retardant to the solution; Stirring the solution to emulsify the third polymer and the flame retardant; And evaporating the solution with a solvent.
  • a third polymer particularly polymethyl methacrylate (PMMA)
  • DCM dichloromethane
  • a flame retardant particularly calcium bromide (CaBr 2 ) is added to the solution (S502), and the solution is stirred using a stirring device to prepare a turbid solution (S503).
  • the turbid solution and silicone oil are mixed to perform an emulsification process, and a mixed solution is prepared.
  • the volume ratio of dichloromethane (DCM) and silicone oil is preferably 1:1 to 1:100.
  • microcapsule 22 may be formed (S504). Then, the silicone oil is separated by performing a filtration process, followed by a washing process, and then dried in an oven. Thereby, such microcapsules 22 can be separated and obtained.
  • the microcapsules 22 manufactured as described above have a shape of a sphere or an ellipse, and the diameter changes according to the speed at which the solution is stirred using a stirring device. That is, the faster the stirring speed, the lower the diameter, and the lower the speed, the higher the diameter. Therefore, the diameter of the microcapsules 22 can also be adjusted by adjusting the stirring speed.
  • the diameter may be 30 to 100 ⁇ m, more preferably 40 to 70 ⁇ m.
  • heptane may be further added. Heptane removes the solvent of the polymer solution without dissolving the polymer. Therefore, by adding heptane, more effective phase separation is induced, and residual solvent between polymer chains can be removed more effectively.
  • the present invention is not limited thereto, and various aliphatic hydrocarbons other than heptane may be added.
  • silicone oil when manufacturing the microcapsules 22, silicone oil is added.
  • silicone oil is added.
  • FIG. 6 is a flowchart showing a method of manufacturing a flame retardant film 2 according to an embodiment of the present invention.
  • a method of manufacturing a flame-retardant film 2 includes the steps of liquefying a polymer substrate 21 made of a fourth polymer; Forming a mixed solution by adding microcapsules 22 containing a flame retardant to the liquefied polymer substrate 21; Stirring the mixed solution; Injecting the mixed solution into a frame (not shown) in a film shape or coating a substrate (not shown); And curing the mixed solution.
  • a fourth polymer particularly polydimethylsiloxane (PDMS)
  • PDMS polydimethylsiloxane
  • S601 a fourth polymer, particularly polydimethylsiloxane (PDMS)
  • S602 a microcapsule 22 containing a flame retardant
  • the proportion of the microcapsules 22 is 0 to 80 wt%, preferably 10 to 50 wt%. If the microcapsules 22 are excessively small, the flame retardant effect is not sufficiently exhibited, and if the microcapsules 22 are excessively large, the microcapsules 22 may not be fixed to and included in the polymer substrate 21.
  • a curing agent may be further added.
  • a curing agent is not limited, such as an amine compound, an imidazole compound, a phenol compound, a phosphorus compound, or an acid anhydride compound, and various curing agents may be used.
  • the mixed solution is stirred using a stirring device. Thereby, the microcapsules 22 can be uniformly dispersed in the polydimethylsiloxane (PDMS).
  • this mixed solution After sufficiently stirring this mixed solution (S603), it is injected into a frame or a substrate (not shown) is thinly and widely coated to form a film (S604). And by drying and curing the mixed solution in an oven, the flame retardant film 2 may be manufactured (S605). And when injected into a frame or coated on a substrate, the thickness of the flame-retardant film 2 may be adjusted by adjusting the thickness of the mixed solution. Heat may be applied at a temperature ranging from 20 to 120° C. to cure the mixed solution.
  • FIG. 7 is a schematic diagram of a flame retardant film layer 1354 according to another embodiment of the present invention.
  • a microcapsule 22 is included in the polymer substrate 21 made of a fourth polymer to be formed.
  • the microcapsules 22 may be applied to at least one surface of the polymer substrate 21.
  • Polymethyl methacrylate (PMMA) 400 mg is dissolved in dichloromethane (DCM) 12 mL to prepare a 2.5 wt% solution of polymethyl methacrylate (PMMA). Then, 1 g of calcium bromide (CaBr2) powder was added to the polymethyl methacrylate (PMMA) solution, and the above-mentioned for about 0.5 hours at a speed of 1500 RPM using a stirring device (manufacturer: Miseong Science Equipment, model name: HSD180) The solution was stirred to prepare a turbid solution.
  • DCM dichloromethane
  • CaBr2 calcium bromide
  • a filtration process is performed to separate silicone oil and heptane, and washing and drying processes are performed. Thereby, a shell made of polymethyl methacrylate (PMMA), a microcapsule containing 1 g of a core containing calcium bromide (CaBr 2 ) is formed.
  • PMMA polymethyl methacrylate
  • CaBr 2 calcium bromide
  • PDMS polydimethylsiloxane
  • 0.32 g of a curing solution 0.32 g of a curing solution
  • 0.88 g (about 20 wt%) of microcapsules containing the flame retardant are added to form a mixed solution.
  • After stirring the mixed solution it is poured into a circular mold having a diameter of 5 cm, dried in an oven at 80° C. for about 5 hours, and cured.
  • the flame-retardant films according to Preparation Example, Comparative Example 1 and Comparative Example 2 were fixed with tongs, respectively, and then fire-protected using a torch.
  • Flame-retardant films according to Preparation Example and Comparative Example 2 were only left marks on the edges. However, in the flame-retardant film according to Comparative Example 1, the flame spread as a whole after 5 seconds, and then burned out.
  • the flame-retardant films according to Preparation Example, Comparative Example 1 and Comparative Example 2 were left in the air and maintained at a temperature of 25°C and 65°C for 2 weeks, and the weight was measured every day.
  • the flame-retardant film according to the preparation example increased to 2.57 g after two weeks at 25° C. at 25° C., resulting in a weight of 1.58. % Changed.
  • the weight of 2.53 g increased to 2.66 g after 2 weeks at 25° C., and the weight changed by 5.13%.
  • the flame retardant film according to the manufacturing example decreased the weight of 2.50 g to 2.48 g after 2 weeks at 65 °C, and the weight changed -0.8%.
  • the weight of 2.50 g increased to 2.63 g after 2 weeks at 25° C., and the weight changed by 5.20%.
  • the flame-retardant film according to the preparation example of the present invention had less change in weight than the flame-retardant film according to Comparative Example 1. Therefore, it can be seen that the flame retardant film according to the preparation example of the present invention has little reactivity with components such as water vapor in the atmosphere, and thus has excellent atmospheric stability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Abstract

상기 과제를 해결하기 위한 본 발명의 실시예에 따른 이차 전지용 전지 케이스는 양극, 분리막, 음극이 적층되어 형성되는 전극 조립체를 수납하는 파우치형 전지 케이스에 있어서, 금속으로 제조되는 가스 배리어층; 제1 폴리머로 제조되고, 상기 가스 배리어층의 외층에 위치하는 표면 보호층; 제2 폴리머로 제조되고, 상기 가스 배리어층의 내층에 위치하는 실란트층; 난연성을 가지며, 상기 표면 보호층보다 외층 또는 상기 실란트층보다 내층에 위치하는 난연필름층을 포함하고, 상기 난연필름층은, 제3 폴리머로 제조되는 쉘이, 난연제를 포함하는 코어를 포위하여 형성되는 마이크로 캡슐; 및 제4 폴리머로 제조되며, 상기 마이크로 캡슐이 적어도 일면에 도포되거나 내부에 포함되는 폴리머 기재를 포함한다.

Description

이차 전지용 전지 케이스 및 파우치 형 이차 전지
관련출원과의 상호인용
본 출원은 2019년 08월 08일자 한국특허출원 제10-2019-0097013호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 이차 전지용 전지 케이스 및 파우치 형 이차 전지에 관한 것으로서, 보다 상세하게는 내부 단락, 외부 단락, 과충전, 과방전 등 비정상적인 작동에 의해 폭발 및 화재가 발생하더라도, 방염이 됨으로써 주변의 다른 이차 전지로 화재의 확산을 방지하여 안전성을 확보할 수 있는 이차 전지용 전지 케이스 및 파우치 형 이차 전지에 관한 것이다.
일반적으로, 이차 전지의 종류로는 니켈 카드뮴 전지, 니켈 수소 전지, 리튬 이온 전지 및 리튬 이온 폴리머 전지 등이 있다. 이러한 이차 전지는 디지털 카메라, P-DVD, MP3P, 휴대폰, PDA, Portable Game Device, Power Tool 및 E-bike 등의 소형 제품뿐만 아니라, 전기 자동차나 하이브리드 자동차와 같은 고출력이 요구되는 대형 제품과 잉여 발전 전력이나 신재생 에너지를 저장하는 전력 저장 장치와 백업용 전력 저장 장치에도 적용되어 사용되고 있다.
전극 조립체를 제조하기 위해, 양극(Cathode), 분리막(Separator) 및 음극(Anode)을 제조하고, 이들을 적층한다. 구체적으로, 양극 활물질 슬러리를 양극 집전체에 도포하고, 음극 활물질 슬러리를 음극 집전체에 도포하여 양극(Cathode)과 음극(Anode)을 제조한다. 그리고 상기 제조된 양극 및 음극의 사이에 분리막(Separator)이 개재되어 적층되면 단위 셀(Unit Cell)들이 형성되고, 단위 셀들이 서로 적층됨으로써, 전극 조립체가 형성된다. 그리고 이러한 전극 조립체가 특정 케이스에 수용되고 전해액을 주입하면 이차 전지가 제조된다.
그러나, 이차 전지가 고온에 노출되거나 내부 단락, 외부 단락, 과충전 또는 과방전 등 비정상적으로 작동되는 경우, 유기 전해질이 분해됨에 따라 발생하는 열에 의해 분리막이 수축하면서 양극과 음극이 서로 직접 접촉하여 단락(쇼트, Short)이 발생할 가능성이 높아진다. 이러한 단락으로 인해 전지 내부에 급격한 전자 이동이 발생하면 이차 전지가 폭발하고 화재가 발생하여 안전성에 문제가 있었다. 특히, 과충전, 과방전, 외부 단락 등 전기적인 오작동 발생 시, 높은 전류가 흐르고 집전체의 열전도율이 낮기 때문에 집전체의 온도가 활물질 층보다 높은 열이 발생한다. 따라서 이러한 열이 확산되면 금속산화물을 포함하는 양극 활물질이 분해 및 재결정화되고, 산소를 포함하는 인화성 가스가 발생함에 따라, 더 큰 폭발로 이어질 수 있었다.
종래에는 이를 해결하기 위해, 인화성 가스가 발생하지 않는 이온성 액체를 전해질로 사용하거나, 전류를 차단하는 보호 회로를 설치하는 방법이 제시되었다. 그러나, 이온성 액체를 전해질로 사용하는 경우, 기존에 사용되는 유기 전해질에 비해 이온 전도성이 저하되어, 전지의 성능도 함께 저하되는 문제가 있었다. 또한, 전류를 차단하는 보호 회로를 설치하기 위해서는, 이차 전지의 내부에 더 많은 공간이 확보되어야 하므로, 부피 대비 에너지 밀도가 감소하는 문제가 있었다.
본 발명이 해결하고자 하는 과제는, 내부 단락, 외부 단락, 과충전, 과방전 등 비정상적인 작동에 의해 폭발 및 화재가 발생하더라도, 방염이 됨으로써 주변의 다른 이차 전지로 화재의 확산을 방지하여 안전성을 확보할 수 있는 이차 전지용 전지 케이스 및 파우치 형 이차 전지를 제공하는 것이다.
본 발명의 과제들은 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 과제를 해결하기 위한 본 발명의 실시예에 따른 이차 전지용 전지 케이스는 양극, 분리막, 음극이 적층되어 형성되는 전극 조립체를 수납하는 파우치형 전지 케이스에 있어서, 금속으로 제조되는 가스 배리어층; 제1 폴리머로 제조되고, 상기 가스 배리어층의 외층에 위치하는 표면 보호층; 제2 폴리머로 제조되고, 상기 가스 배리어층의 내층에 위치하는 실란트층; 난연성을 가지며, 상기 표면 보호층보다 외층 또는 상기 실란트층보다 내층에 위치하는 난연필름층을 포함하고, 상기 난연필름층은, 제3 폴리머로 제조되는 쉘이, 난연제를 포함하는 코어를 포위하여 형성되는 마이크로 캡슐; 및 제4 폴리머로 제조되며, 상기 마이크로 캡슐이 적어도 일면에 도포되거나 내부에 포함되는 폴리머 기재를 포함한다.
또한, 상기 난연제는, 할로겐계 난연제, 인계 난연제 또는 무기화합물 난연제를 포함할 수 있다.
또한, 상기 난연제는, 칼슘 브로마이드(CaBr2)를 포함할 수 있다.
또한, 상기 제3 폴리머는, 폴리스티렌 수지, ABS 수지, 폴리에테르 수지, 폴리카보네이트 수지, 폴리아크릴레이트 수지, 폴리메틸메타크릴레이트 수지 및 아크릴로니트릴계 수지로 이루어진 군으로부터 선택된 하나 이상의 물질일 수 있다.
또한, 상기 제3 폴리머는, 폴리메틸메타크릴레이트(PMMA)를 포함할 수 있다.
또한, 상기 제4 폴리머는, 폴리에틸렌테레프탈레이트(Polyethyleneterephthalate, PET), 폴리에스테르(Polyester, PE), 폴리테트라플루오로에틸렌(Polytetrafluoroethylene, PTFE), 폴리디메틸실록산(Polydimethylsiloxane, PDMS), 캡톤(Kapton), 폴리이미드(Polyimide, PI), 나일론(Nylon), 폴리비닐알코올(Polyvinylalcohol, PVA), 폴리이소부틸렌(Polyisobutylene), 폴리우레탄 탄성 스펀지, 폴리비닐 부티랄(Polyvinyl Butyral), 폴리클로로프렌(Polychloroprene), 천연고무, 폴리아크릴로니트릴(Polyacrylonitrile), 폴리디페놀카보네이트(Polydiphenolcarbonate), 염화폴리에테르(Polyetherchloride), 폴리염화비닐리덴(Polyvinylidene Chloride), 폴리스티렌(Polystylene, PS), 폴리에틸렌(Polyethylene), 폴리프로필렌(Polypropylene, PP) 및 폴리염화비닐(Polyvinyl Chloride, PVC)로 이루어진 군으로부터 선택된 하나 이상의 물질일 수 있다.
또한, 상기 제4 폴리머는, 폴리디메틸실록산(PDMS)을 포함할 수 있다.
상기 과제를 해결하기 위한 본 발명의 실시예에 따른 난연필름 제조 방법은 제4 폴리머로 제조되는 폴리머 기재가 액화되는 단계; 액화된 상기 폴리머 기재에 난연제가 포함된 마이크로 캡슐을 첨가하여 혼합 용액을 형성하는 단계; 상기 혼합 용액을 교반하는 단계; 상기 혼합 용액을 필름 형상으로 틀에 주입하거나 기판에 코팅하는 단계; 및 상기 혼합 용액을 경화하는 단계를 포함한다.
또한, 상기 혼합 용액을 형성하는 단계에 있어서, 상기 혼합 용액에 경화제를 더 첨가할 수 있다.
또한, 상기 마이크로 캡슐은, 비율이 10 내지 50 wt%일 수 있다.
또한, 상기 마이크로 캡슐을 제조하는 방법은, 제3 폴리머 용액을 제조하는 단계; 상기 용액에 난연제를 첨가하는 단계; 상기 용액을 교반하여, 상기 제3 폴리머와 상기 난연제를 유화하는 단계; 및 상기 용액을 용매 증발시키는 단계를 포함할 수 있다.
또한, 상기 난연제는, 칼슘 브로마이드(CaBr2)를 포함할 수 있다.
또한, 상기 제3 폴리머는, 폴리메틸메타크릴레이트(PMMA)를 포함할 수 있다.
또한, 상기 제4 폴리머는, 폴리디메틸실록산(PDMS)을 포함할 수 있다.
상기 과제를 해결하기 위한 본 발명의 실시예에 따른 파우치 형 이차 전지는 양극, 분리막, 음극이 적층되어 형성되는 전극 조립체; 및 상기 전극 조립체를 수납하는 파우치 형의 전지 케이스를 포함하고, 상기 전지 케이스는, 금속으로 제조되는 가스 배리어층; 제1 폴리머로 제조되고, 상기 가스 배리어층의 외층에 위치하는 표면 보호층; 제2 폴리머로 제조되고, 상기 가스 배리어층의 내층에 위치하는 실란트층; 난연성을 가지며, 상기 표면 보호층보다 외층 또는 상기 실란트층보다 내층에 위치하는 난연필름층을 포함하고, 상기 난연필름층은, 제3 폴리머로 제조되는 쉘이, 난연제를 포함하는 코어를 포위하여 형성되는 마이크로 캡슐; 및 제4 폴리머로 제조되며, 상기 마이크로 캡슐이 적어도 일면에 도포되거나 내부에 포함되는 폴리머 기재를 포함한다.
본 발명은 또한, 상기 파우치 형 이차 전지를 단위 전지로서 포함하는 전지 모듈을 제공한다.
본 발명은 또한, 상기 전지 모듈을 포함하는 전지 팩.
본 발명은 또한, 상기 전지 팩을 포함하는 디바이스.
상기 디바이스는 컴퓨터, 노트북, 스마트폰, 휴대폰, 태블릿 PC, 웨어러블 전자기기, 파워 툴(power tool), 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 플러그-인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV) 또는 전력 저장장치 등을 들 수 있으나, 이에 한정되는 것은 아니다.
상기 디바이스의 구조 및 그것들의 제작 방법은 당업계 공지되어 있으므로, 본 명세서에서는 자세한 설명을 생략한다.
본 발명의 기타 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.
본 발명의 실시예들에 의하면 적어도 다음과 같은 효과가 있다.
파우치 형 전지 케이스에 난연성을 가지는 난연필름층을 포함하여, 내부 단락, 외부 단락, 과충전, 과방전 등 비정상적인 작동에 의해 폭발 및 화재가 발생하더라도, 방염이 됨으로써 주변의 다른 이차 전지로 화재의 확산을 방지하여 안전성을 확보할 수 있다.
또한, 난연필름층에 포함되는 난연제가 쉘로 포위되는 마이크로 캡슐화가 됨으로써, 난연필름층이 이차 전지의 최외층에 형성되더라도 대기와 반응하는 것을 방지할 수도 있다.
또한, 난연필름이 내전해액성을 가짐으로써, 난연필름층이 이차 전지의 최내층에 형성되더라도 난연필름이 손상되는 것을 방지할 수도 있다.
본 발명에 따른 효과는 이상에서 예시된 내용에 의해 제한되지 않으며, 더욱 다양한 효과들이 본 명세서 내에 포함되어 있다.
도 1은 본 발명의 일 실시예에 따른 파우치 형 이차 전지의 조립도이다.
도 2는 본 발명의 일 실시예에 따른 파우치 필름의 단면도이다.
도 3은 본 발명의 일 실시예에 따른 난연필름층의 개략도이다.
도 4는 본 발명의 일 실시예에 따른 마이크로 캡슐의 개략도이다.
도 5는 본 발명의 일 실시예에 따른 마이크로 캡슐의 제조 방법을 나타낸 흐름도이다.
도 6은 본 발명의 일 실시예에 따른 난연필름의 제조 방법을 나타낸 흐름도이다.
도 7은 본 발명의 다른 실시예에 따른 난연필름층의 개략도이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소 외에 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.
도 1은 본 발명의 일 실시예에 따른 파우치 형 이차 전지(1)의 조립도이다.
본 발명의 일 실시예에 따른 파우치 형 이차 전지(1)는, 도 1에 도시된 바와 같이, 양극, 분리막, 음극이 적층되어 형성되는 전극 조립체(10) 및 상기 전극 조립체(10)를 수납하는 파우치 형의 전지 케이스(13)를 포함한다.
파우치 형 이차 전지(1)를 제조하기 위해, 먼저 전극 활물질과 바인더 및 가소제를 혼합한 슬러리를 양극 집전체 및 음극 집전체에 도포하여 양극과 음극 등의 전극을 제조한다. 이를 분리막(Separator)의 양 측에 적층함으로써 소정 형상의 전극 조립체(10)를 형성한 다음에, 전극 조립체(10)를 전지 케이스(13)에 삽입하고 전해액 주입 후 실링한다.
구체적으로, 전극 조립체(Electrode Assembly, 10)는 양극 및 음극 두 종류의 전극과, 전극들을 상호 절연시키기 위해 전극들 사이에 개재되거나 어느 하나의 전극의 좌측 또는 우측에 배치되는 분리막을 구비한 적층 구조체일 수 있다. 상기 적층 구조체는 소정 규격의 양극과 음극이 분리막을 사이에 두고 적층될 수도 있고, 젤리 롤(Jelly Roll) 형태로 권취될 수 있는 등 제한되지 않고 다양한 형태일 수 있다. 두 종류의 전극, 즉 양극과 음극은 각각 알루미늄과 구리를 포함하는 금속 포일 또는 금속 메쉬 형태의 전극 집전체에 활물질 슬러리가 도포된 구조이다. 슬러리는 통상적으로 입상의 활물질, 보조 도체, 바인더 및 가소제 등이 용매가 첨가된 상태에서 교반되어 형성될 수 있다. 용매는 후속 공정에서 제거된다.
전극 조립체(10)는 도 1에 도시된 바와 같이, 전극 탭(Electrode Tab, 11)을 포함한다. 전극 탭(11)은 전극 조립체(10)의 양극 및 음극과 각각 연결되고, 전극 조립체(10)의 외부로 돌출되어, 전극 조립체(10)의 내부와 외부 사이에 전자가 이동할 수 있는 경로가 된다. 전극 조립체(10)의 집전체는 전극 활물질이 도포된 부분과 전극 활물질이 도포되지 않은 말단 부분, 즉 무지부로 구성된다. 그리고 전극 탭(11)은 무지부를 재단하여 형성되거나 무지부에 별도의 도전부재를 초음파 용접 등으로 연결하여 형성될 수도 있다. 이러한 전극 탭(11)은 도 1에 도시된 바와 같이, 전극 조립체(10)의 일측으로부터 동일한 방향으로 나란히 돌출될 수도 있으나, 이에 제한되지 않고 각각 다른 방향으로 돌출될 수도 있다.
전극 조립체(10)의 전극 탭(11)에는 전극 리드(Electrode Lead, 12)가 스팟(Spot) 용접 등으로 연결된다. 그리고, 전극 리드(12)의 일부는 절연부(14)로 주위가 포위된다. 절연부(14)는 전지 케이스(13)의 상부 케이스(131)와 하부 케이스(132)가 열 융착되는 실링부(134)에 한정되어 위치하여, 전지 케이스(13)에 접착된다. 그리고, 전극 조립체(10)로부터 생성되는 전기가 전극 리드(12)를 통해 전지 케이스(13)로 흐르는 것을 방지하며, 전지 케이스(13)의 실링을 유지한다. 따라서, 이러한 절연부(14)는 전기가 잘 통하지 않는 비전도성을 가진 부도체로 제조된다. 일반적으로 절연부(14)로는, 전극 리드(12)에 부착하기 용이하고, 두께가 비교적 얇은 절연테이프를 많이 사용하나, 이에 제한되지 않고 전극 리드(12)를 절연할 수 있다면 다양한 부재를 사용할 수 있다.
전극 리드(12)는 양극 탭(111)에 일단이 연결되고, 양극 탭(111)이 돌출된 방향으로 연장되는 양극 리드(121) 및 음극 탭(112)에 일단이 연결되고, 음극 탭(112)이 돌출된 방향으로 연장되는 음극 리드(122)를 포함한다. 한편, 양극 리드(121) 및 음극 리드(122)는 도 1에 도시된 바와 같이, 모두 타단이 전지 케이스(13)의 외부로 돌출된다. 그럼으로써, 전극 조립체(10)의 내부에서 생성된 전기를 외부로 공급할 수 있다. 또한, 양극 탭(111) 및 음극 탭(112)이 각각 다양한 방향을 향해 돌출 형성되므로, 양극 리드(121) 및 음극 리드(122)도 각각 다양한 방향을 향해 연장될 수 있다.
양극 리드(121) 및 음극 리드(122)는 서로 그 재질이 다를 수 있다. 즉, 양극 리드(121)는 양극 집전체와 동일한 알루미늄(Al) 재질이며, 음극 리드(122)는 음극 집전체와 동일한 구리(Cu) 재질 또는 니켈(Ni)이 코팅된 구리 재질일 수 있다. 그리고 전지 케이스(13)의 외부로 돌출된 전극 리드(12)의 일부분은 단자부가 되어, 외부 단자와 전기적으로 연결된다.
전지 케이스(13)는 연성의 재질로 제조된 파우치이다. 그리고 전지 케이스(13)는 전극 리드(12)의 일부, 즉 단자부가 노출되도록 전극 조립체(10)를 수용하고 실링된다. 이러한 전지 케이스(13)는 도 1에 도시된 바와 같이, 상부 케이스(131)와 하부 케이스(132)를 포함한다. 하부 케이스(132)에는 컵부(133)가 형성되어 전극 조립체(10)를 수용할 수 있는 수용 공간(1331)이 마련되고, 상부 케이스(131)는 상기 전극 조립체(10)가 전지 케이스(13)의 외부로 이탈되지 않도록 상기 수용 공간(1331)을 상부에서 커버한다. 이 때, 도 1에 도시된 바와 같이 상부 케이스(131)에도 수용 공간(1331)이 마련된 컵부(133)가 형성되어, 전극 조립체(10)를 상부에서 수용할 수도 있다. 다만 이에 제한되지 않고, 컵부(133)가 하부 케이스(132)에만 형성될 수 있는 등 다양하게 형성될 수 있다. 또한, 상부 케이스(131)와 하부 케이스(132)는 도 1에 도시된 바와 같이 일측이 서로 연결되어 제조될 수 있으나, 이에 제한되지 않고 서로 분리되어 별도로 제조되는 등 다양하게 제조될 수 있다.
전극 조립체(10)의 전극 탭(11)에 전극 리드(12)가 연결되고, 전극 리드(12)의 일부분에 절연부(14)가 형성되면, 하부 케이스(132)의 컵부(133)에 마련된 수용 공간(1331)에 전극 조립체(10)가 수용되고, 상부 케이스(131)가 상기 공간을 상부에서 커버한다. 그리고, 내부에 전해액을 주입하고 상부 케이스(131)와 하부 케이스(132)의 테두리에 형성된 실링부(134)를 실링한다. 전해액은 이차 전지(1)의 충, 방전 시 전극의 전기 화학적 반응에 의해 생성되는 리튬 이온을 이동시키기 위한 것으로, 리튬염과 고순도 유기 용매류의 혼합물인 비수질계 유기 전해액 또는 고분자 전해질을 이용한 폴리머를 포함할 수 있다. 이와 같은 방법을 통해, 파우치 형 이차 전지(1)가 제조될 수 있다.
도 2는 본 발명의 일 실시예에 따른 파우치 필름(135)의 단면도이다.
본 발명의 일 실시예에 따르면, 파우치 형 전지 케이스(13)에 난연성을 가지는 난연필름층(1354)을 포함하여, 내부 단락, 외부 단락, 과충전, 과방전 등 비정상적인 작동에 의해 폭발 및 화재가 발생하더라도, 방염이 됨으로써 주변의 다른 이차 전지(1)로 화재의 확산을 방지하여 안전성을 확보할 수 있다.
이를 위해, 본 발명의 일 실시예에 따른 전지 케이스(13)는 양극, 분리막, 음극이 적층되어 형성되는 전극 조립체(10)를 수납하는 파우치형 전지 케이스(13)에 있어서, 금속으로 제조되는 가스 배리어층(1351); 제1 폴리머로 제조되고, 상기 가스 배리어층(1351)의 외층에 위치하는 표면 보호층(1352); 제2 폴리머로 제조되고, 상기 가스 배리어층(1351)의 내층에 위치하는 실란트층(1353); 난연성을 가지며, 상기 표면 보호층(1352)보다 외층 또는 상기 실란트층(1353)보다 내층에 위치하는 난연필름층(1354)을 포함하고, 상기 난연필름층(1354)은, 제3 폴리머로 제조되는 쉘(222)이, 난연제를 포함하는 코어(221)를 포위하여 형성되는 마이크로 캡슐(22); 및 제4 폴리머로 제조되며, 상기 마이크로 캡슐(22)이 적어도 일면에 도포되거나 내부에 포함되는 폴리머 기재(21)를 포함한다.
전지 케이스(13)는 파우치 필름(135)을 드로잉(Drawing) 성형하여 제조된다. 즉, 파우치 필름(135)을 연신시켜 컵부(133)를 형성함으로써 제조된다. 이러한 파우치 필름(135)은 도 3에 도시된 바와 같이, 가스 배리어층(Gas Barrier Layer, 1351), 표면 보호층(Surface Protection Layer, 1352), 실란트층(Sealant Layer, 1353) 및 난연필름층(Flame Retardant Film Layer, 1354)을 포함한다.
가스 배리어층(1351)은 전지 케이스(13)의 기계적 강도를 확보하고, 이차 전지(1) 외부의 가스 또는 수분 등의 출입을 차단하며, 전해액의 누수를 방지한다. 일반적으로 가스 배리어층(1351)은 금속을 포함하며 주로 알루미늄 박막(Al Foil)이 사용되는 것이 바람직하다. 알루미늄은 소정 수준 이상의 기계적 강도를 확보할 수 있으면서도 무게가 가볍고 전극 조립체(10)와 전해액에 의한 전기 화학적 성질에 대한 보완 및 방열성 등을 확보할 수 있다. 다만, 이에 제한되지 않고 다양한 재질이 가스 배리어층(1351)에 포함될 수 있다. 예를 들어, 철(Fe), 탄소(C), 크롬(Cr), 망간(Mn), 니켈(Ni) 및 알루미늄(Al)으로 이루어진 군으로부터 선택되는 하나 이상의 물질일 수 있다. 이 때 상기 가스 배리어층(1351)을 철이 함유된 재질로 제조할 경우에는 기계적 강도가 향상되고, 알루미늄이 함유된 재질로 할 경우에는 유연성이 향상되므로, 각각의 특성을 고려하여 사용될 수 있을 것이다.
표면 보호층(1352)은 제1 폴리머로 제조되고, 상기 가스 배리어층(1351)의 외층에 위치하여 외부와의 마찰 및 충돌로부터 이차 전지(1)를 보호하면서, 전극 조립체(10)를 외부로부터 전기적으로 절연시킨다. 여기서 외층이란, 상기 가스 배리어층을 기준으로 전극 조립체가 위치하는 방향의 반대 방향에 위치한 층을 말한다. 이러한 표면 보호층(1352)을 제조하는 제1 폴리머는 폴리에틸렌, 폴리프로필렌, 폴리카보네이트, 폴리에틸렌테레프탈레이트, 폴리염화비닐, 아크릴계 고분자, 폴리아크릴로나이트릴, 폴리이미드, 폴리아마이드, 셀룰로오스, 아라미드, 나일론, 폴리에스테르, 폴리파라페닐렌벤조비스옥사졸, 폴리아릴레이트, 테프론 및 유리섬유로 이루어진 군으로부터 선택된 하나 이상의 물질일 수 있다. 특히, 주로 내마모성 및 내열성을 가지는 나일론(Nylon) 수지 또는 폴리에틸렌테레프탈레이트(PET) 등의 폴리머가 사용되는 것이 바람직하다. 그리고 표면 보호층(1352)은 어느 하나의 물질로 이루어진 단일막 구조를 가지거나, 2개 이상의 물질이 각각 층을 이루어 형성된 복합막 구조를 가질 수도 있다.
실란트층(1353)은 제2 폴리머로 제조되고, 상기 가스 배리어층(1351)의 내층에 위치한다. 여기서 내층이란, 상기 가스 배리어층을 기준으로 전극 조립체가 위치하는 방향에 위치한 층을 말한다. 따라서, 가스 배리어층(1351)은 도 2에 도시된 바와 같이, 표면 보호층(1352) 및 실란트층(1353)의 사이에 적층된다. 파우치 형 전지 케이스(13)는 상기와 같은 적층 구조의 파우치 필름(135)을, 펀치 등을 이용하여 드로잉(Drawing) 성형하면, 일부가 연신되어 주머니 형태의 수용 공간(1333)을 포함하는 컵부(133)를 형성하면서 제조된다. 그리고, 이러한 수용 공간(1333)에 전극 조립체(10)가 내부에 수용되면 전해액을 주입한다. 그 후에 상부 케이스(131)와 하부 케이스(132)를 서로 접촉시키고, 실링부(134)에 열 압착을 하면 실란트층(1353)끼리 접착됨으로써 전지 케이스(13)가 실링된다. 이 때, 실란트층(1353)은 전극 조립체(10)와 직접적으로 접촉하므로 절연성을 가져야 하며, 전해액과도 접촉하므로 내식성을 가져야 한다. 또한, 내부를 완전히 밀폐하여 내부 및 외부간의 물질 이동을 차단해야 하므로, 높은 실링성을 가져야 한다. 즉, 실란트층(1353)끼리 접착된 실링부(134)는 우수한 열 접착 강도를 가져야 한다. 일반적으로 이러한 실란트층(1353)을 제조하는 제2 폴리머는 폴리에틸렌, 폴리프로필렌, 폴리카보네이트, 폴리에틸렌테레프탈레이트, 폴리염화비닐, 아크릴계 고분자, 폴리아크릴로나이트릴, 폴리이미드, 폴리아마이드, 셀룰로오스, 아라미드, 나일론, 폴리에스테르, 폴리파라페닐렌벤조비스옥사졸, 폴리아릴레이트, 테프론 및 유리섬유로 이루어진 군으로부터 선택된 하나 이상의 물질일 수 있다. 특히, 주로 폴리프로필렌(PP) 또는 폴리에틸렌(PE) 등의 폴리올레핀계 수지가 사용되는 것이 바람직하다. 폴리프로필렌(PP)은 인장강도, 강성, 표면경도, 내마모성, 내열성 등의 기계적 물성과 내식성 등의 화학적 물성이 뛰어나, 실란트층(1353)을 제조하는데 주로 사용된다. 나아가, 무연신 폴리프로필렌(Cated Polypropylene) 또는 폴리프로필렌-부틸렌-에틸렌 삼원 공중합체로 구성될 수도 있다. 또한, 실란트층(1353)은, 어느 하나의 물질로 이루어진 단일막 구조를 갖거나, 2개 이상의 물질이 각각 층을 이루어 형성된 복합막 구조를 가질 수 있다.
도 3은 본 발명의 일 실시예에 따른 난연필름층(1354)의 개략도이다.
난연필름층(1354)은 난연성을 가지며, 상기 표면 보호층(1352)보다 외층 또는 상기 실란트층(1353)보다 내층에 위치한다. 특히, 난연필름층(1354)은 파우치 필름(135)의 최외층 또는 최내층에 위치할 수 있다. 만약, 난연필름층(1354)이 파우치 필름(135)의 최내층에 위치한다면, 실링부(134)에는 난연필름층(1354)이 제거되는 것이 바람직하다. 그럼으로써, 실링부(134)에 열 압착을 하면 실란트층(1353)끼리 접착되고 전지 케이스(13)가 실링될 수 있기 때문이다.
난연필름층(1354)은 쉽게 연소되지 않는 난연제를 포함하여, 이차 전지(1)의 비정상적인 작동에 의해 폭발 및 화재가 발생하더라도, 방염이 됨으로써 주변의 다른 이차 전지(1)로 화재의 확산을 방지하여 안전성을 확보할 수 있다.
구체적으로 난연필름층(1354)이 되는 난연필름(2)은 도 3에 도시된 바와 같이, 제3 폴리머로 제조되는 쉘(222)이, 난연제를 포함하는 코어(221)를 포위하여 형성되는 마이크로 캡슐(22); 및 제4 폴리머로 제조되며, 상기 마이크로 캡슐(22)이 내부에 포함되는 폴리머 기재(21)를 포함한다.
폴리머 기재(21)는 제4 폴리머로 제조되며, 상기 마이크로 캡슐(22)이 내부에 포함된다. 이러한 폴리머 기재(21)는 난연필름층(1354)의 기재가 되며, 파우치 필름(135)의 최외층 또는 최내층에 용이하게 부착되기 위해, 유연성을 가지는 것이 바람직하다. 제4 폴리머는 폴리에틸렌테레프탈레이트(Polyethyleneterephthalate, PET), 폴리에스테르(Polyester, PE), 폴리테트라플루오로에틸렌(Polytetrafluoroethylene, PTFE), 폴리디메틸실록산(Polydimethylsiloxane, PDMS), 캡톤(Kapton), 폴리이미드(Polyimide, PI), 나일론(Nylon), 폴리비닐알코올(Polyvinylalcohol, PVA), 폴리이소부틸렌(Polyisobutylene), 폴리우레탄 탄성 스펀지, 폴리비닐 부티랄(Polyvinyl Butyral), 폴리클로로프렌(Polychloroprene), 천연고무, 폴리아크릴로니트릴(Polyacrylonitrile), 폴리디페놀카보네이트(Polydiphenolcarbonate), 염화폴리에테르(Polyetherchloride), 폴리염화비닐리덴(Polyvinylidene Chloride), 폴리스티렌(Polystylene, PS), 폴리에틸렌(Polyethylene), 폴리프로필렌(Polypropylene, PP) 및 폴리염화비닐(Polyvinyl Chloride, PVC)로 이루어진 군으로부터 선택된 하나 이상의 물질일 수 있다. 특히, 높은 절연성, 낮은 열전도도 및 난연성을 가지는 폴리디메틸실록산(Polydimethylsiloxane, PDMS)이 사용되는 것이 바람직하다. 이러한 폴리디메틸실록산(PDMS)은 열경화성 수지에 해당하므로, 이차 전지(1)의 내부에서 화재가 발생하더라도 다시 용융되지 않는다.
도 4는 본 발명의 일 실시예에 따른 마이크로 캡슐(22)의 개략도이다.
마이크로 캡슐(22)은 도 4에 도시된 바와 같이, 제3 폴리머로 제조된 쉘(222)이, 난연제를 포함하는 코어(221)를 포위하여 형성된다. 그리고 이차 전지(1)의 내부에서 폭발 및 화재가 발생하여 특정 온도에 도달하면, 쉘(222)이 용융되어 코어(221)가 외부로 유출된다. 그럼으로써, 코어(221)에 포함된 난연제가 방염을 하여, 주변의 다른 이차 전지(1)로 화재의 확산을 방지할 수 있다.
제3 폴리머는 폴리스티렌 수지, ABS 수지, 폴리에테르 수지, 폴리카보네이트 수지, 폴리아크릴레이트 수지, 폴리메틸메타크릴레이트 수지 및 아크릴로니트릴계 수지로 이루어진 군으로부터 선택된 하나 이상의 물질일 수 있다. 특히, 폴리메틸메타크릴레이트(Polymethyl Methacrylate, PMMA)인 것이 바람직하다.
난연제는 연소 반응을 저해하는 물질로, 할로겐계 난연제, 인계 난연제 또는 무기화합물 난연제 등 다양한 난연제를 포함할 수 있다.
할로겐계 난연제는 일반적으로 기체 상에서 발생하는 라디칼을 실질적으로 안정화시킴으로써 난연 효과를 발휘한다. 할로겐계 난연제는 예를 들어, 트리브로모 페녹시에탄, 테트라 브로모 비스페놀-A(TBBA), 옥타브로모 디페닐에테르(OBDPE), 칼슘 브로마이드(CaBr2), 브롬화 에폭시 올리고머, 브롬화 폴리 카보네이트 올리고머, 염소화 파라핀, 염소화 폴리에틸렌, 지환족 염소계 난연제 등이 있다.
인계 난연제는 일반적으로 열분해에 의해 폴리메타인산을 생성하고 이것이 보호층을 형성하거나 폴리메타인산이 생성될 때의 탈수작용에 의해서 생성되는 탄소 피막이 산소를 차단함으로써 난연 효과를 발휘한다. 인계 난연제의 예를 들어, 적인, 인산 암모늄 등의 phosphates, phosphine oxide, phosphine oxide diols, phosphites, phosphonates, triaryl phosphate, alkyldiaryl phosphate, trialkyl phosphate, resorcinaol bisdiphenyl phosphate (RDP) 등이 있다.
무기화합물 난연제는 일반적으로 열에 의해 분해되어, 물, 이산화탄소, 이산화황, 염화수소 등의 불연성 가스를 방출하고 흡열반응을 유발함으로써, 가연성 가스를 희석시켜 산소의 접근을 방지하고, 흡열반응에 의해 냉각 및 열분해 생성물의 생성을 감소시켜 난연 효과를 발휘한다. 무기 화합물 난연제는 예를 들어, 수산화알루미늄(Al(OH)3), 수산화마그네슘(Mg(OH)2), 붕산(BH3O3), 산화안티몬, 수산화주석, 산화주석, 산화몰리브덴, 지르코늄화합물, 붕산염, 칼슘염 등이 있다.
본 발명의 일 실시예에 따르면, 다양한 난연제를 사용할 수 있으나, 상기 난연제 중 할로겐계 난연제를 사용하는 것이 바람직하며, 특히 칼슘 브로마이드(CaBr2)를 사용하는 것이 더욱 바람직하다. 이러한 칼슘 브로마이드(CaBr2)는 물 분자가 결합되지 않은 무수물로 사용될 수도 있으나, 물 분자가 결합된 수화물로 사용될 수도 있다. 그리고 경우에 따라서는, 상기에 예시한 난연제와의 혼합 사용시 난연 상승효과를 유도하는 기타의 첨가제를 더 포함할 수도 있다.
칼슘 브로마이드(CaBr2)는 일반적으로 난연제 중에서도 화염 전파를 방지하는 효과가 매우 우수하다.
이름 수식 녹는점 or 끓는점[℃] SET[s]
Ammonium Bromide NH4Br 235 61
Ammonium Bicarbonate NH4HCO3 41.9 63
Mono Ammonium phosphate (NH4)H2PO4 190 60
Ammonium Polyphosphate [NH4PO3]n(OH)2 - 64
Calcium Bromide CaBr2 730 5
9, 10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide(DOPO) C12H9O2P 116 52
N,N-diperfluorodiethyl-N-(2-hydroperfluoro-2-methylpentyl)amine(FC-40) C10HF22N 155 40
Hexabromocyclododecane(HBCD) C12H18Br6 186 63
Melamine C3H6N6 345 65
Melamine Phosphate C3H9N6O4P 557.5 110
NOVEC 7500 C9H5F15O 128 40
Triphenyl phosphate (C6H5O)3PO 50 45
Triphenylphosphite C18H15O3P 360 30
Urea Phosphate CH7N2O5P 116 80
상기 [표 1]은 여러 종류의 난연제의 SET(Self-Extinguishing Time)을 측정한 표이다. 구체적으로, EC(Ethylene carbonate)과 EMC(Ethyl methyl carbonate)를 3:7로 혼합한 전해액 2 g에, 상기 물질들을 각각 0.8 g씩 첨가한 후 연소시켜, 연소가 종료될 때까지의 시간을 측정한 것이다. 상기 [표 1]에 개시된 바와 같이, 칼슘 브로마이드(CaBr2)의 다른 물질들에 비해 SET이 5 초로 가장 짧다. 따라서, 난연 효과가 가장 우수한 것을 알 수 있다.
한편, 칼슘 브로마이드(CaBr2)는 조해성을 가지므로, 대기 중에 방치되면 대기 중의 수증기와 반응할 수 있다. 그러나 본 발명의 일 실시예에 따르면, 난연제가 쉘(222)로 포위되는 마이크로 캡슐화가 됨으로써, 난연필름층(1354)이 이차 전지(1)의 최외층에 형성되더라도 대기와 반응하는 것을 방지할 수도 있다.
또한, 칼슘 브로마이드(CaBr2)는 이차 전지(1)의 전해액과도 반응하여 손상될 수 있다. 그러나 본 발명의 일 실시예에 따르면, 난연필름(2)의 폴리머 기재(21), 그리고 쉘(222)이 내전해액성을 가짐으로써, 난연필름층(1354)이 이차 전지(1)의 최내층에 형성되더라도 난연필름(2)이 손상되는 것을 방지할 수도 있다.
도 5는 본 발명의 일 실시예에 따른 마이크로 캡슐(22)의 제조 방법을 나타낸 흐름도이다.
본 발명의 일 실시예에 따른 마이크로 캡슐(22)을 제조하는 방법은, 제3 폴리머 용액을 제조하는 단계; 상기 용액에 난연제를 첨가하는 단계; 상기 용액을 교반하여, 상기 제3 폴리머와 상기 난연제를 유화하는 단계; 및 상기 용액을 용매 증발시키는 단계를 포함한다.
구체적으로 먼저 제3 폴리머, 특히 폴리메틸메타크릴레이트(PMMA)를 디클로로메탄(dichloromethane, DCM)에 용해하여 용액을 제조한다(S501). 그리고 난연제, 특히 칼슘 브로마이드(CaBr2)를 상기 용액에 첨가하고(S502), 교반 장치를 이용하여 상기 용액을 교반하여 혼탁액을 제조한다(S503). 그 이후에 상기 혼탁액과 실리콘 오일을 혼합하여 유화(Emulsification) 공정을 진행하고 혼합액을 제조한다. 그럼으로써, 폴리메틸메타크릴레이트(PMMA)와 칼슘 브로마이드(CaBr2)가 유화(Emulsion)될 수 있다. 이 때, 디클로로메탄(DCM)과 실리콘 오일의 부피비는 1:1 내지 1:100인 것이 바람직하다.
그리고 상기 혼합액을 더 교반하면 용매인 디클로로메탄(DCM)이 증발하고, 폴리메틸메타크릴레이트(PMMA)로 제조된 쉘(222)이, 칼슘 브로마이드(CaBr2)를 포함하는 코어(221)를 포위한 마이크로 캡슐(22)이 형성될 수 있다(S504). 그리고 여과(Filtration) 과정을 진행하여 실리콘 오일을 분리하고, 세척 과정을 진행한 후, 오븐에서 건조시킨다. 그럼으로써, 이러한 마이크로 캡슐(22)을 분리하여 획득할 수 있다.
이처럼 제조된 마이크로 캡슐(22)은 구 또는 타원구의 형상을 가지며, 교반 장치를 이용하여 상기 용액을 교반하는 속도에 따라, 직경이 변화한다. 즉, 교반 속도가 빠를수록, 직경이 감소하고, 속도가 느릴수록, 직경이 증가한다. 따라서, 교반 속도를 조절함으로써 마이크로 캡슐(22)의 직경도 조절할 수 있다. 바람직하게는, 직경이 30 내지 100 μm, 더욱 바람직하게는 40 내지 70 μm일 수 있다.
이 때, 상기 혼합액을 교반하면서 헵탄을 더 첨가할 수도 있다. 헵탄은 고분자를 용해시키지 않으면서 고분자 용액의 용매를 제거한다. 따라서, 헵탄을 첨가함으로써, 더욱 효과적인 상분리가 유도되고, 고분자 사슬 사이의 잔류 용매를 더욱 효과적으로 제거할 수 있다. 다만, 이에 제한되지 않고 헵탄 외의 다양한 지방족 탄화수소를 첨가할 수도 있다.
한편, 본 발명의 일 실시예에 따르면, 마이크로 캡슐(22)을 제조할 때 실리콘 오일이 첨가된다. 그럼으로써, 실리콘 오일을 첨가하지 않을 때보다, 더욱 효과적으로 화재의 확산을 방지할 수 있다.
도 6은 본 발명의 일 실시예에 따른 난연필름(2)의 제조 방법을 나타낸 흐름도이다.
본 발명의 일 실시예에 따른 난연필름(2)을 제조하는 방법은, 제4 폴리머로 제조되는 폴리머 기재(21)가 액화되는 단계; 액화된 상기 폴리머 기재(21)에 난연제가 포함된 마이크로 캡슐(22)을 첨가하여 혼합 용액을 형성하는 단계; 상기 혼합 용액을 교반하는 단계; 상기 혼합 용액을 필름 형상으로 틀(미도시)에 주입하거나 기판(미도시)에 코팅하는 단계; 및 상기 혼합 용액을 경화하는 단계를 포함한다.
구체적으로 먼저 제4 폴리머, 특히 폴리디메틸실록산(PDMS)을 액화하고(S601), 난연제가 포함된 마이크로 캡슐(22)을 첨가하여 혼합 용액을 형성한다(S602). 이 때, 마이크로 캡슐(22)의 비율은 0 내지 80 wt%이며, 바람직하게는 10 내지 50 wt%이다. 만약 마이크로 캡슐(22)이 과도하게 적다면 난연 효과가 충분히 발휘되지 않고, 반대로 과도하게 많다면 마이크로 캡슐(22)들이 폴리머 기재(21)에 고정되어 포함되지 못할 수 있다.
또한, 추후에 혼합 용액을 경화시키기 위해, 경화제를 더 첨가할 수도 있다. 이러한 경화제는 아민계 화합물, 이미다졸계 화합물, 페놀계 화합물, 인계 화합물 또는 산무수물계 화합물 등 제한되지 않고 다양한 경화제를 사용할 수 있다. 그리고, 교반 장치를 이용하여 상기 혼합 용액을 교반한다. 그럼으로써, 폴리디메틸실록산(PDMS) 내에서 마이크로 캡슐(22)이 균일하게 분산될 수 있다.
이러한 혼합 용액을 충분히 교반한 후(S603), 필름 형상이 되도록, 틀에 주입하거나 기판(미도시)에 얇고 넓게 코팅한다(S604). 그리고 혼합 용액을 오븐에서 건조하여 경화시킴으로써, 난연필름(2)이 제조될 수 있다(S605). 그리고 틀에 주입하거나 기판에 코팅할 때, 혼합 용액의 두께를 조절함으로써 난연필름(2)의 두께도 조절할 수 있다. 혼합 용액을 경화시키기 위해 20 내지 120 ℃까지 다양한 범위의 온도에서 열을 인가할 수 있다.
도 7은 본 발명의 다른 실시예에 따른 난연필름층(1354)의 개략도이다.
본 발명의 일 실시예에 따르면, 제4 폴리머로 제조되는 폴리머 기재(21)의 내부에, 마이크로 캡슐(22)이 포함되어 형성된다. 그러나, 본 발명의 다른 실시예에 따르면, 폴리머 기재(21)의 적어도 일면에, 마이크로 캡슐(22)이 도포될 수 있다. 그럼으로써, 특정 온도에 도달하여 쉘(222)이 용융되면, 코어(221)가 외부로 더욱 많이 유출되어 난연제가 폴리머 기재(21)를 더욱 높은 밀도로 커버하므로, 더욱 효과적으로 화재의 확산을 방지할 수 있다.
제조예
폴리메틸메타크릴레이트(PMMA) 400 mg을 디클로로메탄(DCM) 12 mL에 용해시켜 폴리메틸메타크릴레이트(PMMA) 2.5 wt% 용액을 제조한다. 그리고 칼슘 브로마이드(CaBr2) 분말 1 g을 상기 폴리메틸메타크릴레이트(PMMA) 용액에 첨가하고, 교반 장치(제조사: 미성과학기기, 모델명: HSD180)를 이용하여 1500 RPM의 속도로 약 0.5 시간 동안 상기 용액을 교반하여 혼탁액을 제조하였다.
그 이후에 실리콘 오일 12 mL를 500 RPM으로 교반하면서, 상기 혼탁액을 첨가하여 혼합액을 제조한다. 그리고 약 0.5 시간 동안 상기 혼합액을 더 교반하여 용매 증발(Solvent Evaporation), 즉 디클로로메탄(DCM)을 증발시킨다. 그리고, 헵탄(Heptane) 50 mL를 첨가하여, 고분자 단량체 내의 용매를 완전히 제거한다.
1500 RPM의 속도로 약 4 시간 더 교반한 후, 여과(Filtration) 과정을 진행하여 실리콘 오일 및 헵탄을 분리하고, 세척 및 건조 과정을 진행한다. 그럼으로써, 폴리메틸메타크릴레이트(PMMA)로 제조된 쉘이, 칼슘 브로마이드(CaBr2)를 포함하는 코어를 포위한 마이크로 캡슐이 1 g 형성된다.
한편, 액화된 폴리디메틸실록산(PDMS) 3.2 g과 경화액 0.32 g을 혼합하고, 상기 난연제가 포함된 마이크로 캡슐을 0.88 g(약 20 wt%) 첨가하여 혼합 용액을 형성한다. 이러한 혼합 용액을 교반한 후에 지름 5 cm의 원형틀에 주입하고 오븐에서 80 ℃의 온도로 약 5 시간동안 건조하여 경화시킨다.
그리고 경화 후 상기 원형틀로부터 내용물을 분리하면, 지름 5 cm, 두께 1.5 mm의 난연필름이 제조된다.
비교예 1
마이크로 캡슐을 전혀 포함하지 않고 폴리디메틸실록산(PDMS)만을 경화시킨 것을 제외하고는, 상기 제조예와 동일하게 제조하였다.
비교예 2
칼슘 브로마이드(CaBr2)를 마이크로 캡슐화 하지 않고 그대로 첨가한 것을 제외하고는, 상기 제조예와 동일하게 제조하였다.
물성 측정방법 - 방염성
제조예, 비교예 1 및 비교예 2에 따른 난연필름들을 모두 각각 집게로 고정시킨 후, 토치를 이용하여 방화하였다.
물성 측정결과 - 방염성
제조예 및 비교예 2에 따른 난연필름들은 테두리에 그을린 자국만이 남을 뿐이었다. 그러나, 비교예 1에 따른 난연필름은 5초 후에 화염이 전체적으로 확산되었고, 그 후에 전소되었다.
물성 측정방법 - 대기 안정성
제조예, 비교예 1 및 비교예 2에 따른 난연필름들을, 대기 중에 방치되어 25 ℃ 및 65 ℃의 온도로 2주 동안 유지하며, 매일 무게를 측정하였다.
물성 측정결과 - 대기 안정성
제조예 비교예 1
1 day 14 day 변화율 1 day 14 day 변화율
25 ℃ 2.53 2.57 1.58 % 2.53 2.66 5.13 %
65 ℃ 2.50 2.48 -0.8 % 2.50 2.63 5.20 %
상기 [표 2]에 기재된 바와 같이, 본 발명의 제조예와 비교예 1을 비교하면, 제조예에 따른 난연필름은 25 ℃일 때 2.53 g의 무게가 2주 후 2.57 g으로 증가하여 무게가 1.58 % 변화하였다. 그런데 비교예에 따른 난연필름은 25 ℃일 때 2.53 g의 무게가 2주 후 2.66 g으로 증가하여 무게가 5.13 % 변화하였다.
그리고, 제조예에 따른 난연필름은 65 ℃일 때 2.50 g의 무게가 2주 후 2.48 g으로 감소하여 무게가 -0.8 % 변화하였다. 그런데 비교예에 따른 난연필름은 25 ℃일 때 2.50 g의 무게가 2주 후 2.63 g으로 증가하여 무게가 5.20 % 변화하였다.
이와 같이, 본 발명의 제조예에 따른 난연필름이, 비교예 1에 따른 난연필름보다 무게의 변화량이 적었다. 따라서, 본 발명의 제조예에 따른 난연필름이 대기 중의 수증기 등과 같은 성분들과의 반응성이 적어, 대기 안정성이 우수하다는 것을 알 수 있다.
본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 다양한 실시 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (19)

  1. 양극, 분리막, 음극이 적층되어 형성되는 전극 조립체를 수납하는 파우치형 전지 케이스에 있어서,
    금속으로 제조되는 가스 배리어층;
    제1 폴리머로 제조되고, 상기 가스 배리어층의 외층에 위치하는 표면 보호층;
    제2 폴리머로 제조되고, 상기 가스 배리어층의 내층에 위치하는 실란트층;
    난연성을 가지며, 상기 표면 보호층보다 외층 또는 상기 실란트층보다 내층에 위치하는 난연필름층을 포함하고,
    상기 난연필름층은,
    제3 폴리머로 제조되는 쉘이, 난연제를 포함하는 코어를 포위하여 형성되는 마이크로 캡슐; 및
    제4 폴리머로 제조되며, 상기 마이크로 캡슐이 적어도 일면에 도포되거나 내부에 포함되는 폴리머 기재를 포함하는 이차 전지용 전지 케이스.
  2. 제1항에 있어서,
    상기 난연제는,
    할로겐계 난연제, 인계 난연제 또는 무기화합물 난연제를 포함하는 이차 전지용 전지 케이스.
  3. 제2항에 있어서,
    상기 난연제는,
    칼슘 브로마이드(CaBr2)를 포함하는 이차 전지용 전지 케이스.
  4. 제1항에 있어서,
    상기 제3 폴리머는,
    폴리스티렌 수지, ABS 수지, 폴리에테르 수지, 폴리카보네이트 수지, 폴리아크릴레이트 수지, 폴리메틸메타크릴레이트 수지 및 아크릴로니트릴계 수지로 이루어진 군으로부터 선택된 하나 이상의 물질인 이차 전지용 전지 케이스.
  5. 제4항에 있어서,
    상기 제3 폴리머는,
    폴리메틸메타크릴레이트(PMMA)를 포함하는 이차 전지용 전지 케이스.
  6. 제1항에 있어서,
    상기 제4 폴리머는,
    폴리에틸렌테레프탈레이트(Polyethyleneterephthalate, PET), 폴리에스테르(Polyester, PE), 폴리테트라플루오로에틸렌(Polytetrafluoroethylene, PTFE), 폴리디메틸실록산(Polydimethylsiloxane, PDMS), 캡톤(Kapton), 폴리이미드(Polyimide, PI), 나일론(Nylon), 폴리비닐알코올(Polyvinylalcohol, PVA), 폴리이소부틸렌(Polyisobutylene), 폴리우레탄 탄성 스펀지, 폴리비닐 부티랄(Polyvinyl Butyral), 폴리클로로프렌(Polychloroprene), 천연고무, 폴리아크릴로니트릴(Polyacrylonitrile), 폴리디페놀카보네이트(Polydiphenolcarbonate), 염화폴리에테르(Polyetherchloride), 폴리염화비닐리덴(Polyvinylidene Chloride), 폴리스티렌(Polystylene, PS), 폴리에틸렌(Polyethylene), 폴리프로필렌(Polypropylene, PP) 및 폴리염화비닐(Polyvinyl Chloride, PVC)로 이루어진 군으로부터 선택된 하나 이상의 물질인 이차 전지용 전지 케이스.
  7. 제6항에 있어서,
    상기 제4 폴리머는,
    폴리디메틸실록산(PDMS)을 포함하는 이차 전지용 전지 케이스.
  8. 제4 폴리머로 제조되는 폴리머 기재가 액화되는 단계;
    액화된 상기 폴리머 기재에 난연제가 포함된 마이크로 캡슐을 첨가하여 혼합 용액을 형성하는 단계;
    상기 혼합 용액을 교반하는 단계;
    상기 혼합 용액을 필름 형상으로 틀에 주입하거나 기판에 코팅하는 단계; 및
    상기 혼합 용액을 경화하는 단계를 포함하는 난연필름 제조 방법.
  9. 제8항에 있어서,
    상기 혼합 용액을 형성하는 단계에 있어서,
    상기 혼합 용액에 경화제를 더 첨가하는 난연필름 제조 방법.
  10. 제8항에 있어서,
    상기 마이크로 캡슐은,
    비율이 10 내지 50 wt%인 난연필름 제조 방법.
  11. 제8항에 있어서,
    상기 마이크로 캡슐을 제조하는 방법은,
    제3 폴리머 용액을 제조하는 단계;
    상기 용액에 난연제를 첨가하는 단계;
    상기 용액을 교반하여, 상기 제3 폴리머와 상기 난연제를 유화하는 단계; 및
    상기 용액을 용매 증발시키는 단계를 포함하는 난연필름 제조 방법.
  12. 제11항에 있어서,
    상기 난연제는,
    칼슘 브로마이드(CaBr2)를 포함하는 난연필름 제조 방법.
  13. 제11항에 있어서,
    상기 제3 폴리머는,
    폴리메틸메타크릴레이트(PMMA)를 포함하는 난연필름 제조 방법.
  14. 제8항에 있어서,
    상기 제4 폴리머는,
    폴리디메틸실록산(PDMS)을 포함하는 난연필름 제조 방법.
  15. 양극, 분리막, 음극이 적층되어 형성되는 전극 조립체; 및
    상기 전극 조립체를 수납하는 파우치 형의 전지 케이스를 포함하고,
    상기 전지 케이스는,
    금속으로 제조되는 가스 배리어층;
    제1 폴리머로 제조되고, 상기 가스 배리어층의 외층에 위치하는 표면 보호층;
    제2 폴리머로 제조되고, 상기 가스 배리어층의 내층에 위치하는 실란트층;
    난연성을 가지며, 상기 표면 보호층보다 외층 또는 상기 실란트층보다 내층에 위치하는 난연필름층을 포함하고,
    상기 난연필름층은,
    제3 폴리머로 제조되는 쉘이, 난연제를 포함하는 코어를 포위하여 형성되는 마이크로 캡슐; 및
    제4 폴리머로 제조되며, 상기 마이크로 캡슐이 적어도 일면에 도포되거나 내부에 포함되는 폴리머 기재를 포함하는 파우치 형 이차 전지.
  16. 제13항에 따른 파우치 형 이차 전지를 단위 전지로서 포함하는 전지 모듈.
  17. 제16항에 따른 전지 모듈을 포함하는 전지 팩.
  18. 제17항에 따른 전지 팩을 포함하는 디바이스.
  19. 제18항에 있어서,
    상기 디바이스는,
    컴퓨터, 노트북, 스마트폰, 휴대폰, 태블릿 PC, 웨어러블 전자기기, 파워 툴(power tool), 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 플러그-인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV) 또는 전력 저장장치인 디바이스.
PCT/KR2020/010292 2019-08-08 2020-08-05 이차 전지용 전지 케이스 및 파우치 형 이차 전지 WO2021025443A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190097013A KR20210017557A (ko) 2019-08-08 2019-08-08 이차 전지용 전지 케이스 및 파우치 형 이차 전지
KR10-2019-0097013 2019-08-08

Publications (1)

Publication Number Publication Date
WO2021025443A1 true WO2021025443A1 (ko) 2021-02-11

Family

ID=74503438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/010292 WO2021025443A1 (ko) 2019-08-08 2020-08-05 이차 전지용 전지 케이스 및 파우치 형 이차 전지

Country Status (2)

Country Link
KR (1) KR20210017557A (ko)
WO (1) WO2021025443A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060034181A (ko) * 2004-10-18 2006-04-21 주식회사 엘지화학 난연 필름을 포함하고 있는 리튬 이차전지
KR20100049443A (ko) * 2008-11-03 2010-05-12 율촌화학 주식회사 셀 포장재 및 그 제조방법
JP2012211300A (ja) * 2011-03-22 2012-11-01 Toray Ind Inc 難燃性フィルム
CN108091782A (zh) * 2017-12-21 2018-05-29 桑德集团有限公司 蓄电池及蓄电池组
US20180331386A1 (en) * 2017-05-11 2018-11-15 Hyundai Motor Company Lithium ion battery including separator coated with fire extinguishing particle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101471666B1 (ko) 2008-04-24 2014-12-10 주식회사 엘지화학 이차전지용 외장재 및 이를 포함하는 이차전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060034181A (ko) * 2004-10-18 2006-04-21 주식회사 엘지화학 난연 필름을 포함하고 있는 리튬 이차전지
KR20100049443A (ko) * 2008-11-03 2010-05-12 율촌화학 주식회사 셀 포장재 및 그 제조방법
JP2012211300A (ja) * 2011-03-22 2012-11-01 Toray Ind Inc 難燃性フィルム
US20180331386A1 (en) * 2017-05-11 2018-11-15 Hyundai Motor Company Lithium ion battery including separator coated with fire extinguishing particle
CN108091782A (zh) * 2017-12-21 2018-05-29 桑德集团有限公司 蓄电池及蓄电池组

Also Published As

Publication number Publication date
KR20210017557A (ko) 2021-02-17

Similar Documents

Publication Publication Date Title
WO2018174451A1 (ko) 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
WO2011062417A2 (ko) 실링부가 열가소성 수지 또는 열경화성 수지에 난연 물질 및 내열 물질이 배합된 난연성 및 내열성 수지 조성물로 코팅되어 안전성이 향상된 파우치형 전지 및 그 제조 방법
WO2013002608A2 (ko) 이차전지용 전극조립체 및 이를 포함한 리튬 이차전지
US20070065718A1 (en) Small battery pack having frame retardant adhesive member
KR101595607B1 (ko) 안전성이 향상된 이차전지
WO2017073905A1 (ko) 테이핑을 이용하는 벤팅 구조의 전지셀
JP4367951B2 (ja) 非水二次電池
WO2016032092A1 (ko) 전지모듈
KR101471666B1 (ko) 이차전지용 외장재 및 이를 포함하는 이차전지
WO2016137147A1 (ko) 이차 전지용 분리막, 그 제조 방법, 및 이를 포함하는 리튬 이차 전지
KR101183557B1 (ko) 난연 물질 및 내열 물질이 포함되어 안전성이 향상된 전기 화학 소자용 외장재 및 상기 외장재를 구비한 전기 화학 소자
WO2021040357A1 (ko) 이차 전지용 전지 케이스 및 가스 배출부 제조 방법
WO2020045814A1 (ko) 파우치형 이차 전지 및 이차 전지용 파우치
WO2012165765A2 (ko) 신규한 구조의 캡 어셈블리 및 이를 포함하고 있는 원통형 전지
KR102268405B1 (ko) 이차 전지용 절연판 및 그의 제조 방법
WO2021040380A1 (ko) 이차 전지용 전지 케이스 및 파우치 형 이차 전지 제조 방법
WO2019177296A1 (ko) 전극 조립체 및 이를 포함하는 이차 전지
JP6812056B2 (ja) 熱膨張性テープを含む安全性の改善したバッテリーセル及びその製造方法
WO2021153988A1 (ko) 난연성 복합 패드, 그 제조 방법, 이러한 복합 패드를 포함하는 이차전지 모듈과 이차전지 팩
KR20170017511A (ko) 리튬 이차 전지
WO2021206418A1 (ko) 이차전지 및 이를 포함하는 디바이스
WO2020153604A1 (ko) 전극 및 전극 조립체
KR20060034181A (ko) 난연 필름을 포함하고 있는 리튬 이차전지
WO2021025443A1 (ko) 이차 전지용 전지 케이스 및 파우치 형 이차 전지
KR101449787B1 (ko) 안전성이 향상된 이차전지

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20849465

Country of ref document: EP

Kind code of ref document: A1