WO2021024677A1 - 表示システム及び表示装置 - Google Patents

表示システム及び表示装置 Download PDF

Info

Publication number
WO2021024677A1
WO2021024677A1 PCT/JP2020/026530 JP2020026530W WO2021024677A1 WO 2021024677 A1 WO2021024677 A1 WO 2021024677A1 JP 2020026530 W JP2020026530 W JP 2020026530W WO 2021024677 A1 WO2021024677 A1 WO 2021024677A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature detection
wiring
display
detection wiring
region
Prior art date
Application number
PCT/JP2020/026530
Other languages
English (en)
French (fr)
Inventor
啓史 大平
Original Assignee
株式会社ジャパンディスプレイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジャパンディスプレイ filed Critical 株式会社ジャパンディスプレイ
Publication of WO2021024677A1 publication Critical patent/WO2021024677A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements

Definitions

  • the present disclosure relates to a display system and a display device that project an image on a projection plate via an optical system.
  • HUD Head Up Display
  • Patent Document 1 A so-called head-up display (HUD: Head Up Display) that projects an image onto a translucent member such as glass is known (for example, Patent Document 1).
  • Patent Document 1 describes a technique of inserting a filter into an optical path immediately before a display device by an insertion mechanism to reduce the amount of sunlight. If the filter is inserted in the optical path immediately before the display device, the amount of light in the entire image will also be reduced.
  • Patent Document 2 describes a liquid crystal display device in which a temperature sensor is arranged outside the display area. Since the incident state of the sunlight changes depending on the relative position between the sun and the display device, the position of the temperature sensor in Patent Document 2 does not always detect the sunlight focused by the optical system.
  • the present disclosure has been made in view of the above problems, and is a display that detects a partial heat generation state in a display area and selectively reduces the amount of light in a portion that is exposed to external light focused by an optical system. It is an object of the present invention to provide a device system and a display device.
  • the display system includes an optical system for projecting an image, a display device for displaying the image, and a dimming device having a dimming region.
  • the apparatus includes a substrate having a display area and a plurality of temperature detection wirings arranged at positions overlapping the display area in a plan view, and the dimming area of the dimming device is more than the display area. Also has a large area.
  • FIG. 1 is an explanatory diagram schematically explaining a head-up display.
  • FIG. 2 is an explanatory diagram schematically illustrating the system of the head-up display of the first embodiment.
  • FIG. 3 is an explanatory diagram illustrating pixels of the display device.
  • FIG. 4 is a plan view for explaining the arrangement of the temperature detection wiring of the first embodiment.
  • FIG. 5 is a cross-sectional view showing a schematic VV'cross section of the display device shown in FIG.
  • FIG. 6 is a cross-sectional view showing a schematic VI-VI'cross section of the display device shown in FIG.
  • FIG. 7 is a plan view for explaining the dimming device of the first embodiment.
  • FIG. 8 is a cross-sectional view showing a schematic VIII-VIII'cross section of the display device shown in FIG. 7.
  • FIG. 9 is an explanatory diagram for explaining the correspondence between the temperature detection region of the temperature detection wiring and the shutter region of the dimming device in the first embodiment.
  • FIG. 10 is an explanatory diagram showing the rate of change in resistance with respect to the temperature of one temperature detection wiring.
  • FIG. 11 is an explanatory diagram showing an example of distribution of resistance change rates of a plurality of temperature detection wirings.
  • FIG. 12 is an explanatory diagram schematically illustrating a head-up display in a state where sunlight is shielded.
  • FIG. 13 is a flowchart illustrating the operation of the head-up display.
  • FIG. 14 is an explanatory diagram schematically illustrating the system of the head-up display of the second embodiment.
  • FIG. 15 is a plan view for explaining the arrangement of the first temperature detection wiring of the second embodiment.
  • FIG. 16 is a plan view for explaining the arrangement of the second temperature detection wiring of the second embodiment.
  • FIG. 17 is a plan view for explaining the position where the first temperature detection wiring and the second temperature detection wiring are overlapped.
  • FIG. 18 is a cross-sectional view showing a schematic XVII-V'cross section of the display device shown in FIG.
  • FIG. 19 is a cross-sectional view showing a schematic XIV-XIV'cross section of the display device shown in FIG.
  • FIG. 20 is a plan view for explaining the dimming device of the second embodiment.
  • FIG. 21 is an explanatory diagram for explaining the correspondence between the temperature detection region of the temperature detection wiring and the shutter region of the dimming device in the second embodiment.
  • FIG. 1 is an explanatory diagram schematically explaining a head-up display.
  • the head-up display (Head-Up Display: hereinafter referred to as HUD) device 1 is an optical system RM that enlarges an image from a backlight 6, a diffuser 9, a display device 2, and a display device 2 and projects it onto a projection plate WS.
  • the dimmer 5 and the control circuit 110 are provided.
  • the housing 4 includes a backlight 6 that functions as a light source device, a display device 2 that outputs an image using the light L from the backlight 6 as a light source, and a diffuser plate 9 provided between the display device 2 and the backlight 6. It houses the optical system RM, the dimming device 5, and the control circuit 110.
  • the optical system RM including the mirror member RM1 and the mirror member RM2 guides the light L after passing through the display device 2 to the dimming device 5.
  • the mirror member RM1 is a planar mirror
  • the mirror member RM2 is a concave mirror.
  • the mirror member RM1 may be a concave mirror.
  • the optical system RM is not limited to this, and the number of the optical system RM may be one or three or more.
  • the dimming device 5 is arranged in the optical path between the WS projection plate and the optical system RS, and has a size that covers the opening 4S of the housing 4.
  • the light L that passes through the optical system RM after passing through the display device 2 is incident on the dimming device 5.
  • the light of the image that has passed through the optical system RM and the dimming device 5 is reflected by the projection plate WS and reaches the user H, so that the light is recognized as an image VI in the field of view of the user H. That is, the HUD device 1 of the present embodiment functions as a display system that projects an image onto the projection plate WS.
  • the projection plate WS may be any translucent member located in the line of sight of the user H.
  • the projection plate WS is, for example, a vehicle windshield, a windshield, or a translucent plate member called a combiner provided separately from the windshield.
  • FIG. 2 is an explanatory diagram schematically explaining the head-up display system of the first embodiment.
  • FIG. 3 is an explanatory diagram illustrating pixels of the display device.
  • FIG. 4 is a plan view for explaining the arrangement of the temperature detection wiring of the first embodiment.
  • FIG. 5 is a cross-sectional view showing a schematic VV'cross section of the display device shown in FIG.
  • FIG. 6 is a cross-sectional view showing a schematic VI-VI'cross section of the display device shown in FIG.
  • the control circuit 110 of the HUD device 1 controls the display device 2, the backlight 6 as a light source unit, and the dimming device 5.
  • the dimming device 5 of the present embodiment is a liquid crystal display for dimming sunlight LL.
  • the display device 2 includes a DDIC (Display Drive Integrated Circuit) 55, a plurality of drive electrodes FE provided in the dimming region LAA, and a plurality of wirings 57 for electrically connecting each drive electrode FE and the DDIC 55. ing. Wiring 57 may be omitted below as appropriate.
  • DDIC Display Drive Integrated Circuit
  • the display device 2 of the present embodiment is a transmissive liquid crystal display that outputs an image using light L as a light source.
  • the display device 2 is also called a display panel.
  • a large number of pixel VPix are arranged in a matrix shape (matrix shape) in the display area AA of the display device 2.
  • the pixel VPix shown in FIG. 3 has a plurality of sub-pixel SPix.
  • the sub-pixel SPix has a switching element Tr and a liquid crystal capacity 8a, respectively.
  • the switching element Tr is composed of a thin film transistor, and in this example, it is composed of an n-channel MOS (Metal Oxide Semiconductor) type TFT.
  • An insulating layer 24 is provided between the pixel electrode PE and the common electrode CE, and the holding capacity 8b shown in FIG. 3 is formed by these layers.
  • the control circuit 110 functions as, for example, a display control circuit 111, a light source control circuit 112, and a dimming control circuit 113.
  • the display control circuit 111 outputs, for example, a master clock, a horizontal synchronization signal, a vertical synchronization signal, a pixel signal, a drive command signal for the backlight 6 and the like to the DDIC 19, and the pixel signals are, for example, red (R) and green (G).
  • Blue (B) is a signal that combines the individual gradation values.
  • the light source control circuit 112 controls the operation of the light source 61 in synchronization with the pixel signal.
  • the display control circuit 111 has a function of controlling the output gradation value of a part or all of the plurality of pixels based on the amount of light emitted from the light source 61 controlled by the light source control circuit 112.
  • the dimming control circuit 113 sends a drive command signal to the DDIC 55 based on the resistance detection signal of the resistance detection circuit 120 described later.
  • the switching element Tr, the signal line SGL, the scanning line GCL, and the like of each sub-pixel SPix shown in FIG. 3 are formed on the first substrate 10 (see FIG. 5).
  • the signal line SGL is wiring for supplying a pixel signal to each pixel electrode PE shown in FIG.
  • the scanning line GCL is wiring for supplying a drive signal for driving each switching element Tr.
  • the signal line SGL and the scanning line GCL extend to a plane parallel to the surface of the first substrate 10 shown in FIG.
  • a light-shielding layer BM is formed along the signal line SGL and the scanning line GCL. Although the electrical connection of the switching element Tr is shown in FIG. 3, the light-shielding layer BM is actually superimposed on the switching element Tr as well.
  • the sub-pixel SPix has an opening surrounded by a light-shielding layer BM, and the opening of each sub-pixel SPix shown in FIG. 3 is colored in three colors of red (R), green (G), and blue (B).
  • the resulting color filters CFR, CFG, and CFB are associated with each other as a set.
  • the pixel VPix is configured with the sub-pixel SPix corresponding to the three color filters CFR, CFG, and CFB as one set.
  • the color filter may include four or more color regions.
  • the display device 2 includes a DDIC (Display Driver Integrated Circuit) 19.
  • the DDIC 19 sequentially selects the scanning line GCL as the gate driver.
  • the DDIC 19 applies a scanning signal to the gate of the switching element Tr of the sub-pixel SPix via the selected scanning line GCL.
  • one line (one horizontal line) of the sub-pixel SPix is sequentially selected as the display drive target.
  • the DDIC 19 supplies a pixel signal to the sub-pixel SPix constituting the selected one horizontal line as a source driver via the signal line SGL. Then, in these sub-pixel SPix, the display is performed one horizontal line at a time according to the supplied pixel signal.
  • the DDIC 19 applies a common potential to the common electrode CE as a common electrode driver.
  • the common potential is a DC voltage signal commonly applied to a plurality of sub-pixel SPix.
  • the DDIC 19 functions as a gate driver, a source driver, and a common electrode driver.
  • the DDIC 19 may separately configure a gate driver, a source driver, and a common electrode driver.
  • a thin film transistor (TFT) is formed on the first substrate 10.
  • a plurality of temperature detection wiring SMs are arranged. Both terminals of the temperature detection wiring SM are pulled out and electrically connected to the resistance detection circuit 120.
  • the resistance detection circuit 120 AD-converts the resistance of the temperature detection wiring SM and outputs a resistance detection signal to the control circuit 110.
  • the dimming control circuit 113 of the control circuit 110 sends a drive command signal to the DDIC 55.
  • the DDIC 55 drives the drive electrode FE in response to the drive command signal.
  • the region where the driven drive electrode is located suppresses the transmission of sunlight LL (see FIG. 1).
  • the display device 2 includes an array substrate SUB1, an opposing substrate SUB2, and a liquid crystal layer LC as a display function layer.
  • the facing substrate SUB2 is arranged so as to face the surface of the array substrate SUB1 in the direction perpendicular to the surface.
  • the liquid crystal layer LC is provided between the array substrate SUB1 and the facing substrate SUB2.
  • the direction from the first substrate 10 toward the second substrate 20 of the opposing substrate SUB2 is defined as "upper side” in the direction perpendicular to the surface of the first substrate 10 of the opposing substrate SUB2. Further, the direction from the second substrate 20 to the first substrate 10 is defined as the "lower side”.
  • the array substrate SUB1 has a first substrate 10, a pixel electrode PE, a common electrode CE, and a polarizing plate PL1.
  • the first substrate 10 is provided with a switching element Tr such as a TFT (Thin Film Transistor) and various wirings (omitted in FIG. 5) such as a scanning line GCL and a signal line SGL.
  • Tr such as a TFT (Thin Film Transistor)
  • various wirings (omitted in FIG. 5) such as a scanning line GCL and a signal line SGL.
  • the common electrode CE is provided on the upper side of the first substrate 10.
  • the pixel electrode PE is provided on the upper side of the common electrode CE via the insulating layer 24.
  • the pixel electrode PE is provided on a layer different from that of the common electrode CE, and is arranged so as to be superimposed on the common electrode CE in a plan view. Further, a plurality of pixel electrode PEs are arranged in a matrix in a plan view.
  • the polarizing plate PL1 is provided on the lower side of the first substrate 10 via the adhesive layer 66.
  • a conductive material having translucency such as ITO (Indium Tin Oxide) is used.
  • ITO Indium Tin Oxide
  • the first substrate 10 is provided with a DDIC 19 and a flexible substrate 71.
  • the facing substrate SUB2 includes a second substrate 20, a light-shielding layer BM formed on one surface of the second substrate 20, a shield conductive layer 51 provided on the other surface of the second substrate 20, and wiring for temperature detection. It has SM, a protective layer 38, an adhesive layer 39, and a polarizing plate PL2. As shown in FIG. 6, the color filters CFR, CFG, and CFB are also formed on one surface of the second substrate 20 like the light-shielding layer BM.
  • a plurality of temperature detection wiring SMs are arranged on the second substrate 20.
  • a flexible substrate 72 is connected to the second substrate 20.
  • the temperature detection wiring SM is electrically connected to the flexible substrate 72 via the terminal portion 36.
  • the flexible substrate 71 is connected to the resistance detection circuit 120 shown in FIG. The detailed configuration of the temperature detection wiring SM will be described later.
  • the protective layer 38 is an insulating layer for protecting the temperature detection wiring SM.
  • a translucent resin such as an acrylic resin can be used.
  • a shield conductive layer 51 is formed on the protective layer 38.
  • the plurality of temperature detection wiring SMs and the shield conductive layer 51 are located above the second substrate 31, and the plurality of temperature detection wiring SMs are laminated below the shield conductive layer 51.
  • the protective layer 38 electrically insulates the shield conductive layer 51 and the temperature detection wiring SM.
  • Each of the shield conductive layers 51 is a translucent conductive layer, and is formed of, for example, ITO, IZO (Indium Zinc Oxide), SnO, an organic conductive film, or the like.
  • the shield conductive layer 51 includes an oxide layer containing tin oxide (SnO 2 ) and silicon dioxide (SiO 2 ) as main components, gallium oxide (Ga 2 O 3 ), indium oxide (In 2 O 3 ), and tin oxide (In 2 O 3 ).
  • An oxide layer containing SnO2) as a main component, a translucent conductive layer containing ITO as a main material and silicon (Si), or the like may be used.
  • a polarizing plate PL2 is provided on the shield conductive layer 51 via an adhesive layer 39.
  • the first optical element OD1 including the polarizing plate PL1 is arranged on the outer surface of the first substrate 10 or the surface facing the backlight 6 (see FIG. 2).
  • the second optical element OD2 including the polarizing plate PL2 is arranged on the outer surface of the second substrate 20 or the surface on the observation position side.
  • the first polarization axis of the polarizing plate PL1 and the second polarization axis of the polarizing plate PL2 are in a positional relationship of cross Nicols in a plan view.
  • the first optical element OD1 and the second optical element OD2 may include another optical layer such as a retardation plate.
  • the first substrate 10 and the second substrate 20 are arranged at a predetermined interval.
  • the space between the first substrate 10 and the second substrate 20 is sealed by the sealing portion 69.
  • the liquid crystal layer LC is provided in the space surrounded by the first substrate 10, the second substrate 20, and the seal portion 69.
  • the liquid crystal layer LC modulates the passing light according to the state of the electric field.
  • a transverse electric field such as IPS (In-Plane Switching) including FFS (Fringe Field Switching: fringe field switching). Mode liquid crystal is used.
  • An alignment film (not shown) is disposed between the liquid crystal layer LC and the array substrate SUB1 shown in FIG. 5 and between the liquid crystal layer LC and the facing substrate SUB2.
  • the liquid crystal layer LC is driven by the transverse electric field generated between the pixel electrode PE and the common electrode CE.
  • the backlight 6 shown in FIGS. 1 and 2 is provided on the lower side of the first substrate 10.
  • the light from the backlight 6 passes through the array substrate SUB1 and is modulated by the state of the liquid crystal at that position, and the state of transmission to the display surface changes depending on the location. As a result, the image is displayed in the display area AA of the display device 2.
  • the array substrate SUB1 uses a first substrate 10 having translucency and insulation properties such as a glass substrate and a resin substrate as a substrate.
  • the array substrate SUB1 has a first insulating layer 11, a second insulating layer 12, a third insulating layer 13, a signal line SGL, a pixel electrode PE, a common electrode CE, and a third on the side of the first substrate 10 facing the opposing substrate SUB2. It includes a 1-alignment film AL1 and the like.
  • the gate electrode of the scanning line GCL and the switching element Tr (see FIG. 4) is provided on the first substrate 10, and the first insulating layer 11 shown in FIG. 6 is the scanning line GCL and the gate. Cover the electrode GE (see FIG. 4). Under the first insulating layer 11, the scanning line GCL, and the gate electrode, there may be an insulating layer further formed of a translucent inorganic material such as silicon oxide or silicon nitride.
  • a semiconductor layer of the switching element Tr (see FIG. 4) is laminated on the first insulating layer 11, although it does not appear in the cross section of FIG.
  • the semiconductor layer is formed of, for example, amorphous silicon, but may be formed of polysilicon or an oxide semiconductor.
  • the second insulating layer 12 covers the signal line SGL.
  • the second insulating layer 12 is formed of a translucent resin material such as acrylic resin, and has a thicker film thickness than other insulating films formed of an inorganic material.
  • the second insulating layer 12 may be formed of an inorganic material.
  • the source electrode of the switching element Tr (see FIG. 4) covering a part of the semiconductor layer and the switching element Tr covering a part of the semiconductor layer
  • a drain electrode (see FIG. 4) is provided.
  • the drain electrode is made of the same material as the signal line SGL.
  • a third insulating layer 13 is provided on the semiconductor layer of the switching element Tr (see FIG. 4).
  • the switching element Tr described above is of the bottom gate type, but may be of the top gate type.
  • the common electrode CE is located on the second insulating layer 12. Further, in FIG. 6, the common electrode CE faces the signal line SGL via the third insulating layer 13.
  • the third insulating layer 13 is formed of a translucent inorganic material such as silicon oxide or silicon nitride.
  • the common electrode CE is covered with the third insulating layer 13.
  • the third insulating layer 13 is formed of a translucent inorganic material such as silicon oxide or silicon nitride.
  • the pixel electrode PE is located on the third insulating layer 13 and faces the common electrode CE via the third insulating layer 13.
  • the pixel electrode PE and the common electrode CE are formed of a translucent conductive material such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide).
  • the pixel electrode PE is covered with the first alignment film AL1.
  • the first alignment film AL1 also covers the third insulating layer 13.
  • the facing substrate SUB2 is based on a second substrate 20 having translucency and insulation properties such as a glass substrate or a resin substrate.
  • the facing substrate SUB2 is provided with a light-shielding layer BM, a color filter CFR, CFG, CFB, an overcoat layer OC, a second alignment film AL2, and the like on the side of the second substrate 20 facing the array substrate SUB1.
  • the light-shielding layer BM is located on the side of the second substrate 20 facing the array substrate SUB1. Then, as shown in FIG. 6, the light-shielding layer BM defines an opening AP that faces the pixel electrode PE, respectively.
  • the light-shielding layer BM is formed of a black resin material or a light-shielding metal material.
  • Each of the color filters CFR, CFG, and CFB is located on the side of the second substrate 20 facing the array substrate SUB1, and their respective ends overlap the light-shielding layer BM.
  • the color filters CFR, CFG, and CFB are formed of resin materials colored blue, red, and green, respectively.
  • the overcoat layer OC covers the color filters CFR, CFG, and CFB.
  • the overcoat layer OC is formed of a translucent resin material.
  • the second alignment film AL2 covers the overcoat layer OC.
  • the first alignment film AL1 and the second alignment film AL2 are formed of, for example, a material exhibiting horizontal orientation.
  • the facing substrate SUB2 includes a light-shielding layer BM, a color filter CFR, CFG, CFB, and the like.
  • the light-shielding layer BM is arranged in a region facing the wiring portion such as the scanning line GCL, the signal line SGL, and the switching element Tr shown in FIG.
  • the opposed substrate SUB2 includes three color filters CFR, CFG, and CFB, but blue, red, and other colors different from green, such as white, transparent, yellow, magenta, and cyan. It may be provided with four or more color filters including the above color filter. Further, these color filters CFR, CFG and CFB may be provided on the array substrate SUB1.
  • the array substrate SUB1 and the facing substrate SUB2 described above are arranged so that the first alignment film AL1 and the second alignment film AL2 face each other.
  • the liquid crystal layer LC is enclosed between the first alignment film AL1 and the second alignment film AL2.
  • the liquid crystal layer LC is made of a negative liquid crystal material having a negative dielectric anisotropy or a positive liquid crystal material having a positive dielectric anisotropy.
  • the array board SUB1 faces the backlight 6 (see FIG. 1), and the facing board SUB2 is located on the display surface side.
  • the backlight 6 various forms can be applied, but the detailed structure thereof will be omitted.
  • the liquid crystal layer LC is a negative liquid crystal material and no voltage is applied to the liquid crystal layer LC
  • the long axis of the liquid crystal molecule LM is in the Dx—Dy plane shown in FIG.
  • the initial orientation is along the first direction Dx.
  • a voltage is applied to the liquid crystal layer LC, that is, when an electric field is formed between the pixel electrode PE and the common electrode CE
  • the liquid crystal molecule LM is affected by the electric field and its orientation state is changed. Change.
  • the incident linearly polarized light changes according to the orientation state of the liquid crystal molecules LM when its polarization state passes through the liquid crystal layer LC.
  • the temperature detection wiring SM has a plurality of conductive thin wires 33, a first connecting wiring 34a, and a second connecting wiring 34b.
  • One end of the plurality of conductive thin wires 33 is electrically connected by the first connecting wiring 34a, and the other end of the plurality of conductive thin wires 33 is electrically connected by the first connecting wiring 34a.
  • the conductive thin wire 33 is one or more metal layers selected from aluminum (Al), copper (Cu), silver (Ag), molybdenum (Mo), chromium (Cr), titanium (Ti) and tungsten (W). Is formed by.
  • the conductive thin wire 33 is one or more selected from aluminum (Al), copper (Cu), silver (Ag), molybdenum (Mo), chromium (Cr), titanium (Ti) and tungsten (W). It is formed of a metal layer of an containing alloy.
  • an aluminum alloy such as AlNd, AlCu, AlSi, or AlSiCu can be used.
  • the conductive thin wire 33 may be a laminate in which a plurality of conductive layers of the above-mentioned metal material or an alloy containing one or more of the above-mentioned materials are laminated.
  • the width Wsm of the conductive thin wire 33 (temperature detection wiring SM) shown in FIG. 6 is a length orthogonal to the longitudinal direction, and is preferably 1 ⁇ m or more and 10 ⁇ m or less, and further in a range of 1 ⁇ m or more and 5 ⁇ m or less. More preferably. This is because when the width Wsm is 10 ⁇ m or less, it can be made smaller than the width Wbm of the light-shielding portion layer, so that the possibility of impairing the aperture ratio is reduced. Further, when the width Wsm is 1 ⁇ m or more, the shape of the conductive thin wire 33 (temperature detection wiring SM) is stable, and the possibility of disconnection is reduced.
  • the first wiring 37a is connected to each of the plurality of first connecting wirings 34a. Further, the second wiring 37b is connected to each of the plurality of second connecting wirings 34b. That is, in the present embodiment, the first wiring 37a is connected to one end side of the temperature detection wiring SM, and the second wiring 37b is connected to the other end side.
  • the first wiring 37a is provided along the peripheral region FR. Further, the second wiring 37b is provided along the peripheral region FR.
  • the first wiring 37a and the second wiring 37b connected to one temperature detection wiring SM are connected to different terminal portions 36, respectively. That is, the first wiring 37a, which is one end of the temperature detection wiring SM, and the second wiring 37b, which is the other end of the temperature detection wiring SM, are drawn out to the flexible substrate 72 via the terminal portions 36, respectively.
  • the first wiring 37a of the temperature detection wiring SM and the second wiring 37b of the temperature detection wiring SM are electrically connected to the resistance detection circuit 120 shown in FIG. 2 via the flexible substrate 72.
  • the resistance detection circuit 120 a resistance change that changes in response to a temperature change occurs between the first wiring 37a, which is one end of the temperature detection wiring SM, and the second wiring 37b, which is the other end of the temperature detection wiring SM. Detected.
  • first wiring 37a and the second wiring 37b the same material as the metal material or alloy used for the conductive thin wire 33 can be used. Further, the first wiring 37a and the second wiring 37b may be made of a material having good conductivity, and a material different from the conductive thin wire 33 may be used.
  • the temperature detection wiring SM can detect a partial heat generation state of the display area AA within a predetermined area range. The resistance value of the temperature detection wiring SM is adjusted according to the number of conductive thin wires 33.
  • the conductive thin wire 33 is arranged at a position overlapping the light-shielding layer BM. As shown in FIG. 5, the conductive thin wire 33 extends in the first direction along the light-shielding layer BM.
  • the planar shape of the conductive thin wire 33 is not limited to the straight metal thin wire. For example, when the signal line SGL is zigzag linear or wavy in a plan view, the planar shape of the conductive thin wire 33 is It may have a zigzag linear or wavy configuration along the shape of the signal line SGL.
  • the width of the second direction Dy of the slit SP between the adjacent temperature detection wiring SMs is the same as the distance between the adjacent conductive thin wires 33.
  • the intervals between the conductive thin wires 33 are aligned in the plane, so that unintended diffracted light is suppressed.
  • FIG. 6 there are eight light-shielding layer BMs that do not overlap the conductive thin wire 33 between the light-shielding layer BM that overlaps the conductive thin wire 33 and the light-shielding layer BM that overlaps the conductive thin wire 33.
  • a dummy conductive thin wire that is not electrically connected to the first wiring 37a or the second wiring 37b may be provided, and the dummy conductive thin wire may be superimposed on the light-shielding layer BM that does not overlap the conductive thin wire 33.
  • the shield conductive layer 51 is provided for suppressing static electricity during manufacturing and use of the display device 2.
  • the shield conductive layer 51 is not provided, if electromagnetic noise such as static electricity enters from the outside, there is a region where the conductive thin wire 33 does not exist, so that the effect of suppressing the electromagnetic noise may not be sufficient.
  • the shield conductive layer 51 is formed on substantially the entire surface of the second substrate 20, and is provided over the entire surface of the display area AA and the peripheral area FR. That is, the shield conductive layer 51 has a portion that overlaps with the conductive thin wire 33 and a portion that does not overlap with the conductive thin wire 33.
  • the shield conductive layer 51 is arranged up to the end portion of the second substrate 20. Further, the shield conductive layer 51 is electrically connected from the peripheral region FR to a fixed potential such as a power source or ground by a conductive tape or the like.
  • the shield conductive layer 51 is preferably provided at a position where it overlaps with the first connecting wiring 34a, the second connecting wiring 34b, the first wiring 37a, and the second wiring 37b.
  • the area of the shield conductive layer 51 in a plan view is larger than the total area of the conductive thin wires 33.
  • the display device 2 of the present embodiment has a substrate having a display area AA and a plurality of temperature detection wiring SMs.
  • the temperature detection wiring SM has a conductive thin wire 33 arranged at a position overlapping the display area AA in a plan view.
  • the light-shielding layer BM is arranged so as to extend in the first direction Dx.
  • the conductive thin wire 33 of the temperature detection wiring SM is arranged at a position overlapping the light-shielding layer and extends in the first direction along the light-shielding layer BM.
  • the conductive thin wire 33 is formed on the second substrate 20.
  • the protective layer 38 is formed on the conductive thin wire 33.
  • the protective layer 38 is a translucent resin such as an acrylic resin having an insulating property.
  • a shield conductive layer 51 is formed on the protective layer 38.
  • the plurality of temperature detection wiring SMs and the shield conductive layer 51 are located above the second substrate 20, and the plurality of temperature detection wiring SMs are laminated below the shield conductive layer 51.
  • the shield conductive layer 51 and the temperature detection wiring SM are insulated by the protective layer 38.
  • the shield conductive layer 51 is formed of, for example, one or more materials selected from ITO, IZO (Indium Zinc Oxide), and SnO.
  • the conductive thin wire 33 is one or more elements selected from aluminum (Al), copper (Cu), silver (Ag), molybdenum (Mo), chromium (Cr), titanium (Ti) and tungsten (W). It may be a laminated body in which at least two or more of a metal layer and a metal layer of an alloy containing these elements are laminated. Alternatively, the conductive thin wire 33 is one or more selected from aluminum (Al), copper (Cu), silver (Ag), molybdenum (Mo), chromium (Cr), titanium (Ti) and tungsten (W).
  • the conductive thin wire 33 is a laminated body, a material in which light reflection in the upper layer is suppressed rather than the lower layer is selected. As a result, the visible light reflectance of the upper layer is lower than the visible light reflectance of the lower layer, and the upper layer is closer to black than the lower layer.
  • the dimming device 5 is a panel of a liquid crystal shutter.
  • FIG. 7 is a plan view for explaining the dimming device of the first embodiment.
  • FIG. 8 is a cross-sectional view showing a schematic VIII-VIII'cross section of the display device shown in FIG. 7.
  • the array substrate SUB 11 includes a first substrate 10A, a drive electrode FE formed on one surface of the first substrate 10A, and a polarizing plate PL11 formed on the other surface of the second substrate 20A. And have.
  • the plurality of drive electrodes FE extend in the first direction Dx and are arranged side by side in the second direction Dy of the dimming region LAA in a plan view.
  • the drive electrode FE has a strip shape in which the length of the first direction Dx is longer than the length of the second direction Dy.
  • a conductive material having translucency such as ITO is used.
  • the facing substrate SUB 12 has a second substrate 20A, a common electrode SE formed on one surface of the second substrate 20A, and a polarizing plate PL12 provided on the other surface of the second substrate 20.
  • a common electrode CE for example, a conductive material having translucency such as ITO (Indium Tin Oxide) is used.
  • ITO Indium Tin Oxide
  • the common electrode CE may be provided above the pixel electrode PE.
  • the first substrate 10A is provided with a DDIC 55 provided in the peripheral region LFR shown in FIG. 7 and a flexible substrate 73.
  • the first substrate 10A and the second substrate 20A are arranged at a predetermined interval.
  • the space between the first substrate 10A and the second substrate 20A is sealed by the sealing portion 56.
  • the liquid crystal layer LC is provided in the space surrounded by the first substrate 10A, the second substrate 20A, and the seal portion 56.
  • the liquid crystal layer LC modulates the passing light according to the state of the electric field.
  • TN Transmission Nematic
  • VA Virtual Alignment: vertical orientation
  • ECB Electrodefringence: electric field control birefringence
  • a liquid crystal in a longitudinal electric field mode such as birefringence is used.
  • An alignment film (not shown) is disposed between the liquid crystal layer LC and the array substrate SUB1 shown in FIG. 5 and between the liquid crystal layer LC and the facing substrate SUB2.
  • the liquid crystal layer LC is driven by the longitudinal electric field generated between the drive electrode FE and the common electrode SE.
  • the first polarization axis of the polarizing plate PL11 and the second polarization axis of the polarizing plate PL12 are in a positional relationship of cross Nicols in a plan view.
  • any of the shutter regions ES1 to ES7 overlapping the applied drive electrode FE shown in FIG. 7 is in a light-shielding state. If no voltage is applied from the DDIC to the drive electrode FE, the shutter regions ES1 to ES7 are in a translucent state.
  • the optical system RM (see FIG. 1) enlarges the image displayed in the display area AA of the display device 2, the area of the dimming area LAA of the dimming device 5 shown in FIG. 7 is the display device shown in FIG. It is larger than the area of the display area AA of 2.
  • a plurality of temperature detection wiring SMs are arranged in the second direction Dy from the temperature detection wiring SM1 to the temperature detection wiring SMk in the display area AA.
  • k is 7.
  • FIG. 9 is an explanatory diagram for explaining the correspondence between the temperature detection region of the temperature detection wiring and the shutter region of the dimmer in the first embodiment.
  • the light of the image in the temperature detection region of the temperature detection wiring SM1 reaches the shutter region ES1.
  • the light of the image of the temperature detection region from the temperature detection wiring SM2 to the temperature detection wiring SM7 reaches from the shutter region ES2 to the shutter region ES7, respectively.
  • Each of the shutter region ES1 to the shutter region ES7 is larger than each of the temperature detection regions of the temperature detection wiring SM1 to the temperature detection wiring SM7. That is, the drive electrode FE is larger than each of the temperature detection regions of the temperature detection wiring SM1 to the temperature detection wiring SM7.
  • the shutter area for which a position is not specified may be referred to as a shutter area ES.
  • FIG. 10 is an explanatory diagram showing the rate of change in resistance with respect to the temperature of one temperature detection wiring.
  • FIG. 11 is an explanatory diagram showing an example of distribution of resistance change rates of a plurality of temperature detection wirings.
  • FIG. 12 is an explanatory diagram schematically illustrating a head-up display in a state where sunlight is shielded.
  • FIG. 13 is a flowchart illustrating the operation of the head-up display.
  • the resistance change rate of the temperature detection wiring SM with respect to the resistance value of the reference temperature changes, for example, linearly according to the temperature.
  • the sunlight LL may be incident on the opening 4S of the housing 4 depending on the relative position of the sun SUN.
  • the sunlight LL is guided by the optical system RM and collects light as it approaches the display device 2, and may hit a part of the display area AA. Since the focused sunlight may deteriorate the display device, it is desired to detect a partial heat generation state in the display area.
  • the resistance detection circuit 120 shown in FIG. 2 AD-converts the resistance of the temperature detection wiring SM7 from the temperature detection wiring SM1 and outputs a resistance detection signal to the control circuit 110.
  • the operation of the HUD device 1 will be described below with reference to the flowchart shown in FIG.
  • the control circuit 110 drives the drive electrode FE of the shutter region ES7 corresponding to the temperature detection region of the temperature detection wiring SM5.
  • the control circuit 110 puts the shutter region ES5 (see FIG. 13) corresponding to the temperature detection region specified in step ST1 into a light-shielding state (step ST2).
  • the area that overlaps with the temperature detection wiring SM5 is estimated to be the display area AA that is exposed to the sunlight LL.
  • the control circuit 110 determines the transmittance of the dimming region portion (shutter region ES5) corresponding to the temperature detection region of the temperature detection wiring SM5 that detects the resistance change rate due to the temperature rise above the threshold value Thr. Although it was reduced to 0%, the transmittance may be reduced.
  • the transmittance of the dimming region (shutter region ES5) corresponding to the temperature detection region of the temperature detection wiring SM5 is set to 50%, the amount of sunlight LL focused on the display region of the display device 2 is still large. Decrease. As a result, deterioration of the display device 2 is suppressed.
  • the shutter area ES5 is in a light-shielding state, but the shutter area ES1, the shutter area ES4, the shutter area ES6, and the shutter area ES7 are in a translucent state. Therefore, the image blocked by the shutter region ES5 cannot be seen, but the light of most of the images is reflected by the projection plate WS and reaches the user H, so that the image is recognized as an image VI in the field of view of the user H. To.
  • step ST3 The temperature of the display area AA, which is no longer exposed to sunlight LL, drops.
  • the control circuit 110 advances the process to step ST3.
  • the control circuit 110 when the shutter region ES5 (see FIG. 13) is in a light-shielding state, the voltage application of the drive electrode FE overlapping the shutter region ES5 is set as the ground potential, and the shutter region ES5 is in the transmission state (step ST3). ..
  • the HUD device 1 which is a display system includes an optical system RM for projecting an image on the projection plate WS, a display device 2 for displaying an image, and a dimming device 5 having a dimming region LAA. ..
  • the display device 2 includes an array substrate SUB1 having a display area AA, and a plurality of temperature detection wiring AMs arranged at positions overlapping the display area AA in a plan view. With this structure, it is possible to detect a partial heat generation state of the display area AA where the sunlight LL is focused.
  • the HUD device 1 which is a display system detects a partial heat generation state of the display area AA, and selectively reduces the amount of light in the portion where the light from the outside is focused by the optical system RM.
  • the dimming device 5 Since the dimming device 5 is located in the dimming region LAA in the optical path between the projection plate WS and the optical system RM, the dimming region LAA needs to have a larger area than the display region AA of the display device 2.
  • the dimming device 5 is not provided between the optical system RM and the display device 2, and the optical system RM does not cause the focus of the sunlight LL on the dimming region LAA of the dimming device 5. Therefore, even if the dimming region LAA in the optical path between the projection plate WS and the optical system RM is partially shaded, the dimming device 5 is unlikely to deteriorate.
  • FIG. 14 is an explanatory diagram schematically illustrating the system of the head-up display of the second embodiment.
  • the drive electrodes FE of the second embodiment are arranged in a matrix. This is because the temperature detection region of the second embodiment is divided into a matrix, and the resistance change rate of each temperature detection region can be detected. Since the optical system RM (see FIG. 1) enlarges the image displayed in the display area AA of the display device 2, the area of the dimming area LAA of the dimming device 5 is larger than the area of the display area AA of the display device 2. Is also big.
  • FIG. 15 is a plan view for explaining the arrangement of the first temperature detection wiring of the second embodiment.
  • FIG. 16 is a plan view for explaining the arrangement of the second temperature detection wiring of the second embodiment.
  • FIG. 17 is a plan view for explaining the position where the first temperature detection wiring and the second temperature detection wiring are overlapped.
  • FIG. 18 is a cross-sectional view showing a schematic XVII-V'cross section of the display device shown in FIG.
  • FIG. 19 is a cross-sectional view showing a schematic XIV-XIV'cross section of the display device shown in FIG.
  • the display device 2 of the second embodiment has a first temperature detection wiring SMX (see FIG. 15) in which the conductive thin wire 33 extends in the first direction Dx and a second temperature detection wiring SMX (see FIG. 15) in which the conductive thin wire 33 extends in the second direction Dy. It has a wiring SMY (see FIG. 16). It is desirable that the width of the second direction Dy of the slit SPA of the adjacent first temperature detection wiring SMX is the same as the distance between the adjacent conductive thin wires 33. As a result, the intervals between the conductive thin wires 33 are aligned in the plane, so that unintended diffracted light is suppressed. Since the first temperature detection wiring SMX has the same components as the temperature detection wiring SM of the first embodiment, the description thereof will be omitted.
  • the second temperature detection wiring SMY has a plurality of conductive thin wires 33, a third connecting wiring 34c, and a fourth connecting wiring 34d.
  • the conductive thin wire 33 extends in the second direction Dy and overlaps the display area AA.
  • One end of the plurality of conductive thin wires 33 is electrically connected by the third connecting wiring 34c, and the other end of the plurality of conductive thin wires 33 is electrically connected by the fourth connecting wiring 34d.
  • the width of the first direction Dx of the slit SPB between the adjacent second temperature detection wiring SMY is the same as the distance between the adjacent conductive thin wires 33.
  • the intervals between the conductive thin wires 33 are aligned in the plane, so that unintended diffracted light is suppressed.
  • a third wiring 37c is connected to each of the plurality of third connecting wirings 34c. Further, the fourth wiring 37d is connected to each of the plurality of fourth connecting wirings 34d. That is, in the second embodiment, the third wiring 37c is connected to one end side of the second temperature detection wiring SMY, and the fourth wiring 37d is connected to the other end side.
  • the third wiring 37c is provided along the peripheral region FR. Further, the fourth wiring 37d is provided along the peripheral region FR.
  • the third wiring 37c and the fourth wiring 37d connected to one second temperature detection wiring SMY are connected to different terminal portions 36, respectively. That is, the third wiring 37c, which is one end of the second temperature detection wiring SMY, and the fourth wiring 37d, which is the other end of the second temperature detection wiring SMY, are connected to the flexible substrate 72 via the terminal portions 36, respectively. Pulled out.
  • the third wiring 37c of the second temperature detection wiring SMY and the fourth wiring 37d of the second temperature detection wiring SMY are electrically connected to the resistance detection circuit 120 shown in FIG. 2 via the flexible substrate 72. ing.
  • the third wiring 37c, which is one end of the second temperature detection wiring SMY, and the fourth wiring 37d, which is the other end of the second temperature detection wiring SMY change according to the temperature change. The resistance change is detected.
  • the same material as the metal material or alloy used for the conductive thin wire 33 can be used. Further, the third wiring 37c and the fourth wiring 37d may be made of a material having good conductivity, and a material different from the conductive thin wire 33 may be used.
  • the second temperature detection wiring SMY can detect a partial heat generation state of the display area AA within a predetermined area range. The resistance value of the second temperature detection wiring SMY is adjusted according to the number of conductive thin wires 33.
  • the display device of the second embodiment can grasp the position of the sunlight LL focused on the display area AA in more detail.
  • a second temperature detection wiring SMY is formed on the protective layer 38, and the protective layer 38A covers the second temperature detection wiring SMY.
  • the protective layer 38 electrically insulates the first temperature detection wiring SMX and the second temperature detection wiring SMY.
  • the protective layer 38A is made of the same material as the protective layer 38, and electrically insulates the shield conductive layer 51 and the temperature detection wiring SM.
  • the second temperature detection wiring SMY is arranged at a position overlapping the scanning line GCL and the light-shielding layer BM. As shown in FIG. 19, the second temperature detection wiring SMY (conductive thin wire 33) extends in the second direction Dy along the light-shielding layer BM.
  • the planar shape of the conductive thin wire 33 of the second temperature detection wiring SMY shown in FIG. 16 is not limited to the straight metal thin wire.
  • the scanning line GCL is zigzag or wavy in plan view. In some cases, the planar shape of the conductive thin wire 33 may be zigzag linear or wavy along the shape of the scanning line GCL.
  • FIG. 20 is a plan view for explaining the dimming device of the second embodiment.
  • the dimming device 5 is a panel of a liquid crystal shutter.
  • the drive electrodes FE are arranged in a matrix in the first direction Dx and the second direction Dy of the dimming region LAA.
  • the shutter regions EX11, EX12, EX13, EX14, EX21, EX22, EX23, EX24, EX31, EX32, EX33, EX34, EX41, EX42, EX43, EX44, EX51, EX52, EX53, EX54 , EX61, EX62, EX63, EX64, EX71, EX72, EX73 and EX74 can be changed from the translucent state to the light-shielded state.
  • the shutter area for which the position is not specified may be referred to as a shutter area EX.
  • FIG. 21 is an explanatory diagram for explaining the correspondence between the temperature detection region of the temperature detection wiring and the shutter region of the dimmer in the second embodiment.
  • the light of the image in the temperature detection region SX1 reaches the shutter region EX1.
  • the light of the images of SX64, SX71, SX72, SX73 and SX74 corresponds to the shutter regions EX12, EX13, EX14, EX21, EX22, EX23, EX24, EX31, EX32, EX33, EX34, EX41, EX42, EX43, EX44.
  • the temperature detection region in which the position is not specified may be referred to as the temperature detection region SX.
  • the optical system RM (see FIG. 14) enlarges the image displayed in the display area AA of the display device 2, the area of the dimming area LAA of the dimming device 5 shown in FIG. 20 is the display device shown in FIG. It is larger than the area of the display area AA of 2. Further, one shutter area EX is larger than one temperature detection area SX. Therefore, the drive electrode FE that drives one shutter region EX is larger than one temperature detection region SX.
  • the control circuit 110 shown in FIG. 14 detects the specified temperature when the resistance change rates of the first temperature detection wiring SMX and the second temperature detection wiring SMY are equal to or higher than a predetermined threshold value and the temperature detection region can be specified.
  • the drive electrode FE of the shutter region EX corresponding to the region SX is driven.
  • the control circuit 110 sets the shutter region EX corresponding to the specified temperature detection region SX to a light-shielding state.
  • the HUD device detects the partial heat generation state of the display area AA, and selectively reduces the amount of light in the portion exposed to the external light focused by the optical system RM. In the light-shielded state, the transmittance may be reduced without setting the transmittance to 0%. For example, even if the transmittance of the shutter region EX is set to 50%, the amount of sunlight LL focused on the display region AA of the display device 2 is reduced. As a result, deterioration of the display device 2 is suppressed.
  • the display device 2 exemplifies a liquid crystal panel, it may be an organic EL panel. It may be a micro LED (micro LED) that displays an image by emitting different light for each light emitting element LED.
  • the light emitting element LED has a size of about 3 ⁇ m or more and 100 ⁇ m or less in a plan view.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

表示領域の部分的な発熱状態を検出し、光学系により集光された外部からの光が当たる部分の光量を選択的に減少させる表示システム及び表示装置を提供する。表示システムは、画像を投影する光学系と、画像を表示する表示装置と、調光領域を有する調光装置と、を備える。表示装置は、表示領域を有する基板と、平面視で表示領域に重なる位置に配置される、複数の温度検出用配線と、を備えている。調光装置の調光領域は、表示領域よりも面積が大きい。

Description

表示システム及び表示装置
 本開示は、光学系を介して、投影板に画像を投影する表示システム及び表示装置に関する。
 ガラス等の透光性を有する部材に対して画像を投影する所謂ヘッドアップディスプレイ(HUD:Head Up Display)が知られている(例えば、特許文献1)。
特開2015-210328号公報 特開2016-051090号公報
 特許文献1の技術によると、太陽の光が光学系を介して表示装置に入射することがある。光学系により集光された太陽の光が表示装置に当たると、表示装置が劣化する可能性がある。そこで、特許文献1では、挿入機構によりフィルタを表示装置の直前の光路中に挿入させ、太陽光を光量減少させる技術が記載されている。フィルタが表示装置の直前の光路中に挿入されていると、全画像の光量も減少してしまう。
 特許文献2には、温度センサが表示領域の外側に配置された液晶表示装置が記載されている。太陽の光の入射状態は、太陽と表示装置との相対位置により変化するので、特許文献2の温度センサの位置では、光学系により集光された太陽の光が検知できるとは限らない。
 本開示は、上記の課題に鑑みてなされたもので、表示領域の部分的な発熱状態を検出し、光学系により集光された外部からの光が当たる部分の光量を選択的に減少させる表示装置システム及び表示装置を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、表示システムは、画像を投影する光学系と、前記画像を表示する表示装置と、調光領域を有する調光装置と、を備え、前記表示装置は、表示領域を有する基板と、平面視で前記表示領域に重なる位置に配置される、複数の温度検出用配線と、を備え、前記調光装置の前記調光領域は、前記表示領域よりも面積が大きい。
図1は、ヘッドアップディスプレイを模式的に説明する説明図である。 図2は、実施形態1のヘッドアップディスプレイのシステムを模式的に説明する説明図である。 図3は、表示装置の画素を説明する説明図である。 図4は、実施形態1の温度検出用配線の配置を説明するための平面図である。 図5は、図4に示す表示装置の模式的なV-V’断面を示す断面図である。 図6は、図4に示す表示装置の模式的なVI-VI’断面を示す断面図である。 図7は、実施形態1の調光装置を説明するための平面図である。 図8は、図7に示す表示装置の模式的なVIII-VIII’断面を示す断面図である。 図9は、実施形態1における、温度検出用配線の温度検出領域と、調光装置のシャッター領域との対応関係を説明するための説明図である。 図10は、1つの温度検出用配線の温度に対する抵抗変化率を示す説明図である。 図11は、複数の温度検出用配線の抵抗変化率の分布の一例を示す説明図である。 図12は、太陽光を遮光した状態のヘッドアップディスプレイを模式的に説明する説明図である。 図13は、ヘッドアップディスプレイの動作を説明するフローチャートである。 図14は、実施形態2のヘッドアップディスプレイのシステムを模式的に説明する説明図である。 図15は、実施形態2の第1温度検出用配線の配置を説明するための平面図である。 図16は、実施形態2の第2温度検出用配線の配置を説明するための平面図である。 図17は、第1温度検出用配線と第2温度検出用配線とを重ね合わせた位置を説明するための平面図である。 図18は、図15に示す表示装置の模式的なXVII-V’断面を示す断面図である。 図19は、図16に示す表示装置の模式的なXIV-XIV’断面を示す断面図である。 図20は、実施形態2の調光装置を説明するための平面図である。 図21は、実施形態2における、温度検出用配線の温度検出領域と、調光装置のシャッター領域との対応関係を説明するための説明図である。
 本開示を実施するための形態(実施形態)につき、図面を参照しつつ詳細に説明する。以下の実施形態に記載した内容により本開示が限定されるものではない。また、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに、以下に記載した構成要素は適宜組み合わせることが可能である。なお、開示はあくまで一例にすぎず、当業者において、開示の主旨を保っての適宜変更について容易に想到し得るものについては、当然に本開示の範囲に含有されるものである。また、図面は説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本開示の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して前述したものと同様の要素には、同一の符号を付して、詳細な説明を適宜省略することがある。
(実施形態1)
 図1は、ヘッドアップディスプレイを模式的に説明する説明図である。ヘッドアップディスプレイ(Head-Up Display:以下、HUDという。)装置1は、バックライト6、拡散板9、表示装置2、表示装置2からの画像を拡大して投影板WSへ投影する光学系RMと、調光装置5と、制御回路110とを備える。
 筐体4は、光源装置として機能するバックライト6、バックライト6からの光Lを光源として画像を出力する表示装置2、表示装置2とバックライト6との間に設けられる拡散板9と、光学系RMと、調光装置5、制御回路110とを収容する。
 バックライト6から発せられた光Lは、拡散板9により拡散されて表示装置2を経ることで一部又は全部が透過し、画像の光となる。本実施形態のHUD装置1では、ミラー部材RM1と、ミラー部材RM2とを含む光学系RMは、表示装置2を通った後の光Lを調光装置5へ導いている。ミラー部材RM1は、平面鏡であり、ミラー部材RM2は、凹面鏡である。ミラー部材RM1は、凹面鏡であってもよい。光学系RMはこれに限られず、光学系RMが、ミラー部材の枚数は1つであってもよいし、3つ以上であってもよい。
 調光装置5は、WS投影板と、光学系RSとの間の光路に配置され、筐体4の開口4Sを覆う大きさを有している。表示装置2を通過した後、光学系RMを通過する光Lは、調光装置5に入射する。
 光学系RM及び調光装置5を通過した画像の光は、投影板WSにより反射されてユーザHに到達することで、ユーザHの視界内で画像VIとして認識される。すなわち、本実施形態のHUD装置1は、投影板WSへ画像を投影する表示システムとして機能する。投影板WSは、ユーザHの視線上に位置する透光性を有する部材であればよい。投影板WSは、例えば車両のフロントガラス、ウインドシールド、またはフロントガラスとは別体に設けられたコンバイナーと呼ばれる透光性の板部材である。
 図2は、実施形態1のヘッドアップディスプレイのシステムを模式的に説明する説明図である。図3は、表示装置の画素を説明する説明図である。図4は、実施形態1の温度検出用配線の配置を説明するための平面図である。図5は、図4に示す表示装置の模式的なV-V’断面を示す断面図である。図6は、図4に示す表示装置の模式的なVI-VI’断面を示す断面図である。
 HUD装置1の制御回路110は、表示装置2、光源部としてのバックライト6及び調光装置5を制御する。本実施形態の調光装置5は、太陽光LLを減光するための液晶ディスプレイである。表示装置2は、DDIC(Display Driver Integrated Circuit)55と、調光領域LAAに設けられた複数の駆動電極FEと、各駆動電極FEとDDIC55とを電気的に接続する複数の配線57とを備えている。配線57は、以下適宜図示を省略することがある。
 本実施形態の表示装置2は、光Lを光源として画像を出力する透過型の液晶ディスプレイである。表示装置2は、表示パネルとも呼ばれる。図2に示すように、表示装置2の表示領域AAには、画素VPixがマトリクス状(行列状)に多数配置されている。
 図3に示す画素VPixは、複数の副画素SPixを有している。副画素SPixには、それぞれスイッチング素子Tr及び液晶容量8aがある。スイッチング素子Trは、薄膜トランジスタにより構成されるものであり、この例では、nチャネルのMOS(Metal Oxide Semiconductor)型のTFTで構成されている。画素電極PEと共通電極CEとの間に絶縁層24が設けられ、これらによって図3に示す保持容量8bが形成される。
 図2に示すように、制御回路110は、例えば表示制御回路111、光源制御回路112及び減光制御回路113として機能する。表示制御回路111は、例えば、マスタークロック、水平同期信号、垂直同期信号、画素信号、バックライト6の駆動命令信号等をDDIC19に出力する画素信号は、例えば、赤(R)、緑(G)、青(B)の個々の階調値を組み合わせた信号である。
 光源制御回路112は、画素信号と同期して、光源61の動作を制御する。表示制御回路111は、光源制御回路112に制御された光源61の発光量に基づいて複数の画素のうち一部又は全部の出力階調値を制御する機能を有する。
 減光制御回路113は、後述する抵抗検出回路120の抵抗検出信号に基づいて、DDIC55に駆動命令信号を送出する。
 第1基板10(図5参照)には、図3に示す各副画素SPixのスイッチング素子Tr、信号線SGL、走査線GCL等が形成されている。信号線SGLは、図5に示す各画素電極PEに画素信号を供給するための配線である。走査線GCLは、各スイッチング素子Trを駆動する駆動信号を供給するための配線である。信号線SGL及び走査線GCLは、図5に示す第1基板10の表面と平行な平面に延出する。
 図3に示すように、信号線SGL及び走査線GCLに沿うように遮光層BMが形成されている。なお、図3では、スイッチング素子Trの電気的な接続が示されているが、実際には遮光層BMは、スイッチング素子Trにも重畳している。副画素SPixは、遮光層BMで囲まれた開口を有しており、図3に示す各副画素SPixの開口に、赤(R)、緑(G)、青(B)の3色に着色されたカラーフィルタCFR、CFG、CFBが1組として対応付けられる。そして、3色のカラーフィルタCFR、CFG、CFBに対応する副画素SPixを1組として画素VPixが構成される。なお、カラーフィルタは、4色以上の色領域を含んでいてもよい。
 図2に示すように、表示装置2は、DDIC(Display Driver Integrated Circuit)19を備えている。DDIC19は、ゲートドライバとして、走査線GCLを順次選択する。DDIC19は、選択された走査線GCLを介して、走査信号を副画素SPixのスイッチング素子Trのゲートに印加する。これにより、副画素SPixのうちの1行(1水平ライン)が表示駆動の対象として順次選択される。
 また、DDIC19は、選択された1水平ラインを構成する副画素SPixに、ソースドライバとして、信号線SGLを介して画素信号を供給する。そして、これらの副画素SPixでは、供給される画素信号に応じて1水平ラインずつ表示が行われるようになっている。
 DDIC19は、共通電極ドライバとして、共通電極CEに対して共通電位を印加する。共通電位は、複数の副画素SPixに、共通に加えられる直流の電圧信号である。
 以上説明したように、DDIC19は、ゲートドライバ、ソースドライバ、共通電極ドライバとして機能する。DDIC19は、ゲートドライバ、ソースドライバ、共通電極ドライバをそれぞれ別に構成してもよい。また、ゲートドライバ、ソースドライバ、共通電極ドライバの少なくとも1つでは、薄膜トランジスタ(Thin Film Transistor:TFT)が、第1基板10の上に形成されている。
 図2に示すように、複数の温度検出用配線SMが配列している。温度検出用配線SMの両端子が引き出され、抵抗検出回路120に電気的に接続されている。抵抗検出回路120は、温度検出用配線SMの抵抗をAD変換し、抵抗検出信号を制御回路110へ出力する。
 太陽光LLが当たっている表示領域AAの温度検出用配線SMがあると、抵抗検出信号から判断される場合、制御回路110の減光制御回路113は、DDIC55に駆動命令信号を送出する。
 DDIC55は、駆動命令信号に応じて、駆動電極FEを駆動する。駆動された駆動電極がある領域は、太陽光LL(図1参照)の透過を抑制する。
 次に、表示装置2の構成例を詳細に説明する。図5に示すように、表示装置2は、アレイ基板SUB1と、対向基板SUB2と、表示機能層としての液晶層LCとを備える。対向基板SUB2は、アレイ基板SUB1の表面に垂直な方向に対向して配置される。液晶層LCはアレイ基板SUB1と対向基板SUB2との間に設けられる。
 なお、本実施形態において、対向基板SUB2の第1基板10の表面に垂直な方向において、第1基板10から対向基板SUB2の第2基板20に向かう方向を「上側」とする。また、第2基板20から第1基板10に向かう方向を「下側」とする。
 アレイ基板SUB1は、第1基板10と、画素電極PEと、共通電極CEと、偏光板PL1とを有する。第1基板10には、TFT(Thin Film Transistor)等のスイッチング素子Trや、走査線GCL、信号線SGL等の各種配線(図5では省略して示す)が設けられる。
 共通電極CEは、第1基板10の上側に設けられる。画素電極PEは、絶縁層24を介して共通電極CEの上側に設けられる。画素電極PEは、共通電極CEとは異なる層に設けられ、平面視で、共通電極CEと重畳して配置される。また、画素電極PEは、平面視でマトリクス状に複数配置される。偏光板PL1は、接着層66を介して第1基板10の下側に設けられる。画素電極PE及び共通電極CEは、例えば、ITO(Indium Tin Oxide)等の透光性を有する導電性材料が用いられる。なお、本実施形態では、画素電極PEが共通電極CEの上側に設けられる例について説明したが、共通電極CEが画素電極PEの上側に設けられていてもよい。
 また、第1基板10には、DDIC19と、フレキシブル基板71が設けられる。
 対向基板SUB2は、第2基板20と、第2基板20の一方の面に形成された遮光層BMと、第2基板20の他方の面に設けられたシールド導電層51と、温度検出用配線SMと、保護層38と、接着層39と、偏光板PL2とを有する。図6に示すように、カラーフィルタCFR、CFG、CFBも、遮光層BMと同様に、第2基板20の一方の面に形成される。
 図4に示すように、温度検出用配線SMは、第2基板20の上に複数配列されている。図5に示すように、第2基板20にはフレキシブル基板72が接続されている。温度検出用配線SMは、端子部36を介して、フレキシブル基板72に電気的に接続される。フレキシブル基板71は、図2に示す抵抗検出回路120に接続される。なお、温度検出用配線SMの詳細な構成については後述する。
 保護層38は、温度検出用配線SMを保護するための絶縁層である。保護層38は、アクリル系樹脂等の透光性の樹脂を用いることができる。保護層38の上には、シールド導電層51が形成されている。言い換えると、複数の温度検出用配線SMと、シールド導電層51とは、第2基板31の上方にあり、複数の温度検出用配線SMは、シールド導電層51の下方に積層される。保護層38は、シールド導電層51と、温度検出用配線SMとを電気的に絶縁している。
 シールド導電層51は、それぞれ透光性導電層であり、例えば、ITO、IZO(Indium Zinc Oxide)、SnO、有機導電膜などで形成される。シールド導電層51は、酸化スズ(SnO)及び二酸化ケイ素(SiO)を主成分とする酸化物層や、酸化ガリウム(Ga)、酸化インジウム(In)及び酸化スズ(SnO2)を主成分とする酸化物層や、ITOを主材料としケイ素(Si)を含有する透光性の導電層等を用いてもよい。図5に示すように、シールド導電層51の上に、接着層39を介して偏光板PL2が設けられている。
 偏光板PL1を含む第1光学素子OD1は、第1基板10の外面、あるいは、バックライト6(図2参照)と対向する面に配置される。偏光板PL2を含む第2光学素子OD2は、第2基板20の外面、あるいは、観察位置側の面に配置される。偏光板PL1の第1偏光軸及び偏光板PL2の第2偏光軸は、平面視においてクロスニコルの位置関係にある。なお、第1光学素子OD1及び第2光学素子OD2は、位相差板などの他の光学層を含んでいてもよい。
 第1基板10と第2基板20とは所定の間隔を設けて配置される。第1基板10と第2基板20との間の空間は、シール部69により封止される。第1基板10、第2基板20、及びシール部69によって囲まれた空間に液晶層LCが設けられる。液晶層LCは、通過する光を電界の状態に応じて変調するものであり、例えば、FFS(Fringe Field Switching:フリンジフィールドスイッチング)を含むIPS(In-Plane Switching:インプレーンスイッチング)等の横電界モードの液晶が用いられる。なお、図5に示す液晶層LCとアレイ基板SUB1との間、及び液晶層LCと対向基板SUB2との間には、図示を省略した配向膜がそれぞれ配設される。本実施形態では、画素電極PEと共通電極CEとの間に発生する横電界により、液晶層LCが駆動される。
 第1基板10の下側には、図1及び図2に示すバックライト6が設けられる。バックライト6からの光は、アレイ基板SUB1を通過して、その位置の液晶の状態により変調され、表示面への透過状態が場所によって変化する。これにより、表示装置2の表示領域AAに画像が表示される。
 次に、図4に示すVI-VI’断面について、詳細に説明する。図6において、アレイ基板SUB1は、ガラス基板や樹脂基板などの透光性及び絶縁性を有する第1基板10を基体としている。アレイ基板SUB1は、第1基板10の対向基板SUB2と対向する側に、第1絶縁層11、第2絶縁層12、第3絶縁層13、信号線SGL、画素電極PE、共通電極CE、第1配向膜AL1などを備えている。
 第1基板10上に、図6の断面では現れないが、走査線GCL及びスイッチング素子Tr(図4参照)のゲート電極が設けられ、図6に示す第1絶縁層11が走査線GCL及びゲート電極GE(図4参照)を覆う。なお、第1絶縁層11、走査線GCL及びゲート電極の下に、さらにシリコン酸化物やシリコン窒化物などの透光性を有する無機系材料によって形成されている絶縁層があってもよい。
 第1絶縁層11上には、図6の断面では現れないが、スイッチング素子Tr(図4参照)の半導体層が積層されている。半導体層は、例えば、アモルファスシリコンによって形成されているが、ポリシリコン又は酸化物半導体によって形成されていてもよい。
 図6に示すように、第2絶縁層12は、信号線SGLを覆っている。第2絶縁層12は、例えばアクリル樹脂などの透光性を有する樹脂材料によって形成され、無機系材料によって形成された他の絶縁膜と比べて厚い膜厚を有している。ただし、第2絶縁層12については無機系材料によって形成されたものであってもよい。
 また、図6の断面では現れないが、第2絶縁層12上には、半導体層の一部を覆うスイッチング素子Tr(図4参照)のソース電極と、半導体層の一部を覆うスイッチング素子Tr(図4参照)のドレイン電極とが設けられている。ドレイン電極は、信号線SGLと同じ材料で形成されている。スイッチング素子Tr(図4参照)の半導体層の上には、第3絶縁層13が設けられている。以上説明したスイッチング素子Trは、ボトムゲート型であるが、トップゲート型であってもよい。
 共通電極CEは、第2絶縁層12の上に位置している。また、図6において、共通電極CEは、第3絶縁層13を介して信号線SGLと対向している。第3絶縁層13は、例えば、シリコン酸化物やシリコン窒化物などの透光性を有する無機系材料によって形成されている。
 共通電極CEは、第3絶縁層13によって覆われている。第3絶縁層13は、例えば、シリコン酸化物やシリコン窒化物などの透光性を有する無機系材料によって形成されている。
 画素電極PEは、第3絶縁層13の上に位置し、第3絶縁層13を介して共通電極CEと対向している。画素電極PE及び、共通電極CEは、例えば、ITO(Indium Tin Oxide)やIZO(Indium Zinc Oxide)などの透光性を有する導電材料によって形成されている。画素電極PEは、第1配向膜AL1によって覆われている。第1配向膜AL1は、第3絶縁層13も覆っている。
 対向基板SUB2は、ガラス基板や樹脂基板などの透光性及び絶縁性を有する第2基板20を基体としている。対向基板SUB2は、第2基板20のアレイ基板SUB1と対向する側に、遮光層BM、カラーフィルタCFR、CFG、CFB、オーバーコート層OC、第2配向膜AL2などを備えている。
 図6に示すように、遮光層BMは、第2基板20のアレイ基板SUB1と対向する側に位置している。そして、図6に示すように、遮光層BMは、画素電極PEとそれぞれ対向する開口部APを規定している。遮光層BMは、黒色の樹脂材料や、遮光性の金属材料によって形成されている。
 カラーフィルタCFR、CFG、CFBのそれぞれは、第2基板20のアレイ基板SUB1と対向する側に位置し、それぞれの端部が遮光層BMに重なっている。一例では、カラーフィルタCFR、CFG、CFBは、それぞれ青色、赤色、緑色に着色された樹脂材料によって形成されている。
 オーバーコート層OCは、カラーフィルタCFR、CFG、CFBを覆っている。オーバーコート層OCは、透光性を有する樹脂材料によって形成されている。第2配向膜AL2は、オーバーコート層OCを覆っている。第1配向膜AL1及び第2配向膜AL2は、例えば、水平配向性を示す材料によって形成されている。
 対向基板SUB2は、遮光層BM、カラーフィルタCFR、CFG、CFBなどを備えている。遮光層BMは、図3に示した走査線GCL、信号線SGL、スイッチング素子Trなどの配線部と対向する領域に配置されている。
 図6において、対向基板SUB2は、3色のカラーフィルタCFR、CFG、CFBを備えていたが、青色、赤色、及び、緑色とは異なる他の色、例えば白色、透明、イエロー、マゼンタ、シアンなどのカラーフィルタを含む4色以上のカラーフィルタを備えていてもよい。また、これらのカラーフィルタCFR、CFG、CFBは、アレイ基板SUB1に備えられていてもよい。
 上述したアレイ基板SUB1及び対向基板SUB2は、第1配向膜AL1及び第2配向膜AL2が向かい合うように配置されている。液晶層LCは、第1配向膜AL1と第2配向膜AL2との間に封入されている。液晶層LCは、誘電率異方性が負のネガ型液晶材料、あるいは、誘電率異方性が正のポジ型液晶材料によって構成されている。
 アレイ基板SUB1がバックライト6(図1参照)と対向し、対向基板SUB2が表示面側に位置する。バックライト6としては、種々の形態のものが適用可能であるが、その詳細な構造については説明を省略する。
 例えば、液晶層LCがネガ型液晶材料である場合であって、液晶層LCに電圧が印加されていない状態では、液晶分子LMは、図4に示すDx-Dy平面内において、その長軸が第1方向Dxに沿う方向に初期配向している。一方、液晶層LCに電圧が印加された状態、つまり、画素電極PEと共通電極CEとの間に電界が形成されたオン時において、液晶分子LMは、電界の影響を受けてその配向状態が変化する。オン時において、入射した直線偏光は、その偏光状態が液晶層LCを通過する際に液晶分子LMの配向状態に応じて変化する。
 次に、温度検出用配線SMについて詳細に説明する。図4に示すように、温度検出用配線SMは、複数の導電性細線33と、第1連結配線34aと、第2連結配線34bとを有している。複数の導電性細線33の一端は、第1連結配線34aで電気的に接続されており、複数の導電性細線33の他端は、第1連結配線34aで電気的に接続されている。
 導電性細線33は、アルミニウム(Al)、銅(Cu)、銀(Ag)、モリブデン(Mo)、クロム(Cr)、チタン(Ti)及びタングステン(W)から選ばれた1種以上の金属層で形成される。又は、導電性細線33は、アルミニウム(Al)、銅(Cu)、銀(Ag)、モリブデン(Mo)、クロム(Cr)、チタン(Ti)及びタングステン(W)から選ばれた1種以上を含む合金の金属層で形成される。導電性細線33は、例えば、AlNd、AlCu、AlSi、AlSiCuなどのアルミニウム合金を用いることができる。また、導電性細線33は、上述した金属材料又は上述した材料の1種以上を含む合金の導電層が複数積層された積層体としてもよい。
 図6に示す導電性細線33(温度検出用配線SM)の幅Wsmは、長手方向に直交する長さであり、例えば、1μm以上10μm以下であることが好ましく、さらに1μm以上5μm以下の範囲にあることがより好ましい。幅Wsmが10μm以下であると、遮光部層の幅Wbmよりも小さくできるため、開口率を損なう可能性が低くなるからである。また、幅Wsmが1μm以上であると、導電性細線33(温度検出用配線SM)の形状が安定し、断線する可能性が低くなるからである。
 複数の第1連結配線34aには、それぞれ第1配線37aが接続される。また複数の第2連結配線34bには、それぞれ第2配線37bが接続される。つまり、本実施形態において、温度検出用配線SMの一端側に第1配線37aが接続され、他端側に第2配線37bが接続される。第1配線37aは、周辺領域FRに沿って設けられる。また、第2配線37bは、周辺領域FRに沿って設けられる。
 1つの温度検出用配線SMに接続された第1配線37aと第2配線37bとは、それぞれ別の端子部36に接続される。つまり、温度検出用配線SMの一端である第1配線37aと、温度検出用配線SMの他端である第2配線37bとは、それぞれ端子部36を介して、フレキシブル基板72に引き出される。温度検出用配線SMの第1配線37aと、温度検出用配線SMの第2配線37bとは、フレキシブル基板72を介して、図2に示す抵抗検出回路120に電気的に接続されている。抵抗検出回路120において、温度検出用配線SMの一端である第1配線37aと、温度検出用配線SMの他端である第2配線37bとの間で、温度変化に応じて変化する抵抗変化が検出される。
 第1配線37a及び第2配線37bは、導電性細線33に用いられる金属材料、或いは合金等と同じ材料を用いることができる。また、第1配線37a及び第2配線37bは、良好な導電性を有する材料であればよく、導電性細線33と異なる材料が用いられてもよい。
 複数の導電性細線33の一端は、第1連結配線34aで連結されて電気的に接続される。複数の導電性細線33の他端は、第2連結配線34bで連結されて電気的に接続される。第1配線37aは、第1連結配線34aに電気的に接続され、第2配線37bは、第2連結配線34bに電気的に接続される。この構成により、温度検出用配線SMは、所定の面積の範囲で、表示領域AAの部分的な発熱状態を検出することができる。温度検出用配線SMは、導電性細線33の数に応じて、抵抗値が調整される。
 平面視において、導電性細線33は、遮光層BMと重なる位置に配置されている。図5に示すように、導電性細線33は、遮光層BMに沿って、第1方向に延びる。なお、導電性細線33の平面形状は、直状の金属細線に限定されず、例えば、平面視で信号線SGLがジグザグ線状或いは、波線状である場合、導電性細線33の平面形状は、信号線SGLの形状に沿って、ジグザグ線状或いは、波線状の構成であってもよい。
 図4に示すように、隣り合う温度検出用配線SMの間のスリットSPの第2方向Dyの幅は、隣り合う導電性細線33の間隔と同じことが望ましい。これにより、導電性細線33の間隔が面内で揃うので、意図しない回折光が抑制される。
 図6では、導電性細線33に重なる遮光層BMから導電性細線33に重なる遮光層BMまでの間には、導電性細線33に重ならない遮光層BMが8つある。第1配線37a又は第2配線37bに電気的に接続しないダミーの導電性細線を備え、ダミー導電性細線が、導電性細線33に重ならない遮光層BMに重畳するようにしてもよい。
 図4に示すように、シールド導電層51は、表示装置2の製造時及び使用時における静電気抑制のために設けられる。シールド導電層51を設けない場合、外部から静電気などの電磁ノイズが侵入すると、導電性細線33がない領域があるため、電磁ノイズの抑制効果が十分でない可能性がある。
 図4に示すように、シールド導電層51は、第2基板20のほぼ全面に形成され、表示領域AAの全面及び周辺領域FRに亘って設けられている。すなわち、シールド導電層51は、導電性細線33と重畳する部分と、導電性細線33と重畳しない部分とを有している。
 また、シールド導電層51は、第2基板20の端部まで配置されることが好ましい。さらに、シールド導電層51は、周辺領域FRから、導電テープ等により、電源やグラウンドなどの固定電位に電気的に接続されている。
 シールド導電層51は、図4に示すように、第1連結配線34a、第2連結配線34b、第1配線37a及び第2配線37bと重畳する位置に設けられていることが好ましい。シールド導電層51の平面視での面積は、導電性細線33の合計の面積よりも大きい。
 以上説明したように、本実施形態の表示装置2は、表示領域AAを有する基板と、複数の温度検出用配線SMとを有している。温度検出用配線SMは、平面視で表示領域AAに重なる位置に配置される導電性細線33を有する。表示領域AA内には、遮光層BMが第1方向Dxに延びるように配置されている。温度検出用配線SMの導電性細線33は、遮光層と重なる位置に配置され、遮光層BMに沿って第1方向に延びる。この構成により、温度検出用配線SMは、副画素SPixの開口を遮ることがないので、表示領域の透過率を下げることなく、表示領域AAの部分的な発熱状態を検出することができる。
 本実施形態においては、第2基板20上に、導電性細線33が形成されている。そして、導電性細線33の上に、保護層38が形成されている。保護層38は、絶縁性を有するアクリル系樹脂等の透光性の樹脂である。保護層38の上には、シールド導電層51が形成されている。言い換えると、複数の温度検出用配線SMと、シールド導電層51とは、第2基板20の上方にあり、複数の温度検出用配線SMは、シールド導電層51の下方に積層される。シールド導電層51と、温度検出用配線SMとは、保護層38で絶縁されている。その結果、シールド導電層51及び温度検出用配線SMに、熱と光が同時に作用した場合、シールド導電層51に、光による温度変化に応じた抵抗変化があっても、温度検出用配線SMにおける熱による温度に応じた抵抗変化に影響がない。
 シールド導電層51は、例えば、ITO、IZO(Indium Zinc Oxide)、SnOから選ばれる1種以上の材料で形成されている。
 導電性細線33は、アルミニウム(Al)、銅(Cu)、銀(Ag)、モリブデン(Mo)、クロム(Cr)、チタン(Ti)及びタングステン(W)から選ばれた1種以上の元素の金属層、これらの元素を含む合金の金属層のうち少なくとも2つ以上が積層された積層体であってもよい。あるいは、導電性細線33は、アルミニウム(Al)、銅(Cu)、銀(Ag)、モリブデン(Mo)、クロム(Cr)、チタン(Ti)及びタングステン(W)から選ばれた1種以上の元素の金属層、これらの元素を含む合金の金属層、酸化スズ(SnO)及び二酸化ケイ素(SiO)を主成分とする酸化物層や、酸化ガリウム(Ga)、酸化インジウム(In)及び酸化スズ(SnO)を主成分とする酸化物層のうち少なくとも2つ以上が積層された積層体であってもよい。導電性細線33が積層体である場合は、下層よりも上層の光の反射が抑制された材料が選択される。これにより、上層の可視光反射率は、下層の可視光反射率よりも低く、上層は、下層と比べて黒色により近い。
 次に、調光装置5の構成例を詳細に説明する。調光装置5は、液晶シャッターのパネルである。図7は、実施形態1の調光装置を説明するための平面図である。図8は、図7に示す表示装置の模式的なVIII-VIII’断面を示す断面図である。
 図8に示すように、アレイ基板SUB11は、第1基板10Aと、第1基板10Aの一方の面に形成された駆動電極FEと、第2基板20Aの他方の面に形成された偏光板PL11とを有する。図7に示すように、また、複数の駆動電極FEは、第1方向Dxに延びており、平面視で調光領域LAAの第2方向Dyに並べられて配置される。駆動電極FEは、第1方向Dxの長さが、第2方向Dyの長さより長い、短冊状である。駆動電極FEは、例えば、ITO等の透光性を有する導電性材料が用いられる。
 対向基板SUB12は、第2基板20Aと、第2基板20Aの一方の面に形成された共通電極SEと、第2基板20の他方の面に設けられた偏光板PL12とを有する。共通電極CEは、例えば、ITO(Indium Tin Oxide)等の透光性を有する導電性材料が用いられる。なお、本実施形態では、画素電極PEが共通電極CEの上側に設けられる例について説明したが、共通電極CEが画素電極PEの上側に設けられていてもよい。
 また、第1基板10Aには、図7に示す周辺領域LFRに設けられたDDIC55と、フレキシブル基板73が設けられる。
 図8に示すように、第1基板10Aと第2基板20Aとは所定の間隔を設けて配置される。第1基板10Aと第2基板20Aとの間の空間は、シール部56により封止される。第1基板10A、第2基板20A、及びシール部56によって囲まれた空間に液晶層LCが設けられる。液晶層LCは、通過する光を電界の状態に応じて変調するものであり、例えば、TN(Twisted Nematic:ツイステッドネマティック)、VA(Virtical Alignment:垂直配向)、ECB(Electrically Controlled Birefringence:電界制御複屈折)等の縦電界モードの液晶が用いられる。なお、図5に示す液晶層LCとアレイ基板SUB1との間、及び液晶層LCと対向基板SUB2との間には、図示を省略した配向膜がそれぞれ配設される。本実施形態では、駆動電極FEと共通電極SEとの間に発生する縦電界により、液晶層LCが駆動される。
 偏光板PL11の第1偏光軸及び偏光板PL12の第2偏光軸は、平面視においてクロスニコルの位置関係にある。DDICから1つの駆動電極FEに電圧が印加されると、図7に示す印加された駆動電極FEに重なるシャッター領域ES1からES7のいずれかが遮光状態になる。DDICから駆動電極FEに電圧を印加しないと、シャッター領域ES1からES7が透光状態になる。
 光学系RM(図1参照)は、表示装置2の表示領域AAに表示される画像を拡大するので、図7に示す調光装置5の調光領域LAAの面積は、図4に示す表示装置2の表示領域AAの面積よりも大きい。
 例えば、図4において、表示領域AAに複数の温度検出用配線SMが第2方向Dyに、温度検出用配線SM1から温度検出用配線SMkまで並べられているとする。実施形態1では、kが7である。
 図9は、実施形態1における、温度検出用配線の温度検出領域と、調光装置のシャッター領域との対応関係を説明するための説明図である。温度検出用配線SM1の温度検出領域の画像の光は、シャッター領域ES1に到達する。同様に、温度検出用配線SM2から温度検出用配線SM7の温度検出領域の画像の光は、シャッター領域ES2からシャッター領域ES7にそれぞれ到達する。シャッター領域ES1からシャッター領域ES7にそれぞれは、温度検出用配線SM1から温度検出用配線SM7の温度検出領域のそれぞれよりも大きい。つまり、駆動電極FEは、温度検出用配線SM1から温度検出用配線SM7の温度検出領域のそれぞれよりも大きい。以下、位置を指定しないシャッター領域は、シャッター領域ESということがある。
(温度の測定)
 図10は、1つの温度検出用配線の温度に対する抵抗変化率を示す説明図である。図11は、複数の温度検出用配線の抵抗変化率の分布の一例を示す説明図である。図12は、太陽光を遮光した状態のヘッドアップディスプレイを模式的に説明する説明図である。図13は、ヘッドアップディスプレイの動作を説明するフローチャートである。
 図10に示すように、基準温度の抵抗値に対する温度検出用配線SMの抵抗変化率が、温度に応じて、例えば直線的に変化する。
 図1に示すように、HUD装置1には、太陽SUNの相対位置によっては、太陽光LLが筐体4の開口4Sに入射することがある。太陽光LLは、光学系RMに導かれ、かつ表示装置2に近づくにつれて集光し、表示領域AAの一部に当たることがある。集光された太陽の光は、表示装置を劣化させる可能性があるため、表示領域の部分的な発熱状態を検出することが望まれている。
 実施形態1では、図4に示すように、平面視で表示領域AAに重なる位置に、複数の温度検出用配線SMが並べられているので、温度上昇があった温度検出用配線SMがあれば、太陽光LLが当たっている表示領域AAの位置が把握できる。
 図2に示す抵抗検出回路120は、温度検出用配線SM1から温度検出用配線SM7の抵抗をAD変換し、抵抗検出信号を制御回路110へ出力する。
 図13に示すフローチャートを用いて、HUD装置1の動作を以下説明する。例えば、図11に示すように、温度検出用配線SM5の抵抗変化率が所定の閾値Thr以上となっており、抵抗変化率が所定の閾値Thr以上ある温度検出領域がある場合(ステップST1、Yes)、制御回路110は、温度検出用配線SM5の温度検出領域に対応するシャッター領域ES7の駆動電極FEを駆動する。制御回路110は、ステップST1で特定された温度検出領域に対応するシャッター領域ES5(図13参照)を遮光状態にする(ステップST2)。
 温度検出用配線SM5と重なる領域は、太陽光LLが当たっている表示領域AAと推定される。シャッター領域ES5が遮光状態になると、図12に示すように、温度検出用配線SM5と重なる領域は、太陽光LLが当たらなくなる。制御回路110(図12参照)は、閾値Thr以上の温度上昇に伴う抵抗変化率を検出した温度検出用配線SM5の温度検出領域に対応する調光領域の部分(シャッター領域ES5)の透過率を0%に下げたが、透過率は、低減されればよい。例えば、温度検出用配線SM5の温度検出領域に対応する調光領域の部分(シャッター領域ES5)の透過率を50%としても、表示装置2の表示領域に集光される太陽光LLの光量が減少する。その結果、表示装置2の劣化が抑制される。
 シャッター領域ES5は、遮光状態にあるが、シャッター領域ES1からシャッター領域ES4、シャッター領域ES6及びシャッター領域ES7は、透光状態である。このため、シャッター領域ES5で遮られた画像が見えなくなるが、大部分の画像の光は、投影板WSにより反射されてユーザHに到達することで、ユーザHの視界内で画像VIとして認識される。
 太陽光LLが当たらなくなった表示領域AAは温度が下がる。抵抗変化率が所定の閾値Thr以上ある温度検出領域がない場合(ステップST1、No)、制御回路110は、処理をステップST3へ進める。例えば、制御回路110は、シャッター領域ES5(図13参照)が遮光状態である場合、シャッター領域ES5に重なる駆動電極FEの電圧印加をグラウンド電位とし、シャッター領域ES5を透過状態にする(ステップST3)。
 以上説明したように、表示システムであるHUD装置1は、投影板WSに画像を投影する光学系RMと、画像を表示する表示装置2と、調光領域LAAを有する調光装置5とを備える。表示装置2は、表示領域AAを有するアレイ基板SUB1と、平面視で表示領域AAに重なる位置に配置される、複数の温度検出用配線AMを備える。この構造により、太陽光LLが集光している表示領域AAの部分的な発熱状態を検出できる。表示システムであるHUD装置1は、表示領域AAの部分的な発熱状態を検出し、光学系RMにより集光された外部からの光が当たる部分の光量を選択的に減少させる。
 調光装置5は、投影板WSと光学系RMとの間の光路にある調光領域LAAにあるので、調光領域LAAが表示装置2の表示領域AAよりも面積を大きくする必要がある。調光装置5は、光学系RMと表示装置2との間に設けられておらず、光学系RMにより太陽光LLの焦点が調光装置5の調光領域LAAに生じない。このため、投影板WSと光学系RMとの間の光路にある調光領域LAAを部分的に遮光状態にしても、調光装置5が劣化しにくい。
(実施形態2)
 図14は、実施形態2のヘッドアップディスプレイのシステムを模式的に説明する説明図である。なお、上述した実施形態1で説明したものと同じ構成要素には同一の符号を付して重複する説明は省略する。図14に示すように、実施形態2の駆動電極FEは、マトリクス状に配置されている。実施形態2の温度検出領域がマトリクス状に分割されており、各温度検出領域の抵抗変化率が検出できるためである。光学系RM(図1参照)は、表示装置2の表示領域AAに表示される画像を拡大するので、調光装置5の調光領域LAAの面積は、表示装置2の表示領域AAの面積よりも大きい。
 図15は、実施形態2の第1温度検出用配線の配置を説明するための平面図である。図16は、実施形態2の第2温度検出用配線の配置を説明するための平面図である。図17は、第1温度検出用配線と第2温度検出用配線とを重ね合わせた位置を説明するための平面図である。図18は、図15に示す表示装置の模式的なXVII-V’断面を示す断面図である。図19は、図16に示す表示装置の模式的なXIV-XIV’断面を示す断面図である。
 実施形態2の表示装置2は、第1方向Dxに導電性細線33が延びる第1温度検出用配線SMX(図15参照)と、第2方向Dyに導電性細線33が延びる第2温度検出用配線SMY(図16参照)とを有している。隣り合う第1温度検出用配線SMXのスリットSPAの第2方向Dyの幅は、隣り合う導電性細線33の間隔と同じことが望ましい。これにより、導電性細線33の間隔が面内で揃うので、意図しない回折光が抑制される。第1温度検出用配線SMXは、実施形態1の温度検出用配線SMと構成要素が同じであるので、説明を省略する。
 次に、第2温度検出用配線SMYについて詳細に説明する。図16に示すように、第2温度検出用配線SMYは、複数の導電性細線33と、第3連結配線34cと、第4連結配線34dとを有している。導電性細線33は、第2方向Dyに延びて、表示領域AAに重なっている。複数の導電性細線33の一端は、第3連結配線34cで電気的に接続されており、複数の導電性細線33の他端は、第4連結配線34dで電気的に接続されている。
 図16に示すように、隣り合う第2温度検出用配線SMYの間のスリットSPBの第1方向Dxの幅は、隣り合う導電性細線33の間隔と同じことが望ましい。これにより、導電性細線33の間隔が面内で揃うので、意図しない回折光が抑制される。
 複数の第3連結配線34cには、それぞれ第3配線37cが接続される。また複数の第4連結配線34dには、それぞれ第4配線37dが接続される。つまり、実施形態2において、第2温度検出用配線SMYの一端側に第3配線37cが接続され、他端側に第4配線37dが接続される。第3配線37cは、周辺領域FRに沿って設けられる。また、第4配線37dは、周辺領域FRに沿って設けられる。
 1つの第2温度検出用配線SMYに接続された第3配線37cと第4配線37dとは、それぞれ別の端子部36に接続される。つまり、第2温度検出用配線SMYの一端である第3配線37cと、第2温度検出用配線SMYの他端である第4配線37dとは、それぞれ端子部36を介して、フレキシブル基板72に引き出される。第2温度検出用配線SMYの第3配線37cと、第2温度検出用配線SMYの第4配線37dとは、フレキシブル基板72を介して、図2に示す抵抗検出回路120に電気的に接続されている。抵抗検出回路120において、第2温度検出用配線SMYの一端である第3配線37cと、第2温度検出用配線SMYの他端である第4配線37dとの間で、温度変化に応じて変化する抵抗変化が検出される。
 第3配線37c及び第4配線37dは、導電性細線33に用いられる金属材料、或いは合金等と同じ材料を用いることができる。また、第3配線37c及び第4配線37dは、良好な導電性を有する材料であればよく、導電性細線33と異なる材料が用いられてもよい。
 複数の導電性細線33の一端は、第3連結配線34cで連結されて電気的に接続される。複数の導電性細線33の他端は、第4連結配線34dで連結されて電気的に接続される。第3配線37cは、第3連結配線34cに電気的に接続され、第4配線37dは、第4連結配線34dに電気的に接続される。この構成により、第2温度検出用配線SMYは、所定の面積の範囲で、表示領域AAの部分的な発熱状態を検出することができる。第2温度検出用配線SMYは、導電性細線33の数に応じて、抵抗値が調整される。
 図17に示すように、第1温度検出用配線SMXと、第2温度検出用配線SMYとを平面視で重ね合わせると、1つの第1温度検出用配線SMXと、1つの第2温度検出用配線SMYとが立体交差する温度検出領域SXができる。温度検出領域SXは、表示領域AAの第1方向Dx及び第2方向Dyにおいて、マトリクス状に配置される。この構成により、実施形態2の表示装置では、表示領域AAに集光される太陽光LLの位置をより細かく把握できるようになる。
 図18及び図19に示すように、保護層38の上には、第2温度検出用配線SMYが形成されており、第2温度検出用配線SMYを保護層38Aが覆う。保護層38は、第1温度検出用配線SMXと、第2温度検出用配線SMYとを電気的に絶縁している。保護層38Aは、保護層38と同じ材料で形成され、シールド導電層51と、温度検出用配線SMとを電気的に絶縁している。
 図19に示すように、第2温度検出用配線SMYは、走査線GCL及び遮光層BMと重なる位置に配置されている。図19に示すように、第2温度検出用配線SMY(導電性細線33)は、遮光層BMに沿って、第2方向Dyに延びる。なお、図16に示す第2温度検出用配線SMYの導電性細線33の平面形状は、直状の金属細線に限定されず、例えば、平面視で走査線GCLがジグザグ線状或いは、波線状である場合、導電性細線33の平面形状は、走査線GCLの形状に沿って、ジグザグ線状或いは、波線状の構成であってもよい。
 図20は、実施形態2の調光装置を説明するための平面図である。調光装置5は、液晶シャッターのパネルである。図20に示すように、駆動電極FEは、調光領域LAAの第1方向Dx及び第2方向Dyにおいて、マトリクス状に配置される。これにより、調光領域LAAにおいて、シャッター領域EX11、EX12、EX13、EX14、EX21、EX22、EX23、EX24、EX31、EX32、EX33、EX34、EX41、EX42、EX43、EX44、EX51、EX52、EX53、EX54、EX61、EX62、EX63、EX64、EX71、EX72、EX73及びEX74のいずれかを透光状態から遮光状態にすることができる。以下、位置を指定しないシャッター領域は、シャッター領域EXということがある。
 図21は、実施形態2における、温度検出用配線の温度検出領域と、調光装置のシャッター領域との対応関係を説明するための説明図である。温度検出領域SX1の画像の光は、シャッター領域EX1に到達する。同様に、温度検出領域SX12、SX13、SX14、SX21、SX22、SX23、SX24、SX31、SX32、SX33、SX34、SX41、SX42、SX43、SX44、SX51、SX52、SX53、SX54、SX61、SX62、SX63、SX64、SX71、SX72、SX73及びSX74の画像の光は、それぞれに対応するシャッター領域EX12、EX13、EX14、EX21、EX22、EX23、EX24、EX31、EX32、EX33、EX34、EX41、EX42、EX43、EX44、EX51、EX52、EX53、EX54、EX61、EX62、EX63、EX64、EX71、EX72、EX73及びEX74のいずれかに到達する。以下、位置を指定しない温度検出領域は、温度検出領域SXということがある。
 光学系RM(図14参照)は、表示装置2の表示領域AAに表示される画像を拡大するので、図20に示す調光装置5の調光領域LAAの面積は、図17に示す表示装置2の表示領域AAの面積よりも大きい。また、1つのシャッター領域EXは、1つの温度検出領域SXよりも大きい。したがって、1つのシャッター領域EXを駆動する駆動電極FEは、1つの温度検出領域SXよりも大きい。
 図14に示す制御回路110は、第1温度検出用配線SMX及び第2温度検出用配線SMYの抵抗変化率がそれぞれ所定の閾値以上となって、温度検出領域が特定できる場合、特定した温度検出領域SXに対応するシャッター領域EXの駆動電極FEを駆動する。制御回路110は、特定された温度検出領域SXに対応するシャッター領域EXを遮光状態にする。HUD装置は、表示領域AAの部分的な発熱状態を検出し、光学系RMにより集光された外部からの光が当たる部分の光量を選択的に減少させる。遮光状態は、透過率を0%にしなくても、透過率が低減されればよい。例えば、シャッター領域EXの透過率を50%としても、表示装置2の表示領域AAに集光される太陽光LLの光量が減少する。その結果、表示装置2の劣化が抑制される。
 また、本実施形態において述べた態様によりもたらされる他の作用効果について本開示から明らかなもの、又は当業者において適宜想到し得るものについては、当然に本開示によりもたらされるものと解される。
 以上、好適な実施の形態を説明したが、本開示はこのような実施の形態に限定されるものではない。実施の形態で開示された内容はあくまで一例にすぎず、本開示の趣旨を逸脱しない範囲で種々の変更が可能である。本開示の趣旨を逸脱しない範囲で行われた適宜の変更についても、当然に本開示の技術的範囲に属する。
 例えば、表示装置2は、液晶パネルを例示したが、有機ELパネルであってもよい。発光素子LEDごとに異なる光を出射することで画像を表示するマイクロLED(micro LED)であってもよい。発光素子LEDは、LEDは、平面視で、3μm以上、100μm以下程度の大きさを有する。
1 HUD装置
2 表示装置
4 筐体
6 バックライト
9 拡散板
10 第1基板
20 第2基板
24 絶縁層
33 導電性細線
34a 第1連結配線
34b 第2連結配線
34c 第3連結配線
34d 第4連結配線
36 端子部
37a 第1配線
37b 第2配線
37c 第3配線
37d 第4配線
51 シールド導電層
BM 遮光層
ES、EX シャッター領域
SM 温度検出用配線
SMX 第1温度検出用配線
SMY 第2温度検出用配線
SX 温度検出領域
SUB1 アレイ基板
SUB2 対向基板
SUN 太陽
WS 投影板

Claims (14)

  1.  画像を投影する光学系と、前記画像を表示する表示装置と、調光領域を有する調光装置と、を備え、
     前記表示装置は、表示領域を有する基板と、
     平面視で前記表示領域に重なる位置に配置される、複数の温度検出用配線と、を備え、
     前記調光装置の前記調光領域は、前記表示領域よりも面積が大きい
     表示システム。
  2.  前記温度検出用配線の一端が第1配線に接続され、前記温度検出用配線の他端が第2配線に接続され、前記第1配線と前記第2配線との間で、温度変化に応じて変化する抵抗が検出される請求項1に記載の表示システム。
  3.  前記調光装置は、液晶シャッターのパネルである請求項1又は2に記載の表示システム。
  4.  前記調光装置は、前記調光領域に複数の駆動電極を有する請求項1から3のいずれか1項に記載の表示システム。
  5.  前記駆動電極は、第1方向の長さが、前記第1方向と交差する第2方向の長さよりも長い短冊状である、請求項4に記載の表示システム。
  6.  前記温度検出用配線は、前記第1方向に延びている、請求項5に記載の表示システム。
  7.  複数の前記駆動電極は、第1方向及び前記第1方向と交差する第2方向にマトリクス状に並べられている、請求項4に記載の表示システム。
  8.  前記温度検出用配線は、前記第1方向に延びる第1温度検出用配線と、前記第2方向に延びる第2温度検出用配線を含み、
     平面視で、前記第1温度検出用配線と、前記第2温度検出用配線とは、交差している、請求項7に記載の表示システム。
  9.  1つの駆動電極は、1つの温度検出用配線が検出する温度検出領域よりも大きい、請求項1から8のいずれか1項に記載の表示システム。
  10.  制御回路をさらに備え、
     前記制御回路は、閾値以上の温度上昇に伴う抵抗変化率を検出した前記温度検出用配線の温度検出領域に対応する前記調光領域の部分の透過率を下げる、請求項1から9のいずれか1項に記載の表示システム。
  11.  表示領域を有する基板と、
     平面視で前記表示領域に重なる位置に配置され、第1方向に延びる導電性細線を有する、複数の第1温度検出用配線と、
     平面視で前記表示領域に重なる位置に配置され、第2方向に延びる導電性細線を有する、複数の第2温度検出用配線と、を備える、
     表示装置。
  12.  平面視で、前記第1温度検出用配線と前記第2温度検出用配線とが交差した温度検出領域がマトリクス状に並ぶ、請求項11に記載の表示装置。
  13.  前記第1温度検出用配線と前記第2温度検出用配線とは、絶縁層を介して積層されている、請求項11又は12に記載の表示装置。
  14.  前記第1温度検出用配線の一端が第1配線に接続され、前記第1温度検出用配線の他端が第2配線に接続され、前記第1配線と前記第2配線との間で、温度変化に応じて変化する抵抗が検出され、
     前記第2温度検出用配線の一端が第3配線に接続され、前記第2温度検出用配線の他端が第4配線に接続され、前記第3配線と前記第4配線との間で、温度変化に応じて変化する抵抗が検出される、請求項11から13のいずれか1項に記載の表示装置。
PCT/JP2020/026530 2019-08-02 2020-07-07 表示システム及び表示装置 WO2021024677A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019142933A JP2021026097A (ja) 2019-08-02 2019-08-02 表示システム及び表示装置
JP2019-142933 2019-08-02

Publications (1)

Publication Number Publication Date
WO2021024677A1 true WO2021024677A1 (ja) 2021-02-11

Family

ID=74502915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026530 WO2021024677A1 (ja) 2019-08-02 2020-07-07 表示システム及び表示装置

Country Status (2)

Country Link
JP (1) JP2021026097A (ja)
WO (1) WO2021024677A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115047622A (zh) * 2021-03-09 2022-09-13 矢崎总业株式会社 车辆用显示装置
WO2023120130A1 (ja) * 2021-12-24 2023-06-29 株式会社小糸製作所 画像照射装置
CN116704883A (zh) * 2022-11-18 2023-09-05 荣耀终端有限公司 一种电子设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022190664A1 (ja) * 2021-03-11 2022-09-15 株式会社ジャパンディスプレイ 表示システム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015018331A (ja) * 2013-07-09 2015-01-29 株式会社ジャパンディスプレイ 表示装置
JP2015152746A (ja) * 2014-02-14 2015-08-24 日本精機株式会社 表示装置
JP2016075874A (ja) * 2014-10-09 2016-05-12 株式会社ジャパンディスプレイ 液晶表示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015018331A (ja) * 2013-07-09 2015-01-29 株式会社ジャパンディスプレイ 表示装置
JP2015152746A (ja) * 2014-02-14 2015-08-24 日本精機株式会社 表示装置
JP2016075874A (ja) * 2014-10-09 2016-05-12 株式会社ジャパンディスプレイ 液晶表示装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115047622A (zh) * 2021-03-09 2022-09-13 矢崎总业株式会社 车辆用显示装置
CN115047622B (zh) * 2021-03-09 2024-06-07 矢崎总业株式会社 车辆用显示装置
WO2023120130A1 (ja) * 2021-12-24 2023-06-29 株式会社小糸製作所 画像照射装置
CN116704883A (zh) * 2022-11-18 2023-09-05 荣耀终端有限公司 一种电子设备
CN116704883B (zh) * 2022-11-18 2024-05-28 荣耀终端有限公司 一种电子设备

Also Published As

Publication number Publication date
JP2021026097A (ja) 2021-02-22

Similar Documents

Publication Publication Date Title
WO2021024677A1 (ja) 表示システム及び表示装置
US8004644B2 (en) Liquid crystal display device
US9559124B2 (en) Display panel
KR102440281B1 (ko) 액정 표시 장치
JP2003207795A (ja) 液晶表示装置
JP7348808B2 (ja) 液晶表示装置
US11460727B2 (en) Display device
US10241370B2 (en) Semiconductor device and projection-type display unit
JP5247477B2 (ja) 液晶表示装置
KR20150086123A (ko) 액정 표시 장치
KR20150085440A (ko) 액정 표시 장치
JP5178327B2 (ja) 液晶表示パネル、液晶表示パネルを備えた電子機器、及び液晶表示パネルの製造方法
JP4363473B2 (ja) 半透過型液晶表示パネル及び電子機器
JP2021039190A (ja) 表示装置
WO2021044795A1 (ja) 表示装置
WO2021229977A1 (ja) 表示装置
KR20180040745A (ko) 액정 표시 장치
CN112698533B (zh) 液晶显示装置
KR20150070647A (ko) 액정 표시 장치
JP7457500B2 (ja) 液晶表示装置
KR20080087507A (ko) 액정표시장치와 이의 제조방법
KR20090072296A (ko) 시야각 제어 액정표시장치용 어레이 기판
JP2024042589A (ja) 液晶表示装置
JP2020134658A (ja) 表示装置
KR20080022361A (ko) 액정표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20849252

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20849252

Country of ref document: EP

Kind code of ref document: A1