WO2021024669A1 - X線発生装置、電源装置、及びx線発生装置の製造方法 - Google Patents

X線発生装置、電源装置、及びx線発生装置の製造方法 Download PDF

Info

Publication number
WO2021024669A1
WO2021024669A1 PCT/JP2020/026390 JP2020026390W WO2021024669A1 WO 2021024669 A1 WO2021024669 A1 WO 2021024669A1 JP 2020026390 W JP2020026390 W JP 2020026390W WO 2021024669 A1 WO2021024669 A1 WO 2021024669A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating resin
resin material
relative permittivity
support member
booster
Prior art date
Application number
PCT/JP2020/026390
Other languages
English (en)
French (fr)
Inventor
洋平 成田
直伸 鈴木
石井 淳
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Publication of WO2021024669A1 publication Critical patent/WO2021024669A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/02Constructional details
    • H05G1/04Mounting the X-ray tube within a closed housing
    • H05G1/06X-ray tube and at least part of the power supply apparatus being mounted within the same housing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/10Power supply arrangements for feeding the X-ray tube

Definitions

  • the present disclosure relates to an X-ray generator, a power supply device, and a method for manufacturing the X-ray generator.
  • Patent Document 1 describes an industrial X-ray generator including a cathode that emits electrons, an anode that generates X-rays when electrons collide with each other, and a high-voltage power supply unit that applies a high voltage to the cathode. ing.
  • An object of the present disclosure is to provide an X-ray generator, a power supply device, and a method for manufacturing an X-ray generator capable of suppressing the occurrence of dielectric breakdown starting from the secondary coil of an isolation transformer.
  • the X-ray generator on one aspect of the present disclosure includes an electron gun that emits an electron beam, a target that emits X-rays when the electron beam is incident, and a power supply unit that applies a voltage to the electron gun.
  • the power supply unit is electrically connected to the first control unit, the booster unit that boosts the voltage supplied from the first control unit, the primary side coil electrically connected to the first control unit, and the booster unit.
  • An insulating transformer that includes a secondary coil and a support member that supports the secondary coil, a booster that is electrically connected to the electronic gun, and a power supply that applies a voltage boosted by the insulating transformer to the electronic gun.
  • the support member is made of a first insulating resin material
  • the sealing member is made of a second insulating resin material, which is a ratio of the first insulating resin material.
  • the absolute value of the difference between the dielectric constant and the specific dielectric constant of the second insulating resin material is 25% or less of the specific dielectric constant of the second insulating resin material.
  • the secondary coil of the isolation transformer is supported by the support member made of the first insulating resin material, and the booster part and the isolation transformer are supported by the sealing member made of the second insulating resin material. Is sealed.
  • the absolute value of the difference between the relative permittivity of the first insulating resin material and the relative permittivity of the second insulating resin material is the relative permittivity of the second insulating resin material. It has a relationship of 25% or less of. As a result, it is possible to prevent dielectric breakdown from occurring from the secondary side coil via the support member. Therefore, according to this X-ray generator, it is possible to suppress the occurrence of dielectric breakdown starting from the secondary coil of the isolation transformer.
  • the insulating transformer further includes a bobbin around which a secondary coil is wound, and the bobbin is made of a third insulating resin material and has a relative permittivity of the first insulating resin material.
  • the absolute value of the difference from the relative permittivity of the second insulating resin material may be smaller than the absolute value of the difference between the relative permittivity of the second insulating resin material and the relative permittivity of the third insulating resin material.
  • the absolute value of the difference between the relative permittivity of the first insulating resin material and the relative permittivity of the second insulating resin material becomes the relative permittivity of the second insulating resin material and the relative permittivity of the third insulating resin material.
  • the difference is greater than or equal to the absolute value of, it is possible to more reliably suppress the occurrence of dielectric breakdown from the secondary coil via the support member.
  • the power supply unit further includes a booster unit and a second control unit that supplies the voltage boosted by the insulating transformer to the power supply unit, and the second control unit is a fourth insulation unit.
  • a substrate made of a resin material is included, and the sealing member seals a booster, an insulating transformer, and a second control unit, and has a relative permittivity of the first insulating resin material and a relative permittivity of the second insulating resin material.
  • the absolute value of the difference between the two may be smaller than the absolute value of the difference between the relative permittivity of the second insulating resin material and the relative permittivity of the fourth insulating resin material.
  • the absolute value of the difference between the relative permittivity of the first insulating resin material and the relative permittivity of the second insulating resin material becomes the relative permittivity of the second insulating resin material and the relative dielectric constant of the fourth insulating resin material.
  • the difference is greater than or equal to the absolute value of, it is possible to more reliably suppress the occurrence of dielectric breakdown from the secondary coil via the support member.
  • the first insulating resin material and the second insulating resin material may be the same material. As a result, it is possible to more reliably suppress the occurrence of dielectric breakdown from the secondary side coil via the support member.
  • the support member may be a columnar member that supports the secondary coil.
  • the support member may support the secondary coil by sealing the primary coil and the secondary coil.
  • the secondary coil since the secondary coil is covered with the first insulating resin material, it is possible to prevent dielectric breakdown from occurring from the secondary coil via the support member.
  • the power supply device on one aspect of the present disclosure is used for an electron gun that emits an electron beam and an X-ray generator including a target that emits X-rays when the electron beam is incident, and is a power source that applies a voltage to the electron gun. It is a device, and is electrically connected to a first control unit, a booster unit that boosts a voltage supplied from the first control unit, a primary side coil electrically connected to the first control unit, and a booster unit.
  • An insulating transformer that includes a secondary side coil and a support member that supports the secondary side coil, and a power supply unit that is electrically connected to the electronic gun and applies a booster and a voltage boosted by the insulating transformer to the electronic gun.
  • the support member is made of a first insulating resin material
  • the sealing member is made of a second insulating resin material
  • the ratio of the first insulating resin material is provided with a boosting unit and a sealing member for sealing the insulating transformer.
  • the absolute value of the difference between the dielectric constant and the specific dielectric constant of the second insulating resin material is 25% or less of the specific dielectric constant of the second insulating resin material.
  • this power supply device it is possible to suppress the occurrence of dielectric breakdown starting from the secondary coil of the isolation transformer for the same reason as the above-mentioned X-ray generator.
  • the method for manufacturing the X-ray generator on one side of the present disclosure is the above-mentioned method for manufacturing the X-ray generator, which includes a first step of forming an isolation transformer by supporting a secondary coil with a support member. A second step of sealing the booster and the isolation transformer with the sealing member is provided.
  • this X-ray generator According to the manufacturing method of this X-ray generator, it is possible to obtain the above-mentioned X-ray generator in which the occurrence of dielectric breakdown is suppressed starting from the secondary coil of the isolation transformer.
  • a secondary side coil is attached to a support member which is a columnar member made of a first insulating resin material, so that the secondary side is formed by the support member.
  • the coil is supported, and in the second step, the booster and the insulating transformer are arranged in the molding die, the second insulating resin agent made of the second insulating resin material is poured into the molding die, and the second insulating resin agent is cured.
  • the booster and the insulating transformer may be sealed by the sealing member.
  • the primary side coil and the secondary side coil are arranged in the first molding mold, and the first insulating resin made of the first insulating resin material is used.
  • the secondary side coil is supported by the support member, and in the second step, the booster and the insulating transformer are placed in the second molding die.
  • the booster portion and the insulating transformer may be sealed by arranging the second insulating resin material, pouring the second insulating resin agent made of the second insulating resin material into the second molding mold, and curing the second insulating resin agent.
  • the secondary coil can be covered with the first insulating resin material constituting the support member.
  • an X-ray generator a power supply device, and a method for manufacturing an X-ray generator that can suppress the occurrence of dielectric breakdown starting from the secondary coil of an isolation transformer.
  • FIG. 1 is a cross-sectional view of the X-ray generator of the first embodiment.
  • FIG. 2 is a perspective view of a part of the power supply unit shown in FIG.
  • FIG. 3 is a block diagram of the power supply unit shown in FIG.
  • FIG. 4 is a cross-sectional view showing one step of the manufacturing method of the power supply unit shown in FIG.
  • FIG. 5 is a cross-sectional view showing one step of the method for manufacturing the power supply unit shown in FIG.
  • FIG. 6 is a perspective view of the power supply unit of the second embodiment.
  • FIG. 7 is a cross-sectional view showing one step of the method for manufacturing the power supply unit shown in FIG.
  • FIG. 8 is a cross-sectional view showing one step of the method for manufacturing the power supply unit shown in FIG.
  • FIG. 9 is a cross-sectional view showing one step of the method for manufacturing the power supply unit shown in FIG.
  • the X-ray generator 1 includes an electron gun 2, a target unit 3, a housing 4, an exhaust pipe 6, and a power supply unit 7.
  • the electron gun 2 emits an electron beam.
  • a target 31 that emits X-rays when an electron beam is incident is provided.
  • the target 31 is made of tungsten and has a disk shape.
  • the housing 4 defines a passage 40 through which the electron beam and X-rays pass, and keeps the passage 40 in a vacuumed state.
  • the housing 4 has a window portion 5.
  • the window portion 5 allows the X-rays emitted from the target 31 to pass through the passage 40 to the outside.
  • the exhaust pipe 6 is provided in the housing 4.
  • a vacuum pump (not shown) is connected to the exhaust pipe 6.
  • the power supply unit 7 applies a voltage to the electron gun 2 fixed to the tip (one end side) of the power supply unit 74, which will be described later.
  • the housing 4 has a lower tubular portion 41, an upper tubular portion 42, and a head portion 43 in addition to the window portion 5.
  • the lower tubular portion 41 and the upper tubular portion 42 are each made of stainless steel and have a cylindrical shape.
  • a power supply unit 7 is attached to the lower end of the lower tubular portion 41.
  • the lower tubular portion 41 accommodates the electron gun 2 erected on the power supply portion 7.
  • An exhaust pipe 6 is provided on the side wall of the lower tubular portion 41.
  • the upper tubular portion 42 is erected on the upper end portion of the lower tubular portion 41 via the hinge portion 4a.
  • a plurality of coil portions 49 are provided inside the upper tubular portion 42.
  • the plurality of coil portions 49 function as electromagnetic deflection lenses, and focus the electron beam traveling in the passage 40 from the electron gun 2 toward the target 31 on the target 31.
  • the head portion 43 is provided on the upper end portion of the upper tubular portion 42.
  • the head portion 43 is formed with a target insertion portion 48 that communicates the outside with the passage 40.
  • the target unit 3 is inserted into the target insertion unit 48.
  • the target portion 3 is removable from the head portion 43.
  • the target 31 is exposed to the passage 40 in a state of being inclined so as to face each of the electron gun 2 and the window portion 5.
  • the portion of the passage 40 where the electron gun 2 and the target 31 face each other is the electron beam passage 40a.
  • the portion where the target 31 and the window portion 5 face each other is the X-ray passage 40b.
  • the electron beam passage 40a is formed in the lower tubular portion 41, the upper tubular portion 42, and the head portion 43.
  • the X-ray passage 40b is formed in the head portion 43.
  • the electron beam passage 40a and the X-ray passage 40b are connected at the head portion 43.
  • a plurality of O-rings 32 are provided on the side surface of the target portion 3. As a result, the space between the target portion 3 and the target insertion portion 48 is airtightly sealed.
  • a voltage is applied to the electron gun 2 by the power supply unit 7 in a state where the passage 40 is evacuated through the exhaust pipe 6 by the vacuum pump, and electrons are applied from the electron gun 2 to the electron beam passage 40a.
  • the electron beam is focused on the target 31 by the plurality of coil portions 49.
  • the electron beam is incident on the target 31 and X-rays are emitted from the target 31 into the X-ray passage 40b, the X-rays pass through the window portion 5 and are emitted to the outside.
  • the power supply unit 7 is sealed with the first control unit 71, the booster unit 72, a plurality of isolation transformers 8A and 8B, the second control unit 73, and the power supply unit 74. It has a stop member 75, a high-voltage transformer 76, and a case 77.
  • the first control unit 71 is electrically connected to an external PC (Personal Computer) or the like.
  • the first control unit 71 controls the output voltage and the like of the power supply unit 7 according to the instruction transmitted from the PC or the like.
  • the booster unit 72 is a cockcroft that boosts the voltage supplied from the first control unit 71.
  • the booster portion 72 is electrically connected to the high voltage transformer 76.
  • the high-voltage transformer 76 is electrically connected to the first control unit 71, and boosts the AC voltage supplied from the first control unit 71.
  • the boosting unit 72 further boosts the voltage boosted by the high-voltage transformer 76. In the booster unit 72, the voltage that was alternating current at the time of boosting is converted to direct current.
  • the isolation transformer 8A applies a voltage to the Wenert electrode 21 of the electron gun 2.
  • the isolation transformer 8B applies a voltage to the thermal cathode 22 of the electron gun 2.
  • the configuration of the isolation transformer 8B is the same as the configuration of the isolation transformer 8A. Therefore, the configuration of the isolation transformer 8A will be described below, and the description of the configuration of the isolation transformer 8B will be omitted.
  • the isolation transformer 8A includes a primary coil 81, a secondary coil 82, an iron core 83, a bobbin 84, and a support member 85.
  • the primary coil 81 is electrically connected to the first control unit 71.
  • the secondary coil 82 is electrically connected to the booster 72.
  • the iron core 83 is made of ferrite and has a square frame shape.
  • At least the first side portion 83a of the iron core 83 is made of an insulating material.
  • the first side portion 83a is fixed to the support plate 86 having a ground potential.
  • a primary coil 81 is wound around the second side 83b of the iron core 83 opposite to the first side 83a.
  • the primary coil 81 and the iron core 83 are covered with a cover (not shown) made of an insulating material.
  • the bobbin 84 is made of a third insulating resin material and has, for example, an annular shape.
  • the secondary coil 82 is wound around the outer peripheral surface of the bobbin 84 along the circumferential direction of the bobbin 84.
  • the support member 85 is a columnar member that supports the secondary coil 82, and is made of a first insulating resin material.
  • the support member 85 has a shape in which the withstand voltage capability is improved by increasing the creepage distance at the time of discharge by extending, for example, a plate-shaped member made of the first insulating resin material in a zigzag shape. One end side of the support member 85 is fixed to the support plate 86.
  • a bobbin 84 around which a secondary coil 82 is wound is attached to the other end side of the support member 85 by a bolt made of an insulating material (for example, the same material as the bobbin 84, the support member 85, etc.).
  • the support member 85 supports the secondary coil 82 by supporting the bobbin 84 so that the second side portion 83b of the iron core 83 passes through the inner center of the bobbin 84.
  • the second control unit 73 converts the voltage boosted by the isolation transformers 8A and 8B into direct current, and supplies the converted voltage and the voltage boosted by the booster unit 72 to the power feeding unit 74.
  • the second control unit 73 includes the substrate 73a.
  • the substrate 73a is a circuit board on which electronic components are mounted.
  • the substrate 73a is made of a fourth insulating resin material.
  • the electron gun 2 is fixed at the tip end portion (one end side), and is fixed to the sealing member at the base end portion (other end side).
  • the power feeding unit 74 has a tubular shape and is made of an insulating material.
  • the power feeding unit 74 encloses a power feeding wiring (not shown) in which the voltage boosted by the boosting unit 72 and the isolation transformers 8A and 8B is applied to the electron gun 2 via the second control unit 73 (not shown).
  • the insulating material constituting the power feeding unit 74 may be the same as the material of the sealing member 75, or may be different from the material of the sealing member 75.
  • the feeding portion 74 and the sealing member 75 may be integrally molded, or the feeding portion 74 and the sealing member 75 may be integrally molded. Each may be formed into a separate body and then joined.
  • the high-voltage transformer 76 boosts an AC voltage signal of up to about 100 V supplied from the first control unit 71 from ⁇ several kV to ⁇ 10s kV.
  • the boosting unit 72 further boosts the voltage signal boosted by the high-voltage transformer 76 to ⁇ several hundred kV.
  • the voltage signal that was alternating current at the time of boosting is converted to direct current.
  • the isolation transformers 8A and 8B apply, for example, a maximum of -1500V to the Wenert electrode 21 on the reference potential based on the voltage (-several hundred kV) boosted by the boosting unit 72 via the second control unit 73 and the feeding unit 74. Apply. Further, the isolation transformers 8A and 8B are placed on the thermal cathode 22 via the second control unit 73 and the feeding unit 74, for example, on the reference potential based on the voltage (-several hundred kV) boosted by the booster unit 72. V is applied. In FIG. 3, the portion of the power supply unit 7 that has a high voltage is indicated by a thick line.
  • the sealing member 75 seals the booster unit 72, the isolation transformers 8A and 8B, and the second control unit 73. Further, in the support plate 86, at least the surface on the side facing the secondary coil 82 is sealed by the sealing member 75.
  • the sealing member 75 is made of a second insulating resin material and has, for example, a substantially rectangular parallelepiped shape.
  • the sealing member 75 has a function of maintaining electrical insulation of the boosting unit 72, the isolation transformers 8A and 8B, and the second control unit 73, which have a high voltage.
  • the first control unit 71 and the high-voltage transformer 76 are provided outside the sealing member 75 in the power supply unit 7. Further, the sealing member 75 is housed in the case 77 as shown in FIG. As an example, the case 77 is an outer housing of the power supply unit 7 made of a metal material, and has a rectangular box shape.
  • the first insulating resin material constituting the support member 85 (hereinafter, simply referred to as “material of the support member 85”) and the second insulating resin material constituting the sealing member 75 (hereinafter, simply “the material of the sealing member 75”).
  • Material a third insulating resin material constituting the bobbin 84 (hereinafter, simply referred to as “material of bobbin 84”), and a fourth insulating resin material constituting the substrate 73a of the second control unit 73 (hereinafter, simply referred to as “material”).
  • the relationship of "material of the substrate 73a”) will be described.
  • the relative permittivity in this embodiment is a value obtained by dividing the permittivity of the target substance by the permittivity of vacuum.
  • the absolute value of the difference between the relative permittivity of the material of the support member 85 and the relative permittivity of the material of the sealing member 75 is 25% or less of the relative permittivity of the material of the sealing member 75.
  • the relative permittivity of the material of the support member 85 is included in the range of 75% or more and 125% or less of the relative permittivity of the material of the sealing member 75.
  • the absolute value of the difference between the relative permittivity of the material of the support member 85 and the relative permittivity of the material of the sealing member 75 may be 0 or more and 1.0 or less.
  • the absolute value of the difference between the relative permittivity of the material of the support member 85 and the relative permittivity of the material of the sealing member 75 is the relative permittivity of the material of the sealing member 75 and the relative permittivity of the material of the bobbin 84. Is less than the absolute value of the difference. Further, the absolute value of the difference between the relative permittivity of the material of the support member 85 and the relative permittivity of the material of the sealing member 75 is the relative permittivity of the material of the sealing member 75 and the relative permittivity of the material of the substrate 73a. Is less than the absolute value of the difference.
  • the absolute value of the difference between the volume resistivity of the material of the support member 85 and the volume resistivity of the material of the sealing member 75 is 1 ⁇ 10 15 [ ⁇ ⁇ m] or less.
  • the absolute value of the difference between the volume resistivity of the material of the support member 85 and the volume resistivity of the material of the sealing member 75 is the volume resistivity of the material of the sealing member 75 and the volume resistivity of the material of the bobbin 84. Is less than the absolute value of the difference.
  • the absolute value of the difference between the volume resistivity of the material of the support member 85 and the volume resistivity of the material of the sealing member 75 is the volume resistivity of the material of the sealing member 75 and the volume resistivity of the material of the substrate 73a. Is less than the absolute value of the difference.
  • the material of the support member 85 and the material of the sealing member 75 are the same materials, for example, epoxy resin. That is, in the present embodiment, the relative permittivity of the material of the support member 85 and the relative permittivity of the material of the sealing member 75 are equal to each other. Further, the volume resistivity of the material of the support member 85 and the volume resistivity of the material of the sealing member 75 are equal to each other.
  • the material of the bobbin 84 is, for example, PEEK.
  • the material of the substrate 73a is, for example, a glass epoxy resin.
  • the isolation transformers 8A and 8B are configured by supporting the secondary coil 82 by the support member 85 (first step). Specifically, first, a primary coil 81, a secondary coil 82, an iron core 83, and a bobbin 84 are prepared. An iron core 83 is passed through the hole of the bobbin 84, and the first side portion 83a of the iron core 83 is fixed to the support plate 86. Next, one end side of the support member 85 is fixed to the support plate 86, and the bobbin 84 around which the secondary coil 82 is wound is fixed to the other end side of the support member 85. As a result, the secondary coil 82 is supported by the support member 85, and the isolation transformers 8A and 8B are configured.
  • the booster unit 72, the isolation transformers 8A and 8B, and the second control unit 73 are sealed by the sealing member 75 (second step). Specifically, first, the booster unit 72, the isolation transformers 8A and 8B, and the second control unit 73 are arranged in the molding die M. Next, the second insulating resin agent r2 made of the second insulating resin material is poured into the mold M to cure the second insulating resin agent r2. As a result, the booster unit 72, the isolation transformers 8A and 8B, and the second control unit 73 are sealed by the sealing member 75, and the power supply unit 7 shown in FIG. 2 is obtained. [Action and effect]
  • the secondary side coils 82 of the isolation transformers 8A and 8B are supported by the support member 85, and the booster unit 72 and the isolation transformers 8A and 8B are sealed by the sealing member 75.
  • the absolute value of the difference between the relative permittivity of the material of the support member 85 and the relative permittivity of the material of the sealing member 75 is 25% or less of the relative permittivity of the material of the sealing member 75.
  • the support member 85 when the absolute value of the difference between the relative permittivity of the material of the support member 85 and the relative permittivity of the material of the sealing member 75 is 0 or more and 1.0 or less, the support member 85 is removed from the secondary coil 82. It is possible to further suppress the occurrence of dielectric breakdown.
  • the absolute value of the difference between the volume resistivity of the material of the support member 85 and the volume resistivity of the material of the sealing member 75 is 1 ⁇ . It is particularly effective when it is 10 15 [ ⁇ ⁇ m] or less.
  • the absolute value of the difference between the relative permittivity of the material of the support member 85 and the relative permittivity of the material of the sealing member 75 is It is about 30% of the relative permittivity of the material of the sealing member 75.
  • dielectric breakdown may occur from the secondary coil 82 via the support member 85.
  • the X-ray generator 1 it is possible to suppress the occurrence of dielectric breakdown starting from the secondary coil 82 of the isolation transformers 8A and 8B. It should be noted that the suppression of the occurrence of dielectric breakdown starting from the secondary coil 82 is particularly effective when the voltage used in the power supply unit 7 is 100 kV or more in absolute value, and particularly 200 kV or more in absolute value. ..
  • the absolute value of the difference between the relative permittivity of the material of the support member 85 and the relative permittivity of the material of the sealing member 75 is the relative permittivity of the material of the sealing member 75 and the bobbin 84. It is smaller than the absolute value of the difference from the relative permittivity of the material of.
  • the absolute value of the difference between the relative permittivity of the material of the support member 85 and the relative permittivity of the material of the sealing member 75 is the relative permittivity of the material of the sealing member 75 and the relative permittivity of the material of the bobbin 84.
  • the absolute value of the difference between the volume resistivity of the material of the support member 85 and the volume resistivity of the material of the sealing member 75 is sealed. It is particularly effective when it is smaller than the absolute value of the difference between the volume resistivity of the material of the member 75 and the volume resistivity of the material of the bobbin 84.
  • the relative permittivity of the material of the support member 85 and the ratio of the material of the sealing member 75 is larger than the absolute value of the difference between the relative permittivity of the material of the sealing member 75 and the relative permittivity of the material of the bobbin 84. In that case, dielectric breakdown may occur from the secondary coil 82 via the support member 85. According to the X-ray generator 1, it is possible to more reliably suppress the occurrence of such dielectric breakdown.
  • the absolute value of the difference between the relative permittivity of the material of the support member 85 and the relative permittivity of the material of the sealing member 75 is the relative permittivity of the material of the sealing member 75 and the substrate 73a. It is smaller than the absolute value of the difference from the relative permittivity of the material of.
  • the absolute value of the difference between the relative permittivity of the material of the support member 85 and the relative permittivity of the material of the sealing member 75 is the relative permittivity of the material of the sealing member 75 and the relative permittivity of the material of the substrate 73a.
  • the absolute value of the difference between the volume resistivity of the material of the support member 85 and the volume resistivity of the material of the sealing member 75 is sealed. It is particularly effective when it is smaller than the absolute value of the difference between the volume resistivity of the material of the member 75 and the volume resistivity of the material of the substrate 73a.
  • the absolute value of the difference between the relative permittivity of the material of the support member 85 and the relative permittivity of the material of the sealing member 75 is equal to the absolute value of the difference between the relative permittivity of the material of the sealing member 75 and the relative permittivity of the material of the substrate 73a.
  • dielectric breakdown may occur from the secondary coil 82 via the support member 85. According to the X-ray generator 1, it is possible to more reliably suppress the occurrence of such dielectric breakdown.
  • the material of the support member 85 and the material of the sealing member 75 are the same material. As a result, it is possible to more reliably suppress the occurrence of dielectric breakdown from the secondary coil 82 via the support member 85.
  • the support member 85 is a columnar member that supports the secondary coil 82.
  • a columnar member As the support member 85, it is possible to facilitate the manufacture of the power supply unit 7. Further, even though the support member 85 is a columnar member erected inside the sealing member 75, it is possible to prevent dielectric breakdown from occurring from the secondary coil 82 via the support member 85.
  • the manufacturing method of the X-ray generator 1 includes the first step of forming the isolation transformers 8A and 8B by supporting the secondary coil 82 by the support member 85, and the booster portion 72 and the insulation by the sealing member 75. A second step of sealing the transformers 8A and 8B is provided. According to the manufacturing method of the X-ray generator 1, it is possible to suppress the occurrence of dielectric breakdown starting from the secondary coil 82 of the isolation transformers 8A and 8B for the same reason as the X-ray generator 1.
  • the secondary side coil 82 is attached to the support member 85, which is a columnar member made of the first insulating resin material, and the secondary side coil is formed by the support member 85.
  • Support 82 In the second step, the step-up section 72 and the isolation transformers 8A and 8B are arranged in the molding die M, the second insulating resin agent made of the second insulating resin material is poured into the molding die M, and the second insulating resin agent r2 The booster portion 72 and the isolation transformers 8A and 8B are sealed by the sealing member 75.
  • the sealing member 75 can be used to properly support the secondary coil 82, so that the first step can be facilitated.
  • the X-ray generator 1 of the second embodiment is different in the configuration of the power supply unit 7 (specifically, the support member 87 of the isolation transformer 8A seals the primary coil 81 and the secondary coil 82. It is different from the X-ray generator 1 of the first embodiment in that it supports the secondary coil 82).
  • the differences from the first embodiment will be mainly described.
  • the isolation transformer 8A shown in FIG. 6 includes a primary coil 81, a secondary coil 82, an iron core 83, a bobbin 84, and a support member 87.
  • the support member 87 is secondary by sealing the primary coil 81 and the secondary coil 82 so that the secondary coil 82 is fixed to the primary coil 81 at a predetermined distance. It supports the side coil 82. More specifically, in the support member 87, the second side portion 83b of the iron core 83 inserts the inner center of the bobbin 84, and the secondary coil 82 is separated from the primary coil 81 by a predetermined distance.
  • the primary coil 81, the secondary coil 82, the iron core 83, and the bobbin 84 are sealed so that the secondary coil 82 is fixed in the support member 87 in such an arrangement relationship. ing. That is, regarding the support of the secondary side coil 82 of the second embodiment, the secondary side coil 82 is sealed by the support member 87 instead of having an upright member like the support member 85 of the first embodiment. Also serves as support.
  • the support member 87 is made of a first insulating resin material (hereinafter, simply referred to as “material of the support member 87”), and has, for example, a rectangular parallelepiped shape. In the present embodiment, the material of the support member 87 and the material of the sealing member 75 are the same materials, for example, epoxy resin.
  • the sealing member 75 seals the booster unit 72, the isolation transformers 8A and 8B, and the second control unit 73.
  • the support member 87 that seals the primary coil 81, the secondary coil 82, the iron core 83, and the bobbin 84 is further sealed by the sealing member 75. .. [Manufacturing method of power supply]
  • the isolation transformers 8A and 8B are configured by supporting the secondary coil 82 by the support member 87 (first step). Specifically, first, the primary side coil 81, the secondary side coil 82, the iron core 83, the bobbin 84, and the support plate 86 are arranged in the first molding die M1.
  • the holder H for holding the secondary coil 82 and the bobbin 84 is fixed to the first molding die M1.
  • the secondary coil 82 and the bobbin 84 are attached to the holder H, and the primary coil 81, the iron core 83 and the support plate 86 are arranged so that the second side portion 83b of the iron core 83 passes through the center of the bobbin 84. 1 It is fixed to the molding die M1.
  • the first insulating resin agent r1 made of the first insulating resin material is poured into the first molding mold M1 and the first insulating resin agent r1 is cured to support the secondary coil 82 by the support member 87. ..
  • 8B is configured.
  • the holder H is removed from the support member 87 after the first insulating resin agent r1 is cured. Therefore, the support member 87 has a recess C in a portion corresponding to the holder H on the surface 87A on a predetermined side (upper side in FIG. 8). Further, the portion of the secondary coil 82 that was covered with the holder H is not sealed by the support member 87 (first insulating resin agent r1) and is exposed from the recess C.
  • the booster unit 72, the isolation transformers 8A and 8B, and the second control unit 73 are sealed by the sealing member 75 (second step).
  • the booster unit 72, the isolation transformers 8A and 8B, and the second control unit 73 are arranged in the second molding mold M2.
  • the support member 87 in which the primary side coil 81, the secondary side coil 82, the iron core 83, the bobbin 84 and the support plate 86 are sealed is arranged in the second molding die M2. ..
  • the support member 87 is arranged so that the surface 87A having the recess C faces the inside (center side) of the second molding die M2.
  • the second insulating resin agent r2 made of the second insulating resin material is poured into the second molding mold M2, and the second insulating resin agent r2 is cured to cure the booster portion 72, the isolation transformers 8A and 8B, and the second.
  • the control unit 73 is sealed.
  • the recess C is also sealed with the second insulating resin agent r2, the secondary coil 82 exposed from the recess C is also sealed.
  • the power supply unit 7 shown in FIG. 6 is obtained.
  • the X-ray generator 1 can suppress dielectric breakdown starting from the secondary coil 82 of the isolation transformers 8A and 8B for the same reason as the X-ray generator 1 of the first embodiment. Further, in the X-ray generator 1, the support member 87 supports the secondary coil 82 by sealing the primary coil 81 and the secondary coil 82. As a result, since the secondary coil 82 is covered with the material of the support member 85, it is possible to prevent dielectric breakdown from occurring from the secondary coil 82 via the support member 85.
  • the primary side coil 81 and the secondary side coil 82 are arranged in the first molding mold M1, and the first insulating resin agent made of the first insulating resin material.
  • the secondary coil 82 is supported by the support member 87 by pouring r1 into the first molding die M1 and curing the first insulating resin agent r1.
  • the step-up section 72 and the isolation transformers 8A and 8B are arranged in the second molding die M2, and the second insulating resin agent r2 made of the second insulating resin material is poured into the second molding die M2. 2 By curing the insulating resin agent r2, the booster portion 72 and the isolation transformers 8A and 8B are sealed.
  • the secondary coil 82 can be covered with the first insulating resin material constituting the support member 85.
  • the support member 87 is arranged so that the surface 87A provided with the recess C faces the inside (center side) of the second molding die M2.
  • the high voltage region in the power supply unit 7 particularly, the region where the booster unit 72, the secondary coil 82 and the second control unit 73 are arranged
  • the first insulating resin material and the second insulating resin in the high voltage region By arranging the interface with the material inside (center side) of the support member 87, the withstand voltage capability can be improved and the occurrence of dielectric breakdown can be more reliably suppressed.
  • the present disclosure is not limited to the embodiments described above.
  • the absolute value of the difference between the relative permittivity of the material of the support members 85 and 87 and the relative permittivity of the material of the sealing member 75 is sealed. As long as it is 25% or less of the relative permittivity of the stop member 75, it is not limited to the above.
  • the materials of the support members 85 and 87 and the material of the sealing member 75 do not have to be the same material.
  • the absolute value of the difference between the relative permittivity of the materials of the support members 85 and 87 and the relative permittivity of the material of the sealing member 75 is the relative permittivity of the material of the sealing member 75 and the relative permittivity of the material of the bobbin 84. It may be greater than or equal to the absolute value of the difference from the rate. Further, the absolute value of the difference between the relative permittivity of the materials of the support members 85 and 87 and the relative permittivity of the material of the sealing member 75 is the relative permittivity of the material of the sealing member 75 and the material of the substrate 73a. It may be greater than or equal to the absolute value of the difference from the rate.
  • the absolute value of the difference between the volume resistivity of the material of the support members 85 and 87 and the volume resistivity of the material of the sealing member 75 is 1. If it is ⁇ 10 15 [ ⁇ ⁇ m] or less, it is not limited to the above. As an example, the materials of the support members 85 and 87 and the material of the sealing member 75 do not have to be the same material. Further, the absolute value of the difference between the volume resistivity of the materials of the support members 85 and 87 and the volume resistivity of the material of the sealing member 75 is the volume resistivity of the material of the sealing member 75 and the volume resistivity of the material of the bobbin 84.
  • the absolute value of the difference between the volume resistivity of the materials of the support members 85 and 87 and the volume resistivity of the material of the sealing member 75 is the volume resistivity of the material of the sealing member 75 and the volume resistivity of the material of the substrate 73a. It may be greater than or equal to the absolute value of the difference from the rate.
  • the support members 85 and 87 support the secondary coil 82 so that the primary coil 81 passes through the inside of the secondary coil 82. It may be configured to support the secondary coil 82. Further, the support member 85 of the first embodiment is not limited to a zigzag shape, and may be, for example, a linear columnar member, and may be a columnar, polygonal columnar, or the like, not limited to a plate shape. ..
  • the booster 72 is not limited to Cockcroft, and may be, for example, a booster circuit using a capacitor and a diode like Cockcroft, a Delon Grinachel circuit, a Billard circuit, a Chimmelmann (or Witka) circuit, a Schenken multi-stage rectifier circuit, or the like. Good.
  • the configuration in which the power supply unit 7 has two isolation transformers 8A and 8B is illustrated, but the number of isolation transformers may be, for example, one or three or more. Further, by surrounding the secondary coil 82 with a cover made of an insulating material, the occurrence of dielectric breakdown starting from the secondary coil 82 may be further suppressed.
  • the X-ray generator 1 is a reflection type device in which the X-ray generated by the target 31 is emitted to the side where the electron beam is incident on the target 31, but the electron beam is emitted to the target 31.
  • a transmissive device may be used in which X-rays generated by the target 31 are emitted on the side opposite to the incident side.
  • the X-ray generator 1 is an open type device capable of opening and closing the inside of the housing 4, but may be a vacuum sealed type device.
  • the power supply unit 7 is a component of the X-ray generator 1, but may be configured as a single power supply device, for example. Similar to the X-ray generator 1 of the first and second embodiments described above, the power supply device can also suppress the occurrence of dielectric breakdown starting from the secondary coil 82 of the isolation transformers 8A and 8B.

Landscapes

  • X-Ray Techniques (AREA)

Abstract

X線発生装置は、電子銃に電圧を印加する電源部を備える。電源部は、第1制御部と、昇圧部と、第1制御部と電気的に接続された一次側コイル、昇圧部と電気的に接続された二次側コイル、及び二次側コイルを支持する支持部材を含む絶縁トランスと、昇圧部及び絶縁トランスを封止する封止部材と、を有する。支持部材は、第1絶縁樹脂材料からなり、封止部材は、第2絶縁樹脂材料からなる。第1絶縁樹脂材料の比誘電率と第2絶縁樹脂材料の比誘電率との差の絶対値は、第2絶縁樹脂材料の比誘電率の25%以下である。

Description

X線発生装置、電源装置、及びX線発生装置の製造方法
 本開示は、X線発生装置、電源装置、及びX線発生装置の製造方法に関する。
 特許文献1には、電子を放出する陰極と、電子が衝突することによりX線を発生させる陽極と、陰極に高電圧を印加する高圧電源部と、を備える工業用X線発生装置が記載されている。
特許第5780644号公報
 X発生装置が備える電源部では、高電圧となる部品が、絶縁樹脂材料からなる封止部材により封止されている場合がある。しかしながら、絶縁樹脂材料で封止をした場合であっても、電源部内で絶縁破壊による放電が発生した結果、電源部が破損してしまうおそれがある。本発明者らの鋭意研究の結果、高電圧となる部品のうち、特に絶縁トランスの二次側コイルを起点として絶縁破壊が生じている可能性が高いことが確認された。
 本開示は、絶縁トランスの二次側コイルを起点とした絶縁破壊の発生を抑制することができるX線発生装置、電源装置、及びX線発生装置の製造方法を提供することを目的とする。
 本開示の一側面のX線発生装置は、電子ビームを出射する電子銃と、電子ビームが入射することによりX線を出射するターゲットと、電子銃に電圧を印加する電源部と、を備え、電源部は、第1制御部と、第1制御部から供給された電圧を昇圧する昇圧部と、第1制御部と電気的に接続された一次側コイル、昇圧部と電気的に接続された二次側コイル、及び二次側コイルを支持する支持部材を含む絶縁トランスと、電子銃と電気的に接続され、昇圧部及び絶縁トランスで昇圧された電圧を電子銃に印加する給電部と、昇圧部及び絶縁トランスを封止する封止部材と、を有し、支持部材は、第1絶縁樹脂材料からなり、封止部材は、第2絶縁樹脂材料からなり、第1絶縁樹脂材料の比誘電率と第2絶縁樹脂材料の比誘電率との差の絶対値は、第2絶縁樹脂材料の比誘電率の25%以下である。
 このX線発生装置では、電源部において、第1絶縁樹脂材料からなる支持部材によって絶縁トランスの二次側コイルが支持されており、第2絶縁樹脂材料からなる封止部材によって昇圧部及び絶縁トランスが封止されている。これらの第1絶縁樹脂材料及び第2絶縁樹脂材料は、第1絶縁樹脂材料の比誘電率と第2絶縁樹脂材料の比誘電率との差の絶対値が第2絶縁樹脂材料の比誘電率の25%以下である関係を有している。これにより、二次側コイルから支持部材を介して絶縁破壊が生じるのを抑制することができる。よって、このX線発生装置によれば、絶縁トランスの二次側コイルを起点とした絶縁破壊の発生を抑制することができる。
 本開示の一側面のX線発生装置では、絶縁トランスは、二次側コイルが巻かれたボビンを更に含み、ボビンは、第3絶縁樹脂材料からなり、第1絶縁樹脂材料の比誘電率と第2絶縁樹脂材料の比誘電率との差の絶対値は、第2絶縁樹脂材料の比誘電率と第3絶縁樹脂材料の比誘電率との差の絶対値よりも小さくてもよい。これにより、第1絶縁樹脂材料の比誘電率と第2絶縁樹脂材料の比誘電率との差の絶対値が、第2絶縁樹脂材料の比誘電率と第3絶縁樹脂材料の比誘電率との差の絶対値以上である場合と比較して、二次側コイルから支持部材を介して絶縁破壊が生じるのをより確実に抑制することができる。
 本開示の一側面のX線発生装置では、電源部は、昇圧部及び絶縁トランスで昇圧された電圧を給電部に供給する第2制御部を更に有し、第2制御部は、第4絶縁樹脂材料からなる基板を含み、封止部材は、昇圧部、絶縁トランス及び第2制御部を封止しており、第1絶縁樹脂材料の比誘電率と第2絶縁樹脂材料の比誘電率との差の絶対値は、第2絶縁樹脂材料の比誘電率と第4絶縁樹脂材料の比誘電率との差の絶対値よりも小さくてもよい。これにより、第1絶縁樹脂材料の比誘電率と第2絶縁樹脂材料の比誘電率との差の絶対値が、第2絶縁樹脂材料の比誘電率と第4絶縁樹脂材料の比誘電率との差の絶対値以上である場合と比較して、二次側コイルから支持部材を介して絶縁破壊が生じるのをより確実に抑制することができる。
 本開示の一側面のX線発生装置では、第1絶縁樹脂材料及び第2絶縁樹脂材料は、同一の材料であってもよい。これにより、二次側コイルから支持部材を介して絶縁破壊が生じるのをより確実に抑制することができる。
 本開示の一側面のX線発生装置では、支持部材は、二次側コイルを支持する柱状部材であってもよい。支持部材として柱状部材を用いることで、電源部の製造の容易化を図ることができる。
 本開示の一側面のX線発生装置では、支持部材は、一次側コイル及び二次側コイルを封止することにより、二次側コイルを支持していてもよい。これにより、二次側コイルが第1絶縁樹脂材料によって覆われるため、二次側コイルから支持部材を介して絶縁破壊が生じるのを抑制することができる。
 本開示の一側面の電源装置は、電子ビームを出射する電子銃、及び電子ビームが入射することによりX線を出射するターゲットを備えるX線発生装置に用いられ、電子銃に電圧を印加する電源装置であって、第1制御部と、第1制御部から供給された電圧を昇圧する昇圧部と、第1制御部と電気的に接続された一次側コイル、昇圧部と電気的に接続された二次側コイル、及び二次側コイルを支持する支持部材を含む絶縁トランスと、電子銃と電気的に接続され、昇圧部及び絶縁トランスで昇圧された電圧を電子銃に印加する給電部と、昇圧部及び絶縁トランスを封止する封止部材と、を備え、支持部材は、第1絶縁樹脂材料からなり、封止部材は、第2絶縁樹脂材料からなり、第1絶縁樹脂材料の比誘電率と第2絶縁樹脂材料の比誘電率との差の絶対値は、第2絶縁樹脂材料の比誘電率の25%以下である。
 この電源装置によれば、上記X線発生装置と同様の理由により、絶縁トランスの二次側コイルを起点とした絶縁破壊の発生を抑制することができる。
 本開示の一側面のX線発生装置の製造方法は、上記X線発生装置の製造方法であって、支持部材によって二次側コイルを支持することにより、絶縁トランスを構成する第1工程と、封止部材によって昇圧部及び絶縁トランスを封止する第2工程と、を備える。
 このX線発生装置の製造方法によれば、絶縁トランスの二次側コイルを起点とした絶縁破壊の発生が抑制された上記X線発生装置を得ることができる。
 本開示の一側面のX線発生装置の製造方法では、第1工程においては、第1絶縁樹脂材料からなる柱状部材である支持部材に二次側コイルを取り付けることにより、支持部材によって二次側コイルを支持し、第2工程においては、昇圧部及び絶縁トランスを成形型内に配置し、第2絶縁樹脂材料からなる第2絶縁樹脂剤を成形型内に流し込み、第2絶縁樹脂剤を硬化させることにより、封止部材によって昇圧部及び絶縁トランスを封止してもよい。支持部材として柱状部材を用いることで、第1工程の容易化を図ることができる。
 本開示の一側面のX線発生装置の製造方法では、第1工程においては、一次側コイル及び二次側コイルを第1成形型内に配置し、第1絶縁樹脂材料からなる第1絶縁樹脂剤を第1成形型内に流し込み、第1絶縁樹脂剤を硬化させることにより、支持部材によって二次側コイルを支持し、第2工程においては、昇圧部及び絶縁トランスを第2成形型内に配置し、第2絶縁樹脂材料からなる第2絶縁樹脂剤を第2成形型内に流し込み、第2絶縁樹脂剤を硬化させることにより、昇圧部及び絶縁トランスを封止してもよい。これにより、支持部材を構成する第1絶縁樹脂材料によって二次側コイルを覆うことができる。
 本開示によれば、絶縁トランスの二次側コイルを起点とした絶縁破壊の発生を抑制することができるX線発生装置、電源装置、及びX線発生装置の製造方法を提供することができる。
図1は、第1実施形態のX線発生装置の断面図である。 図2は、図1に示される電源部の一部分の斜視図である。 図3は、図1に示される電源部のブロック図である。 図4は、図1に示される電源部の製造方法の一工程を示す断面図である。 図5は、図1に示される電源部の製造方法の一工程を示す断面図である。 図6は、第2実施形態の電源部の斜視図である。 図7は、図6に示される電源部の製造方法の一工程を示す断面図である。 図8は、図6に示される電源部の製造方法の一工程を示す断面図である。 図9は、図6に示される電源部の製造方法の一工程を示す断面図である。
 以下、本開示の実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する部分を省略する。
[第1実施形態]
[X線発生装置の構成]
 図1に示されるように、X線発生装置1は、電子銃2と、ターゲット部3と、筐体4と、排気管6と、電源部7と、を備えている。電子銃2は、電子ビームを出射する。ターゲット部3の先端には、電子ビームが入射することによりX線を出射するターゲット31が設けられている。一例として、ターゲット31は、タングステンからなり、円板状を呈している。筐体4は、電子ビーム及びX線が通過する通路40を画定しており、通路40を真空引きされた状態に維持する。筐体4は、窓部5を有している。窓部5は、ターゲット31から出射されたX線を通路40から外部に透過させる。排気管6は、筐体4に設けられている。排気管6には、真空ポンプ(図示省略)が接続される。電源部7は、後述する給電部74の先端部(一端側)に固定された電子銃2に電圧を印加する。
 筐体4は、窓部5に加え、下側筒状部41と、上側筒状部42と、ヘッド部43と、を有している。一例として、下側筒状部41及び上側筒状部42は、それぞれ、ステンレスからなり、円筒状を呈している。下側筒状部41の下端部には、電源部7が取り付けられている。下側筒状部41は、電源部7上に立設された電子銃2を収容している。下側筒状部41の側壁には、排気管6が設けられている。上側筒状部42は、ヒンジ部4aを介して下側筒状部41の上端部上に立設されている。上側筒状部42を下側筒状部41に対して傾動させることにより、下側筒状部41の上側開口から、電子銃2に設けられたフィラメント等を交換することができる。上側筒状部42の内部には、複数のコイル部49が設けられている。複数のコイル部49は、電磁偏向レンズとして機能し、電子銃2からターゲット31に向かって通路40を進行する電子ビームをターゲット31に集束させる。
 ヘッド部43は、上側筒状部42の上端部上に設けられている。ヘッド部43には、外部と通路40とを連通するターゲット挿入部48が形成されている。ターゲット挿入部48には、ターゲット部3が挿入されている。ターゲット部3は、ヘッド部43に対して着脱可能である。ターゲット31は、電子銃2及び窓部5のそれぞれと対向するように傾斜した状態で通路40に露出している。通路40のうち、電子銃2とターゲット31とが対向する部分が電子ビーム通路40aである。また、通路40のうち、ターゲット31と窓部5とが対向する部分がX線通路40bである。電子ビーム通路40aは、下側筒状部41、上側筒状部42及びヘッド部43に形成されている。X線通路40bは、ヘッド部43に形成されている。電子ビーム通路40aとX線通路40bとは、ヘッド部43において接続されている。ターゲット部3の側面には、複数のOリング32が設けられている。これにより、ターゲット部3とターゲット挿入部48との間の空間が気密に封止されている。
 X線発生装置1においては、真空ポンプによって排気管6を介して通路40が真空引きされた状態で、電源部7によって電子銃2に電圧が印加され、電子銃2から電子ビーム通路40aに電子ビームが出射されると、当該電子ビームが複数のコイル部49によってターゲット31に集束させられる。電子ビームがターゲット31に入射し、ターゲット31からX線通路40bにX線が出射されると、当該X線が窓部5を透過して外部に出射される。
[電源部の構成]
 図2及び図3に示されるように、電源部7は、第1制御部71と、昇圧部72と、複数の絶縁トランス8A,8Bと、第2制御部73と、給電部74と、封止部材75と、高圧トランス76と、ケース77と、を有している。
 第1制御部71は、外部のPC(Personal Computer)等と電気的に接続される。第1制御部71は、PC等から送信される指示に従い、電源部7の出力電圧等を制御する。
 昇圧部72は、第1制御部71から供給された電圧を昇圧するコッククロフトである。昇圧部72は、高圧トランス76と電気的に接続されている。高圧トランス76は、第1制御部71と電気的に接続されており、第1制御部71から供給された交流の電圧を昇圧する。昇圧部72は、高圧トランス76で昇圧された電圧を更に昇圧する。なお、昇圧部72において、昇圧の際に交流であった電圧は直流に変換される。
 絶縁トランス8Aは、電子銃2のウェネルト電極21に電圧を印加する。絶縁トランス8Bは、電子銃2の熱カソード22に電圧を印加する。絶縁トランス8Bの構成は、絶縁トランス8Aの構成と同様である。このため、以下、絶縁トランス8Aの構成について説明し、絶縁トランス8Bの構成についての説明を省略する。絶縁トランス8Aは、一次側コイル81と、二次側コイル82と、鉄芯83と、ボビン84と、支持部材85と、を含んでいる。一次側コイル81は、第1制御部71と電気的に接続されている。二次側コイル82は、昇圧部72と電気的に接続されている。一例として、鉄芯83は、フェライトからなり、四角枠状を呈している。鉄芯83のうち少なくとも第1辺部83aは、絶縁材料からなる。第1辺部83aは、接地電位とされた支持板86に固定されている。鉄芯83において第1辺部83aと反対側の第2辺部83bには、一次側コイル81が巻かれている。なお、一次側コイル81及び鉄芯83は、絶縁材料からなるカバー(図示省略)によって覆われている。
 ボビン84は、第3絶縁樹脂材料からなり、例えば円環状を呈している。二次側コイル82は、ボビン84の周方向に沿ってボビン84の外周面に巻かれている。支持部材85は、二次側コイル82を支持する柱状部材であって、第1絶縁樹脂材料からなる。支持部材85は、例えば第1絶縁樹脂材料からなる板状部材をジグザグ状に延在させることで、放電時における沿面距離を大きくすることにより、耐電圧能を向上させた形状を呈している。支持部材85の一端側は、支持板86に固定されている。支持部材85の他端側には、二次側コイル82が巻かれたボビン84が、絶縁材料(例えば、ボビン84、支持部材85等と同じ材料)からなるボルトによって取り付けられている。支持部材85は、鉄芯83の第2辺部83bがボビン84の内側の中心を挿通するようにボビン84を支持することで、二次側コイル82を支持している。
 第2制御部73は、絶縁トランス8A,8Bで昇圧された電圧を直流に変換し、その直流に変換した電圧及び昇圧部72で昇圧された電圧を給電部74に供給する。第2制御部73は、基板73aを含んでいる。基板73aは、電子部品が搭載された回路基板である。基板73aは、第4絶縁樹脂材料からなる。
 給電部74は、先端部(一端側)において電子銃2が固定されており、基端部(他端側)において封止部材に固定されている。給電部74は、筒状を呈しており、絶縁材料からなる。給電部74は、昇圧部72及び絶縁トランス8A,8Bで昇圧された電圧を、第2制御部73を介して電子銃2に印加する給電配線(図示省略)を内部空間に封入している。なお、給電部74を構成する絶縁材料は、封止部材75の材料と同じでもよいし、封止部材75の材料と異なっていてもよい。また、給電部74の絶縁材料が封止部材75の材料と同じである場合は、給電部74と封止部材75とを一体に成形してもよいし、給電部74及び封止部材75のそれぞれを別体に成形してから接合してもよい。
 ここで、電源部7による電子銃2への電圧の印加の一例について詳細に説明する。図3に示されるように、高圧トランス76は、第1制御部71から供給された最大100V程度の交流の電圧信号を-数kVから-十数kVまで昇圧する。昇圧部72は、高圧トランス76で昇圧された電圧信号を、更に-数百kVまで昇圧する。また、昇圧の際に交流であった電圧信号は直流に変換される。絶縁トランス8A,8Bは、第2制御部73及び給電部74を介して、昇圧部72で昇圧された電圧(-数百kV)に基づく基準電位上において、ウェネルト電極21に例えば最大-1500Vを印加する。また、絶縁トランス8A,8Bは、第2制御部73及び給電部74を介して、昇圧部72で昇圧された電圧(-数百kV)に基づく基準電位上において、熱カソード22に例えば-数Vを印加する。なお、図3では、電源部7のうち高電圧となる部分が太線で表示されている。
 封止部材75は、昇圧部72、絶縁トランス8A,8B及び第2制御部73を封止している。また、支持板86においては、少なくとも、二次側コイル82と対向する側の面は、封止部材75に封止されている。封止部材75は、第2絶縁樹脂材料からなり、例えば略直方体状を呈している。封止部材75は、高電圧となる昇圧部72、絶縁トランス8A,8B及び第2制御部73の電気的な絶縁を保つ機能を有している。なお、第1制御部71及び高圧トランス76は、電源部7において封止部材75の外部に設けられている。また、封止部材75は、図3に示されるように、ケース77に収容されている。一例として、ケース77は、金属材料からなる電源部7における外部筐体であり、矩形箱状を呈している。
 ここで、支持部材85を構成する第1絶縁樹脂材料(以下、単に「支持部材85の材料」という)、封止部材75を構成する第2絶縁樹脂材料(以下、単に「封止部材75の材料」という)、ボビン84を構成する第3絶縁樹脂料(以下、単に「ボビン84の材料」という)、及び第2制御部73の基板73aを構成する第4絶縁樹脂材料(以下、単に「基板73aの材料」という)の関係について説明する。なお、本実施形態における比誘電率とは、対象物質の誘電率を真空の誘電率で除算した値である。
 支持部材85の材料の比誘電率と封止部材75の材料の比誘電率との差の絶対値は、封止部材75の材料の比誘電率の25%以下である。換言すれば、支持部材85の材料の比誘電率は、封止部材75の材料の比誘電率の75%以上125%以下の範囲に含まれる。具体的には、例えば、支持部材85の材料の比誘電率と封止部材75の材料の比誘電率との差の絶対値は、0以上1.0以下であってもよい。また、支持部材85の材料の比誘電率と封止部材75の材料の比誘電率との差の絶対値は、封止部材75の材料の比誘電率とボビン84の材料の比誘電率との差の絶対値よりも小さい。更に、支持部材85の材料の比誘電率と封止部材75の材料の比誘電率との差の絶対値は、封止部材75の材料の比誘電率と基板73aの材料の比誘電率との差の絶対値よりも小さい。また、支持部材85の材料の体積抵抗率と封止部材75の材料の体積抵抗率との差の絶対値は、1×1015[Ω・m]以下である。そして、支持部材85の材料の体積抵抗率と封止部材75の材料の体積抵抗率との差の絶対値は、封止部材75の材料の体積抵抗率とボビン84の材料の体積抵抗率との差の絶対値よりも小さい。更に、支持部材85の材料の体積抵抗率と封止部材75の材料の体積抵抗率との差の絶対値は、封止部材75の材料の体積抵抗率と基板73aの材料の体積抵抗率との差の絶対値よりも小さい。
 本実施形態では、支持部材85の材料及び封止部材75の材料は、同一の材料であって、例えば、エポキシ樹脂である。つまり、本実施形態では、支持部材85の材料の比誘電率と封止部材75の材料の比誘電率とは等しい。また、支持部材85の材料の体積抵抗率と封止部材75の材料の体積抵抗率とは等しい。また、ボビン84の材料は、例えば、PEEKである。また、基板73aの材料は、例えば、ガラスエポキシ樹脂である。
[電源部の製造方法]
 まず、図4に示されるように、支持部材85によって二次側コイル82を支持することにより、絶縁トランス8A,8Bを構成する(第1工程)。具体的には、まず、一次側コイル81、二次側コイル82、鉄芯83及びボビン84を用意する。ボビン84の穴には鉄芯83が通され、鉄芯83の第1辺部83aは支持板86に固定されている。次に、支持部材85の一端側を支持板86に固定し、支持部材85の他端側に二次側コイル82が巻かれたボビン84を固定する。これにより、支持部材85に二次側コイル82が支持され、絶縁トランス8A,8Bが構成される。
 続いて、図5に示されるように、封止部材75によって昇圧部72、絶縁トランス8A,8B及び第2制御部73を封止する(第2工程)。具体的には、まず、昇圧部72、絶縁トランス8A,8B及び第2制御部73を成形型M内に配置する。次に、第2絶縁樹脂材料からなる第2絶縁樹脂剤r2を成形型M内に流し込み、第2絶縁樹脂剤r2を硬化させる。これにより、封止部材75によって昇圧部72、絶縁トランス8A,8B及び第2制御部73が封止され、図2に示される電源部7が得られる。
[作用及び効果]
 X線発生装置1では、電源部7において、支持部材85によって絶縁トランス8A,8Bの二次側コイル82が支持されており、封止部材75によって昇圧部72及び絶縁トランス8A,8Bが封止されている。支持部材85の材料の比誘電率と封止部材75の材料の比誘電率との差の絶対値は、封止部材75の材料の比誘電率の25%以下である。これにより、二次側コイル82から支持部材85を介して絶縁破壊が生じるのを抑制することができる。よって、このX線発生装置1によれば、絶縁トランス8A,8Bの二次側コイル82を起点とした絶縁破壊の発生を抑制することができる。特に、支持部材85の材料の比誘電率と封止部材75の材料の比誘電率との差の絶対値が、0以上1.0以下である場合、二次側コイル82から支持部材85を介して絶縁破壊が生じるのをより抑制することができる。なお、二次側コイル82から支持部材85を介した絶縁破壊の抑制は、支持部材85の材料の体積抵抗率と封止部材75の材料の体積抵抗率との差の絶対値が、1×1015[Ω・m]以下である場合に、特に効果がある。
 ここで、従来例との比較について説明する。例えば、従来の支持部材85の材料が一般的に用いられるガラスエポキシ樹脂である場合、支持部材85の材料の比誘電率と封止部材75の材料の比誘電率との差の絶対値は、封止部材75の材料の比誘電率の約30%となる。その場合、二次側コイル82から支持部材85を介して絶縁破壊が生じ得る。これに対し、X線発生装置1によれば、絶縁トランス8A,8Bの二次側コイル82を起点とした絶縁破壊の発生を抑制することができる。なお、二次側コイル82を起点とした絶縁破壊の発生の抑制は、電源部7で使用される電圧が、絶対値で100kV以上、特に絶対値で200kV以上である場合に、特に効果がある。
 また、X線発生装置1では、支持部材85の材料の比誘電率と封止部材75の材料の比誘電率との差の絶対値は、封止部材75の材料の比誘電率とボビン84の材料の比誘電率との差の絶対値よりも小さい。これにより、支持部材85の材料の比誘電率と封止部材75の材料の比誘電率との差の絶対値が、封止部材75の材料の比誘電率とボビン84の材料の比誘電率との差の絶対値以上である場合と比較して、二次側コイル82から支持部材85を介して絶縁破壊が生じるのをより確実に抑制することができる。なお、二次側コイル82から支持部材85を介した絶縁破壊の抑制は、支持部材85の材料の体積抵抗率と封止部材75の材料の体積抵抗率との差の絶対値が、封止部材75の材料の体積抵抗率とボビン84の材料の体積抵抗率との差の絶対値よりも小さい場合に、特に効果がある。
 例えば、従来の支持部材85の材料が一般的に用いられるガラスエポキシ樹脂である場合、ボビン84の材料はPEEKであるため、支持部材85の材料の比誘電率と封止部材75の材料の比誘電率との差の絶対値は、封止部材75の材料の比誘電率とボビン84の材料の比誘電率との差の絶対値よりも大きい。その場合、二次側コイル82から支持部材85を介して絶縁破壊が生じ得る。X線発生装置1によれば、このような絶縁破壊が生じるのをより確実に抑制することができる。
 また、X線発生装置1では、支持部材85の材料の比誘電率と封止部材75の材料の比誘電率との差の絶対値は、封止部材75の材料の比誘電率と基板73aの材料の比誘電率との差の絶対値よりも小さい。これにより、支持部材85の材料の比誘電率と封止部材75の材料の比誘電率との差の絶対値が、封止部材75の材料の比誘電率と基板73aの材料の比誘電率との差の絶対値以上である場合と比較して、二次側コイル82から支持部材85を介して絶縁破壊が生じるのをより確実に抑制することができる。なお、二次側コイル82から支持部材85を介した絶縁破壊の抑制は、支持部材85の材料の体積抵抗率と封止部材75の材料の体積抵抗率との差の絶対値が、封止部材75の材料の体積抵抗率と基板73aの材料の体積抵抗率との差の絶対値よりも小さい場合に、特に効果がある。
 例えば、従来の支持部材85の材料が基板73aの材料と同一のガラスエポキシ樹脂である場合、支持部材85の材料の比誘電率と封止部材75の材料の比誘電率との差の絶対値は、封止部材75の材料の比誘電率と基板73aの材料の比誘電率との差の絶対値と等しい。その場合、二次側コイル82から支持部材85を介して絶縁破壊が生じ得る。X線発生装置1によれば、このような絶縁破壊が生じるのをより確実に抑制することができる。
 また、X線発生装置1では、支持部材85の材料及び封止部材75の材料が、同一の材料である。これにより、二次側コイル82から支持部材85を介して絶縁破壊が生じるのをより確実に抑制することができる。
 また、X線発生装置1では、支持部材85が、二次側コイル82を支持する柱状部材である。支持部材85として柱状部材を用いることで、電源部7の製造の容易化を図ることができる。また、支持部材85が、封止部材75の内部で立設される柱状部材でありながらも、二次側コイル82から支持部材85を介して絶縁破壊が生じるのを抑制することができる。
 また、X線発生装置1の製造方法は、支持部材85によって二次側コイル82を支持することにより、絶縁トランス8A,8Bを構成する第1工程と、封止部材75によって昇圧部72及び絶縁トランス8A,8Bを封止する第2工程と、を備える。X線発生装置1の製造方法によれば、上記X線発生装置1と同様の理由により、絶縁トランス8A,8Bの二次側コイル82を起点とした絶縁破壊の発生を抑制することができる。
 X線発生装置1の製造方法では、第1工程においては、第1絶縁樹脂材料からなる柱状部材である支持部材85に、二次側コイル82を取り付けることにより、支持部材85によって二次側コイル82を支持する。第2工程においては、昇圧部72及び絶縁トランス8A,8Bを成形型M内に配置し、第2絶縁樹脂材料からなる第2絶縁樹脂剤を成形型M内に流し込み、第2絶縁樹脂剤r2を硬化させることにより、封止部材75によって昇圧部72及び絶縁トランス8A,8Bを封止する。支持部材85として柱状部材を用いることで、二次側コイル82を適切に支持した状態で封止部材75による封止を行えるため、第1工程の容易化を図ることができる。
[第2実施形態]
[電源部の構成]
 第2実施形態のX線発生装置1は、電源部7の構成が異なる点(具体的には、絶縁トランス8Aの支持部材87が、一次側コイル81及び二次側コイル82を封止することにより二次側コイル82を支持している点)で、第1実施形態のX線発生装置1と相違している。以下、主として第1実施形態と相違する点について説明する。
 図6に示される絶縁トランス8Aは、一次側コイル81と、二次側コイル82と、鉄芯83と、ボビン84と、支持部材87と、を含んでいる。支持部材87は、一次側コイル81に対して二次側コイル82が所定の距離をもって離間した状態で固定されるように、一次側コイル81及び二次側コイル82を封止することにより二次側コイル82を支持している。より詳細には、支持部材87は、鉄芯83の第2辺部83bがボビン84の内側の中心を挿通し、且つ一次側コイル81に対して二次側コイル82が所定の距離をもって離間するような配置関係であって、二次側コイル82が支持部材87中に浮いた状態で固定されるように、一次側コイル81、二次側コイル82、鉄芯83及びボビン84を封止している。つまり、第2実施形態の二次側コイル82の支持に関しては、第1実施形態の支持部材85のような立設部材を備えるのではなく、支持部材87による封止が二次側コイル82の支持を兼ねている。支持部材87は、第1絶縁樹脂材料(以下、単に「支持部材87の材料」という)からなり、例えば直方体状を呈している。本実施形態では、支持部材87の材料及び封止部材75の材料は、同一の材料であって、例えば、エポキシ樹脂である。
 封止部材75は、昇圧部72、絶縁トランス8A,8B及び第2制御部73を封止している。絶縁トランス8A,8Bの封止においては、一次側コイル81、二次側コイル82、鉄芯83及びボビン84を封止している支持部材87が、更に封止部材75によって封止されている。
[電源部の製造方法]
 まず、図7に示されるように、支持部材87によって二次側コイル82を支持することにより、絶縁トランス8A,8Bを構成する(第1工程)。具体的には、まず、一次側コイル81、二次側コイル82、鉄芯83、ボビン84及び支持板86を第1成形型M1内に配置する。ここで、第1成形型M1には、二次側コイル82及びボビン84を保持するための保持具Hが固定されている。二次側コイル82及びボビン84は、保持具Hに取り付けられ、一次側コイル81、鉄芯83及び支持板86は、鉄芯83の第2辺部83bがボビン84の中心を通るように第1成形型M1に固定される。次に、第1絶縁樹脂材料からなる第1絶縁樹脂剤r1を第1成形型M1内に流し込み、第1絶縁樹脂剤r1を硬化させることにより、支持部材87によって二次側コイル82を支持する。このようにして、図8に示されるように、二次側コイル82が支持部材87中に浮いた状態で固定されるように、支持部材87に二次側コイル82が支持された絶縁トランス8A,8Bが構成される。保持具Hは、第1絶縁樹脂剤r1の硬化後、支持部材87から除去される。そのため、支持部材87は、所定の側(図8においては上側)にある面87Aに、保持具Hに相当する部分に窪みCを有することとなる。また、二次側コイル82のうち、保持具Hで覆われていた部分は、支持部材87(第1絶縁樹脂剤r1)には封止されず、窪みCから露出した状態となっている。
 続いて、図9に示されるように、封止部材75によって、昇圧部72、絶縁トランス8A,8B及び第2制御部73を封止する(第2工程)。具体的には、まず、昇圧部72、絶縁トランス8A,8B及び第2制御部73を第2成形型M2内に配置する。絶縁トランス8A,8Bについては、一次側コイル81、二次側コイル82、鉄芯83、ボビン84及び支持板86が封止された状態の支持部材87が第2成形型M2内に配置される。その際、支持部材87は、窪みCを有する面87Aが、第2成形型M2の内側(中心側)に向くように配置される。次に、第2絶縁樹脂材料からなる第2絶縁樹脂剤r2を第2成形型M2内に流し込み、第2絶縁樹脂剤r2を硬化させることにより、昇圧部72、絶縁トランス8A,8B及び第2制御部73を封止する。その際、窪みCも第2絶縁樹脂剤r2で封止されるため、窪みCから露出していた二次側コイル82も封止される。これにより、図6に示される電源部7が得られる。
[作用及び効果]
 X線発生装置1は、第1実施形態のX線発生装置1と同様の理由により、絶縁トランス8A,8Bの二次側コイル82を起点とした絶縁破壊が生じるのを抑制することができる。また、X線発生装置1では、支持部材87が、一次側コイル81及び二次側コイル82を封止することにより、二次側コイル82を支持している。これにより、二次側コイル82が支持部材85の材料によって覆われるため、二次側コイル82から支持部材85を介して絶縁破壊が生じるのを抑制することができる。
 また、X線発生装置1の製造方法によれば、第1実施形態のX線発生装置1の製造方法と同様の理由により、絶縁トランス8A,8Bの二次側コイル82を起点とした絶縁破壊の発生が抑制されたX線発生装置1を得ることができる。
 また、X線発生装置1の製造方法では、第1工程において、一次側コイル81及び二次側コイル82を第1成形型M1内に配置し、第1絶縁樹脂材料からなる第1絶縁樹脂剤r1を第1成形型M1内に流し込み、第1絶縁樹脂剤r1を硬化させることにより、支持部材87によって二次側コイル82を支持する。第2工程においては、昇圧部72及び絶縁トランス8A,8Bを第2成形型M2内に配置し、第2絶縁樹脂材料からなる第2絶縁樹脂剤r2を第2成形型M2内に流し込み、第2絶縁樹脂剤r2を硬化させることにより、昇圧部72及び絶縁トランス8A,8Bを封止する。これにより、支持部材85を構成する第1絶縁樹脂材料によって二次側コイル82を覆うことができる。特に、第2工程においては、支持部材87が、窪みCを備えた面87Aが第2成形型M2の内側(中心側)に向くように配置される。このように、電源部7における高電圧領域(特に、昇圧部72、二次側コイル82及び第2制御部73の配置領域)、及び当該高電圧領域における第1絶縁樹脂材料と第2絶縁樹脂材料との界面を、支持部材87の内側(中心側)に配置することで、耐電圧能を向上させ、絶縁破壊が生じるのをより確実に抑制することができる。
[変形例]
 本開示は、上述した実施形態に限定されない。例えば、支持部材85,87の材料、及び封止部材75の材料は、支持部材85,87の材料の比誘電率と封止部材75の材料の比誘電率との差の絶対値が、封止部材75の比誘電率の25%以下であれば、上述したものに限定されない。一例として、支持部材85,87の材料及び封止部材75の材料は、同一の材料でなくてもよい。また、支持部材85,87の材料の比誘電率と封止部材75の材料の比誘電率との差の絶対値が、封止部材75の材料の比誘電率とボビン84の材料の比誘電率との差の絶対値以上であってもよい。また、支持部材85,87の材料の比誘電率と封止部材75の材料の比誘電率との差の絶対値が、封止部材75の材料の比誘電率と基板73aの材料の比誘電率との差の絶対値以上であってもよい。また、支持部材85,87の材料、及び封止部材75の材料は、支持部材85,87の材料の体積抵抗率と封止部材75の材料の体積抵抗率との差の絶対値が、1×1015[Ω・m]以下であれば、上述したものに限定されない。一例として、支持部材85,87の材料及び封止部材75の材料は、同一の材料でなくてもよい。また、支持部材85,87の材料の体積抵抗率と封止部材75の材料の体積抵抗率との差の絶対値が、封止部材75の材料の体積抵抗率とボビン84の材料の体積抵抗率との差の絶対値以上であってもよい。また、支持部材85,87の材料の体積抵抗率と封止部材75の材料の体積抵抗率との差の絶対値が、封止部材75の材料の体積抵抗率と基板73aの材料の体積抵抗率との差の絶対値以上であってもよい。
 上述した実施形態では、一次側コイル81が二次側コイル82の内側を通るように、支持部材85,87が二次側コイル82を支持する構成を例示したが、支持部材85,87は、二次側コイル82を支持するように構成されていればよい。また、第1実施形態の支持部材85は、ジグザグ状に限られず、例えば直線状の柱状部材であってもよく、また、板状に限らず、円柱状、多角形柱状等であってもよい。
 昇圧部72は、コッククロフトに限定されず、例えば、コッククロフトと同じくコンデンサ及びダイオードを用いた昇圧回路、デロン・グライナッヘル回路、ビラード回路、チンメルマン(若しくはウィトカ)回路、シェンケンの多段整流回路等であってもよい。
 上述した実施形態では、電源部7が2つの絶縁トランス8A,8Bを有する構成を例示したが、絶縁トランスの数は、例えば1つでもよく、また3つ以上であってもよい。また、二次側コイル82の周囲を絶縁性材料からなるカバーで包囲することで、さらに二次側コイル82を起点とした絶縁破壊の発生を抑制してもよい。
 上述した実施形態では、X線発生装置1は、ターゲット31に電子ビームが入射する側に、ターゲット31で発生したX線が出射される反射型の装置であったが、ターゲット31に電子ビームが入射する側とは反対側に、ターゲット31で発生したX線が出射される透過型の装置であってもよい。また、上述した実施形態では、X線発生装置1は、筐体4の内部を開閉することのできる開放型の装置であったが、真空密封型の装置であってもよい。
 上述した実施形態では、電源部7は、X線発生装置1の構成物品であったが、例えば電源装置として単体で構成されてもよい。当該電源装置によっても、上述した第1,2実施形態のX線発生装置1と同様に、絶縁トランス8A,8Bの二次側コイル82を起点とした絶縁破壊の発生を抑制することができる。
 1…X線発生装置、2…電子銃、7…電源部、8A,8B…絶縁トランス、31…ターゲット、71…第1制御部、72…昇圧部、73…第2制御部、74…給電部、75…封止部材、81…一次側コイル、82…二次側コイル、84…ボビン、85,87…支持部材、73a…基板、M…成形型、M1…第1成形型、M2…第2成形型、r1…第1絶縁樹脂剤、r2…第2絶縁樹脂剤。

Claims (10)

  1.  電子ビームを出射する電子銃と、
     前記電子ビームが入射することによりX線を出射するターゲットと、
     前記電子銃に電圧を印加する電源部と、を備え、
     前記電源部は、
     第1制御部と、
     前記第1制御部から供給された電圧を昇圧する昇圧部と、
     前記第1制御部と電気的に接続された一次側コイル、前記昇圧部と電気的に接続された二次側コイル、及び前記二次側コイルを支持する支持部材を含む絶縁トランスと、
     前記電子銃と電気的に接続され、前記昇圧部及び前記絶縁トランスで昇圧された電圧を前記電子銃に印加する給電部と、
     前記昇圧部及び前記絶縁トランスを封止する封止部材と、を有し、
     前記支持部材は、第1絶縁樹脂材料からなり、
     前記封止部材は、第2絶縁樹脂材料からなり、
     前記第1絶縁樹脂材料の比誘電率と前記第2絶縁樹脂材料の比誘電率との差の絶対値は、前記第2絶縁樹脂材料の比誘電率の25%以下である、X線発生装置。
  2.  前記絶縁トランスは、前記二次側コイルが巻かれたボビンを更に含み、
     前記ボビンは、第3絶縁樹脂材料からなり、
     前記第1絶縁樹脂材料の比誘電率と前記第2絶縁樹脂材料の比誘電率との差の絶対値は、前記第2絶縁樹脂材料の比誘電率と前記第3絶縁樹脂材料の比誘電率との差の絶対値よりも小さい、請求項1に記載のX線発生装置。
  3.  前記電源部は、前記昇圧部及び前記絶縁トランスで昇圧された電圧を前記給電部に供給する第2制御部を更に有し、
     前記第2制御部は、第4絶縁樹脂材料からなる基板を含み、
     前記封止部材は、前記昇圧部、前記絶縁トランス及び前記第2制御部を封止しており、
     前記第1絶縁樹脂材料の比誘電率と前記第2絶縁樹脂材料の比誘電率との差の絶対値は、前記第2絶縁樹脂材料の比誘電率と前記第4絶縁樹脂材料の比誘電率との差の絶対値よりも小さい、請求項1又は2に記載のX線発生装置。
  4.  前記第1絶縁樹脂材料及び前記第2絶縁樹脂材料は、同一の材料である、請求項1~3のいずれか一項に記載のX線発生装置。
  5.  前記支持部材は、前記二次側コイルを支持する柱状部材である、請求項1~4のいずれか一項に記載のX線発生装置。
  6.  前記支持部材は、前記一次側コイル及び前記二次側コイルを封止することにより、前記二次側コイルを支持している、請求項1~4のいずれか一項に記載のX線発生装置。
  7.  電子ビームを出射する電子銃、及び前記電子ビームが入射することによりX線を出射するターゲットを備えるX線発生装置に用いられ、前記電子銃に電圧を印加する電源装置であって、
     第1制御部と、
     前記第1制御部から供給された電圧を昇圧する昇圧部と、
     前記第1制御部と電気的に接続された一次側コイル、前記昇圧部と電気的に接続された二次側コイル、及び前記二次側コイルを支持する支持部材を含む絶縁トランスと、
     前記電子銃と電気的に接続され、前記昇圧部及び前記絶縁トランスで昇圧された電圧を前記電子銃に印加する給電部と、
     前記昇圧部及び前記絶縁トランスを封止する封止部材と、を備え、
     前記支持部材は、第1絶縁樹脂材料からなり、
     前記封止部材は、第2絶縁樹脂材料からなり、
     前記第1絶縁樹脂材料の比誘電率と前記第2絶縁樹脂材料の比誘電率との差の絶対値は、前記第2絶縁樹脂材料の比誘電率の25%以下である、電源装置。
  8.  請求項1に記載のX線発生装置の製造方法であって、
     前記支持部材によって前記二次側コイルを支持することにより、前記絶縁トランスを構成する第1工程と、
     前記封止部材によって前記昇圧部及び前記絶縁トランスを封止する第2工程と、を備える、X線発生装置の製造方法。
  9.  前記第1工程においては、前記第1絶縁樹脂材料からなる柱状部材である前記支持部材に前記二次側コイルを取り付けることにより、前記支持部材によって前記二次側コイルを支持し、
     前記第2工程においては、前記昇圧部及び前記絶縁トランスを成形型内に配置し、前記第2絶縁樹脂材料からなる第2絶縁樹脂剤を前記成形型内に流し込み、前記第2絶縁樹脂剤を硬化させることにより、前記封止部材によって前記昇圧部及び前記絶縁トランスを封止する、請求項8に記載のX線発生装置の製造方法。
  10.  前記第1工程においては、前記一次側コイル及び前記二次側コイルを第1成形型内に配置し、前記第1絶縁樹脂材料からなる第1絶縁樹脂剤を前記第1成形型内に流し込み、前記第1絶縁樹脂剤を硬化させることにより、前記支持部材によって前記二次側コイルを支持し、
     前記第2工程においては、前記昇圧部及び前記絶縁トランスを第2成形型内に配置し、前記第2絶縁樹脂材料からなる第2絶縁樹脂剤を前記第2成形型内に流し込み、前記第2絶縁樹脂剤を硬化させることにより、前記昇圧部及び前記絶縁トランスを封止する、請求項8に記載のX線発生装置の製造方法。
PCT/JP2020/026390 2019-08-08 2020-07-06 X線発生装置、電源装置、及びx線発生装置の製造方法 WO2021024669A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019146330A JP6807998B1 (ja) 2019-08-08 2019-08-08 X線発生装置、電源装置、及びx線発生装置の製造方法
JP2019-146330 2019-08-08

Publications (1)

Publication Number Publication Date
WO2021024669A1 true WO2021024669A1 (ja) 2021-02-11

Family

ID=73992995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026390 WO2021024669A1 (ja) 2019-08-08 2020-07-06 X線発生装置、電源装置、及びx線発生装置の製造方法

Country Status (2)

Country Link
JP (1) JP6807998B1 (ja)
WO (1) WO2021024669A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05176540A (ja) * 1991-12-25 1993-07-13 Toshiba Corp 高電圧発生装置
JP2007173010A (ja) * 2005-12-21 2007-07-05 Origin Electric Co Ltd 電子管用高電圧発生装置
JP2010040809A (ja) * 2008-08-06 2010-02-18 Hitachi Medical Corp 高電圧変圧器及びこれを用いたインバータ式x線高電圧装置
JP2013073871A (ja) * 2011-09-29 2013-04-22 Hitachi Medical Corp X線装置
WO2016059827A1 (ja) * 2014-10-17 2016-04-21 株式会社 日立メディコ 変圧器および高電圧発生装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05176540A (ja) * 1991-12-25 1993-07-13 Toshiba Corp 高電圧発生装置
JP2007173010A (ja) * 2005-12-21 2007-07-05 Origin Electric Co Ltd 電子管用高電圧発生装置
JP2010040809A (ja) * 2008-08-06 2010-02-18 Hitachi Medical Corp 高電圧変圧器及びこれを用いたインバータ式x線高電圧装置
JP2013073871A (ja) * 2011-09-29 2013-04-22 Hitachi Medical Corp X線装置
WO2016059827A1 (ja) * 2014-10-17 2016-04-21 株式会社 日立メディコ 変圧器および高電圧発生装置

Also Published As

Publication number Publication date
JP2021026988A (ja) 2021-02-22
JP6807998B1 (ja) 2021-01-06

Similar Documents

Publication Publication Date Title
US5517545A (en) X-ray apparatus
CA2781097C (en) High voltage supply for compact radiation generator
JP2014194888A (ja) イオン注入装置のための高電圧電極の絶縁構造
WO2013131628A1 (en) Compact x-ray sources for moderate loading with x-ray tube with carbon nanotube cathode
JPH05176540A (ja) 高電圧発生装置
EP3199000B1 (en) High voltage generator
JP5490994B2 (ja) X線発生装置
JP4338352B2 (ja) X線管及びそれを用いたx線装置
WO2021024669A1 (ja) X線発生装置、電源装置、及びx線発生装置の製造方法
JP2010244834A (ja) X線発生装置及びx線計測装置
JP6889619B2 (ja) X線発生装置
US9805853B2 (en) Isolation transformer, and X-ray generating apparatus and radiography system including the same
US4574178A (en) Electron gun
KR20120093943A (ko) 고전압 차폐 장치
US5090048A (en) Shielded enclosure with an isolation transformer
US5257304A (en) High-voltage power device and power pack for X-ray tube
JP2010015818A (ja) 電子源装置及びイオン装置
US20120025106A1 (en) Beam head
CN111955057A (zh) X射线发生装置
JP4850542B2 (ja) 電子銃、エネルギー線発生装置、電子線発生装置、及びx線発生装置
JP2017120715A (ja) X線発生装置及びx線撮影システム
CN111584334B (zh) 用于离子注入装置的绝缘结构
JPH10162991A (ja) 誘導結合プラズマ装置
EP2148357B1 (en) Mesotube with header insulator
JP7413614B1 (ja) X線発生装置、x線撮像装置およびモールド変圧器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20850935

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20850935

Country of ref document: EP

Kind code of ref document: A1