WO2021024453A1 - 光センサモジュール - Google Patents

光センサモジュール Download PDF

Info

Publication number
WO2021024453A1
WO2021024453A1 PCT/JP2019/031373 JP2019031373W WO2021024453A1 WO 2021024453 A1 WO2021024453 A1 WO 2021024453A1 JP 2019031373 W JP2019031373 W JP 2019031373W WO 2021024453 A1 WO2021024453 A1 WO 2021024453A1
Authority
WO
WIPO (PCT)
Prior art keywords
holding member
lens holding
optical sensor
sensor module
adhesive
Prior art date
Application number
PCT/JP2019/031373
Other languages
English (en)
French (fr)
Inventor
米田 裕
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/031373 priority Critical patent/WO2021024453A1/ja
Priority to CN201980098646.9A priority patent/CN114207844A/zh
Priority to US17/615,166 priority patent/US20220236512A1/en
Priority to JP2020500672A priority patent/JP6811891B1/ja
Publication of WO2021024453A1 publication Critical patent/WO2021024453A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0203Containers; Encapsulations, e.g. encapsulation of photodiodes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/025Mountings, adjusting means, or light-tight connections, for optical elements for lenses using glue
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02325Optical elements or arrangements associated with the device the optical elements not being integrated nor being directly associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/103Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type

Definitions

  • This application relates to an optical sensor module.
  • an infrared detection element Conventionally, an infrared detection element, a lens holding member containing the infrared detection element, and a lens arranged in front of the infrared detection element so that a condensing point overlaps the light receiving portion of the infrared detection element and fixed to the lens holding member.
  • An optical sensor module equipped with and is known.
  • the optical sensor module positions, for example, a lens holding member that fixes and holds the lens with respect to the infrared detection element bonded on the insulating substrate so that the focusing point overlaps the light receiving portion of the infrared detection element.
  • an adhesive ultraviolet (UV) curing adhesive
  • UV curing adhesive is applied in advance to a position where the bottom surface of the positioned lens holding member contacts the insulating substrate, and then the lens holding member is arranged at the positioned position. After that, the coated portion of the adhesive is irradiated with ultraviolet rays to cure the adhesive so that the relative positions of the lens fixed to the lens holding member and the infrared detection element do not change.
  • the lens holding member to which the lens is fixed and the insulating substrate to which the infrared detection element is bonded are adhered, and the relative position between the light receiving part of the infrared detection element and the focusing point of the lens does not change.
  • the conventional optical sensor module cannot control the thickness of the adhesive between the substrate and the lens holding member after the lens holding member is arranged. Therefore, when bonding is performed with a device that does not have an active alignment function that arranges the lens holding member while viewing the image acquired by operating the infrared detection element, the thickness of the adhesive varies and the load on which the lens holding member is mounted is small.
  • the lens holding member is tilted with respect to the substrate due to factors such as a bias in the position where the lens holding member is attracted.
  • the focusing point of the lens may be displaced from the light receiving portion of the infrared detection element, and the optical sensor module may not be able to receive light normally.
  • the lens position is assembled so that the focusing point of the lens overlaps the light receiving part of the infrared detection element.
  • the lens is integrally formed with the lens holding member, when the lens holding member is tilted with respect to the infrared detection element, the focusing point of the lens deviates from the light receiving portion of the infrared detection element and normally receives light. It may not be possible.
  • the lens holding member is arranged, there is a wiring member or the like for operating the infrared detection element on the substrate housed in the lens holding member.
  • the lens holding member is arranged on the adhesive, if the amount of the applied adhesive is large or the load on which the lens holding member is mounted is large, the lens holding member is crushed and the inside of the lens holding member is crushed.
  • the adhesive that has spread wet and spreads in contact with the wiring member inside the lens holding member.
  • the wiring member that comes into contact with the adhesive may be deformed and come into contact with the surrounding wiring member, or the wiring may be broken, so that the infrared detection element may not operate.
  • the lens holding member and the lens are separate members. Therefore, after the lens holding member is adhered to the substrate, before attaching the lens to the lens holding member, whether or not the adhesive protruding inside the lens holding member is in contact with the wiring member or whether or not the lens holding member is tilted is checked. Can be inspected. Therefore, if there is a problem, the position of the wiring member can be corrected, the lens can be attached so as to absorb the inclination of the lens holding member, or the lens can be discarded on the spot at worst.
  • the cost required for the member can be reduced, but after the lens holding member is bonded on the substrate. Cannot correct the tilt of the lens.
  • the loss cost when the defect occurs is larger than that of a general optical sensor module.
  • the present application discloses a technique for solving the above-mentioned problems, and an object of the present application is to provide an optical sensor module in which an adhesive can be easily applied and the inclination of a lens holding member is suppressed. ..
  • a substrate having an electrode pattern formed on its surface, a photodetector element fixed to the substrate, which is electrically connected to the electrode pattern, and a photodetector element for detecting light, and a lens are fixed.
  • the bottom surface of the lens holding member bonded to the substrate has protrusions arranged in a dispersed manner, and the protrusions The tip is in contact with the substrate.
  • optical sensor module it is possible to obtain an optical sensor module in which the adhesive is easily applied and the inclination of the lens holding member is suppressed.
  • FIG. 6 is a cross-sectional view taken along the line AA of FIG.
  • FIG. 5 is a plan view showing still another configuration of the optical sensor module according to the first embodiment.
  • FIG. 5 is a cross-sectional view taken along the line AA of FIG. 8 showing still another configuration of the optical sensor module according to the first embodiment.
  • FIG. 5 is an enlarged cross-sectional view showing another main configuration of the optical sensor module according to the first embodiment.
  • It is a top view which shows the structure of the optical sensor module by Embodiment 2.
  • FIG. It is sectional drawing at the AA position of FIG. 11 which shows the structure of the optical sensor module according to Embodiment 2.
  • FIG. It is a top view which shows the structure of the optical sensor module according to Embodiment 3.
  • FIG. It is sectional drawing at the AA position of FIG. 13 which shows the structure of the optical sensor module according to Embodiment 3.
  • each corresponding component is independent between each figure.
  • the size or scale of the same component may be different between the figure in which a part of the structure is changed and the figure in which the structure is not changed.
  • the configuration of the optical sensor module although a plurality of members are actually provided, only the parts necessary for the description of the present application are described, and the description of the other parts is omitted.
  • an optical sensor module that detects infrared rays as an optical sensor module will be described as an example, but for various optical sensor modules such as a visible light optical sensor module having the same problem as that of infrared rays. Each embodiment can also be applied.
  • FIG. 1 is a plan view showing a schematic configuration of the optical sensor module 101 according to the first embodiment
  • FIG. 2 is a cross-sectional view taken along the line AA of FIG.
  • the optical sensor module 101 has an infrared detection element 10 as a photodetection element, a glass epoxy substrate 20 as a substrate, and a lens 90 inserted after molding, and the periphery of the lens 90 is crimped and fixed with resin. It has a lens holding member 80 integrated with the lens 90.
  • the infrared detection element 10 is fixed to one surface of the glass epoxy substrate 20 by the Ag paste 60, and is fixed and housed inside the lens holding member 80.
  • a lens 90 for transmitting infrared rays and condensing light is integrally fixed to the lens holding member 80, and the bottom surface 84 of the lens holding member 80 is adhered to the glass epoxy substrate 20 by an adhesive 70.
  • FIGS. 1 and 2 show only the basic components of the optical sensor module 101, and are other members bonded on the glass epoxy substrate 20. Components not directly related to the present application, such as dedicated ICs, wires, capacitors, and connectors, are not shown.
  • the infrared detection element 10 is a thermal infrared sensor, for example, a resistance bolometer type sensor typified by vanadium oxide (VOx), or an SOI (Silicon on Insulator) diode bolometer type sensor utilizing the temperature characteristics of a PN diode. And it consists of Si.
  • a resistance bolometer type sensor typified by vanadium oxide (VOx)
  • SOI Silicon on Insulator
  • the glass epoxy substrate 20 is a substrate including circuits that exhibit various functions.
  • the glass epoxy substrate 20 has a plate-shaped glass epoxy base material 20a and an electrode pattern 20b and an electrode pattern 20c formed on both surfaces of the glass epoxy base material 20a.
  • the electrode pattern 20b and the electrode pattern 20c are interfaces that electrically connect the infrared detection element 10 fixed on the glass epoxy board 20 and other electronic devices (not shown), and also connect to other circuit boards and an external power supply. Etc. are provided.
  • the glass epoxy base material 20a is an electrical insulator, and the infrared detection element 10 is bonded to the lens holding member 80, the electrode patterns 20b, and 20c bonded to the glass epoxy substrate 20 with the adhesive 70 by Ag paste 60.
  • the glass epoxy base material 20a is preferably a thick material so that deformation such as warpage due to this stress is unlikely to occur, and generally, for example, a glass epoxy base material having a thickness of about 0.8 mm to 1.0 mm. 20a is used.
  • FIGS. 1 and 2 show an example in which only one infrared detection element 10 is arranged on the glass epoxy substrate 20, but a plurality of infrared detection elements 10 are arranged on one glass epoxy substrate 20. You may. Further, although the number of the glass epoxy substrates 20 is one, the number of the glass epoxy substrates 20 is not limited to one. For example, a plurality of the same electrode patterns 20b and 20c are provided in one glass epoxy substrate 20, and the infrared detection element 10 and other electronic devices are arranged and joined one by one on each of the electrode patterns 20b and 20c. The region of each infrared detection element 10 may be covered with a lens holding member 80 to seal the region, and then the individual electrode patterns 20b and 20c may be cut and divided.
  • the same material is generally used for the electrode pattern 20b and the electrode pattern 20c.
  • An infrared detection element 10 is bonded to one of the electrode patterns 20b with Ag paste 60, and the electrode pattern 20b is formed with a joint portion by an Au wire or the like to electrically connect another electronic device and the infrared detection element 10. Connect to the target. Since such an electrode pattern 20b is a wiring member for electrically connecting the infrared detection element 10 and an external circuit, a metal having a small electric resistance is preferable. Therefore, for the electrode patterns 20b and 20c, for example, a Cu foil having a size of about 10 to 40 ⁇ m is generally used.
  • the electrode pattern 20b formed on the glass epoxy substrate 20 and the infrared detection element 10 are bonded by Ag paste 60, which is a bonding material.
  • Ag paste 60 is a bonding material.
  • the curing temperature of the Ag paste 60 is lower than the melting point of the solder so that the surrounding solder does not remelt when the infrared detection element 10 is joined.
  • the bonding material has a large thermal conductivity. Therefore, the bonding material is not limited to Ag paste, but other conductive adhesives or sintered bonding materials such as Ag nanoparticle paste may be used, but Ag paste is used from the viewpoint of adhesion temperature, thermal conductivity, cost, etc. Is preferable.
  • the adhesive 70 adheres the bottom surface 84 of the lens holding member 80 to the surface of the glass epoxy substrate 20 on the side to which the infrared detection element 10 is bonded.
  • the infrared detection element 10 is adhered to the surface of the glass epoxy substrate 20 by Ag paste 60, other electronic components are bonded by solder, and they are electrically connected.
  • the adhesive 70 is prevented from spreading inside the lens holding member 80 so that the wires do not come off or the adjacent wires do not come into contact with each other. It is preferable to do so.
  • a transfer step by an operator is performed before the adhesive 70 is cured. Then, the lens holding member 80 is peeled off or moved due to vibration during transportation, impact during dropping, or the like. As a result, infrared rays cannot be focused on the infrared detection element 10, and there is a risk that problems such as inability to image, image loss, and out-of-focus may occur.
  • the adhesive 70 can be cured in the same device as the lens holding member 80 is arranged on the applied adhesive 70, and the adhesive 70 can be cured without damaging the surrounding members.
  • the adhesive 70 is a UV thermosetting adhesive that cures by irradiating UV, or UV thermosetting adhesive that cures by using UV and heating below the melting point of the solder or the heat resistant temperature of the surrounding members. It is preferable to use an agent.
  • the lens holding member 80 when the lens holding member 80 is arranged on the applied adhesive 70, if the load for mounting the lens holding member 80 is small or the amount of the adhesive 70 applied is too large, the lens holding member There is a risk that the 80 will tilt with respect to the glass epoxy substrate 20 and the infrared ray detection element 10 will not be able to collect infrared light. On the contrary, if the load for mounting the lens holding member 80 is too large, the adhesive 70 may be deformed and spread on the inside and outside of the bottom surface 84 of the lens holding member 80 beyond the design value. The adhesive 70 that wets and spreads on the outside of the lens holding member 80 may hinder the assembly of the optical sensor module 101 to the product.
  • the adhesive 70 that has spread wet inside the lens holding member 80 comes into contact with a wiring member such as a wire, and the joint portion between the wire and the glass epoxy substrate 20 comes off, or the wire falls and comes into contact with an adjacent wire. There is a risk of On the other hand, if the amount of the adhesive 70 applied is too small, the adhesive 70 does not sufficiently wet and spread on the bottom surface 84 of the lens holding member 80, and the adhesive strength is weakened, which may reduce the reliability of the optical sensor module 101.
  • the lens holding member 80 is a box provided with a flat upper surface portion and a side portion connected to the outer edge of the upper surface portion by a thermoplastic resin, a thermosetting resin, a metal, or the like, and an opening surrounded by the side portions. ..
  • the shape of the upper surface portion is square in the first embodiment, but it may be rectangular, circular, or elliptical.
  • the lens holding member 80 is fixed so that the lens 90 is integrated in the upper surface portion thereof, and the infrared ray transmitted through the lens 90 is collected by the light receiving portion of the infrared ray detecting element 10 and is located on the bottom surface by the adhesive 70.
  • the entire circumference of 84 is adhered to the glass epoxy substrate 20.
  • the infrared detection element 10 is sealed by evacuating the inside of the lens holding member 80.
  • an edge 81 is formed so that each side of the square projects outward in order to increase the adhesive area of the bottom surface 84, which is the adhesive surface of the lens holding member 80, and increase the adhesive strength.
  • the diameter of the bottom of the square corresponding to the four corners is equal to or less than the width of the bottom surface 84 of the lens holding member 80 from the bottom surface 84 of the lens holding member 80 toward the glass epoxy substrate 20 facing the lens holding member 80.
  • the conical trapezoidal protrusion 82 is formed, and the bottom surface 84 of the lens holding member 80 and the glass epoxy substrate 20 are adhered so that the tip of the protrusion 82 and the glass epoxy substrate 20 are in contact with each other.
  • thermoplastic resin When a thermoplastic resin is used for the lens holding member 80, a PC (Polycarbonate) is generally used. In addition to PC, PA66 (NYLON66), PBT (Polybutylene Thermolate), PPS (Polyphenylene Sulfide), etc. can be used, and since these resins have high heat resistance, they are heated when the adhesive 70 is cured. It is preferable because the heating temperature can be set high even when it is necessary. Since the adhesive 70 is interposed between the bottom surface 84 of the lens holding member 80 and the glass epoxy substrate 20 for adhesion, the height of the protrusion 82 is the thickness of the adhesive.
  • PC Polycarbonate
  • PA66 NYLON66
  • PBT Polybutylene Thermolate
  • PPS Polyphenylene Sulfide
  • the height of the protrusion 82 is high enough to absorb the amount of warpage of the glass epoxy substrate 20 and the stress caused by the difference in the coefficient of linear expansion between the lens holding member 80 and the glass epoxy substrate 20, and the height of the applied adhesive 70. It is preferable to set the thickness to a level lower than the thickness, and specifically, it is preferably set to about 10 to 200 ⁇ m.
  • the lens 90 is a silicon lens having convex spherical surfaces on both sides, and the outer circumference is covered with the lens holding member 80 and integrated, so that the lens 90 is fixed to the upper surface portion of the lens holding member 80. There is. Therefore, when the lens holding member 80 moves, the lens 90 also moves together with the lens holding member 80, and the relative position with the infrared detection element 10 changes due to the movement of the lens holding member 80. Further, since the lens 90 transmits infrared rays but does not transmit visible light, it is not possible to observe the inside of the lens holding member 80 through the lens 90.
  • the position of the lens 90 is assembled so that the focusing point of the lens 90 overlaps the light receiving portion of the infrared detection element 10 in order to be correctly imaged by the infrared detection element 10.
  • the lens holding member 80 is tilted with respect to the infrared detecting element 10
  • the focusing point of the lens 90 is the infrared detecting element 10.
  • the infrared detection element 10 cannot normally receive light because it is separated from the light receiving unit.
  • the infrared detection element 10 may not be able to take an image, the image may be chipped even if the displacement is minute, or the image may be out of focus.
  • the lens holding member 80 when the lens holding member 80 is arranged, there is a wiring member or the like for operating the infrared detection element 10 on the electrode pattern 20b of the glass epoxy substrate 20 housed in the lens holding member 80. Therefore, when the lens holding member 80 is arranged on the adhesive 70, if the amount of the applied adhesive 70 is large or the load of the nozzle on which the lens holding member 80 is mounted is large, the lens holding member 80 is crushed. The adhesive 70 that has been wetted and spread inside the lens holding member 80 comes into contact with the wiring member inside the lens holding member 80. The wiring member that comes into contact with the adhesive 70 may be deformed and come into contact with the surrounding wiring members, or the wiring may be broken, which may cause defects such as the optical sensor module 101 not operating.
  • the focusing point of the lens will be the infrared detection element again after the adhesive that adheres the lens holding member to the substrate is cured.
  • the position of the lens can be readjusted so that it overlaps the light receiving part.
  • the lens holding member 80 and the lens 90 are integrally molded, and after the lens holding member 80 is mounted on the adhesive 70, , The position of the lens 90 cannot be readjusted.
  • the lens holding member 80 is set so that the bottom surface 84 of the lens holding member 80 is parallel to the glass epoxy substrate 20 regardless of the amount of the applied adhesive 70 or the loading load of the lens holding member 80. It is important to dispose. Therefore, in the optical sensor module according to the first embodiment, as shown in FIGS. 1 and 2, the same height is provided on the bottom surfaces 84 of the four corners of the lens holding member 80 to which the lens 90 is fixed. A protrusion 82 is provided.
  • the lens holding member 80 is crushed and protrudes from below the bottom surface 84 of the lens holding member 80, and spreads wet inside the lens holding member 80.
  • the volume of the adhesive 70 can be suppressed.
  • the adhesive 70 wetted and spread inside the lens holding member 80 has a shape close to a semicircle.
  • the optical sensor module 101 according to the first embodiment as shown in FIG.
  • the adhesive 70 wet and spread inward has a shape close to a fan shape, so that the adhesive 70 is on the surface of the glass epoxy substrate 20.
  • the distance A that spreads wet can be suppressed. Therefore, it is possible to prevent the adhesive 70, which is crushed by the lens holding member 80 and spreads wet inside the lens holding member 80, from coming into contact with the wiring member inside the lens holding member 80.
  • the shape of the protrusion 82 is a truncated cone whose bottom surface diameter is smaller than the width of the bottom surface 84 of the lens holding member 80, so that when the lens holding member 80 is arranged on the adhesive 70, it is mounted very small.
  • FIG. 5 shows a cross section in which a protrusion 82 is provided on the bottom surface 84 of the lens holding member 80 and is adhered to the glass epoxy substrate 20 with an adhesive 70.
  • the linear expansion coefficient is different, so that the infrared detection element is driven or the ambient temperature is changed. Stress is generated at the bonded part. Since this stress is repeatedly generated as the usage time of the optical sensor module increases, there is a concern that the bonded portion may be broken or peeled off due to fatigue. As a result, the position of the lens holding member 80 changes, and the relative position between the light receiving portion of the infrared detection element 10 and the focusing point of the lens 90 changes, so that the infrared detection element 10 cannot take an image or an image is obtained. There is a risk that the lens will be chipped or out of focus.
  • the adhesive 70 wets and spreads in the space formed between the glass epoxy substrate 20 and the bottom surface 84 of the lens holding member 80 by the height of the protrusion 82, thereby causing the protrusion.
  • the adhesive 70 is thicker than the optical sensor module without the glass. As a result, the shear strain generated in the adhesive 70 due to the difference in linear expansion coefficient between the glass epoxy substrate 20 and the lens holding member 80 can be reduced as compared with the optical sensor module having no protrusions, so that the life of the adhesive portion by the adhesive 70 is extended. it can.
  • protrusions 82 may be formed in any part of the bottom surface 84, which is an adhesive surface to be adhered to the adhesive 70 of the lens holding member 80, in any shape.
  • FIG. 7 which is a plan view of FIG. 6 and a cross-sectional view taken along the line AA of FIG. 6
  • cylindrical protrusions are provided at a total of eight positions at each corner of the lens holding member 80 and at the center of each side. It may be provided. Further, it may be a prismatic protrusion.
  • FIG. 9 which is a plan view of FIG. 8 and a cross-sectional view taken along the line AA of FIG. 8 triangular pyramid-shaped protrusions are provided at a total of four locations in the center of each side of the lens holding member 80. It doesn't matter. Further, it may be a protrusion having a square thrust shape.
  • the protrusion 82 When the lens holding member 80 is arranged on the adhesive 70, if a protrusion 82 is formed at a position where the tip contacts the adhesive 70, the protrusion 82 pushes the adhesive 70 away even with a very small loading load and is made of glass epoxy.
  • the protrusion 82 preferably has a shape whose tip area is sufficiently smaller than that of the bottom surface 84 of the lens holding member 80 so that the protrusion 82 can be brought into contact with the surface of the substrate 20.
  • the lens holding member 80 is formed by injection molding, the cross-sectional area becomes smaller from the bottom surface 84 to the tip, that is, the tip is narrower than the bottom, and the lens holding member 80 is easily removed from the mold. It is particularly preferable because it has a shape that easily pushes away the adhesive 70. Further, it may be a protrusion having a curved surface such as a hemisphere.
  • the lens holding member 80 is arranged on the adhesive 70 applied on the glass epoxy board 20
  • the lens 90 molded integrally with the lens holding member 80 is parallel to the glass epoxy board 20. It is necessary to have three or more protrusions 82 having the same height so as to be.
  • the adhesive strength between the lens holding member 80 and the adhesive 70 becomes larger. It is more preferable because the joining reliability can be improved.
  • the frictional force between the glass epoxy substrate 20 and the lens holding member 80 becomes large. .. Therefore, it is more preferable because the position shift between the light receiving portion of the infrared detection element 10 and the optical center of the lens 90 due to the position shift of the lens holding member 80 due to the curing shrinkage of the adhesive 70 can be suppressed.
  • the height of the protrusion 82 is increased by providing the protrusion 82 on the bottom surface 84, which is the adhesive surface to be adhered by the adhesive 70 of the lens holding member 80.
  • a space is formed between the glass epoxy substrate 20 and the bottom surface 84 of the lens holding member 80 by that amount.
  • the volume of the adhesive 70 that wets and spreads inside the lens holding member 80 can be suppressed.
  • the wet and spread adhesive 70 has a shape close to a fan shape, so that the distance that the adhesive 70 wets and spreads on the surface of the glass epoxy substrate 20. A can be suppressed.
  • the adhesive 70 that has spread wet and spread inside the lens holding member 80 from coming into contact with the wiring member inside the lens holding member 80.
  • the lens 90 integrally formed with the lens holding member 80 is attached to the infrared detection element 10. It is possible to prevent the infrared detection element 10 from being unable to take an image, being missing an image, or being out of focus due to tilting.
  • the adhesive 70 is thicker than the optical sensor module without protrusions, the shear strain generated in the adhesive 70 due to the difference in linear expansion coefficient between the glass epoxy substrate 20 and the lens holding member 80 can be reduced, so that the adhesive 70 The life of the bonded portion can be extended, and a high-quality optical sensor module 101 can be obtained.
  • FIG. 11 is a plan view showing a schematic configuration of the optical sensor module 102 according to the second embodiment
  • FIG. 12 is a cross-sectional view taken along the line AA of FIG.
  • the optical sensor module 102 according to the second embodiment basically has the same configuration as the optical sensor module 101 according to the first embodiment, but differs in the following points. Here, the differences will be mainly described, and the description of the same components will be omitted.
  • 11 and 12 are schematic views showing only the basic components of the optical sensor module 102, and the description of the other components will be omitted.
  • the infrared detection element 10 is sealed by evacuating the inside of the lens holding member 80 after adhering the entire circumference of the bottom surface 84 of the lens holding member 80 with the adhesive 70.
  • a light transmitting plate 15 which is a light transmitting member is placed on the infrared detecting element 10 at a distance from the surface of the infrared detecting element 10 via a frame 151. They are joined apart.
  • the first embodiment is that the infrared detection element 10 is sealed by creating a vacuum in the space formed between the infrared detection element 10 and the light transmitting plate 15, and the inside of the lens holding member 80 is not vacuum-sealed. Is different from.
  • the light transmitting plate 15 is fixed to the light incident side of the light receiving portion of the infrared detection element 10 and is integrated with the infrared detection element 10 to cover the light receiving portion of the infrared detection element 10.
  • the inside covered with the infrared detection element 10, the frame 151, and the light transmitting plate 15 is vacuum-sealed. Further, since the light transmitting plate 15 transmits infrared light but does not transmit visible light, the light receiving portion of the infrared detecting element 10 cannot be observed through the light transmitting plate 15.
  • the bottom surface 84 of the lens holding member 80 and the glass epoxy substrate 20 are bonded to the bottom surface 84 of the lens holding member 80 at the same height as only the four corners of the lens holding member 80.
  • a total of four protrusions 82 are provided at the center of each side of the lens holding member 80.
  • the adhesive 70 may be applied to such an extent that the adhesive portion is not broken or peeled off due to fatigue. For example, as shown in FIGS. 11 and 12, the adhesive 70 may be applied only to the four corners of the lens holding member 80. ..
  • the area of the bottom surface 84 can be reduced by the amount that the bonding area of the lens holding member 80 is reduced, and the optical sensor module.
  • the entire 102 can be miniaturized. Further, since the adhesive area of the adhesive 70 is smaller than that of the case where the entire circumference is adhered with the adhesive 70, the shear strain generated in the adhesive 70 due to the difference in linear expansion coefficient between the glass epoxy substrate 20 and the lens holding member 80 is generated. It will be reduced. Therefore, the effect of the optical sensor module disclosed in the present application that the life of the bonded portion by the adhesive 70 can be extended becomes more effective.
  • the shape of the protrusion 82 can be selected more freely.
  • the adhesive does not enter between the tip of the protrusion 82 and the glass epoxy substrate 20, the tip of the protrusion 82 can be reliably brought into contact with the surface of the glass epoxy substrate 20.
  • the lens 90 integrally formed with the lens holding member 80 cannot be tilted with respect to the infrared detection element 10 bonded on the glass epoxy substrate 20, the image cannot be imaged, the image is missing, or the image is out of focus. The effect of preventing the lens from dripping is also more certain.
  • the lens holding member 80 is bonded only at four corners instead of the entire circumference of the bottom surface 84, but it will be described in the first embodiment in a configuration in which the light transmitting plate 15 and the frame 151 are vacuum-sealed.
  • the entire circumference of the bottom surface 84 of the lens holding member 80 may be adhered with the adhesive 70 in the same manner as in the above. Even in this case, since it is not necessary to vacuum-seal the inside of the lens holding member 80, the adhesion does not need to be airtight.
  • Embodiment 3. 13 is a plan view showing a schematic configuration of the optical sensor module 103 according to the third embodiment
  • FIG. 14 is a cross-sectional view taken along the line AA of FIG.
  • the optical sensor module 103 according to the third embodiment basically has the same structure as the optical sensor module 101 according to the first embodiment, but differs in the following points. Here, the differences will be mainly described, and the description of the same components will be omitted. Note that FIGS. 13 and 14 are schematic views showing only the basic components of the optical sensor module 103, and description of the other components will be omitted.
  • a truncated cone-shaped positioning protrusion 82a is provided at the tip of the protrusion 82 provided on the bottom surface 84 of the lens holding member 80 from the tip of the protrusion 82. It is formed integrally with.
  • a positioning hole 21 is formed at the position of the glass epoxy board 20 facing the positioning protrusion 82a, and the bottom surface 84 of the lens holding member 80 and the glass epoxy board 20 are adhered to each other with the positioning protrusion 82a inserted into the positioning hole 21. Has been done.
  • the positioning protrusion 82a is inserted into the positioning hole 21, and then the tip of the protrusion 82 comes into contact with the glass epoxy substrate 20. , The glass epoxy substrate 20 and the lens holding member 80 are adhered by the adhesive 70.
  • the lens holding member 80 is arranged on the adhesive 70 applied on the glass epoxy substrate 20, even if the position of the lens holding member 80 tries to move or rotate slightly due to the deformation of the adhesive 70. Since the positioning protrusion 82a is inserted into the positioning hole 21, the lens holding member 80 can be adhered without being displaced.
  • the adhesive 70 shrinks when the lens holding member 80 is adhered, or the optical sensor module 103 is driven or the ambient temperature changes. Even if the adhesive 70 is deformed due to this, the positioning protrusion 82a inserted into the positioning hole 21 is in contact with the inlet of the positioning hole 21 at the bottom surface, so that the relative position between the positioning protrusion 82a and the positioning hole 21 Does not change. For this reason, the position of the lens holding member 80 changes, and the relative position between the light receiving portion of the infrared detection element 10 and the focusing point of the lens 90 changes, making it impossible to take an image, the image is missing, or the image is in focus. It is possible to prevent defects such as disappearance.
  • the glass epoxy substrate 20 of the lens holding member 80 is formed. Positioning on the top can be performed reliably. Further, during bonding, the lens holding member 80 does not shift in position due to the deformation of the adhesive 70 after bonding or the thermal stress generated by the temperature change, so that the position of the light receiving portion of the infrared detection element 10 and the optical center of the lens 90 are displaced. Can be prevented.
  • the protrusions 82 are formed at the four corners of the lens holding member 80, the positioning protrusions 82a are provided on the respective protrusions 82, and the positioning holes 21 are located at the positions of the glass epoxy substrates facing the positioning protrusions 82a.
  • protrusions 82 having positioning protrusions 82a may be provided at a total of eight locations at each corner of the lens holding member 80 and at the center of each side, or at a total of four locations at the center of each side of the lens holding member 80. It may be provided.
  • the positioning protrusions 82a may not be provided on all the protrusions 82, and the positioning protrusions 82a may be provided only on some of the protrusions 82.
  • the positioning protrusion 82a and the positioning hole 21 face each other. It is necessary to arrange at least two places at the same position.
  • the light transmitting plate 15 which is a light transmitting member is solder-bonded on the infrared detecting element 10, and a vacuum is formed in the space formed between the infrared detecting element 10 and the light transmitting plate 15.
  • the infrared detection element 10 may be sealed, and the inside of the lens holding member 80 may not be vacuum-sealed. Since it is not necessary to vacuum-seal the inside of the lens holding member 80, it is not necessary to apply the adhesive 70 to the entire circumference of the bottom surface 84 of the lens holding member 80, and the protrusion 82 can be provided at a position where the adhesive 70 is not applied. It will be easier.
  • the adhesive 70 from leaking from the positioning hole 21 to the back surface of the glass epoxy substrate 20, and the lens holding member 80 is positioned on the glass epoxy substrate 20 to form the lens holding member 80 at the time of bonding and after bonding.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

表面に電極パターンが形成された基板(20)と、電極パターンに電気接続されるとともに、基板(20)に固定された、光を検出する光検出素子(10)と、レンズ(90)が固定され、光検出素子(10)を取り囲む位置で基板(20)に接着剤で接着されたレンズ保持部材(80)と、を備えた光センサモジュールであって、基板(20)に接着されるレンズ保持部材(80)の底面(84)は分散配置された突起(82)を有し、突起(82)の先端が基板(20)と接している。

Description

光センサモジュール
 本願は、光センサモジュールに関する。
 従来から、赤外線検出素子と、赤外線検出素子が収納されたレンズ保持部材と、赤外線検出素子の受光部に集光点が重なるよう赤外線検出素子の前方に配置されてレンズ保持部材に固定されたレンズとを備えた光センサモジュールが知られている。
 上記光センサモジュールは、例えば、レンズが赤外線検出素子の受光部に集光点が重なるように、絶縁基板上に接合された赤外線検出素子に対してレンズを固定して保持するレンズ保持部材を位置決めする。そのために、位置決めしたレンズ保持部材の底面が絶縁基板に接触する位置に予め接着剤(紫外線(UV)硬化接着剤)を塗布したのち、位置決めした場所にレンズ保持部材を配設する。その後、接着剤の塗布部に対して紫外線を照射して接着剤を硬化させることでレンズ保持部材に固定されたレンズと赤外線検出素子の相対位置が変化しないようにする。
 接着剤が硬化することで、レンズが固定されたレンズ保持部材と赤外線検出素子が接合された絶縁基板が接着され、赤外線検出素子の受光部とレンズの集光点の相対位置が変化しなくなる。しかし、従来の光センサモジュールはレンズ保持部材を配設した後の基板とレンズ保持部材との間の接着剤厚さを制御できない。そのため、赤外線検出素子を動作させて取得した画像を見ながらレンズ保持部材を配設させるアクティブアライメント機能のない装置で接着させた場合、接着剤の厚さバラつき、レンズ保持部材を搭載する荷重の小ささ、レンズ保持部材を吸着した位置の偏り等の要因で、レンズ保持部材が基板に対して傾いて配設されることがあった。これによりレンズの集光点が赤外線検出素子の受光部から外れて、光センサモジュールが正常に受光できなくなる可能性があった。
 光センサモジュールにおいて、赤外線検出素子で正しく撮像するために、レンズの位置はレンズの集光点が赤外線検出素子の受光部に重なるように組立てられている。しかし、特にレンズがレンズ保持部材と一体的に形成されている場合、レンズ保持部材が赤外線検出素子に対して傾くと、レンズの集光点が赤外線検出素子の受光部から外れて、正常に受光できなくなる可能性がある。またレンズ保持部材が配設されたとき、レンズ保持部材内に収納される基板上には、赤外線検出素子を動作させるための配線部材等が存在する。そのため、レンズ保持部材を接着剤上に配設した時、塗布された接着剤の量が多かったり、レンズ保持部材を搭載する荷重が大きかったりすると、レンズ保持部材によって押しつぶされてレンズ保持部材の内側に濡れ広がった接着剤が、レンズ保持部材内側の配線部材と接触する。接着剤と接触した配線部材は、変形して周囲の配線部材と接触したり、配線が切れたりすることで赤外線検出素子が動作しなくなる等の恐れが生じる。
 また、一般的な光センサモジュールはレンズ保持部材とレンズは別部材となっている。そのため、基板上にレンズ保持部材を接着した後、レンズ保持部材にレンズを取り付ける前に、レンズ保持部材内側へはみ出した接着剤の配線部材への接触の有無、あるいはレンズ保持部材の傾きの有無を検査できる。そのため、問題があった場合は、配線部材の位置を修正したり、レンズ保持部材の傾き分を吸収するようにレンズを取り付けたり、最悪その場で廃棄することができる。しかし、一般的な光センサモジュールより小型化するためにレンズとレンズ保持部材が一体となっている光センサモジュールでは、部材に要するコストが低減できる代わりに、基板上にレンズ保持部材を接着した後はレンズの傾きを修正できない。しかも接着剤の配線部材への接触による動作不良は実際にセンサを動作させるまで検査できないため、不良が発生した場合のロスコストは、一般的な光センサモジュールより大きなものとなる。
 このような問題を解消するため、レンズ保持部材の内側に接着剤が入り込まず、レンズ保持部材の傾きも抑制できる光センサモジュールとして、レンズ保持部材と基板とを当接させるとともに、この当接部分のレンズ保持部材の外周側に接着剤の充填空間を形成してレンズ保持部材を基板に接着する構成が提案されている(特許文献1参照)。
特開2006-86671号公報
 特許文献1に記載された光センサモジュールにおいては、レンズ保持部材と基板とが、レンズ保持部材の当接面で接触しているため、レンズ保持部材の傾きが抑制されるとともに、レンズ保持部材の内側に接着剤が入り込む恐れが少ない。しかしながらレンズ保持部材と基板とを隙間なく当接させるためには、レンズ保持部材の当接面の加工の精度が要求されるとともに、レンズ保持部材と基板とを当接させながら、レンズ保持部材の外周に形成された充填空間に所定量の接着剤を充填する必要がある。したがって、接着剤を充填する工程が複雑になる。
 本願は、上記のような課題を解決するための技術を開示するものであり、接着剤の塗布が簡単で、しかもレンズ保持部材の傾きが抑制される光センサモジュールを提供することを目的とする。
 本願に開示される光センサモジュールは、表面に電極パターンが形成された基板と、電極パターンに電気接続されるとともに、基板に固定された、光を検出する光検出素子と、レンズが固定され、光検出素子を取り囲む位置で基板に接着剤で接着されたレンズ保持部材と、を備えた光センサモジュールにおいて、基板に接着されるレンズ保持部材の底面は分散配置された突起を有し、突起の先端が基板と接しているものである。
 本願に開示される光センサモジュールによれば、接着剤の塗布が簡単で、しかもレンズ保持部材の傾きが抑制される光センサモジュールが得られる。
実施の形態1による光センサモジュールの構成を示す平面図である。 実施の形態1による光センサモジュールの構成を示す図1のA-A位置での断面図である。 比較例による光センサモジュールの要部の構成を示す拡大断面図である。 実施の形態1による光センサモジュールの要部構成を示す拡大断面図である。 実施の形態1による光センサモジュールの要部断面を写真により示した図である。 実施の形態1による光センサモジュールの別の構成を示す平面図である。 実施の形態1による光センサモジュールの別の構成を示す図6のA-A位置での断面図である。 実施の形態1による光センサモジュールのさらに別の構成を示す平面図である。 実施の形態1による光センサモジュールのさらに別の構成を示す図8のA-A位置での断面図である。 実施の形態1による光センサモジュールのまた別の要部構成を示す拡大断面図である。 実施の形態2による光センサモジュールの構成を示す平面図である。 実施の形態2による光センサモジュールの構成を示す図11のA-A位置での断面図である。 実施の形態3による光センサモジュールの構成を示す平面図である。 実施の形態3による光センサモジュールの構成を示す図13のA-A位置での断面図である。
 本願の光センサモジュールの実施の形態について、図を参照しながら説明する。なお、各図において、同一または同様の構成部分については同じ符号を付している。また、以下の説明が不必要に冗長になるのを避け当事者の理解を容易にするため、既によく知られた事項の説明および実質的に同一の構成に対する重複説明を省略する場合がある。
 また、各図間では、対応する各構成部分のサイズあるいは縮尺はそれぞれ独立している。例えば、構成の一部を変更した図と変更していない図示において、同一構成部分のサイズあるいは縮尺が異なっている場合もある。また、光センサモジュールの構成について、実際にはさらに複数の部材を備えているが、本願の説明に必要な部分のみを記載し、その他の部分については説明を省略している。また、以下の説明では、光センサモジュールとして赤外線を検出する光センサモジュールを例にして説明するが、赤外線ではなく同様の課題を持つ可視光の光センサモジュールなど、種々の光センサモジュールに対して各実施の形態を適用することもできる。
実施の形態1.
 図1は、実施の形態1による光センサモジュール101の概略構成示す平面図、図2は図1のA-A位置での断面図である。光センサモジュール101は、基本構成として、光検出素子としての赤外線検出素子10と、基板としてのガラスエポキシ基板20と、成型後にレンズ90が挿入されてレンズ90の周囲を樹脂でかしめて固定することでレンズ90と一体となったレンズ保持部材80とを有している。ガラスエポキシ基板20の一表面に赤外線検出素子10がAgペースト60によって固着されて、レンズ保持部材80の内部に固定され、収納されている。レンズ保持部材80には赤外線を透過して集光するためのレンズ90が一体となって固定されており、レンズ保持部材80の底面84は接着剤70によってガラスエポキシ基板20に接着されている。
 なお、図1および図2では、光センサモジュール101における基本的な構成部分のみを図示し、ガラスエポキシ基板20上に接合されている他の部材である。専用IC、ワイヤ、コンデンサ、コネクタ等、本願に直接関係しない構成部材については図示を省略している。
 赤外線検出素子10は熱型の赤外線センサであり、例えば、バナジウムオキサイド(VOx)に代表される抵抗ボロメータ型のセンサ、あるいはPNダイオードの温度特性を利用したSOI(Silicon on Insulator)ダイオードボロメータ型のセンサで、Siからなる。
 ガラスエポキシ基板20は、種々の機能を発揮する回路を含む基板である。ガラスエポキシ基板20は、板状のガラスエポキシ基材20aと、このガラスエポキシ基材20aの両面に形成された、電極パターン20bおよび電極パターン20cを有する。電極パターン20b、電極パターン20cは、ガラスエポキシ基板20上に固定された赤外線検出素子10および図示しない他の電子デバイスを電気的に接続し、また他の回路基板および外部の電源等に接続するインターフェイス等を提供する。ガラスエポキシ基材20aは、電気的絶縁物であり、接着剤70でガラスエポキシ基板20に接着されているレンズ保持部材80、電極パターン20b、20cにAgペースト60によって接合されている赤外線検出素子10および他の電子デバイスなどとの線膨張係数差によって、光センサモジュール101の動作中、温度上昇により応力が生じる。ガラスエポキシ基材20aは、この応力に起因する反りなどの変形が生じ難いように厚さの厚い材料が好ましく、一般的には、例えば厚さ0.8mm~1.0mm程度のガラスエポキシ基材20aが用いられる。
 また、図1および図2では、ガラスエポキシ基板20には赤外線検出素子10が1枚のみ配置されている例を示しているが、1枚のガラスエポキシ基板20に複数の赤外線検出素子10を配置してもよい。さらに、ガラスエポキシ基板20の個数は1個であるが、ガラスエポキシ基板20の個数は1個に限定されない。例えば、1枚のガラスエポキシ基板20内に複数の同一の電極パターン20b、20cを設け、個々の電極パターン20b、20c上に1枚ずつ赤外線検出素子10および他の電子デバイスを配置して接合し、個々の赤外線検出素子10の領域をそれぞれレンズ保持部材80で覆うことで封止した後、個々の電極パターン20b、20cごとに切断して分割するような構成としても良い。
 電極パターン20bおよび電極パターン20cは、同じ材料が用いられるのが一般的である。一方の電極パターン20bには、赤外線検出素子10がAgペースト60によって接合され、また電極パターン20bは、Auワイヤ等で接合部を形成することで、他の電子デバイスと赤外線検出素子10とを電気的に接続する。このような電極パターン20bは、赤外線検出素子10と、外部の回路とを電気接続するための配線部材であるため、電気抵抗の小さい金属が好ましい。よって、電極パターン20b、20cは、一般的には例えば10~40μm程度のCu箔が用いられる。
 ガラスエポキシ基板20上に形成された電極パターン20bと赤外線検出素子10とは、接合材であるAgペースト60により接合されている。Agペースト60によって赤外線検出素子10が接合される時は、既に他の電子部品がはんだによってガラスエポキシ基板20上に接合されている。そのため、赤外線検出素子10の接合時に周囲のはんだが再溶融しないように、Agペースト60の硬化温度がはんだの融点未満であることが好ましい。また、赤外線検出素子10の温度上昇を避けるため接合材は熱伝導率が大きい方が好ましい。そのため、接合材はAgペーストに限らず他の導電性接着剤、あるいはAgナノ粒子ペースト等の焼結接合材でもかまわないが、接着温度、熱伝導率、コスト等の観点からAgペーストを用いるのが好ましい。
 接着剤70はレンズ保持部材80の底面84と、ガラスエポキシ基板20の赤外線検出素子10が接合された側の面とを接着する。接着剤70によってレンズ保持部材80が接着される時は、ガラスエポキシ基板20の表面に赤外線検出素子10がAgペースト60によって接着され、他の電子部品がはんだによって接合され、それらを電気的に接続するための部材であるAuワイヤ等が配線されている。そのため、接着剤70の硬化時にガラスエポキシ基板20上に実装されている他の部材が破壊したり、はんだが再溶融したりしないように、接着剤70の硬化温度は、赤外線検出素子10、他の電子部品、レンズ保持部材80の耐熱温度、およびはんだの融点より低いことが好ましい。
 また、これらの部材はレンズ保持部材80の内側に収納されるため、ワイヤが外れたり、近接するワイヤ同士が接触しないように、接着剤70はレンズ保持部材80の内側には濡れ広がらないようにすることが好ましい。加えて、接着剤70をガラスエポキシ基板20上に塗布して、塗布した接着剤70上にレンズ保持部材80を配設してから、接着剤70が硬化する前に作業者による搬送工程が入ると、搬送時の振動あるいは落下時の衝撃等によってレンズ保持部材80が剥離したり移動したりする。これによって赤外線検出素子10に赤外線を集光できず、撮像できなかったり画像が欠けたり、ピントがズレたり等の問題を生じる恐れがある。したがって、塗布した接着剤70上にレンズ保持部材80を配設するのと同じ装置内で接着剤70を硬化でき、周囲の部材にダメージを与えず接着剤70を硬化できるのが好ましい。このため、接着剤70にはUVを照射することで硬化するUV硬化接着剤、またはUVと、はんだの融点あるいは周囲の部材の耐熱温度未満の加熱を併用することで硬化する、UV熱硬化接着剤を使用するのが好ましい。
 同じように、塗布した接着剤70上にレンズ保持部材80を配設するとき、レンズ保持部材80を搭載するための荷重が小さかったり、接着剤70の塗布量が多すぎたりすると、レンズ保持部材80がガラスエポキシ基板20に対して傾き、赤外線検出素子10に赤外線を集光できなくなる恐れがある。逆にレンズ保持部材80を搭載するための荷重が大きすぎると、接着剤70が変形してレンズ保持部材80の底面84の内外側に設計値を超えて濡れ広がる恐れがある。レンズ保持部材80の外側に濡れ広がった接着剤70は光センサモジュール101の製品への組付けを阻害する恐れがある。また、レンズ保持部材80の内側に濡れ広がった接着剤70がワイヤ等の配線部材に接触して、ワイヤとガラスエポキシ基板20との接合部が外れたり、ワイヤが倒れて近接するワイヤと接触したりする恐れがある。一方、接着剤70の塗布量が小さすぎると、レンズ保持部材80の底面84に接着剤70が十分濡れ広がらず、接着強度が弱くなるため光センサモジュール101の信頼性が低下する恐れがある。
 レンズ保持部材80は、熱可塑性樹脂あるいは熱硬化性樹脂、金属等によって、平板状の上面部と上面部の外縁に連なる側部と、側部により囲まれている開口部とを備える箱である。上面部の形状は本実施の形態1では正方形としたが、長方形でも円形でも楕円形などでもかまわない。また、レンズ保持部材80は、その上面部内にレンズ90が一体となるよう固定されており、レンズ90を透過した赤外線が赤外線検出素子10の受光部で集光する位置で、接着剤70によって底面84の全周がガラスエポキシ基板20に接着されている。レンズ保持部材80の内側を真空引きすることで赤外線検出素子10を封止している。レンズ保持部材80の接着面である底面84の接着面積を増やして接着強度を上げるために、図1および図2に示すように、正方形の各辺が外側に張り出すように縁部81が形成されている。加えて、正方形の4角に当たる部分にはレンズ保持部材80の底面84から、レンズ保持部材80と対向するガラスエポキシ基板20側に向かって、底部の径がレンズ保持部材80の底面84の幅以下の円錐台形状の突起82が形成されており、突起82の先端とガラスエポキシ基板20とが当接するようにしてレンズ保持部材80の底面84とガラスエポキシ基板20とが接着されている。
 レンズ保持部材80に熱可塑性樹脂を使用する場合は、PC(Polycarbonate)が一般的である。PCの他にもPA66(NYLON66)、PBT(Polybutylene Terephthalate)、PPS(Poly Phenylene Sulfide)等を使用することができ、これらの樹脂は耐熱性が高いため、接着剤70を硬化させる際に加熱が必要である場合でも加熱温度を高く設定できるため好ましい。レンズ保持部材80の底面84とガラスエポキシ基板20との間に接着剤70を介在させて接着するため、突起82の高さが接着剤の厚さとなる。突起82の高さは、ガラスエポキシ基板20の反り量、およびレンズ保持部材80とガラスエポキシ基板20との間の線膨張係数差によって生じる応力を吸収できる程度に高く、かつ塗布した接着剤70の厚さよりは低い程度に設定するのがよく、具体的には10~200μm程度とするのが好ましい。
 レンズ90は、本実施の形態1においては両面が凸状球面のシリコンレンズであり、外周がレンズ保持部材80に覆われ一体となっていることで、レンズ保持部材80の上面部に固定されている。そのため、レンズ保持部材80が移動するとレンズ90もレンズ保持部材80とともに移動するため、レンズ保持部材80の移動により赤外線検出素子10との相対位置が変化してしまう。また、レンズ90は赤外線を透過するが可視光は透過しないため、このレンズ90を通してレンズ保持部材80の内部を観察することはできなくなっている。
 赤外線検出素子10により、正しく撮像されるために、レンズ90の位置はレンズ90の集光点が赤外線検出素子10の受光部に重なるよう組立てられる。しかし、特にレンズ90とレンズ保持部材80とが一体的に形成されている場合、レンズ保持部材80が赤外線検出素子10に対して傾いていると、レンズ90の集光点が赤外線検出素子10の受光部から外れて、赤外線検出素子10が正常に受光できなくなる可能性がある。これによって、赤外線検出素子10が撮像できなくなったり、微小な変位であっても画像が欠けたり、ピントが合わなくなったりする等の恐れがある。
 またレンズ保持部材80が配設されたとき、レンズ保持部材80内に収納されるガラスエポキシ基板20の電極パターン20b上には、赤外線検出素子10を動作させるための配線部材等が存在する。そのため、レンズ保持部材80を接着剤70上に配設した時、塗布された接着剤70の量が多かったり、レンズ保持部材80を搭載するノズルの荷重が大きかったりすると、レンズ保持部材80によって押しつぶされてレンズ保持部材80の内側に濡れ広がった接着剤70が、レンズ保持部材80の内側の配線部材と接触する。接着剤70と接触した配線部材は、変形して周囲の配線部材と接触したり、配線が切れたりすることで光センサモジュール101が動作しなくなる等の不良の恐れが生じる。
 レンズ保持部材とレンズが別体となっている光センサモジュールの場合は、微小な変位であれば、レンズ保持部材を基板に接着する接着剤の硬化後に再度レンズの集光点が赤外線検出素子の受光部に重なるようにレンズの位置を再調整できる。しかし、本願の光センサモジュールでは部品点数を減らしてコストを削減するため、レンズ保持部材80とレンズ90は一体となって成形されており、レンズ保持部材80を接着剤70上に搭載した後は、レンズ90の位置を再調整することができない。このため、接着剤70の硬化前であっても赤外線検出素子10の受光部とレンズ90の集光点との相対位置が合わないことによる不良が発生する恐れは、レンズ保持部材80とレンズ90が別体となっている光センサモジュールと比較して大きい。
 これを防ぐためには、塗布された接着剤70の量あるいはレンズ保持部材80の搭載荷重に関わらず、レンズ保持部材80の底面84がガラスエポキシ基板20に対して平行となるようレンズ保持部材80を配設することが重要である。このため、本実施の形態1による光センサモジュールでは、図1および図2に示すように、レンズ90が固定されているレンズ保持部材80の4か所の角部の底面84に同じ高さの突起82を設けている。
 これによって、ガラスエポキシ基板20とレンズ保持部材80の底面84との間に突起82の高さの分だけ空間が形成される。このため、レンズ保持部材の底面が平面で突起82が無い場合に比較して、レンズ保持部材80によって押しつぶされてレンズ保持部材80の底面84の下から飛び出し、レンズ保持部材80の内側に濡れ広がる接着剤70の体積を抑制できる。また、図3に示す比較例としての、突起が無い光センサモジュールでは、レンズ保持部材80の内側に濡れ広がった接着剤70は半円に近い形状となる。これに対して、本実施の形態1による光センサモジュール101では、図4に示すように内側に濡れ広がった接着剤70は扇形に近い形状となるため、接着剤70がガラスエポキシ基板20の表面に濡れ広がる距離Aを抑制できる。そのため、レンズ保持部材80によって押しつぶされてレンズ保持部材80の内側に濡れ広がる接着剤70が、レンズ保持部材80の内側の配線部材と接触することを抑制できる。
 また、4ヶ所に形成した突起82の高さを同じにしてガラスエポキシ基板20に突起82の先端を当接させることで、レンズ保持部材80がガラスエポキシ基板20に対して傾くのを防止できる。このため、レンズ保持部材80に一体的に形成され固定されているレンズ90がガラスエポキシ基板20上に接合されている赤外線検出素子10に対して傾くのを防止できる。このとき突起82の形状を、底面の径がレンズ保持部材80の底面84の幅より小さい円錐台とすることで、レンズ保持部材80が接着剤70上に配設される時、非常に小さい搭載荷重でも突起82の先端が接着剤70に接触してから、接着剤70を押しのけてガラスエポキシ基板20の表面に当接させることができる。レンズ保持部材80の底面84に突起82を設けてガラスエポキシ基板20に接着剤70で接着した断面の様子を図5に示す。
 さらに、ガラスエポキシ基板20の主な材料であるガラスエポキシと、レンズ保持部材80の主な材料である熱可塑性のプラスチックとは線膨張係数が異なるため、赤外線検出素子の駆動あるいは周囲の温度変化によって接着部に応力が生じる。この応力は、光センサモジュールの使用時間が長くなるほど繰返し生じるため、接着部分が疲労によって破壊したり剥離したりする懸念がある。これによっても、レンズ保持部材80の位置が変化して、赤外線検出素子10の受光部とレンズ90の集光点との相対位置が変化してしまい、赤外線検出素子10が撮像できなくなったり、画像が欠けたり、ピントが合わなくなったりする等の恐れが生じる。
 本実施の形態1による光センサモジュールでは、突起82の高さの分だけガラスエポキシ基板20とレンズ保持部材80の底面84との間に形成された空間に接着剤70が濡れ広がることで、突起が無い光センサモジュールと比較して接着剤70が厚くなる。これにより、ガラスエポキシ基板20とレンズ保持部材80の線膨張係数差によって接着剤70に生じるせん断ひずみを、突起が無い光センサモジュールと比較して低減できるため接着剤70による接着部を長寿命化できる。
 突起82は、レンズ保持部材80の接着剤70と接着される接着面である底面84のどの部分にどんな形状で何個形成してもかまわない。例えば、図6の平面図および図6のA-A位置での断面図である図7に示すように、レンズ保持部材80の各角と各辺の中央の計8ヶ所に円柱形状の突起を設けてもかまわない。また角柱形状の突起でもよい。あるいは、図8の平面図および図8のA-A位置での断面図である図9に示すように、レンズ保持部材80の各辺の中央の計4ヶ所に三角錐形状の突起を設けてもかまわない。また四角推形状の突起でもよい。
 レンズ保持部材80が接着剤70上に配設される時に、先端が接着剤70に接触する場所に突起82を形成した場合、突起82が非常に小さい搭載荷重でも接着剤70を押しのけてガラスエポキシ基板20の表面に当接させることができるよう、突起82は先端の面積がレンズ保持部材80の底面84と比較して十分小さい形状が好ましい。例えば、円柱あるいは一辺の長さが底面84の幅の正方形以下の面積の角柱などの柱状、円錐、角錐などの錐状、円錐台、角錐台などの錐台状であることが好ましい。底面84から先端にかけて断面積が小さくなる、すなわち断面積が先端が底部よりも狭い、錐状、錐台状は、レンズ保持部材80が射出成型によって形成される場合は金型から抜取り易く、かつ接着剤70を押しのけ易い形状であるため、特に好ましい。また、半球など曲面を有する突起としても良い。
 加えて、レンズ保持部材80をガラスエポキシ基板20上に塗布された接着剤70上に配設する時、レンズ保持部材80と一体となって成形されたレンズ90がガラスエポキシ基板20に対して平行となるよう、同じ高さの突起82を3個以上有している必要がある。
 また、図10の拡大断面図に示すように、突起82の先端の接着剤70およびガラスエポキシ基板20と接触している角部を丸めるよう突起82を形成すると、光センサモジュール101の温度変化によって生じる応力が突起82の先端の角部に集中しなくなる。そのため、熱応力による応力集中で接着剤がレンズ保持部材の内周から剥離するのを防ぎ、光センサモジュール101をより長寿命化できる。加えて、高さ方向へのレンズ保持部材80の位置ズレも防止できるためより好ましい。
 また、レンズ保持部材80の底面84の表面の面粗さを、レンズ保持部材80の他の場所と比較して粗くすると、レンズ保持部材80と接着剤70との接着強度がより大きくなるため、接合信頼性を向上でき、より好ましい。
 さらに、ガラスエポキシ基板20と当接する突起82の先端の面粗さを、レンズ保持部材80の他の表面と比較して粗くすると、ガラスエポキシ基板20とレンズ保持部材80との摩擦力が大きくなる。そのため、接着剤70の硬化収縮等により、レンズ保持部材80が位置ズレすることによる赤外線検出素子10の受光部とレンズ90の光学中心との位置ズレを抑制できるため、より好ましい。
 以上説明したように、実施の形態1にかかる光センサモジュール101によれば、レンズ保持部材80の接着剤70により接着される接着面である底面84に突起82を設けることで、突起82の高さの分だけガラスエポキシ基板20とレンズ保持部材80の底面84との間に空間が形成される。これによって、レンズ保持部材80の内側に濡れ広がる接着剤70の体積を抑制できる。加えて、万一レンズ保持部材80の内側に接着剤70が濡れ広がっても、濡れ広がった接着剤70は扇形に近い形状となるため、接着剤70がガラスエポキシ基板20の表面に濡れ広がる距離Aを抑制できる。そのため、レンズ保持部材80の内側に濡れ広がった接着剤70が、レンズ保持部材80の内側の配線部材と接触するのを防止できる。また、複数形成した突起82の高さを同じにしてガラスエポキシ基板20に突起82の先端を当接させることで、レンズ保持部材80と一体で形成されているレンズ90が赤外線検出素子10に対して傾いて、赤外線検出素子10が撮像できなくなったり、画像が欠けたり、ピントが合わなくなったりするのを防止できる。さらに、突起が無い光センサモジュールと比較して接着剤70が厚くなるため、ガラスエポキシ基板20とレンズ保持部材80の線膨張係数差によって接着剤70に生じるせん断ひずみを低減できるため、接着剤70による接着部を長寿命化でき、高品質な光センサモジュール101を得ることができる。
実施の形態2.
 図11は実施の形態2による光センサモジュール102の概略構成を示す平面図、図12は図11のA-A位置での断面図である。本実施の形態2による光センサモジュール102も基本的に実施の形態1における光センサモジュール101と同じ構成を有するが、以下の点で相違する。ここでは、主に相違点について説明を行い、同じ構成部分についてはその説明を省略する。なお、図11および図12は光センサモジュール102における基本的な構成部分のみを図示する模式図であり、その他の構成部分については説明を省略する。
 実施の形態1では、接着剤70でレンズ保持部材80の底面84の全周を接着後にレンズ保持部材80内を真空とすることで赤外線検出素子10を封止していた。これに対して本実施の形態2では、図11および図12に示すように赤外線検出素子10上に光透過部材である透光板15が枠151を介して赤外線検出素子10の表面から距離を離して接合されている。赤外線検出素子10と透光板15の間に形成される空間内を真空とすることで赤外線検出素子10を封止し、レンズ保持部材80内は真空封止されていない点で実施の形態1と相違する。
 レンズ90と同じ赤外線を透過する材料であるシリコンで形成された透光板15は、枠151と接合される部分に金属がコーティングされており、赤外線検出素子10の表面に接合された枠151にはんだ接合される。このようにして透光板15が赤外線検出素子10の受光部の光入射側に固定され、赤外線検出素子10と一体となることで、赤外線検出素子10の受光部を覆っている。赤外線検出素子10、枠151、透光板15で覆われた内部は真空封止されている。また、透光板15は赤外線を透過するが可視光は透過しないため、この透光板15を通して赤外線検出素子10の受光部を観察することはできない。
 本実施の形態2では、レンズ保持部材80の底面84とガラスエポキシ基板20を接着剤70で接着する位置をレンズ保持部材80の4角のみとして、レンズ保持部材80の底面84に同じ高さの突起82をレンズ保持部材80の各辺の中央にそれぞれ計4ヶ所設けている。
 赤外線検出素子10を透光板15で真空封止することによって、レンズ保持部材80内を真空封止する必要がないため、レンズ保持部材80の底面84の全周を接着剤70で接着する必要がない。接着剤70は接着部分が疲労によって破壊したり剥離したりしない程度に塗布すればよく、例えば図11および図12に示すようにレンズ保持部材80の4角にのみに塗布するようにしてもよい。この場合、接着剤70により接着するレンズ保持部材80の4角のみに縁部81を設けることにより、レンズ保持部材80の接着面積が少なくなった分だけ底面84の面積を小さくでき、光センサモジュール102全体を小型化できる。また、接着剤70で全周を接着した場合と比較して接着剤70の接着面積は小さくなるため、ガラスエポキシ基板20とレンズ保持部材80の線膨張係数差によって接着剤70に生じるせん断ひずみが低減される。このため、接着剤70による接着部を長寿命化できるという本願に開示する光センサモジュールの効果はより効果的なものとなる。
 さらに、図11および図12に示すように、突起82をレンズ保持部材80の各辺の中央の計4ヶ所に設けるなど、接着剤70が塗布されていない場所に突起82を設けることが容易になるため、突起82の形状をより自由に選択できるようになる。さらに、突起82の先端とガラスエポキシ基板20との間に接着剤が入り込むことが無いため、突起82の先端をガラスエポキシ基板20の表面に確実に当接できるようになる。これによって、レンズ保持部材80と一体で形成されているレンズ90がガラスエポキシ基板20上に接合されている赤外線検出素子10に対して傾いて撮像できなくなったり、画像が欠けたり、ピントが合わなくなったりするのを防止する効果もより確実となる。
 なお、上記では、レンズ保持部材80の底面84の全周ではなく4角のみで接着するようにしたが、透光板15と枠151により真空封止を行う構成において、実施の形態1で説明したのと同様、レンズ保持部材80の底面84の全周を接着剤70で接着するようにしてもよい。この場合であっても、レンズ保持部材80の内部を真空封止する必要がないため、接着は気密である必要がない。
実施の形態3.
 図13は実施の形態3による光センサモジュール103の概略構成を示す平面図、図14は図13のA-A位置での断面図である。本実施の形態3による光センサモジュール103も基本的に実施の形態1による光センサモジュール101と同じ構造を有するが、以下の点で相違する。ここでは、主に相違点について説明を行い、同じ構成部分についてはその説明を省略する。なお、図13および図14は光センサモジュール103における基本的な構成部分のみを図示する模式図であり、その他の構成部分については説明を省略する。
 本実施の形態3では、図13および図14に示すように、レンズ保持部材80の底面84に設けられた突起82の先端に、突起82の先端から、円錐台形状の位置決め突起82aが突起82と一体となって形成されている。位置決め突起82aと対向するガラスエポキシ基板20の位置には、位置決め孔21が形成され、位置決め突起82aが位置決め孔21に挿入された状態でレンズ保持部材80の底面84とガラスエポキシ基板20とが接着されている。
 レンズ保持部材80を、ガラスエポキシ基板20に塗布された接着剤70上に配設する時に、位置決め突起82aが位置決め孔21に挿入されてから、突起82の先端がガラスエポキシ基板20に当接して、ガラスエポキシ基板20とレンズ保持部材80が接着剤70によって接着される。これによって、例えばガラスエポキシ基板20上に塗布された接着剤70上にレンズ保持部材80を配設する時に、接着剤70の変形に伴ってレンズ保持部材80の位置が少し移動または回転しようとしても、位置決め突起82aが位置決め孔21に挿入されているため、レンズ保持部材80がずれることなく接着できる。
 また、位置決め突起82aの底面の径と、位置決め孔21の径を同じにしておくことで、レンズ保持部材80の接着時の接着剤70の収縮、あるいは光センサモジュール103の駆動もしくは周囲の温度変化により接着剤70の変形等が生じても、位置決め孔21内に挿入された位置決め突起82aは底面の部分で位置決め孔21の入口と接触しているため、位置決め突起82aと位置決め孔21の相対位置は変化しない。このため、レンズ保持部材80の位置が変化して、赤外線検出素子10の受光部とレンズ90の集光点との相対位置が変化してしまい撮像できなくなったり、画像が欠けたり、ピントが合わなくなったりする等の不良を防止することができる。
 以上のように、突起82の先端に位置決め突起82a、およびガラスエポキシ基板20に位置決め孔21を形成して、位置決め突起82aを位置決め孔21に挿入することで、レンズ保持部材80のガラスエポキシ基板20上での位置決めを確実に行うことができる。さらに、接着時、接着後の接着剤70の変形あるいは温度変化で生じる熱応力によってもレンズ保持部材80が位置ズレしないため、赤外線検出素子10の受光部とレンズ90の光学中心との位置ズレを防止することができる。
 また、本実施の形態3では、突起82をレンズ保持部材80の4角に形成し、それぞれの突起82に位置決め突起82aを設けて、位置決め突起82aに対向するガラスエポキシ基板の位置に位置決め孔21を形成した。これに限らず、位置決め突起82aを有する突起82をレンズ保持部材80の各角と各辺の中央の計8ヶ所に設けてもかまわないし、レンズ保持部材80の各辺の中央の計4ヶ所に設けてもかまわない。また、全ての突起82に位置決め突起82aを設けず、一部の突起82のみに位置決め突起82aを設けるようにしても良い。しかし、レンズ保持部材80のガラスエポキシ基板20上での位置決め、および接着時、接着後のレンズ保持部材80の位置ズレ防止の効果を得るためには、位置決め突起82aと位置決め孔21はお互いが対向する位置で、かつ少なくとも2ヶ所以上配置する必要がある。
 さらに、本実施の形態2のように、赤外線検出素子10上に光透過部材である透光板15をはんだ接合し、赤外線検出素子10と透光板15の間に形成される空間内を真空とすることで赤外線検出素子10を封止し、レンズ保持部材80内は真空封止されていない構成としてもよい。レンズ保持部材80内を真空封止する必要がないため、接着剤70をレンズ保持部材80の底面84の全周に塗布する必要がなくなり、突起82を接着剤70が塗布されない位置に設けることが容易になる。さらに、接着剤70が位置決め孔21からガラスエポキシ基板20の裏面に漏れ出すのを防止できるとともに、レンズ保持部材80をガラスエポキシ基板20上で位置決めし、接着時、接着後のレンズ保持部材80の位置ズレを防止できる本実施の形態3の効果がより確実なものとなる。
 本願には、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
10 赤外線検出素子(光検出素子)、15 透光板(光透過部材)、20 ガラスエポキシ基板(基板)、20a ガラスエポキシ基材、20b、20c 電極パターン、21 位置決め孔、60 Agペースト、70 接着剤、80 レンズ保持部材、82 突起、82a 位置決め突起、84 底面、90 レンズ、101、102、103 光センサモジュール

Claims (11)

  1.  表面に電極パターンが形成された基板と、
    前記電極パターンに電気接続されるとともに、前記基板に固定された、光を検出する光検出素子と、
    レンズが固定され、前記光検出素子を取り囲む位置で前記基板に接着剤で接着されたレンズ保持部材と、を備えた光センサモジュールにおいて、
    前記基板に接着される前記レンズ保持部材の底面は分散配置された突起を有し、前記突起の先端が前記基板と接していることを特徴とする光センサモジュール。
  2.  前記光検出素子の光入射側が、光透過部材を含む部材で真空封止されていることを特徴とする請求項1に記載の光センサモジュール。
  3.  前記突起を3個以上有することを特徴とする請求項1または2に記載の光センサモジュール。
  4.  前記突起の、前記底面に平行な断面における断面積は、先端が底部よりも狭いことを特徴とする請求項1から3のいずれか1項に記載の光センサモジュール。
  5.  前記突起の形状は円錐または角錐であることを特徴とする請求項4に記載の光センサモジュール。
  6.  前記突起の形状は円錐台または角錐台であることを特徴とする請求項4に記載の光センサモジュール。
  7.  前記突起の形状は柱状であることを特徴とする請求項1から3のいずれか1項に記載の光センサモジュール。
  8.  前記突起の角部が丸められていることを特徴とする請求項4から7のいずれか1項に記載の光センサモジュール。
  9.  前記突起の先端から突き出す位置決め突起を有し、この位置決め突起が前記基板に設けられた位置決め孔に挿入されていることを特徴とする請求項1から4のいずれか1項に記載の光センサモジュール。
  10.  前記レンズ保持部材の底面の面粗さは、前記レンズ保持部材の他の表面の面粗さよりも粗いことを特徴とする請求項1から9のいずれか1項に記載の光センサモジュール。
  11.  前記突起の先端の面粗さは、前記レンズ保持部材の他の表面の面粗さよりも粗いことを特徴とする請求項1から9のいずれか1項に記載の光センサモジュール。
PCT/JP2019/031373 2019-08-08 2019-08-08 光センサモジュール WO2021024453A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2019/031373 WO2021024453A1 (ja) 2019-08-08 2019-08-08 光センサモジュール
CN201980098646.9A CN114207844A (zh) 2019-08-08 2019-08-08 光传感器模块
US17/615,166 US20220236512A1 (en) 2019-08-08 2019-08-08 Optical sensor module
JP2020500672A JP6811891B1 (ja) 2019-08-08 2019-08-08 光センサモジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/031373 WO2021024453A1 (ja) 2019-08-08 2019-08-08 光センサモジュール

Publications (1)

Publication Number Publication Date
WO2021024453A1 true WO2021024453A1 (ja) 2021-02-11

Family

ID=74096247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031373 WO2021024453A1 (ja) 2019-08-08 2019-08-08 光センサモジュール

Country Status (4)

Country Link
US (1) US20220236512A1 (ja)
JP (1) JP6811891B1 (ja)
CN (1) CN114207844A (ja)
WO (1) WO2021024453A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP1699604S (ja) * 2021-01-28 2021-11-15
JP1699606S (ja) * 2021-01-28 2021-11-15
JP1699605S (ja) * 2021-01-28 2021-11-15

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004286835A (ja) * 2003-03-19 2004-10-14 Ngk Spark Plug Co Ltd 光学素子搭載装置及びその製造方法、光学素子搭載装置付き配線基板
US20060243896A1 (en) * 2005-04-29 2006-11-02 Po-Hung Chen Packaging structure of a light-sensing element and fabrication method thereof
JP2007142425A (ja) * 2005-11-22 2007-06-07 Palo Alto Research Center Inc 集積化ハイブリッドマイクロレンズアレイを有するフォトニックデバイス
WO2008023827A1 (fr) * 2006-08-25 2008-02-28 Sanyo Electric Co., Ltd. Dispositif semi-conducteur
KR20100099874A (ko) * 2009-03-04 2010-09-15 삼성전기주식회사 카메라 모듈
JP2013246397A (ja) * 2012-05-29 2013-12-09 Auto Network Gijutsu Kenkyusho:Kk 光ユニットおよび光ユニットの製造方法
JP2014150098A (ja) * 2013-01-31 2014-08-21 Mitsubishi Electric Corp 半導体光装置
JP2016213412A (ja) * 2015-05-13 2016-12-15 株式会社リコー 光学装置及び光照射装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590429A (ja) * 1991-09-27 1993-04-09 Nec Corp 半導体装置
JP3506962B2 (ja) * 1998-08-10 2004-03-15 オリンパス株式会社 撮像モジュール
JP4193322B2 (ja) * 2000-03-31 2008-12-10 住友電気工業株式会社 レンズおよびそれを用いた赤外線センサー
DE10163799B4 (de) * 2000-12-28 2006-11-23 Matsushita Electric Works, Ltd., Kadoma Halbleiterchip-Aufbausubstrat und Verfahren zum Herstellen eines solchen Aufbausubstrates
JP5645245B2 (ja) * 2010-02-23 2014-12-24 パナソニックIpマネジメント株式会社 赤外線センサモジュール

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004286835A (ja) * 2003-03-19 2004-10-14 Ngk Spark Plug Co Ltd 光学素子搭載装置及びその製造方法、光学素子搭載装置付き配線基板
US20060243896A1 (en) * 2005-04-29 2006-11-02 Po-Hung Chen Packaging structure of a light-sensing element and fabrication method thereof
JP2007142425A (ja) * 2005-11-22 2007-06-07 Palo Alto Research Center Inc 集積化ハイブリッドマイクロレンズアレイを有するフォトニックデバイス
WO2008023827A1 (fr) * 2006-08-25 2008-02-28 Sanyo Electric Co., Ltd. Dispositif semi-conducteur
KR20100099874A (ko) * 2009-03-04 2010-09-15 삼성전기주식회사 카메라 모듈
JP2013246397A (ja) * 2012-05-29 2013-12-09 Auto Network Gijutsu Kenkyusho:Kk 光ユニットおよび光ユニットの製造方法
JP2014150098A (ja) * 2013-01-31 2014-08-21 Mitsubishi Electric Corp 半導体光装置
JP2016213412A (ja) * 2015-05-13 2016-12-15 株式会社リコー 光学装置及び光照射装置

Also Published As

Publication number Publication date
JPWO2021024453A1 (ja) 2021-09-13
US20220236512A1 (en) 2022-07-28
JP6811891B1 (ja) 2021-01-13
CN114207844A (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
JP6811891B1 (ja) 光センサモジュール
US5506401A (en) Photoelectric converting device mounting apparatus with anisotropically conductive film for connecting leads of wiring board and electrode pads of photoelectric converting device and fabrication method thereof
US7720374B2 (en) Camera module
US9155212B2 (en) Electronic component, mounting member, electronic apparatus, and their manufacturing methods
US8810722B2 (en) Camera module lens holder
US7420754B2 (en) Optical module and method for manufacturing the same
US7389026B2 (en) Method for manufacturing optical module
JP2007324303A (ja) 光モジュール及びその実装方法
US20050242410A1 (en) Camera module, holder for use in a camera module, camera system and method of manufacturing a camera module
JP4521272B2 (ja) カメラモジュール、カメラモジュール中で使用されるホルダ、カメラシステム及びカメラモジュールの製造方法
JP7271680B2 (ja) 光センサモジュールおよび光センサモジュールの製造方法
JP2007305736A (ja) 光モジュールの製造方法
JP7163970B2 (ja) センサモジュール
JP2007140179A (ja) 光モジュールおよびその製造方法
JP2005242242A (ja) 画像センサパッケージおよびカメラモジュール
JP2007142176A (ja) 光モジュールの製造方法
KR102081612B1 (ko) 반도체 패키지 및 이것의 제조 방법
JP2007305737A (ja) 光モジュールの製造方法
JP2005309153A (ja) 光モジュールのパッケージ構造
JP2004014992A (ja) 半導体装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020500672

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19940855

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19940855

Country of ref document: EP

Kind code of ref document: A1