WO2021023437A1 - Mobile ladestation für ein elektrofahrzeug - Google Patents

Mobile ladestation für ein elektrofahrzeug Download PDF

Info

Publication number
WO2021023437A1
WO2021023437A1 PCT/EP2020/068104 EP2020068104W WO2021023437A1 WO 2021023437 A1 WO2021023437 A1 WO 2021023437A1 EP 2020068104 W EP2020068104 W EP 2020068104W WO 2021023437 A1 WO2021023437 A1 WO 2021023437A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
control unit
adapter element
electric vehicle
charge control
Prior art date
Application number
PCT/EP2020/068104
Other languages
English (en)
French (fr)
Inventor
Christoph Erni
Original Assignee
Juice Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Juice Technology AG filed Critical Juice Technology AG
Priority to EP20735165.1A priority Critical patent/EP4010217A1/de
Publication of WO2021023437A1 publication Critical patent/WO2021023437A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/18Cables specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the invention relates to a device for electrically charging an accumulator of an electric vehicle with a charge control unit to which a power plug connector is connected on the consumer side and a first adapter element is connected to the mains side, and a second adapter element that can be connected to the first adapter element and is connected to a mains connector.
  • the electromobility market is developing rapidly.
  • the various players have different interests here. This also applies in particular to charging the battery packs in electric vehicles.
  • the users of electric vehicles are interested in charging the electric vehicle as completely as possible in the shortest possible time, anywhere and at any time.
  • a comprehensive and flexible charging infrastructure is required for this.
  • the providers of the charging infrastructure must always communicate with the network operators of the electrical supply networks as to whether the supply network is at all suitable for installing charging stations at the respective locations.
  • the fixed charging stations have so far been mainly located at motorway service stations, petrol stations, in densely populated inner city areas, parking garages and, last but not least, in private households. These charging stations are generally suitable for charging the vehicles in a short time with a relatively high output.
  • a charging cable is used in the prior art, which is provided with an IEC type 2 adapter (plug or coupling) at both ends.
  • the charging voltage and charging power can be set differently by means of a control line integrated into the charging cable from plug to plug.
  • the charging station usually uses pulse width modulation to report the maximum current that can be made available by the charging station.
  • the electric vehicle in turn can "communicate" with the charging station, for example via an integrated electronic component.
  • the flexible, locally indeterminate charging of electric vehicles affects the distribution networks in the medium and low voltage levels.
  • These distribution networks are designed for the peak load in the respective supply area. Charging the electric vehicles can change the load profile and the peak load can also increase, so that the technical specifications of the legislation can no longer be met by the existing networks. Therefore, the influence of the mobile chargers on the peak load must be taken into account and coordinated with the network operator. In particular, if many charging processes are to be carried out locally at the same time, this can also pose problems for the supply network.
  • DE 102014201 764 A1 discloses an electrical connection device for a La detent for charging an electric vehicle, which has a network-side first connection means for electrically connecting the connection device to an electrical supply network and a charging cable-side second connection means for connecting the connection device to a network-side plug of the charging cable the first
  • the connecting means has a first temperature sensor which is electrically connected to the second connecting means via a communication line.
  • the second connection means has a further contact in order to transmit a signal from the temperature sensor to the charging cable.
  • a similar device with a temperature sensor is disclosed in GB 2 489 988 A.
  • a device for the flexible electrical charging of a battery of an electric vehicle with a charge control unit to which a power connector is connected on the consumer side and a first adapter element is connected to the network side, and a second adapter element that can be connected to the first adapter element and that is equipped with a Mains connector is firmly connected.
  • a first signal line is provided between the first adapter element and the charge control unit, via which at least one feature assigned to the second adapter element and / or the mains connection plug can be queried.
  • the first signal line is preferably in addition to the electrical charging line.
  • the type of mains connection plug can be determined and, based on this, the current for charging the electric vehicle and other parameters can be set by the control device, ie the charge control unit.
  • the control device ie the charge control unit.
  • This makes it possible to charge the electric vehicle via a large number of conventional network connections, which are available in significantly larger numbers than special, permanently installed charging stations.
  • the location for charging is also no longer specified by the location of the permanently installed charging station. This results in significantly improved local flexibility and usage options.
  • the charge control unit can be bridged in terms of performance and communication technology in such a way that it does not carry any power when a predetermined plug type is recognized. This measure is particularly useful when the electric vehicle is to be connected to a standard charging station via the device according to the invention.
  • an (IEC) Type 2 plug for example, has been recognized as the mains connection plug.
  • the communication and in particular the power control then do not have to take place via the charge control unit.
  • the connection between the standard charging station and the electric vehicle is therefore similar to the connection described above Charging process with standardized type 2 connectors.
  • the charge control unit is set up in such a way that it recognizes the IEC type 2 connection within a very short time without it already carrying power. In particular, during the bridging it is technically ensured that no harmonic waves or other interference signals are sent from the charge control unit to the charging station.
  • the feature can preferably be queried via a resistor encapsulated in the second adapter element.
  • the resistance value is assigned to a certain type of mains connector so that the charge control unit can set the charging current to the type of connector.
  • another (electronic) component can also be provided in the second adapter element or in the mains connector.
  • a further development of the invention provides that a second signal line is installed between the second adapter element and the mains connection plug and means for temperature monitoring are provided in the mains connection plug, the means for temperature monitoring being able to be queried via the second signal line. If the mains connection is overloaded, be it due to wear and tear or incorrect installation, it can overheat. This overheating is detected by the means for temperature monitoring and measures can be taken to counteract the overheating. Suitable means for temperature monitoring are, for example, bimetal switches or thermistors. If overheating is detected, this can be passed on to the charge control unit via the signal lines.
  • the charging control unit If such an excess temperature is detected, it is useful if means are provided in the charging control unit which trigger a controlled shutdown of the charging process when a temperature excess is detected in order to avoid damage.
  • the controlled shutdown can be carried out by a control unit integrated in the charge control unit.
  • the charge control unit can be controlled via a communication interface.
  • the communication interface can be hard-wired or wireless.
  • the device can communicate with both the consumer and upstream network-side participants communicate.
  • the current status of the battery can be queried on the consumer side and specifications relating to the desired charging time, the minimum charge status, the latest time of full charge or the like can be transmitted.
  • Vehicle identification data can also be transmitted in this way.
  • Upstream network-side participants can be, for example, the network operator himself, but also operators of larger parking spaces with a large number of locally concentrated charging options.
  • the latter can then control the charging of the electric vehicles by means of the communication interface in such a way that a peak load agreed with the network operator or a peak load specified by the network operator or the (house) infrastructure or short-term reduced or increased peak load is not exceeded and at the same time the requirements with regard to the consumer specifications be taken into account. Based on this, individual charging processes can be prioritized.
  • the charge control unit is designed in such a way that consumer-side signals from the electric vehicle can be passed through to a network-side controller.
  • This enables direct communication between the electric vehicle and the charging station, for example via pulse width modulation (PWM) or the like.
  • PWM pulse width modulation
  • Fig. 1 schematically part of a device according to the invention in a first imple mentation form
  • Fig. 2 shows schematically a device according to the invention in a second embodiment
  • Fig. 3 schematically form a device according to the invention in a third embodiment.
  • a part of the device according to the invention is shown according to a first embodiment.
  • the device is used to electrically connect an electric vehicle 1 with a power supply for charging the battery of the electric vehicle 1.
  • the device has a charge control unit 2 which is accommodated in a housing.
  • a power plug connector 3 for example an IEC type 2 plug connector, via which the electric vehicle 1 is connected, is connected to the charge control unit 2 on the consumer side.
  • a first adapter element 4 is connected to the charge control unit 2 on the network side.
  • a second adapter element 5 can be connected to the first adapter element 4.
  • the second adapter element 5 is in turn firmly connected to a mains connection plug 6, shown here as a single-phase Schuko plug 6.
  • the mains connection plug 6 can also be, for example, a three-phase CEE plug which is usually designed for currents of 16 A or 32 A and is accordingly suitable for charging with 11 kVA or 22 kVA.
  • the at least one feature enables the second adapter element 5 and thus in particular the mains connector 6 to be recognized.
  • the feature via which the detection takes place can be implemented, for example, by means of a resistor encapsulated in the second adapter element 5, the voltage drop being measured accordingly.
  • each different connector type is assigned its own resistance value, and this enables the charging control unit 2 to set the correct charging mode for the electric vehicle 1.
  • the charge control unit 2 can thus determine further values, for example the expected charging time and the like.
  • the Schuko plug 6 can be plugged into a household socket 8 and thus connected to the house electricity network.
  • the electrical installation in a household is usually designed for a certain output, and the individual circuits on the house connection box are protected accordingly (e.g. up to 16 A). Consequently, the electric vehicle 1 can, at best, only charge with the current intensity to which the installation is at a maximum is designed. It should also be taken into account here that additional consumers can be connected in the same circuit at the same time.
  • the temperature monitoring can be implemented, for example, via a bimetal contact integrated in the mains connection plug 6, but the use of thermistors or other suitable temperature monitoring means is also possible.
  • a second signal line 9 is provided between the second adapter element 5 and the power connector 6, which is preferably also formed separately from the charging line. If the bimetal contact now opens, for example, this is recognized by the charge control unit 2 via the signal lines 7, 9, and the charge process can be stopped in a controlled manner by the charge control unit 2. This avoids damage to the electric vehicle 1 and the charging device on the consumer side as well as to the network side in the house installation.
  • the signal lines 7, 9 are preferably arranged in the same jacket as the electrical charging line, but electrically separated therefrom and / or advantageously shielded, since interference is minimized.
  • Usual signal lines have a cross section of 0.5 mm 2 , but can also have smaller and larger cross sections, for example from 0.25 mm 2 to 3 mm 2 .
  • Fig. 2 shows a device according to the invention in a second embodiment.
  • the electric vehicle 1 is connected here to a permanently installed charging column 10 by means of an IEC type 2 connector.
  • the charge control unit 2 recognizes by means of the functionality described above that it is an IEC type 2 connector.
  • the control of the charging process can consequently be implemented here directly between the charging station 10 and the electric vehicle 1 via the standard communication of the IEC type 2 connection. It is not necessary for the charge control unit 2 to become active or to intervene in a controlling manner.
  • both the power connection and the communication connection of the charging control unit 2 can be bypassed via a bridge 11.
  • the charge control unit 2 is not used by the power transmission. Rather, the charge control unit 2 recognizes in seconds that it is being bridged and prevents interference signals from being sent to the charging station 10 or the electric vehicle 1.
  • the bridging 11 is shown schematically as an electrical line around the charging control unit 2 shown around. It goes without saying that the bridging 11 does not represent a separate component here, but is integrated in the housing of the charge control unit 2 in a suitable manner.
  • FIG. 3 shows a further embodiment of devices according to the invention.
  • the common network connection point 12 must in this case be coordinated with the responsible network operator in such a way that sufficient charging capacity is available.
  • the connectable power of this network connection point 12 is set to a certain maximum power, which must not be exceeded. It therefore makes sense to provide communication between the network connection point 12, the charging stations 13 and / or the charging control units 2, which are each assigned to the electric vehicles 1. This enables load and information management to be carried out.
  • the maximum loading The power of the individual charging stations 13 can be designed to be high, with the total load, that is to say the maximum power of the network connection point 12, not being exceeded. If only a few electric vehicles 1 are connected to the network connection point 12 at the same time, the charging power can be set relatively high to a maximum by means of the communication between the network connection point 12 and the charging stations 13. If, however, an electric vehicle 1 is to be charged at all charging stations 13, for example, the output of the individual charging stations 13 must be reduced accordingly or coordinated with one another.
  • the communication is bidirectional, ie also from the electric vehicle 1 to the charging station 13 or network connection point 12.
  • charging states can also be queried or specifications such as the minimum range, the latest time of full charge or similar can be taken into account.
  • the type of car can also be determined in this way by transmitting and checking charging characteristics.
  • the communication between the charging station (s) 13 and the network connection point 12 can take place via hard-wired signal lines, such as Ethernet cables, Powerline (PLC) or similar, as well as via suitable wireless communication technologies, such as Bluetooth, ANT +, LoRa, WLAN or Something similar can be realized.
  • the charging stations 13 communicate wirelessly with a load management controller integrated in the network connection point 12.
  • Communication between the charging station 13, charging control unit 2 and electric vehicle 1 is possible via the wired signal lines 7, 9 in the device according to the invention.
  • wireless communication interfaces are conceivable, for example in the private application when using up to three charge control units 2, these can communicate with one another via the wireless interface.
  • the state of charge of the individual electric vehicle 1 and the specifications regarding the minimum charge level and the latest full charge can be viewed or changed by the vehicle user, for example via an app.
  • the app communicates with a transmitter and receiver unit integrated into the charge control unit 2, the electric vehicle 1 or the charging station 13.
  • the device according to the invention can have means for identifying the electric vehicles 1.
  • a camera or a scanner via which the electric vehicle 1 can be identified, can be provided on one or more components of the device, such as on the charge control unit 2, on one of the adapter elements. elements 4, 5 or on the cables between the components.
  • suitable, suitable means can also be provided in or on the electric vehicle 1.
  • the license plate of the electric vehicle 1 or a QR code in the vicinity of the charging socket of the electric vehicle 1 can be detected via the camera. In this way, useful data about the driving and charging behavior of the respective electric car 1 can also be recorded. It is also possible to bill the charging process via an account assigned to the electric vehicle 1.
  • a direct interface for paying for the purchased energy can be provided at the charging stations 13 or charging stations 10, for example by means of a credit card or cell phone.
  • This interface can also be implemented wirelessly via RFID (Radio Frequency Identification) or another wireless data communication standard such as NFC (Near Field Communication).
  • RFID Radio Frequency Identification
  • NFC Near Field Communication
  • the present invention provides an improved device which enables more flexible and more comfortable charging of electric vehicles.

Abstract

Erfindungsgemäß wird eine Vorrichtung für die flexible elektrische Aufladung eines Akkumulators eines Elektrofahrzeugs (1) bereitgestellt, mit einer Laderegeleinheit (2), an die verbraucherseitig über ein Ladekabel ein Leistungssteckverbinder (3) und netzseitig über das Ladekabel ein erstes Adapterelement (4) angeschlossen ist, und einem an das erste Adapterelement (4) anschließbaren zweiten Adapterelement (5), das über ein Ladekabel mit einem Netzanschlussstecker (6) fest verbunden ist, wobei zwischen dem ersten Adapterelement (4) und der Laderegeleinheit (2) eine erste Signalleitung (7) vorgesehen ist, über die mindestens ein dem zweiten Adapterelement (5) und/oder dem Netzanschlussstecker (6) zugeordnetes Merkmal abfragbar ist. Die Vorrichtung zeichnet sich dadurch aus, dass die Laderegeleinheit (2) leistungstechnisch und kommunikationstechnisch derart überbrückbar ist, dass sie keine Leistung führt, wenn ein vorbestimmter Steckertyp erkannt wird.

Description

Mobile Ladestation für ein Elektrofahrzeug
Die Erfindung betrifft eine Vorrichtung zur elektrischen Aufladung eines Akkumulators eines Elektrofahrzeugs mit einer Laderegeleinheit, an die verbraucherseitig ein Leistungssteck verbinder und netzseitig ein erstes Adapterelement angeschlossen ist, und einem an das erste Adapterelement anschließbaren zweiten Adapterelement, das mit einem Netzan schlussstecker verbunden ist.
Der Markt der Elektromobilität entwickelt sich rasant. Hierbei haben die verschiedenen Ak teure unterschiedliche Interessen. Dies gilt insbesondere auch für die Aufladung der Akku mulatoren der Elektrofahrzeuge. So haben die Nutzer von Elektrofahrzeugen das Interesse, möglichst überall und zu jeder Zeit das Elektrofahrzeug in möglichst kurzer Zeit möglichst vollständig aufzuladen. Hierfür wird eine flächendeckende und flexible Ladeinfrastruktur benötigt. Die Anbieter der Ladeinfrastruktur müssen sich hierbei stets mit den Netzbetrei bern der elektrischen Versorgungsnetze verständigen, ob das Versorgungsnetz für die In stallation von Ladestation an den jeweiligen Orten überhaupt geeignet ist.
Die festinstallierten Ladestationen befinden sich bisher hauptsächlich an Autobahnraststät ten, Tankstellen, in dicht besiedelten Innenstadtgebieten, Parkgaragen und nicht zuletzt in Privathaushalten. Diese Ladestationen sind im Allgemeinen dafür geeignet, die Fahrzeuge in kurzer Zeit mit relativ hoher Leistung zu laden. Hierfür wird im Stand der Technik übli cherweise ein Ladekabel eingesetzt, das an beiden Enden mit einem IEC-Typ-2 -Adapter (Stecker bzw. Kupplung) versehen ist. Die Ladespannung und Ladeleistung können mittels einer von Stecker zu Stecker in das Ladekabel integrierten Steuerleitung unterschiedlich eingestellt werden. Hierbei meldet die Ladestation in der Regel mittels Pulsweitenmodulati on den maximalen Strom, der von der Ladesäule zur Verfügung gestellt werden kann. Das Elektrofahrzeug seinerseits kann beispielsweise über ein integriertes elektronisches Bau element mit der Ladestation "kommunizieren".
Für die Nutzer von Elektrofahrzeugen ist diese festinstallierte und vorgegebene Ladeinfra struktur eher unzureichend und wenig komfortabel. Um Elektrofahrzeuge nicht nur an extra dafür installierten Ladestationen anschließen zu können, ist es daher wünschenswert, dass die Elektrofahrzeuge auch an herkömmliche Netzanschlussstecker, beispielsweise einpha- sige Schuko- oder dreiphasige CEE-Steckverbinder, angeschlossen werden können, um das Elektrofahrzeug über konventionelle Netzanschlüsse wie beispielsweise Haushalts steckdosen oder ähnliche zu laden.
In elektrischer Hinsicht birgt ein solcher Anschluss jedoch Nachteile und gegebenenfalls sogar Gefahren. Oftmals sind beispielsweise Haushaltsstromnetze und deren Steckdosen auf eine maximale Stromstärke von 16 A ausgelegt. Auch können Haushaltssteckdosen durch Alterungserscheinungen und sonstigen Verschleiß an Leistungsfähigkeit verlieren. Gerade Netzanschlüsse, die für das Aufladen von Elektrofahrzeugen genutzt werden, be finden sich häufig in der Witterung ausgesetzten Bereichen, was zusätzlich zum Verschleiß und zur Minderung der Funktionsfähigkeit der Netzanschlüsse beiträgt. Zudem stellt die lange, hohe Belastung, die bis zu mehreren Stunden andauern kann, durch den Ladevor gang eines Elektrofahrzeugs ein untypisches Lastverhalten im Gegensatz zu vielen ande ren Niederspannungsverbrauchern dar und belastet die Netzanschlüsse daher stärker. Kommt es nun zu einer Überlastung in diesem Netzanschluss, können hierdurch sowohl netzseitig wie auch verbraucherseitig große Schäden entstehen. Schlimmstenfalls können durch die Überlastung und der daraus folgenden Überhitzung sogar Brände verursacht werden.
Zudem beeinflusst das flexible, örtlich unbestimmte Laden von Elektrofahrzeugs die Ver teilnetze in der Mittel- und Niederspannungsebene. Diese Verteilnetze sind auf die Spitzen last im jeweiligen Versorgungsgebiet ausgelegt. Durch das Laden der Elektrofahrzeuge kann sich das Lastprofil verändern und auch die Spitzenlast kann steigen, so dass die technischen Vorgaben des Gesetzgebers durch die bestehenden Netze nicht mehr einge halten werden können. Daher ist der Einfluss der mobilen Ladegeräte auf die Spitzenlast zu berücksichtigen und mit dem Netzbetreiber abzustimmen. Insbesondere wenn lokal viele Ladevorgänge gleichzeitig durchgeführt werden sollen, kann dies auch das Versorgungs netz vor Probleme stellen.
Die DE 102014201 764 A1 offenbart eine elektrische Verbindungsvorrichtung für ein La dekabel zum Laden eines Elektrofahrzeugs, die ein netzseitiges erstes Verbindungsmittel zum elektrischen Verbinden der Verbindungsvorrichtung mit einem elektrischen Versor gungsnetz sowie ein ladekabelseitiges zweites Verbindungsmittel zum Verbinden der Ver bindungsvorrichtung mit einem netzseitigen Stecker des Ladekabels aufweist das erste Verbindungsmittel weist dabei einen ersten Temperatursensor auf, der über eine Kommuni kationsleitung elektrisch mit dem zweiten Verbindungsmittel verbunden ist. Das zweite Ver bindungsmittel weist einen weiteren Kontakt auf, um ein Signal des Temperatursensors an das Ladekabel zu übertragen. Eine ähnliche Vorrichtung mit Temperatursensor offenbart die GB 2 489 988 A.
Es ist daher Aufgabe der Erfindung, die oben genannten Nachteile zumindest teilweise zu überwinden und eine verbesserte Vorrichtung anzugeben, die eine flexiblere und komfor tablere Aufladung von Elektrofahrzeugen ermöglicht.
Zur Lösung dieser Aufgabe wird eine Vorrichtung für die flexible elektrische Aufladung ei nes Akkumulators eines Elektrofahrzeugs bereitgestellt, mit einer Laderegeleinheit, an die verbraucherseitig ein Leistungssteckverbinder und netzseitig ein erstes Adapterelement angeschlossen ist, und einem an das erste Adapterelement anschließbaren zweiten Adap terelement, das mit einem Netzanschlussstecker fest verbunden ist. Zwischen dem ersten Adapterelement und der Laderegeleinheit ist eine erste Signalleitung vorgesehen, über die mindestens ein dem zweiten Adapterelement und/oder dem Netzanschlussstecker zuge ordnetes Merkmal abfragbar ist. Die erste Signalleitung besteht vorzugsweise zusätzlich zur elektrischen Ladeleitung. Über die Abfrage dieses Merkmals kann der Typ des Netzan schlusssteckers bestimmt und darauf basierend der Strom für die Aufladung des Elektro fahrzeugs und weitere Parameter durch die Regeleinrichtung, d. h. die Laderegeleinheit, festgelegt werden. Somit ist es möglich, das Elektrofahrzeug über eine Vielzahl konventio neller Netzanschlüsse zu laden, die in wesentlich größerer Anzahl vorhanden sind als spe zielle, fest installierte Ladestationen. Auch der Standort für die Aufladung ist nicht mehr durch den Ort der fest installierten Ladestation vorgegeben. Daraus ergeben sich eine er heblich verbesserte örtliche Flexibilität und Nutzungsmöglichkeit. Erfindungsgemäß ist die Laderegeleinheit leistungstechnisch und kommunikationstechnisch derart überbrückbar, dass sie keine Leistung führt, wenn ein vorbestimmter Steckertyp erkannt wird. Diese Maß nahme ist insbesondere dann sinnvoll, wenn das Elektrofahrzeug über die erfindungsge mäße Vorrichtung an einer Standardladestation angeschlossen werden soll. Dies wird dadurch festgestellt, dass als Netzanschlussstecker beispielsweise ein (IEC-) Typ-2- Stecker erkannt wurde. Die Kommunikation und insbesondere die Leistungssteuerung brauchen dann nicht über die Laderegeleinheit zu erfolgen. Die Verbindung zwischen Stan dardladestation und Elektrofahrzeug gleicht also der oben beschriebenen Verbindung beim Ladevorgang mit standardisierten Typ-2-Steckverbindern. Die Laderegeleinheit ist dazu derart eingerichtet, dass sie die IEC-Typ-2 -Verbindung innerhalb kürzester Zeit erkennt, ohne dass sie schon Strom führt. Insbesondere wird bei der Überbrückung technisch si chergestellt, dass keine Oberwellen- oder sonstige Störsignale von der Laderegeleinheit in die Ladestation gesendet werden.
Das Merkmal kann vorzugsweise über einen im zweiten Adapterelement vergossenen Wi derstand abgefragt werden. Der Widerstandswert ist einem bestimmten Netzanschlussste ckertyp zugeordnet, sodass die Laderegeleinheit den Ladestrom auf den Steckertyp einstel len kann. Neben bzw. alternativ zu einem Widerstand kann auch ein anderes (elektroni sches) Bauelement im zweiten Adapterelement oder im Netzanschlussstecker vorgesehen sein.
Eine Weiterbildung der Erfindung sieht vor, dass zwischen dem zweiten Adapterelement und dem Netzanschlussstecker eine zweite Signalleitung installiert ist und im Netzan schlussstecker Mittel zur Temperaturüberwachung vorgesehen sind, wobei die Mittel zur Temperaturüberwachung über die zweite Signalleitung abfragbar sind. Sollte der Netzan schluss überlastet sein, sei es aufgrund von Verschleiß oder fehlerhafter Installation, kann dieser überhitzen. Durch die Mittel zur Temperaturüberwachung wird diese Überhitzung detektiert und es können Maßnahmen ergriffen werden, die der Überhitzung entgegenwir ken. Geeignete Mittel zur Temperaturüberwachung sind beispielsweise Bi-Metallschalter oder Thermistoren. Wenn die Überhitzung detektiert wird, kann dies über die Signalleitun gen an die Laderegeleinheit weitergeleitet werden.
Wird eine solche Temperaturüberschreitung detektiert, ist zweckmäßig, wenn in der Lade regeleinheit Mittel vorgesehen sind, die bei Detektion einer Temperaturüberschreitung eine kontrollierte Abschaltung des Ladevorgangs auslösen, um Schäden zu vermeiden. Die kon trollierte Abschaltung kann durch eine in die Laderegeleinheit integrierte Steuereinheit durchgeführt werden.
Des Weiteren ist es vorteilhaft, wenn die Laderegeleinheit über eine Kommunikations schnittstelle ansteuerbar ist. Die Kommunikationsschnittstelle kann festverdrahtet oder drahtlos realisiert werden. Über eine solche Kommunikationsschnittstelle kann die Vorrich tung sowohl mit verbraucherseitigen, als auch mit vorgelagerten netzseitigen Teilnehmern kommunizieren. So lassen sich verbraucherseitig beispielsweise der aktuelle Status der Batterie abfragen sowie Vorgaben hinsichtlich der gewünschten Ladezeit, des Mindestlade stands, des spätesten Zeitpunkts der Vollladung oder ähnlichem übermitteln. Auch Identifi kationsdaten des Fahrzeugs können so übermittelt werden. Vorgelagerte netzseitige Teil nehmer können beispielsweise der Netzbetreiber selber, aber auch Betreiber von größeren Stellplätzen mit einer Vielzahl von örtlich konzentrierten Lademöglichkeiten sein. Letztere können dann die Aufladung der Elektrofahrzeuge mittels der Kommunikationsschnittstelle derart steuern, dass eine mit dem Netzbetreiber vereinbarte Spitzenlast oder eine vom Netzbetreiber oder der (Haus-) Infrastruktur vorgegebene bzw. kurzfristig reduzierte oder erhöhte Spitzenlast nicht überschritten wird und gleichzeitig die Anforderungen hinsichtlich der verbraucherseitigen Vorgaben berücksichtigt werden. Darauf basierend kann eine Prio- risierung einzelner Ladevorgänge vorgenommen werden.
Eine zweckmäßige Weiterbildung sieht vor, dass die Laderegeleinheit derart ausgelegt ist, dass verbraucherseitige Signale vom Elektrofahrzeug zu einer netzseitigen Steuerung durchleitbar sind. Hierdurch ist die direkte Kommunikation zwischen Elektrofahrzeug und Ladestation beispielsweise über eine Pulsweitenmodulation (PWM) oder ähnliches möglich. Mittels der Durchleitung des PWM-Signals kann beispielsweise festgestellt werden, ob ein Elektrofahrzeug an der Ladestation angeschlossen ist.
Im Folgenden wird die Erfindung anhand von Zeichnungen näher erläutert. Es zeigen:
Fig. 1 schematisch einen Teil einer erfindungsgemäßen Vorrichtung in einer ersten Aus führungsform;
Fig. 2 schematisch eine erfindungsgemäße Vorrichtung in einer zweiten Ausführungs form;
Fig. 3 schematisch eine erfindungsgemäße Vorrichtung in einer dritten Ausführungs form.
In Fig. 1 ist ein Teil der erfindungsgemäßen Vorrichtung gemäß einer ersten Ausführungs form dargestellt. Die Vorrichtung dient der elektrischen Verbindung eines Elektrofahrzeugs 1 mit einer Stromversorgung zur Aufladung des Akkumulators des Elektrofahrzeugs 1. Die Vorrichtung weist eine Laderegeleinheit 2 auf, die in einem Gehäuse untergebracht ist. An die Laderegeleinheit 2 ist verbraucherseitig ein Leistungssteckverbinder 3, beispielsweise ein IEC-Typ-2-Steckverbinder, angeschlossen, über den das Elektrofahrzeug 1 verbunden ist. Netzseitig ist ein erstes Adapterelement 4 an die Laderegeleinheit 2 angeschlossen. An das erste Adapterelement 4 ist ein zweites Adapterelement 5 anschließbar. Das zweite Adapterelement 5 ist wiederum mit einem Netzanschlussstecker 6 festverbunden, hier als einphasiger Schuko-Stecker 6 dargestellt. Diese sind üblicherweise für maximale Strom stärken bis 16 A ausgelegt, aber bei Dauerlast nur mit 80% der jeweiligen maximalen Stromstärke, also bis 13 A, belastbar und sind dementsprechend für die Aufladung mit bis zu 3 kVA geeignet. Bei dem Netzanschlussstecker 6 kann es sich aber beispielsweise auch um einen dreiphasigen CEE-Stecker handeln, der üblicherweise auf Stromstärken von 16 A oder 32 A ausgelegt ist und dementsprechend für die Aufladung mit 11 kVA bzw. 22 kVA geeignet ist.
Zwischen dem ersten Adapterelement 4 und der Laderegeleinheit 2 ist eine erste, zusätz lich zur Ladeleitung vorhandene Signalleitung 7 installiert, über die mindestens ein Merkmal abgefragt werden kann (oder auch mehrere). Das mindestens eine Merkmal ermöglicht die Erkennung des zweiten Adapterelements 5 und damit insbesondere des Netzanschlussste ckers 6. Dadurch kann die Laderegeleinheit 2 beispielsweise erkennen, um welchen Ste ckertyp es sich bei dem angeschlossenen Netzanschlussstecker 6 handelt. Das Merkmal, über das die Erkennung erfolgt, kann beispielsweise mittels eines in das zweite Adap terelement 5 vergossenen Widerstands realisiert werden, wobei der Spannungsabfall ent sprechend gemessen wird. Jedem unterschiedlichen Steckertyp ist in diesem Anwen dungsbeispiel jeweils ein eigener Widerstandswert zugeordnet, und dadurch kann die Lade regeleinheit 2 den richtigen Lademodus für das Elektrofahrzeug 1 einstellen. Auf dieser Ba sis oder mittels weiterer Merkmale kann die Laderegeleinheit 2 damit weitere Werte ermit teln, beispielsweise die erwartete Ladedauer und dergleichen.
Der Schuko-Stecker 6 kann in eine Haushaltssteckdose 8 gesteckt und somit mit dem Hausstromnetz verbunden werden. Die Elektroinstallation in einem Haushalt ist üblicher weise auf eine bestimmte Leistung ausgelegt, und die einzelnen Stromkreise am Hausan schlusskasten sind dementsprechend abgesichert (z.B. bis zu 16 A). Folglich kann das Elektrofahrzeug 1 bestenfalls nur mit der Stromstärke laden, auf die die Installation maximal ausgelegt ist. Hierbei ist zusätzlich zu berücksichtigen, dass gleichzeitig noch weitere Ver braucher im selben Stromkreis angeschlossen sein können.
Eine Gefahr stellen mangelhafte Installationen aufgrund von Fehlern bei der Installation, Verschleiß oder Alterungserscheinungen dar. In solchen Fällen kann es zu einer Überhit zung in der Haushaltssteckdose 8 und schlimmstenfalls zu einem Brand kommen. Zudem wird durch den Ladevorgang über einen relativ langen Zeitraum, typischerweise bis zu mehreren Stunden, eine hohe Leistung beansprucht, was für andere Haushaltslasten eher untypisch ist. Daher sind im Netzanschlussstecker 6 Mittel zur Überwachung der Tempera tur in der Haushaltssteckdose 8 bei eingesteckten Netzanschlussstecker 6 vorgesehen.
Die Temperaturüberwachung kann zum Beispiel über einen in den Netzanschlussstecker 6 integrierten Bi-Metallkontakt realisiert werden, aber auch der Einsatz von Thermistoren oder anderen geeigneten Temperaturüberwachungsmitteln ist möglich. Um die Temperaturüber schreitung zu detektieren, ist zwischen dem zweiten Adapterelement 5 und dem Netzan schlussstecker 6 eine zweite Signalleitung 9 vorgesehen, die bevorzugt ebenfalls getrennt von der Ladeleitung ausgebildet ist. Öffnet nun beispielsweise der Bi-Metallkontakt, wird dies über die Signalleitungen 7, 9 von der Laderegeleinheit 2 erkannt, und der Ladevorgang kann durch die Laderegeleinheit 2 kontrolliert gestoppt werden. Hierdurch werden Schäden sowohl verbraucherseitig am Elektrofahrzeug 1 und der Ladevorrichtung als auch netzseitig in der Hausinstallation vermieden.
Die Signalleitungen 7, 9 sind bevorzugt im selben Mantel wie die elektrische Ladeleitung angeordnet, jedoch elektrisch davon getrennt und/oder vorteilhafterweise abgeschirmt, da mit Störungen minimiert werden. Übliche Signalleitungen weisen einen Querschnitt von 0,5 mm2 auf, können allerdings auch kleinere und größere Querschnitte, z.B. von 0,25 mm2 bis 3 mm2 umfassen.
Die Vorrichtung kann in eine (hier nicht dargestellte) festinstallierte Wandladestation, bei spielsweise in der Garage, eingehängt und verwendet werden. Bei Bedarf kann die Vorrich tung entnommen und mit weiteren Netzanschlusssteckern 6 anderen Typs für den mög lichst flexiblen mobilen Einsatz ausgerüstet werden. Fig. 2 zeigt eine erfindungsgemäße Vorrichtung in einer zweiten Ausführungsform. Das Elektrofahrzeug 1 wird hier an eine festinstallierte Ladesäule 10 mittels eines IEC-Typ-2- Steckers angeschlossen. Die Laderegeleinheit 2 erkennt mittels der oben beschriebenen Funktionalität, dass es sich um einen IEC-Typ-2-Stecker handelt. Die Steuerung des Lade vorgangs kann folglich hier direkt zwischen der Ladesäule 10 und dem Elektrofahrzeug 1 über die standardmäßige Kommunikation der IEC-Typ-2 -Verbindung realisiert werden. Ein Aktivwerden oder steuerndes Eingreifen der Laderegeleinheit 2 ist nicht notwendig. Folglich kann sowohl die Leistungsverbindung wie auch die Kommunikationsverbindung der Lade regeleinheit 2 über eine Überbrückung 11 umgangen werden. Hierdurch wird einerseits ei ne Beeinflussung der Kommunikation zwischen der Ladestation 10 und dem Elektrofahr zeug 1 ausgeschlossen. Andererseits wird die Laderegeleinheit 2 nicht durch die Leis- tungsdurchleitung in Anspruch genommen. Vielmehr erkennt die Laderegeleinheit 2 in Se kundenbruchteilen, dass sie überbrückt wird und verhindert dabei das Aussenden von Stör signalen an die Ladestation 10 oder das Elektrofahrzeug 1. In der in Fig. 2 dargestellten Ausführungsform ist die Überbrückung 11 schematisch als elektrische Leitung um die Lade regeleinheit 2 herum dargestellt. Es versteht sich, dass die Überbrückung 11 hier kein eige nes Bauteil darstellt, sondern in das Gehäuse der Laderegeleinheit 2 in geeigneter Weise integriert ist.
In Fig. 3 zeigt eine weitere Ausführungsform von erfindungsgemäßen Vorrichtungen. Hier bei soll es möglich sein, eine Vielzahl von Elektrofahrzeugen 1 mit mehrerer Ladestationen 13 an einer gemeinsamen Netzanschlussstelle 12 zu laden. Dies kann beispielsweise auf einem Parkplatz, einer Park- bzw. Tiefgarage oder ähnlichem Vorkommen. Die gemeinsa me Netzanschlussstelle 12 muss in diesem Fall mit dem zuständigen Netzbetreiber derart koordiniert werden, dass ausreichend Ladekapazität zur Verfügung steht. Üblicherweise wird die anschließbare Leistung dieser Netzanschlussstelle 12 auf eine bestimmte Maximal leistung festgelegt, die nicht überschritten werden darf. Daher ist es sinnvoll, eine Kommu nikation zwischen der Netzanschlussstelle 12, den Ladestationen 13 und/oder den Ladere geleinheiten 2, die jeweils den Elektrofahrzeugen 1 zugeordnet sind, vorzusehen. Hierdurch kann ein Last- und Informationsmanagement durchgeführt werden.
Beispielsweise wird ermittelt, ob überhaupt ein Elektrofahrzeug 1 an einer einzelnen La destation 13 angeschlossen ist und mit welcher Leistung das Elektrofahrzeug 1 über wel che Phasen geladen werden soll bzw. kann. Dementsprechend kann die maximale Ladel- eistung der einzelnen Ladestationen 13 hoch ausgelegt werden, wobei die Gesamtlast, also die maximale Leistung der Netzanschlussstelle 12 nicht überschritten werden darf. Wenn also nur wenige Elektrofahrzeuge 1 gleichzeitig an der Netzanschlussstelle 12 angeschlos sen sind, kann die Ladeleistung mittels der Kommunikation zwischen Netzanschlussstelle 12 und den Ladestationen 13 relativ hoch bis maximal eingestellt werden. Wenn aber bei spielsweise an allen Ladestationen 13 jeweils ein Elektrofahrzeug 1 geladen werden soll, muss die Leistung der einzelnen Ladestationen 13 dementsprechend gedrosselt oder un tereinander koordiniert werden. Hierzu ist es auch sinnvoll, wenn die Kommunikation bidi rektional, also auch vom Elektrofahrzeug 1 zur Ladestation 13 bzw. Netzanschlussstelle 12 möglich ist. Somit können zusätzlich Ladezustände abgefragt werden oder auch Vorgaben, wie beispielsweise die Mindestreichweite, der späteste Zeitpunkt der Vollladung oder Ähnli ches berücksichtigt werden. Auch der Autotyp ist auf diese Weise durch die Übermittlung und Überprüfung von Ladecharakteristika ermittelbar.
Die Kommunikation zwischen der/den Ladestation(en) 13 und der Netzanschlussstelle 12 kann über festverdrahtete Signalleitungen, wie beispielsweise Ethernet-Kabel, Powerline (PLC) oder ähnliche, sowie auch über geeignete drahtlose Kommunikationstechniken, wie beispielsweise Bluetooth, ANT+, LoRa, WLAN oder Ähnliches realisiert werden. Im in Fig. 3 dargestellten Anwendungsfall kommunizieren die Ladestationen 13 drahtlos mit einer in der Netzanschlussstelle 12 integrierten Last-Managementsteuerung. Die Kommunikation zwi schen der Ladestation 13, Laderegeleinheit 2 und Elektrofahrzeug 1 ist über die festver drahteten Signalleitungen 7, 9 in der erfindungsgemäßen Vorrichtung möglich. Auch hier sind aber drahtlose Kommunikationsschnittstellen denkbar, wobei beispielsweise in der pri vaten Anwendung bei Verwendung von bis zu drei Laderegeleinheiten 2 diese über die drahtlose Schnittstelle miteinander kommunizieren können. Der Ladezustand des einzelnen Elektrofahrzeugs 1 sowie die Vorgaben über Mindestladestand und spätester Vollladung können durch den Fahrzeugnutzer, beispielsweise über eine App, eingesehen bzw. verän dert werden. Die App kommuniziert dabei mit einer in die Laderegeleinheit 2, das Elektro fahrzeug 1 oder die Ladestation 13 integrierten Sende- und Empfangseinheit.
Zusätzlich kann die erfindungsgemäße Vorrichtung Mittel zur Identifizierung der Elektro fahrzeuge 1 aufweisen. Beispielsweise können eine Kamera oder ein Scanner, über die das Elektrofahrzeug 1 identifiziert werden kann, an einem oder mehreren Bestandteilen der Vor richtung vorgesehen sein wie etwa an der Laderegeleinheit 2, an einem der Adapterele- mente 4, 5 oder auch an den Kabeln zwischen den Bestandteilen. Auch im oder am Elekt rofahrzeug 1 können dazu passende, geeignete Mittel vorgesehen sein. Über die Kamera kann beispielsweise das Nummernschild des Elektrofahrzeugs 1 oder ein QR-Code in der Umgebung der Ladebuchse des Elektrofahrzeugs 1 erfasst werden. Somit können zusätz- lieh nützliche Daten über das Fahr- und Ladeverhalten des jeweiligen Elektroautos 1 erfasst werden. Ebenso ist eine Abrechnung des Ladevorgangs über ein dem Elektrofahrzeug 1 zugeordnetes Konto möglich.
Schließlich kann an den Ladestationen 13 oder Ladesäulen 10 eine direkte Schnittstelle zur Bezahlung der bezogenen Energie beispielsweise mittels Kreditkarte oder Handy vorgese hen sein. Auch diese Schnittstelle kann drahtlos über RFID (Radio Frequency Identification) oder einen anderen drahtlosen Datenkommunikationsstandard wie NFC (Near Field Com- munication) ausgeführt sein. Der Betreiber der Ladesäulen 10 bzw. Ladestationen 13 kann damit eine eigene sichere Zahlungsmethode und -Infrastruktur bereitstellen, beispielsweise indem er die Nummer der Bankkarte oder Kreditkarte sicher und verschlüsselt ausliest, wo bei etwa die ersten sechs Ziffern offen ausgelesen und die Daten an ein firmeneigenes Ba ckend übermittelt werden.
Mit der vorliegenden Erfindung wird eine verbesserte Vorrichtung angegeben, die eine fle- xiblere und komfortablere Aufladung von Elektrofahrzeugen ermöglicht.
Bezugszeichenliste:
1 Elektrofahrzeug
2 Laderegeleinheit 3 Leistungssteckverbinder
4 erstes Adapterelement
5 zweites Adapterelement
6 Netzanschlussstecker
7 erste Signalleitung 8 Haushaltssteckdose
9 zweite Signalleitung
10 Ladesäule
11 Überbrückung
12 Netzanschlussstelle 13 Ladestation

Claims

Ansprüche
1. Vorrichtung für die flexible elektrische Aufladung eines Akkumulators eines Elektro fahrzeugs (1), mit einer Laderegeleinheit (2), an die verbraucherseitig über ein Lade kabel ein Leistungssteckverbinder (3) und netzseitig über das Ladekabel ein erstes Adapterelement (4) angeschlossen ist, und einem an das erste Adapterelement (4) anschließbaren zweiten Adapterelement (5), das über ein Ladekabel mit einem Netzanschlussstecker (6) fest verbunden ist, wobei zwischen dem ersten Adapterelement (4) und der Laderegeleinheit (2) eine erste Signalleitung (7) vorgesehen ist, über die mindestens ein dem zweiten Adap terelement (5) und/oder dem Netzanschlussstecker (6) zugeordnetes Merkmal ab- fragbar ist; dadurch gekennzeichnet, dass die Laderegeleinheit (2) leistungstechnisch und kommunikationstechnisch derart überbrückbar ist, dass sie keine Leistung führt, wenn ein vorbestimmter Steckertyp erkannt wird.
2. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass das zugeordnete Merkmal durch einen dem zweiten Adapterelement (5) zugeordneten Widerstand bestimmt ist.
3. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zwischen dem zweiten Adapterelement (5) und dem Netzanschlussstecker (6) eine zweite Signalleitung (9) installiert ist und im Netzanschlussstecker (6) Mittel zur Temperaturüberwachung vorgesehen sind, wobei die Mittel zur Temperaturüberwa chung über die zweite Signalleitung (9) abfragbar sind.
4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass zur Temperaturüber wachung ein Bi-Metallkontakt vorgesehen ist.
5. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass zur Temperaturüber wachung ein Thermistor vorgesehen sind.
6. Vorrichtung nach Anspruch 3, 4 oder 5, dadurch gekennzeichnet, dass in der Lade- regeleinheit (2) Mittel vorgesehen sind, die bei Detektion einer Temperaturüber schreitung eine kontrollierte Abschaltung oder Reduktion des Ladevorgangs auslö- sen.
7. Vorrichtung nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass die Laderegeleinheit (2) eine Kommunikationsschnittstelle aufweist.
8. Vorrichtung nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass die Laderegeleinheit (2) derart ausgelegt ist, dass verbraucherseitige Signale vom Elektrofahrzeug (1) zu einer netzseitigen Steuerung durchleitbar sind.
9. Vorrichtung nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass die erste Signalleitung (7) von dem Ladekabel getrennt und/oder abgeschirmt ausgebildet ist.
10. Vorrichtung nach einem der Ansprüche 3 bis 9, dadurch gekennzeichnet, dass die zweite Signalleitung (9) von dem Ladekabel getrennt und/oder abgeschirmt ausge bildet ist.
PCT/EP2020/068104 2019-08-05 2020-06-26 Mobile ladestation für ein elektrofahrzeug WO2021023437A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20735165.1A EP4010217A1 (de) 2019-08-05 2020-06-26 Mobile ladestation für ein elektrofahrzeug

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019121108.5A DE102019121108B3 (de) 2019-08-05 2019-08-05 Mobile Ladestation für ein Elektrofahrzeug
DE102019121108.5 2019-08-05

Publications (1)

Publication Number Publication Date
WO2021023437A1 true WO2021023437A1 (de) 2021-02-11

Family

ID=71266674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/068104 WO2021023437A1 (de) 2019-08-05 2020-06-26 Mobile ladestation für ein elektrofahrzeug

Country Status (3)

Country Link
EP (1) EP4010217A1 (de)
DE (1) DE102019121108B3 (de)
WO (1) WO2021023437A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114312418A (zh) * 2022-03-16 2022-04-12 始途科技(杭州)有限公司 一种移动充电系统及方法
DE102022118684A1 (de) 2022-07-26 2024-02-01 Still Gesellschaft Mit Beschränkter Haftung Elektrisches Ladesystem zum elektrischen Laden eines batteriebetriebenen Fahrzeugs

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021108004B4 (de) 2021-03-30 2023-12-14 Ford Global Technologies Llc Ladevorrichtung für ein Elektrofahrzeug
DE102021112424A1 (de) 2021-05-12 2022-11-17 Juice Technology AG Mobile Ladevorrichtung und Verfahren zu deren Montage
DE102021113254B3 (de) 2021-05-21 2022-08-11 Juice Technology AG Mobile Ladevorrichtung
DE102021115458A1 (de) 2021-06-15 2022-12-15 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Universelle Elektrofahrzeug-Ladekabelanordnung
DE102021206606A1 (de) 2021-06-25 2022-12-29 Robert Bosch Gesellschaft mit beschränkter Haftung Versorgungskabel
DE102021206601B4 (de) 2021-06-25 2023-03-02 Robert Bosch Gesellschaft mit beschränkter Haftung Elektrisches Versorgungskabel für ein Fahrzeug
DE102021206603A1 (de) 2021-06-25 2022-12-29 Robert Bosch Gesellschaft mit beschränkter Haftung Verbinder eines elektrischen Versorgungskabels für ein Fahrzeug
DE102021119374A1 (de) 2021-07-27 2023-02-02 INRO Elektrotechnik GmbH Mobiles Ladekabel und Netzanschlussstation
DE202021104997U1 (de) 2021-07-27 2021-09-27 INRO Elektrotechnik GmbH Mobiles Ladekabel und Netzanschlussstation
DE102022112710B3 (de) 2022-05-20 2023-07-27 INRO Elektrotechnik GmbH Dockingstation, Ladesystem und Computerprogrammprodukt
DE102022125282A1 (de) 2022-09-30 2024-04-04 Compleo Charging Solutions Ag Versorgungsstation für elektrisch betreibbare Fahrzeuge

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2489988A (en) 2011-04-15 2012-10-17 Nissan Motor Mfg Uk Ltd Improvements in electrical connections
US20140091759A1 (en) * 2012-09-28 2014-04-03 Panasonic Corporation Connector
US20150028809A1 (en) * 2012-03-08 2015-01-29 Panasonic Corporation Charging cable
DE102014201764A1 (de) 2014-01-31 2015-08-06 Siemens Aktiengesellschaft Elektrische Verbindungsvorrichtung und Ladekabel für ein Elektrofahrzeug
DE202015104720U1 (de) * 2015-09-04 2016-01-26 Ralf Hildebrandt Ladestation für Elektromobile mit mindestens einer daran anschließbaren Netzleitung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2489988A (en) 2011-04-15 2012-10-17 Nissan Motor Mfg Uk Ltd Improvements in electrical connections
US20150028809A1 (en) * 2012-03-08 2015-01-29 Panasonic Corporation Charging cable
US20140091759A1 (en) * 2012-09-28 2014-04-03 Panasonic Corporation Connector
DE102014201764A1 (de) 2014-01-31 2015-08-06 Siemens Aktiengesellschaft Elektrische Verbindungsvorrichtung und Ladekabel für ein Elektrofahrzeug
DE202015104720U1 (de) * 2015-09-04 2016-01-26 Ralf Hildebrandt Ladestation für Elektromobile mit mindestens einer daran anschließbaren Netzleitung

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114312418A (zh) * 2022-03-16 2022-04-12 始途科技(杭州)有限公司 一种移动充电系统及方法
DE102022118684A1 (de) 2022-07-26 2024-02-01 Still Gesellschaft Mit Beschränkter Haftung Elektrisches Ladesystem zum elektrischen Laden eines batteriebetriebenen Fahrzeugs

Also Published As

Publication number Publication date
DE102019121108B3 (de) 2020-09-24
EP4010217A1 (de) 2022-06-15

Similar Documents

Publication Publication Date Title
DE102019121108B3 (de) Mobile Ladestation für ein Elektrofahrzeug
EP2460236B1 (de) Ladekabelstecker zur verbindung eines elektrofahrzeuges mit einer ladestation
DE102017209128B4 (de) Verfahren zum Betreiben einer Fahrzeugladevorrichtung, Fahrzeugladevorrichtung sowie System aus einer Sensorvorrichtung und einer Fahrzeugladevorrichtung
EP2369353B1 (de) Kontaktlose Strommessvorrichtung und Verbraucherenergiemesssystem
EP2384922A2 (de) Stromaufladevorrichtung für ein Elektrofahrzeug
WO2011124298A2 (de) Vorrichtung und verfahren zum kontrollierten energieaustausch zwischen einem stromnetz und einem verbraucher
DE102020128736A1 (de) Ladeeinrichtung zum Aufladen der Antriebsbatterie eines Elektrofahrzeugs und Verfahren zur Erfassung von Energieverbrauchsdaten beim Aufladen von Elektrofahrzeugen
DE102017222968A1 (de) Ladekabel für einen Ladevorgang zum Laden eines elektrischen Energiespeichers eines Fahrzeugs
EP2371611B1 (de) Vorrichtung und Verfahren zum kontrollierten Energieaustausch zwischen einem Stromnetz und einem Verbraucher
WO2018019510A1 (de) Anordnung aus einem kraftfahrzeug und einem verbindungsmittel, kraftfahrzeug und verbindungsmittel
DE102015113771A1 (de) Fahrzeugbatterie-Ladeystem-Benachrichtigung
EP3798045A1 (de) Anpassen einer ladeleistung
DE202010000364U1 (de) Kontaktlose Strommessvorrichtung und Verbraucherenergiemesssystem
EP2279893A2 (de) Lade-Steckdose zur Aufladung eines Elektroautos, mit Mitteln zur Kommunikation zwischen Lade-Steckdose und Fahrzeug
DE202014000328U1 (de) Ladesystem zum Laden eines Energiespeichers eines Elektrofahrzeuges und Ladekabel hierfür
WO2012038225A2 (de) Verfahren zum laden zumindest eines energiespeichers eines elektrofahrzeugs
WO2012062511A2 (de) Verfahren zum betreiben eines lokalen energienetzes
DE102019127136A1 (de) Energieaustauschvorrichtung elektrischer Energie zwischen zwei mobilen Energiespeichersystemen
DE102014008222B4 (de) Verfahren zur Bereitstellung energieabnahmespezifischer Information
DE102010063790A1 (de) Ladestation, Adaptervorrichtung und Ladesystem
EP2279894A2 (de) Lade-Steckdose zur Aufladung eines Elektroautos, mit Mitteln zur Einbindung in die Gebäudeautomaten
DE102013113437A1 (de) Verfahren zum Kalibrieren eines elektrisch angetriebenen Fahrzeugs auf einen Netzstandard
DE102020120978B4 (de) Intelligentes Messsystem mit einem digitalen Stromzähler und einer Kommunikationsvorrichtung
EP1324057B1 (de) Elektronischer Elektrizitätszähler, insbesondere Haushaltszähler
WO2009092444A1 (de) Verfahren und anordnung zur datenübertragung in einem energieverteilungsnetz

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20735165

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020735165

Country of ref document: EP

Effective date: 20220307