WO2021023254A1 - 一种激光雷达及智能感应设备 - Google Patents

一种激光雷达及智能感应设备 Download PDF

Info

Publication number
WO2021023254A1
WO2021023254A1 PCT/CN2020/107322 CN2020107322W WO2021023254A1 WO 2021023254 A1 WO2021023254 A1 WO 2021023254A1 CN 2020107322 W CN2020107322 W CN 2020107322W WO 2021023254 A1 WO2021023254 A1 WO 2021023254A1
Authority
WO
WIPO (PCT)
Prior art keywords
counterweight
radar
plate
lidar
base
Prior art date
Application number
PCT/CN2020/107322
Other languages
English (en)
French (fr)
Inventor
叶高山
Original Assignee
深圳市速腾聚创科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910727564.8A external-priority patent/CN110231608A/zh
Priority claimed from CN201910797078.3A external-priority patent/CN110308434B/zh
Application filed by 深圳市速腾聚创科技有限公司 filed Critical 深圳市速腾聚创科技有限公司
Priority to CN202080051966.1A priority Critical patent/CN114174855A/zh
Priority to EP20849362.7A priority patent/EP4006577A4/en
Publication of WO2021023254A1 publication Critical patent/WO2021023254A1/zh
Priority to US17/183,309 priority patent/US11187791B2/en
Priority to US17/509,123 priority patent/US11782135B2/en
Priority to US18/243,647 priority patent/US20230417877A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4813Housing arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone

Definitions

  • the embodiment of the present invention relates to the technical field of lidar, and in particular to a lidar and intelligent sensing equipment.
  • Lidar is a radar system that emits laser beams to detect the position and speed of the target.
  • the mechanical lidar drives the laser emitting part and the laser receiving part of the lidar to rotate to make the detection range of the lidar larger.
  • the inventor of the present invention found that: at present, due to the relatively large number of electronic devices and optical devices in the lidar, the coordination of the optical path in the middle is more complicated, and the weight of each component is not consistent, so the lidar is rotated During the scanning process, the center of gravity of the lidar body will deviate from its center position, causing the device to wear out, which will affect the life of the lidar and the detection accuracy. At the same time, due to the large number of internal components of the lidar, the heat insulation and light crosstalk between the internal components have also become important factors affecting the performance of the lidar.
  • the purpose of the embodiments of the present invention is to provide a lidar and intelligent sensing equipment to make the weight of the lidar body more reasonable, make the radar body more stable when rotating, thereby effectively ensuring the accuracy of the radar and extending the service life of the radar .
  • the embodiment of the present invention provides a lidar, including a radar body (100) and a radar base (200);
  • a central shaft (201) is provided on the radar base (200), and the radar body (100) is sleeved on the central shaft (201);
  • the radar body (100) includes a bottom plate (110) and a first counterweight slot (111).
  • the first counterweight slot (111) is arranged on the edge of the bottom plate (110) and surrounds the bottom plate (110).
  • the first counterweight groove (111) includes a lower edge (1112), and at least one first fixing hole (115) is provided on the lower edge (1112).
  • the first fixing hole (115) ) Adjust the first counterweight (113) along the circumference of the bottom plate (110) and toward the axis of the central shaft (201), and fix the first counterweight (113) on the Any position of the first fixing hole (115); the radar body (100) can rotate relative to the radar base (200).
  • a lidar which includes a radar body (100) and a radar base (200);
  • a central shaft (201) is provided on the radar base (200), and the radar body (100) is sleeved on the central shaft (201);
  • the radar body (100) includes a bottom plate (110) and a first counterweight plate (120).
  • the first counterweight plate (120) is arranged at the bottom of the bottom plate (110) and at the edge of the bottom plate (110).
  • a second counterweight groove (121) is formed, the second counterweight groove (121) surrounds the bottom plate (110) in an annular shape, and the counterweight plate (120) includes a second counterweight edge (124)
  • At least one third fixing hole (122) is provided on the second counterweight side (124), and the third fixing hole (122) makes the second counterweight (123) follow the circumference of the bottom plate (110). Adjust the direction and the direction toward the axis of the middle shaft (201), and fix the second counterweight (123) at any position of the third fixing hole (122);
  • the radar body (100) can rotate relative to the radar base (200).
  • a lidar which includes a radar body (10), and the radar body (10) includes: an axis connecting portion (11), a bottom plate (12), a lens holder (13), and a connecting vertical plate (14), counterweight (15), laser emitting board (20) and laser receiving board (30);
  • the shaft connection part (11) is located at the center of the bottom plate (12) and is connected perpendicularly to the bottom plate (12).
  • One side of the shaft connection part (11) is provided with a lens holder (13).
  • the other side of the core connecting part is provided with a connecting vertical plate (14), the connecting vertical plate (14) and the center position of the lens holder (13) are in the same plane, and are connected perpendicularly to the bottom plate (12);
  • the connecting vertical board (14) is located between the laser emitting board (20) and the laser receiving board (30), and is used to isolate the laser emitting board (20) and the laser receiving board (30), One end of the connecting vertical plate (14) is connected to the shaft connecting portion (11), and the other end of the connecting vertical plate (14) fixes the counterweight (15) on the edge of the bottom plate (12) and The lens holder (13) is at a relative position; the lens holder (13) is arranged on the bottom plate (12).
  • Another embodiment of the present invention provides a smart sensing device, including the lidar described in any one of the foregoing embodiments.
  • This embodiment can effectively balance the center of gravity of the radar body by reasonably arranging the counterweight, and make the radar body more stable when it rotates, thereby effectively ensuring the accuracy of the radar and extending the service life of the radar.
  • Fig. 1 is a schematic diagram of a lidar provided by an embodiment of the present invention
  • Figure 2 is an exploded view of a lidar provided by an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a radar body in a lidar provided by an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a counterweight and a second secondary counterweight in a lidar provided by an embodiment of the present invention
  • FIG. 5 is a schematic diagram of another lidar provided by an embodiment of the present invention.
  • Fig. 6 is a schematic diagram of another type of lidar structure provided by an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of another structure of a lidar provided by an embodiment of the present invention.
  • FIG. 8A is a structural diagram of the first fixing hole provided by the implementation of the present invention.
  • 8B is a structural diagram of a second type of fixing hole provided by the implementation of the present invention.
  • 8C is a structural diagram of a third type of fixing hole provided by the implementation of the present invention.
  • 8D is a structural diagram of a fourth type of fixing hole provided by the implementation of the present invention.
  • Figure 8E is a fifth type of fixing hole structure diagram provided by the implementation of the present invention.
  • 8F is a structural diagram of a sixth type of fixing hole provided by the implementation of the present invention.
  • FIG. 9 is a schematic structural diagram of a counterweight plate provided by an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of another laser radar structure provided by an embodiment of the present invention.
  • FIG. 11 is another lidar assembly diagram provided by the implementation of the present invention.
  • FIG. 12 is a schematic structural diagram of another lidar provided by an embodiment of the present invention.
  • FIG. 13A is a structural diagram of the first fixing hole on another lidar provided by the implementation of the present invention.
  • 13B is a structural diagram of the second type of fixing holes on another type of lidar provided by the implementation of the present invention.
  • 13C is a structural diagram of a third type of fixing holes on another lidar provided by the implementation of the present invention.
  • 13D is a structural diagram of the fourth type of fixing holes on another type of lidar provided by the implementation of the present invention.
  • FIG. 13E is a structure diagram of the fifth type of fixing holes on another type of lidar provided by the implementation of the present invention.
  • FIG. 13F is a structure diagram of a sixth type of fixing holes on another type of lidar provided by the implementation of the present invention.
  • FIG. 14 is a schematic diagram of another structure of a lidar provided by an embodiment of the present invention.
  • the laser radar 100 provided by the embodiment of the present invention includes a radar body 10, a laser emitting board 20 and a laser receiving board 30.
  • the laser emitting board 20 and the laser receiving board 30 are respectively arranged on the radar body 10.
  • the laser emitting board 20 is used to emit laser light toward the detection target;
  • the laser receiving board 30 is used to receive the reflected laser light reflected by the detection target, and convert the light signal into an electrical signal, thereby analyzing the position, three-dimensional image and speed of the detection target Wait.
  • the radar body 10 is connected to a power device, and the power device drives the entire radar body 10 and the laser emitting board 20 and the laser receiving board 30 on the radar body 10 to rotate, so that the detection range of the lidar 100 is wider and can be Detect the range around 360°.
  • the radar body 10 includes a shaft connecting portion 11 and a base 12.
  • the base 12 of the radar body can also be called the bottom plate of the radar body, that is, the support plate structure at the bottom of the radar body for carrying the above-mentioned laser emitting board, laser receiving board, and lens holder. The embodiment will not be repeated.
  • the base 12 is connected to the laser emitting board 20 and the laser receiving board 30.
  • the axis connecting portion 11 and the base 12 are integrally formed, or the axis connecting portion 11 and the base 12 are fixedly connected, and The axis connecting portion 11 is located at the center of the base 12 and perpendicular to the base 12.
  • the shaft connecting portion 11 is cylindrical, and its end connected to the base 12 is provided with a fixing hole 111 communicating with the base 12, and the fixing hole 111 is used for connecting the extension shaft of the power device.
  • the extension shaft extends into the fixing hole 111 from the side of the base 12 away from the shaft connection portion 11, and is in interference fit with the fixing hole 111.
  • this connection method will not produce bending and torsion stress on the extension shaft, and has no effect on the rotation accuracy of the extension shaft.
  • the interference fit can also improve the shaft connection 11 and the extension.
  • the concentricity of the output shaft ensures the dynamic balance of the radar body 10 when it rotates.
  • the power device When the power device is activated, its extension shaft starts to rotate and drives the shaft connecting portion 11 to rotate, thereby driving the base 12, the laser emitting board 20 and the laser receiving board 30 to rotate together, thereby realizing the overall rotation of the lidar 100.
  • the base 12 is disc-shaped, and the shaft connecting portion 11 and the base 12 are integrally formed to improve the concentricity, avoid radial beating when the base 12 rotates, and further improve the rotation of the base 12 stability.
  • connection manner of the shaft connection portion 11 and the base 12 and the shape of the shaft connection portion 11 and the base 12 are not limited to the manner and shape described above, and may also be other manners and shapes, which will not be repeated here.
  • the radar body 10 further includes a lens frame 13, a connecting vertical plate 14 and a counterweight 15.
  • the lens holder 13 and the connecting vertical plate 14 are respectively connected to the base 12, the lens holder 13 and the connecting vertical plate 14 are respectively located on both sides of the shaft connecting portion 11, and the connecting vertical plate 14 is located on the lens holder 13
  • the transmitting lens and the receiving lens are on the same plane as the symmetry axis.
  • the connecting vertical plate 14 may be integrally formed with the shaft connecting portion 11 and the base 12.
  • the connecting vertical plate 14 may also be fixedly connected with the shaft connecting portion 11 and the base 12.
  • the other side of the connecting vertical plate 14 with respect to the shaft connecting portion 11 is connected with a counterweight 15 to fix the counterweight 15 on the edge of the base 12 at a position opposite to the lens holder 13 .
  • the lens holder 13 is used to install the transmitting lens and the receiving lens of the lidar 100.
  • the embodiment of the present invention is provided with a counterweight 15 on the radar body 10 opposite to the lens holder 13 to balance the radar body 10 back and forth, so that the center of gravity of the radar body 10 can fall on On the shaft connecting portion 11, the counterweight 15 is fixed at the position where the edge of the base is opposite to the lens holder through the connecting vertical plate 14.
  • the laser emitting board 20 and the laser receiving board 30 are arranged on both sides of the connecting vertical board 14 respectively. It is understandable that when the weight of the laser emitting board 20 side and the laser receiving board 30 side are equal, the weight perpendicular of the counterweight 15 is located at the connection point of the counterweight 15 and the connecting vertical plate 14, when the laser emitting board 20 side When the weight is not equal to that of the laser receiving board 30, the counterweight 15 is connected to the connecting vertical plate 14, and the weight vertical of the counterweight 15 is biased toward the lighter side. With this arrangement, the left-right and front-to-rear balance of the radar body can be further ensured, and the rotation of the radar body 10 can be more stable.
  • a connecting stand 14 is provided between the laser emitting board 20 and the laser receiving board 30, which can isolate the laser emitting board 20 and the laser receiving board 30 effectively, and can effectively isolate the heat dissipation and prevent the crosstalk of light.
  • the laser emitting board 20 and the laser receiving board can be made independent of each other and will not affect each other.
  • connection manner of connecting the vertical plate 14 with the shaft connection portion 11 and the base 12 is not limited to the above-described manner, but may also be other methods.
  • the connection vertical plate 14 is only integrally formed/welded with the shaft connection portion 11
  • the connecting vertical plate 14 is only integrally formed/welded with the base 12, or the connecting vertical plate 14 may also be fixedly connected to the shaft connecting portion 11 and the base 12, etc., wherein the fixed connection may be, for example, fastening Piece connection, card connection, etc.
  • the lens holder 13 is provided with a receiving hole 131 and a beam 132.
  • the receiving hole 131 is used for receiving the transmitting lens and the receiving lens of the lidar 100, and the cross beam 132 is used for reinforcing the lens holder 13 to make the lens holder 13 more stable.
  • the transmitting lens and the receiving lens may be too heavy, and the weight of the counterweight 15 is limited, which cannot sufficiently offset the weight of the transmitting lens and the receiving lens.
  • the lens holder 13 on the radar body 10 can also be reduced. Weight to achieve the dynamic balance of the radar body 10.
  • the first weight reduction groove 1321 may be provided on the beam 132 of the lens holder 13 to remove part of the material of the beam 132 to achieve the effect of weight reduction.
  • the beam 132 is too thin, it may bend or break easily. Therefore, it is necessary to add a number of first reinforcing ribs 1322 in the first weight-reducing groove 1321 to ensure the strength of the beam 132.
  • a second weight reduction groove 121 may also be provided at the bottom of the base 12 away from the lens holder 13 to achieve the effect of weight reduction.
  • a number of second reinforcing ribs 1211 are also added in the second weight reduction groove 121.
  • the first weight-reducing grooves 1321 can be evenly distributed on the beam 132 alternately and horizontally. As shown in FIG. 2, two first weight-reducing grooves 1321 arranged in a horizontal direction and a first weight-reducing groove 1321 arranged in a longitudinal direction are uniformly distributed. A T-shaped first reinforcing rib 1322 is formed between the gaps to stabilize the beam 132. It is understandable that the shape and size of the first weight reduction groove 1321 may be the same or different. Preferably, in this embodiment, the first weight reduction groove 1321 may be an elliptical shape with the same size and shape. Conducive to symmetrical processing and can make processing more convenient. In addition, in this embodiment, the second weight reduction groove 121 is a number of grooves of different depths.
  • a deeper second weight reduction groove 121 may be provided at a thicker position of the base 12 and a shallower second weight reduction groove 121 may be provided at a thinner position of the base 12.
  • the size, depth, and shape of the second weight reduction groove 121 may also be the same or different, and will not be repeated here.
  • the weight reduction grooves are distributed in the same manner on both sides of the axis of the two lenses. That is, the two lens axes are symmetrically located on both sides, and the size, shape, and depth of the first weight reduction groove 1321 and the second weight reduction groove 121 are the same.
  • first weight-reducing grooves 1321 and second weight-reducing grooves 121 are evenly arranged in a regular manner, such as in a column or row.
  • the uniform arrangement facilitates symmetrical processing and makes processing more convenient.
  • the shapes of the first weight reduction groove 1321 and the second weight reduction groove 121 can also be adjusted as required.
  • the embodiment of the present invention adopts an elliptical structure, which facilitates symmetrical processing.
  • the radar body 10 further includes at least one first secondary counterweight 16.
  • the first secondary weight 16 can be glued or clamped in the first weight reduction groove 1321 or the second weight reduction groove 121, or, in the first weight reduction groove 1321 and the second weight reduction groove 121 at the same time The first secondary counterweight 16 is bonded or clamped, so that the front and rear of the radar body 10 are balanced.
  • the shape of the first secondary weight member 16 is adapted to the first weight reduction groove 1321 and the second weight reduction groove 121, and various shapes can be adopted, for example, the first secondary weight
  • the member 16 may choose any shape, such as an ellipse, a rectangle, a wedge, and the like, to be adapted to the first weight reduction groove 1321 and the second weight reduction groove 121.
  • the first secondary counterweight 16 can also adjust the weight difference due to the need for symmetric processing of the first weight reduction groove 1321 and the second weight reduction groove 121, thereby simplifying the processing process.
  • the connecting vertical plate 14 is provided with a positioning boss 141
  • the counterweight 15 is provided with a positioning hole 151.
  • the positioning hole 151 of the counterweight 15 can be clamped into the positioning boss 141 to realize the preliminary positioning of the counterweight 15.
  • the mounting hole 153 on the counterweight 15 is aligned with the threaded hole on the connecting vertical plate 14, and then the screw is passed through the mounting hole 153 and screwed into the threaded hole to complete the connection between the vertical plate 14 and the counterweight 15 fixed.
  • the installation process of connecting the vertical plate 14 and the counterweight 15 can be simplified, the process of aligning the threaded holes is saved, and the assembly time is saved.
  • the surface of the counterweight 15 on the side facing away from the connecting vertical plate 14 has an arc-shaped structure, which is adapted to the disc structure of the base 12 to make the appearance of the lidar 100 more beautiful.
  • connection manner of connecting the vertical plate 14 and the counterweight 15 and the surface shape of the counterweight 15 are not limited to the above-described manner and shape, and other manners and shapes may also be used.
  • the vertical plate 14 and the counterweight 15 may also be connected by a snap connection or an adhesive connection.
  • the shape of the counterweight can be other shapes that cooperate with the base, etc., which will not be repeated here.
  • the radar body 10 further includes at least one second secondary counterweight 17, and the counterweight 15 is provided with the same number of connections as the second secondary counterweight 17 Hole 152, each second secondary counterweight 17 is also provided with a through hole 171 for connection.
  • the connection of the second secondary counterweight 17 and the counterweight 15 can be achieved by passing the screws through the connecting holes 152 and the through holes 171, and then tightening the two ends of the screws with bolts.
  • the second secondary counterweight 17 can be gradually added to the counterweight 15 to gradually increase the weight of the counterweight 15 to realize the balance
  • the weight of the weight 15 is adjustable, which increases the practicability of the weight 15.
  • connection manner of the second secondary counterweight 17 and the counterweight 15 is not limited to the above-described manner, and may also be other manners, such as gluing or cooperating with other fastening methods.
  • the radar body 10 in the embodiment of the present invention includes an axis connecting portion 11, a base 12, a lens frame 13, a connecting vertical plate 14 and a counterweight 15.
  • the shaft connecting portion 11 is used to connect a driving device to drive the entire lidar 100 to rotate.
  • a lens frame 13 is provided on one side of the shaft connecting portion 11, and the lens frame 13 is used to mount the transmitting lens and receiving lens of the lidar 100. Because the transmitting lens and the receiving lens are heavy, the center of gravity of the radar body 10 will deviate from the center. The position affects the dynamic balance of the radar body 10 when it rotates.
  • a counterweight 15 is provided on the other side opposite to the lens holder 13 by connecting the vertical plate 14, and the counterweight 15 is disposed on the edge of the base opposite to the lens holder.
  • the position is also set between the laser emitting board 20 and the laser receiving board 30.
  • the radar body 10 can be effectively balanced, the radar body 10 can be more stable when rotating, and the laser emitting board 20 and the laser receiving board 30 can be better isolated to prevent The mutual influence between them.
  • the embodiment of the present invention also adds a first secondary counterweight 16 and a second secondary counterweight 17, so that the weight of the side of the radar body 10 on which the lens holder 13 is arranged and the counterweight 15 are adjustable. The practicality of the counterweight solution provided by the embodiment of the present invention is stronger.
  • the radar body further includes a first counterweight groove, and the first counterweight groove is disposed on the edge of the base 12 (the The base 12 of the radar body can also be referred to as the bottom plate of the radar body, that is, the support plate structure at the bottom of the radar body for carrying the above-mentioned laser emitting board, laser receiving board, and lens holder.
  • the following embodiments will not repeat it).
  • the circumference of the base 12 is circular
  • the first counterweight groove includes a lower edge
  • at least one first fixing hole is provided on the lower edge.
  • the first fixing hole makes the first counterweight along the bottom plate
  • the circumferential direction and the direction toward the central axis are adjusted, and the first counterweight is fixed at any position of the first fixing hole. It is understandable that by providing counterweight slots on the bottom plate, on the one hand, when the bottom plate is not used for weight adjustment, the weight of the rotating body can be reduced; on the other hand, when the bottom plate is used for counterweight adjustment, it can be convenient
  • a counterweight is arranged in any direction and position of the bottom plate of the rotating body to realize the adjustment of the dynamic balance of the lidar.
  • the center of gravity of the radar body can be reduced when the radar body rotates, which can reduce the offset caused by the offset of the center of gravity and increase the service life of the equipment.
  • the first fixing hole may be as shown in FIG. 8A, FIG. 8B, FIG. 8C, FIG. 8D, FIG. 8E, and FIG. 8F, and the arrangement of the first fixing hole may be relatively tightly arranged on the base 12
  • the periphery can have many shapes.
  • the first fixing hole is set in an oblong shape toward the axis of the radar body 10, as shown in FIG. 8C, so that the counterweight can be easily aligned when the counterweight is fixed to the counterweight plate. For example, you can move toward the position of the axis to adjust the distance between the counterweight and the axis of the radar body. This makes it easier to adjust the center of gravity of the radar without increasing the counterweight.
  • the fixing holes can also be arranged in the circumferential direction of the bottom plate, as shown in Figures 3A and 3B, along the circumferential direction of the counterweight plate,
  • Figure 8A is provided with 4 long circular rings, so that the weight can be The block moves along the circumferential direction of the bottom plate, and the center of gravity can be adjusted without disassembling the counterweight during each adjustment.
  • two long circular rings can be provided, which eliminates the space between the fixing holes to the greatest extent, allows the counterweight to be fixed at any position, and also increases the convenience of adjustment.
  • the fixing holes may be arranged in two circles around the axis of the bottom plate, so as to increase the adjustment range of the counterweight and increase the convenience of dynamic balance adjustment.
  • the fixing holes can be set in a T-shape or a cross shape, so that the fixing block can be moved back and forth and left and right conveniently, that is, the position of the fixing block can be changed.
  • the fine adjustment in each direction increases the convenience of dynamic balance adjustment.
  • the fixed hole can also be set to a dry font, a full font and other forms that can be fine-tuned in multiple directions at the same time, thereby further increasing the dynamic balance adjustment. The convenience.
  • the shape of the specific fixing hole may also be in other forms, which are not limited here, and the purpose is to better fix the fixing block and better fine-tune the position of the fixing block.
  • the arrangement and density of the above-mentioned fixing holes can also be adjusted as required, and the distribution can be evenly distributed or the distribution density can be adjusted as required.
  • the first counterweight can be easily adjusted.
  • the adjustment of the position of the weight can not only move in the circumferential direction, but also move towards the axis, making the adjustment of dynamic balance very convenient, and because it can be adjusted towards the axis, the effect of dynamic balance adjustment is more obvious.
  • the radar body further includes a first counterweight plate (120), and the first counterweight plate (120) is disposed on the base 12
  • a second counterweight slot is formed on the edge of the base 12
  • the second counterweight slot surrounds the base 12 in a circular ring shape
  • the counterweight plate (120) includes a second counterweight edge (124)
  • At least one third fixing hole (122) is provided on the second counterweight side (124), and the third fixing hole (122) makes the second counterweight (123) follow the circumference of the bottom plate (110). The direction and the direction toward the axis of the central shaft (201) are adjusted, and the second counterweight (123) is fixed at any position of the third fixing hole (122).
  • the first weight plate (120) is hollow inside and includes an external thread (125), and the first weight plate (120) is connected to the base 12 through the external thread (125).
  • the internal thread is fixed.
  • the radar body has a top cover
  • the first counterweight plate 120 may also form a counterweight groove around the top cover to fix the counterweight on the circumference of the top plate of the lidar Any position.
  • a first counterweight plate 120 is provided at the bottom of the base 12 of the radar body 10 to form a counterweight slot, which can conveniently arrange counterweights in any direction and position of the bottom plate and/or top plate for dynamic balance of the lidar
  • the adjustment of the radar body realizes omni-directional weight adjustment on the bottom plate and/or top plate of the radar body, which has a better effect of adjusting the dynamic balance of the lidar.
  • the first counterweight plate 120 is fixed to the bottom plate. Preferably, it is fixed by threads. As shown in FIG. 10, the bottom of the bottom plate 110 is provided with a cavity 118, and the cavity is provided with There is an internal thread 119, the first weight plate 120 is provided with an external thread 125, and the two are fixed by the internal thread and the external thread. Preferably, the bottom of the bottom plate 110 is provided as a cavity, so that the weight of the bottom plate 110 can be reduced. It can be understood that the bottom plate 110 and the first counterweight plate 120 may also be fixed in other ways, such as fixing by screws, glue or clamping.
  • the first counterweight plate may include a relief hole, and the first counterweight plate is sleeved on the rotating shaft through the relief hole and fixed by screws. At the bottom of the bottom plate.
  • the lidar shown may also include a second counterweight plate 130, which includes an internal thread, an external thread, and a counterweight side.
  • the second counterweight plate 130 The external thread is fixed to the internal thread of the first counterweight plate, and the counterweight side is used to fix the second counterweight.
  • the counterweight disc can be conveniently installed on the bottom plate of the lidar body, and the counterweight can be installed as needed, and dynamic balance can be performed at various angles of the edge of the bottom plate. Adjustment.
  • multiple counterweight discs can be conveniently installed according to needs.
  • the multiple counterweight discs can be combined by threads and can be adapted to each other. Multiple counterweights can be arranged in the same direction, which increases the dynamics. Balance the intensity of adjustment.
  • an embodiment of the present invention proposes a smart sensing device including the lidar 100 in the above-mentioned embodiment.
  • the smart sensing device may be a car, a drone, a robot, or other related A device that uses lidar 100 for intelligent sensing and detection.
  • an embodiment of the present invention provides a lidar, which includes a radar body 100 and a radar base 200.
  • the radar base 200 is provided with a central shaft 201, and the radar body 100 is sleeved on the central shaft 201
  • the radar body 100 includes a bottom plate 110 and a first counterweight groove 111, the first counterweight groove 111 is provided on the edge of the bottom plate 110, surrounds the bottom plate in a circular ring shape, to the central axis 201 axis
  • the center is recessed, and the first counterweight slot 111 is used to receive the first counterweight 113, and the radar body 100 can rotate relative to the radar base 200.
  • a first counterweight groove 111 is formed by shrinking the bottom edge of the bottom plate 110 toward the axis of the central shaft 201.
  • the first counterweight groove 111 is an L-shaped structure. Heavy slot 111.
  • the counterweight groove is provided on the bottom plate of the radar body, and the counterweight groove can be provided in the circumferential direction of the bottom plate of the radar body.
  • the counterweight can be conveniently set in any direction and position to realize the adjustment of the dynamic balance of the lidar.
  • the center of gravity when the radar body rotates can also be reduced, which can reduce the offset caused by the offset of the center of gravity and increase the service life of the equipment.
  • the radar body may further include a top cover
  • the above-mentioned first counterweight groove 111 may be provided on the top cover of the radar body 100
  • a first counterweight groove is provided around the top cover.
  • the first counterweight can be fixed in the first counterweight slot by screws. It is understandable that the first counterweight can also be fixed in the counterweight slot by means of gluing or clamping.
  • counterweight slots can also be provided on the bottom and top plates of the radar body to flexibly adjust the fixed position and fixed number of the first counterweight to better adjust the lidar motion. The effect of balance.
  • the lidar body is in the process of high-speed rotation.
  • the bottom plate and/or top plate can be conveniently placed in any direction
  • the balance weight is configured with the position to adjust the dynamic balance of the lidar, which realizes the all-round weight adjustment on the bottom plate and/or top plate of the radar body, and achieves a better effect of adjusting the dynamic balance of the lidar.
  • the first counterweight groove 111 in this embodiment includes an upper edge 1111 and a lower edge 1112, and the upper edge 1111 and the lower edge 1112 are together A U-shaped first counterweight groove 111 is formed.
  • the lower edge 1112 is an edge away from the bottom plate 110.
  • the U-shaped first counterweight groove 111 surrounds the bottom plate 110 in a circular ring shape.
  • At least one first fixing hole 115 is provided on the lower edge 1112, and the first counterweight 113 is disposed in the counterweight slot through the first fixing hole 115. In this way, the fixing of the first counterweight 113 is facilitated, and the first fixing hole 115 is arranged at any position around the bottom plate 110, which improves the convenience of dynamic balance adjustment of the lidar.
  • a round of the second fixing hole 112 can also be provided inside the L-shaped first counterweight groove 111, and the first counterweight 113 can be fixed to the first counterweight 113 by screwing.
  • the counterweight tank 111 is on the inner wall. It is understandable that the first counterweight can also be fixed in the first counterweight slot by means of gluing, clamping, or the like.
  • the first counterweight can slide relative to the first fixing hole 115, and the first fixing hole 115 can make the first counterweight 113 along the circumferential direction of the bottom plate 110, and/ Or, it can be adjusted toward the axis of the central shaft 201, and the first counterweight 113 can be fixed at any position of the first fixing holes 115.
  • the first fixing hole 115 may be as shown in FIG. 8A, FIG. 8B, FIG. 8C, FIG. 8D, FIG. 8E, and FIG. 8F.
  • the first fixing hole can be arranged relatively tightly on the periphery of the bottom plate, and its shape There can be many kinds.
  • the first fixing hole 115 is set in an oblong shape toward the axis of the radar body 100, as shown in FIG. 8C, so that the counterweight can be easily matched when it is fixed to the counterweight plate.
  • the position of the block can be fine-tuned. For example, it can be moved toward the position of the axis to adjust the distance between the counterweight and the axis of the radar body. This makes it easier to adjust the center of gravity of the radar without increasing the counterweight.
  • the fixing holes can also be arranged in the circumferential direction of the bottom plate, as shown in Figures 8A and 8B, along the circumferential direction of the counterweight plate, Figure 8A is provided with 4 long circular rings, so that the weight can be The block moves along the circumferential direction of the bottom plate, and the center of gravity can be adjusted without disassembling the counterweight during each adjustment.
  • Figure 8B two long circular rings can be provided, which eliminates the space between the fixing holes to the greatest extent, allows the counterweight to be fixed at any position, and also increases the convenience of adjustment.
  • the fixing holes may be arranged in two circles around the axis of the bottom plate, so as to increase the adjustment range of the counterweight and increase the convenience of dynamic balance adjustment.
  • the fixing holes can be set in a T-shape or a cross shape, so that the fixing block can be moved back and forth and left and right conveniently, that is, the position of the fixing block can be changed.
  • the fine adjustment in each direction increases the convenience of dynamic balance adjustment.
  • the fixed hole can also be set to a dry font, a full font and other forms that can be fine-tuned in multiple directions at the same time, thereby further increasing the dynamic balance adjustment. The convenience.
  • the shape of the specific fixing hole may also be in other forms, which are not limited here, and the purpose is to better fix the fixing block and better fine-tune the position of the fixing block.
  • the arrangement and density of the above-mentioned fixing holes can also be adjusted as required, and the distribution can be evenly distributed or the distribution density can be adjusted as required.
  • the first counterweight can be easily adjusted.
  • the adjustment of the position of the weight can not only move in the circumferential direction, but also move towards the axis, making the adjustment of dynamic balance very convenient, and because it can be adjusted towards the axis, the effect of dynamic balance adjustment is more obvious.
  • the counterweight plate 120 includes a fixing edge, a counterweight edge, and a fixing hole.
  • the counterweight disc is fixed by the fixing edge and the lidar. It can be fixed on the bottom plate of the lidar and forms a counterweight slot together with the bottom plate of the lidar body to fix the counterweight.
  • the embodiment of the present invention preferably uses a screw thread to fix the lid of the lidar to provide a counterweight plate.
  • the counterweight plate is hollow inside to form a receiving space 127, including internal threads 126, External thread 125, counterweight side 124, and third fixing hole 122.
  • the counterweight plate is fixed to the lidar base plate by the external thread 125, fixed with other counterweight plates by the internal thread 126, and fixed by the third fixing hole 122 A counterweight, the third fixing hole 122 allows the counterweight to slide in the circumferential direction of the bottom plate and toward the axis of the central axis, and fix the counterweight at any of the third fixing holes 122 position.
  • the counterweight plate is a standard part, and each counterweight plate can be directly fixed to each other.
  • the above-mentioned counterweight disk shown in FIG. 4 may be fixed on the bottom of the bottom plate 110 to form multiple counterweight grooves. Fix multiple fixed blocks in the same direction.
  • the specific fixing method may be threaded connection, screw connection, gluing or clamping, which is not exclusively limited.
  • FIGS. 10 and 11 another embodiment of the present invention provides a lidar.
  • the radar base 200 is provided with a central shaft 201, and the radar body 100 is sleeved on the central shaft 201;
  • the radar body 100 includes a bottom plate 110 and a first counterweight plate 120.
  • the first counterweight plate 120 is disposed at the bottom of the bottom plate 110.
  • a second counterweight groove 121 is formed on the edge of the bottom plate.
  • the weight groove 121 surrounds the bottom plate 110 in a circular ring shape, and the second weight groove 121 is used for receiving the second weight block 123;
  • the radar body 100 can rotate relative to the radar base 200.
  • the lidar 100 has a top cover
  • the first counterweight plate 120 may also form a counterweight slot around the top cover to fix the counterweight on the top plate of the lidar. Any location around.
  • a first counterweight plate 120 is provided at the bottom of the bottom plate 110 of the radar body 100 to form a counterweight slot, which can conveniently arrange counterweights in any direction and position of the bottom plate and/or top plate for dynamic balance of the lidar
  • the adjustment of the radar body realizes omni-directional weight adjustment on the bottom plate and/or top plate of the radar body, which has a better effect of adjusting the dynamic balance of the lidar.
  • the first counterweight plate 120 is fixed to the bottom plate 110. Preferably, it is fixed by threads. As shown in FIG. 5, a cavity 118 is provided at the bottom of the bottom plate 110. An internal thread 119 is provided, the first counterweight plate 120 is provided with an external thread 125, and the two are fixed by the internal thread and the external thread. Preferably, the bottom of the bottom plate 110 is provided as a cavity, so that the weight of the bottom plate 110 can be reduced. It can be understood that the bottom plate 110 and the first counterweight plate 120 may also be fixed in other ways, such as fixing by screws, glue or clamping.
  • the first counterweight plate 120 may include a relief hole, and the first counterweight plate 120 is sleeved on the shaft through the relief hole and passes through The screws are fixed to the bottom of the bottom plate 110.
  • the lidar shown may also include a second counterweight plate 130, which includes an internal thread 126, an external thread 125, and a counterweight edge 124.
  • the second counterweight plate 130 is fixed to the internal thread 126 of the first counterweight plate 120 through the external thread 125, and the counterweight edge 124 is used to fix the second counterweight 123.
  • the second counterweight plate 130 may also include a relief hole, and the second counterweight plate 130 is sleeved on the shaft through the relief hole. , And fixed to the lower part of the first matching plate 120 by screws.
  • the counterweight disc can be conveniently installed on the bottom plate of the lidar body, and the counterweight can be installed as needed, and dynamic balance can be performed at various angles of the edge of the bottom plate. Adjustment.
  • multiple counterweight discs can be conveniently installed according to needs.
  • the multiple counterweight discs can be combined by threads and can be adapted to each other. Multiple counterweights can be arranged in the same direction, which increases the dynamics. Balance the intensity of adjustment.
  • FIG. 13A Another embodiment of the present invention provides another fixing hole structure.
  • at least one third fixing hole is provided on the side of the counterweight for fixing the counterweight, preferably, as shown in FIG. 13A
  • the fixing holes can be arranged relatively tightly on the periphery of the bottom plate, and their shapes can be various.
  • the fixing hole can be set in a long circle toward the axis of the radar body 100, as shown in Figure 13C, so that when the counterweight is fixed to the counterweight plate, the position of the counterweight can be easily adjusted. Fine-tuning, for example, you can move toward the axis to adjust the distance between the counterweight and the axis of the radar body, so that the adjustment of the center of gravity of the radar can be achieved more conveniently without increasing the counterweight.
  • the fixing holes can also be arranged in a circular ring shape along the circumferential direction of the bottom plate, as shown in Figures 13A and 13B, along the circumferential direction of the counterweight plate, Figure 13A is provided with 4 long circular rings, so that the weight can be weighted.
  • the block moves along the circumferential direction of the bottom plate, and the center of gravity can be adjusted without disassembling the counterweight during each adjustment.
  • two long rings can be provided, which eliminates the space between the fixing holes to the greatest extent, allows the counterweight to be fixed at any position, and also increases the convenience of adjustment.
  • the fixing holes can be arranged in two circles around the axis of the bottom plate, which can increase the adjustment range of the counterweight and increase the convenience of dynamic balance adjustment.
  • the fixing holes can be set in a T shape or a cross shape, so that the fixing block can be easily moved back and forth and left and right, that is, the position of the fixing block can be changed.
  • the fine adjustment in each direction increases the convenience of dynamic balance adjustment.
  • the fixed hole can also be set to a dry font, a full font and other forms that can be fine-tuned in multiple directions at the same time, thereby further increasing the dynamic balance adjustment. The convenience.
  • the shape of the specific fixing hole may also be in other forms, which are not limited here, and the purpose is to better fix the fixing block and better fine-tune the position of the fixing block.
  • the arrangement and density of the above-mentioned fixing holes can also be adjusted as required, and the distribution can be evenly distributed or the distribution density can be adjusted as required.
  • the laser radar embodiments in the above-mentioned embodiments of Figures 6, 7, 9, 11 and 12 On the basis, it can also be specially set in a certain direction.
  • the embodiment of the present invention performs dynamic balance adjustment by combining weight reduction and counterweight.
  • the radar body includes a lens holder 140 Since the lens holder 140 is provided with a lens, the weight is often heavy. Therefore, a beam is provided on the lens holder 140, and the beam is provided with a first weight reduction groove.
  • a movable side wall 160 is provided on the edge of the bottom plate.
  • the movable side wall is provided with an oblong hole, and the oblong hole is used to fix the counterweight. The position adjustment and fixation are performed in the long round hole.
  • the movable side wall 160 may be fixed on the radar body through a connecting stand 150.
  • a counterweight is provided on the movable wall, and the counterweight is arranged in an elongated hole on the movable arm, and the position of the counterweight can be adjusted freely. This can balance the weight of the laser lens side.
  • the weight of the laser emitting board 170 and the laser receiving board 180 is also relatively high. Therefore, the laser emitting board 170 and the laser receiving board 180 are located on the connecting vertical board 150. On both sides to achieve weight balance. In this way, after the full-angle adjustment of the center of gravity is achieved by setting a counterweight slot at the bottom of the radar body, combined with the targeted adjustment of a certain dimension, the center of gravity adjustment of the lidar can be better realized.
  • the lidar proposed in the embodiment of the present invention realizes the adjustment of the center of gravity of the lidar in all directions by setting the counterweight groove at the bottom of the radar body, which greatly facilitates the use of lidar and greatly Improve the service life of the radar.
  • an embodiment of the present invention proposes a smart sensing device that includes the lidar in the above-mentioned embodiment.
  • the smart sensing device may be a car, a drone, a robot, or other devices that involve the use of lasers.
  • Radar is a device for intelligent sensing and detection.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection , Or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication of two components or the interaction relationship between two components.
  • installed can be a fixed connection or a detachable connection , Or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication of two components or the interaction relationship between two components.
  • the “on” or “under” of the first feature on the second feature may be in direct contact with the first and second features, or indirectly through an intermediary. contact.
  • the "above”, “above” and “above” of the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the level of the first feature is higher than the second feature.
  • the “below”, “below” and “below” of the second feature of the first feature may mean that the first feature is directly below or obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种激光雷达(100)及智能感应设备,激光雷达包括雷达本体(10)、激光发射板(20)和激光接收板(30)及配重结构。激光发射板(20)和激光接收板(30)分别设置于雷达本体(10)上。其中,激光发射板(20)用于朝探测目标发射出射激光;激光接收板(30)用于接收探测目标反射回来的反射激光,并将光信号转换为电信号,从而分析探测目标的位置、三维图像和速度等。而雷达本体(10)通过与动力装置相连,由动力装置驱动整个雷达本体(10)以及位于雷达本体(10)上的激光发射板(20)和激光接收板(30)旋转,从而使激光雷达(100)能够探测周围360°的范围。通过在雷达本体(10)上设置配重结构,可以使雷达本体(10)旋转时更稳定,从而有效保证雷达的精度,及延长雷达的使用寿命。

Description

一种激光雷达及智能感应设备 技术领域
本发明实施例涉及激光雷达技术领域,特别涉及一种激光雷达及智能感应设备。
背景技术
激光雷达,是以发射激光束探测目标的位置和速度等特征量的雷达系统。而机械式激光雷达是通过驱动激光雷达的激光发射部件和激光接收部件旋转,以使激光雷达的探测范围更大。
本发明的发明人在实现本发明的过程中,发现:目前,由于激光雷达的电子器件及光学器件比较多,中间的光路配合较为复杂,同时各部件的重量也不一致,所以在激光雷达进行旋转扫描过程中,会出现激光雷达本体的重心偏离其中心位置,导致器件磨损,这就会对激光雷达的寿命及探测精度造成影响。同时,由于激光雷达内部器件较多,内部器件之间的隔热和光的串扰,也成为影响激光雷达性能的重要因素。
发明内容
本发明实施例的目的在于提供一种激光雷达和智能感应设备,使激光雷达的雷达本体的配重更加合理,使雷达本体旋转时更稳定,从而有效保证雷达的精度,及延长雷达的使用寿命。
本发明实施例提出一种激光雷达,包括雷达本体(100)和雷达底座(200);
所述雷达底座(200)上设置有中轴(201),所述雷达本体(100)套设在所述中轴(201)上;
所述雷达本体(100)包括底板(110)和第一配重槽(111),所述第一配重槽(111)设置于所述底板(110)边缘,围绕所述底板(110)四周成圆环形,所述第一配重槽(111)包括下边缘(1112),所述下边缘(1112)上设置有至少一个第一固定孔(115),所述第一固定孔(115)使第一配重块(113)沿所述底板(110)圆周方向和朝向所述中轴(201)轴心方向进行调节,并将所述第一配重块(113)固定在所述第一固定孔(115)的任意位置;所述雷达本体(100)可相对于所述雷达底座(200)转动。
本发明另一实施例提出一种激光雷达,包括雷达本体(100)和雷达底座(200);
所述雷达底座(200)上设置有中轴(201),所述雷达本体(100)套设在所述中轴(201)上;
所述雷达本体(100)包括底板(110)和第一配重盘(120),所述第一配重盘(120)设置于所述底板(110)底部,在所述底板(110)边缘形成第二配重槽(121),所述第二配重槽(121)围绕所述底板(110)四周成圆环形,所述配重盘(120)包括第二配重边(124),所述第二配重边(124)上设置有至少一个第三固定孔(122),所述第三固定孔(122)使第二配重块(123)沿所述底板(110)圆周方向和朝向所述中轴(201)轴心方向进行调节,并将所述第二配重块(123)固定在所述第三固定孔(122)的任意位置;
所述雷达本体(100)可相对于所述雷达底座(200)转动。
本发明另一实施例提出一种激光雷达,包括雷达本体(10),所述雷达本体(10)包括:轴心连接部(11)、底板(12)、镜头架(13)、连接立板(14)、配重件(15)、激光发射板(20)和激光接收板(30);
所述轴心连接部(11)位于所述底板(12)中心,并与所述底板(12)垂直连接,所述轴心连接部(11)的一侧设置有镜头架(13),轴心连接部另一侧设置有连接立板(14),所述连接立板(14)与所述镜头架(13)的中心位置处于同一平面,垂直连接于所述底板(12)上;
所述连接立板(14)位于所述激光发射板(20)和所述激光接收板(30)之间,用于隔离所述激光发射板(20)和所述激光接收板(30),所述连接立板(14)一端与所述轴心连接部(11)连接,所述连接立板(14)另一端将所述配重件(15)固定在所述底板(12)边缘与所述镜头架(13)相对的位置;所述镜头架(13)设置于所述底板(12)上。
本发明另一实施例提出一种智能感应设备,包括上述实施例中任意一项所述的激光雷达。
本实施例通过合理设置有配重件,可以有效地平衡雷达本体重心,使雷达本体旋转时更稳定,从而有效保证雷达的精度,及延长雷达的使用寿命。
上述说明仅是本发明实施例技术方案的概述,为了能够更清楚了解本发明实施例的技术手段,而可依照说明书的内容予以实施,并且为了让本发明实施例的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制:
图1是本发明实施例提供的一种激光雷达的示意图;
图2是本发明实施例提供的一种激光雷达的爆炸图;
图3是本发明实施例提供的一种激光雷达中雷达本体的示意图;
图4是本发明实施例提供的一种激光雷达中配重件和第二次级配重件的示意图;
图5为本发明实施例提供的另一种激光雷达的示意图;
图6是本发明实施例提供的另一种激光雷达结构示意图;
图7是本发明实施例提供的另一种激光雷达结构示意图;
图8A是本发明实施提供的第一种固定孔结构图;
图8B是本发明实施提供的第二种固定孔结构图;
图8C是本发明实施提供的第三种固定孔结构图;
图8D是本发明实施提供的第四种固定孔结构图;
图8E是本发明实施提供的第五种固定孔结构图;
图8F是本发明实施提供的第六种固定孔结构图;
图9是本发明实施例提供的配重盘的结构示意图;
图10是本发明实施例提供的另一种激光雷达结构示意图;
图11是本发明实施提提供的另一种激光雷达组装图;
图12是本发明实施例提供的另一种激光雷达结构示意图;
图13A是本发明实施提供的另一种激光雷达上第一种固定孔结构图;
图13B是本发明实施提供的另一种激光雷达上第二种固定孔结构图;
图13C是本发明实施提供的另一种激光雷达上第三种固定孔结构图;
图13D是本发明实施提供的另一种激光雷达上第四种固定孔结构图;
图13E是本发明实施提供的另一种激光雷达上第五种固定孔结构图;
图13F是本发明实施提供的另一种激光雷达上第六种固定孔结构图;
图14是本发明实施例提供的另一种激光雷达结构示意图。
具体实施方式
下面将参照附图更详细地描述本发明的示例性实施例。虽然附图中显示了本发明的示例性实施例,然而应当理解,可以以各种形式实现本发明而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本发明,并且能够将本发明的范围完整的传达给本领域的技术人员。
下面将结合附图对本发明技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本发明的技术方案,因此只作为示例,而不能以此来限制本发明的保护范围。
请参阅图1,本发明实施例提供的激光雷达100包括雷达本体10、激光发射板20和激光接收板30。所述激光发射板20和激光接收板30分别设置于 雷达本体10上。其中,激光发射板20用于朝探测目标发射出射激光;激光接收板30用于接收探测目标反射回来的反射激光,并将光信号转换为电信号,从而分析探测目标的位置、三维图像和速度等。而所述雷达本体10通过与动力装置相连,由动力装置驱动整个雷达本体10以及位于雷达本体10上的激光发射板20和激光接收板30旋转,从而使激光雷达100的探测范围更广,能够探测周围360°的范围。
请参阅图2,所述雷达本体10包括轴心连接部11和底座12。其中,可以理解的是,所述雷达本体的底座12也可以称为雷达本体的底板,即为雷达本体底部用于承载上述激光发射板和激光接收板及镜头支架等结构的支撑板结构,下面实施例不再复述。所述底座12与激光发射板20和激光接收板30连接,可选的,所述轴心连接部11和底座12一体成型,或,所述轴心连接部11和底座12固定连接,且所述轴心连接部11位于底座12的中心位置,并与底座12垂直。其中,所述轴心连接部11为圆筒状,其与底座12连接的一端设有连通底座12的固定孔111,所述固定孔111用于连接动力装置的伸出轴。具体地,所述伸出轴从底座12背离轴心连接部11的一侧伸入固定孔111,并与所述固定孔111过盈配合。这种连接方式与螺纹连接等其它连接方式相比,不会在伸出轴上产生弯曲和扭转应力,对伸出轴的旋转精度没有影响,同时过盈配合也可以提高轴心连接部11和伸出轴的同心度,保证雷达本体10旋转时的动态平衡。当动力装置启动时,其伸出轴开始旋转,并带动轴心连接部11旋转,从而带动底座12及激光发射板20和激光接收板30一同旋转,从而实现激光雷达100整体的旋转。可以理解的是,所述底座12为圆盘状,而将轴心连接部11和底座12一体成型,可以提高其同心度,避免底座12旋转时的径向跳动,进一步提高底座12旋转时的稳定性。
可以理解的是:轴心连接部11和底座12的连接方式以及轴心连接部11和底座12的形状不仅限于上面描述的方式和形状,也可以为其它方式和形状,此处不再赘述。
此外,所述雷达本体10还包括镜头架13、连接立板14和配重件15。所述镜头架13和所述连接立板14分别连接于底座12上,所述镜头架13和所述连接立板14分别位于轴心连接部11的两侧,且连接立板14位于镜头架13发射镜头和接收镜头对称轴的同一平面上。其中,所述连接立板14可以与轴心连接部11和底座12一体成型,可选的,所述连接立板14也可以与轴心连接部11和底座12固定连接。其中,所述连接立板14相对于轴心连接部11的另一侧与配重件15相连,将所述配重件15固定在所述底座12边缘上与所述镜头架13相对的位置。其中,所述镜头架13用于安装激光雷达100的发射镜头和接收镜头。为了保证雷达本体10旋转时的动平衡,本发明实施例在雷达本体10上与镜头架13相对的位置设置配重件15,使雷达本体10前后平衡,从而使雷达本体10的重心能够落在轴心连接部11上,通过连接立板14将配重件15固定在所述底座边缘与所述镜头架相对的位置。此外,所述激光 发射板20和激光接收板30分别设置于连接立板14的两侧。可以理解的是,当激光发射板20侧和激光接收板30侧重量相等时,配重件15的重垂线位于配重件15和连接立板14连接处,当所述激光发射板20侧和所述激光接收板30侧重量不等时,配重件15与连接立板14进行连接,且配重件15的重垂线偏向于质量较轻一侧。通过这种设置方式,可以进一步保证雷达本体的左右和前后平衡,使雷达本体10的旋转更稳定。同时,在激光发射板20和激光接收板30之间设置连接立板14,可以很好的对激光发射板20和激光接收板30进行隔离,能够有效的进行散热隔离,以及防止光的串扰,可以使激光发射板20和激光接收板彼此独立,不会相互影响。
可以理解的是连接立板14与轴心连接部11和底座12的连接方式不仅限于上面描述的方式,也可以为其它方式,例如,连接立板14仅与轴心连接部11一体成型/焊接,或者连接立板14仅与底座12一体成型/焊接,或所述连接立板14也可以与轴心连接部11和底座12固定连接等,其中,所述固定连接的方式例如可以用紧固件连接、卡装连接等。
对于上述镜头架13,继续参阅图2,所述镜头架13设有收容孔131和横梁132。所述收容孔131用于收容激光雷达100的发射镜头和接收镜头,而所述横梁132用于加固镜头架13,使镜头架13更稳固。
在一些实施例中,发射镜头和接收镜头可能过重,而配重件15的重量有限,无法很好地抵消发射镜头和接收镜头的重量,此时也可以通过减轻雷达本体10上镜头架13的重量,来实现雷达本体10的动平衡。具体地,可以通过在镜头架13的横梁132上设置第一减重槽1321,以去除横梁132的部分材料,达到减重的效果。但横梁132如果太薄,会易发生弯折或断裂。因此,还需在第一减重槽1321内增设若干个第一加强筋1322,以保证横梁132的强度。
进一步,还可以通过去除底座12的底部背离述镜头架13的位置的部分材料,达到对雷达本体10设置镜头架13的一侧进行减重的目的。具体地,如图3所示,也可以在底座12的底部背离述镜头架13的位置设置第二减重槽121,达到减重的效果。同样地,为了保证底座12的强度,所述第二减重槽121内也要增设若干个第二加强筋1211。
其中,所述第一减重槽1321可以横纵相间的均匀分布于横梁132上,如图2所示,两横向排布的第一减重槽1321与纵向排布的第一减重槽1321之间的间隙形成T型的第一加强筋1322,以稳固横梁132。可以理解的是,所述第一减重槽1321的形状大小可以相同,也可以不同,优选的,在本实施例中,第一减重槽1321可以为大小形状相同的椭圆形形状,这样更利于对称加工,可以使加工更方便。此外,在本实施例中,所述第二减重槽121为若干深浅不一的槽。由于底座12的厚度不均匀,所以可以在底座12较厚的位置设置较深的第二减重槽121,而在底座12较薄的位置设置较浅的第二减重槽121。可以理解的是,第二减重槽121的大小深浅形状也可以相同也可以不同, 此处不再赘述。通常情况下,为了使镜头两侧的重量相同,优选的,所述减重槽以相同方式分布于所述两镜头轴线的两侧位置。即,两镜头轴线两侧对称位置,第一减重槽1321和第二减重槽121的大小形状深浅均相同。上述第一减重槽1321和第二减重槽121通过按规则均匀排布,比如按列或者按行的方式进行排布,均匀排布有助于对称加工,加工更加方便。同时,所述第一减重槽1321和第二减重槽121的形状,也可以根据需要进行调整,优选的,本发明实施例采用椭圆形的结构,这样可以方便对称加工。
可以理解的是,通过设置第一减重槽1321和第二减重槽121,可以减轻旋转体的整体重量,降低能耗。进一步的,在一些实施例中,继续参阅图2和图3,雷达本体10还包括至少一个第一次级配重件16。可以将第一次级配重件16粘接或卡接于第一减重槽1321或第二减重槽121内,又或者,同时在第一减重槽1321和第二减重槽121内粘接或卡接第一次级配重件16,从而使雷达本体10的前后保持平衡。优选的,所述第一次级配重件16的形状适配于所述第一减重槽1321和第二减重槽121,可以采用多种形状,例如,所述第一次级配重件16例如可以选择椭圆形、矩形、楔形等任一适配于第一减重槽1321和第二减重槽121的形状。本发明实施例通过增加第一次级配重件16,实现了在配重件15重量一定的情况下,雷达本体10设置有镜头架13的一侧的重量可调,提高雷达本体10整体动平衡调整的灵活性,从而具有更强的实用性。同时,通过第一次级配重件16也可以调整因为第一减重槽1321和第二减重槽121对称加工的需要带来的重量差,从而简化加工工艺。
对于上述连接立板14和配重件15,继续参阅图2,所述连接立板14设有定位凸台141,所述配重件15设有定位孔151。在固定连接立板14和配重件15的过程中,可以先将配重件15的定位孔151卡入定位凸台141,实现配重件15的初步定位。此时,配重件15上的安装孔153与连接立板14上的螺纹孔对齐,之后将螺钉穿过安装孔153并拧入螺纹孔,即可完成连接立板14和配重件15的固定。通过增设定位凸台141和定位孔151可以简化连接立板14和配重件15的安装过程,节省了对齐螺纹孔的过程,节省了装配时间。此外,所述配重件15背离连接立板14的一侧的表面为弧形结构,适配于底座12的圆盘结构,使激光雷达100的外观更加美观。
可以理解的是:连接立板14和配重件15的连接方式以及配重件15的表面形状不仅限于上面描述的方式和形状,也可以为其它方式和形状。例如,连接立板14和配重件15例如也可以进行卡装连接或者胶粘连接等。其中,所述配重件的形状可以为其他与底座进行配合的形状等,此处不再赘述。
在另一些实施例中,如图4所示,雷达本体10还包括至少一个第二次级配重件17,而配重件15上设有和第二次级配重件17数量相同的连接孔152,每一第二次级配重件17也皆设有用于连接的通孔171。可以通过将螺丝穿过连接孔152和通孔171,再用螺栓拧紧螺丝的两端,实现第二次级配重件17和配重件15的连接。通过增设第二次级配重件17,可以在配重件15的重量 不够时,逐步在配重件15上增加第二次级配重件17,逐步提升配重件15的重量,实现配重件15的重量可调,增加了配重件15的实用性。
可以理解的是:第二次级配重件17和配重件15的连接方式不仅限于上面描述的方式,也可以为其它方式,例如胶粘或胶粘与其他紧固方式配合等。
区别于现有技术的情况,本发明实施例中的雷达本体10包括轴心连接部11、底座12、镜头架13、连接立板14和配重件15。其中,轴心连接部11用于连接驱动装置,带动整个激光雷达100旋转。轴心连接部11的一侧设置有镜头架13,所述镜头架13用于安装激光雷达100的发射镜头和接收镜头,由于发射镜头和接收镜头较重,会导致雷达本体10的重心偏离中心位置,影响雷达本体10旋转时的动平衡。因此,本发明实施例通过连接立板14在与所述镜头架13相对的另一侧设置有配重件15,将所述配重件15设置在所述底座边缘与所述镜头架相对的位置,也设置在激光发射板20和激光接收板30之间。通过增设连接立板14和配重件15,可以有效地平衡雷达本体10,使雷达本体10旋转时更稳定,也能够更好的将所述激光发射板20和激光接收板30进行隔离,防止了他们之间的相互影响。此外,本发明实施例还增设了第一次级配重件16和第二次级配重件17,实现了雷达本体10设置有镜头架13的一侧和配重件15的重量可调,使本发明实施例提供的配重方案的实用性更强。
更进一步的,如图5,在本发明的另一个可选的实施例中,所述雷达本体还包括第一配重槽,所述第一配重槽设置于所述底座12边缘(所述雷达本体的底座12也可以称为雷达本体的底板,即为雷达本体底部用于承载上述激光发射板和激光接收板及镜头支架等结构的支撑板结构,下面实施例不再复述),围绕所述底座12四周成圆环形,所述第一配重槽包括下边缘,所述下边缘上设置有至少一个第一固定孔,所述第一固定孔使第一配重块沿所述底板圆周方向和朝向所述中轴轴心方向进行调节,并将所述第一配重块固定在所述第一固定孔的任意位置。可以理解的是,通过在底板上设置配重槽,一方面,当不通过底板进行配重调节时,可以减轻旋转体的重量;另一方面,当通过底板进行配重调节时,可以方便的在旋转体底板的任意的方向和位置设置配重块实现激光雷达的动平衡的调节。同时通过在底板设置配重块,还可以降低雷达本体旋转时的重心,能够减少由于重心偏移带来的偏移量,增加设备的使用寿命。
其中,可选的,所述第一固定孔可以为如图8A、图8B、图8C、图8D、图8E和图8F所示,第一固定孔的设置可以比较紧密的设置在底座12的周边,其形状可以有多种。
优选的,所述第一固定孔朝所述雷达本体10轴心的方向设置为长圆形,如图8C所示,这样配重块在固定到配重盘上时,可以方便的对配块的位置进行微调,比如:可以朝向轴心的位置挪动,调整配重块距离雷达本体轴心的距离,这样可以在不增加配重的情况下,更方便的实现对雷达本体重心的调 节。
可选的,也可以将固定孔沿底板圆周方向,设置圆环形,如图3A和3B所示,沿配重盘的圆周方向,图8A设置4个长的圆环形,这样可以配重块的沿底板圆周方向移动,每次调整时,不用拆卸配重块就可以实现重心的调整。当然也可以如图8B所示,可设置2个长的圆环,这样就最大程度消除了固定孔之间的间隔,可以使配重块设置在任意位置固定,也增加了调整的便利性。
可选的,还可以如图8D所示,将所述固定孔围绕所述底板的轴心设置两圈,这样可以增加配重块的调节范围,增加了动平衡调整的便利性。
可选的,还可以如图8E或8F所示,将所述固定孔设置成T形或十字形,这样可以方便的将固定块进行前后和左右移动,即对所述固定块的位置进行多个方向的微调,增加了动平衡调整的便利性。可以理解的是,在一些可能的实施例中,所述固定孔的形式还可以设置为干字型、丰字型等多种可以同时进行多个方向的微调的形式,从而进一步增加动平衡调整的便利性。
可以理解的是,具体固定孔的形状还可以为其他形式,在此不做限定,目的都是为了更好的固定所述固定块,更好的对所述固定块的位置进行微调。同时,上述固定孔的排布的方式和密度,也可以根据需要进行调整,可以均匀分布,也可以根据需要调整分布密度。在上述实施例中,通过在配重槽内设置固定孔,以及通过在固定孔沿底板圆周方向和朝向中轴轴心方向将所述配重块进行方便的滑动,可以方便的对第一配重块的位置进行调整,不仅可以沿圆周方向移动,也可以朝向轴心方向进行移动,使得动平衡的调节非常方便,而且由于可以朝向轴心方面调节,使动平衡调节的效果更加明显。
可选的,在本发明另一实施例中,如图9所示,所述雷达本体还包括第一配重盘(120),所述第一配重盘(120)设置于所述底座12底部,在所述底座12边缘形成第二配重槽,所述第二配重槽围绕所述底座12四周成圆环形,所述配重盘(120)包括第二配重边(124),所述第二配重边(124)上设置有至少一个第三固定孔(122),所述第三固定孔(122)使第二配重块(123)沿所述底板(110)圆周方向和朝向所述中轴(201)轴心方向进行调节,并将所述第二配重块(123)固定在所述第三固定孔(122)的任意位置。
其中,优选的,所述第一配重盘(120)内部中空,包括外螺纹(125),所述第一配重盘(120)通过所述外螺纹(125)与所述底座12上的内螺纹相固定。
可选的,所述雷达本体具有顶盖,则所述第一配重盘120也可以在所述顶盖的四周形成配重槽,将配重块固定在所述激光雷达的顶板上的四周的任意的位置。
本发明实施例通过在雷达本体10的底座12底部设置第一配重盘120,形成配重槽,可以方便的在底板和/或顶板任意的方向和位置配置配重块进行激光雷达的动平衡的调节,实现了在雷达本体底板和/或顶板的全方位的重量调 节,起到更好的调节激光雷达动平衡的效果。
所述第一配重盘120与所述底板相固定的方式有多种,优选的,通过螺纹方式进行固定,如图10所示,所述底板110底部设有空腔118,空腔内设有内螺纹119,所述第一配重盘120设置有外螺纹125,两者通过内螺纹和外螺纹进行固定。优选的,上述底板110底部设置为空腔,这样可以减轻底板110的重量。可以理解的是,所述底板110和第一配重盘120也可以采用其他方式进行固定,比如:采用螺钉、胶粘或者卡接方式进行固定。
可以理解的是,在一些可选的实施例中,所述第一配重盘可以包括让位孔,所述第一配重盘通过让位孔套设于所述转轴上,并通过螺钉固定于所述底板底部。
进一步的,如图12所示,所示激光雷达还可以包括第二配重盘130,所述第二配重盘130包括内螺纹、外螺纹和配重边,所述第二配重盘130通过所述外螺纹与所述第一配重盘的内螺纹相固定,所述配重边用于固定所述第二配重块。
通过本发明实施例提供的配重盘和激光雷达,可以方便的将配重盘安装在所述激光雷达本体的底板上,根据需要进行配重块的安装,在底板边缘的各个角度进行动平衡的调节。同时,通过本发明实施例,可以根据需要方便的安装多个配重盘,多个配重盘通过螺纹进行组合,可以相互适配,可以在同一方向上配置多个配重块,增加了动平衡调节的力度。
更进一步的,基于上述激光雷达100,本发明实施例提出了一种包含上述实施例中的激光雷达100的智能感应设备,所述智能感应设备可以是汽车、无人机、机器人以及其他涉及到使用激光雷达100进行智能感应和探测的设备。
请参阅图6,本发明实施例提出一种激光雷达,包括雷达本体100和雷达底座200,所述雷达底座200上设置有中轴201,所述雷达本体100套设在所述中轴201上;所述雷达本体100包括底板110和第一配重槽111,所述第一配重槽111设置于所述底板110边缘,围绕所述底板四周成圆环形,向所述中轴201轴心方向凹陷,第一所述配重槽111用于收置第一配重块113,所述雷达本体100可相对于所述雷达底座200转动。本发明实施例通过在底板110底部边缘向所述中轴201轴心收缩,形成第一配重槽111,所述第一配重槽111为L型结构,通过该L型结构的第一配重槽111。通过在底板110底部边缘四周设置第一配重槽111,可以根据需要将配重块随意固定在底板110的任意位置,方便了激光雷达动平衡的调节,同时,由于将第一配重块113收置于第一配重槽111内,不会使配重块突出于雷达本体100之外,使雷达本体100相对于所述雷达底座200旋转时,配重块不会碰到雷达的外壳。
可以理解的是,在雷达本体底板设置配重槽,可以在雷达本体底板圆周方向上设置配重槽,可以方便的在任意的方向和位置设置配重块实现激光雷达的动平衡的调节。同时通过在底板设置配重块,还可以降低雷达本体旋转 时的重心,能够减少由于重心偏移带来的偏移量,增加设备的使用寿命。
可以理解的是,在一些实施例中,所述雷达本体还可以包括顶盖,上述第一配重槽111可以设置在雷达本体100的顶盖,在顶盖的四周设置有第一配重槽,所述第一配重块可以通过螺钉固定于第一配重槽内,可以理解的是,所述第一配重块还可以通过胶粘、卡接等方式固定于配重槽内。
可以理解的是,在一些实施例中,也可以同时在所述雷达本体底板和顶板设置配重槽,灵活调节第一配重块的固定位置及固定数量,起到更好的调节激光雷达动平衡的效果。
在实际使用过程中,激光雷达本体处于高速旋转过程中,在本发明实施例中,通过在雷达本体底板或顶板的边缘位置,设置配重槽,可以方便的在底板和/或顶板任意的方向和位置配置配重块进行激光雷达的动平衡的调节,实现了在雷达本体底板和/或顶板的全方位的重量调节,起到更好的调节激光雷达动平衡的效果。
本发明另一实施例还提供了另一种激光雷达,如图7所示,本实施例中所述第一配重槽111包括上边缘1111和下边缘1112,上边缘1111和下边缘1112一起形成U型的第一配重槽111,所述下边缘1112为远离所述底板110一侧的边缘,所述U型第一配重槽111环绕所述底板110一周成圆环形,在所述下边缘1112上设置有至少一个第一固定孔115,所述第一配重块113通过所述第一固定孔115设置于所述配重槽内。通过这种方式,方便了第一配重块113的固定,第一固定孔115设置于所述底板110四周的任意位置,提高了激光雷达动平衡调节的便利性。
当然,在固定第一配重块113时,也可以在L型第一配重槽111的内侧设置一周的第二固定孔112,通过螺接方式,将第一配重块113固定在第一配重槽111的内壁上。可以理解的是,所述第一配重块还可以通过胶粘、卡接等方式固定在第一配重槽内。
其中,可选的,所述第一配重块可以相对于所述第一固定孔115滑动,所述第一固定孔115可以使第一配重块113沿所述底板110圆周方向,和/或,朝向所述中轴201的轴心方向进行调节,并可以将所述第一配重块113固定在多数第一固定孔115的任意位置。其中,所述第一固定孔115可以为如图8A、图8B、图8C、图8D、图8E和图8F所示,第一固定孔的设置可以比较紧密的设置在底板的周边,其形状可以有多种。
优选的,所述第一固定孔115朝所述雷达本体100轴心的方向设置为长圆形,如图8C所示,这样配重块在固定到配重盘上时,可以方便的对配块的位置进行微调,比如:可以朝向轴心的位置挪动,调整配重块距离雷达本体轴心的距离,这样可以在不增加配重的情况下,更方便的实现对雷达本体重心的调节。
可选的,也可以将固定孔沿底板圆周方向,设置圆环形,如图8A和8B 所示,沿配重盘的圆周方向,图8A设置4个长的圆环形,这样可以配重块的沿底板圆周方向移动,每次调整时,不用拆卸配重块就可以实现重心的调整。当然也可以如图8B所示,可设置2个长的圆环,这样就最大程度消除了固定孔之间的间隔,可以使配重块设置在任意位置固定,也增加了调整的便利性。
可选的,还可以如图8D所示,将所述固定孔围绕所述底板的轴心设置两圈,这样可以增加配重块的调节范围,增加了动平衡调整的便利性。
可选的,还可以如图8E或8F所示,将所述固定孔设置成T形或十字形,这样可以方便的将固定块进行前后和左右移动,即对所述固定块的位置进行多个方向的微调,增加了动平衡调整的便利性。可以理解的是,在一些可能的实施例中,所述固定孔的形式还可以设置为干字型、丰字型等多种可以同时进行多个方向的微调的形式,从而进一步增加动平衡调整的便利性。
可以理解的是,具体固定孔的形状还可以为其他形式,在此不做限定,目的都是为了更好的固定所述固定块,更好的对所述固定块的位置进行微调。同时,上述固定孔的排布的方式和密度,也可以根据需要进行调整,可以均匀分布,也可以根据需要调整分布密度。在上述实施例中,通过在配重槽内设置固定孔,以及通过在固定孔沿底板圆周方向和朝向中轴轴心方向将所述配重块进行方便的滑动,可以方便的对第一配重块的位置进行调整,不仅可以沿圆周方向移动,也可以朝向轴心方向进行移动,使得动平衡的调节非常方便,而且由于可以朝向轴心方面调节,使动平衡调节的效果更加明显。
本发明另一实施例提出了一种配重盘120,所述配重盘包含固定沿、配重边和固定孔,所述配重盘通过固定沿和激光雷达进行固定,所述配重边能够固定在激光雷达的底板上,与激光雷达本体的底板一起形成配重槽,能够固定配重块。具体的,本发明实施例优选采用螺纹方式和激光雷达的底板固定,提供了一种配重盘,如图9所示,所述配重盘内部中空,形成收容空间127,包括内螺纹126、外螺纹125、配重边124和第三固定孔122,所述配重盘通过外螺纹125和激光雷达底板相固定,通过内螺纹126和其他配重盘相固定,通过第三固定孔122固定配重块,所述第三固定孔122使配重块沿所述底板圆周方向和朝向所述中轴轴心方向滑动,并将所述配重块固定在所述第三固定孔122的任意位置。该配重盘为标准件,各配重盘之间可以直接相互固定。
在一些可选的实施例中,在图6和图7提供的激光雷达的基础上,可以在所述底板110底部固定上述如图4所示的配重盘,形成多个配重槽,可以同一方向固定多个固定块。具体固定的方式,可以为螺纹连接、螺钉连接、胶粘或者卡接方式进行固定,再此不做唯一限定。
通过在原有底部配重槽的结构的基础上增加配重盘结构,可以实现在同一位置进行多层动平衡调节,增加动平衡调节的便利性。
在图10和图11中,本发明另一实施例提出了一种激光雷达,所述雷达底座200上设置有中轴201,所述雷达本体100套设在所述中轴201上;
所述雷达本体100包括底板110和第一配重盘120,所述第一配重盘120设置于所述底板110底部,在所述底板边缘形成第二配重槽121,所述第二配重槽121围绕所述底板110四周成圆环形,所述第二配重槽121用于收置第二配重块123;
所述雷达本体100可相对于所述雷达底座200转动。
可选的,所述激光雷达100具有顶盖,则所述第一配重盘120也可以在所述顶盖的四周形成配重槽,将配重块固定在所述激光雷达的顶板上的四周的任意的位置。
本发明实施例通过在雷达本体100的底板110底部设置第一配重盘120,形成配重槽,可以方便的在底板和/或顶板任意的方向和位置配置配重块进行激光雷达的动平衡的调节,实现了在雷达本体底板和/或顶板的全方位的重量调节,起到更好的调节激光雷达动平衡的效果。
所述第一配重盘120与所述底板110相固定的方式有多种,优选的,通过螺纹方式进行固定,如图5所示,所述底板110底部设有空腔118,空腔内设有内螺纹119,所述第一配重盘120设置有外螺纹125,两者通过内螺纹和外螺纹进行固定。优选的,上述底板110底部设置为空腔,这样可以减轻底板110的重量。可以理解的是,所述底板110和第一配重盘120也可以采用其他方式进行固定,比如:采用螺钉、胶粘或者卡接方式进行固定。
可以理解的是,在一些可选的实施例中,所述第一配重盘120可以包括让位孔,所述第一配重盘120通过让位孔套设于所述转轴上,并通过螺钉固定于所述底板110底部。
进一步的,如图11和图12所示,所示激光雷达还可以包括第二配重盘130,所述第二配重盘130包括内螺纹126、外螺纹125和配重边124,所述第二配重盘130通过所述外螺纹125与所述第一配重盘120的内螺纹126相固定,所述配重边124用于固定所述第二配重块123。
可以理解的是,在一些可选的实施例中,所述第二配重盘130也可以包括让位孔,所述第二配重盘130通过所述让位孔套设于所述转轴上,并通过螺钉固定于第一配中盘120下部。
通过本发明实施例提供的配重盘和激光雷达,可以方便的将配重盘安装在所述激光雷达本体的底板上,根据需要进行配重块的安装,在底板边缘的各个角度进行动平衡的调节。同时,通过本发明实施例,可以根据需要方便的安装多个配重盘,多个配重盘通过螺纹进行组合,可以相互适配,可以在同一方向上配置多个配重块,增加了动平衡调节的力度。
本发明另一实施例提出了另一种固定孔的结构,在上述多个实施例中,配重边上设置有至少一个第三固定孔,用于固定配重块,优选的,如图13A、图13B、图13C、图13D、图13E和图13F所示,固定孔的设置可以比较紧密的设置在底板的周边,其形状可以有多种。
优选的,所述固定孔可以朝雷达本体100轴心的方向设置成长圆形,如图13C所示,这样配重块在固定到配重盘上时,可以方便的对配重块的位置进行微调,比如:可以朝向轴心的位置挪动,调整配重块距离雷达本体轴心的距离,这样可以在不增加配重的情况下,更方便的实现对雷达本体重心的调节。
可选的,也可以将固定孔沿底板圆周方向,设置圆环形,如图13A和13B所示,沿配重盘的圆周方向,图13A设置4个长的圆环形,这样可以配重块的沿底板圆周方向移动,每次调整时,不用拆卸配重块就可以实现重心的调整。当然也可以如图13B所示,可设置2个长的圆环,这样就最大程度消除了固定孔之间的间隔,可以使配重块设置在任意位置固定,也增加了调整的便利性。
可选的,还可以如图13D所示,将所述固定孔围绕所述底板的轴心设置两圈,这样可以增加配重块的调节范围,增加了动平衡调整的便利性。
可选的,还可以如图13E或13F所示,将所述固定孔设置成T形或十字形,这样可以方便的将固定块进行前后和左右移动,即对所述固定块的位置进行多个方向的微调,增加了动平衡调整的便利性。可以理解的是,在一些可能的实施例中,所述固定孔的形式还可以设置为干字型、丰字型等多种可以同时进行多个方向的微调的形式,从而进一步增加动平衡调整的便利性。
可以理解的是,具体固定孔的形状还可以为其他形式,在此不做限定,目的都是为了更好的固定所述固定块,更好的对所述固定块的位置进行微调。同时,上述固定孔的排布的方式和密度,也可以根据需要进行调整,可以均匀分布,也可以根据需要调整分布密度。
当然,在实际的使用中,由于雷达本体100中包含的激光出射和入射镜头比较重,因此,在上述图6、图7、图9、图11和图12实施例中的激光雷达实施例的基础上,还可以专门在某个方向,进行特殊设置,本发明实施例通过将减重和配重相结合的方式进行动平衡的调节,如图14所示,所述雷达本体包括镜头支架140,由于镜头支架140上设置有镜头,重量往往较重,因此,在镜头架140上设置有横梁,所述横梁上设置有第一减重槽,同时,在底板110上所述镜头支架一侧设置有第二减重槽,所述第一减重槽内设置有第一加强筋,所述第二减重槽内设置有第二加强筋。同时,远离所述镜头支架140的一侧,底板边缘设置有活动侧壁160,所述活动侧壁上设置有长圆孔,所述长圆孔用于固定配重块,所述配重块可以在所述长圆孔内进行位置的调节及固定。可选的,所述活动侧壁160可以通过连接立板150固定在雷达本体上。可以理解的是,在本发明实施例中在所述活动壁上设置配重块,所述配重块设置在活动臂上的长圆孔内,所述配重块可以自由的进行位置的调整,从而能和激光镜头侧的重量达成平衡。同时,在所述激光雷达中,激光发射板170和激光接收板180的重量占的比重也比较高,因此,所述激光发射板170和激光接收板180位于分别设置于所述连接立板150的两侧,以实现重量 的平衡。通过这种方式,在通过在雷达本体底部设置配重槽实现重心的全角度调整后,又结合某个维度的针对性调整,能够更好的实现激光雷达的重心调节。
综上所述,本发明实施例提出的激光雷达,通过在雷达本体底部设置配重槽,实现了在全方面各个方向对激光雷达的重心进行调节,极大的方便了激光雷达的使用,大大提升了雷达的使用寿命。
更进一步的,基于上述激光雷达,本发明实施例提出了一种包含上述实施例中的激光雷达的智能感应设备,所述智能感应设备可以是汽车、无人机、机器人以及其他涉及到使用激光雷达进行智能感应和探测的设备。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围,其均应涵盖在本发明的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本发明并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。
需要注意的是,除非另有说明,本申请使用的技术术语或者科学术语应当为本发明所属领域技术人员所理解的通常意义。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。在本发明的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上” 或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围,其均应涵盖在本发明的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本发明并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (23)

  1. 一种激光雷达,其特征在于,包括雷达本体和雷达底座;
    所述雷达底座上设置有中轴,所述雷达本体套设在所述中轴上;
    所述雷达本体包括底板和第一配重槽,所述第一配重槽设置于所述底板边缘,围绕所述底板四周成圆环形,所述第一配重槽包括下边缘,所述下边缘上设置有至少一个第一固定孔,所述第一固定孔使第一配重块沿所述底板圆周方向和朝向所述中轴轴心方向进行调节,并将所述第一配重块固定在所述第一固定孔的任意位置;
    所述雷达本体可相对于所述雷达底座转动。
  2. 如权利要求1所述的激光雷达,其特征在于,所述第一固定孔朝所述中轴轴心的方向设置为长圆形,所述第一配重块可以相对所述第一固定孔滑动。
  3. 如权利要求1所述的激光雷达,其特征在于,所述第一固定孔沿所述底板圆周方向设置为圆环形,所述第一配重块可以相对所述第一固定孔滑动。
  4. 如权利要求1所述的激光雷达,其特征在于,所述第一固定孔为T形或十字形,所述第一配重块可以相对所述第一固定孔滑动。
  5. 如权利要求2、3或4所述的激光雷达,其特征在于,所述第一固定孔在所述底板边缘四周设置至少一圈。
  6. 如权利要求5所述的激光雷达,其特征在于,所述雷达本体还包括镜头支架和活动侧壁,所述活动侧壁设置于与所述镜头支架相对的一侧;
    所述活动侧壁上设置有至少一个长圆孔,所述长圆孔使配重块沿所述活动侧壁上下或左右滑动,并将配重块固定在所述长圆孔的任意位置。
  7. 一种激光雷达,其特征在于,包括雷达本体和雷达底座;
    所述雷达底座上设置有中轴,所述雷达本体套设在所述中轴上;
    所述雷达本体包括底板和第一配重盘,所述第一配重盘设置于所述底板底部,在所述底板边缘形成第二配重槽,所述第二配重槽围绕所述底板四周成圆环形,所述配重盘包括第二配重边,所述第二配重边上设置有至少一个第三固定孔,所述第三固定孔使第二配重块沿所述底板圆周方向和朝向所述中轴轴心方向进行调节,并将所述第二配重块固定在所述第三固定孔的任意位置;
    所述雷达本体可相对于所述雷达底座转动。
  8. 如权利要求7所述的激光雷达,其特征在于,所述第一配重盘内部中空,包括内螺纹和外螺纹,所述第一配重盘通过所述外螺纹与所述底板相固定。
  9. 如权利要求8所述的激光雷达,其特征在于,所述激光雷达还包括第二配重盘,所述第二配重盘通过外螺纹和所述第一配重盘相固定。
  10. 如权利要求7所述的激光雷达,其特征在于,所述第三固定孔为T形或十字形,所述第二配重块可以相对所述第三固定孔滑动。
  11. 一种激光雷达,其特征在于,包括雷达本体,所述雷达本体包括:轴心连接部、底座、镜头架、连接立板、配重件、激光发射板和激光接收板;
    所述轴心连接部位于所述底座中心,并与所述底座垂直连接,所述轴心连接部的一侧设置有镜头架,轴心连接部另一侧设置有连接立板,所述连接立板与所述镜头架的中心位置处于同一平面,垂直连接于所述底座上;
    所述连接立板位于所述激光发射板和所述激光接收板之间,用于隔离所述激光发射板和所述激光接收板,所述连接立板一端与所述轴心连接部连接,所述连接立板另一端将所述配重件固定在所述底座边缘与所述镜头架相对的位置;
    所述镜头架设置于所述底座上。
  12. 根据权利要求11所述的激光雷达,其特征在于,所述镜头架设有横梁,所述横梁设有第一减重槽。
  13. 如权利要求11所述的激光雷达,其特征在于,所述镜头架设有收容孔,所述收容孔用于收容所述激光雷达的发射镜头和接收镜头;所述连接立板设置于与所述发射镜头和接收镜头中间位置的同一平面上。
  14. 根据权利要求12所述的激光雷达,其特征在于,所述底座底部背离所述镜头架的位置设有第二减重槽。
  15. 根据权利要求14所述的激光雷达,其特征在于,所述第一减重槽内设有第一加强筋,所述第二减重槽内设有第二加强筋。
  16. 根据权利要求11所述的激光雷达,其特征在于,所述配重件一侧表面为弧形结构,适配于所述底座的结构。
  17. 根据权利要求11所述的激光雷达,其特征在于,所述连接立板设有定位凸台,所述配重件设有定位孔,所述定位凸台与所述定位孔卡合。
  18. 根据权利要求14所述的激光雷达,其特征在于,所述雷达本体还包括至少一个第一次级配重件,所述第一次级配重件设置于所述第一减重槽和/或第二减重槽内。
  19. 根据权利要求11‐18任一项所述的激光雷达,其特征在于,所述雷达本体还包括至少一个第二次级配重件,所述配重件设有和所述第二次级配重件数量相同的连接孔,所述第二次级配重件通过所述连接孔与所述配重件连接。
  20. 根据权利要求11所述的激光雷达,所述雷达本体还包括第一配重槽,所述第一配重槽设置于所述底座边缘,围绕所述底板四周成圆环形,所述第一配重槽包括下边缘,所述下边缘上设置有至少一个第一固定孔,所述第一固定孔使第一配重块沿所述底座圆周方向和朝向所述中轴轴心方向进行调节,并将所述第一配重块固定在所述第一固定孔的任意位置。
  21. 根据权利要求11所述的激光雷达,所述雷达本体还包括第一配重盘,所述第一配重盘设置于所述底座底部,在所述底座边缘形成第二配重槽,所述第二配重槽围绕所述底座四周成圆环形,所述配重盘包括第二配重边,所述第二配重边上设置有至少一个第三固定孔,所述第三固定孔使第二配重块沿所述底座圆周方向和朝向所述中轴轴心方向进行调节,并将所述第二配重块固定在所述第三固定孔的任意位置。
  22. 根据权利要求21所述的激光雷达,所述第一配重盘内部中空,包括外螺纹,所述第一配重盘通过所述外螺纹与所述底座相固定。
  23. 一种智能感应设备,其特征在于,包括如权利要求1至22任意一项所述的激光雷达。
PCT/CN2020/107322 2019-08-07 2020-08-06 一种激光雷达及智能感应设备 WO2021023254A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202080051966.1A CN114174855A (zh) 2019-08-07 2020-08-06 一种激光雷达及智能感应设备
EP20849362.7A EP4006577A4 (en) 2019-08-07 2020-08-06 LASER RADAR AND INTELLIGENT MEASUREMENT DEVICE
US17/183,309 US11187791B2 (en) 2019-08-07 2021-02-23 Lidar and intelligent sensing device
US17/509,123 US11782135B2 (en) 2019-08-07 2021-10-25 Laser radar and intelligent sensing device
US18/243,647 US20230417877A1 (en) 2019-08-07 2023-09-07 Lidar and intelligent sensing device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910727564.8A CN110231608A (zh) 2019-08-07 2019-08-07 激光雷达及智能感应设备
CN201910727564.8 2019-08-07
CN201910797078.3A CN110308434B (zh) 2019-08-27 2019-08-27 一种激光雷达
CN201910797078.3 2019-08-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/183,309 Continuation US11187791B2 (en) 2019-08-07 2021-02-23 Lidar and intelligent sensing device

Publications (1)

Publication Number Publication Date
WO2021023254A1 true WO2021023254A1 (zh) 2021-02-11

Family

ID=74502488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/107322 WO2021023254A1 (zh) 2019-08-07 2020-08-06 一种激光雷达及智能感应设备

Country Status (3)

Country Link
US (3) US11187791B2 (zh)
EP (1) EP4006577A4 (zh)
WO (1) WO2021023254A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD955904S1 (en) * 2020-12-08 2022-06-28 Beijing Voyager Technology Co., Ltd. Light detection and ranging (LIDAR) component
USD955905S1 (en) * 2020-12-08 2022-06-28 Beijing Voyager Technology Co., Ltd. Light detection and ranging (LIDAR) component
USD955906S1 (en) * 2020-12-08 2022-06-28 Beijing Voyager Technology Co., Ltd. Light detection and ranging (LIDAR) component
US11719816B2 (en) 2021-11-30 2023-08-08 Sos Lab Co., Ltd. LiDAR device
WO2023101038A1 (ko) * 2021-11-30 2023-06-08 주식회사 에스오에스랩 라이다 장치
CN114384494A (zh) * 2022-01-11 2022-04-22 烟台艾睿光电科技有限公司 一种激光雷达散热装置
CN115963475B (zh) * 2023-03-16 2023-05-30 山东穆柯传感器有限公司 一种车间安全监测用的激光雷达装置及工作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160161600A1 (en) * 2013-08-19 2016-06-09 Quanergy Systems, Inc. Optical phased array lidar system and method of using same
CN205749898U (zh) * 2016-05-10 2016-11-30 深圳市速腾聚创科技有限公司 多线激光雷达
CN108957424A (zh) * 2018-09-30 2018-12-07 深圳市速腾聚创科技有限公司 一种多线激光雷达系统
CN109946679A (zh) * 2019-04-15 2019-06-28 森思泰克河北科技有限公司 激光雷达转子
CN110231608A (zh) * 2019-08-07 2019-09-13 深圳市速腾聚创科技有限公司 激光雷达及智能感应设备
CN110308434A (zh) * 2019-08-27 2019-10-08 深圳市速腾聚创科技有限公司 一种激光雷达

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7009752B1 (en) * 2003-01-21 2006-03-07 Lockheed Martin Corporation Actively-supported multi-degree of freedom steerable mirror apparatus and method
USRE46672E1 (en) * 2006-07-13 2018-01-16 Velodyne Lidar, Inc. High definition LiDAR system
US8767190B2 (en) * 2006-07-13 2014-07-01 Velodyne Acoustics, Inc. High definition LiDAR system
AT508562B1 (de) * 2009-09-02 2011-02-15 Riegl Laser Measurement Sys 3-d vermessungseinrichtung
TWM479170U (zh) 2014-01-20 2014-06-01 shu-hui Zhang 具平衡調節結構之夾頭
CN205928334U (zh) 2016-06-06 2017-02-08 新昌县羽林街道宇昌机械厂 一种平衡安装盘
CN206749676U (zh) 2017-04-26 2017-12-15 北京新能源汽车股份有限公司 车辆雷达安装支架和具有其的车辆
CN207582557U (zh) 2017-11-16 2018-07-06 何泽波 一种装载机平衡块
CN107991661B (zh) * 2017-11-23 2020-01-07 武汉万集信息技术有限公司 一种机械式激光雷达及其配重方法
CN108828557B (zh) 2018-06-08 2023-11-24 上海禾赛科技有限公司 一种激光雷达
CN112327274B (zh) * 2018-06-08 2022-11-22 上海禾赛科技有限公司 一种激光雷达
WO2020057517A1 (en) * 2018-09-18 2020-03-26 Suteng Innovation Technology Co., Ltd. Multi-beam lidar systems and methods for detection using the same
CN109444852A (zh) 2018-12-05 2019-03-08 宁波傲视智绘光电科技有限公司 一种激光雷达
CN109581331A (zh) * 2019-01-02 2019-04-05 宁波傲视智绘光电科技有限公司 一种激光雷达及其旋转镜配平方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160161600A1 (en) * 2013-08-19 2016-06-09 Quanergy Systems, Inc. Optical phased array lidar system and method of using same
CN205749898U (zh) * 2016-05-10 2016-11-30 深圳市速腾聚创科技有限公司 多线激光雷达
CN108957424A (zh) * 2018-09-30 2018-12-07 深圳市速腾聚创科技有限公司 一种多线激光雷达系统
CN109946679A (zh) * 2019-04-15 2019-06-28 森思泰克河北科技有限公司 激光雷达转子
CN110231608A (zh) * 2019-08-07 2019-09-13 深圳市速腾聚创科技有限公司 激光雷达及智能感应设备
CN110308434A (zh) * 2019-08-27 2019-10-08 深圳市速腾聚创科技有限公司 一种激光雷达

Also Published As

Publication number Publication date
US20220043126A1 (en) 2022-02-10
EP4006577A1 (en) 2022-06-01
US11782135B2 (en) 2023-10-10
EP4006577A4 (en) 2022-09-07
US20230417877A1 (en) 2023-12-28
US11187791B2 (en) 2021-11-30
US20210181314A1 (en) 2021-06-17

Similar Documents

Publication Publication Date Title
WO2021023254A1 (zh) 一种激光雷达及智能感应设备
US10114213B2 (en) Laser systems and optical devices for manipulating laser beams
CN102103270B (zh) 激光光束匀光整形与消散斑一体化装置
CN102323656A (zh) 基于双轴柔性铰链的高频响二维微角摆控制反射镜
WO2020062110A1 (zh) 扫描模组、测距装置、测距组件、距离探测设备及移动平台
EP3722862A1 (en) Laser radar system and control method thereof, method of obtaining scanning angle, and vehicle
US10989995B2 (en) Laser assembly, laser source and laser projection apparatus
CN110568625A (zh) 偏振可调的激光扩束准直器
CN103823275B (zh) 基于柔性铰链的自适应光纤准直器
TWI609230B (zh) 光學固定裝置與光源裝置
CN114174855A (zh) 一种激光雷达及智能感应设备
CN208953763U (zh) 一种一维快速反射镜装置
EP4092460A1 (en) Lens housing, lens module and light source system
US20070019413A1 (en) Light emitting diode with integral parabolic reflector
WO2020216206A1 (zh) 一种配光组件和照明装置
TW502481B (en) System and method for vcsel polarization control
CN211206787U (zh) 测距组件及移动平台
CN217213347U (zh) 一种rgb激光合光调节结构
CN113253556A (zh) 具有可无级调节平衡的转换器轮
JP2013064964A (ja) 検査用治具およびレンズ駆動装置の検査方法
CN215297926U (zh) 波长转换模块与投影装置
JP2576389B2 (ja) 増幅度調整機構付レーザ増幅器
CN113219648B (zh) 旋转式光学模块及投影装置
CN116647068B (zh) 一种定位装置及快反镜音圈电机安装方法
CN211206773U (zh) 扫描模组、测距组件及移动平台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20849362

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020849362

Country of ref document: EP

Effective date: 20220224