WO2021023196A1 - 一种锂离子电池及装置 - Google Patents

一种锂离子电池及装置 Download PDF

Info

Publication number
WO2021023196A1
WO2021023196A1 PCT/CN2020/106916 CN2020106916W WO2021023196A1 WO 2021023196 A1 WO2021023196 A1 WO 2021023196A1 CN 2020106916 W CN2020106916 W CN 2020106916W WO 2021023196 A1 WO2021023196 A1 WO 2021023196A1
Authority
WO
WIPO (PCT)
Prior art keywords
particulate material
organic porous
lithium ion
ion battery
porous particulate
Prior art date
Application number
PCT/CN2020/106916
Other languages
English (en)
French (fr)
Inventor
陈仕通
龚志杰
谢斌
马林
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP20850310.2A priority Critical patent/EP3930065B1/en
Publication of WO2021023196A1 publication Critical patent/WO2021023196A1/zh
Priority to US17/517,587 priority patent/US20220059826A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/654Means for temperature control structurally associated with the cells located inside the innermost case of the cells, e.g. mandrels, electrodes or electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6562Gases with free flow by convection only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This application relates to the battery field, and in particular to a lithium ion battery and device.
  • the batteries are required not only to have the ability to charge quickly, but also to have a higher energy density, better long-cycle performance and stability.
  • the pre-filled lithium technology can not only make up for the first effect loss of the anode, but also provide an additional lithium source, which helps to improve the energy density and cycle performance of lithium-ion batteries.
  • the surface of the pole piece after replenishing lithium is a smooth lithium foil, which causes relative sliding between the pole piece lithium replenishing layer and the isolation film, which affects the stability of the battery.
  • the pole pieces are prone to swelling, which may cause the pole pieces to break, and even the section of the pole piece directly pierces the diaphragm and causes the safety risk of thermal runaway of the cell.
  • the main measure taken to solve the problem of pole piece expansion is to increase the strength of the current collector, but blindly increasing the strength of the current collector also leads to poor elongation of the current collector, and the problem of pole piece expansion has not been properly resolved.
  • the purpose of the present application is to provide a lithium ion battery to improve the stability, safety and cycle performance of the lithium ion battery.
  • a lithium ion battery which includes a positive pole piece, a negative pole piece, a separator separated between the positive pole piece and the negative pole piece, and an electrolyte; the negative pole piece is close to The surface of the isolation film is sequentially provided with a lithium supplement layer and a first functional coating; the isolation film is provided with a second functional coating on the surface close to the negative pole piece; the first functional coating and the first functional coating Both functional coatings contain organic porous particulate material, and the compressibility S of the organic porous particulate material ranges from 40% to 90%, optionally 50% to 80%;
  • H represents the original particle size height of the organic porous particulate material
  • h represents the particle size height of the organic porous particulate material under a pressure of 2Mpa for 1 minute.
  • Another aspect of the present application also provides a device whose driving source or storage source is the aforementioned lithium ion battery.
  • both the first functional coating and the second functional coating contain organic porous particulate material
  • the organic porous particulate material in the first functional coating and the organic porous particulate material in the second functional coating can be realized on the contact surface
  • the effect of mechanical riveting improves the interaction force between the lithium supplement pole piece and the isolation membrane.
  • the above-mentioned increase in the interaction force can improve the relatively smooth surface of the lithium-supplementing layer after the negative pole piece is recharged with lithium, which may cause relative sliding between it and the separator, thereby improving the stability of the lithium-ion battery.
  • the organic porous particulate material contained in the first functional coating and the second functional coating can also increase the reserved space between the pole piece lithium replenishing layer and the isolation membrane (especially at the corners). On the one hand, it can alleviate the safety risk of pole piece fracture caused by pole piece expansion and even piercing the isolation membrane. On the other hand, it can also ensure the air circulation at the corners, which is conducive to heat dissipation, and prevents the corners of the wound lithium battery cell from turning black due to poor air circulation, thereby increasing the lithium utilization rate of the lithium battery and ultimately improving the battery performance. On the other hand, it can also enhance the capacity to accommodate the lithium debris/lithium dots on the surface of the lithium-refilling layer of the pole piece.
  • the compressible coating can reduce the possibility of the lithium debris/lithium dots piercing the diaphragm.
  • the organic porous particulate material contained in the first functional coating and the second functional coating can also absorb electrolyte, improve the infiltration effect of the pole piece lithium supplement layer, and enable the lithium supplement layer to better embed the active material layer , which can also increase the utilization rate of the lithium replenishment layer and improve battery performance.
  • the electrolyte can also be stored in the organic porous particulate material to improve the problem of insufficient electrolyte at the interface between the pole piece and the isolation membrane in the later period of the battery cycle, and improve the cycle performance of the battery.
  • the device of this application includes the lithium ion battery provided by this application, and therefore has at least the same advantages as the lithium ion battery of this application.
  • FIG. 1 is a schematic diagram of an embodiment of a lithium ion battery.
  • Figure 2 is an exploded view of Figure 1.
  • Fig. 3 is a schematic diagram of an embodiment of a battery module.
  • Fig. 4 is a schematic diagram of an embodiment of a battery pack.
  • Fig. 5 is an exploded view of Fig. 4.
  • Fig. 6 is a schematic diagram of an embodiment of a device in which a lithium ion battery is used as a power source.
  • the lithium ion battery according to the present application will be described in detail below.
  • the lithium ion battery provided by the embodiment of the present application includes a positive pole piece, a negative pole piece, a separator separated between the positive pole piece and the negative pole piece, and an electrolyte.
  • the negative pole piece is close to the separator
  • a lithium supplement layer and a first functional coating are arranged on the surface in sequence;
  • a second functional coating is arranged on the surface of the isolation film close to the negative electrode;
  • the first functional coating and the second functional coating All contain organic porous particulate material, and the organic porous particulate material satisfies:
  • H represents the height of the original particle size of the organic porous particulate material
  • h represents the height of the particle size of the organic porous particulate material under a pressure of 2Mpa for 1 minute.
  • the organic porous particulate material in the first functional coating and the organic porous particulate material in the second functional coating can achieve a mechanical riveting effect at the contact interface, thereby improving the pole piece compensation.
  • the interaction force between the lithium layer and the isolation film improves the relative sliding between the negative pole piece and the isolation film due to the smooth surface of the lithium replenishment layer after the lithium supplementation of the negative pole piece, and improves the battery stability.
  • the organic porous particulate materials contained in the first functional coating and the second functional coating leave a gap between the pole piece lithium replenishment layer and the isolation membrane (especially at the corners).
  • it can effectively alleviate the safety risk of pole piece fracture caused by pole piece expansion and even piercing the isolation membrane.
  • it can also ensure the air circulation at the corners, which helps to dissipate the heat of the lithium pole piece after winding.
  • it can prevent the problem of blackening the corners of the lithium battery after winding due to poor air circulation, and improve the efficiency of the lithium battery.
  • Lithium utilization rate ultimately improves battery performance.
  • it can also enhance the capacity to accommodate the lithium chips/lithium dots on the surface of the lithium replenishment layer.
  • the compressible coating can reduce the possibility of lithium chips/lithium dots piercing the diaphragm.
  • the electrolyte is injected, the The lithium layer is embedded in the active material layer, and the uneven spots on the surface of the lithium replenishment layer disappear, improving battery safety.
  • the organic porous particulate material contained in the first functional coating and the second functional coating can also absorb electrolyte, improve the wetting effect of the pole piece lithium replenishment layer and isolation membrane, so that the lithium replenishment layer can be better embedded in activity
  • the material layer improves the utilization rate of the lithium supplement layer, and increases the wettability between the separator and the electrolyte, and ultimately improves the battery performance.
  • the electrolyte can also be stored in the organic porous particulate material, thereby improving the problem of insufficient electrolyte at the interface between the pole piece and the isolation membrane in the later period of the battery cycle, and improving the battery cycle performance.
  • the organic porous particulate material is selected from one of acrylate, polyacrylate, polypropylene, polyethylene, polyamide, polyboric acid, polysulfone, polyarylate, polyvinylpyridine, polyaniline, or Many kinds.
  • the above-mentioned materials can all realize the effect of absorbing and storing electrolyte and increasing the corner gap that the battery can use.
  • polymer materials with large molecular weights are mostly long chains due to their molecular structure, which leads to a slightly lower compressibility of the material itself. Therefore, the degree of improvement in the corner gap that can be used for the battery can be further improved. Therefore, polymers with a weight-average molecular weight of 500-2,000,000 can be selected, and further, esters with a weight-average molecular weight of 500-2,000,000, organic polymer materials containing carboxyl or hydroxyl groups can be selected, which can use corners for the battery The improvement of the gap is more obvious.
  • esters and organic polymer materials containing carboxyl or hydroxyl groups can not only significantly increase the corner gap of the battery cell, but also have better compatibility with the electrolyte, which can absorb and store the electrolyte more effectively. Improve the wetting effect of the pole piece to replenish the lithium layer, and improve the problem of insufficient electrolyte at the interface between the pole piece and the isolation membrane in the later stage of the battery cycle.
  • the esters of the present application are selected from one of polyacrylate, polypropylene carbonate, aromatic copolyester, polyurethane, polyhydroxybutyrate, polyhydroxybutyrate, polyfatty acid ester, etc.
  • a variety of organic polymer materials containing carboxyl groups or hydroxyl groups can be selected from one or more of acrylic resin (carboxyl group), polyacrylic resin, hexahydroxytriphenylene, phenolic hydroxyl structure polymer, polyvinyl alcohol and the like.
  • the significant functional groups on the surface of the organic porous particulate material are selected from one or more of carboxyl groups, hydroxyl groups, ester groups, alkenyl groups, and alkyl groups.
  • the surface functional groups of organic porous particulate materials will affect the electrochemical performance of lithium ion batteries.
  • the different types of surface functional groups lead to different surface activities of the organic porous particulate material, which affects the reaction rate and extent of the organic porous particulate material and the pole piece lithium supplement layer.
  • the reaction activity with the lithium supplement layer The larger functional groups are carboxyl, hydroxyl, and ester in order.
  • the chemical reaction between the surface functional groups of the organic porous particulate material and the lithium supplement layer of the pole piece is beneficial to improve the interaction between the two, thereby improving the bonding between the first functional coating and the negative lithium supplement layer, but the carboxyl group as the surface functional group
  • the reaction with the lithium layer is too violent, which may cause the pole piece to generate a higher temperature. Therefore, it is necessary to control the reaction conditions or perform pretreatment, or select a suitable organic porous particle material to make its surface functional group reactive.
  • the difference in surface functional groups also affects the ability of the material to absorb electrolyte. There are many ester polymer materials in the electrolyte.
  • the ester functional group on the surface of the material can effectively improve the material's ability to absorb the electrolyte. Therefore, when the significant surface functional group of the organic porous particulate material is ester It can significantly improve the electrochemical performance of the battery. It is worth noting that the significant surface functional groups mentioned in this application refer to the functional groups with the highest surface content.
  • the particle size of the organic porous particulate material is 1 ⁇ m to 70 ⁇ m; optionally 5 ⁇ m to 50 ⁇ m.
  • the particle size of the organic porous particulate material increases, its ability to absorb and store electrolyte becomes greater, the molecular chain increases, and its compressibility decreases, and the usable gap at the corner becomes larger.
  • the corner gap will also increase. Although enough space can be reserved for the expansion of the pole piece, the transmission distance of lithium ions at the corner is increased, which is likely to cause lithium-evolution black spots on the interface and increase
  • the internal resistance of the battery cell affects the battery performance; the increase of the particle size makes the organic porous particle material absorb more electrolyte, although it can effectively improve the liquid retention capacity, it may cause the adhesion between the negative pole piece and the organic particle material to decrease , Affect the cell interface effect, and ultimately affect the battery performance.
  • the distribution of the organic porous particulate material in the negative pole piece becomes more dense.
  • the binding force between the negative pole piece and the organic porous particulate material can be improved, it is easy to cause the surface gap of the pole piece to be too small , Causing the heat to be difficult to effectively diffuse and easily lead to safety risks.
  • the corner gap will decrease accordingly, and it is impossible to reserve enough space for the expansion of the pole pieces during the cycle, which affects the improvement of the battery cycle performance. Therefore, the particle size of the organic porous particulate material is selected appropriately Within the range of, the overall performance of lithium-ion batteries can be better improved.
  • the pore diameter of the organic porous particulate material is 1 nm to 200 nm, optionally 5 nm to 50 nm.
  • the ventilation and heat dissipation effect between the pole pieces can be increased, and the heating temperature of the lithium supplement pole piece can be reduced; it can also increase the material's ability to absorb electrolyte, increase the compressibility of the particles and increase the usability Corner clearance.
  • the electrolyte absorption capacity can be improved, the electrolyte absorption is excessive, which easily causes the adhesion between the pole piece lithium layer and the material to decrease, which affects the improvement of electrical performance; with organic porous particles
  • the decrease in the pore size of the material can improve the liquid storage capacity of the organic porous particulate material, but at the same time it will cause the lithium ion transmission effect to be unsatisfactory, resulting in an increase in the internal resistance of the battery cell, and it is not conducive to the improvement of the battery performance.
  • the overall performance of lithium-ion batteries can be better improved.
  • the organic porous particulate material has a hollow structure and/or a through-hole structure.
  • the structure of the organic porous particle material affects the electrochemical performance of the battery. If the organic porous particle material is a solid particle structure, although it can reserve a certain space for the expansion of the pole piece and has a certain liquid absorption capacity, the improvement of its electrochemical performance is not ideal Therefore, the organic porous particulate material is designed to have a hollow structure and/or a through-hole structure, which facilitates the electrolyte to fully enter the organic porous particulate material, and at the same time improves its liquid absorption capacity and liquid storage capacity. Therefore, the organic porous particulate material selected in the embodiments of the present application may have a hollow structure and/or a through-hole structure.
  • the liquid absorption and storage capacity of the organic porous particulate material with a hollow structure is better than that of the organic porous particulate material with a through-hole structure, because the unique structure of the hollow allows more liquid storage inside the particulate material Space, storage capacity and compressibility of electrolyte are better, and it is also more conducive to the improvement of battery performance.
  • the crystallinity of the organic porous particulate material is 30% to 80%, optionally 30% to 50%.
  • Crystallinity refers to the proportion of crystalline regions in a polymer. Crystallization is an ordered arrangement of molecular chains. Generally, the higher the crystallinity, the more regular the molecular chains are arranged. As the crystallinity of the material increases, the material's compressibility and ability to absorb electrolyte become weaker. When the crystallinity is too high, the compressibility of the material is poor.
  • the performance of the lithium-ion battery can be improved, the effect of the improvement is not obvious enough, and it is easy to cause difficulty in shaping the large surface of the battery after winding, resulting in The resistance increases; in addition, enough space cannot be reserved for the expansion of the pole piece, and the ability of the material to absorb the electrolyte is also weak, and the improvement of the pole piece to the electrolyte wettability is not ideal.
  • the degree of crosslinking of the organic porous particulate material is 20% to 80%, and optionally 20% to 70%.
  • the degree of crosslinking refers to the degree of crosslinking of the polymer chains in the polymer. As the degree of cross-linking of the organic porous particulate material increases, the compressibility of the material and the ability to store electrolyte are weakened. When the cross-linking of the material is too high, the compressibility of the material is poor, and it is difficult to reshape the large surface of the cell after winding, which causes the internal resistance of the cell to increase; it is impossible to reserve enough space for the expansion of the pole piece, so the pole piece heats up The temperature is higher; and the ability of the material to store the electrolyte is also weak, and the improvement of the electrode's wettability to the electrolyte is also weak. When the crosslinking of the material is too low, its compressibility is greatly improved, which may cause the material to be crushed, destroy the original structure of the material and the ability to store electrolyte, thereby affecting the improvement of battery performance.
  • an inorganic coating is provided between the isolation membrane and the second functional coating, and the inorganic coating includes inorganic particulate material, and the inorganic particulate material is selected from aluminum oxide, silicon monoxide, and two One or more of silicon oxide, zirconium dioxide, manganese oxide, magnesium oxide, calcium oxide, and calcium carbonate.
  • the function of adding an inorganic coating is to increase the heat resistance of the separator, reduce the thermal shrinkage of the separator during the battery cycle, and improve the stability of the separator.
  • the thickness of the inorganic coating may be 0.5 ⁇ m-10 ⁇ m, and the thickness of the first functional coating and the second functional coating may be 5 ⁇ m ⁇ 70 ⁇ m.
  • the first functional coating, the second functional coating, and the inorganic coating also contain a binder, and the binder is selected from the group consisting of polyacrylate, polyacrylate copolymer, polyvinylidene fluoride, and vinylidene fluoride.
  • the binder is selected from the group consisting of polyacrylate, polyacrylate copolymer, polyvinylidene fluoride, and vinylidene fluoride.
  • the mass percentage of the binder in the first functional coating, the second functional coating, and the inorganic coating can be 10%-40%.
  • Fig. 1 shows a lithium-ion battery 5 with a square structure as an example.
  • the lithium-ion battery may include an outer package for packaging the positive pole piece, the negative pole piece, the separator, and the electrolyte.
  • the outer packaging of the lithium ion battery may be a soft bag, such as a pouch type soft bag.
  • the material of the soft bag can be plastic, for example, it can include one or more of polypropylene PP, polybutylene terephthalate PBT, polybutylene succinate PBS, and the like.
  • the outer packaging of the lithium ion battery can also be a hard shell, such as a hard plastic shell, an aluminum shell, a steel shell, and the like.
  • the outer package may include a housing 51 and a cover 53.
  • the housing 51 may include a bottom plate and a side plate connected to the bottom plate, and the bottom plate and the side plate enclose a receiving cavity.
  • the housing 51 has an opening communicating with the containing cavity, and a cover plate 53 can cover the opening to close the containing cavity.
  • the positive pole piece, the negative pole piece, and the separator may be formed into the cell 52 through a winding process or a lamination process.
  • the battery core 52 is encapsulated in the containing cavity.
  • the electrolyte is infiltrated in the cell 52.
  • the number of cells 52 contained in the lithium ion battery 5 can be one or several, which can be adjusted according to requirements.
  • lithium ion batteries can be assembled into battery modules, and the number of lithium ion batteries contained in the battery modules can be multiple, and the specific number can be adjusted according to the application and capacity of the battery module.
  • FIG. 3 is a battery module 4 as an example.
  • a plurality of lithium ion batteries 5 may be arranged in order along the length direction of the battery module 4. Of course, it can also be arranged in any other manner. Furthermore, the plurality of lithium ion batteries 5 can be fixed by fasteners.
  • the battery module 4 may further include a housing having an accommodation space, and a plurality of lithium ion batteries 5 are accommodated in the accommodation space.
  • the above-mentioned battery modules can also be assembled into a battery pack, and the number of battery modules contained in the battery pack can be adjusted according to the application and capacity of the battery pack.
  • the battery pack 1 may include a battery box and a plurality of battery modules 4 provided in the battery box.
  • the battery box includes an upper box body 2 and a lower box body 3.
  • the upper box body 2 can be covered on the lower box body 3 and forms a closed space for accommodating the battery module 4.
  • Multiple battery modules 4 can be arranged in the battery box in any manner.
  • This application also provides a device, which includes the aforementioned lithium ion battery in this application.
  • the lithium ion battery can be used as a power source of the device, and can also be used as an energy storage unit of the device.
  • the device can be, but is not limited to, mobile devices (such as mobile phones, laptop computers, etc.), electric vehicles (such as pure electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, electric bicycles, electric scooters, electric golf Vehicles, electric trucks, etc.), electric trains, ships and satellites, energy storage systems, etc.
  • the device can select a lithium ion battery, battery module or battery pack according to its usage requirements.
  • Figure 6 is a device as an example.
  • the device is a pure electric vehicle, a hybrid electric vehicle, or a plug-in hybrid electric vehicle.
  • a battery pack or battery module can be used.
  • the device may be a mobile phone, a tablet computer, a notebook computer, etc.
  • the device usually requires light and thin, and can use lithium-ion batteries as a power source.
  • the positive active material lithium cobalt oxide, conductive agent conductive carbon, and binder polyvinylidene fluoride (PVDF) are uniformly mixed in a mass ratio of 96:2:2 to prepare a positive slurry for lithium ion batteries with a certain viscosity.
  • the negative electrode active material graphite and Si powder mixture (wherein, the mass percentage of Si powder is 50%), negative electrode binder styrene butadiene rubber, negative electrode conductive agent conductive carbon black Super P according to the mass ratio 92:3:5 Mix and disperse with solvent N-methylpyrrolidone (NMP) to prepare negative electrode slurry. According to the coating amount of 130mg/1540mm 2 , the negative electrode slurry is evenly coated on both sides of the negative electrode current collector copper foil.
  • NMP N-methylpyrrolidone
  • the negative pole piece base material Dried in an oven at °C to obtain the negative pole piece base material; take the metal lithium tape and roll it to form a lithium foil with a thickness of 1-20 ⁇ m, press it on the surface of the negative pole piece base material, and then cut it to obtain a pre-filled lithium negative pole piece .
  • the organic porous particulate material (see the specific parameters in Table 1), the binder and the cyclohexane are mixed uniformly in a mass ratio of 80:20 to form a first functional coating slurry, and the first functional coating is uniform Coated on the surface of the lithium supplement layer of the negative pole piece and dried in an oven at 85° C. to obtain the negative pole piece of the lithium ion battery in Examples 1 to 23 with the first functional coating.
  • a polyethylene microporous film with a thickness of 16um is used as the isolation membrane substrate, and the porous aluminum oxide, the binder styrene-butadiene rubber and deionized water are mixed uniformly at a mass ratio of 80:20 to form an inorganic coating slurry.
  • the inorganic coating slurry is uniformly coated on the surface of the isolation film substrate, the coating thickness is controlled at 4 ⁇ 1 ⁇ m, and the isolation film with inorganic coating is prepared by drying in an oven at 60°C.
  • the organic porous particulate material (see the specific parameters in Table 1), styrene butadiene rubber and deionized water at a mass ratio of 80:20 are uniformly mixed to form an organic coating slurry, and then the organic coating slurry is uniformly coated
  • the surface of the inorganic coating covering the isolation film was dried in an oven at 85° C. to obtain the isolation film of the lithium ion battery in Examples 1-23 with the second functional coating.
  • the volume ratio of ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate is 1:2:1 to obtain electrolysis. liquid.
  • the positive pole piece, the negative pole piece with the first functional coating, and the separator between the positive pole piece and the negative pole piece are wound and assembled. After assembly, the negative pole piece is arranged on the surface of the separator facing the separator. There is a lithium replenishment layer and a first functional coating; a second functional coating is provided on the surface of the isolation membrane facing the negative pole piece; afterwards, electrolyte is injected to form the lithium ion batteries in Examples 1-23.
  • the lithium ion batteries in Examples 1 to 23 of the present application were prepared according to the above method, and the specific parameters of the organic porous particulate materials used in each example are shown in Table 1.
  • the lithium ion battery of Comparative Example 1 was prepared as a control.
  • the difference between Comparative Example 1 and Examples 1-23 is that the lithium ion battery of Comparative Example 1 has no first functional coating on the negative electrode and no second functional coating on the separator.
  • the difference between Comparative Example 2 and Example 1 is that the negative electrode in Comparative Example 2 does not have a first functional coating.
  • Infrared spectroscopy is used to determine the functional groups in organic materials. Different wavelengths correspond to different functional groups. The strength of specific wavelength absorption peaks is used to qualitatively judge the content of functional groups. The functional group corresponding to the strongest absorption peak is the significant functional group on the surface of the material.
  • the particle size D50 of the organic porous particulate material is obtained, and D50 represents the average particle size of the organic material.
  • the pyrolysis chromatography-mass spectrometry method is used to identify the components of the thermal decomposition products of polymers and calculate the degree of crosslinking of polymers.
  • the original weight of the organic porous particulate material is M, soak it in the electrolyte for 24 hours, take it out, and use a dust-free paper to absorb the remaining electrolyte on the surface. At this time, weigh the weight M1 of the organic porous particulate material after soaking in the electrolyte.
  • the electrolyte storage capacity F of the organic porous particulate materials in Examples 1-23 is shown in Table 1, and the range of F is 10% to 200%, and the preferable range is 30% to 100%.
  • the original particle size height of the organic porous particulate material is H.
  • the compressibility S of the organic porous particulate materials in Examples 1 to 23 is shown in Table 1.
  • the range of S is 40% to 90%, and the preferable range is 50% to 80%.
  • the lithium supplement pole piece is wound with a 6-inch reel for 1000m, and the temperature of the pole piece is tested by inserting a temperature sensor at 500m of the winding.
  • the temperature measuring instrument is: thermometer: SKF TKDT 10, and the temperature specification is: ⁇ 60°C.
  • the heating temperature of the pole pieces in Examples 1-23 is shown in Table 1, and the heating temperature of the pole pieces can be controlled below 60°C in Examples 1-23.
  • Available corner gap organic coating particle coating thickness * compressible ratio S.
  • the corner gaps that can be used by the batteries in Examples 1-23 are shown in Table 1, and the range is 1 ⁇ m-100 ⁇ m, and the preferred range is 5 ⁇ m-80 ⁇ m.
  • AC resistance AC internal resistance equipment: IT5100 series battery internal resistance tester from Itech Company
  • test method add a fixed frequency of 1KHz, a fixed current of 50mA to the test cell, sample the voltage, and calculate the resistance value by a rectifier instrument.
  • the internal resistance of the cells in Examples 1 to 23 is shown in Table 1. Generally, it is a preferable range to control the internal resistance of the cells below 0.625mOHM.
  • Use lithium ion charging and discharging equipment Xinwei mobile power product special tester repeatedly charges and discharges the battery until the capacity attenuation rate reaches 80%. If the battery capacity is 70Ah above, repeat the charging and discharging of the battery. When the battery capacity When it decays to 56Ah, stop the test and record the number of repeated charge and discharge, which is the cycle performance data of the cell.
  • the internal resistance of the cells in Examples 1-23 is shown in Table 1. Generally, it is a better range to control the cycle performance of the battery above 750Cylce.
  • Examples 1 to 4 show the effect of changing the crystallinity of organic porous particulate materials on various properties.
  • porous particles of the same organic material are used, have the same significant functional groups, and have the same average particle size, average pore size, and degree of cross-linking. The only difference lies in the crystallinity.
  • the increase in the crystallinity of the organic porous particulate material has the following effects on each performance: (1) Reduce the ability of the material to store the electrolyte: as the crystallinity increases, the material's ability to block the penetration of the electrolyte becomes greater, making the material more effective Increased solvent resistance results in weakening of electrolyte wettability. When the crystallinity reaches 80% (Example 4), the electrolyte storage capacity of the material is only 50%. (2) Weakening the compressibility of the material: The increase in crystallinity is also accompanied by the decrease in the compressibility of the material. When the crystallinity reaches 80% (Example 4), the mechanical properties of the material are very strong, and the compressive performance is too high.
  • the compressibility of the organic porous particulate material is less than 50%, which makes it difficult to reshape the large surface of the battery after winding, that is, the gap between the pole pieces at the large surface of the wound battery increases, and the lithium ion transmission distance increases during the cycle.
  • the internal resistance of the cell increases (the internal resistance of the cell in Example 4 is higher than that in Examples 1 to 3, reaching 0.67), which ultimately affects the cycle performance of the battery (the cycle performance of the lithium ion battery in Example 4 is lower than that of Examples 1 to 3) , Only 745 circles, slightly higher than the comparative example 1).
  • (3) Affecting the corner gap of the battery cell As mentioned above, the increase of crystallinity causes the material compressibility to deteriorate.
  • the surface functional groups of the particulate material will react with the lithium supplement layer on the surface of the pole piece to form a passivation layer on the surface of the lithium supplement layer, which will affect the heating effect of the lithium supplement layer, therefore, when the surface of the lithium supplement pole piece and the organic porous particulate material If the contact area is too small, the heating temperature of the lithium supplement pole piece is higher (the heating temperature of the pole piece in Example 4 reaches 58°C).
  • the crystallinity of the organic porous particulate material ranges from 30% to 80%, and optionally 30% to 50%.
  • Examples 1, 5-9 show the effect of changing the degree of cross-linking of the organic porous particulate material on various properties.
  • porous particles of the same organic material are used, have the same significant functional groups, and have the same particle size, pore size, and crystallinity. The only difference lies in the degree of crosslinking.
  • Increasing the degree of crosslinking of the organic porous particulate material will have the following effects: the increase of the degree of crosslinking of the organic porous particulate material can weaken its ability to store electrolyte and reduce its compressibility.
  • the cross-linking of the organic porous particulate material is too large (as in Example 9), the following problems will occur: (1) The ability of the material to store electrolyte is affected: the cross-linking is too high, it will destroy the original molecular structure, and cause the material itself The liquid absorption capacity becomes poor.
  • the cross-linking is too high, and the compressibility of the material becomes poor, although it can provide a higher gap between the lithium supplement pole pieces and increase the gap between the lithium supplement pole pieces.
  • the effect of ventilation and heat dissipation will ultimately reduce the heating temperature of the lithium supplement pole piece; but it will also reduce the contact area between the surface of the lithium supplement pole piece and the particle material, and the ester group will react with the lithium supplement layer on the surface of the pole piece to form on the surface of the lithium supplement layer
  • the passivation layer further affects the heating effect of the lithium supplement layer; if the contact area is too small, the heating temperature of the lithium supplement pole piece will be higher.
  • the reduction in the degree of cross-linking of the organic porous particulate material can enhance its ability to store electrolyte and improve its compressibility.
  • the degree of cross-linking is 20% (as in Example 5)
  • the usable corner gap reaches 20 ⁇ m, and the pole piece heating temperature, cell internal resistance and cycle performance all achieve good results.
  • the degree of cross-linking is reduced to less than 20%, the hardness of the organic porous particulate material will decrease due to the reduced cross-linking between the organics, and the organic porous particulate material may be crushed.
  • the degree of crosslinking of the organic porous particulate material is 20% to 80%, and optionally 20% to 70%.
  • Examples 1, 10-11 show the effect of changing the surface functional groups of organic porous particulate materials on various properties.
  • porous particles of the same organic material were used, and the particle size, pore size, crystallinity, and degree of crosslinking of the materials were all the same, and the difference was only the significant functional groups.
  • the difference in surface functional groups determines the difference in reactivity between the organic porous particle material and the lithium-supplementing layer of the pole piece.
  • the functional groups that are more reactive with the lithium-supplement layer are carboxyl, hydroxyl and ester groups in order.
  • the carboxyl group can form a passivation layer on the surface of the lithium layer the fastest, it reacts too violently with the lithium layer, which will lead to a higher heating temperature for lithium supplementation (as in Example 10).
  • the difference in surface functional groups can also affect the electrolyte absorption capacity of the material. Due to the similar compatibility principle, there are more ester polymer materials in the electrolyte. Therefore, the ester functional groups on the surface of the material can strongly increase the absorption capacity of the material. Liquid capacity to better improve battery performance (Example 1).
  • Examples 1, 12-15 show the effect of changing the particle size of the organic porous particulate material on various properties.
  • porous particles of the same organic material are used, have the same surface functional groups, and the pore size, crystallinity, and degree of crosslinking of the materials are the same, and the difference lies in the particle size.
  • the increase in the particle size of the organic porous particulate material will have the following effects: (1) Increase the electrolyte storage capacity: the larger the particle size, the more sufficient space can be provided to absorb more electrolyte (the material of embodiment 15 has the capacity to store electrolyte Reach 110%); (2) Affect the usable gap of the corner: the increase of particle size leads to the increase of the usable gap of the cell corner (the corner gap of embodiment 15 reaches 100 ⁇ m), but the corner gap is too large, it will cause The transmission distance of lithium ions at the corners is too long, and finally, black spots of lithium evolution appear on the interface, which increases the internal resistance of the battery cell (the internal resistance of the battery cell in Example 15 is larger), and affects the battery performance.
  • the reduction of the particle size of the organic porous particle material will have the following effects: (1) Increase the heating temperature of the pole piece: the reduction of the particle size of the organic porous particle material can make it easy to react with the lithium supplement pole piece, and it is A passivation layer is formed on the surface of the lithium supplement layer of the pole piece. If the particle size is too small, the heat conduction path between the lithium patch and the pole piece will be reduced, leading to an increase in the temperature of the pole piece, and there may be a safety risk (for example, the heating temperature of the pole piece has reached 60°C).
  • the particle size of the organic porous particulate material is 1 ⁇ m to 70 ⁇ m; optionally, 5 ⁇ m to 50 ⁇ m.
  • Examples 1, 16-19 show the effect of changing the pore size of the organic porous particulate material on various properties.
  • porous particles of the same organic material are used, having the same surface functional groups, and the particle size, crystallinity, and crosslinking degree of the materials are all the same. The only difference lies in the pore size.
  • the increase in the pore size of the organic porous granular material will have the following effects: (1) Lower the heating temperature of the lithium supplement pole piece: the increase of the pore size of the material can increase the ventilation and heat dissipation effect between the pole pieces and reduce the heating temperature of the lithium supplement pole piece. Conducive to the safety of the manufacture of the lithium supplement pole piece (as in Example 19, the heating temperature of the pole piece is only 40°C). (2) Affect the storage capacity of the electrolyte: the larger the pore size of the material, the easier it is to absorb and store the electrolyte; however, when the pore size is too large, the electrolyte will absorb excessively, which will cause the gap between the lithium pole piece and the organic material particles.
  • the reduction of the pore size of the organic porous particulate material will reduce its ability to absorb and store the electrolyte.
  • the surface micropore pore size is too small, the lithium ion transmission effect will not be smooth, which will easily lead to the increase of the internal resistance of the battery, and ultimately affect the lithium ion
  • the electrical performance of the battery is improved (for example, the performance of Example 16 is worse than that of Examples 17, 18).
  • the pore diameter of the organic porous particulate material is 1 nm to 200 nm, and may be 5 nm to 50 nm.
  • Examples 1, 20-21 show the effect of changing the internal structure of the organic porous particulate material on various properties.
  • porous particles of the same organic material but different internal structures are used, and the materials have the same surface functional groups, and the particle size, pore size, crystallinity, and degree of crosslinking of the materials are the same.
  • the organic porous particle material has a solid particle structure (Example 21), which will seriously affect its ability to absorb and store the electrolyte. At the same time, the solid particle structure has poor compressibility, resulting in an increase in the internal resistance of the battery, and ultimately affecting the battery performance.
  • the organic porous particulate material has a through-hole structure (embodiment 20), can better store electrolyte, and has a certain degree of compressibility, providing a reserved space for pole piece expansion and available corner gap.
  • the organic porous particulate material has a hollow structure (Example 1), which has better storage capacity and compressibility of the electrolyte, and is also more conducive to the improvement of the performance of the pole piece and the battery.
  • Examples 1, 22-23 show the effect of changing the composition of organic materials on various properties.
  • different organic material components are used, but the internal structure of the materials is the same, they have the same surface functional groups, and the particle size, pore size, crystallinity, and degree of crosslinking of the materials are also the same.
  • Hydrocarbon and olefin materials (such as Examples 22 and 23), because their molecular structure is mostly long-chain, resulting in a slightly lower compressibility of the material itself, so the degree of improvement in the corner gap that can be used for batteries is not as good as that of esters, Carboxy or hydroxyl-based materials are obvious.
  • Esters, organic porous particulate materials containing carboxyl or hydroxyl groups (such as Example 1), not only can significantly increase the gap between the corners of the cell, but also have better compatibility with the electrolyte, and can absorb and store more electrolyte. It can effectively improve the wetting effect of the pole piece to supplement the lithium layer, and solve the problem of insufficient electrolyte at the interface between the pole piece and the isolation membrane in the later stage of the battery cycle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

一种锂离子电池(5)及装置,锂离子电池(5)包括正极极片、负极极片、间隔于正极极片和负极极片之间的隔离膜、电解液,负极极片靠近隔离膜的表面上依次设有补锂层和第一功能涂层;隔离膜靠近负极极片的表面上设有第二功能涂层;第一功能涂层和第二功能涂层中均包含有机多孔颗粒材料。通过第一功能涂层和第二功能涂层的增设,提升了锂离子电池(5)的稳定性,有利于锂离子电池(5)的安全性,并有效改善锂离子电池(5)的循环性能。

Description

一种锂离子电池及装置
本申请要求于2019年8月5日提交中国专利局、申请号为201910715799.5、申请名称为“一种锂离子电池”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电池领域,尤其涉及一种锂离子电池及装置。
背景技术
随着新能源汽车的普及,对锂离子动力电池的需求也日益增加,要求电池既要有快速充电的能力,同时还要有较高的能量密度,较好的长循环性能和稳定性。
预补锂技术不仅可以弥补阳极的首效损失,还能提供额外的锂源,有助于提升锂离子电池的能量密度及循环性能。但是,补锂后的极片表面为光滑的锂箔,造成极片补锂层与隔离膜之间易发生相对滑动,影响电池的稳定性。
另外,高能量密度电池的循环过程中,易发生极片膨胀的情况,可能导致极片断裂,甚至有极片的断面直接刺穿隔膜导致电芯热失控的安全风险。目前针对极片膨胀问题,主要采取的措施是提高集流体强度,但一味提高集流体的强度也导致集流体延伸率不佳,极片膨胀问题未得到妥善解决。
发明内容
鉴于背景技术中存在的问题,本申请的目的在于提供一种锂离子电池,以提高锂离子电池的稳定性、安全性和循环性能。
为了达到上述目的,本申请一方面提供了一种锂离子电池,包括正极极片、负极极片、间隔于正极极片和负极极片之间的隔离膜、电解液;所述负极极片靠近所述隔离膜的表面上依次设有补锂层和第一功能涂层;所述隔离膜靠近所述负极极片的表面上设有第二功能涂层;所述第一功能涂层和第二功能涂层中均包含有机多孔颗粒材料,且所述有机多孔颗粒材料的可压缩性S 的范围为40%~90%,可选为50%~80%;
其中,S=(H-h)/H,H表示有机多孔颗粒材料的原始粒径高度,h表示在2Mpa压力下,有机多孔颗粒材料受压1分钟后的粒径高度。
本申请另一方面还提供了一种装置,该装置的驱动源或存储源为前述锂离子电池。
相对于现有技术,本申请至少包括如下所述的有益效果:
1、由于第一功能涂层和第二功能涂层中均包含有机多孔颗粒材料,第一功能涂层中的有机多孔颗粒材料与第二功能涂层中的有机多孔颗粒材料可在接触面实现机械铆合的效果,提高补锂极片与隔离膜之间的相互作用力。上述相互作用力的提高可改善负极极片补锂之后,由于补锂层表面较为光滑导致其与隔离膜间易发生相对滑动的情况,提升锂离子电池的稳定性。
2、第一功能涂层和第二功能涂层中所包含的有机多孔颗粒材料,也可增加极片补锂层与隔离膜之间(尤其是拐角处)的预留空隙。一方面,可缓解极片膨胀引起的极片断裂、甚至刺穿隔离膜的安全风险。另一方面,也可保证拐角处的空气流通,利于散热,防止因为空气流通不畅导致卷绕后的补锂电芯拐角发黑的问题,从而提高补锂电池的锂利用率,最终改善电池的性能。再一方面,还可增强对极片补锂层表面的锂屑/锂点的容纳能力,这是因为可压缩涂层可以降低锂屑/锂点刺穿隔膜的可能性,注入电解液后,补锂层嵌入活性物质层,补锂层表面的凹凸点消失,利于电池的安全性。
3、第一功能涂层和第二功能涂层中所包含的有机多孔颗粒材料,还可吸收电解液,改善极片补锂层的浸润效果,使补锂层能够更好地嵌入活性物质层,从而也能提高补锂层的利用率,改善电池性能。同时,电解液还可储存在有机多孔颗粒材料中,改善在电池循环后期出现的极片与隔离膜界面电解液不足的问题,提高电池的循环性能。
4、本申请的装置包括本申请提供的锂离子电池,因而至少具有与本申请锂离子电池相同的优势。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本 申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是锂离子电池的一实施方式的示意图。
图2是图1的分解图。
图3是电池模块的一实施方式的示意图。
图4是电池包的一实施方式的示意图。
图5是图4的分解图。
图6是锂离子电池用作电源的装置的一实施方式的示意图。
其中,附图标记说明如下:
1-电池包
2-上箱体
3-下箱体
4-电池模块
5-锂离子电池
51-壳体
52-电芯
53-盖板。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面详细说明根据本申请的锂离子电池。
本申请的实施方式所提供的锂离子电池,包括正极极片、负极极片、间隔于正极极片和负极极片之间的隔离膜、电解液,所述负极极片靠近所述隔离膜的表面上依次设有补锂层和第一功能涂层;所述隔离膜靠近所述负极极 片的表面上设有第二功能涂层;所述第一功能涂层和第二功能涂层中均包含有机多孔颗粒材料,且所述有机多孔颗粒材料满足:
可压缩性S=(H-h)/H的范围为40%~90%,可选为50%~80%,
其中:H表示有机多孔颗粒材料的原始粒径高度,h表示在2Mpa压力下,有机多孔颗粒材料受压1分钟后的粒径高度。
在本申请实施方式的锂离子电池中,第一功能涂层中的有机多孔颗粒材料与第二功能涂层中的有机多孔颗粒材料可在接触界面实现机械铆合的效果,从而提高极片补锂层与隔离膜之间的相互作用力,从而改善负极极片补锂之后由于补锂层表面较为光滑导致其与隔离膜之间易发生相对滑动的情况,提升电池稳定性。
此外,第一功能涂层和第二功能涂层中所包含的有机多孔颗粒材料,在极片补锂层和隔离膜之间(尤其是拐角处)预留了空隙。一方面,可有效缓解极片膨胀引起的极片断裂、甚至刺穿隔离膜的安全风险。另一方面,也可保证拐角处空气流通,有助于卷绕后补锂极片散热,同时可以防止因为空气流通不畅导致卷绕后补锂电芯拐角发黑的问题,提高补锂电芯的锂利用率,最终改善电池性能。再一方面,还能增强对补锂层表面的锂屑/锂点等的容纳能力,这是因为可压缩涂层可以降低锂屑/锂点刺穿隔膜的可能性,注入电解液后,补锂层嵌入活性物质层,补锂层表面的凹凸点消失,改善电池安全性。
此外,第一功能涂层和第二功能涂层中所包含的有机多孔颗粒材料也可吸收电解液,改善极片补锂层及隔离膜的浸润效果,使补锂层能够更好地嵌入活性物质层,提高补锂层的利用率,且增加隔离膜与电解液之间的浸润性,最终改善电池能。同时,电解液还可储存在有机多孔颗粒材料中,从而改善在电池循环后期出现极片与隔离膜界面电解液不足的问题,改善电池循环性能。
进一步地,所述有机多孔颗粒材料选自丙烯酸酯、聚丙烯酸酯、聚丙烯、聚乙烯、聚酰胺、聚硼酸、聚砜、聚芳酯、聚乙烯基呲啶、聚苯胺中的一种或多种。
上述材料均能实现吸收和储存电解液、增大电芯可使用拐角间隙的效果。其中,大分子量的聚合物材料由于其分子结构多为长链,导致了材料本身的可压缩性稍低,因而对电芯可使用拐角间隙的改善程度还可以有进一步的提 升。因而,可以选用重均分子量为500-2000000的聚合物,进一步地,选用重均分子量为500-2000000的酯类、含有羧基或羟基类的有机聚合物材料,该类材料对电芯可使用拐角间隙的改善程度更为明显。原因在于,酯类、含有羧基或羟基类的有机聚合物材料,不但能显著增大电芯拐角间隙,并且与电解液相容性更好,能更多地吸收和储存电解液,更有效地提升极片补锂层的浸润效果,改善在电池循环后期极片与隔离膜界面电解液不足的问题。具体地,本申请的酯类选自聚丙烯酸酯,聚碳酸亚丙酯,芳香族共聚酯,聚氨酯,聚羟基丁酸酯,聚羟基丁酸酯,聚脂肪酸酯等中的一种或多种,含有羧基或羟基类的有机聚合物材料可以选自丙烯酸树脂(羧基),聚丙烯酸树脂,六羟基三苯,酚羟基结构聚合物,聚乙烯醇等中的一种或多种。
进一步地,所述有机多孔颗粒材料的表面显著官能团选自羧基、羟基、酯基、烯基、烷基的一种或多种。
有机多孔颗粒材料的表面官能团会影响锂离子电池的电化学性能。发明人经过大量实验研究发现,表面官能团的种类不同导致有机多孔颗粒材料的表面活性不同,从而影响了有机多孔颗粒材料与极片补锂层的反应速率及程度,其中,与补锂层反应活性较大的官能团依次是羧基、羟基和酯基。有机多孔颗粒材料的表面官能团与极片补锂层发生化学反应有利于提高两者的相互作用,从而提高第一功能涂层与负极补锂层之间的粘结作用,但作为表面官能团的羧基与锂层反应过于剧烈,可能导致极片发热温度较高。因此需要通过控制反应条件或进行预处理,或者选择合适的有机多孔颗粒材料使得其表面官能团反应活性较为适当。其次,表面官能团的不同还影响材料吸收电解液的能力。电解液中存在较多酯类高分子材料,基于相似相容原理,材料表面的酯基官能团可较有效地提高材料吸收电解液的液能力,因而,当有机多孔颗粒材料的表面显著官能团为酯基时,可以显著提升电池的电化学性能,值得说明的是本申请提到的表面显著官能团是指表面含量最高的官能团。
进一步地,所述有机多孔颗粒材料的粒径为1μm~70μm;可选为5μm~50μm。
随着有机多孔颗粒材料粒径的增大,其吸收和储存电解液能力变大、分子链增大从而其可压缩性降低,拐角可使用间隙变大。当粒径增大时,拐角间隙也会随之增大,虽然可以为极片膨胀预留了足够的空间,但增加了拐角 处锂离子的传输距离,容易造成界面出现析锂黑斑,增加电芯内阻,影响电池性能;粒径增大使得有机多孔颗粒材料吸收电解液较多,尽管可以有效提升保液能力,但可能会导致负极极片与有机颗粒材料之间的粘结力降低,影响电芯界面效果,最终影响电池性能。随着有机多孔颗粒材料粒径的减小,有机多孔颗粒材料在负极极片的分布更加致密,尽管可以提升负极极片与有机多孔颗粒材料的粘结力,但容易造成极片表面空隙过小,造成热量不容易有效地扩散,容易引发安全风险。同时由于粒径的减小,拐角间隙会随之减小,无法给循环过程中极片的膨胀预留足够的空间,影响电池循环性能的提升,因此,有机多孔颗粒材料的粒径选择在合适的范围内,可以更好的实现锂离子电池综合性能的提升。
进一步地,所述有机多孔颗粒材料的孔径为1nm~200nm,可选为5nm~50nm。
随着有机多孔颗粒材料孔径的增大,可增加极片之间的通风散热效果,降低补锂极片发热温度;还可增加材料对电解液的吸收能力、增加颗粒可压缩性进而增加可使用拐角间隙。当材料的孔径过大时,尽管可以提升电解液吸液能力但电解液吸收过量,容易造成极片补锂层与材料之间的粘结力降低,影响电性能的提升;随着有机多孔颗粒材料的孔径减小,尽管可以提升有机多孔颗粒材料的储液能力,但同时会造成锂离子传输效果不够理想,导致电芯内阻增加,也不利于电池性能的提升,因此需要控制孔径在合适的范围内,可以更好地实现锂离子电池综合性能的提升。
进一步地,所述有机多孔颗粒材料具有中空结构和/或贯穿通孔结构。
有机多孔颗粒材料的结构影响电池的电化学性能,如果有机多孔颗粒材料为实心颗粒结构,尽管可以为极片膨胀预留一定的空间且具有一定的吸液能力,但其电化学性能提升不够理想,因此将有机多孔颗粒材料设计为具有中空结构和/或贯穿孔结构,利于电解液可以充分的进入有机多孔颗粒材料中,同时提高其吸液能力与储液能力。因而,本申请实施方式中的选用的有机多孔颗粒材料可选为具有中空结构和/或贯穿通孔结构。进一步可选地,中空结构的有机多孔颗粒材料的吸液与储液能力优于具有贯穿通孔结构的有机多孔颗粒材料,这是因为中空的独特结构使得颗粒材料的内部具有更多的储液空间,对电解液的储存能力和可压缩性均更好,也更有利于电池性能的提升。
进一步地,所述有机多孔颗粒材料的结晶度为30%~80%,可选为30%~50%。
结晶度是指聚合物中结晶区域所占的比例,结晶是分子链的一种有序排列,一般结晶度越高,分子链排列越规则。随着材料结晶度的提高,材料可压缩性和吸收电解液的能力变弱。当结晶度过高时,材料可压缩性较差,尽管可使锂离子电池的性能有所提升,但提升的效果不够明显,且容易造成卷绕后电芯大面整形困难,导致电芯内阻增大;此外,也无法给极片膨胀预留足够的空间,且材料吸收电解液能力也较弱,极片对电解液浸润性的改善不够理想。
进一步地,所述有机多孔颗粒材料的交联度为20%~80%,可选为20%~70%。
交联度是指聚合物中高分子链的交联程度。随着有机多孔颗粒材料交联度的提高,材料可压缩性和储存电解液能力均减弱。当材料的交联度过高时,材料可压缩性较差,卷绕后电芯大面整形困难,导致电芯内阻增大;无法给极片膨胀预留足够的空间,因而极片发热温度较高;且材料储存电解液能力也较弱,极片对电解液浸润性的改善也较弱。当材料的交联度过低时,其可压缩性大幅度提高,可能导致材料被压碎,破坏材料原有的结构和储存电解液的能力,从而影响电池性能的提升。
进一步地,所述隔离膜与所述第二功能涂层之间设有无机涂层,所述无机涂层包含无机颗粒材料,所述无机颗粒材料选自三氧化二铝、一氧化硅、二氧化硅、二氧化锆、氧化锰、氧化镁、氧化钙、碳酸钙中的一种或多种。
增设无机涂层的作用是增加隔离膜的耐热性能,减小隔离膜在电池循环过程中发生的热收缩,提高隔离膜的稳定性。一般来说,无机涂层的厚度可以为0.5μm~10μm,而第一功能涂层和第二功能涂层的厚度可以为5μm~70μm。
进一步地,所述第一功能涂层、第二功能涂层、无机涂层中还包含粘结剂,所述粘结剂选自聚丙烯酸酯、聚丙烯酸酯共聚物、聚偏氟乙烯、偏氟乙烯-六氟丙烯共聚物、丁苯橡胶、羟甲基纤维素钠中的一种或多种。一般来说,粘结剂在第一功能涂层、第二功能涂层、无机涂层中的质量百分含量可以为10%~40%。
本申请对锂离子电池的形状没有特别的限制,其可以是圆柱形、方形或其他任意的形状。如图1是作为一个示例的方形结构的锂离子电池5。
在一些实施例中,锂离子电池可包括外包装,用于封装正极极片、负极极片、隔离膜和电解液。
在一些实施例中,锂离子电池的外包装可以是软包,例如袋式软包。软包的材质可以是塑料,如可包括聚丙烯PP、聚对苯二甲酸丁二醇酯PBT、聚丁二酸丁二醇酯PBS等中的一种或几种。锂离子电池的外包装也可以是硬壳,例如硬塑料壳、铝壳、钢壳等。
在一些实施例中,参照图2,外包装可包括壳体51和盖板53。其中,壳体51可包括底板和连接于底板上的侧板,底板和侧板围合形成容纳腔。壳体51具有与容纳腔连通的开口,盖板53能够盖设于所述开口,以封闭所述容纳腔。
正极极片、负极极片和隔离膜可经卷绕工艺或叠片工艺形成电芯52。电芯52封装于所述容纳腔。电解液浸润于电芯52中。
锂离子电池5所含电芯52的数量可以为一个或几个,可根据需求来调节。
在一些实施例中,锂离子电池可以组装成电池模块,电池模块所含锂离子电池的数量可以为多个,具体数量可根据电池模块的应用和容量来调节。
图3是作为一个示例的电池模块4。参照图3,在电池模块4中,多个锂离子电池5可以是沿电池模块4的长度方向依次排列设置。当然,也可以按照其他任意的方式进行排布。进一步可以通过紧固件将该多个锂离子电池5进行固定。
可选地,电池模块4还可以包括具有容纳空间的外壳,多个锂离子电池5容纳于该容纳空间。
在一些实施例中,上述电池模块还可以组装成电池包,电池包所含电池模块的数量可以根据电池包的应用和容量进行调节。
图4和图5是作为一个示例的电池包1。参照图4和图5,在电池包1中可以包括电池箱和设置于电池箱中的多个电池模块4。电池箱包括上箱体2和下箱体3,上箱体2能够盖设于下箱体3,并形成用于容纳电池模块4的封闭空间。多个电池模块4可以按照任意的方式排布于电池箱中。
本申请还提供一种装置,所述装置包括本申请前述的锂离子电池。所述 锂离子电池可以用作所述装置的电源,也可以作为所述装置的能量存储单元。所述装置可以但不限于是移动设备(例如手机、笔记本电脑等)、电动车辆(例如纯电动车、混合动力电动车、插电式混合动力电动车、电动自行车、电动踏板车、电动高尔夫球车、电动卡车等)、电气列车、船舶及卫星、储能系统等。
所述装置可根据其使用需求来选择锂离子电池、电池模块或电池包。
图6是作为一个示例的装置。该装置为纯电动车、混合动力电动车、或插电式混合动力电动车等。为了满足该装置对电池的高功率和高能量密度的需求,可以采用电池包或电池模块。
作为另一个示例的装置可以是手机、平板电脑、笔记本电脑等。该装置通常要求轻薄化,可以采用锂离子电池作为电源。
下面结合具体实施例和对比例,进一步阐述本申请。应理解,这些实施例仅用于说明本申请而不用于限制本申请的范围。
实施例1~23中的锂离子电池的制备
(1)正极极片的制备
将正极活性物质钴酸锂、导电剂导电碳、粘结剂聚偏氟乙烯(PVDF)按质量比96:2:2混合均匀,制成具有一定粘度的锂离子电池正极浆料。将正极浆料涂布在正极集流体铝箔上,85℃下烘干后冷压,进行切边、裁片、分条,分条后在真空条件、85℃下烘干4小时,焊接极耳,制成正极极片。
(2)具有第一功能涂层的负极极片的制备
将负极活性物质石墨与Si粉的混合物(其中,Si粉的质量百分含量为50%)、负极粘接剂丁苯橡胶、负极导电剂导电碳黑Super P按质量比92:3:5比例混合分散与溶剂N-甲基吡咯烷酮(NMP)中,制成负极浆料,按照130mg/1540mm 2的涂覆量将负极浆料均匀涂覆在负极集流体铜箔的正反两面上,经过85℃烤箱烘干,制得负极极片基材;取金属锂带辊轧形成厚度为1~20μm锂箔,压制在负极极片基材的表面,然后经过分切得到预补锂的负极极片。
将有机多孔颗粒材料(见表1中的具体参数)、粘结剂按质量比80:20与 环己烷混合均匀,制成第一功能涂层浆料,将所述第一功能涂层均匀涂覆在负极极片的补锂层的表面,经过85℃烤箱烘干,即得到具有第一功能涂层的实施例1~23中的锂离子电池的负极极片。
(3)具有第二功能涂层的隔离膜的制备
采用厚度为16um的聚乙烯微孔薄膜作为隔离膜基材,将多孔三氧化铝、粘结剂丁苯橡胶按质量比80:20与去离子水混合均匀,制成无机涂层浆料,将无机涂层浆料均匀涂覆在隔离膜基材表面,涂覆厚度控制在4±1μm,经过60℃烤箱烘干,制得具有无机涂层的隔离膜。
将有机多孔颗粒材料(见表1中的具体参数)、丁苯橡胶按质量比80:20与去离子水混合均匀制成有机涂层浆料,之后将所述的有机涂层浆料均匀涂覆在隔离膜的无机涂层的表面,经过85℃烤箱烘干,即得到具有第二功能涂层的实施例1~23中的锂离子电池的隔离膜。
(4)电解液的制备
将六氟磷酸锂溶解于碳酸乙烯酯、碳酸二甲酯及碳酸甲乙酯的混合溶剂中,其中,碳酸乙烯酯,碳酸二甲酯及碳酸甲乙酯的体积比为1:2:1,即得到电解液。
(5)锂离子电池的制备
将上述正极极片、具有第一功能涂层的负极极片、间隔于正极极片和负极极片之间的隔离膜卷绕组装,组装后,负极极片面对隔离膜的表面上依次设有补锂层和第一功能涂层;隔离膜面对负极极片的表面上设有第二功能涂层;之后注入电解液制成实施例1~23中的锂离子电池。
按照上述方法制备本申请实施例1~23中的锂离子电池,其中各实施例中所用的有机多孔颗粒材料的具体参数如表1所示。此外,制备对比例1的锂离子电池作为对照,对比例1与实施例1~23的区别在于,对比例1的锂离子电池中负极无第一功能涂层且隔膜无第二功能涂层,对比例2与实施例1的区别在于,对比例2中负极无第一功能涂层。
对实施例1~23和对比例1中的有机多孔颗粒材料的参数定义、及锂离子电池的性能检测方法如下:
(1)有机多孔颗粒材料的表面显著官能团(有机多孔颗粒表面含量最高 官能团):
采用红外光谱测试的方法确定有机材料中官能团,不同波长对应不同官能团,特定波长吸收峰的强弱用于定性判断官能团的含量大小,其中最强吸收峰对应的官能团即为材料表面显著官能团。
(2)有机多孔颗粒材料的平均粒径:
使用激光粒度测试仪,得到有机多孔颗粒材料颗粒度D50,用D50表示有机材料平均粒径。
(3)有机多孔颗粒材料表面纳米孔的平均孔径:
使用SEM扫描电镜,测得32个多孔材料表面微孔尺寸,取平均值表示多孔材料平均孔径。
(4)有机多孔颗粒材料的结晶度:
通过DSC(差示扫描量热法),测试材料结晶熔融时的热量ΔH1,一直聚合物材料百分百结晶时的熔融热量ΔH,结晶度=ΔH1/ΔH。
(5)有机多孔颗粒材料的交联度:
通过裂解色谱-质谱法对高分子热分解产物成分的鉴定,推算高分子的交联度。
(6)有机多孔颗粒材料的储存电解液能力F:
有机多孔颗粒材料的原始重量为M,浸泡于电解液中24H,取出,用无尘纸吸干表面残留的电解液,此时称重有机多孔颗粒材料浸润电解液后的重量M1,则该种有机多孔颗粒材料的储存电解液能力F=(M1-M)/M。
实施例1~23中的有机多孔颗粒材料的储存电解液能力F详见表1中,F的范围为10%~200%,较优的范围为30%~100%。
(7)有机多孔颗粒材料的可压缩性S:
有机多孔颗粒材料的原始粒径高度为H,在2Mpa压力下,有机多孔颗粒材料受压1min后,粒径高度为h,则有机多孔颗粒材料的可压缩性S=(H-h)/H。
实施例1~23中的有机多孔颗粒材料的可压缩性S详见表1中,S的范围为40%~90%,较优的范围为50%~80%。
(8)补锂极片发热温度测试:
补锂极片用6英寸卷筒收卷1000m,在收卷500m处插入感温线测试极片 温度,测温仪器为:测温仪:SKF TKDT 10,温度规格为:≤60℃。
实施例1~23中的极片发热温度详见表1中,实施例1~23均可将极片发热温度控制在60℃以下。
(9)可使用拐角间隙测试:
可使用拐角间隙=有机涂层颗粒涂层厚度*可压缩比例S。
实施例1~23中的电芯可使用拐角间隙详见表1中,其范围为1μm~100μm,较优的范围为5μm~80μm。
(10)电芯内阻测试:
即交流电阻,交流内阻设备:Itech公司IT5100系列电池内阻测试仪,测试方法:对测试电芯加固定频率1KHz,固定电流50mA,对电压采样,经整流仪器可计算出阻值。
实施例1~23中的电芯内阻详见表1中,一般来说,电芯内阻控制在0.625mOHM以下是较佳范围。
(11)电池循环性能测试:
用锂离子充放电设备:新威移动电源成品专用测试仪对电池重复进行充放电,直至容量衰减率达到80%,如上述电芯容量为70Ah,重复对电芯进行充放电,当电芯容量衰减至56Ah时,停止测试,记录重复充放电的次数,即为电芯的循环性能数据。
实施例1~23中的电芯内阻详见表1中,一般来说,电池循环性能控制在750Cylce以上是较佳范围。
下表1为实施例1~23和对比例1、2的具体参数和测试结果:
表1实施例1~23及对比例1、2的具体参数和测试结果
Figure PCTCN2020106916-appb-000001
注:对比例2中,仅在隔离膜靠近负极极片的表面上设有第二功能涂层,该涂层中的材料参数如表1所示。
由表1数据可知,实施例1~23的各项性能数据均优于对比例1和对比例2,说明第一功能涂层和第二功能涂层的增设,已达到了提升电池的稳定性和安全性、改善电池的循环性能的效果。下面,针对第一功能涂层和第二功能涂层的各项参数对电池性能的不同影响分别进行讨论。
(一)实施例1~4显示了改变有机多孔颗粒材料的结晶度对各性能的影响。实施例1~4中,采用相同有机材料的多孔颗粒、具有相同的显著官能团,且平均粒径、平均孔径、交联度均相同,区别仅在于结晶度不同。
有机多孔颗粒材料的结晶度的增大对各性能产生如下影响:(1)减小材料储存电解液的能力:随着结晶度的升高,材料阻挡电解液渗入的能力变大,使材料的耐溶剂性能增强,造成电解液浸润性的减弱。当结晶度达到80%时(实施例4),材料的储存电解液能力仅为50%。(2)减弱材料的可压缩性:结晶度的提高也伴随着材料可压缩性的减小,当结晶度达到80%时(实施例4),材料力学性能很强,抗压性能过高,有机多孔颗粒材料的可压缩性低于50%, 导致卷绕后电芯大面整形困难,即卷绕电芯大面处极片之间间隙增大,循环过程中,锂离子传输距离加长,电芯内阻增加(实施例4的电芯内阻高于实施例1~3,达到了0.67),最终影响电池循环性能(实施例4的锂离子电池的循环性能低于实施例1~3,仅为745圈,略高于对比例1)。(3)影响电芯的拐角间隙:如前所述,结晶度的提高引起材料可压缩性变差,当可压缩性过小时,则无法给极片膨胀预留足够的空间(实施例4的可适用拐角间隙仅为2μm),从而不利于锂离子电池性能的提升。(4)影响极片发热:如前所述,结晶度的提高引起材料可压缩性变差,导致补锂极片表面与有机多孔颗粒材料的接触面积减少。由于颗粒材料的表面官能团会与极片表面的补锂层发生反应而在补锂层表面形成钝化层、进而影响补锂层的发热效果,因此,当补锂极片表面与有机多孔颗粒材料的接触面积过小时,补锂极片发热温度较高(实施例4的极片发热温度达到了58℃)。
因而,本申请的实施方式中,为了使得锂离子电池获得更加优异的电化学性能,有机多孔颗粒材料的结晶度范围为30%~80%,可选为30%~50%。
(二)实施例1、5~9显示了改变有机多孔颗粒材料的交联度对各性能的影响。实施例1、5~9中,采用相同有机材料的多孔颗粒、具有相同的显著官能团,且粒径、孔径、结晶度均相同,区别仅在于交联度不同。
提高有机多孔颗粒材料的交联度会产生如下影响:有机多孔颗粒材料交联度的增大,可使其储存电解液的能力变弱、可压缩性减小。当有机多孔颗粒材料的交联度过大(如实施例9),则会出现如下问题:(1)影响材料储存电解液的能力:交联度过高,会破坏原始分子结构,导致材料本身吸液能力变差。(2)影响材料的可压缩性:随着交联度过高,多孔材料分子间形成的网状结构越发稳固,分子力学性能和抗压性能也得到提高,造成卷绕后电芯大面整形困难,即卷绕电芯大面处极片之间的间隙很大,在循环过程中,锂离子传输距离加长,从而增大电芯内阻,最终影响电池循环性能。(3)影响拐角间隙:交联度过高,材料的可压缩性变差,在极片膨胀过程中,无法给极片膨胀预留足够空间,最终影响锂离子电池性能。(4)影响极片发热:如前所述,交联度过高,材料的可压缩性变差,虽然可以在补锂极片之间提供更高的间隙,增加补锂极片之间的通风散热效果,最终减少补锂极片发热温度;但同样会导致补锂极片表面与颗粒材料接触面积减少,由于酯基会与 极片表面的补锂层发生反应而在补锂层表面形成钝化层,进而影响补锂层的发热效果;如接触面积过小,则补锂极片发热温度较高。
反之,有机多孔颗粒材料交联度的减小,可使其储存电解液的能力得到增强、可压缩性得到提高。当交联度为20%时(如实施例5),可使用的拐角间隙达到20μm,极片发热温度、电芯内阻和循环性能均达到很好的效果。但是,如将交联度减小至20%以下,由于有机物之间的交联性降低,使得有机多孔颗粒材料的硬度下降,就可能发生有机多孔颗粒材料在被压碎的情况,一方面,破坏材料原有的结构,影响锂离子传输性能,电芯内阻增加,最终影响电池性能;另一方面,原有的电解液储存能力也会大幅度降低,最终影响电池性能。
因而,本申请的实施方式中,有机多孔颗粒材料的交联度为20%~80%,可选为20%~70%。
(三)实施例1、10~11显示了改变有机多孔颗粒材料的表面官能团对各性能的影响。实施例1、10~11中,采用相同有机材料的多孔颗粒、且材料的粒径、孔径、结晶度、交联度均相同,区别仅在于显著官能团不同。
表面官能团的不同决定了有机多孔颗粒材料与极片补锂层的反应活性不同,其中,与补锂层反应活性较大的官能团依次是羧基、羟基和酯基。不过,虽然羧基能最快地在锂层表面形成钝化层,但其与锂层反应过于剧烈,会导致补锂发热温度较高(如实施例10)。其次,表面官能团的不同还可影响材料的电解液吸收能力,由于相似相容原理,电解液中存在较多酯类高分子材料,因而,材料表面的酯基官能团可较强地提高材料的吸液能力,更好地改善电池性能(实施例1)。
(四)实施例1、12~15显示了改变有机多孔颗粒材料的粒径对各性能的影响。实施例1、12~15中,采用相同有机材料的多孔颗粒、具有相同的表面官能团,且材料的孔径、结晶度、交联度均相同,区别仅在于粒径不同。
有机多孔颗粒材料粒径的增大会产生如下影响:(1)增加储存电解液能力:粒径越大,则能提供更充足的空间吸收更多的电解液(实施例15的材料储存电解液能力达到110%);(2)影响拐角可使用间隙:颗粒粒径的增大,导致电芯拐角可使用间隙增大(实施例15的拐角间隙达到100μm),但拐角间隙过大,则会导致拐角处锂离子传输距离过大,最终界面出现析锂黑斑, 增加电芯内阻(实施例15的电芯内阻较大),影响电池性能。(3)粒径过大,注液后吸液过多,导致极片与有机颗粒之间的粘结力降低,影响电芯界面效果,最终影响电池循环性能(实施例15的循环性能劣于实施例13和14)。
反之,有机多孔颗粒材料粒径的减小,会产生如下影响:(1)提高极片发热温度:有机多孔颗粒材料粒径的减小,可以使其易于与补锂极片反应,在补锂极片的补锂层表面形成钝化层。如颗粒尺寸过小,会导致补锂片与极片之间导热通道减小,导致极片温度增加,可能存在安全风险(如实施例12,极片发热温度已达到60℃)。(2)减小拐角间隙:有机多孔颗粒材料粒径的减小,也会直接导致在芯片拐角间隙的减小(如实施例12,拐角间隙仅为3μm),当拐角间隙过小时,无法给循环过程中极片的膨胀预留足够空间,影响电性能循环性能的提升。
因此,本申请实施方式中,有机多孔颗粒材料的粒径为1μm~70μm;可选为5μm~50μm。
(五)实施例1、16~19显示了改变有机多孔颗粒材料的孔径对各性能的影响。实施例1、16~19中,采用相同有机材料的多孔颗粒、具有相同的表面官能团,且材料的粒径、结晶度、交联度均相同,区别仅在于孔径不同。
有机多孔颗粒材料的孔径增大,会产生如下影响:(1)降低补锂极片发热温度:材料的孔径增大,可增加极片之间的通风散热效果,降低补锂极片发热温度,有利于补锂极片的制造安全(如实施例19,极片的发热温度仅为40℃)。(2)影响电解液储存能力:材料的孔径越大,则越容易吸收和储存电解液;但是,当孔径过大时,电解液吸收过量,会导致补锂极片与有机材料颗粒之间的粘结力降低,破坏补锂极片表面结构,恶化界面,影响电性能的提升(如实施例19,其循环性能劣于实施例17、18)。(3)增加颗粒可压缩性:有机多孔颗粒材料孔径的增大,可直接导致颗粒可压缩性提高,但是,当可压缩性过高时,同时也会出现颗粒易被压碎的情况,导致颗粒材料表面微孔结构被破坏,影响锂离子传输效果,最终影响电性能。
反之,有机多孔颗粒材料的孔径减小,会降低其对电解液的吸收和储存能力,当表面微孔孔径过小时,锂离子传输效果不畅,易导致电芯内阻增加,最终影响锂离子电池的电性能提升(如实施例16的性能劣于实施例17、18)。
因此,本申请的实施方式中,有机多孔颗粒材料的孔径为1nm~200nm, 可选为5nm~50nm。
(六)实施例1、20~21显示了改变有机多孔颗粒材料的内部结构对各性能的影响。实施例1、20~21中,采用相同有机材料、但内部结构不同的多孔颗粒,并且材料具有相同的表面官能团,材料的粒径、孔径、结晶度、交联度均相同。
如有机多孔颗粒材料为实心颗粒结构(实施例21),会严重影响其对电解液的吸收和储存能力,同时实心颗粒结构的可压缩性较差,导致电芯内阻增大,最终影响电池性能。如有机多孔颗粒材料具有贯穿通孔结构(实施例20),可以较好地储存电解液,并具备一定的可压缩,提供极片膨胀的预留空间和可用拐角间隙。如有机多孔颗粒材料具有中空结构(实施例1),对电解液的储存能力和可压缩性更好,也更有利于极片及电池性能的提升。
(七)实施例1、22~23显示了改变有机材料成分对各性能的影响。实施例1、22~23中,采用了不同的有机材料成分,但材料内部结构相同,具有相同的表面官能团,材料的粒径、孔径、结晶度、交联度也相同。
烃类、烯烃类材料(如实施例22、23),由于其分子结构多为长链,导致了材料本身的可压缩性稍低,因而对电芯可使用拐角间隙的改善程度不如酯类、羧基或羟基类材料明显。酯类、含有羧基或羟基类有机多孔颗粒材料(如实施例1),不但能显著增大电芯拐角间隙,并且与电解液相容性更好,能更多地吸收和储存电解液,更有效地提升极片补锂层的浸润效果,改善在电池循环后期极片与隔离膜界面电解液不足的问题。
根据上述说明书的揭示和教导,本领域技术人员还可以对上述实施方式进行变更和修改。因此,本申请并不局限于上面揭示和描述的具体实施方式,对本申请的一些修改和变更也应当落入本申请的权利要求的保护范围内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本申请构成任何限制。

Claims (19)

  1. 一种锂离子电池,包括正极极片、负极极片、间隔于正极极片和负极极片之间的隔离膜、电解液,其中:
    所述负极极片靠近所述隔离膜的表面上依次设有补锂层和第一功能涂层;
    所述隔离膜靠近所述负极极片的表面上设有第二功能涂层;
    所述第一功能涂层和第二功能涂层中均包含有机多孔颗粒材料,且所述有机多孔颗粒材料的可压缩性S的范围为40%~90%;
    其中,S=(H-h)/H,
    H表示有机多孔颗粒材料的原始粒径高度,h表示在2Mpa压力下,有机多孔颗粒材料受压1分钟后的粒径高度。
  2. 根据权利要求1所述的锂离子电池,其中,所述有机多孔颗粒材料的可压缩性S的范围为50%~80%。
  3. 根据权利要求1或2所述的锂离子电池,其中,所述有机多孔颗粒材料选自丙烯酸酯、聚丙烯酸酯、聚丙烯、聚乙烯、聚酰胺、聚硼酸、聚砜、聚芳酯、聚乙烯基呲啶、聚苯胺中的一种或多种。
  4. 根据权利要求1或2所述的锂离子电池,其中,所述有机多孔颗粒材料为重均分子量为500-2000000的聚合物。
  5. 根据权利要求4所述的锂离子电池,其中,所述有机多孔颗粒材料为酯类、含有羧基或羟基类的有机聚合物。
  6. 根据权利要求5所述的锂离子电池,其中,所述有机多孔颗粒材料选自聚丙烯酸酯,聚碳酸亚丙酯,芳香族共聚酯,聚氨酯,聚羟基丁酸酯,聚羟基丁酸酯,聚脂肪酸酯、丙烯酸树脂(羧基),聚丙烯酸树脂,六羟基三苯,聚乙烯醇中的一种或多种。
  7. 根据权利要求4-6任一项所述的锂离子电池,其中,所述有机多孔颗粒材料的表面显著官能团选自羧基、羟基、酯基、烯基、烷基的一种或多种。
  8. 根据权利要求1-7任一项所述的锂离子电池,其中,所述有机多孔颗粒材料的粒径为1μm~70μm。
  9. 根据权利要求8所述的锂离子电池,其中,所述有机多孔颗粒材 料的粒径为5μm~50μm。
  10. 根据权利要求8或9所述的锂离子电池,其中,所述有机多孔颗粒材料的孔径为1nm~200nm。
  11. 根据权利要求10所述的锂离子电池,其中,所述有机多孔颗粒材料的孔径为5nm~50nm。
  12. 根据权利要求1-11任一项所述的锂离子电池,其中,所述有机多孔颗粒材料具有中空结构和/或贯穿通孔结构。
  13. 根据权利要求1-12任一项所述的锂离子电池,其中,所述有机多孔颗粒材料的结晶度为30%~80%。
  14. 根据权利要求13所述的锂离子电池,其中,所述有机多孔颗粒材料的结晶度为30%~50%。
  15. 根据权利要求1-14任一项所述的锂离子电池,其中,所述有机多孔颗粒材料的交联度为20%~80%。
  16. 根据权利要求15所述的锂离子电池,其中,所述有机多孔颗粒材料的交联度为20%~70%。
  17. 根据权利要求1所述的锂离子电池,其中,所述隔离膜与所述第二功能涂层之间设有无机涂层,所述无机涂层包含无机颗粒材料,所述无机颗粒材料选自三氧化二铝、一氧化硅、二氧化硅、二氧化锆、氧化锰、氧化镁、氧化钙、碳酸钙中的一种或多种。
  18. 根据权利要求17所述的锂离子电池,其中,所述第一功能涂层、第二功能涂层、无机涂层中还包含粘结剂,所述粘结剂选自聚丙烯酸酯、聚丙烯酸酯共聚物、聚偏氟乙烯、偏氟乙烯-六氟丙烯共聚物、丁苯橡胶、羟甲基纤维素钠中的一种或多种。
  19. 一种装置,其中,所述装置的驱动源或存储源为权利要求1-18任一项所述的锂离子电池。
PCT/CN2020/106916 2019-08-05 2020-08-04 一种锂离子电池及装置 WO2021023196A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20850310.2A EP3930065B1 (en) 2019-08-05 2020-08-04 Lithium ion battery and device
US17/517,587 US20220059826A1 (en) 2019-08-05 2021-11-02 Lithium-ion battery and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910715799.5A CN112421128B (zh) 2019-08-05 2019-08-05 一种锂离子电池
CN201910715799.5 2019-08-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/517,587 Continuation US20220059826A1 (en) 2019-08-05 2021-11-02 Lithium-ion battery and device

Publications (1)

Publication Number Publication Date
WO2021023196A1 true WO2021023196A1 (zh) 2021-02-11

Family

ID=74502701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/106916 WO2021023196A1 (zh) 2019-08-05 2020-08-04 一种锂离子电池及装置

Country Status (5)

Country Link
US (1) US20220059826A1 (zh)
EP (1) EP3930065B1 (zh)
CN (1) CN112421128B (zh)
HU (1) HUE063610T2 (zh)
WO (1) WO2021023196A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220123279A1 (en) * 2020-10-15 2022-04-21 GM Global Technology Operations LLC Self-lithiating battery cells and methods for pre-lithiating the same
CN113675531A (zh) * 2021-07-13 2021-11-19 宁德新能源科技有限公司 隔离膜、锂离子电芯及用电装置
CN113839146B (zh) * 2021-09-17 2023-08-15 电子科技大学 负极活性材料涂覆的锂离子电池隔膜及其制备方法和应用
CN115842094B (zh) * 2022-05-19 2024-03-22 宁德时代新能源科技股份有限公司 负极极片及其制备方法、二次电池、电池模块、电池包及用电装置
CN115842096A (zh) * 2022-07-19 2023-03-24 宁德时代新能源科技股份有限公司 预锂化极片及其制备方法、二次电池和用电装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013510405A (ja) * 2009-11-03 2013-03-21 エンビア・システムズ・インコーポレイテッド リチウムイオン電池用の高容量アノード材料
CN103401016A (zh) * 2013-08-05 2013-11-20 宁德时代新能源科技有限公司 高能量密度锂离子电池
CN104752752A (zh) * 2015-04-01 2015-07-01 广东烛光新能源科技有限公司 锂离子电池裸电芯及含有该裸电芯的锂离子电池的制备方法
CN105742613A (zh) * 2016-04-18 2016-07-06 宁德新能源科技有限公司 一种负极极片和锂离子电池
CN106684291A (zh) * 2016-12-29 2017-05-17 深圳天珑无线科技有限公司 一种锂离子电池及其制备方法
CN108878775A (zh) * 2018-06-29 2018-11-23 桑顿新能源科技有限公司 一种安全补锂复合负极极片及其制备方法
CN109546150A (zh) * 2017-09-21 2019-03-29 宁德时代新能源科技股份有限公司 一种负极片、其富锂负极片和锂离子二次电池及制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102610773B (zh) * 2012-03-06 2017-06-06 宁德新能源科技有限公司 一种聚合物锂离子电池及其隔膜
CN104157819A (zh) * 2014-09-02 2014-11-19 深圳市星源材质科技股份有限公司 陶瓷和凝胶聚合物多层复合的锂电池隔膜及其制备方法
US11217860B2 (en) * 2015-08-26 2022-01-04 Xiamen University Modified ceramic composite separator and manufacturing method thereof
US10847799B2 (en) * 2016-04-29 2020-11-24 Samsung Electronics Co., Ltd. Negative electrode for lithium metal battery and lithium metal battery comprising the same
WO2017221451A1 (ja) * 2016-06-24 2017-12-28 日本碍子株式会社 層状複水酸化物を含む機能層及び複合材料
KR102440816B1 (ko) * 2017-10-26 2022-09-06 주식회사 엘지에너지솔루션 용융-절취부를 가지는 분리막 및 이를 적용한 전기화학 소자
KR20200085296A (ko) * 2017-11-03 2020-07-14 셀가드 엘엘씨 개선된 마이크로 다공성 막, 전지 세퍼레이터, 전지, 및 이를 포함하는 장치
WO2019107229A1 (ja) * 2017-11-30 2019-06-06 日本ゼオン株式会社 非水系二次電池用バインダー組成物、非水系二次電池機能層用スラリー組成物、非水系二次電池用機能層、非水系二次電池用電池部材および非水系二次電池
CN110197922B (zh) * 2018-02-26 2021-03-19 宁德新能源科技有限公司 隔离膜和锂离子电池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013510405A (ja) * 2009-11-03 2013-03-21 エンビア・システムズ・インコーポレイテッド リチウムイオン電池用の高容量アノード材料
CN103401016A (zh) * 2013-08-05 2013-11-20 宁德时代新能源科技有限公司 高能量密度锂离子电池
CN104752752A (zh) * 2015-04-01 2015-07-01 广东烛光新能源科技有限公司 锂离子电池裸电芯及含有该裸电芯的锂离子电池的制备方法
CN105742613A (zh) * 2016-04-18 2016-07-06 宁德新能源科技有限公司 一种负极极片和锂离子电池
CN106684291A (zh) * 2016-12-29 2017-05-17 深圳天珑无线科技有限公司 一种锂离子电池及其制备方法
CN109546150A (zh) * 2017-09-21 2019-03-29 宁德时代新能源科技股份有限公司 一种负极片、其富锂负极片和锂离子二次电池及制备方法
CN108878775A (zh) * 2018-06-29 2018-11-23 桑顿新能源科技有限公司 一种安全补锂复合负极极片及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3930065A4

Also Published As

Publication number Publication date
CN112421128B (zh) 2021-10-22
EP3930065A4 (en) 2022-06-08
EP3930065B1 (en) 2023-07-12
CN112421128A (zh) 2021-02-26
HUE063610T2 (hu) 2024-01-28
US20220059826A1 (en) 2022-02-24
EP3930065A1 (en) 2021-12-29

Similar Documents

Publication Publication Date Title
WO2021023196A1 (zh) 一种锂离子电池及装置
JP6630811B2 (ja) セパレータ及びこれを含む電気化学素子
TWI364864B (en) Organic/inorganic composite separator having porous active coating layer and electrochemical device containing the same
TWI377720B (en) Organic/inorganic composite separator and electrochemical device containing the same
WO2020177624A1 (zh) 负极片、二次电池及其装置
JP2013187196A (ja) ポリマーリチウムイオン電池およびそのセパレータ
TW200933961A (en) A separator having porous coating layer and electrochemical device containing the same
CN111564661A (zh) 一种高安全性的锂离子电池
WO2022140963A1 (zh) 负极材料、电化学装置和电子设备
WO2023155604A1 (zh) 复合隔膜及电化学装置
TW202012160A (zh) 用於電化學裝置之隔板、含有該隔板之電化學裝置以及該隔板之製造方法
WO2023040862A1 (zh) 一种电极组件及其应用
WO2022110227A1 (zh) 一种隔离膜、其制备方法及其相关的二次电池、电池模块、电池包和装置
WO2022110223A1 (zh) 一种隔离膜、含有它的二次电池及其相关的电池模块、电池包和装置
WO2023273652A1 (zh) 隔离膜、锂离子电池、电池模组、电池包及用电装置
US10811660B2 (en) Separator, method for preparing separator and electrochemical device containing separator
CN114744294A (zh) 电化学装置及电子装置
WO2023071807A1 (zh) 隔膜及其制备方法、二次电池、电池模块、电池包和用电装置
JP2009135540A (ja) 非水系リチウム型蓄電素子および製造方法
KR101748640B1 (ko) 유기-무기 복합 다공성 막, 이를 포함하는 세퍼레이터 및 전극구조체
WO2022110228A1 (zh) 一种隔离膜、其制备方法及其相关的二次电池、电池模块、电池包和装置
WO2022110224A1 (zh) 隔离膜、其制备方法及其相关的二次电池、电池模块、电池包和装置
KR20230054606A (ko) 분리막, 이차 전지 및 전기 장치
US20230118224A1 (en) Separator, electrochemical apparatus, and electronic apparatus
WO2023045369A1 (zh) 正极极片、二次电池、电池模块、电池包和用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20850310

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020850310

Country of ref document: EP

Effective date: 20210921

NENP Non-entry into the national phase

Ref country code: DE