WO2021023121A1 - 通过等离子体技术获得的抗菌织物及其制备方法 - Google Patents

通过等离子体技术获得的抗菌织物及其制备方法 Download PDF

Info

Publication number
WO2021023121A1
WO2021023121A1 PCT/CN2020/106334 CN2020106334W WO2021023121A1 WO 2021023121 A1 WO2021023121 A1 WO 2021023121A1 CN 2020106334 W CN2020106334 W CN 2020106334W WO 2021023121 A1 WO2021023121 A1 WO 2021023121A1
Authority
WO
WIPO (PCT)
Prior art keywords
fabric
plasma
nitrogen
treated
hydrogen phosphate
Prior art date
Application number
PCT/CN2020/106334
Other languages
English (en)
French (fr)
Inventor
林子聪
陈永敏
Original Assignee
香港纺织及成衣研发中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 香港纺织及成衣研发中心 filed Critical 香港纺织及成衣研发中心
Publication of WO2021023121A1 publication Critical patent/WO2021023121A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/02Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements ultrasonic or sonic; Corona discharge
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/04Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/06Inorganic compounds or elements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/04Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/08Organic compounds
    • D06M10/10Macromolecular compounds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/68Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with phosphorus or compounds thereof, e.g. with chlorophosphonic acid or salts thereof
    • D06M11/70Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with phosphorus or compounds thereof, e.g. with chlorophosphonic acid or salts thereof with oxides of phosphorus; with hypophosphorous, phosphorous or phosphoric acids or their salts
    • D06M11/71Salts of phosphoric acids
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/01Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural macromolecular compounds or derivatives thereof
    • D06M15/03Polysaccharides or derivatives thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/02Natural fibres, other than mineral fibres
    • D06M2101/04Vegetal fibres
    • D06M2101/06Vegetal fibres cellulosic
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/02Natural fibres, other than mineral fibres
    • D06M2101/10Animal fibres
    • D06M2101/12Keratin fibres or silk

Definitions

  • the invention relates to an antibacterial fabric obtained by plasma technology and a preparation method thereof.
  • Natural fibers such as cotton and wool, provide an environment with heat, moisture, and oxygen, which promotes the growth of microorganisms and ultimately causes bad smells and deterioration of clothes. In addition, these materials are likely to absorb moisture, thereby promoting the growth of microorganisms.
  • chemical finishing processes are used to apply functional coatings to textile materials.
  • antimicrobial treatment can be achieved by applying antibacterial agents such as triclosan, chitosan, quaternary ammonium salts and metal salts such as Cu(II), Ni(II) and Ag(I), And nano-sized metals and metal oxides, such as Ag, Ti, oxygen, and ZnO, which control, destroy and inhibit the growth of microorganisms.
  • antibacterial agents such as triclosan, chitosan, quaternary ammonium salts and metal salts such as Cu(II), Ni(II) and Ag(I)
  • nano-sized metals and metal oxides such as Ag, Ti, oxygen, and ZnO, which control, destroy and inhibit the growth of microorganisms.
  • Plasma technology is a pollution-free, safe, economical and water-free process, and it is a new method that can be used for antibacterial treatment. It is a well-developed process and can be applied to various materials.
  • the invention provides an antibacterial fabric obtained by plasma technology and a preparation method thereof. Plasma technology is only applied to the surface, so the overall properties of the material can be maintained.
  • the present invention provides a fabric with a coating, the coating comprising a coating material selected from the group consisting of: silver zirconium hydrogen phosphate sodium salt or chitosan; and the coating is performed before or after coating Plasma treatment.
  • the fabric of the present invention is selected from cotton fabrics or wool fabrics.
  • the present invention provides a method of preparing the above-mentioned coated fabric, the method comprising the step of applying the coating after the fabric is treated with plasma.
  • the plasma used in the plasma treatment of the present invention is selected from nitrogen, argon, oxygen, n-heptane and/or air.
  • the plasma treatment is performed under low pressure conditions.
  • the preferred pressure is 5 ⁇ 10 0 Pa to 8 ⁇ 10 2 Pa.
  • the plasma treatment time can be 1-10 min. For example, 1-2min.
  • the plasma treatment is performed one or more times.
  • the coating material is sodium zirconium hydrogen phosphate and the fabric is cotton fabric
  • the fabric is pretreated with a solution of citric acid, aconitic acid, citraconic acid and/or itaconic acid before plasma treatment .
  • the concentration of silver zirconium hydrogen phosphate sodium salt used is not less than 0.5% w/v, such as 0.5%-2% w/v.
  • the plasma treatment of the method is treatment with nitrogen gas at 400 W for 1 minute.
  • the method when the fabric is cotton fabric, the method can be pretreated with 10% citric acid first, and then treated with 2% w/v silver zirconium hydrogen phosphate sodium salt at 400 W with nitrogen for 1 min.
  • the concentration of the chitosan solution is not less than 0.05% w/v, such as 0.05%-2% w/v.
  • the fabric when the fabric is a wool fabric, the fabric may be pretreated with oxygen plasma before coating, then treated with a chitosan solution, and then dried with nitrogen plasma.
  • oxygen plasma at 200W for 5 min, then with 2% chitosan aqueous solution containing 5% acetic acid twice, drying at 80°C, and then with nitrogen plasma at 400W for 1 min.
  • the pretreatment step further includes a treatment with peroxide oxidation and/or protease digestion.
  • the plasma treatment of the present invention is performed in a laboratory-scale low-pressure plasma treatment system.
  • a radio frequency (RF) generator provides various powers to establish a plasma field under reduced pressure between two parallel electrodes.
  • three gas inlets allow simultaneous application of multiple gases.
  • Some liquid monomer is transferred into the reaction chamber through the evaporator.
  • the specifications of the press are as follows:
  • the wool fabric is 100% Merino wool, single jersey knitted fabric, the fabric weight is 265g/m 2 , the structure is 22 stitches per inch in the wale direction and 16 stitches per inch in the transverse direction.
  • the cotton fabric is 100% cotton, divided into two types: i) single jersey fabric, the fabric weight is 230g/m 2 , the structure is 48 stitches per inch in the wale direction and 30 stitches per inch in the transverse direction; and ii) washing and bleaching
  • the plain weave fabric, the fabric weight is 265g/m 2 .
  • the antimicrobial treatment of these two types of cotton fabrics was studied.
  • the laundry durability evaluation is performed according to the following: i) AATCC test method 61-2010, condition 2A; or ii) ISO 6330:2012.
  • AATCC Test Method 61 the fabric is cut into 50mm ⁇ 150mm pieces, and washed in a rotating airtight tank containing 150ml AATCC standard WOB detergent aqueous solution (0.15%, w/v) and 50 stainless steel balls.
  • the constant temperature water bath in the tank is controlled at 49°C, the speed is 40 ⁇ 2rpm, and lasts 45min.
  • a single washing cycle of 45 minutes corresponds to 5 domestic washing cycles.
  • test procedure 4N the fabric was washed in a drum washing machine at 40°C for 15 minutes and rinsed 4 times, and then drum dried at a temperature of ⁇ 60°C, repeated 20 times.
  • test procedure 4H the fabric was washed in a drum washing machine at 40°C for 1 min, and rinsed twice, then flat-layed and dried, and repeated 20 times.
  • AATCC test method 100-2012 to characterize antibacterial activity Gram-positive Staphylococcus aureus (ATCC 6538) and Gram-negative Klebsiella pneumoniae (ATCC 4352) were used in the test.
  • a Petrifilm TM aerobic count (AC) test was performed to initially evaluate the antibacterial activity.
  • a fabric sample with a size of 1 cm ⁇ 2 cm was immersed in an autoclaved test tube with 10 ml of sterile solvent (distilled water) for 24 hours. After that, place 1 ml of the sample solution in the center of the Petrifilm TM aerobic counting plate, cover with a top film and spread the inoculum on the circular area with a spreader, and wait at least 1 min for the gel to solidify.
  • the plate was incubated in a humidified incubator at 35°C for 48 hours. Afterwards, the plates can be counted on a standard colony counter.
  • the surface morphology of the coating was detected by scanning electron microscope (SEM).
  • Chitin is a long-chain polymer of N-acetylglucosamine, and it has been found to be effective against Gram-negative bacteria, E.coli, V.cholerae, Shigella dysenteriae (S .dysenteriae) and B. fragilis (B.fragilis) have antibacterial effects.
  • chitin was grafted onto cotton fabric (introduction of oxygen or nitrogen) by plasma technology (Table 14), and the antimicrobial activity was studied ( Figure 1 and Figure 2).
  • the antimicrobial activity of cotton fabric treated with chitin via plasma was studied.
  • the counts of aerobic bacteria were 10 3 , 10 3 and 3 under oxygen and nitrogen conditions, respectively.
  • the antimicrobial activity in both tests was found to be unsatisfactory, especially the yeast and mold tests. Therefore, chitin is obviously not suitable as an antimicrobial agent in this study.
  • the plasma treatment with nitrogen showed good antibacterial effects, especially in aerobic tests.
  • One possible explanation is that plasma with nitrogen produces quaternary ammonium with antimicrobial properties.
  • the cotton fabric was impregnated with an aqueous solution of silver zirconium hydrogen phosphate sodium salt (0.5% w/v) and air dried overnight before plasma treatment.
  • the antimicrobial properties were confirmed by standard assessment (AATCC 100), and the results are shown in Table 16.
  • the results confirmed that the treatment of cotton with silver zirconium hydrogen phosphate sodium salt reduced bacteria by more than 99%.
  • the washing durability of the treated cotton fabric was studied, and the treatment time was 1 min and 2 min, respectively.
  • the results are shown in Figure 6 and Figure 7.
  • the results show that the antimicrobial performance (greater than 99% reduction of bacteria) can only be maintained for 10 washing cycles within 1 min of treatment time. Similar results were observed for samples treated for 2 min.
  • the cotton fabric was pretreated with citric acid, in which the cotton fabric was impregnated with an aqueous citric acid solution (10% w/v) and dried at 100°C for 3 minutes.
  • the fabric was impregnated with citric acid aqueous solution (10% w/v) and dried at 100° C. for 3 min, and then impregnated with aqueous solution of silver zirconium hydrogen phosphate (2% w/v), and then air dried.
  • the nitrogen plasma treatment was performed at 400W for 1 min.
  • the sample used for the fabric touch test is smaller than the required size, so the result may be unreliable.
  • Chitosan is a natural linear biological polyamino sugar, which is obtained by alkaline deacetylation of chitin. Chitin is the main component of the protective cuticle of crustaceans (such as crabs, shrimps, prawns, lobsters) and the cell walls and mucous membranes of some fungi such as Aspergillus. It has been found that for many common bacterial species, the minimum inhibitory concentration for inhibiting the growth of microorganisms is 0.05-0.1% (w/v).
  • Chitosan only shows antibacterial activity in acidic media. According to reports, the antimicrobial activity of chitosan depends on its molecular weight and degree of deacetylation. It is generally believed that the antimicrobial mechanism originates from the interaction of its protonated form of primary amine (NH 3 + ) with negatively charged residues on the surface of the microorganism. This interaction causes significant changes in cell surface and cell permeability, leading to leakage of intracellular material.
  • NH 3 + protonated form of primary amine
  • Chitosan is used in the present invention to achieve the antimicrobial properties of wool.
  • the wool fabric was impregnated with a 0.5% w/v aqueous chitosan solution containing 5% acetic acid and dried at 80°C, and then treated with a nitrogen plasma at 400W for 1 min.
  • the antibacterial performance was confirmed through the standard assessment (AATCC 100), and the results showed that a reduction of more than 99% of bacteria was achieved.
  • AATCC 100 evaluation showed a negative result, in which the fabric was washed 20 times based on the BS EN ISO 6330:2012 procedure (Table 22).
  • a positive result of the PetrifilmTM AC test indicates that there are no microorganisms on the test sample, and the microorganisms may be removed due to the antimicrobial properties obtained after treatment and/or during washing.
  • the pretreatment includes peroxide oxidation and protease digestion; and plasma treatment is required to enable the chitosan polymer to adhere to the surface [1].
  • an oxidation plasma treatment namely oxygen plasma [3,4] was performed.
  • the wool fabric was treated with 200W oxygen plasma for 5 minutes, and then immersed in a 0.5% aqueous chitosan solution containing 5% acetic acid and 4% citric acid and a 30% ethanol aqueous solution containing 4.0% sodium hypophosphite.
  • the sample was then dried at 80°C, and then treated with nitrogen plasma at 400W for 1 min.
  • the AATCC 100 evaluation shows that after 20 washings using the BS EN ISO 6330:2012 procedure, it no longer has antibacterial properties, that is, it cannot be sterilized.
  • the dosage of antimicrobial agent was increased from 0.5% w/v to 2% w/v.
  • the wool fabric was pretreated with oxygen plasma at 200 W for 5 minutes, and then immersed in a 2% chitosan aqueous solution containing 5% acetic acid. The fabric was then treated by nitrogen plasma at 400W for 1 min. The immersion and nitrogen plasma treatment were repeated once. In addition, the wool fabric is soaked and washed before the antibacterial treatment. This additional plasma pretreatment can ensure that coating damage due to filling during the washing process is minimized. After 20 washings, the AATCC 100 assessment showed that the bacterial reduction of Staphylococcus aureus and Klebsiella pneumoniae was greater than 99% (Table 21).
  • Table 24 summarizes the overall results of the antimicrobial treatment of cotton and wool fabrics, including the treatment process, antimicrobial properties and their physical properties.
  • the antimicrobial properties of the treated fabrics were evaluated by evaluating the antimicrobial finishing agent (AATCC 100) on textiles. It was found that cotton and wool fabrics still have antimicrobial properties after washing (even after 20 washings). It was found that the optimal treatment condition for cotton fabrics was to first pretreat with 10% citric acid, and then to treat with 2% w/v silver zirconium hydrogen phosphate sodium salt under 400W with nitrogen for 1 min. On the other hand, the optimized processing conditions for wool fabrics are: first pretreat with oxygen plasma at 200 W for 5 min, then treat twice with 2% chitosan aqueous solution containing 5% acetic acid, and dry at 80°C. Then treat with nitrogen plasma at 400W for 1 min.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

本发明涉及通过等离子体技术获得的抗菌织物及其制备方法。本发明的等离子体技术处理仅施用于表面,可以保持材料的整体性质,由此获得的抗菌织物经过洗涤后仍具有抗菌活性。

Description

通过等离子体技术获得的抗菌织物及其制备方法 发明领域
本发明涉及通过等离子体技术获得的抗菌织物及其制备方法。
背景技术
天然纤维,例如棉和羊毛,提供具有热、水分和氧气的环境,该环境促进微生物的生长并最终导致衣物产生恶臭和变质。此外,这些材料很可能吸收水分,从而促进微生物的生长。为了解决这些问题,使用了化学品整理工序以将功能性涂层涂覆到纺织材料上。
常规地,通过施用抗菌剂,例如三氯生、壳聚糖、季铵盐和金属盐,可实现抗微生物处理,该金属盐是例如Cu(II)、Ni(II)和Ag(I),以及纳米尺寸的金属和金属氧化物,例如Ag、Ti氧气和ZnO,其控制、破坏和抑制微生物的生长。
主要通过两种不同的方法,即浸渍法(dip process)和滚筒法(tumble method),来将这些化学品处理剂从溶液施加到衣物外部。浸渍法需要充足的水,其中材料与液体的比(MLR)为1:5,而滚筒法则需要较少的水,其中MLR小于1:1。两种方法都需要长的处理时间(~1h)并且三分之二的处理时间都需要加热(干燥和固化)(即具有大的能耗)。
等离子体技术是一种无污染、安全、经济和无水的工艺,是一种可用于抗菌处理的新方法。它是一种发展良好的工艺,并且可应用于各种材料。
发明内容
本发明提供了一种通过等离子体技术获得的抗菌织物及其制备方法。等离子体技术处理仅施用于表面,因此可以保持材料的整体性质。
根据一个方面,本发明提供了一种具有涂层的织物,所述涂层包含选自以下的涂层材料:磷酸氢锆银钠盐或壳聚糖;且涂层在涂覆之前或之后进行等离子体处理。
根据一些实施方式,本发明的织物选自棉织物或毛织物。
根据另一方面,本发明提供了一种制备上述具有涂层的织物的方法,所述方法包括将织物使用等离子体处理之后,进行涂覆涂层的步骤。
根据一些实施方式,本发明所述的等离子体处理使用的等离子体选自氮气、氩气、氧气、正庚烷和/或空气。
根据一些实施方式,所述等离子处理是在低压条件下进行。所优选的压力为5x 10 0Pa至8 x 10 2Pa。等离子体处理时间可以是1-10min。例如,1-2min。
根据一些实施方式,所述等离子体处理进行一次或多次。
根据一些实施方式,当涂层材料为磷酸氢锆银钠盐时,织物为棉织物时,在等离子体处理之前用柠檬酸、乌头酸、柠康酸和/或衣康酸溶液预处理织物。
根据一些实施方式,所使用的磷酸氢锆银钠盐的浓度不低于0.5%w/v,例如为0.5%-2%w/v。
根据一些实施方式,所述方法的等离子体处理为,在400W下用氮气处理1分钟。
根据一些实施方式,当织物为棉织物时,所述方法可以先用10%的柠檬酸进行预处理,然后用2%w/v的磷酸氢锆银钠盐在400W下用氮气处理1min。
根据一些实施方式,当涂层材料为壳聚糖时,壳聚糖溶液的浓度不低于0.05%w/v,例如为0.05%-2%w/v。
根据一些实施方式,当织物是毛织物时,在涂层前可先用氧等离子体预处理织物,然后用壳聚糖溶液处理,干燥后用氮气等离子体处理。例如,用氧等离子体在200W下预处理5min,然后用含5%乙酸的2%壳聚糖水溶液处理两次,在80℃下干燥,然后用氮气等离子体在400W下处理1min。任选地,所述预处理步骤还包括用过氧化物氧化和/或蛋白酶进行消化的处理。
附图说明
图1.用甲壳素处理的棉织物的好氧菌测试
图2.用甲壳素处理的棉织物的酵母和霉菌试验
图3.用磷酸氢锆银钠盐处理的棉织物的有氧试验[氧气或氮气等离子体处理,功率=400W,时间=2min]
图4.用磷酸氢锆银钠盐处理的棉织物的酵母和霉菌试验[氧气或氮气等离子体处理,功率=400W,时间=2min]
图5.用磷酸氢锆银钠盐处理织物所获得涂层的SEM图像(左图:未处理右图:等离子体处理的棉纤维)
图6.用磷酸氢锆银钠盐处理的棉织物的有氧试验[氮气等离子体处理,功率=400W,时间=1min]
图7.用磷酸氢锆银钠盐处理的棉织物的有氧试验[氮气等离子体处理,功率=400W,时间=1min]
图8.用磷酸氢锆银钠盐处理的棉织物的有氧试验[氮气等离子体处理,功率=400W,时间=1min]
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步的详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并非用于限定本发明。
实施例
I.等离子体处理
本发明的等离子体处理在实验室规模的低压等离子体处理系统中进行。无线电频率(RF)发生器提供多种功率,以在两个并联电极之间在减压下建立等离子体场。在该系统中,三个气体入口允许同时施加多种气体。一些液态单体通过蒸发器转移到反应室中。压力机的规格如下:
所使用的气体 氮气、氩气、氧气、正庚烷/空气
流速 最大为10l/min
压力 5x 10 0Pa至8 x 10 2Pa
处理时间 0.5min至10min
功率 最大为400W
温度 室温
II.材料
毛织物为100%美利奴羊毛,单面针织织物,织物重量为265g/m 2,结构为纵行方向每英寸22针,横向每英寸16针。
棉织物为100%绵,分两种:i)单面针织织物,织物重量为230g/m 2,结构为纵行方向每英寸48针,横向为每英寸30针;和ii)洗净和漂白的平纹织物,织物重量为265g/m 2。研究了这两种类型的棉织物的抗微生物处理。
III.表征
i)洗衣耐久性
根据以下进行洗衣耐久性评估:i)AATCC测试方法61-2010,条件2A;或ii)ISO 6330:2012。在AATCC测试方法61中,将织物切割成50mm×150mm的小片,并在含有150ml AATCC标准WOB洗涤剂的水溶液(0.15%,w/v)和50个不锈钢球的旋转密闭罐中洗涤,该密闭罐中恒温水浴控制在49℃,转速40±2rpm,持续45min。单个45min的洗衣周期对应于5个国内的洗衣周期。在ISO6330,测试程序4N中,将织物在40℃的滚筒洗衣机中洗涤15min,并漂洗4次,然后在<60℃的温度下进行滚筒干燥,重复20次。对于测试程序4H,将织物在40℃的滚筒洗衣机中洗涤1min,并漂洗2次,然后平铺干燥,重复20次。
ii)抗菌活性
基于AATCC测试方法100-2012来表征抗菌活性。测试中使用革兰氏阳性金黄色葡萄球菌(Staphylococcus aureus)(ATCC 6538)和革兰氏阴性肺炎克雷伯菌(Klebsiella pneumoniae)(ATCC 4352)。此外,进行Petrifilm TM好氧计数(AC)测试以初步评估抗菌活性。将1cm×2cm大小的织物样品浸入具有10ml无菌溶剂(蒸馏水)的高压灭菌试管中24小时。之后,将1ml样品溶液置于Petrifilm TM好氧计数板的中心,用顶膜覆盖并用涂布器将接种物分布在圆形区域上,等待至少1min以使凝胶凝固。将该板在35℃下的加湿培养箱中培养48小时。之后,可在标准菌落计数器上对板进行计数。
iii)表面分析
通过扫描电子显微镜(SEM)检测涂层的表面形态。
IV.抗微生物处理
i甲壳素
甲壳素是N-乙酰基葡糖胺的长链聚合物,并且发现其对革兰氏阴性细菌,大肠杆菌(E.coli)、霍乱弧菌(V.cholerae)、痢疾志贺氏菌(S.dysenteriae)和脆弱拟杆菌(B.fragilis)具有抑菌作用。在该研究中,通过等离子体技术将甲壳素接枝到棉织物上(引入氧或氮)(表14),并且研究了抗微生物活性(图1和图2)。
Figure PCTCN2020106334-appb-000001
甲壳素的化学结构
表14.用甲壳素对棉织物进行抗菌处理的条件
测试 功率 载气 时间
1 400W 氧气 2min
2 400W 氮气 2min
研究了用甲壳素经由等离子体处理的棉织物的抗微生物活性。好氧菌计数,对照、在氧气和氮气条件下分别为10 3,10 3和3。发现两种测试中的抗微生物活性都不令人满意,特别是酵母和霉菌试验。因此,甲壳素在本研究中显然不适合作为抗微生物剂。然而,应该注意的是,用氮气进行的等离子体处理表现出良好的抑菌效果,特别是在好氧试验中。一种可能的解释是,用氮气的等离子体产生了具有抗微生物特性的季铵。
ⅱ磷酸氢锆银钠盐
已知使用多种基于金属的化学品来改善抗微生物活性,因为它们通过与细胞内蛋白质结合并在非常低的浓度下使其失活而杀死微生物。在本研究中,通过等离子体技术施加磷酸氢锆银钠盐以改善棉织物的抗微生物活性(表15)。
Figure PCTCN2020106334-appb-000002
磷酸氢锆银钠盐的化学结构
表15.用磷酸氢锆银钠盐(0.5%)对棉织物进行抗微生物处理的条件
测试 功率 载气 时间
1 400W 氧气 2min
2 400W 氮气 2min
3 400W 氮气 1min
用磷酸氢锆银钠盐的水溶液(0.5%w/v)浸渍棉织物并在等离子体处理之前风干过夜。对等离子体处理的棉织物进行有氧试验(图3)、酵母试验和霉菌试验(图4)来研究抗微生物活性。在氧气和氮气二者的等离子体处理的好氧试验中均显示出阳性抑菌效果,好氧菌计数=0。在酵母和霉菌试验中,氮气等离子体处理的棉织物表现出更好的活性,其中酵母和霉菌有较少生长或甚至没有生长。基于目前的研究,发现氮等离子体比氧等离子体产生更好的抑菌效果,因此将其用于进一步研究。
通过SEM成像确认涂层的形成,结果显示在图5中。结果清楚地显示,在等离子体处理的棉纤维上形成平滑且均匀的沉积,而在未处理的样品上没有观察到这种沉积。
通过标准评估(AATCC 100)证实了抗微生物性质,结果显示在表16中。结果证实,使用磷酸氢锆银钠盐对棉花进行处理使细菌减少了大于99%。研究了经处理的棉织物的洗涤耐久性,处理时间分别为1min和2min,结果如图6和图7所示。结果表明,1min的处理时间,抗微生物性能(大于99%的细菌减少)仅可维持10次洗涤循环。对于处理2min的样品也观察到类似的结果。为了提高洗涤耐久性,用柠檬酸对棉织物进行预处理,其中将棉织物用柠檬酸水溶液(10%w/v)浸渍并在100℃下干燥3min。柠檬酸的应用导致在等离子体条件下形成不饱和羧酸,其是金属离子的配体。对经处理的棉织物的洗涤耐久性进行了研究,结果显示在图8中。结果表明,预处理成功地提高了洗涤耐久性,20次洗涤后细菌减少仍大于99%。基于BS EN ISO 6330:2012程序在20次洗衣后的AATCC 100评估显示,仅对金黄色葡萄球菌(Staphylococcus aureus)(89%细菌减少)具有抗菌活性,而对肺炎克雷伯菌(Klebsiella pneumoniae)无抗菌活性(表17)。为了确保足够的抗菌活性剂,抗微生物剂的剂量从0.5%w/v增加至2%w/v。首先用柠檬酸水溶液(10%w/v)浸渍织物,并在100℃下干燥3min,然后用磷酸氢锆银钠盐水溶液(2%w/v)浸渍,然后空气干燥。氮气等离子体处理在400W下进行1min。用磷酸氢锆银钠盐水溶液(2%w/v)浸渍,然后风干;将等离子体处理重复一次。20次洗衣后,AATCC 100评估显示针对金黄色葡萄球菌和肺炎克雷伯菌二者的细菌减少大于99%(表17)。
表16.用磷酸氢锆银钠盐溶液经由等离子体处理的织物的抗菌整理评估(AATCC100)的测试结果
Figure PCTCN2020106334-appb-000003
表17.在20次洗衣后,用磷酸氢锆银钠盐溶液经由等离子体处理的棉织物的抗菌整理评估(AATCC 100)的测试结果
Figure PCTCN2020106334-appb-000004
研究了等离子体处理对物理性质的影响。两种棉样品均未观察到颜色的显著变化(表18)。发现棉样品的透气性略有增加。另一方面,进行了织物触摸测试,结果如表19所示。发现经处理的样品中不含有害化学物质,包括甲醛、氯化酚、短链的氯化石蜡等,结果见表20。
表18.等离子体处理的棉织物的颜色变化(AATCC评估程序1-2007)和透气性(ASTM D737)测试结果
  颜色变化 透气性
试验初始(对照) - 84.28cm 3/cm 2/s
试验初始 4–5 93.0cm 3/cm 2/s
经优化的(对照) - 1.2cm 3/cm 2/s
经优化的 4–5 1.2cm 3/cm 2/s
注:
颜色变化/着色
等级5:可忽略的颜色变化或无颜色变化/着色
等级4:轻微颜色变化/着色
表19.等离子体处理的棉织物的织物触摸测试结果
Figure PCTCN2020106334-appb-000005
注:
由于等离子体机的尺寸限制,用于织物触摸测试的样品小于所要求的尺寸,因此结果可能不可靠。
表20.等离子体处理的织物的危险化学品测试结果
Figure PCTCN2020106334-appb-000006
iii壳聚糖
由于磷酸氢锆银钠盐对于羊毛没有抗菌活性,因此使用另一种抗微生物剂来实现羊毛的抗菌性。壳聚糖是一种天然的线性生物多氨基糖,是通过甲壳素的碱性脱乙酰化获得的。甲壳素是甲壳类动物(如蟹、虾、大虾、龙虾)的保护性角质层和一些真菌如曲霉菌的细胞壁和粘膜的主要成分。已经发现,对于许多常见的细菌物种,抑制微生物生长的最小抑制浓度为0.05‐0.1%(w/v)。
壳聚糖仅在酸性介质中显示出抗菌活性。据报道,壳聚糖的抗微生物活性取决于其分子量和脱乙酰程度。通常认为抗微生物机制源于其质子化形式的伯胺(NH 3 +)与微生物表面上带负电荷的残基的相互作用。这种相互作用引起细胞表面和细胞渗透性的显著变化,导致细胞内物质的渗漏。
壳聚糖用于本发明以实现羊毛的抗微生物性能。为了施用壳聚糖,将羊毛织物用含有5%乙酸的0.5%w/v的壳聚糖水溶液浸渍并在80℃下干燥,然后在400W下用氮气等离子体处理1min。通过标准评估(AATCC 100)确认抗菌性能,结果表明实现了大于99%的细菌减少。研究经处理的织物的洗涤耐久性,来自第三方实验室的评估表明,在AATCC 100评估中显示阴性结果,其中织物是基于BS EN ISO 6330:2012程序洗涤20次(表22)。PetrifilmTM AC测试为阳性结果,表明在测试样品上不存在微生物,其中的微生物可能由于被在处理后和/或洗涤期间获得的抗微生物性质除去。
由于羊毛纤维表面的疏水性和非反应性,预处理包括用过氧化物氧化和蛋白酶消化;并且需要等离子体处理,以使壳聚糖的聚合物能够粘附在表面上[1]。
为了增强壳聚糖在羊毛纤维中的吸附并提高其分布的均匀性,进行了氧化等离子体处理,即氧气等离子体[3,4]。首先用200W的氧气等离子体处理羊毛织物5min,然后用含有5%乙酸和4%柠檬酸的0.5%的壳聚糖水溶液和含有4.0%次磷酸钠的30%的乙醇水溶液浸渍。然后将样品在80℃下干燥,接着在400W下用氮气等离子体处理1min。然而,AATCC 100评估表明,使用BS EN ISO 6330:2012程序进行20次洗涤后,不再具有抗菌性能即不能杀灭菌。
应该注意的是,尽管对于上述处理的样品没有实现杀菌活性,但在20次洗涤后,测定的抑制细菌生长的抑菌活性为77-97%。这些结果表明,活性剂的量对于抗菌活性而言是不足的。
此外,使用洗涤和干燥方法模拟20次机器洗衣和滚筒烘干。洗衣和滚筒烘干对羊毛织物的质量具有不利影响,使其变得不可接受。因此,重新提交用于AATCC 100评估的样品,其中再次地,将样品基于模拟手洗和平铺干燥的BS EN ISO 6330:2012程序进行洗涤。虽然在20次洗衣后仍可实现50%的金黄色葡萄球菌减少,但其对肺炎克雷伯菌没有抗菌作用。
与棉织物类似,为了确保足够的抗菌活性剂,抗微生物剂的剂量从0.5%w/v增加到2%w/v。首先用氧气等离子体在200W下预处理羊毛织物5min,然后浸渍到含有5%乙酸的2%的壳聚糖水溶液中。然后通过氮气等离子体在400W下处理织物1min。将浸渍和氮气等离子体处理重复一次。此外,在抗菌处理之前将羊毛织物浸泡并洗涤。这种额外的等离子体预处理可以确保使在洗衣过程中因填充而导致的涂层损坏最小化。20次洗涤后,AATCC 100评估显示,金黄色葡萄球菌和肺炎克雷伯菌的细菌减少均大于99%(表21)。
表21.在20次洗衣后,用等离子体处理的羊毛织物的抗菌整理评估(AATCC 100)的测试结果
Figure PCTCN2020106334-appb-000007
研究了等离子体处理对物理性质的影响。两种棉样品均未观察到颜色的显著变化(表22)。发现棉样品的透气性略有增加。另一方面,进行了织物触摸测试,结果如表23所示。
表22.等离子体处理的羊毛织物的颜色变化(AATCC评估程序1-2007)和透气性(ASTM D737)测试结果
  颜色变化 透气性
试验初始(对照) - 183.8cm 3/cm 2/s
试验初始 4–5 171.0cm 3/cm 2/s
经优化的(对照) - 113.2cm 3/cm 2/s
经优化的 4 110.4cm 3/cm 2/s
注:
颜色变化/着色
等级5:可忽略的颜色变化或无颜色变化/着色
等级4:轻微颜色变化/着色
表23.等离子体处理的羊毛织物的织物触摸测试结果
Figure PCTCN2020106334-appb-000008
注:由于等离子体机的尺寸限制,用于织物触摸测试的样品小于所要求的尺寸,因此结果可能不可靠。
最后,表24总结了棉和羊毛织物的抗微生物处理的总体结果,包括处理过程、抗微生物性能和它们的物理性质。
表24.棉和羊毛织物的抗微生物处理的结果总结
Figure PCTCN2020106334-appb-000009
表24(续).棉和羊毛织物的抗微生物处理的结果总结
Figure PCTCN2020106334-appb-000010
结论
通过改变压力、时间和抗菌剂剂量,研究了在不同条件下使用等离子体技术的功能性处理。
通过评估纺织品上的抗菌整理剂(AATCC 100)评价经处理的织物的抗微生物性质。发现棉和羊毛织物在洗涤后(甚至20次洗涤后)仍然具有抗微生物性能。发现优化的对于棉织物处理条件是先用10%的柠檬酸进行预处理,然后用2%w/v的磷酸氢锆银钠盐在400W下用氮气处理1min。另一方面,优化的对于羊毛织物的处理条件为:首先用氧等离子体在200W下预处理5min,然后用含5%乙酸的2%的壳聚糖水溶液处理两次,在80℃下干燥,然后用氮气等离子体在400W下处理1min。
参考文献:
[1]Y.Gao and R.Cranston,“Recent Advances in Antimicrobial Treatments of Textiles”,Textile Research Journal,2008,78,60.
[2]S.‐H.Hsieh,Z.K.Huang,Z.Z.Huang and Z.S.Tseng,“Antimicrobial and Physical Properties of Woolen Fabrics Cured with Citric Acid and Chitosan”,Journal of Applied Polymer Science,2004,94,1999.
[3]A.Cuesta and J.M.D.Tascon,“Shrinkage Properties of Wool Treated with Low Temperature Plasma andChitosan Biopolymer”,Textile Research Journal,1999,69,811.
[4]J.Yua,Z.Pang,J.Zhang,H.Zhou and Q.Wei,“Conductivity and Antibacterial Properties of Wool Fabrics Finished by Polyaniline/Chitosan”,Colloids and Surfaces A,2018,548,117.

Claims (14)

  1. 具有涂层的织物,其特征在于,所述涂层包含选自以下的涂层材料:磷酸氢锆银钠盐或壳聚糖;且涂层在涂覆之前或之后进行等离子体处理。
  2. 根据权利要求1所述的织物,其特征在于,所述织物为棉织物或毛织物。
  3. 一种制备权利要求1或2所述织物的方法,其特征在于,将织物使用等离子体处理之前或之后,进行涂覆选自以下的涂层材料的步骤:磷酸氢锆银钠盐或壳聚糖。
  4. 根据权利要求3所述的方法,其特征在于,将所述等离子体处理实施一次或多次。
  5. 根据权利要求3或4所述的方法,其特征在于,所述等离子体选自氮气、氩气、氧气、正庚烷和空气中之一或其任意组合。
  6. 根据权利要求3至5任一项所述的方法,其特征在于,所述等离子处理是在压力为5x10 0Pa至8x10 2Pa的条件下进行。
  7. 根据权利要求3至6任一项所述的方法,其特征在于,当涂层材料为磷酸氢锆银钠盐时,织物为棉织物。
  8. 根据权利要求7所述的方法,其特征在于,所述磷酸氢锆银钠盐的浓度为0.5%‐2.0%。
  9. 根据权利要求7或8所述的方法,其特征在于,在等离子体处理之前用柠檬酸、乌头酸、柠康酸和/或衣康酸溶液预处理织物。
  10. 根据权利要求7至9任一项所述的方法,其特征在于,所述方法的等离子体处理是在400W下用氮气处理1‐2分钟。
  11. 根据权利要求10所述的方法,其特征在于,所述方法包括先用10%的柠檬酸进行预处理棉织物,然后用2%w/v的磷酸氢锆银钠盐在400W下用氮气处理1min。
  12. 根据权利要求3至6任一项所述的方法,其特征在于,当涂层材料为壳聚糖时,施用的壳聚糖溶液的浓度为0.05w/v以上。
  13. 根据权利要求12所述的方法,其特征在于,当织物为毛织物时,用氧气等离子体预处理织物,然后用壳聚糖溶液处理织物,干燥后再用氮气等离子处理。
  14. 根据权利要求13所述的方法,其特征在于,所述方法包括:首先用氧等离子体在200W下预处理5min毛织物,然后再用含5%乙酸的2%的壳聚糖水溶液处理两次,干燥后再用氮气等离子体在400W下处理1分钟。
PCT/CN2020/106334 2019-08-02 2020-07-31 通过等离子体技术获得的抗菌织物及其制备方法 WO2021023121A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910713099.2 2019-08-02
CN201910713099.2A CN112301726B (zh) 2019-08-02 2019-08-02 通过等离子体技术获得的抗菌织物及其制备方法

Publications (1)

Publication Number Publication Date
WO2021023121A1 true WO2021023121A1 (zh) 2021-02-11

Family

ID=74486589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/106334 WO2021023121A1 (zh) 2019-08-02 2020-07-31 通过等离子体技术获得的抗菌织物及其制备方法

Country Status (2)

Country Link
CN (1) CN112301726B (zh)
WO (1) WO2021023121A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113944056A (zh) * 2021-05-31 2022-01-18 青岛大学 采用等离子体-壳聚糖技术提高抗菌丝织物喷墨印花性能的方法
CN115323568A (zh) * 2022-08-25 2022-11-11 仙桃市融祥无纺布制品有限公司 一种柔顺光洁吸湿快干面料及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050035327A1 (en) * 2003-08-14 2005-02-17 Canada T. Andrew Topical silver-based antimicrobial composition for wound care devices
CN1688289A (zh) * 2002-10-22 2005-10-26 美利肯公司 地毯制造中固体抗菌剂对地毯绒头纤维的表面涂覆
CN101883490A (zh) * 2007-10-05 2010-11-10 东亚合成株式会社 含银无机抗菌剂
CN102978898A (zh) * 2012-12-19 2013-03-20 上海汇泉实业有限公司 一种抗菌无纺布的制备方法
CN103882678A (zh) * 2012-12-20 2014-06-25 青岛同冠王实业有限公司 棉布抗皱、透湿整理方法
CN105040402A (zh) * 2015-03-05 2015-11-11 中霖中科环境科技(安徽)股份有限公司 一种对棉纤维进行壳聚糖接枝后净化污水细菌的方法
CN106544863A (zh) * 2015-09-18 2017-03-29 江苏阳光毛纺服装技术开发有限公司 一种纯棉衬衫的抗皱整理工艺
CN106930108A (zh) * 2017-05-09 2017-07-07 深圳优普莱等离子体技术有限公司 一种纺织品壳聚糖抗菌整理的方法
CN106978721A (zh) * 2017-03-22 2017-07-25 广西科技大学 一种长效抗菌纺织品的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1688289A (zh) * 2002-10-22 2005-10-26 美利肯公司 地毯制造中固体抗菌剂对地毯绒头纤维的表面涂覆
US20050035327A1 (en) * 2003-08-14 2005-02-17 Canada T. Andrew Topical silver-based antimicrobial composition for wound care devices
CN101883490A (zh) * 2007-10-05 2010-11-10 东亚合成株式会社 含银无机抗菌剂
CN102978898A (zh) * 2012-12-19 2013-03-20 上海汇泉实业有限公司 一种抗菌无纺布的制备方法
CN103882678A (zh) * 2012-12-20 2014-06-25 青岛同冠王实业有限公司 棉布抗皱、透湿整理方法
CN105040402A (zh) * 2015-03-05 2015-11-11 中霖中科环境科技(安徽)股份有限公司 一种对棉纤维进行壳聚糖接枝后净化污水细菌的方法
CN106544863A (zh) * 2015-09-18 2017-03-29 江苏阳光毛纺服装技术开发有限公司 一种纯棉衬衫的抗皱整理工艺
CN106978721A (zh) * 2017-03-22 2017-07-25 广西科技大学 一种长效抗菌纺织品的制备方法
CN106930108A (zh) * 2017-05-09 2017-07-07 深圳优普莱等离子体技术有限公司 一种纺织品壳聚糖抗菌整理的方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
IBRAHIM NABIL A; EID BASMA M; ABDEL-AZIZ MOHAMED S: "Effect of plasma superficial treatments on antibacterial functionalization and coloration of cellulosic fabrics", APPLIED SURFACE SCIENCE, vol. 392, 28 September 2016 (2016-09-28), pages 1126 - 1133, XP029814260, ISSN: 0169-4332, DOI: 10.1016/j.apsusc.2016.09.141 *
LI KANG: "Effect of Chitosan Plasma Treatment on Cotton Fibre Property", COTTON TEXTILE TECHNOLOGY, vol. 37, no. 6, 10 June 2009 (2009-06-10), pages 325 - 327, XP055777431, ISSN: 1001-7415 *
LIU BINGHONG: "Environmentally Acceptable Treatment for Shrink-Proofing of Wool", CHINESE MASTER’S THESES FULL-TEXT DATABASE, no. 6, 1 December 2008 (2008-12-01), pages 1 - 62, XP055777429, ISSN: 1674-0246 *
SZULC JUSTYNA; URBANIAK-DOMAGAŁA WIESŁAWA; MACHNOWSKI WALDEMAR; WRZOSEK HENRYK; ŁĄCKA KAROLINA; GUTAROWSKA BEATA: "Low temperature plasma for textiles disinfection", INTERNATIONAL BIODETERIORATION & BIODEGRADATION, vol. 131, 13 January 2017 (2017-01-13), pages 97 - 106, XP085406354, ISSN: 0964-8305, DOI: 10.1016/j.ibiod.2017.01.021 *
WANG SHI-HUA, DENG BING-YAO, GAO WEI-DONG: "Improving Antibacterial Property of Worsted Fabrics with Plasma and Chitosan", DYEING & FINISHING, no. 20, 15 October 2006 (2006-10-15), pages 6 - 8, XP009525780, ISSN: 1000-4017 *
WU YUNPING: "Preparation of Cotton Fabrics Finished with Silver and Zinc Oxide Nanoparticles for Their Antibacterial and Anti-ultraviolet Properties", CHINESE MASTER'S THESES FULL-TEXT DATABASE, 1 July 2018 (2018-07-01), pages 1 - 107, XP055777440, ISSN: 1674-0246 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113944056A (zh) * 2021-05-31 2022-01-18 青岛大学 采用等离子体-壳聚糖技术提高抗菌丝织物喷墨印花性能的方法
CN115323568A (zh) * 2022-08-25 2022-11-11 仙桃市融祥无纺布制品有限公司 一种柔顺光洁吸湿快干面料及其制备方法
CN115323568B (zh) * 2022-08-25 2023-12-01 上海悠途实业有限公司 一种柔顺光洁吸湿快干面料及其制备方法

Also Published As

Publication number Publication date
CN112301726B (zh) 2022-06-17
CN112301726A (zh) 2021-02-02

Similar Documents

Publication Publication Date Title
WO2021023121A1 (zh) 通过等离子体技术获得的抗菌织物及其制备方法
El-Rafie et al. Antimicrobial effect of silver nanoparticles produced by fungal process on cotton fabrics
Dastjerdi et al. A new method to stabilize nanoparticles on textile surfaces
Orhan et al. Improving the antibacterial activity of cotton fabrics finished with triclosan by the use of 1, 2, 3, 4‐butanetetracarboxylic acid and citric acid
CN105862418B (zh) 一种聚丙烯抗菌非织造布的制备方法
EP3227490B1 (en) Method for producing antimicrobial yarns and fabrics by nanoparticle impregnation
Zhou et al. Excellent binding effect of l-methionine for immobilizing silver nanoparticles onto cotton fabrics to improve the antibacterial durability against washing
CN110665374B (zh) 季铵盐抗菌材料的制备方法及其制备的抗菌材料
EP3543396B1 (en) Organic antimicrobial textile
KR20140010433A (ko) 합성 직물을 양이온성 살생물제로 처리하는 방법
Moazami et al. Antibacterial properties of raw and degummed silk with nanosilver in various conditions
Ibrahim et al. Preparation of cotton gauze coated with carboxymethyl chitosan and its utilization for water filtration
CN109944059B (zh) 一种石墨烯导电织物及其制备方法
Demir et al. The comparison of the effect of enzyme, peroxide, plasma and chitosan processes on wool fabrics and evaluation for antimicrobial activity
CN109487532B (zh) 一种亲水性抗菌非织造无纺布及其制备方法
Demir et al. A new application method of chitosan for improved antimicrobial activity on wool fabrics pretreated by different ways
Surdu et al. The improvement of the resistance to Candida albicans and Trichophyton interdigitale of some woven fabrics based on cotton
CN112064348B (zh) 一种杀菌防污熔喷布及其加工工艺
CN111593563A (zh) 一种涤纶/氨纶混纺高弹性抗菌针织面料的制备方法
Zhou et al. Regenerable antimicrobial finishing of cotton with nitrogen plasma treatment
Nourbakhsh Antimicrobial performance of plasma corona modified cotton treated with silver nitrate
WO2021023120A1 (zh) 通过等离子体技术获得的防水织物及其制备方法
CN113445314B (zh) 儿茶酚/氨基化阳离子聚电解质修饰的抗菌非织造布及其制备方法
Chen et al. Silver nanoparticles deposited on a cotton fabric surface via an in situ method using reactive hyperbranched polymers and their antibacterial properties
Smitha et al. Microwave mediated impregnation of silver nanoparticles on silk fabric for hygienic clothing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20849077

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20849077

Country of ref document: EP

Kind code of ref document: A1