WO2021020671A1 - 이동로봇 충전대 - Google Patents

이동로봇 충전대 Download PDF

Info

Publication number
WO2021020671A1
WO2021020671A1 PCT/KR2020/001339 KR2020001339W WO2021020671A1 WO 2021020671 A1 WO2021020671 A1 WO 2021020671A1 KR 2020001339 W KR2020001339 W KR 2020001339W WO 2021020671 A1 WO2021020671 A1 WO 2021020671A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide
mobile robot
guide surface
caster
disposed
Prior art date
Application number
PCT/KR2020/001339
Other languages
English (en)
French (fr)
Inventor
장재원
임지현
김영빈
정진호
이영재
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190176627A external-priority patent/KR20210015596A/ko
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to AU2020322423A priority Critical patent/AU2020322423B2/en
Priority to CN202080055451.9A priority patent/CN114174021B/zh
Publication of WO2021020671A1 publication Critical patent/WO2021020671A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators

Definitions

  • the present invention relates to a mobile robot charging base, and more particularly, to a mobile robot charging base including a charging terminal provided in the charging base and a caster guide for easily contacting a corresponding terminal corresponding to the charging terminal.
  • Robots have been developed for industrial use and have been responsible for part of factory automation. In recent years, the field of application of robots has been further expanded, medical robots, aerospace robots, and the like have been developed, and home robots that can be used in general homes are also being made. Among these robots, there is a mobile robot capable of driving by magnetic force.
  • a typical example of a mobile robot used at home is a robot cleaner, which is a device that cleans a corresponding area by inhaling dust or foreign substances while traveling on a certain area by itself.
  • the robot vacuum cleaner is largely composed of a cleaning robot and a charging station.
  • the cleaning robot is equipped with a rechargeable battery, is free to move, can move by itself using the operating power of the battery, cleans by inhaling foreign substances on the floor during movement, and returns to the charging station to charge the battery if necessary. do.
  • the charging station has a terminal electrically connected to the power supply, and the mobile robot has a corresponding terminal to be electrically connected to the terminal of the charging station.
  • the terminal of the charging station and the terminal of the mobile robot come into contact with each other, charging of the mobile robot starts.
  • the mobile robot can be electrically connected to the terminal of the charging station only when it moves to the charging station and docked at the correct location.
  • a means for autonomously driving a mobile robot and seating it in an accurate docking section is not provided.
  • a robot mobile robot capable of moving by a mop surface is known.
  • the robot moving robot is provided with a first rotating member and a second rotating member for fixing a pair of mop surfaces arranged in the left-right direction as a vertical axis.
  • the robot moving robot according to the prior art moves as the first rotating member and the second rotating member rotate while only the mop surfaces fixed to the first rotating member and the second rotating member are in contact with the floor.
  • the body of the cleaner is lifted when the base of the charging table is inclined and advanced by the forward force of a general robot cleaner, and the charging terminal of the mobile robot and the corresponding terminal of the charging table are in contact.
  • the forward force is very weak, so that the inclination to lift the body cannot proceed, and the moving direction of the mobile robot cannot be finely and accurately adjusted.
  • the problem to be solved by the present invention is to guide the charging terminal provided in the charging table and the corresponding terminal corresponding to the charging terminal in vertical contact in consideration of the weak forward force of the spinmap described above and the structure of the body that must be in contact in the vertical direction. It is to provide a mobile robot charging station.
  • Another problem to be solved by the present invention is the docking direction of the mobile robot by a guide pin inserted into the space between the two spin maps. This is to provide a mobile robot charging base that will be guided.
  • Another problem to be solved by the present invention is that even if the docking direction of the mobile robot is wrong, the docking direction of the mobile robot automatically proceeds due to the structure of the map location unit that guides the spin map, so that the mobile robot is docked at the correct position. It is to provide a robot charging station.
  • Another object of the present invention is to provide a mobile robot charging station that improves the life of the mop by distributing a load applied to the mop unit located under the mobile robot during charging.
  • Another object of the present invention is to increase the frictional force between the mop and the floor regardless of the change in the water level of the tank for effective mopping and driving of the robot cleaner, and to enable pattern driving that enables meticulous cleaning through accurate driving. .
  • the mobile robot charging table guides the movement direction of the mobile robot, and as the mobile robot moves forward, the height of one end of the mobile robot is raised above the reference height. It features a caster guide that falls back.
  • the present invention is characterized in that the guide pin positioned on the plate is extended in the front-rear direction and is inserted between the spin maps of the mobile robot to guide the movement of the mobile robot.
  • the present invention includes a main body having a power module, a plate coupled to the lower end of the main body, a charging terminal protruding from the upper front of the plate and electrically connected to the power module, and a caster guide disposed at the rear of the charging terminal. do.
  • the caster guide includes a guide surface guiding the caster.
  • the front When the entrance direction of the caster is referred to as the front, it includes a first guide surface having an inclined upwardly forward direction. It is connected to the front end of the first guide surface and includes a second guide surface having a forward-downward inclination. It is connected to the front end of the second guide surface, and includes a third guide surface having an upward slope. When viewed from the side, the second guide surface and the third guide surface form a concave portion to dock the caster.
  • the first guide surface may include a slope of a certain slope, the slope of the slope may gradually decrease, the slope of the slope may gradually increase, the slope of the rear end of the inflection point including the inflection point gradually increases, and The slope may gradually decrease.
  • the caster guide may further include separation prevention walls disposed on both sides of the guide surface and protruding upward.
  • the caster guide may further include a stopper connected to the front end of the third guide surface and protruding upward.
  • the caster guide When viewed from the top, the caster guide may have a front end narrower than a rear end.
  • the caster guide may further include a guide pin protruding from the upper center of the plate and extending before/after.
  • the present invention guides the movement direction of the main body having the power module, the plate coupled to the lower end of the main body, the charging terminal exposed from the top of the plate to the upper side, and electrically connected to the power module, and the moving robot.
  • the mobile robot moves forward, it includes a caster guide that raises the height of one end of the mobile robot than the reference height and then lowers it again, and the caster guide is disposed at the rear of the charging terminal, and the caster guide It is characterized in that the width of the front end is narrower than the width of the rear end.
  • the caster guide may include a separation preventing wall disposed on a side surface of the guide surface and protruding upward.
  • the caster guide may further include a stopper connected to a front end of the third guide surface and protruding upward.
  • the stopper may extend in a direction perpendicular to the plate.
  • the stopper may include a forward upward slope.
  • the stopper may include a rear upward slope.
  • the height h3 of the top point of the stopper may be higher than the height h1 of the connection portion between the first guide surface and the second guide surface.
  • the horizontal distance (L2) from the vertical center axis to the caster guide may be farther than the horizontal distance (L1) from the vertical center axis to the charging terminal.
  • It may further include a guide pin disposed above the center of the plate and protruding upward.
  • the guide pin may be formed to extend along a vertical central axis of the plate.
  • the front end of the guide pin may be disposed behind the rear end of the caster guide.
  • the rear end of the guide pin may have an inclined forward upward inclination.
  • the front end of the guide pin may have a forward-downward inclination.
  • the present invention provides a main body having a power module, a plate coupled to the lower end of the main body, a first charging terminal installed on the plate, exposed to the upper portion of the plate, and a first charging terminal electrically connected to the power module.
  • the caster guide may include a guide surface guiding the caster and a separation prevention wall defining a surface crossing the guide surface at a side end of the guide surface.
  • the separation prevention wall may include a first separation prevention wall and a second separation prevention wall formed by protruding upward from both side ends of the guide surface.
  • the present invention may further include a map positioning unit disposed at the top of the plate and behind the caster guide to define a region in which the spin maps of the mobile robot are located.
  • the map location portion may be defined as a recessed area where the front and rear sides are open and the left and right sides are blocked when viewed from above.
  • the guide pin may be formed to protrude upward from the mop location portion.
  • the rear of the caster guide, the part where the caster enters, is wide, and the front of the caster guide, the part where the caster is seated, is formed narrowly, so that it can be easily directed to the position where the terminal contacts in the transverse direction (left/right direction). There is also.
  • the charging base and the caster guide are formed by protruding upward of the plate, a part of the load of the mobile robot is applied to the charging terminal when docking, thereby enhancing terminal contact and improving the life of the mop.
  • the body is formed in a circular shape and the dry module does not protrude to the outside of the body, it is easy to freely rotate at any position in the cleaning area, and the width of the edge data can be kept large, so that the cleaning range is wide.
  • FIG. 1 is a perspective view of a mobile robot system including a mobile robot and a charging station
  • FIG. 2A is a view showing a bottom view of the mobile robot of FIG. 1 and a plan view of a charging station;
  • FIG. 2B is a perspective view of the mobile robot of FIG. 1,
  • FIG. 2C is a front cross-sectional view of the mobile robot of FIG. 1;
  • Figure 2d is a bottom view of Figure 1 for explaining the center of gravity and the lowermost end of the spin mop of the present invention.
  • 2E is a plan view of the center of gravity of the present invention as viewed from the top after removing the case from the body in FIG. 1.
  • FIG. 3 is a cross-sectional view on the right showing a mobile robot and a charging station combined;
  • FIG. 4 is a perspective view of a caster guide
  • Figure 5 is a use state diagram showing that the caster moves the caster guide.
  • 6a,b,c,d are cross-sectional views showing various forms of the first guide surface
  • FIG. 8 is a perspective view showing a guide pin.
  • a direction parallel to an imaginary line connecting the central axis of the left spin map and the central axis of the right spin map is defined as a left-right direction, perpendicularly intersected with the left-right direction, and parallel with the central axis of the spin maps or an error angle
  • a direction within 5 degrees of is defined as an up-down direction
  • a direction perpendicular to the left and right direction and the up-down direction is defined as the front-rear direction.
  • the front may mean the main traveling direction of the mobile robot or the main traveling direction of the pattern traveling of the mobile robot.
  • the main traveling direction may mean a vector sum value of directions traveling within a predetermined time.
  • The'mop' mentioned below may be variously applied in terms of materials such as fabric or paper, and may be used repeatedly through washing or disposable.
  • the present invention can be applied to a vacuum cleaner that a user manually moves or a robot cleaner that runs by himself.
  • a vacuum cleaner that a user manually moves
  • a robot cleaner that runs by himself.
  • the present embodiment will be described based on a mobile robot.
  • the mobile robot system of the present invention includes a mobile robot and a charging base for charging the mobile robot. Below. The mobile robot will be described in detail.
  • the cleaner 1 according to an embodiment of the present invention includes a body 30 having a control unit.
  • the cleaner 1 includes a mop module 40 that is provided to mop in contact with a floor (a surface to be cleaned).
  • the cleaner 1 includes a sweep module 2000 provided to collect foreign substances on the floor.
  • the map module 40 is disposed under the body 30 and may support the body 30.
  • the sweep module 2000 is disposed under the body 30 and may support the body 30.
  • the body 30 is supported by the mop module 40 and the sweep module 2000.
  • the body 30 forms the exterior.
  • the body 30 is arranged to connect the mop module 40 and the sweep module 2000.
  • the map module 40 may form an exterior.
  • the map module 40 is disposed under the body 30.
  • the map module 40 is disposed behind the sweep module 2000.
  • the mop module 40 provides a driving force for the movement of the cleaner 1.
  • the mop module 40 is preferably disposed on the rear side of the cleaner 1.
  • At least one mop part 411 may be provided in the mop module 40 to mop the floor while rotating.
  • the map module 40 includes at least one spin map 41, and the spin map 41 rotates clockwise or counterclockwise when viewed from the top.
  • the spinmap 41 is in contact with the floor.
  • the map module 40 may include a pair of spin maps 41a and 41b.
  • the pair of spin mops 41a and 41b rotate clockwise or counterclockwise when viewed from the top, and mop the floor through rotation.
  • the pair of spin maps (41a, 41b) the spin map placed on the left side when viewed from the front of the vacuum cleaner is defined as the left spin map (41a), and the spin map placed on the right side is defined as the right spin map (41b). do.
  • the left spin map 41a and the right spin map 41b are rotated around respective rotation axes.
  • the rotation shaft is arranged in the vertical direction.
  • the left spinmap 41a and the right spinmap 41b may be rotated independently.
  • the left spin mops 41a and the right spin mops 41b include a rotating plate 412 and a spin shaft 414 to which a mop part 411 is attached, respectively.
  • the left spin map 41a and the right spin map 41b each include a water supply receiving portion 413.
  • the sweep module 2000 may form an exterior.
  • the sweep module 2000 is disposed in front of the mop module 40.
  • the sweep module 2000 is preferably disposed in front of the vacuum cleaner 1 in the traveling direction.
  • the sweep module 2000 is spaced apart from the map module 40.
  • the sweep module 2000 is disposed in front of the mop module 40 and contacts the floor.
  • the sweep module 2000 collects foreign substances on the floor.
  • the sweep module 2000 contacts the floor and collects foreign substances located in front of the sweep module 2000 when the cleaner 1 moves.
  • the sweep module 2000 is disposed under the body 30.
  • the left and right widths of the sweep module 2000 are smaller than the left and right widths of the map module 40.
  • the body 30 includes a case 31 forming an external appearance, and a base 32 disposed under the case 31.
  • the case 31 forms a side surface and an upper side surface of the body 30.
  • the base 32 forms the bottom surface of the body 30.
  • the case 31 is formed in a cylindrical shape with an open bottom surface.
  • the overall shape of the case 31 is formed in a circular shape. Since the plane of the case 31 is formed in a circular shape, it is possible to minimize the radius of rotation during rotation.
  • the case 31 includes an upper wall 311 having an overall shape in a circular shape, and a side wall 312 integrally formed with the upper wall 311 and extending downward from the edge of the upper wall 311.
  • a part of the sidewall 312 is formed by opening.
  • the opened portion of the side wall 312 is defined as a water tank insertion port 313, and the water tank 81 is detachably installed through the water tank insertion port 313.
  • the water tank insertion port 313 is disposed at the rear based on the traveling direction of the cleaner. Since the water tank 81 is inserted through the water tank insertion port 313, the water tank insertion port 313 is preferably disposed close to the mop module 40.
  • the mop module 40 is coupled to the base 32.
  • the sweep module 50 is coupled to the base 32.
  • the controller Co and the battery Bt are disposed in the inner space formed by the case 31 and the base 32.
  • the mop driving unit 60 is disposed on the body 30.
  • a water supply module is disposed on the body 30.
  • the spin rotation axis Osa of the left spin map 41a and the lower side of the left spin map 41a intersect is shown
  • the spin rotation axis Osb of the right spin map 41b and the right side A point where the lower side surfaces of the spinmap 41b intersect is shown.
  • the clockwise direction of the rotational directions of the left spinmap 41a is defined as the first forward direction w1f and the counterclockwise direction is defined as the first reverse direction w1r.
  • the counterclockwise direction of the rotational directions of the right spinmap 41b is defined as the second forward direction w2f and the clockwise direction is defined as the second reverse direction w2r.
  • the acute angle formed by the inclination direction of the lower side of the left spinmap (41a) (40a) with the left-right axis' and'the inclination direction of the lower side of the right spinmap (41b) (40b) are left and right.
  • the acute angle formed with the direction axis' is defined as the inclined angle (Ag1a, Ag1b).
  • the tilt direction angle Ag1a of the left spin maps 41a and 40a and the tilt direction angle Ag1b of the right spin maps 41b and 40b may be the same.
  • the right end of the left spin map 41a and the left end of the right spin map 41b may be in contact with each other or may be close to each other. Accordingly, it is possible to reduce the amount of space between the left spin mop 41a and the right spin mop 41b.
  • the point (Pla) that receives the greatest frictional force from the bottom of the lower side of the left spin mob 41a is disposed on the left side from the rotation center Osa of the left spin mob 41a.
  • a load larger than the other points is transmitted to the ground at the point Pla among the lower side of the left spinmap 41a, so that the greatest frictional force may be generated at the point Pla.
  • the point Pla is disposed in front of the left side of the rotation center Osa, but in another embodiment, the point Pla may be disposed exactly to the left or rear left of the rotation center Osa. .
  • the point Plb that receives the greatest frictional force from the bottom of the lower side of the right spin map 41b is disposed on the right side at the rotation center Osb of the right spin map 41b.
  • a load greater than another point is transmitted to the ground at a point Plb among the lower side of the right spinmap 41b, so that the greatest frictional force may be generated at the point Plb.
  • the point Plb is disposed in front of the right side of the rotation center Osb, but in another embodiment, the point Plb may be disposed exactly on the right side or the right rear side based on the rotation center Osb. .
  • the lower side of the left spin mob 41a and the lower side of the right spin mop 41b are disposed to be inclined, respectively.
  • the inclination angles Ag2a of the left spinmab 41a and the inclination angles Ag2a and Ag2b of the right spinmab 41b form an acute angle.
  • the point (Pla, Plb) where the frictional force is greatest is the point (Pla, Plb), but the lower overall area of the mop part 411 is according to the rotational motion of the left and right spin mops 41a and 41b. It can be set small enough to reach the floor.
  • the lower side of the left spin mob 41a as a whole forms a downward slope in the left direction.
  • the lower side of the right spin mob 41b as a whole forms a downward slope in the right direction.
  • the lower side of the left spinmap 41a forms the lowest point Pla on the left side.
  • the lower side of the left spinmap 41a forms the highest point Pha on the right side.
  • the lower side of the right spinmap 41b forms the lowest point Plb on the right side.
  • the lower side of the right spinmap 41b forms the highest point Phb on the left side.
  • the inclination direction angles Ag1a and Ag1b are 0 degrees.
  • the inclination direction of the lower side of the left spinmap 41a and 120a forms an inclined angle Ag1a in a clockwise direction with respect to the left-right axis
  • the right spinmap It is also possible to implement the inclination direction of the lower side of the (41b) 120b to form an inclined angle Ag1b in a counterclockwise direction with respect to the left and right axis.
  • the inclination direction of the lower side of the left spinmap 41a, 120a forms an inclined angle Ag1a in a counterclockwise direction with respect to the left-right axis
  • the right spinmap ( 41b) The inclined direction of the lower side of 120b forms an inclined angle Ag1b in a clockwise direction with respect to the left-right axis.
  • the movement of the cleaner 1 is implemented by a friction force with the ground generated by the mop module 40.
  • the mop module 40 may generate a'forward moving friction force' to move the body 30 forward, or a'backward moving friction force' to move the body rearward.
  • the map module 40 may generate a'left moment friction force' to rotate the body 30 left or a'right moment friction force' to rotate the body 30 right.
  • the mop module 40 may generate a frictional force obtained by combining any one of a forward moving friction force and a rear moving friction force, and any one of a leftward moment friction force and a rightward moment friction force.
  • the left spin mob 41a is rotated in the first forward direction (w1f) at a predetermined rpm (R1) and the right spin mop 41b is rotated in the second forward direction (w2f). It can be rotated at rpm (R1).
  • the left spin mob 41a is rotated in the first reverse direction (w1r) at a predetermined rpm (R2) and the right spin mop 41b is rotated in the second reverse direction (w2r). It can be rotated at rpm (R2).
  • the left spin mob 41a is rotated at a predetermined rpm (R3) in the first forward direction (w1f), and the right spin mop 41b is rotated in the second reverse direction (w2r). ), or ii stop without rotation, or iii rotate at an rpm (R4) less than rpm (R3) in the second forward direction (w2f).
  • the right spin mob 41b is rotated at a predetermined rpm (R5) in the second forward direction (w2f), and the left spin mop 41a is rotated in the i first reverse direction (w1r). ), or ii stop without rotation, or iii rotate at an rpm (R6) smaller than rpm (R5) in the first forward direction (w1f).
  • the mob motor 61 and the battery Bt May be disposed on the top of the spinmap 41.
  • the left mop motor 61a may be disposed on the left spin mob 41a
  • the right mop motor 61b may be disposed on the right spin mob 41b. That is, at least a part of the left mop motor 61a may vertically overlap with the left spin mob 41a. Preferably, the entire left mop motor 61a may be vertically overlapped with the left spin mob 41a. At least a portion of the right mop motor 61b may vertically overlap with the right spin mob 41b. Preferably, the whole of the right mop motor 61b may vertically overlap with the right spin mop 41b.
  • the left mop motor 61a and the right mop motor 61b are a virtual central horizontal line connecting the spin rotation axis Osa of the left spin mob 41a and the spin rotation axis Osb of the right spin mop 41b. It can be arranged to be vertically overlapped with (HL).
  • the center of gravity (MCa) of the left mop motor 61a and the center of gravity (MCb) of the right mop motor 61b are between the spin rotation axis Osa of the left spin mob 41a and the right spin mop 41b. It may be disposed to vertically overlap with the virtual central horizontal line HL connecting the spin rotation axis Osb.
  • the geometric center of the left mop motor 61a and the geometric center of the right mop motor 61b connect the spin rotation axis Osa of the left spinmab 41a and the spin rotation axis Osb of the right spinmab 41b. It may be disposed to be vertically overlapped with the virtual central horizontal line HL.
  • the left mop motor 61a and the right mop motor 61b are arranged symmetrically with respect to the robot vertical line Po.
  • the spin rotation axis Osa of the left spin map 41a is referred to as the left spin rotation axis Osa
  • the spin rotation axis Osb of the right spin map 41b is referred to as the right spin rotation axis Osb.
  • the left mop motor 61a May be arranged to be skewed to the left from the left spin rotation axis Osa.
  • the left mop motor 61a may be arranged to be skewed toward the left front direction from the left spin rotation axis Osa.
  • the geometric center of the left mop motor 61a or the center of gravity MCa of the left mop motor 61a is arranged to be skewed to the left from the left spin rotation axis Osa, or the geometric center of the left mop motor 61a
  • the center of gravity MCa of the left mop motor 61a may be arranged to be skewed toward the left front direction from the left spin rotation axis Osa.
  • the right mop motor 61b may be disposed to be skewed in the right direction from the right spin rotation axis Osb.
  • the right mop motor 61b may be arranged to be skewed toward the right forward direction from the right spin rotation axis Osb.
  • the geometric center of the right mop motor 61b or the center of gravity (MCb) of the right mop motor 61b is arranged to be skewed in the right direction from the right spin rotation axis Osb, or the geometric center of the right mop motor 61b
  • the center of gravity MCb of the right mop motor 61b may be arranged to be skewed toward the right front direction from the right spin rotation axis Osb.
  • the left mop motor 61a and the right mop motor 61b apply pressure at a position that is skewed forward and outward from the center of each spin mob 41, the pressure is concentrated in the front and outside of each spin mop 41, The driving performance is improved by the rotational force of the spinmap 41.
  • the left spin rotation shaft Osa and the right spin rotation shaft Osb are disposed behind the center of the body 30.
  • the center horizontal line HL is disposed behind the geometric center Tc of the body 30 and the center of gravity WC of the mobile robot.
  • the left spin rotation axis Osa and the right spin rotation axis Osb are disposed at the same distance from the vertical line Po of the robot.
  • the left main joint 65a may be disposed on the left spin map 41a, and the right main joint 65b may be disposed on the right spin map 41b.
  • a single battery Bt is installed. At least a portion of the battery Bt is disposed on the left spinmap 41a and the right spinmap 41b. A relatively heavy battery Bt is disposed on the spin map 41 to improve friction of the spin map 41 and reduce eccentricity caused by rotation of the mobile robot.
  • a left part of the battery Bt may be vertically overlapped with the left spinmab 41a, and a right part of the battery Bt may be disposed to vertically overlap with the right spinmab 41b.
  • the battery Bt may be disposed to vertically overlap the central horizontal line HL, and may be disposed to vertically overlap the robot vertical line Po.
  • the center of gravity BC of the battery Bt or the geometric center of the battery Bt may be disposed on the robot vertical line Po, and may be disposed on the central horizontal line HL.
  • the center of gravity (BC) of the battery (Bt) or the geometric center of the battery (Bt) is disposed on the robot vertical line (Po), is disposed in front of the center horizontal line (HL), and the geometric center of the body 30 ( Tc) can be disposed behind.
  • the center of gravity BC of the battery Bt or the geometric center of the battery Bt may be disposed in front of the water tank 81 or the center of gravity PC of the water tank 81.
  • the center of gravity BC of the battery Bt or the geometric center of the battery Bt may be located behind the center of gravity SC of the sweep module 2000.
  • one battery Bt is disposed in the middle between the left spinmap 41a and the right spinmap 41b, and is disposed on the center horizontal line HL and the robot vertical line Po, the heavy battery Bt spins.
  • the center is held and weight is applied to the spin mops 41 to improve frictional force on the spin mops 41.
  • the battery Bt may be disposed at the same height (lower height) or on the same plane as the left mop motor 61a and the right mop motor 61b.
  • the battery Bt may be disposed between the left mop motor 61a and the right mop motor 61b.
  • the battery Bt is disposed in an empty space between the left mop motor 61a and the right mop motor 61b.
  • At least a portion of the water tank 81 is disposed on the left spin mob 41a and the right spin mob 41b.
  • the water tank 81 may be disposed behind the central horizontal line HL, and may be disposed to vertically overlap the vertical line Po of the robot.
  • the center of gravity PC of the water tank 81 or the geometric center of the water tank 81 may be disposed on the robot vertical line Po, and may be positioned in front of the center horizontal line HL.
  • the center of gravity (PC) of the water tank 81 or the geometric center of the water tank 81 may be disposed on the vertical line Po of the robot, and may be disposed behind the horizontal line HL.
  • the center of gravity (PC) of the water tank 81 or the geometric center of the water tank 81 is disposed behind the central horizontal line (HL) is the center of gravity (PC) of the water tank 81 or the geometric center of the water tank 81
  • the central horizontal line HL is positioned to be vertically overlapped with an area skewed rearward.
  • the center of gravity (PC) of the water tank 81 or the geometric center of the water tank 81 is positioned to be vertically overlapped with the body 30 without departing from the body 30.
  • the center of gravity PC of the water tank 81 or the geometric center of the water tank 81 may be disposed behind the center of gravity BC of the battery Bt.
  • the center of gravity (PC) of the water tank 81 or the geometric center of the water tank 81 may be located behind the center of gravity (SC) of the sweep module 2000.
  • the water tank 81 may be disposed at the same height (lower height) or on the same plane as the left mop motor 61a and the right mop motor 61b.
  • the water tank 81 may be arranged so as to be biased to the rear in the space between the left mop motor 61a and the right mop motor 61b.
  • the sweep module 2000 is disposed in front of the spin mops 41, the battery Bt, the water tank 81, the mop driving unit 60 and the right mop motor 61b and the left mop motor 61a in the body.
  • the center of gravity SC of the sweep module 2000 or the geometric center of the sweep module 2000 may be positioned on the vertical line Po of the robot and may be disposed in front of the geometric center Tc of the body 30.
  • the body 30 may have a circular shape when viewed from the top, and the base 32 may have a circular shape.
  • the geometric center Tc of the body 30 means the center when the body 30 is circular. Specifically, when viewed from the top, the body 30 has a circular shape with a radius error of less than 3%.
  • the center of gravity (SC) of the sweep module (2000) or the geometric center of the sweep module (2000) is located on the vertical line (Po) of the robot, and the center of gravity (BC) of the battery (Bt), the water tank (81).
  • the center of gravity (PC), the center of gravity (MCa) of the left mop motor 61a, the center of gravity (MCb) of the right mop motor (61b), may be disposed in front of the center of gravity (WC) of the mobile robot.
  • the center of gravity (SC) of the sweep module 2000 or the geometric center of the sweep module 2000 is located in front of the center horizontal line (HL) and the front end of the spinmaps 41.
  • the sweep module 2000 may include a dust housing 2100 having a storage space 2104, an edge data 2200, and a sweep motor 2330.
  • the edge data 2200 is rotatably installed in the sweep module 2000 and disposed behind the storage space 2104, so that the edge data 2200 does not protrude outward from the body, and the left and right spinmaps 41b ( 41) to be able to maintain a suitable length to cover.
  • the rotation axis of the edge data 2200 is disposed parallel to the center horizontal line HL, and the center of the edge data 2200 is located on the virtual robot vertical line Po. Accordingly, large foreign matter flowing into the spinmaps 41 is effectively removed by the edge data 2200.
  • the rotation axis of the edge data 2200 is located in front of the geometric center Tc of the body 30.
  • the length of the edge data 2200 is preferably longer than the distance of the left spin rotation axis Osb to the right spin rotation axis Osb.
  • the axis of rotation of the edge data 2200 may be disposed adjacent to the front end of the spin map 41.
  • Both ends of the sweep module 2000 may further include left casters 58a and right casters 58b in contact with the floor.
  • the left caster 58a and the right caster 58b are rolled in contact with the floor, and can move up and down by an elastic force.
  • the left caster 58a and the right caster 58b support the sweep module 2000 and support a part of the body.
  • the left caster 58a and the right caster 58b protrude from the bottom to the bottom of the dust housing 2100.
  • the left caster 58a and the right caster 58b are disposed on a line parallel to the center horizontal line HL, and may be disposed in front of the center horizontal line HL and the edge data 2200.
  • the virtual line connecting the left caster 58a and the right caster 58b may be disposed in front of the center horizontal line HL, the edge data 2200, and the geometric center Tc of the body 30.
  • the left caster 58a and the right caster 58b may be provided to be symmetrically left and right based on the vertical line Po of the robot.
  • the left caster 58a and the right caster 58b may be disposed to be spaced apart by the same distance from the vertical line Po of the robot.
  • the sweep motor 2330 is positioned on the robot vertical line Po, or when the sweep motor 2330 is disposed on one side based on the robot vertical line Po, the pump 85 is disposed on the other side (refer to FIG. 19) to sweep
  • the combined center of gravity of the motor 2330 and the pump 85 may be disposed on the vertical line Po of the robot.
  • the center of gravity of the moving robot which is skewed forward, is maintained regardless of the water level of the water tank 81 disposed at the rear, thereby increasing the frictional force on the spin mop 41, while being close to the geometric center Tc of the body 30. Since the center of gravity (WC) of the mobile robot can be located at the position, stable driving is possible.
  • the center of gravity COC of the controller Co or the geometric center of the controller Co may be disposed in front of the geometric center Tc and the central horizontal line HL of the body 30. At least 50% or more of the controller Co may be disposed to vertically overlap the sweep module 2000.
  • the center of gravity (WC) of the mobile robot is located on the vertical line (Po) of the robot, is located in front of the horizontal line (HL), is located in front of the center of gravity (BC) of the battery (Bt), and the water tank (81) It is located in front of the center of gravity (PC) of, and may be disposed behind the center of gravity (SC) of the sweep module 2000, and may be disposed behind the left caster 58a and the right caster 58b.
  • Each component is arranged symmetrically based on the robot vertical line (Po), or is arranged in consideration of each other's weight, so that the center of gravity (WC) of the mobile robot is positioned on the robot vertical line (Po).
  • the center of gravity (WC) of the mobile robot is located on the vertical line (Po) of the robot, there is an advantage of improving the stability in the left and right directions.
  • the caster 58 is disposed under the mobile robot and partially supports the load of the mobile robot.
  • the casters 58 may be disposed in front of the mobile robot.
  • Casters 58 may be disposed on both sides of the front.
  • Casters 58 may be disposed in front of the map module.
  • the caster 58 may be disposed in front of the sweep module. The caster can move the mobile robot including the wheel.
  • a part of each spinmap 41 may be vertically overlapped with the body 30, and another part may be exposed to the outside of the body 30.
  • the ratio of the area in which each spinmap 41 vertically overlaps the body 30 is 85% to 95% of each spinmap.
  • an angle between a line connecting the right end of the body and the right end of the right spinmab 41b and a vertical line connected in parallel with the center vertical line Po at the right end of the body may be 0 degrees to 5 degrees. .
  • the length of the area exposed to the outside of the body of each spinmap 41 is preferably 1/2 to 1/7 of the radius of each spinmap 41.
  • the length of the area exposed to the outside of the body of each spin map 41 may mean a distance from one end exposed to the outside of the body of each spin map 41 to a rotation axis of each spin map 41.
  • the distance between the geometric center TC at the end of the area exposed to the outside of the body of each spinmap 41 may be greater than the average radius of the body.
  • the position at which each spinmap is exposed is between the lateral side and the rear side of the body 30. That is, when each of the quadrants is sequentially positioned in a clockwise direction as viewed from below, a position at which each spinmap is exposed may be a 2/4 division or a 3/4 division of the body 30.
  • a mobile robot charging base 2 including a caster guide 24 will be described with reference to FIGS. 1 and 2A.
  • the mobile robot is docked by entering the charging platform 2 along the first guide line A1 (dashed-dotted line) of FIG. 2.
  • the charging base 2 may include a main body 21 having a power module, and a plate 22 coupled to the lower end of the main body 21.
  • a mobile robot may be docked on the top of the plate 22.
  • the plate 22 may include a caster guide 24 to guide a caster provided at the front lower end of the mobile robot.
  • the plate 22 guides the mobile robot to the docking area through the caster guide 24 and guides the charging terminal 23 and the corresponding terminal 23' to be vertically overlapped.
  • the direction is based on the directions of FIGS. 1 and 2, the direction in which the two charging terminals 23 are connected is defined as the left-right direction (LeRi), and the direction orthogonal to the left-right direction is defined as It is defined as the direction (FR), and the direction orthogonal to the left and right and front and rear directions is defined as the vertical direction (UD).
  • LeRi left-right direction
  • FR direction orthogonal to the left-right direction
  • UD vertical direction
  • the charging station body 21 may be coupled to the front end of the plate 22 and protrude upward to form a wall.
  • the mobile robot can function as a wall to prevent separation when moving further away from the proper docking area on the plate 22.
  • the main body 21 may have a power module therein.
  • the power module may be electrically connected to an external power source to receive external electricity.
  • the power module may be electrically connected to the charging terminal 23 to supply the supplied electricity to the charging terminal 23.
  • the plate 22 may have a circular shape.
  • the plate 22 may have a shape similar to that of the mobile robot.
  • the shape of the plate 22 is not limited thereto, and includes a simple change to a polygonal shape or the like based on a person skilled in the art.
  • a space in which the mobile robot is located, a caster guide 24 for guiding the mobile robot, and a charging terminal 23 may be disposed.
  • a guide pin 25 may be disposed on the upper surface of the plate 22.
  • the mobile robot is docked on the top of the plate 22.
  • the mobile robot is docked on a circular flat surface, which is referred to as a docking area or a map location unit 226.
  • the map positioning unit 226 is disposed behind the caster guide 24 from the top of the plate 22 to define a region in which the spin maps of the mobile robot are located.
  • the map location part 226 may be disposed behind the charging terminal 23 at the top of the plate 22.
  • the map location portion 226 may be defined as a recessed area where the front and rear sides are open and the left and right sides are closed when viewed from the top.
  • a caster guide 24 is positioned at the front end of the map positioning unit 226.
  • An entry slope 227 may be formed at the rear end of the map positioning unit 226 to facilitate entry of the mobile robot.
  • the entrance inclined surface 227 is formed at the rear end of the plate 22 to be inclined upwardly forward.
  • the length of the entrance slope 227 may be equal to or greater than the sum of the diameters of the two spinmaps 41.
  • the mobile robot may climb the entrance slope 227 and head toward the docking area 226.
  • the entrance inclined surface 227 may be formed over the trailing edge of the plate 22.
  • a mop guide 221 protruding upward and guiding the mop may be formed at the side or/and front of the plate 22.
  • the mop guide 221 is connected to both ends of the entrance inclined surface 227 formed at the rear of the plate 22.
  • Each mop guide 221 is disposed, and each mop guide 221 is connected to a left end of the entrance slope 227 and a right end of the entrance slope 227.
  • the mop guide 221 may be formed on at least a portion of the circumference of the docking area 226 together with the entrance inclined surface 227.
  • An inclined portion may be formed around the rear of the docking area 226, and the mop guide 221 may be formed at an end of the inclined portion.
  • the mop guide 221 prevents the mobile robot from leaving the docking area 226 and guides the caster to the caster guide 24.
  • the mop guide 221 may have a curvature and may be formed to protrude from the upper surface of the plate 22.
  • the height of the rear of the mop guide 221 may be lower than the height of the front of the mop guide 221.
  • the height of the mop guide 221 may be formed to be inclined upward from the rear to the full length.
  • the mop guide 221 may have a wide rear and narrow front.
  • the mop guide 221 may be formed on a part of the side surface and a part of the front surface along the circumference of the circular plate 22.
  • the mop guide 221 may be formed in an arc shape.
  • Two mop guides 221 are disposed to be spaced apart in the left and right direction, and a distance between the two mop guides 221 may be located farther than a distance between the two caster guides 24.
  • Two caster guides 24 may be disposed between the two mop guides 221.
  • the caster can be guided to the caster guide 24 located in front of the inside.
  • the charging terminal 23 is a device that is electrically connected to the mobile robot to charge a battery disposed inside the mobile robot, and is exposed from the top surface of the plate 22 of the charging base 2 to the top.
  • the charging terminal 23 may be disposed in front of the plate 22.
  • the charging terminals 23 may be disposed in a left/right pair around the vertical central axis Ay.
  • the pair of charging terminals 23 are arranged symmetrically with respect to the vertical central axis Ay.
  • the vertical central axis Ay is a line that is parallel to the front-rear direction and passes through the center of the charging station 2.
  • the charging terminal 23 may include a first charging terminal 23a and a second charging terminal 23b.
  • the mobile robot includes a corresponding terminal 23' corresponding to the charging terminal 23 of the charging station.
  • the corresponding terminal 23 ′ of the mobile robot may be exposed under the body 3 to be electrically connected to the charging terminal 23 of the charging station.
  • the charging terminal 23 ′ of the mobile robot may be disposed at the front end of the body 3.
  • the shape of the caster guide 24 will be described with reference to FIG. 4.
  • the caster guide 24 guides the moving direction of the moving robot, and as the moving robot moves forward, the caster guide 24 may have a structure in which the height of one end of the moving robot is raised higher than a reference height and then lowered again.
  • the reference height means the height of the map location part 226.
  • the caster guide 24 may be configured as a part of the upper surface of the plate 22 or may be coupled to the upper surface of the plate 22 as a separate member.
  • the caster guide 24 is disposed at the rear of the charging terminal 23, and is positioned in front of the map position part 226.
  • the caster guide 24 is located in front of a guide surface 241 that can be rolled by contacting the caster at an upper portion, a separation prevention wall 242 located on the side of the guide surface 241 and the guide surface 241 It may include a stopper (2417).
  • the caster guide 24 may be formed in a pair on the left/right around the vertical central axis Ay. A pair of caster guides 24 are arranged symmetrically with respect to the vertical central axis Ay.
  • the guide surface 241 On the guide surface 241, the caster rolls from rear to front.
  • the guide surface 241 may form a horizontal surface in a horizontal cross section or a surface having an angle of less than 5 degrees from the horizontal.
  • the left/right guide surfaces 241 may have a low center and high both sides in a lateral cross section. As another example, the left/right guide surfaces 241 may have a downward inclination sailing about a vertical center axis in a horizontal cross section. In the left and right cross section, the left guide surface 241 may be inclined downward in the right direction, and the right guide surface 241 may be inclined downward in the left direction.
  • the caster receives a force that is directed toward the vertical center axis while climbing the guide surface 241, and as a result, it is located at the center of the plate 22 to enter and exit.
  • the left/right guide surfaces 241 may have an upward inclination sailing about a vertical central axis in a cross section in a left and right direction. In the left and right cross section, the left guide surface 241 may be inclined upward in the right direction, and the right guide surface 241 may be inclined upward in the left direction.
  • the caster climbs the guide surface 241 and receives a force directed in the direction opposite to the vertical central axis, and as a result, it is located in the center of the plate 22 to enter and exit.
  • Each guide surface 241 may include a first guide surface 2411 and a second guide surface 2412.
  • each guide surface 241 may include a first guide surface 2411, a second guide surface 2412, and a third guide surface 2413.
  • the first guide surface 2411 has an inclination of an upward direction in the front and rear cross sections.
  • the rear end of the first guide surface 2411 is connected to the plate 22, and the front end is connected to the rear end of the second guide surface 2412 to be described later.
  • the slope formed by the extension line of the rear end and the front end of the first guide surface 2411 is lower than the slope formed by the lowermost end of the mobile robot and the lower front corner of the mobile robot. Therefore, before the front lower edge of the mobile robot collides with the first guide surface 2411, the caster may arrive at the first guide surface 2411 and climb the slope.
  • the caster rolls on the top of the plate 22 to advance.
  • the caster first meets the rear end of the first guide surface 2411 and rolls up the slope of the first guide surface 2411.
  • the first guide surface 2411 may have a wide rear and narrow front.
  • the inclination of the first guide surface 2411 may be set between 1° and 10° in consideration of the weak advance force of the mobile robot.
  • the shape of the first guide surface 2411 will be described for each embodiment with reference to FIGS. 7A to 7D.
  • the first guide surface 2411a may form an inclination of a certain inclination.
  • a round may be formed at a connection portion between the rear end of the first guide surface 2411a and the plate 22.
  • a round may be formed at a connection portion between the front end of the first guide surface 2411a and the rear end of the second guide surface 2412.
  • the first guide surface 2411b may form an inclination whose inclination gradually decreases.
  • a round may be formed at a connection portion between the rear end of the first guide surface 2411b and the plate 22.
  • the first guide surface 2411c may form an inclination whose inclination gradually increases.
  • a round may be formed at a connection portion between the front end of the first guide surface 2411c and the rear end of the second guide surface 2412.
  • the gradient change is gentle at the rear end of the first guide surface 2411c, so that the first guide surface 2411c can be gradually entered.
  • the first guide surface 2411c since the first guide surface 2411c has the most rapid change in inclination at the connection portion with the second guide surface 2412, it is possible to clearly detect a time point at which the second guide surface 2412 enters.
  • the first guide surfaces 2411d and e may include an inflection point 2415, and the inflection point 2415 is preferably located in the middle of the first guide surface. can do.
  • the present disclosure is not limited thereto, and the position of the inflection point 2415 may be changed to such an extent that a person skilled in the art can easily do so.
  • the slope of the inclination of the rear end 2411d of the inflection point may gradually increase, and the inclination of the front end 2411e of the inflection point may gradually decrease.
  • an S-shaped slope can be formed.
  • the rear end 2411d of the first guide surface has a gentle change in inclination, so the caster can easily enter the first guide surface 2411d, and the front end 2411e and the second guide surface ( Since the change in inclination of the connection portion at the rear end of 2412) is gentle, the caster can easily enter the second guide surface 2412, thereby minimizing reaction force applied to the cast.
  • the second guide surface 2412 may be formed in an inclined forward-downward direction in a cross section in the front-rear direction.
  • the caster may go downward along the second guide surface 2412.
  • the corresponding terminal 23 ′ provided on the body 3 contacts the charging terminal 23 of the charging station as the mobile robot lifts the front end of the robot while heading toward the front end of the second guide surface 2412 and then descends again.
  • the third guide surface 2413 may be formed in an inclined forward and upward in a cross section in the front and rear direction.
  • the rear end of the third guide surface 2413 is connected to the front end of the second guide surface 2412.
  • the connection point between the second guide surface 2412 and the third guide surface 2413 is a stable position, and the caster can be seated.
  • the corresponding terminal 23 ′ and the charging terminal 23 may contact before the caster reaches the third guide surface 2413.
  • the height of the guide surface formed by the caster guide will be described with reference to FIG. 6.
  • the height h1 of the connection portion between the first guide surface and the second guide surface may be higher than the height h2 of the connection portion between the second guide surface and the third guide surface. Since the height (h1) of the connection portion between the first guide surface and the second guide surface is formed higher than the height (h2) of the connection portion between the second guide surface and the third guide surface, the corresponding terminal 23' is used as the charging terminal 23. When approaching, you can access from the top.
  • the height h2 of the connection portion between the second guide surface and the third guide surface may be lower than the height h4 of the charging terminal.
  • the height h4 of the charging terminal may be the height of the metal terminal disposed on the charging terminal 23.
  • a part of the load applied to the caster is distributed to the charging terminal 23, thereby further increasing the life of the caster.
  • the caster is equipped with a Cliff sensor, a wheel drop phenomenon of the caster occurs, and the creep sensor detects it, so that it can be confirmed that the mobile robot is properly docked to the charging base 2.
  • the caster guide 24 further includes a separation prevention wall 242 defining a surface crossing the guide surface 241 at the side end of the guide surface 241.
  • the separation prevention wall may be disposed at the left and right ends of the guide surface 241 and extend in the front and rear direction, and may define a surface having a height in the upward direction.
  • the separation preventing wall 242 is formed to protrude upward from the left and right ends of the guide surface 241.
  • the separation preventing wall 242 may be formed on at least one or more side ends of the first guide surface 2411c to the third guide surface 2413.
  • the separation prevention wall 242 serves to prevent the caster moving the guide surface from leaving the guide surface.
  • the separation prevention wall 242 includes a first separation prevention wall 242a protruding upward from the left end of the guide surface 241, and a second separation prevention wall 242a protruding upward from the right end of the guide surface 241 It includes a barrier wall (242b). The separation distance between the first separation prevention wall 242a and the second separation prevention wall 242b may decrease from the rear to the front.
  • the stopper 2417 will be described with reference to FIGS. 4 and 7A to 7D.
  • the stopper 2417 is disposed in front of the caster guide 24 and functions to prevent the caster from passing through the caster guide 24 and being separated.
  • the stopper 2417 is connected to the front end of the third guide surface 2413 and protrudes upward.
  • the stopper 2417 may be integrally formed with the first guide surface 2411c to the third guide surface 2413.
  • the stopper 2417 may be omitted and the third guide surface 2413 may serve as the stopper 2417.
  • the height h3 of the top point of the stopper may be higher than the height h1 of the connection portion between the first guide surface and the second guide surface. According to the energy conservation law, if the height (h1) of the connection portion between the first guide surface and the second guide surface is higher than the height (h3) of the top point of the stopper, a problem arises that the caster may pass through the stopper 2417 and escape. . Accordingly, the height h3 of the top point of the stopper is formed to have a higher height h1 of the connection portion between the first guide surface and the second guide surface to prevent the caster from being separated. (m*g*h1 ⁇ m*g*h3)
  • the shape of the stopper 2417 will be described with reference to FIGS. 7A to 7C.
  • the stopper 2417 When viewed from the right side, referring to FIG. 7A, the stopper 2417 may have a surface perpendicular to the ground.
  • the stopper 2417 when viewed from the right side, referring to FIG. 7B, the stopper 2417 may be formed to include a forward upward slope.
  • the mobile robot may advance further than the front end of the third guide surface 2413 due to inertia force or excessive propulsion force. At this time, it is allowed to move forward to some extent to prevent damage to the caster, and when the inertia force or the like is lost, it can be retracted and settled on the connection portion between the second guide surface 2412 and the third guide surface 2413.
  • the stopper 2417 when viewed from the right side, referring to FIG. 7C, the stopper 2417 may be formed to include a rear upward slope.
  • the forward limit line of the mobile robot may be determined by having an upward inclination.
  • the width L3 of the front end of the caster guide 24 may be formed to be narrower than the width L4 of the rear end.
  • the shape of the caster guide 24 viewed from the top may be formed as a front narrow halo.
  • the width of the rear end of the first guide may be wider than the width of the front end of the third guide.
  • the width of the connection portion between the second guide surface 2412 and the third guide surface 2413 may be formed to be narrower than the width of the metal terminal plus the width of the caster. If the width of the connection between the second guide surface 2412 and the third guide surface 2413 is wider than the width of the metal terminal plus the width of the caster, the charging terminal 23 and the corresponding terminal according to the position where the caster is seated (23') may not be in contact. Therefore, the width of the connecting portion between the second guide surface 2412 and the third guide surface 2413 is formed narrower than that of the width of the metal terminal plus the width of the caster, so that the caster is formed between the second guide surface 2412 and the third guide surface 2413. Electrical connection between the charging terminal 23 and the corresponding terminal 23' can be maintained no matter where the connection portion of the guide surface 2413 is located.
  • the caster guide 24 is located in front of the plate 22.
  • a pair of caster guides may be arranged on either side of the vertical center axis (Ay).
  • the caster guide 24 may be located behind the charging terminal 23.
  • the corresponding terminal 23 ′ may be disposed in front of the mobile robot, and the caster may be disposed at the rear side of the corresponding terminal 23 ′.
  • the charging terminal 23 may be disposed in front of the plate 22, and the caster guide 24 may be disposed at the rear side of the charging end 23 itself.
  • the distance L2 from the vertical center axis to the center of the caster guide 24 may be longer than the distance L1 from the vertical center axis to the charging terminal 23.
  • the center position where the caster is seated in the caster guide 24 and the metal terminal of the charging terminal 23 may be arranged on the same circle.
  • the connection portion between the second guide surface 2412 and the third guide surface 2413 and the metal terminal of the charging terminal 23 may be disposed on the same circle. Accordingly, when the caster is seated, the charging terminal 23 and the corresponding terminal 23 ′ may be vertically overlapped, contacted and electrically connected.
  • the guide pin 25 is a component disposed at the upper center of the plate 22 and inserted between the two spin maps to guide the mobile robot.
  • the guide pin 25 is disposed in the upper center of the plate 22.
  • the guide pin 25 may be disposed in the docking area (map location portion 226. Specifically, the guide pin 25 is rearward from the charging terminal 23 and the caster guide 24 at the top of the plate 22). Is placed in
  • the guide pin 25 extends in a first direction (front and rear direction), and the extension line of the guide pin 25 is between the first charging terminal and the second charging terminal (between a pair of charging terminals 23). ).
  • the guide pin 25 is located on the vertical central axis Ay.
  • the guide pin 25 is formed to protrude upward.
  • the guide pin 25 may be formed integrally with the plate 22, and may be formed separately and combined.
  • the guide pin 25 may be formed to extend along a vertical central axis from the upper center of the plate 22.
  • the two spinmaps or rotating plates may be adjacent to both sides of the guide pin 25.
  • the front end 251 of the guide pin may be disposed behind the rear end of the caster guide 24. Accordingly, the spinmap 41 may reach the guide pin 25 before the caster reaches the caster guide 24.
  • the rear end 253 of the guide pin may be inclined with a forward upward inclination. Accordingly, from the lower side of the spin mob, it contacts the front end 251 of the guide pin, and the guide pin 25 can be smoothly inserted between the spin mops of the advancing mobile robot.
  • the front end 251 of the guide pin may have a forward-downward inclination. Accordingly, the guide pin 25 may be smoothly inserted between the spin maps of the moving robot in contact with the rear end 253 of the guide pin from the lower side of the spin map.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Electric Vacuum Cleaner (AREA)
  • Manipulator (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

본 발명은 충전대에 구비된 충전단자와 충전단자에 대응되는 대응단자를 용이하게 접촉되게 가이드하는 캐스터가이드를 포함하는 이동로봇 충전대에 관한 것으로, 제1가이드면 내지 제3가이드면을 포함하여 양 단자의 종방향 접촉위치를 정하고, 후방이 넓고 전방이 좁은 캐스터가이드를 포함하여 양 단자의 횡방향 접촉위치를 정하여, 양 단자가 수직적으로 중첩되게 가이드하는 이동로봇 충전대에 관한 발명이다.

Description

이동로봇 충전대
본 발명은 이동로봇 충전대에 관한 것으로, 보다 상세하게는 충전대에 구비된 충전단자와 상기 충전단자에 대응되는 대응단자를 용이하게 접촉되게 가이드하는 캐스터가이드를 포함하는 이동로봇 충전대에 관한 것이다.
로봇은 산업용으로 개발되어 공장 자동화의 일 부분을 담당하여 왔다. 최근에는 로봇을 응용한 분야가 더욱 확대되어, 의료용 로봇, 우주 항공 로봇 등이 개발되고, 일반 가정에서 사용할 수 있는 가정용 로봇도 만들어지고 있다. 이러한 로봇 중에서 자력으로 주행이 가능한 이동로봇이 있다.
가정에서 사용되는 이동 로봇의 대표적인 예는 로봇 청소기로, 로봇 청소기는 일정 영역을 스스로 주행하면서, 주변의 먼지 또는 이물질을 흡입함으로써, 해당 영역을 청소하는 기기이다.
로봇 청소기는 크게 청소로봇과 충전대로 구성된다. 청소로봇은 충전 가능한 배터리를 구비하며, 이동이 자유롭고 배터리의 동작전원을 이용한 스스로 이동이 가능하고, 이동 중 바닥면의 이물질을 흡입하여 청소를 실시하며, 필요 시 충전대로 복귀하여 배터리를 충전하도록 구성된다.
선행기술 1에서, 충전대는 전원과 전기적으로 연결된 단자를 구비하고 있으며, 이동로봇은 상기 충전대의 단자와 전기적으로 연결되도록 대응되는 단자를 구비하고 있다. 상기 충전대의 단자와 이동로봇의 단자는 접촉하면 이동로봇의 충전이 시작된다.
이동로봇은 충전대로 이동하여 정확한 위치에 도킹하여야 충전대의 단자와 전기적으로 연결될 수 있다. 하지만, 종래기술은 이동로봇을 자율주행하여 정확한 도킹구간에 안착하는 수단이 제시되어 있지 않는 문제점이 있었다.
선행기술 2에는 걸레면에 의해 이동을 할 수 있는 로봇 이동 로봇이 알려져 있다. 상기 종래 기술에서, 로봇 이동 로봇은, 좌우 방향으로 배치된 한 쌍의 걸레면을 고정하는 제 1회전 부재 및 제 2회전 부재가 수직 방향 축으로 하여 구비된다. 상기 종래 기술에 따른 로봇 이동 로봇은, 제 1회전 부재 및 제 2회전 부재에 고정된 걸레면만 바닥에 접촉한 상태에서, 제 1회전 부재 및 제 2회전 부재가 회전함에 따라 이동하게 된다.
특히, 선행기술 1의 경우, 충전대 바닥이 경사지게 해서 일반적인 로봇 청소기의 전진력에 의해 전진하면 청소기의 바디가 들어올려지고, 이동로봇의 충전단자와 충전대의 대응단자가 접촉하는 구조이다. 그러나, 스핀맙과 바닥의 마찰력으로 진행하는 이동 로봇의 경우, 전진력이 매우 약해서 바디를 들어올릴 정도의 경사를 진행할 수 없고, 이동 로봇의 진행방향을 미세하고 정확하게 조정할 수 없는 문제점이 존재한다.
또한, 종래기술의 경우, 로봇 청소기가 스핀맙의 마찰력만으로 진행하고, 수조의 저장된 물의 수위는 가변되므로, 효과적인 걸레질을 수행되기 어렵고, 주행력에 문제가 존재한다.
특히, 종래 습식 로봇은 회전되는 걸레와의 마찰력으로 진행방향을 조정하는 것이 매우 어렵기 때문에, 랜덤 주행으로만 청소하고 꼼꼼한 청소가 가능한 패턴 주행이 불가능한 단점이 존재한다.
똫한, 종래 기술은 랜덤 주행만 하는 경우, 바닥면의 구석이나 벽에 인접한 영역의 경우 꼼꼼한 청소가 어려운 단점이 존재한다.
스핀맙과 바닥의 마찰력으로 진행하는 이동 로봇의 경우 전진력이 약하고, 카펫을 등반하지 못하게 범퍼로 이동 로봇의 상면 및 측면 전체를 감싸야 한다. 바디의 하방으로 노출된 대응단자를 형성해야 한다. 본 발명이 해결하고자 하는 과제는 상술한 스핀맙의 약한 전진력, 상하 방향으로 접촉해야하는 바디의 구조를 고려하여서, 충전대에 구비된 충전단자 및 상기 충전단자와 대응되는 대응단자를 상하로 접촉되게 가이드하는 이동로봇 충전대를 제공하는 것이다.
스핀맙과 바닥의 마찰력으로 진행하는 이동 로봇의 경우 정확한 방향으로 진행이 매우 어려운데, 본 발명이 해결하고자 하는 다른 과제는, 2개의 스핀맙 사이의 공간으로 삽입되는 가이드 핀에 의해 이동 로봇의 도킹 방향이 가이드 되게 되는 이동로봇 충전대를 제공하는 것이다.
본 발명이 해결하고자 하는 또 다른 과제는, 이동 로봇의 도킹 방향이 잘못 되더라도, 스핀맙을 안내하는 맙 위치부의 구조로 인해 자동적으로 이동 로봇의 도킹 방향이 진행되어서 정확한 위치에 이동 로봇이 도킹되는 이동 로봇 충전대를 제공하는 것이다.
본 발명의 또 다른 과제는 충전 중에 이동로봇 하부에 위치한 걸레부로 가해지는 하중을 분산하여 걸레부의 수명을 향상시키는 이동로봇 충전대를 제공하는 것이다.
본 발명의 과제들은 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명의 다른 과제는, 로봇 청소기의 효과적인 걸레질 수행 및 주행을 위해 수조의 수위 변화에 상관없이 걸레와 바닥면 사이의 마찰력을 상승시키고, 정확한 주행을 통해서 꼼꼼한 청소가 가능한 패턴 주행을 가능하게 하는 것이다.
상기 과제를 달성하기 위하여, 본 발명의 실시예에 따른 이동로봇 충전대는 이동 로봇의 이동 방향을 가이드 하고, 상기 이동 로봇이 전방으로 이동함에 따라, 상기 이동 로봇의 일단의 높이를 기준 높이 보다 높였다가, 다시 내리는 캐스터가이드를 특징으로 한다.
또한, 본 발명은 플레이트 상부에 위치된 가이드핀이 전후방향으로 연장되어서, 이동 로봇의 스핀맙들 사이로 삽입되면서, 이동 로봇의 이동을 가이드하는 것을 특징으로 한다.
또한, 본 발명은 전원모듈을 구비한 본체, 본체의 하단에 결합된 플레이트, 상기 플레이트의 상부 전방에 돌출되고 상기 전원모듈과 전기적으로 연결된 충전단자, 및 충전단자의 후방에 배치된 캐스터가이드를 포함한다.
상기 캐스터가이드는 캐스터를 안내하는 가이드면을 포함한다. 캐스터의 진입방향을 전방이라고 할 때, 전방상향의 경사를 가지는 제1가이드면을 포함한다. 제1가이드면의 전단에 연결되고, 전방하향의 경사를 가지는 제2가이드면을 포함한다. 제2가이드면의 전단에 연결되고, 전방상향의 경사를 가지는 제3가이드면을 포함한다. 상기 제2가이드면과 제3가이드면은 측면에서 볼 때 오목부를 형성하여 캐스터를 도킹할 수 있다.
제1가이드면은 일정한 기울기의 경사를 포함할 수 있고, 경사의 기울기가 점점 감소할 수도 있고, 경사의 기울기가 점점 증가할 수도 있고, 변곡점을 포함하여 변곡점 후단의 기울기는 점점 증가하고 변곡점 전단의 기울기는 점점 감소할 수도 있다.
상기 캐스터가이드는 상기 가이드면의 양 측면에 배치되고 상부로 돌출하여 형성되는 이탈방지벽을 더 포함할 수 있다.
상기 캐스터가이드는 제3가이드면의 전단에 연결되고 상측으로 돌출된 스토퍼를 더 포함할 수 있다.
상기 캐스터가이드는 상측에서 볼 때 전단의 폭이 후단의 폭보다 좁게 형성될 수 있다.
상기 캐스터가이드는 플레이트의 중앙 상부에 돌출되고 전/후로 연장되는 가이드핀을 더 포함할 수 있다.
또한, 본 발명은 전원모듈을 구비한 본체, 상기 본체의 하단에 결합된 플레이트, 상기 플레이트의 상면에서 상부로 노출되고,, 상기 전원모듈과 전기적으로 연결되는 충전단자 및 이동 로봇의 이동 방향을 가이드 하고, 상기 이동 로봇이 전방으로 이동함에 따라, 상기 이동 로봇의 일단의 높이를 기준 높이 보다 높였다가, 다시 내리는 캐스터가이드를 포함하고, 상기 캐스터가이드는 충전단자의 후방에 배치되며, 상기 캐스터가이드는 전단의 폭이 후단의 폭 보다 좁은 것을 특징으로 한다.
상기 캐스터가이드는, 상기 가이드면의 측면에 배치되고 상부로 돌출하여 형성되는 이탈방지벽을 포함할 수 있다.
상기 캐스터가이드는, 상기 제3가이드면의 전단에 연결되고, 상측으로 돌출된 스토퍼를 더 포함할 수 있다.
상기 스토퍼는, 상기 플레이트에 수직한 방향으로 연장될 수 있다.
상기 스토퍼는, 전방상향의 기울기를 포함할 수 있다.
상기 스토퍼는, 후방상향의 기울기를 포함할 수 있다.
상기 스토퍼의 최고점의 높이(h3)는 상기 제1가이드면과 제2가이드면의 연결부의 높이(h1)보다 높을 수 있다.
수직중심축에서 충전단자까지의 수평거리(L1)보다 수직중심축에서 캐스터가이드까지의 수평거리(L2)가 멀 수 있다.
상기 플레이트의 중앙 상부에 배치되고, 상부로 돌출하여 형성되는 가이드핀을 더 포함할 수 있다.
상기 가이드핀은 상기 플레이트의 수직중심축을 따라 연장되어 형성될 수 있다.
상기 가이드핀의 전단은 상기 캐스터가이드의 후단보다 후방에 배치될 수 있다.
상기 가이드핀의 후단은 전방상향 기울기의 경사가 형성될 수 있다.
상기 가이드핀의 전단은 전방하향 기울기의 경사가 형성될 수 있다.
또한, 본 발명은 전원모듈을 구비한 본체, 상기 본체의 하단에 결합된 플레이트, 상기 플레이트에 설치되고, 상기 플레이트의 상부로 노출되며,상기 전원모듈과 전기적으로 연결되는 연결되는 제1 충전단자 및 제2 충전단자 및 상기 플레이트의 상부에서 상기 충전단자 보다 후방에 배치되고, 상부로 돌출하여 형성되는 가이드핀를 포함하고, 상기 가이드핀은, 제1 방향으로 연장되고, 상기 가이드핀의 연장선은 상기 제1 충전단자와 상기 제2 충전단자 사이를 통과한다.
상기 캐스터가이드는, 상기 캐스터를 안내하는 가이드면과, 상기 가이드면의 측단에서 상기 가이드면과 교차되는 면을 정의하는 이탈방지벽을 포함할 수 있다.
상기 이탈방지벽은, 상기 가이드면의 양측단에서 상부로 돌출되어 형성되는 제1 이탈방지벽 및 제2 이탈방지벽을 포함할 수 있다.
본 발명은, 상기 플레이트의 상부에서 상기 캐스터 가이드 후방에 배치되어 상기 이동로봇의 스핀맙들이 위치되는 영역을 정의하는 맙 위치부를 더 포함할 수 있다.
상기 맙 위치부는 상부에서 보아 전후방은 개방되고 좌우방은 막힌 함몰된 영역으로 정의될 수 있다.
상기 가이드핀은 상기 맙 위치부에서 상부로 돌출되어 형성될 수 있다.
기타 실시예들의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.
본 발명의 이동로봇 충전대에 따르면 다음과 같은 효과가 하나 혹은 그 이상 있다.
첫째, 측면에서 볼 때 상향경사-하향경사-상향경사-스토퍼의 배치형태를 가지므로 종방향(수직중심축 방향)에서 단자가 접촉되는 위치로 용이하게 향하도록 하는 장점이 있다.
둘째, 캐스터가 진입하는 부분인 캐스터가이드의 후방이 넓고 캐스터가 안착하는 부분인 캐스터가이드의 전방이 좁게 형성되어, 횡방향(좌/우 방향)에서 단자가 접촉되는 위치로 용이하게 향하도록 하는 장점도 있다.
셋째, 가이드면의 양 측에 이탈방지벽을 더 포함하여, 이탈을 방지하는 장점도 있다.
넷째, 전후방향으로 연장하는 가이드핀을 더 포함하여, 단자가 더욱 용이하게 접촉되는 위치로 향하도록 하는 장점도 있다.
다섯째, 충전대와 캐스터가이드가 플레이트의 상향으로 돌출하여 형성되므로, 도킹시 이동로봇의 하중의 일부가 충전단자에 가해지므로, 단자접촉을 강화하고 걸레부의 수명을 향상시키는 장점도 있다.
여섯째, 본 발명은 바디가 원형으로 형성되고, 건식모듈이 바디의 외측으로 돌출되지 않으므로, 청소영역의 어느 위치에서도 자유로운 회전이 용이하고, 에지테이터의 폭을 크게 유지할 수 있어서, 청소범위가 넓으며, 상대적으로 큰 이물질을 수거함과 동시에 걸레질 하는 동작을 수행하는 이점이 존재한다.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
도 1은 이동로봇과 충전대를 포함하는 이동로봇 시스템의 사시도,
도 2a는 도 1의 이동로봇의 저면도와 충전대의 평면도를 도시한 도면,
도 2b는 도 1의 이동로봇의 사시도,
도 2c는 도 1의 이동로봇의 정 단면도,
도 2d는 본 발명의 무게중심 및 스핀 맙의 최하단을 설명하기 위한 도 1의 저면도이다.
도 2e는 본 발명의 무게중심을 도 1에서 바디에서 케이스를 제거하고 상부에서 바라본 평면도이다.
도 3은 이동로봇과 충전대가 결합된 모습을 나타낸 우측 단면도,
도 4는 캐스터가이드의 사시도,
도 5는 캐스터가 캐스터가이드를 이동하는 것을 도시한 사용상태도.
도 6a,b,c,d는 제1가이드면의 여러가지 형태를 도시한 단면도,
도 7a,b,c은 스토퍼의 여러가지 형태를 도시한 단면도
도 8는 가이드핀을 도시한 사시도이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
이하에서 언급되는 “전(F)/후(R)/좌(Le)/우(Ri)/상(U)/하(D)” 등의 방향을 지칭하는 표현은 이동로봇의 주행방향을 기준으로 정의하였다. 충전대는 이동로봇이 도킹되는 방향을 전방, 상기 전방의 반대방향을 후방이라 한다. 충전대를 상측에서 볼 때를 기준으로 좌측/우측의 방향을 결정한다. 이는 어디까지나 본 발명이 명확하게 이해될 수 있도록 도면을 참조하여 설명하기 위한 것이며, 기준을 어디에 두느냐에 따라 각 방향들을 다르게 정의할 수 있다.
예를 들면, 좌측 스핀 맙의 중심축과 우측 스핀 맙의 중심축을 연결한 가상의 선과 나란한 방향이 좌우 방향으로 정의되고, 상기 좌우 방향과 수직적으로 교차되고, 스핀맙들의 중심축과 나란하거나 오차각도가 5도 이내인 방향이 상하 방향으로 정의되고, 좌우 방향 및 상하 방향과 수직적으로 교차되는 방향은 전후 방향으로 정의된다. 물론, 전방은 이동 로봇의 주 진행 방향 또는 이동 로봇의 패턴 주행의 주 진행 방향을 의미할 수 있다. 여기서, 주 진행 방향은 일정 시간 내에 진행하는 방향들의 벡터 합산 값을 의미할 수 있다.
이하에서 언급되는 구성요소 앞에 ‘제 1, 제 2, 제 3' 등의 표현이 붙는 용어 사용은, 지칭하는 구성요소의 혼동을 피하기 위한 것일뿐, 구성요소 들 사이의 순서, 중요도 또는 주종관계 등과는 무관하다. 예를 들면, 제 1 구성요소 없이 제 2구성요소 만을 포함하는 발명도 구현 가능하다.
이하에서 언급되는 '걸레'는, 직물이나 종이 재질 등 재질면에서 다양하게 적용될 수 있고, 세척을 통한 반복 사용용 또는 일회용일 수 있다.
본 발명은 사용자가 수동으로 이동시키는 청소기 또는 스스로 주행하는 로봇 청소기 등에 적용될 수 있다. 이하, 본 실시예에서는 이동로봇을 기준으로 설명한다.
본 발명의 이동로봇 시스템은 이동로봇과 이동로봇을 충전하는 충전대를 포함한다. 이하. 이동로봇에 대해 상술한다.
도 2b 및 도 2c를 참조하면, 본 발명의 일 실시예에 따른 청소기(1)는 제어부를 구비하는 바디(30)를 포함한다. 청소기(1)는 바닥(피청소면)과 접촉하여 걸레질하게 구비되는 맙 모듈(40)을 포함한다. 청소기(1)는 바닥의 이물질을 수거하게 구비되는 스윕모듈(2000)을 포함한다.
맙 모듈(40)은 바디(30)의 하측에 배치되고, 바디(30)를 지지할 수 있다. 스윕모듈(2000)은 바디(30)하측에 배치되고, 바디(30)를 지지할 수 있다. 본 실시예에서 바디(30)는 맙 모듈(40) 및 스윕모듈(2000)에 의해 지지된다. 바디(30)는 외관을 형성한다. 바디(30)는 맙 모듈(40) 및 스윕모듈(2000)을 연결하며 배치된다.
맙 모듈(40)은 외관을 형성할 수 있다. 맙 모듈(40)은 바디(30)의 하측에 배치된다. 맙 모듈(40)은 스윕모듈(2000)의 후방에 배치된다. 맙 모듈(40)은 청소기(1)의 이동을 위한 추진력을 제공한다. 청소기(1)를 이동시키기 위해 맙 모듈(40)은 청소기(1)의 후방 측에 배치되는 것이 바람직하다.
맙 모듈(40)에는 회전하면서 바닥을 걸레질하게 구비되는 적어도 하나의 걸레부(411)가 구비될 수 있다. 맙 모듈(40)은 적어도 하나의 스핀맙(41)을 구비하고, 스핀맙(41)은 상측에서 바라볼 때 시계 방향 또는 반시계 방향으로 회전한다. 스핀맙(41)은 바닥에 접촉된다.
본 실시예에서 맙 모듈(40)은 한 쌍의 스핀맙(41a, 41b)를 포함할 수 있다. 한 쌍의 스핀맙(41a, 41b)은 상측에서 바라볼 때 시계 방향 또는 반시계 방향으로 회전하고, 회전을 통해 바닥을 걸레질한다. 한 쌍의 스핀맙(41a, 41b) 중 청소기의 진행방향 정면에서 볼 때 좌측에 배치된 스핀맙을 좌측 스핀맙(41a)이라 하고, 우측에 배치된 스핀맙을 우측 스핀맙(41b)이라 정의한다.
좌측 스핀맙(41a) 및 우측 스핀맙(41b)은 각각의 회전축을 중심으로 회전된다. 회전축은 상하 방향으로 배치된다. 좌측 스핀맙(41a) 및 우측 스핀맙(41b)은 각각 독립적으로 회전될 수 있다.
좌측 스핀맙(41a) 및 우측 스핀맙(41b)은 각각 걸레부(411)가 부착되는 회전판(412) 및 스핀 샤프트(414)를 포함한다. 좌측 스핀맙(41a) 및 우측 스핀맙(41b)은 각각 급수 수용부(413)를 포함한다.
스윕모듈(2000)은 외관을 형성할 수 있다. 스윕모듈(2000)은 맙 모듈(40)의 전방에 배치된다. 바닥의 이물질이 맙 모듈(40)과 먼저 접촉되는 것을 방지하기 위해 스윕모듈(2000)은 청소기(1) 진행방향의 전방에 배치되는 것이 바람직하다.
스윕모듈(2000)은 맙 모듈(40)과 이격된다. 스윕모듈(2000)은 맙 모듈(40)의 전방에 배치되고, 바닥에 접촉된다. 스윕모듈(2000)은 바닥의 이물질을 수거한다.
스윕모듈(2000)은 바닥과 접촉하고, 청소기(1)의 이동 시 스윕모듈(2000) 전방에 위치된 이물질을 내부로 수거한다. 스윕모듈(2000)은 바디(30)의 하측에 배치된다. 스윕모듈(2000)의 좌우 폭은 맙 모듈(40)의 좌우 폭 보다 작다.
바디(30)는, 외관을 형성하는 케이스(31)와, 케이스(31)의 하측에 배치되는 베이스(32)를 포함한다.
케이스(31)는 바디(30)의 측면 및 상측면을 형성한다. 베이스(32)는 바디(30)의 저면을 형성한다.
본 실시예에서 케이스(31)는 저면이 개구된 원기둥 형태로 형성된다. 탑뷰로 볼 때, 케이스(31)의 전체적인 형상은 원형으로 형성된다. 케이스(31)의 평면이 원형으로 형성되기 때문에, 회전 시 회전반경을 최소화할 수 있다.
케이스(31)는 전체적인 형상이 원형으로 형성된 상측벽(311)과, 상측벽(311)과 일체로 형성되고, 상측벽(311)의 가장자리에서 하측으로 연장된 측벽(312)을 포함한다.
측벽(312)의 일부는 개구되어 형성된다. 측벽(312)의 개구된 부분을 수조삽입구(313)로 정의하고, 수조삽입구(313)를 통해 수조(81)가 착탈가능하게 설치된다. 수조삽입구(313)는 청소기의 진행방향을 기준으로 후방에 배치된다. 수조삽입구(313)를 통해 수조(81)가 삽입되기 때문에, 수조삽입구(313)는 맙 모듈(40)과 가깝게 배치되는 것이 바람직하다.
베이스(32)에 맙 모듈(40)이 결합된다. 베이스(32)에 스윕모듈(50)이 결합된다. 케이스(31) 및 베이스(32)가 형성하는 내부 공간에 컨트롤러(Co) 및 배터리(Bt)가 배치된다. 또한, 바디(30)에 맙 구동부(60)가 배치된다. 바디(30)에 급수 모듈이 배치된다.
도 2d를 참조하면, 좌측 스핀맙(41a)의 스핀 회전축(Osa)과 좌측 스핀맙(41a)의 하측면이 교차하는 지점이 도시되고, 우측 스핀맙(41b)의 스핀 회전축(Osb)과 우측 스핀맙(41b)의 하측면이 교차하는 지점이 도시된다. 하측에서 바라볼 때, 좌측 스핀맙(41a)의 회전 방향 중 시계 방향을 제 1정방향(w1f)으로 정의하고 반시계 방향을 제 1역방향(w1r)으로 정의한다. 하측에서 바라볼 때, 우측 스핀맙(41b)의 회전 방향 중 반시계 방향을 제 2정방향(w2f)으로 정의하고 시계 방향을 제 2역방향(w2r)으로 정의한다. 또한, 하측에서 바라볼 때 '좌측 스핀맙(41a)(40a)의 하측면의 경사 방향이 좌우 방향 축과 이루는 예각' 및 '우측 스핀맙(41b)(40b)의 하측면의 경사 방향이 좌우 방향 축과 이루는 예각'을 경사 방향 각(Ag1a, Ag1b)으로 정의한다. 좌측 스핀맙(41a)(40a)의 경사 방향 각(Ag1a) 및 우측 스핀맙(41b)(40b)의 경사 방향 각(Ag1b)은 동일할 수 있다. 또한, 도 6을 참고하여, '가상의 수평면(H)에 대해 좌측 스핀맙(41a)(40a)의 하측면(I)이 이루는 각도' 및 '가상의 수평면(H)에 대해 좌측 스핀맙(41a)(40a)의 하측면(I)이 이루는 각도'를 경사각(Ag2a, Ag2b)로 정의한다.
물론, 좌측 스핀맙(41a)의 우측단과, 우측 스핀맙(41b)의 좌측단은 서로 접촉하거나, 근접할 수 있다. 따라서, 좌측 스핀맙(41a)과 우측 스핀맙(41b)의 사이에서 발생하는 걸레질을 공백을 줄일 수 있다.
좌측 스핀맙(41a)이 회전할 때, 좌측 스핀맙(41a)의 하측면 중 바닥으로부터 가장 큰 마찰력을 받는 지점(Pla)은 좌측 스핀맙(41a)의 회전 중심(Osa)에서 좌측에 배치된다. 좌측 스핀맙(41a)의 하측면 중 지점(Pla)에 다른 지점보다 큰 하중이 지면에 전달되게 하여, 지점(Pla)에 가장 큰 마찰력이 발생되게 할 수 있다. 본 실시예에서 지점(Pla)은 회전 중심(Osa)의 좌측 전방에 배치되나, 다른 실시예에서 지점(Pla)는 회전 중심(Osa)을 기준으로 정확히 좌측에 배치되거나 좌측 후방에 배치될 수도 있다.
우측 스핀맙(41b)이 회전할 때, 우측 스핀맙(41b)의 하측면 중 바닥으로부터 가장 큰 마찰력을 받는 지점(Plb)은 우측 스핀맙(41b)의 회전 중심(Osb)에서 우측에 배치된다. 우측 스핀맙(41b)의 하측면 중 지점(Plb)에 다른 지점보다 큰 하중이 지면에 전달되게 하여, 지점(Plb)에 가장 큰 마찰력이 발생되게 할 수 있다. 본 실시예에서 지점(Plb)은 회전 중심(Osb)의 우측 전방에 배치되나, 다른 실시예에서 지점(Plb)는 회전 중심(Osb)을 기준으로 정확히 우측에 배치되거나 우측 후방에 배치될 수도 있다.
좌측 스핀맙(41a)의 하측면 및 우측 스핀맙(41b)의 하측면은 각각 경사지게 배치된다. 좌측 스핀맙(41a)의 경사각(Ag2a) 및 우측 스핀맙(41b)의 경사각(Ag2a, Ag2b)은 예각을 형성한다. 경사각(Ag2a, Ag2b)은, 가장 마찰력이 커지는 지점이 지점(Pla, Plb)이 되되, 좌측 스핀맙(41a) 및 우측 스핀맙(41b)의 회전 동작에 따라 걸레부(411)의 하측 전면적이 바닥에 닿을 수 있는 정도로 작게 설정될 수 있다.
좌측 스핀맙(41a)의 하측면은 전체적으로 좌측 방향으로 하향 경사를 형성한다. 우측 스핀맙(41b)의 하측면은 전체적으로 우측 방향으로 하향 경사를 형성한다. 도 6을 참고하여, 좌측 스핀맙(41a)의 하측면은 좌측부에 최저점(Pla)을 형성한다. 좌측 스핀맙(41a)의 하측면은 우측부에 최고점(Pha)을 형성한다. 우측 스핀맙(41b)의 하측면은 우측부에 최저점(Plb)을 형성한다. 우측 스핀맙(41b)의 하측면은 좌측부에 최고점(Phb)을 형성한다.
실시예에 따라, 경사 방향 각(Ag1a, Ag1b)이 0도인 것도 가능하다. 또한, 실시예에 따라, 하측에서 바라볼 때, 좌측 스핀맙(41a)(120a)의 하측면의 경사 방향은 좌우 방향 축에 대해 시계 방향으로 경사 방향 각(Ag1a)을 형성하고, 우측 스핀맙(41b)(120b)의 하측면의 경사 방향은 좌우 방향 축에 대해 반시계 방향으로 경사 방향 각(Ag1b)을 형성하게 구현하는 것도 가능하다. 본 실시예에서는, 하측에서 바라볼 때, 좌측 스핀맙(41a)(120a)의 하측면의 경사 방향은 좌우 방향 축에 대해 반시계 방향으로 경사 방향 각(Ag1a)을 형성하고, 우측 스핀맙(41b)(120b)의 하측면의 경사 방향은 좌우 방향 축에 대해 시계 방향으로 경사 방향 각(Ag1b)을 형성한다.
청소기(1)의 이동은 맙 모듈(40)이 발생시키는 지면과의 마찰력에 의해 구현된다.
맙 모듈(40)은, 바디(30)를 전방으로 이동시키려는 '전방 이동 마찰력', 또는 바디를 후방으로 이동시키려는 '후방 이동 마찰력'을 발생시킬 수 있다. 맙 모듈(40)은, 바디(30)를 좌회전시키려는 '좌향 모멘트 마찰력', 또는 바디(30)를 우회전시키려는 '우향 모멘트 마찰력'을 발생시킬 수 있다. 맙 모듈(40)은, 전방 이동 마찰력 및 후방 이동 마찰력 중 어느 하나와, 좌향 모멘트 마찰력 및 우향 모멘트 마찰력 중 어느 하나를 조합한 마찰력을 발생시킬 수 있다.
맙 모듈(40)이 전방 이동 마찰력을 발생시키기 위해서, 좌측 스핀맙(41a)을 제 1정방향(w1f)으로 소정 rpm(R1)으로 회전시키고 우측 스핀맙(41b)을 제 2정방향(w2f)으로 rpm(R1)으로 회전시킬 수 있다.
맙 모듈(40)이 후방 이동 마찰력을 발생시키기 위해서, 좌측 스핀맙(41a)을 제 1역방향(w1r)으로 소정 rpm(R2)으로 회전시키고 우측 스핀맙(41b)을 제 2역방향(w2r)으로 rpm(R2)으로 회전시킬 수 있다.
맙 모듈(40)이 우향 모멘트 마찰력을 발생시키기 위해서, 좌측 스핀맙(41a)을 제 1정방향(w1f)으로 소정 rpm(R3)으로 회전시키고, 우측 스핀맙(41b)을 i 제 2역방향(w2r)으로 회전시키거나 ii 회전없이 정지시키거나 iii 제 2정방향(w2f)으로 rpm(R3)보다 작은 rpm(R4)로 회전시킬 수 있다.
맙 모듈(40)이 좌향 모멘트 마찰력을 발생시키기 위해서, 우측 스핀맙(41b)을 제 2정방향(w2f)으로 소정 rpm(R5)으로 회전시키고, 좌측 스핀맙(41a)을 i 제 1역방향(w1r)으로 회전시키거나 ii 회전없이 정지시키거나 iii 제 1정방향(w1f)으로 rpm(R5)보다 작은 rpm(R6)로 회전시킬 수 있다.
이하, 좌우측으로 배치된 스핀맙(41)의 마찰력을 향상시키면서, 좌우 방향과 전후 방향으로의 안정성을 향상시키며, 수조(81) 내의 수위에 상관없이 안정적인 주행을 위한 각 구성의 배치를 설명한다.
도 2d 및 도 2e를 참조하면, 스핀맙(41)의 마찰력을 확대하고, 이동 로봇의 회전 시에 일방으로 편심이 발생하는 것을 제한하기 위해, 상대적으로 무거운, 맙 모터(61)와 배터리(Bt)를 스핀맙(41)의 상부에 배치할 수 있다.
구체적으로, 좌측 맙 모터(61a)는 좌측 스핀맙(41a) 위에 배치되며, 우측 맙 모터(61b)는 우측 스핀맙(41b) 위에 배치될 수 있다. 즉, 좌측 맙 모터(61a)의 적어도 일부는 좌측 스핀맙(41a)과 수직적으로 중첩될 수 있다. 바람직하게는, 좌측 맙 모터(61a)의 전체는 좌측 스핀맙(41a)과 수직적으로 중첩될 수 있다. 우측 맙 모터(61b)의 적어도 일부는 우측 스핀맙(41b)과 수직적으로 중첩될 수 있다. 바람직하게는, 우측 맙 모터(61b)의 전체는 우측 스핀맙(41b)과 수직적으로 중첩될 수 있다.
더욱 구체적으로, 좌측 맙 모터(61a)와 우측 맙 모터(61b)는 좌측 스핀맙(41a)의 스핀 회전축(Osa)과 우측 스핀맙(41b)의 스핀 회전축(Osb)을 연결한 가상의 중심 수평선(HL)과 수직적으로 중첩되게 배치될 수 있다. 바람직하게는, 좌측 맙 모터(61a)의 무게중심(MCa)와 우측 맙 모터(61b)의 무게중심(MCb)는 좌측 스핀맙(41a)의 스핀 회전축(Osa)과 우측 스핀맙(41b)의 스핀 회전축(Osb)을 연결한 가상의 중심 수평선(HL)과 수직적으로 중첩되게 배치될 수 있다. 또는, 좌측 맙 모터(61a)의 기하학적 중심과 우측 맙 모터(61b)의 기하학적 중심은 좌측 스핀맙(41a)의 스핀 회전축(Osa)과 우측 스핀맙(41b)의 스핀 회전축(Osb)을 연결한 가상의 중심 수평선(HL)과 수직적으로 중첩되게 배치될 수 있다. 물론, 좌측 맙 모터(61a)와 우측 맙 모터(61b)는 로봇 수직선(Po)을 기준으로 대칭되게 배치된다.
좌측 맙 모터(61a)의 무게중심(MCa)와 우측 맙 모터(61b)의 무게중심(MCb)이 각 스핀맙(41)의 위에서 벗어나지 않고, 서로 좌우 대칭되게 배치되므로, 스핀맙(41)의 마찰력을 향상시키면서, 주행 성능 및 좌우 균형을 유지할 수 있다.
이하, 좌측 스핀맙(41a)의 스핀 회전축(Osa)을 좌측 스핀 회전축(Osa)으로 명명하고, 우측 스핀맙(41b)의 스핀 회전축(Osb)을 우측 스핀 회전축(Osb)로 명명한다.
수조(81)가 중심 수평선(HL) 보다 후방에 배치되고, 수조(81) 내의 물의 량은 가변적이므로, 수조(81)의 수위에 상관없이 안정적인 전후 균형을 유지하기 위해, 좌측 맙 모터(61a)는 좌측 스핀 회전축(Osa)에서 좌측방향으로 치우치게 배치될 수 있다. 좌측 맙 모터(61a)는 좌측 스핀 회전축(Osa)에서 좌측 전방 방향으로 치우치게 배치될 수 있다. 바람직하게는, 좌측 맙 모터(61a)의 기하학적 중심 또는 좌측 맙 모터(61a)의 무게중심(MCa)은 좌측 스핀 회전축(Osa)에서 좌측방향으로 치우치게 배치되거나, 좌측 맙 모터(61a)의 기하학적 중심 또는 좌측 맙 모터(61a)의 무게중심(MCa)은 좌측 스핀 회전축(Osa)에서 좌측 전방 방향으로 치우치게 배치될 수 있다.
우측 맙 모터(61b)는 우측 스핀 회전축(Osb)에서 우측방향으로 치우치게 배치될 수 있다. 우측 맙 모터(61b)는 우측 스핀 회전축(Osb)에서 우측 전방 방향으로 치우치게 배치될 수 있다. 바람직하게는, 우측 맙 모터(61b)의 기하학적 중심 또는 우측 맙 모터(61b)의 무게중심(MCb)은 우측 스핀 회전축(Osb)에서 우측방향으로 치우치게 배치되거나, 우측 맙 모터(61b)의 기하학적 중심 또는 우측 맙 모터(61b)의 무게중심(MCb)은 우측 스핀 회전축(Osb)에서 우측 전방 방향으로 치우치게 배치될 수 있다.
좌측 맙 모터(61a)와 우측 맙 모터(61b)가 각 스핀맙(41)의 중심에서 전방외측으로 치우친 위치에서 압력을 가해주므로, 각 스핀맙(41)의 전방 외측에 압력이 집중되게 되므로, 스핀맙(41)의 회전력에 의해 주행 성능이 향상되게 된다.
좌측 스핀 회전축(Osa)과 우측 스핀 회전축(Osb)은 바디(30)의 중심보다 후방에 배치된다. 중심 수평선(HL)은 바디(30)의 기하학적 중심(Tc) 및 이동로봇의 무게중심(WC) 보다 후방에 배치된다. 좌측 스핀 회전축(Osa)과 우측 스핀 회전축(Osb)은 로봇 수직선(Po)에서 동일한 거리로 이격하여 배치된다.
좌측 주동 조인트(65a)는 좌측 스핀맙(41a) 위에 배치되며, 우측 주동 조인트(65b)는 우측 스핀맙(41b) 위에 배치될 수 있다.
본 실시예에서 배터리(Bt)는 단수개가 설치된다. 배터리(Bt)의 적어도 일부는 좌측 스핀맙(41a) 및 우측 스핀맙(41b) 위에 배치된다. 상대적으로 무거운 배터리(Bt)가 스핀맙(41) 상에 배치되어서 스핀맙(41)의 마찰력을 향상시키고, 이동 로봇의 회전으로 발생하는 편심을 줄일 수 있다.
구체적으로, 배터리(Bt)의 좌측 일부는 좌측 스핀맙(41a)과 수직적으로 중첩되고, 배터리(Bt)의 우측 일부는 우측 스핀맙(41b)과 수직적으로 중첩되게 배치될 수 있다. 배터리(Bt)는 중심 수평선(HL)과 수직적으로 중첩되게 배치되고, 로봇 수직선(Po)과 수직적으로 중첩되게 배치될 수 있다.
더욱 구체적으로, 배터리(Bt)의 무게 중심(BC) 또는 배터리(Bt)의 기하학적 중심은 로봇 수직선(Po) 상에 배치되고, 중심 수평선(HL) 상에 배치될 수 있다. 물론, 배터리(Bt)의 무게 중심(BC) 또는 배터리(Bt)의 기하학적 중심은 로봇 수직선(Po) 상에 배치되고, 중심 수평선(HL) 보다 전방에 배치되고, 바디(30)의 기하학적 중심(Tc) 보다 후방에 배치될 수 있다.
배터리(Bt)의 무게 중심(BC) 또는 배터리(Bt)의 기하학적 중심은 수조(81) 또는 수조(81)의 무게중심(PC) 보다 전방에 배치될 수 있다. 배터리(Bt)의 무게 중심(BC) 또는 배터리(Bt)의 기하학적 중심은 스윕 모듈(2000)의 무게중심(SC) 보다 후방에 위치될 수 있다.
하나의 배터리(Bt)가 좌측 스핀맙(41a)과 우측 스핀맙(41b) 사이의 중간에 배치되고, 중심 수평선(HL) 및 로봇 수직선(Po) 상에 배치되므로, 무거운 배터리(Bt)가 스핀맙(41)들의 회전 시에 중심을 잡아주고, 스핀맙(41)에 무게를 실어줘서 스핀맙(41)에 마찰력을 향상시키게 된다.
배터리(Bt)는 좌측 맙 모터(61a) 및 우측 맙 모터(61b)와 동일 높이(하단의 높이) 또는 동일 평면상에 배치될 수 있다. 배터리(Bt)는 좌측 맙 모터(61a)와 우측 맙 모터(61b)의 사이에 배치될 수 있다. 배터리(Bt)는 좌측 맙 모터(61a)와 우측 맙 모터(61b)의 사이의 빈 공간에 배치된다.
수조(81)의 적어도 일부는 좌측 스핀맙(41a) 및 우측 스핀맙(41b) 위에 배치된다. 수조(81)는 중심 수평선(HL) 보다 후방에 배치되고, 로봇 수직선(Po)과 수직적으로 중첩되게 배치될 수 있다.
더욱 구체적으로, 수조(81)의 무게 중심(PC) 또는 수조(81)의 기하학적 중심은 로봇 수직선(Po) 상에 배치되고, 중심 수평선(HL) 보다 전방에 위치될 수 있다. 물론, 수조(81)의 무게 중심(PC) 또는 수조(81)의 기하학적 중심은 로봇 수직선(Po) 상에 배치되고, 중심 수평선(HL) 보다 후방에 배치될 수 있다. 여기서, 수조(81)의 무게 중심(PC) 또는 수조(81)의 기하학적 중심이 중심 수평선(HL) 보다 후방에 배치된다는 것은 수조(81)의 무게 중심(PC) 또는 수조(81)의 기하학적 중심이 중심 수평선(HL) 보다 후방에 치우친 일 영역과 수직적으로 중첩되게 위치되는 것을 의미한다. 물론, 수조(81)의 무게 중심(PC) 또는 수조(81)의 기하학적 중심은 바디(30)를 벗어나지 않고, 바디(30)와 수직적으로 중첩되게 위치된다.
수조(81)의 무게 중심(PC) 또는 수조(81)의 기하학적 중심은 배터리(Bt)의 무게 중심(BC) 보다 후방에 배치될 수 있다. 수조(81)의 무게 중심(PC) 또는 수조(81)의 기하학적 중심은 스윕 모듈(2000)의 무게중심(SC) 보다 후방에 위치될 수 있다.
수조(81)는 좌측 맙 모터(61a) 및 우측 맙 모터(61b)와 동일 높이(하단의 높이) 또는 동일 평면상에 배치될 수 있다. 수조(81)는 좌측 맙 모터(61a)와 우측 맙 모터(61b)의 사이공간에서 후방으로 치우치게 배치될 수 있다.
스윕 모듈(2000)은 바디에서 스핀맙들(41), 배터리(Bt), 수조(81), 맙 구동부(60) 및 우측 맙 모터(61b) 및 좌측 맙 모터(61a) 보다 전방에 배치된다.
스윕 모듈(2000)의 무게중심(SC) 또는 스윕 모듈(2000)의 기하학적 중심은 로봇 수직선(Po) 상에 위치되고, 바디(30)의 기하학적 중심(Tc) 보다 전방에 배치될 수 있다. 바디(30)는 상부에서 볼때 원 형상이고, 베이스(32)는 원 형상일 수 있다. 바디(30)의 기하학적 중심(Tc)은 바디(30)가 원형일 때 그 중심을 의미한다. 구체적으로, 바디(30)는 상부에서 볼때, 반 지름 오차가 3% 이내인 원 형상이다.
구체적으로, 스윕 모듈(2000)의 무게중심(SC) 또는 스윕 모듈(2000)의 기하학적 중심은 로봇 수직선(Po) 상에 위치되고, 배터리(Bt)의 무게 중심(BC), 수조(81)의 무게중심(PC), 좌측 맙 모터(61a)의 무게중심(MCa), 우측 맙 모터(61b)의 무게중심(MCb), 이동로봇의 무게중심(WC) 보다 전방에 배치될 수 있다.
바람직하게는, 스윕 모듈(2000)의 무게중심(SC) 또는 스윕 모듈(2000)의 기하학적 중심은 중심 수평선(HL) 및 스핀맙(41)들의 전단 보다 전방에 위치된다.
스윕 모듈(2000)은 상술한 바와 같이 저장공간(2104)을 가지는 더스트하우징(2100)과, 에지테이터(2200), 스윕 모터(2330)를 포함할 수 있다.
에지테이터(2200)는 스윕 모듈(2000)에 회전가능하게 설치되고 저장공간(2104) 보다 후방에 배치되어서, 에지테이터(2200)가 바디에서 외부로 돌출되지 않으면서, 좌우측 스핀맙(41b)(41)을 커버할 수 있는 적당한 길이를 유지할 수 있게 된다.
에지테이터(2200)의 회전축은 중심 수평선(HL)과 나란하게 배치되고, 에지테이터(2200)의 중심은 가상의 로봇 수직선(Po) 상에 위치된다. 따라서, 스핀맙(41)들에 유입되는 큰 이물질이 에지테이터(2200)에 의해 효과적으로 제거된다. 에지테이터(2200)의 회전축은 바디(30)의 기하학적 중심(Tc) 보다 전방에 위치된다. 에지테이터(2200)의 길이는 좌측 스핀 회전축(Osa)에서 우측 스핀 회전축(Osb)의 거리 보다 긴 것이 바람직하다. 에지테이터(2200)의 회전축은 스핀맙(41)의 전단에 인접하여 배치될 수 있다.
스윕 모듈(2000)의 양단에는 바닥과 접촉되는 좌측 캐스터(58a) 및 우측 캐스터(58b)가 더 포함될 수 있다. 좌측 캐스터(58a) 및 우측 캐스터(58b)는 바닥과 접촉하여 구름되고, 탄성력에 의해 상하로 움직일 수 있다. 좌측 캐스터(58a) 및 우측 캐스터(58b)는 스윕 모듈(2000)을 지지하고, 바디의 일부를 지지한다. 좌측 캐스터(58a) 및 우측 캐스터(58b)는 더스트하우징(2100)에 하단에서 하부로 돌출된다.
좌측 캐스터(58a)와 우측 캐스터(58b)는 중심 수평선(HL)과 나란한 선 상에 배치되며, 중심 수평선(HL) 및 에지테이터(2200) 보다 전방에 배치될 수 있다. 좌측 캐스터(58a)와 우측 캐스터(58b)를 연결한 가상의 선은 중심 수평선(HL), 에지테이터(2200), 바디(30)의 기하학적 중심(Tc) 보다 전방에 배치될 수 있다. 물론, 좌측 캐스터(58a)와 우측 캐스터(58b)는 로봇 수직선(Po)을 기준으로 좌우 대칭되게 구비될 수 있다. 좌측 캐스터(58a)와 우측 캐스터(58b)는 로봇 수직선(Po)에서 동일한 거리로 이격되어 배치될 수 있다.
좌측 캐스터(58a)와, 우측 캐스터(58b), 우측 스핀 회전축(Osb) 및 좌측 스핀 회전축(Osa)을 순서대로 연결한 가상의 사각형 내에, 바디(30)의 기하학적 중심(Tc), 이동로봇의 무게중심(WC), 스윕 모듈(2000)의 무게중심(SC) 및 배터리(Bt)의 무게 중심(BC)이 배치되고, 상대적으로 무게가 무거운 배터리(Bt)와, 좌측 스핀 회전축(Osa) 및 우측 스핀 회전축(Osb)가 중심 수평선(HL)에 가깝게 배치되어서, 이동 로봇의 주 하중은 스핀맙(41)들에 인가되고, 나머지 부 하중은 좌측 캐스터(58a)와 우측 캐스터(58b)에 인가되게 된다.
스윕 모터(2330)는 로봇 수직선(Po) 상에 위치되거나, 스윕 모터(2330)가 로봇 수직선(Po)을 기준으로 일측에 배치되면, 펌프(85)가 타측에 배치되어서(도 19참조) 스윕 모터(2330)와 펌프(85)의 합산 무게중심이 로봇 수직선(Po) 상에 배치될 수 있다.
따라서, 전방으로 치우친 이동 로봇의 무게중심은 후방에 배치된 수조(81)의 수위에 상관없이 유지되어서, 스핀맙(41)에 마찰력을 확대시키면서, 바디(30)의 기하학적 중심(Tc)에 가까운 위치에 이동로봇의 무게중심(WC)을 위치시킬 수 있으므로, 안정적인 주행이 가능하게 된다.
컨트롤러(Co)의 무게중심(COC) 또는 컨트롤러(Co)의 기하학적 중심은 바디(30)의 기하학적 중심(Tc), 중심 수평선(HL) 보다 전방에 배치될 수 있다. 컨트롤러(Co)의 적어도 50% 이상은 스윕 모듈(2000)과 수직적으로 중첩되게 배치될 수 있다.
이동로봇의 무게중심(WC)은 로봇 수직선(Po) 상에 위치되고, 중심 수평선(HL) 보다 전방에 위치되며, 배터리(Bt)의 무게 중심(BC) 보다 전방에 위치되고, 수조(81)의 무게중심(PC) 보다 전방에 위치되고, 스윕 모듈(2000)의 무게중심(SC) 보다 후방에 배치될 수 있으며, 좌측 캐스터(58a) 및 우측 캐스터(58b) 보다 후방에 배치될 수 있다.
각 구성이 로봇 수직선(Po)을 기준으로 대칭적으로 배치하거나, 서로 무게를 고려해 배치하여서, 이동로봇의 무게중심(WC)이 로봇 수직선(Po) 상에 위치되게 한다. 이동로봇의 무게중심(WC)이 로봇 수직선(Po) 상에 위치되면, 좌우 방향의 안정성이 향상되는 이점이 존재한다.
캐스터(58)는 이동로봇의 하부에 배치되며, 이동로봇의 하중을 일부 지지한다. 캐스터(58)는 이동로봇의 전방에 배치될 수 있다. 캐스터(58)는 전방 양 측에 배치될 수 있다. 캐스터(58)는 맙모듈의 전방에 배치될 수 있다. 캐스터(58)는 스윕모듈의 전방에 배치될 수 있다. 캐스터는 휠을 포함하여 이동로봇을 이동시킬 수 있다.
각 스핀맙(41)의 일부는 바디(30) 와 수직적으로 중첩되고, 다른 일부는 바디(30)의 외부로 노출될 수 있다.
각 스핀맙(41)이 바디(30)와 수직적으로 중첩되는 영역의 비율은 각 스핀맙의 85% 내지 95%인 것이 바람직하다. 구체적으로, 바디의 우측단과, 우측 스핀맙(41b)의 우측 단을 연결한 선과 바디의 우측단에서 중심 수직선(Po)과 평행하게 연결한 수직선 사이의 사이각은 0 도 내지 5 도 일 수 있다.
각 스핀맙(41)의 바디의 외측으로 노출된 영역의 길이는 각 스핀맙(41)의 반지름의 1/2 내지 1/7 인 것이 바람직하다. 각 스핀맙(41)의 바디의 외측으로 노출된 영역의 길이는 각 스핀맙(41)서 바디의 외측으로 노출된 일단에서 각 스핀맙(41)의 회전축까지의 거리를 의미할 수 있다.
각 스핀맙(41)의 바디의 외측으로 노출된 영역의 단에서 기하학적 중심(TC) 사이의 거리는 바디의 평균 반지름 보다 클 수 있다.
스윕모듈과의 관계를 고려하면, 각 스핀맙이 노출되는 위치는 바디(30)의 측방과 후방 사이이다. 즉, 바디를 아래서 보아 시계방향으로 순차적으로 각 분면이 위치될 때, 각 스핀맙이 노출되는 위치는 바디(30)의 2/4 분면 또는 3/4 분면 일 수 있다.
도 1 및 도 2a를 중심으로 캐스터가이드(24)를 포함하는 이동로봇 충전대(2)를 설명한다.
이동로봇은 도 2의 제1안내선(A1)(1점쇄선)을 따라 충전대(2)로 진입하여 도킹된다.
충전대(2)는 전원모듈을 구비한 본체(21), 상기 본체(21)의 하단에 결합된 플레이트(22)를 포함할 수 있다. 상기 플레이트(22)의 상부에 이동로봇이 도킹될 수 있다.
상기 플레이트(22)에는 캐스터가이드(24)를 포함하여, 이동로봇의 전방 하단에 구비된 캐스터를 안내할 수 있다. 상기 플레이트(22)는 캐스터가이드(24)를 통해 이동로봇을 도킹구역으로 인도하고, 충전단자(23)와 대응단자(23')를 수직적으로 중첩되게 접촉하도록 안내한다.
<충전대 본체>
충전대를 설명하는 과정에서, 방향은 도 1 및 도 2의 방향을 기준으로 하고, 2개의 충전단자(23)를 연결한 방향을 좌우방향(LeRi)으로 정의하고, 좌우 방향과 직교하는 방향을 전후방향(FR)으로 정의하며, 좌우방향 및 전후방향과 직교하는 방향을 상하방향(UD)으로 정의한다.
충전대 본체(21)는 플레이트(22)의 전단에 결합되고 상부로 돌출하여 벽을 형성할 수 있다. 이 경우에는 이동로봇이 플레이트(22) 상에 적당한 도킹구역을 벗어나 더욱 전진할때 이탈을 방지하는 벽의 기능을 할 수 있다.
본체(21)는 내부에 전원모듈을 구비할 수 있다. 상기 전원모듈은 외부의 전원과 전기적으로 연결되어, 외부의 전기를 공급받을 수 있다. 상기 전원모듈은 충전단자(23)와 전기적으로 연결되어 공급받은 전기를 충전단자(23)에 공급할 수 있다.
플레이트(22)는 원형의 형상을 가질 수 있다. 플레이트(22)는 이동로봇의 형상과 유사한 형상을 가질 수 있다. 다만, 플레이트(22)의 형상은 이에 한하지 않으며, 통상의 기술자를 기준으로 할 때 다각형의 형상 등으로 하는 단순한 변경을 포함한다.
플레이트(22)의 상면에는 이동로봇이 위치되는 공간과, 이동로봇을 안내하는 캐스터가이드(24)와, 충전단자(23)가 배치될 수 있다. 물론, 플레이트(22)의 상면에는 가이드핀(25)이 배치될 수도 있다.
이동로봇은 플레이트(22)의 상단에 도킹된다. 도 1을 참조하면 원형의 평탄한 면에 이동로봇이 도킹되며, 이를 도킹구역 또는 맙 위치부(226)라고 한다.
맙 위치부(226)는 플레이트(22)의 상부에서 캐스터가이드(24)의 후방에 배치되어 상기 이동로봇의 스핀맙들이 위치되는 영역을 정의한다. 맙 위치부(226)는 플레이트(22)의 상부에서 충전단자(23)의 후방에 배치될 수 있다.
맙 위치부(226)는 상부에서 보아 전후방은 개방되고 좌우방은 막힌 함몰된 영역으로 정의될 수 있다. 맙 위치부(226)의 전단에는 캐스터가이드(24)가 위치된다.
맙 위치부(226)의 후단에는 이동로봇의 진입을 용이하게 하는 진입 경사면(227)이 형성될 수 있다. 진입 경사면(227)은 플레이트(22)는 후단에, 전방으로 상향 경사지게 형성된다. 진입 경사면(227)은 길이는 2개의 스핀맙(41)의 직경을 더한 값과 같거나 더 클 수 있다.
이동로봇은 진입 경사면(227)를 올라가 도킹구역(226)으로 향할 수 있다. 진입 경사면(227)는 플레이트(22)의 후단 엣지에 걸쳐 형성될 수 있다.
플레이트(22)의 측면 또는/및 전방에는 상부로 돌출되어 걸레를 가이드하는 걸레 가이드(221)가 형성될 수 있다. 상기 걸레 가이드(221)는 플레이트(22)의 후방에 형성된 진입 경사면(227)의 양단단과 연결된다.
걸레 가이드(221)는 2개가 배치되고, 각 걸레 가이드(221)는 진입 경사면(227)의 좌측 단과 진입 경사면(227)의 우측단에 연결된다.
상기 걸레 가이드(221)는 진입 경사면(227)과 함께 도킹구역(226)의 둘레의 적어도 일부에 형성될 수 있다. 도킹구역(226)의 후방 둘레에 경사부가 형성될 수 있으며, 경사부의 끝단에 상기 걸레 가이드(221)가 형성될 수 있다. 상기 걸레 가이드(221)는 이동로봇이 도킹구역(226)을 이탈하는 것을 방지하고 캐스터를 캐스터가이드(24)로 안내한다.
걸레 가이드(221)는 곡률을 가지고, 플레이트(22)의 상면에서 돌출되어 형성될 수 있다. 걸레 가이드(221)의 후방의 높이는 걸레 가이드(221)의 전방의 높이 보다 낮을 수 있다. 걸레 가이드(221)의 높이는 후방에서 전장방으로 상향 경사지게 형성될 수 있다.
걸레 가이드(221)는 후방이 넓고 전방이 좁게 형성될 수 있다. 걸레 가이드(221)는 원형 플레이트(22)의 둘레부를 따라 측면 일부와 전면 일부에 형성될 수 있다. 걸레 가이드(221)는 호 모양으로 형성될 수 있다.
걸레 가이드(221)는 2개가 좌우 방향으로 이격되어 배치되고, 2개의 걸레 가이드(221) 사이의 거리는 2개의 캐스터가이드(24) 사이의 거리 보다 멀게 위치될 수 있다. 2개의 캐스터가이드(24)는 2개의ㅏ 걸레 가이드(221) 사이에 배치될 수 있다.
따라서 이동로봇이 도킹구역(226)을 벗어나서 진입하는 경우에 캐스터를 안쪽 전방에 위치한 캐스터가이드(24)로 안내할 수 있다.
<충전단자>
충전단자(23)는 이동로봇과 전기적 연결되어 이동로봇 내부에 배치된 전지를 충전하는 장치로, 충전대(2)의 플레이트(22)의 상면에서 상부로 노출된다.
충전대의 전원모듈과 전기적으로 연결된다. 충전단자(23)는 플레이트(22)의 전방에 배치될 수 있다. 충전단자(23)는 수직중심축(Ay)을 중심으로 좌/우 한쌍으로 배치될 수 있다. 바람직하게는, 한 쌍의 충전단자(23)는 수직중심축(Ay)을 기준으로 대칭되게 배치된다. 수직중심축(Ay)은 전후 방향과 나란하고, 충전대(2)의 중심을 지나는 선이다. 충전단자(23)는 제1 충전단자(23a)와 제2 충전단자(23b)를 포함할 수 있다.
이동로봇에는 상기 충전대의 충전단자(23)에 대응되는 대응단자(23')를 포함한다. 이동로봇의 대응단자(23')는 충전대의 충전단자(23)와 전기적으로 연결되도록 바디(3)의 하부에 노출될 수 있다. 이동로봇의 충전단자(23')는 바디(3)의 전단에 배치될 수 있다.
<캐스터가이드의 형태>
도 4를 참조하여 캐스터가이드(24)의 형태를 설명한다.
캐스터가이드(24)는 이동 로봇의 이동 방향을 가이드 하고, 상기 이동 로봇이 전방으로 이동함에 따라, 상기 이동 로봇의 일단의 높이를 기준 높이 보다 높였다가, 다시 내리는 구조를 가질 수 있다. 여기서, 기준 높이는 맙 위치부(226)의 높이를 의미한다.
캐스터가이드(24)는 플레이트(22)의 상면 일부로 구성되거나, 플레이트(22)의 상면에 별도의 부재로 결합될 수 있다. 캐스터가이드(24)는 충전단자(23)의 후방에 배치되고, 맙 위치부(226) 보다 전방에 위치된다.
캐스터가이드(24)는, 상부에 캐스터가 접촉하여 굴러 이동할 수 있는 가이드면(241), 상기 가이드면(241)의 측면에 위치하는 이탈방지벽(242) 및 가이드면(241)의 전방에 위치하는 스토퍼(2417)를 포함할 수 있다. 캐스터가이드(24)는 수직중심축(Ay)을 중심으로 좌/우에 한쌍으로 형성될 수 있다. 한 쌍의 캐스터가이드(24)는 수직중심축(Ay)을 기준으로 대칭되게 배치된다.
<가이드면은 수평>
가이드면(241)에서는 캐스터가 후방에서 전방으로 굴러 이동한다. 가이드면(241)은 좌우방향 단면에서 수평한 면 또는 수평과 5도 이내의 각도를 가지는 면을 형성할 수 있다.
좌/우측 가이드면(241)은 좌우방향 단면상에서 가운데가 낮고 양 측면이 높게 형성될 수 있다. 다른 예로, 좌/우측 가이드면(241)은 좌우방향 단면에서, 수직중심축을 항해 하향 경사를 가질 수 있다. 좌우방향 단면에서 좌측 가이드면(241)은 우측방향으로 하향 경사지고, 우측 가이드면(241)은 좌측 방향으로 하향 경사질 수 있다.
따라서, 캐스터는 가이드면(241)을 오르며 수직중심축으로 향하려는 힘을 받으며, 그 결과 플레이트(22)의 정중앙에 위치하여 출입할 수 있다.
좌/우측 가이드면(241)은 좌우방향 단면에서, 수직중심축을 항해 상향 경사를 가질 수 있다. 좌우방향 단면에서 좌측 가이드면(241)은 우측방향으로 상향 경사지고, 우측 가이드면(241)은 좌측 방향으로 상향 경사질 수 있다.
따라서, 캐스터는 가이드면(241)을 오르며 수직중심축의 반대방향으로 향하는 힘을 받으며, 그 결과 플레이트(22)의 정중앙에 위치하여 출입할 수 있다.
각 가이드면(241)은 제1가이드면(2411), 제2가이드면(2412)을 포함할 수 있다. 또한, 각 가이드면(241)은 제1가이드면(2411), 제2가이드면(2412) 및 제3가이드면(2413)을 포함할 수 있다.
제1가이드면(2411)은 전후방 단면에서 전방상향의 경사를 가진다. 제1가이드면(2411)의 후단은 플레이트(22)와 연결되고, 전단은 후술하는 제2가이드면(2412)의 후단과 연결된다.
제1가이드면(2411)의 후단과 전단의 연장선이 형성하는 경사는 이동로봇의 최하단과 이동로봇의 전방하단 모서리가 형성하는 기울기보다 낮다. 따라서, 이동로봇의 전방하단 모서리가 제1가이드면(2411)에 충돌하기 전에 캐스터가 제1가이드면(2411)에 도착하여 경사를 오를 수 있다.
캐스터는 플레이트(22) 상부를 굴러 전진한다. 캐스터는 제1가이드면(2411)의 후단과 최초로 만나며, 제1가이드면(2411)의 경사를 굴러 올라간다. 제1가이드면(2411)은 후방이 넓고 전방이 좁게 형성될 수 있다.
제1가이드면(2411)의 경사는 이동 로봇의 약한 전진력을 고려하여서, 1도 내지 10도 사이로 설정될 수 있다.
도 7a 내지 도 7d를 참조하여 제1가이드면(2411)의 형상을 실시예별로 설명한다.
도 7a는 제1실시예로, 우측면에서 볼 때, 제1가이드면(2411a)은 일정한 기울기의 경사를 형성할 수 있다. 제1가이드면(2411a)의 후단과 플레이트(22)와의 연결부에 라운드를 형성할 수 있다. 제1가이드면(2411a)의 전단과 제2가이드면(2412)의 후단의 연결부에 라운드를 형성할 수 있다.
도 7b는 제2실시예로, 우측면에서 볼 때, 제1가이드면(2411b)은 기울기가 점점 감소하는 경사를 형성할 수 있다. 제1가이드면(2411b)의 후단과 플레이트(22)와의 연결부에 라운드를 형성할 수 있다. 제1가이드면(2411b)의 기울기가 점점 감소하는 경사를 형성하는 경우에는, 제1가이드면(2411b)의 후단에서 기울기변화가 가장 급격하기 때문에, 캐스터가 캐스터가이드(24)에 진입하는 시점을 명확히 감지할 수 있다.
도 7c는 제3실시예로, 우측면에서 볼 때, 제1가이드면(2411c)은 기울기가 점점 증가하는 경사를 형성할 수 있다. 제1가이드면(2411c)의 전단과 제2가이드면(2412)의 후단의 연결부에 라운드를 형성할 수 있다. 제1가이드면(2411c)의 기울기가 점점 증가하는 경우에는, 제1가이드면(2411c)의 후단에서 기울기변화가 완만하므로, 제1가이드면(2411c)에 요잉하게 진입할 수 있다. 반면, 제1가이드면(2411c)이 제2가이드면(2412)과 연결부에서 기울기변화가 가장 급격하기 때문에, 제2가이드면(2412)을 진입하는 시점을 명확히 감지할 수 있다.
도 7d는 제4실시예로, 우측면에서 볼 때, 제1가이드면(2411d,e)은 변곡점(2415)을 포함할 수 있으며, 변곡점(2415)은 바람직하게는 제1가이드면의 중간에 위치할 수 있다. 하지만 본 기재에 한하지 않으며, 통상의 기술자가 용이하게 할 수 있을 정도로 변곡점(2415)의 위치를 변경할 수 있다.
변곡점의 후단(2411d)의 경사의 기울기는 점점 증가하고, 변곡점의 전단(2411e)의 기울기는 점점 감소하는 형태를 가질 수 있다. 제1가이드면을 측면에서 볼 때 S자형 경사를 형성할 수 있다. 이때에는, 제1가이드면의 후단(2411d)은 기울기 변화가 완만하므로 캐스터가 제1가이드면(2411d)에 용이하게 진입할 수 있고, 제1가이드면의 전단(2411e)과 제2가이드면(2412)의 후단의 연결부의 기울기변화가 완만하므로 캐스터가 제2가이드면(2412)에 용이하게 진입할 수 있어, 캐스트에 가해지는 반력을 최소화할 수 있다.
제2가이드면(2412)은 전후방향 단면에서 전방하향의 경사로 형성될 수 있다. 캐스터는 제2가이드면(2412)을 따라 하향할 수 있다. 제2가이드면(2412)의 전단으로 향하면서 이동로봇의 전단이 들렸다가 다시 내려오면서 바디(3)에 구비된 대응단자(23')는 충전대의 충전단자(23)와 접촉한다.
제3가이드면(2413)은 전후방향 단면에서 전방상향의 경사로 형성될 수 있다. 제3가이드면(2413)의 후단은 제2가이드면(2412)의 전단과 연결된다. 제2가이드면(2412)과 제3가이드면(2413)의 연결점은 안정한 위치로서, 캐스터가 안착될 수 있다. 바람직하게는 캐스터가 제3가이드면(2413)에 다다르기 전에 대응단자(23')와 충전단자(23)는 접촉할 수 있다.
<충전단자와 관계>
도 6을 참조하여 캐스터가이드가 형성하는 가이드면의 높이를 설명한다.
제1가이드면과 제2가이드면의 연결부의 높이(h1)는 제2가이드면과 제3가이드면의 연결부의 높이(h2)보다 높을 수 있다. 제1가이드면과 제2가이드면의 연결부의 높이(h1)가 제2가이드면과 제3가이드면의 연결부의 높이(h2)보다 높게 형성되므로 대응단자(23')는 충전단자(23)로 접근할 때 상부에서부터 접근할 수 있다.
제2가이드면과 제3가이드면의 연결부의 높이(h2)는 충전단자의 높이(h4)보다 낮을 수 있다. 보다 상세하게는 충전단자의 높이(h4)는 충전단자(23) 상부에 배치된 금속단자의 높이일 수 있다. 이때에는, 캐스터가 제2가이드면(2412)과 제3가이드면(2413)의 연결부에 도착하기 전에 대응단자(23')와 충전단자(23)가 먼저 접촉하고 수직으로 중첩되므로, 이동로봇의 하중의 일부가 상기 중첩된 충전단자(23)에 가해져 단자간 접촉을 더욱 강화시킬 수 있다는 효과가 있다. 또한, 걸레부에 가해지는 하중의 일부가 충전단자(23)로 분산되어 걸레부의 수명을 더욱 증가시키는 효과가 있다. 또한, 캐스터에 가해지는 하중의 일부가 충전단자(23)로 분산되어 캐스터의 수명을 더욱 증가시키는 효과가 있다. 또한, 캐스터에 클리프센서(Cliff Sensor)가 구비된 경우, 캐스터의 휠드롭(Whell Drop)현상이 발생하고 크리프센서가 이를 감지하여, 이동로봇이 충전대(2)에 올바로 도킹되었음을 확인할 수 있다.
캐스터가이드(24)는 가이드면(241)의 측단에서 가이드면(241)과 교차되는 면을 정의하는 이탈방지벽(242)을 더 포함한다. 이탈방지벽은 가이드면(241)의 좌우측단에 배치되고 전후방향으로 연장되고, 상항 방향으로 높이를 가지는 면을 정의할 수 있다.
구체적으로, 이탈방지벽(242)은 가이드면(241)의 좌우측 단에서 상부로 돌출되어 형성된다.
이탈방지벽(242)은 제1가이드면(2411c) 내지 제3가이드면(2413)의 적어도 하나 이상의 측단에 형성될 수 있다. 이탈방지벽(242)은 가이드면을 이동하는 캐스터가 가이드면을 이탈하지 않게 하는 역할을 한다.
이탈방지벽(242)은 가이드면(241)의 좌측단에서 상부로 돌출되어 형성되는 제1 이탈방지벽(242a)과, 가이드면(241)의 우측단에서 상부로 돌출되어 형성되는 제2 이탈방지벽(242b)을 포함한다. 제1 이탈방지벽(242a) 및 제2 이탈방지벽(242b) 사이의 이격거리는 후방에서 전방으로 갈수록 좁아질 수 있다.
<스토퍼>
도 4, 도 7a 내지 도 7d를 참조하여 스토퍼(2417)를 설명한다.
스토퍼(2417)는 캐스터가이드(24)의 전방에 배치되어 캐스터가 캐스터가이드(24)를 지나쳐서 이탈하는 것을 방지하는 기능을 한다. 스토퍼(2417)는 제3가이드면(2413)의 전단에 연결되고 상측으로 돌출된다. 스토퍼(2417)는 제1가이드면(2411c) 내지 제3가이드면(2413)과 일체로 형성될 수 있다.
물론, 실시예에 따라서, 스토퍼(2417)는 생략되고 제3가이드면(2413)이 스토퍼(2417)의 역할을 할 수도 있다.
상기 스토퍼의 최고점의 높이(h3)는 제1가이드면과 제2가이드면의 연결부의 높이(h1)는 보다 높게 형성될 수 있다. 에너지보존법칙에 따라서, 제1가이드면과 제2가이드면의 연결부의 높이(h1)가 스토퍼의 최고점의 높이(h3)보다 높다면 캐스터가 스토퍼(2417)를 지나쳐 이탈할 수 있다는 문제가 발생한다. 따라서, 스토퍼의 최고점의 높이(h3)는 제1가이드면과 제2가이드면의 연결부의 높이(h1)는 보다 높게 형성하여 캐스터의 이탈을 방지한다. ( m*g*h1 < m*g*h3 )
도 7a 내지 7c를 참조하여 스토퍼(2417)의 형상을 설명한다.
우측면에서 볼 때, 도 7a를 참조하면 스토퍼(2417)는 지면에 수직하도록 면을 형성할 수 있다.
혹은, 우측면에서 볼 때, 도 7b을 참조하면 스토퍼(2417)는 전방상향의 기울기를 포함하도록 형성될 수 있다. 관성력 또는 과도한 추진력 등의 원인으로 이동로봇은 제3가이드면(2413)의 전단보다 더욱 전진할 수도 있다. 이때에는 어느정도 전진하는 것을 용인하여 캐스터의 손상을 방지하고, 상기 관성력 등이 상실된 경우 후퇴하여 제2가이드면(2412)과 제3가이드면(2413)의 연결부에 안착할 수 있다.
혹은, 우측면에서 볼 때, 도 7c를 참조하면 스토퍼(2417)는 후방상향의 기울기를 포함하도록 형성될 수 있다. 필요에 따라 제3가이드면(2413)의 전단을 지나치지 않도록 제한해야 하는 경우에는 후방상향의 기울기를 가지도록 하여 이동로봇의 전진 한계선을 결정할 수 있다.
<전협후광>
도 2를 참조하면, 상부에서 캐스터가이드(24)를 볼 때, 캐스터가이드(24)의 전단의 폭(L3)이 후단의 폭(L4)보다 좁게 형성될 수 있다. 상부에서 본 캐스터가이드(24)의 형상은 전협후광으로 형성될 수 있다. 제1가이드의 후단의 폭은 제3가이드의 전단의 폭보다 넓게 형성될 수 있다.
제2가이드면(2412)과 제3가이드면(2413)의 연결부의 폭은 금속단자의 폭에 캐스터의 폭을 더한 것보다 좁게 형성될 수 있다. 제2가이드면(2412)과 제3가이드면(2413)의 연결부의 폭이 금속단자의 폭에 캐스터의 폭을 더한 것보다 넓다면, 캐스터가 안착되는 위치에 따라 충전단자(23)와 대응단자(23')가 접촉하지 않을 수 있다. 따라서, 제2가이드면(2412)과 제3가이드면(2413)의 연결부의 폭은 금속단자의 폭에 캐스터의 폭을 더한 것보다 좁게 형성하여, 캐스터가 제2가이드면(2412)과 제3가이드면(2413)의 연결부의 어디에 위치하던지 충전단자(23)와 대응단자(23')의 전기적 연결을 유지할 수 있다.
<캐스터가이드의 위치>
캐스터가이드(24)는 플레이트(22)의 전방에 위치한다. 캐스터가이드는 수직중심축(Ay)을 기준으로 양 옆에 한쌍이 배치될 수 있다.
캐스터가이드(24)는 충전단자(23)보다 후방에 위치할 수 있다. 이동로봇에서, 대응단자(23')는 이동로봇의 전방에 배치될 수 있고, 캐스터는 대응단자(23')의 측면 후방에 배치될 수 있다. 이에 대응되도록 충전단자(23)는 플레이트(22)의 전방에 배치되고, 캐스터가이드(24)는 충전단(23)자부다 측면 후방에 배치될 수 있다.
수직중심축(Ay)을 기준으로, 수직중심축에서 캐스터가이드(24)의 중심까지의 거리(L2)는 수직중심축에서 충전단자(23)까지의 거리(L1)보다 멀 수 있다.
이동로봇이 원형일 경우에, 캐스터가이드(24)에서 캐스터가 안착되는 중심위치와 충전단자(23)의 금속단자는 동일한 원 상에 배치될 수 있다. 캐스터가이드(24)에서 제2가이드면(2412)과 제3가이드면(2413)의 연결부와 충전단자(23)의 금속단자는 동일한 원 상에 배치될 수 있다. 따라서, 캐스터가 안착되는 경우에 충전단자(23)와 대응단자(23')는 수직으로 중첩될 수 있고, 접촉되어 전기적으로 연결될 수 있다.
<가이드핀>
가이드핀(25)은 플레이트(22)의 중앙 상부에 배치되고, 2개의 스핀맙 사이로 삽입되어 이동로봇을 안내하는 구성요소이다.
가이드핀(25)은 플레이트(22)의 중앙 상부에 배치된다. 가이드핀(25)은 도킹구역(맙 위치부(226)에 배치될 수 있다. 구체적으로, 가이드핀(25)은 플레이트(22)의 상부에서 충전단자(23) 및 캐스터가이드(24) 보다후방에 배치된다.
더욱 구체적으로, 가이드핀(25)은, 제1 방향(전후방향)으로 연장되고, 가이드핀(25)의 연장선은 제1 충전단자와 제2 충전단자 사이(한쌍의 충전단자(23)의 사이)를 통과한다. 가이드핀(25)은 수직중심축(Ay) 상에 위치된다.
가이드핀(25)은 상부로 돌출하여 형성된다. 가이드핀(25)은 플레이트(22)와 일체로 형성될 수 있고, 별개로 형성되어 결합될 수 있다.
가이드핀(25)은 플레이트(22)의 중앙 상부에서 수직중심축을 따라 연장되어 형성될 수 있다. 2개의 스핀맙 또는 회전판은 가이드핀(25)의 양측 옆면에 인접할 수 있다.
가이드핀의 전단(251)은 상기 캐스터가이드(24)의 후단보다 후방에 배치될 수 있다. 따라서, 캐스터가 캐스터가이드(24)에 도달하는 것 보다 먼저 스핀맙(41)이 가이드핀(25)에 도달할 수 있다.
가이드핀의 후단(253)은 전방상향 기울기의 경사가 형성될 수 있다. 따라서, 스핀맙의 하측부터 가이드핀의 전단(251)과 접촉하며, 가이드핀(25)은 진입하는 이동로봇의 스핀맙 사이로 원만하게 삽입될 수 있다.
가이드핀의 전단(251)은 전방하향 기울기의 경사가 형성될 수 있다. 따라서, 스핀맙의 하측부터 가이드핀의 후단(253)과 접촉하여, 가이드핀(25)은 진출하는 이동로봇의 스핀맙 사이로 원만하게 삽입될 수 있다.
이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 특허청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어서는 안될 것이다.

Claims (29)

  1. 전원모듈을 구비한 본체;
    상기 본체의 하단에 결합된 플레이트;
    상기 플레이트의 상면에서 상부로 노출되고, 상기 전원모듈과 전기적으로 연결되는 충전단자; 및
    이동 로봇의 이동 방향을 가이드 하고, 상기 이동 로봇이 전방으로 이동함에 따라, 상기 이동 로봇의 일단의 높이를 기준 높이 보다 높였다가, 다시 내리는 캐스터가이드를 포함하고,
    상기 캐스터가이드는 충전단자의 후방에 배치되며, 상기 캐스터가이드는 전단의 폭이 후단의 폭 보다 좁은 이동로봇 충전대.
  2. 제1항에 있어서,
    상기 캐스터가이드는 캐스터를 안내하는 가이드면을 포함하고,
    상기 가이드면은,
    상기 가이드면의 후방에 배치되고, 전방상향의 경사를 가지는 제1가이드면;
    상기 제1가이드면의 전단에 연결되고, 전방하향의 경사를 가지는 제2가이드면;
    상기 제2가이드부의 전단에 연결되고, 전방상향의 경사를 가지는 제3가이드면;
    를 포함하는 이동로봇 충전대.
  3. 제2항에 있어서,
    상기 제1가이드면은 일정한 기울기의 경사를 포함하는, 이동로봇 충전대.
  4. 제2항에 있어서,
    상기 제1가이드면은 경사의 기울기가 점점 감소하는 이동로봇 충전대.
  5. 제2항에 있어서,
    상기 제1가이드면은 경사의 기울기가 점점 증가하는, 이동로봇 충전대.
  6. 제5항에 있어서,
    상기 제1가이드면은 경사에 배치된 변곡점을 더 포함하고,
    변곡점의 후단의 경사의 기울기는 점점 증가하고, 변곡점의 전단의 경사의 기울기는 점점 감소하는 이동로봇 충전대.
  7. 제2항에 있어서,
    상기 제1가이드면과 제2가이드면의 연결부의 높이(h1)는 상기 제2가이드면과 제3가이드면의 연결부의 높이(h2)보다 높은 이동로봇 충전대.
  8. 제2항에 있어서,
    상기 제2가이드면과 제3가이드면의 연결부의 높이(h2)는 상기 충전단자의 높이(h4)보다 낮은 이동로봇 충전대.
  9. 제2항에 있어서,
    상기 캐스터가이드는,
    상기 가이드면의 측면에 배치되고 상부로 돌출하여 형성되는 이탈방지벽을 포함하는 이동로봇 충전대.
  10. 제2항에 있어서,
    상기 캐스터가이드는,
    상기 제3가이드면의 전단에 연결되고, 상측으로 돌출된 스토퍼
    를 더 포함하는 이동로봇 충전대.
  11. 제10항에 있어서,
    상기 스토퍼는, 상기 플레이트에 수직한 방향으로 연장되는 이동로봇 충전대.
  12. 제10항에 있어서,
    상기 스토퍼는, 전방상향의 기울기를 포함하는 이동로봇 충전대.
  13. 제10항에 있어서,
    상기 스토퍼는, 후방상향의 기울기를 포함하는 이동로봇 충전대
  14. 제10항에 있어서,
    상기 스토퍼의 최고점의 높이는 상기 제1가이드면과 제2가이드면의 연결부의 높이 보다 높은 이동로봇 충전대.
  15. 제1항에 있어서,
    수직중심축에서 충전단자까지의 수평거리 보다 수직중심축에서 캐스터가이드까지의 수평거리가 먼 이동로봇 충전대.
  16. 제1항에 있어서,
    상기 플레이트의 중앙 상부에 배치되고, 상부로 돌출하여 형성되는 가이드핀을 더 포함하는 이동로봇 충전대.
  17. 제16항에 있어서,
    상기 가이드핀은 상기 플레이트의 수직중심축을 따라 연장되어 형성되는 이동로봇 충전대.
  18. 제16항에 있어서,
    상기 가이드핀의 전단은 상기 캐스터가이드의 후단보다 후방에 배치된 이동로봇 충전대.
  19. 제16항에 있어서,
    상기 가이드핀의 후단은 전방상향 기울기의 경사가 형성되는 이동로봇 충전대.
  20. 제16항에 있어서,
    상기 가이드핀의 전단은 전방하향 기울기의 경사가 형성되는 이동로봇 충전대
  21. 전원모듈을 구비한 본체;
    상기 본체의 하단에 결합된 플레이트;
    상기 플레이트에 설치되고, 상기 플레이트의 상부로 노출되며, 상기 전원모듈과 전기적으로 연결되는 연결되는 제1 충전단자 및 제2 충전단자; 및
    상기 플레이트의 상부에서 상기 충전단자 보다 후방에 배치되고, 상부로 돌출하여 형성되는 가이드핀를 포함하고,
    상기 가이드핀은, 제1 방향으로 연장되고,
    상기 가이드핀의 연장선은 상기 제1 충전단자와 상기 제2 충전단자 사이를 통과하는 이동로봇 충전대.
  22. 제21항에 있어서,
    상기 이동로봇의 캐스터를 가이드 하고, 상기 가이드핀과 상기 충전단자 사이의 상기 플레이트에 배치되는 캐스터가이드를 더 포함하고,
    상기 캐스터가이드는,
    상기 캐스터를 안내하는 가이드면과,
    상기 가이드면의 측단에서 상기 가이드면과 교차되는 면을 정의하는 이탈방지벽을 포함하는 이동로봇 충전대.
  23. 제22항에 있어서,
    상기 가이드면은 전단의 폭이 후단의 폭 보다 좁은 이동로봇 충전대.
  24. 제22항에 있어서,
    상기 이탈방지벽은,
    상기 가이드면의 양측단에서 상부로 돌출되어 형성되는 제1 이탈방지벽 및 제2 이탈방지벽을 포함하는 이동로봇 충전대.
  25. 제22항에 있어서,
    상기 플레이트의 상부에서 상기 캐스터 가이드 후방에 배치되어 상기 이동로봇의 스핀맙들이 위치되는 영역을 정의하는 맙 위치부를 더 포함하는 이동로봇 충전대.
  26. 제25항에 있어서,
    상기 맙 위치부는 상부에서 보아 전후방은 개방되고 좌우방은 막힌 함몰된 영역으로 정의되는 이동로봇 충전대.
  27. 제25항에 있어서,
    상기 가이드핀은 상기 맙 위치부에서 상부로 돌출되어 형성되는 이동로봇 충전대.
  28. 제1항에 있어서,
    상기 플레이트에서 상부로 돌출되어 걸레를 가이드 하는 걸레 가이드를 더 포함하는 이동로봇 충전대.
  29. 제28항에 있어서,
    상기 걸레 가이드는 상기 플레이트의 둘레부를 따라 상기 플레이트의 측면 일부와 상기 플레이트의 전면 일부에 형성되고,
    곡률을 가지는 이동로봇 충전대.
PCT/KR2020/001339 2019-07-31 2020-01-29 이동로봇 충전대 WO2021020671A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2020322423A AU2020322423B2 (en) 2019-07-31 2020-01-29 Charging stand for moving robot
CN202080055451.9A CN114174021B (zh) 2019-07-31 2020-01-29 移动机器人充电站

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20190093484 2019-07-31
KR10-2019-0093483 2019-07-31
KR20190093483 2019-07-31
KR10-2019-0093484 2019-07-31
KR10-2019-0176627 2019-12-27
KR1020190176627A KR20210015596A (ko) 2019-07-31 2019-12-27 이동로봇 충전대

Publications (1)

Publication Number Publication Date
WO2021020671A1 true WO2021020671A1 (ko) 2021-02-04

Family

ID=74229193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/001339 WO2021020671A1 (ko) 2019-07-31 2020-01-29 이동로봇 충전대

Country Status (3)

Country Link
CN (1) CN114174021B (ko)
AU (1) AU2020322423B2 (ko)
WO (1) WO2021020671A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006204758A (ja) * 2005-01-31 2006-08-10 Toshiba Tec Corp ロボット掃除機
KR20120007943A (ko) * 2010-07-15 2012-01-25 삼성전자주식회사 로봇청소기, 메인터넌스 스테이션 그리고 이들을 가지는 청소시스템
KR20150073735A (ko) * 2013-12-23 2015-07-01 서울바이오시스 주식회사 충전장치가 구비된 로봇 물걸레 청소기 및 그 구동 방법
JP2016015973A (ja) * 2014-07-04 2016-02-01 株式会社東芝 電気掃除機
US20190059680A1 (en) * 2017-08-31 2019-02-28 Irobot Corporation Wet robot docking station

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130001841A (ko) * 2011-06-28 2013-01-07 삼성전자주식회사 이동 로봇용 단차 승월장치 및 이동 로봇 승월 시스템과 이동 로봇의 단차 승월방법
CN102717778B (zh) * 2012-06-29 2014-06-11 山东电力集团公司电力科学研究院 一种电动乘用车底盘电池更换系统及方法
CN109662657A (zh) * 2019-01-07 2019-04-23 云鲸智能科技(东莞)有限公司 一种基站和停靠方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006204758A (ja) * 2005-01-31 2006-08-10 Toshiba Tec Corp ロボット掃除機
KR20120007943A (ko) * 2010-07-15 2012-01-25 삼성전자주식회사 로봇청소기, 메인터넌스 스테이션 그리고 이들을 가지는 청소시스템
KR20150073735A (ko) * 2013-12-23 2015-07-01 서울바이오시스 주식회사 충전장치가 구비된 로봇 물걸레 청소기 및 그 구동 방법
JP2016015973A (ja) * 2014-07-04 2016-02-01 株式会社東芝 電気掃除機
US20190059680A1 (en) * 2017-08-31 2019-02-28 Irobot Corporation Wet robot docking station

Also Published As

Publication number Publication date
CN114174021B (zh) 2023-12-15
CN114174021A (zh) 2022-03-11
AU2020322423A1 (en) 2022-03-24
AU2020322423B2 (en) 2023-09-28

Similar Documents

Publication Publication Date Title
WO2021060662A1 (ko) 로봇청소기 및 로봇청소기의 제어방법
WO2018074852A1 (ko) 로봇 청소기
AU2018312743B2 (en) Cleaner
WO2019031798A1 (ko) 청소기
WO2021060661A1 (ko) 로봇 청소기
WO2021020930A1 (ko) 이동 로봇 및 그 제어방법
WO2019143172A1 (ko) 청소기
WO2021054568A1 (ko) 청소기
WO2018124544A1 (ko) 로봇 청소기
WO2021187723A1 (ko) 로봇 청소기
WO2017034198A1 (en) Robot cleaner
AU2020323826B2 (en) Robot cleaner
WO2021020932A2 (ko) 이동 로봇 및 그 제어방법
WO2021029704A1 (en) Stand for cleaner and cleaning apparatus having the same
WO2022005067A1 (ko) 로봇 청소기와 이를 구비하는 로봇 청소기 시스템 및 로봇 청소기 시스템의 제어 방법
WO2021040160A1 (ko) 인공지능 로봇청소기 및 그를 포함하는 로봇 시스템
WO2012005404A1 (ko) 자동 청소기
WO2022010029A1 (ko) 로봇 청소기
WO2021020671A1 (ko) 이동로봇 충전대
WO2021137522A1 (ko) 로봇 청소기
WO2021137476A1 (ko) 로봇청소기의 충전대
WO2021141232A1 (ko) 진공 청소기
WO2022015023A1 (ko) 로봇 청소기
WO2021215871A1 (ko) 로봇 청소기 및 로봇 청소기의 제어방법
WO2021167361A1 (ko) 청소기 및 청소기의 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20848405

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020322423

Country of ref document: AU

Date of ref document: 20200129

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20848405

Country of ref document: EP

Kind code of ref document: A1