WO2021020562A1 - プライマー及びこれを用いた二本鎖dnaの製造装置並びに二本鎖dnaの製造方法 - Google Patents

プライマー及びこれを用いた二本鎖dnaの製造装置並びに二本鎖dnaの製造方法 Download PDF

Info

Publication number
WO2021020562A1
WO2021020562A1 PCT/JP2020/029442 JP2020029442W WO2021020562A1 WO 2021020562 A1 WO2021020562 A1 WO 2021020562A1 JP 2020029442 W JP2020029442 W JP 2020029442W WO 2021020562 A1 WO2021020562 A1 WO 2021020562A1
Authority
WO
WIPO (PCT)
Prior art keywords
primer
dna
stranded dna
template
formula
Prior art date
Application number
PCT/JP2020/029442
Other languages
English (en)
French (fr)
Inventor
阿部 洋
奈保子 阿部
航介 中本
裕貴 村瀬
康明 木村
Original Assignee
国立研究開発法人科学技術振興機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人科学技術振興機構 filed Critical 国立研究開発法人科学技術振興機構
Priority to US17/631,407 priority Critical patent/US20220282294A1/en
Priority to CN202080054777.XA priority patent/CN114302965A/zh
Priority to EP20846477.6A priority patent/EP4006135A4/en
Priority to JP2021535463A priority patent/JP7551134B2/ja
Publication of WO2021020562A1 publication Critical patent/WO2021020562A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6558Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing at least two different or differently substituted hetero rings neither condensed among themselves nor condensed with a common carbocyclic ring or ring system
    • C07F9/65586Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing at least two different or differently substituted hetero rings neither condensed among themselves nor condensed with a common carbocyclic ring or ring system at least one of the hetero rings does not contain nitrogen as ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/30Nucleotides
    • C12P19/34Polynucleotides, e.g. nucleic acids, oligoribonucleotides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6561Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing systems of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring or ring system, with or without other non-condensed hetero rings
    • C07F9/65616Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing systems of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring or ring system, with or without other non-condensed hetero rings containing the ring system having three or more than three double bonds between ring members or between ring members and non-ring members, e.g. purine or analogs
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • C07H19/10Pyrimidine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals
    • C07H19/20Purine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6853Nucleic acid amplification reactions using modified primers or templates

Definitions

  • the present invention relates to a primer, a device for producing double-stranded DNA using the primer, and a method for producing double-stranded DNA.
  • PCR polymerase chain reaction
  • a template DNA containing a target DNA sequence is used, and the template DNA is amplified by repeating heat denaturation and annealing for a plurality of cycles using a primer that binds complementarily to the template DNA.
  • the amplification product of the template DNA amplified by PCR has a blunt end as it is, and it is necessary to perform a process for binding (ligating) this with a host DNA such as a plasmid DNA.
  • a restriction enzyme that cleaves a specific sequence is used as such a treatment, but this method has a problem that it is not versatile because the DNA that can be bound depends on the sequence of the restriction enzyme cleavage site.
  • the 3'end and 5'end of the amplification product are used as adhesive ends (also called adhesive ends, protruding ends, etc.), and the host side also forms adhesive ends and ligates both to vector.
  • adhesive ends also called adhesive ends, protruding ends, etc.
  • the host side also forms adhesive ends and ligates both to vector.
  • the Gibson assembly method, the In-Fusion method, the SLiCE method and the like are known.
  • a homologous sequence of about 15 bp is provided at the end of a double-stranded DNA fragment, one strand in the double strand is digested with exonuclease activity to generate an adhesive terminal, and then the strand is ligated.
  • Taq DNA ligase is used for ligation in vitro
  • the In-Fusion method the repair system in Escherichia coli is used for ligation.
  • a method for preparing DNA having an adhesive end by a chemical method has been developed, and as a primer for PCR for that purpose, the one described in Patent Document 1 is known.
  • the base corresponding to the 3'end in the base sequence of the non-complementary DNA portion is modified with a protecting group.
  • This protecting group has a function of stopping the progress of DNA replication by DNA polymerase, and can be eliminated from the modified base by light irradiation treatment, alkali treatment, or the like.
  • a protecting group is introduced into the base of a primer by using a substituent introducing agent for introducing a protecting group (substituent) into a biomolecule.
  • Patent Document 1 the progress of DNA replication is stopped at the protecting group portion, but since the polymerase activity is inhibited by the protecting group at the base portion, the stopping efficiency is low, and as a result, a completely elongated product is produced. There was something. Further, for example, in DNA, there are four types of bases, adenine, guanine, cytosine, and thymine, but in Patent Document 1, a protecting group is introduced into the base, so it is necessary to introduce the protecting group by a method according to the type of base. Therefore, it took time and cost to manufacture the primer.
  • the present inventors have conducted extensive research to solve the above problems. As a result, we developed a primer in which a degradable protecting group was introduced into the sugar portion of the nucleoside. Then, they found that double-stranded DNA having an adhesive end could be produced by decomposing the protecting group, and completed the present invention.
  • the present invention is a primer used for amplification of nucleic acid, which is characterized by having a structure represented by the following formula (1).
  • B indicates a base
  • R 1 indicates a degradable protecting group
  • R 2 indicates a hydrogen or hydroxyl group. * Means a bond of an adjacent nucleotide to a sugar.
  • R 1 is a photodegradable protecting group represented by the following formula (2A).
  • a 1 represents an alkylene group having 1 to 3 carbon atoms and may have a branched chain having 1 to 20 carbon atoms. * Means a bond of phosphoric acid with oxygen (O). .
  • R 1 is a photodegradable protecting group represented by the following formula (4A). (Here, R 3 represents an alkyl group having 1 to 20 carbon atoms.)
  • R 3 is a tert-butyl group or an adamantyl group. In particular, it is preferable that R 3 is a tert-butyl group.
  • R 1 is a 2-nitrobenzyl group represented by the following formula (3A).
  • R 1 is a reducing agent degradable protecting group represented by the following formula (2B).
  • a 2 represents an alkylene group having 1 to 3 carbon atoms and may have a branched chain having 1 to 20 carbon atoms. * Means a bond of phosphoric acid with oxygen (O). .
  • R 1 is a 4-nitrobenzyl group represented by the following formula (3B).
  • the present invention is an apparatus for producing double-stranded DNA for producing double-stranded DNA having an adhesive end using the primer described in any of the above, and is an antisense strand of template DNA serving as a template.
  • a forward primer having a structure represented by the above formula (1) and a part of the sequence of the sense strand of the template DNA, which is complementary to a part of the sequence of the above formula (1).
  • a reverse primer having the structure shown in (1), a forward-side extension strand in which the forward primer is extended by performing a polymerase chain reaction (PCR) for a plurality of cycles using the template DNA as a template, and a reverse-side extension strand in which the reverse primer is extended.
  • PCR polymerase chain reaction
  • the deprotection means for deprotecting the R 1 is a double-stranded DNA manufacturing apparatus characterized by being provided.
  • the present invention is a method for producing double-stranded DNA for producing double-stranded DNA having an adhesive end using the primer described in any of the above, and the antisense strand of the template DNA as a template.
  • a forward primer having a structure represented by the above formula (1) and a part of the sequence of the sense strand of the template DNA, which is complementary to a part of the sequence of the above formula (1).
  • PCR polymerase chain reaction
  • R 1 is a photodegradable protecting group represented by the formula (2A), and the deprotection step deprotects R 1 by light irradiation.
  • R 1 is a reducing agent degradable protecting group represented by the formula (2B), and the deprotection step deprotects R 1 with a reducing agent.
  • the primer has two or more consecutive structures represented by the formula (1) in the sequence.
  • the present invention it is possible to provide a primer that has high deprotection efficiency and can be manufactured at low cost. Further, according to the present invention, it is possible to provide an apparatus for producing double-stranded DNA having an adhesive end and a method for producing double-stranded DNA using such a primer.
  • Chain Extension Stop It is a figure which shows the stop of a chain extension reaction using an oligonucleotide containing a caged analog T * as a template. It is a figure which shows the agarose gel electrophoresis analysis of the PCR reaction. It is a schematic diagram of the ligation reaction of a PCR fragment. It is a figure which shows the experiment of making the adhesive end using the oligonucleotide containing T **.
  • Chain extension stop It is a figure which shows the stop of the chain extension reaction using the oligonucleotide containing caged analog (sequence TT, tBu type) as a template. It is a figure which shows the termination of a chain extension reaction using an oligonucleotide containing a caged analog (sequence TT, adamantane type) as a template.
  • Chain extension stop It is a figure which shows the stop of a chain extension reaction using an oligonucleotide containing a caged analog (sequences AA and TA, tBu type) as a template.
  • Chain extension stop It is a figure which shows the stop of a chain extension reaction using an oligonucleotide containing a caged analog (sequence CC and GC, tBu type) as a template.
  • the primer of the present invention is a primer used for amplification of nucleic acid and has a structure represented by the following formula (1).
  • B indicates a base
  • R 1 indicates a degradable protecting group
  • R 2 indicates a hydrogen or a hydroxyl group.
  • * Means a binding agent of an adjacent nucleotide to a sugar.
  • the bond on the 3'side of the formula (1) binds to the 5'carbon of the sugar of the adjacent nucleotide on the 3'side, and the bond on the 5'side is on the 5'side. It binds to the 3'carbon of the sugar of the adjacent nucleotide.
  • R 2 is a hydrogen
  • R 1 is a hydroxyl group.
  • B is a base, and specifically, in the case of a DNA primer, it is selected from adenine, guanine, cytosine, and thymine, and in the case of an RNA primer, it is selected from adenine, guanine, cytosine, and uracil.
  • the degradable protecting group of R 1 means a protecting group (substituent) that is decomposed by some treatment.
  • the treatment referred to here include light irradiation treatment, reduction treatment, alkali treatment, acid treatment, oxidation treatment, desilylation treatment, heat treatment, esterase treatment, phosphatase treatment and the like. Since the polymerase more strongly recognizes the negative charge of the phosphate group of nucleic acid, the phosphate group is masked with the protecting group as shown in the formula (1) rather than introducing the protecting group into the base as in Patent Document 1. It is presumed that the efficiency of polymerase termination can be further increased.
  • R 1 is a photodegradable protecting group represented by the following formula (2A).
  • a 1 represents an alkylene group having 1 to 3 carbon atoms, and may have a branched chain having 1 to 3 carbon atoms or a branched chain having 1 to 20 carbon atoms. * Indicates oxygen of phosphoric acid. It means a bond with (O).)
  • alkylene group having 1 to 20 carbon atoms examples include a methylene group, an ethylene group, a propylene group, a tert-butyl group, a sec-butyl group, a cyclohexyl group, and an adamantyl group.
  • R 1 is preferably a photodegradable protecting group represented by the following formula (4A).
  • R 3 represents an alkyl group having 1 to 20 carbon atoms.
  • R 3 is preferably bulky, such as a tert-butyl group or an adamantyl group.
  • R 3 has 3 or more carbon atoms, preferably 4 or more, more preferably 7 or more, and particularly preferably 10 or more.
  • R 1 examples include a 2-nitrobenzyl group represented by the following formula (3A).
  • R 1 is a reducing agent degradable protecting group represented by the following formula (2B).
  • a 2 represents an alkylene group having 1 to 3 carbon atoms and may have a branched chain having 1 to 20 carbon atoms. * Means a bond of phosphoric acid with oxygen (O). .
  • Examples of the alkylene group having 1 to 20 carbon atoms include a methylene group, an ethylene group, a propylene group, a tert-butyl group, a sec-butyl group, a cyclohexyl group, and an adamantyl group.
  • R 1 examples include a 4-nitrobenzyl group represented by the following formula (3B).
  • degradable protecting group that can be eliminated from the modified base by acid treatment include a trityl group.
  • degradable protecting group that can be eliminated from the modified base by the oxidation treatment include an allyloxymethyl group, a dimethoxybenzyloxymethyl group, and a trimethoxybenzyloxymethyl group.
  • Examples of the degradable protecting group that can be desorbed from the modified base by the desilylation treatment include t-butyldimethoxysilyloxymethyl group and t-butyldiphenylsilyloxymethyl group.
  • Examples of the degradable protecting group that can be desorbed from the modified base by heat treatment include an isocyanate group.
  • Examples of the degradable protecting group that can be eliminated from the modified base by esterase treatment include an acetoxymethyl group.
  • Examples of the degradable protecting group that can be eliminated from the modified base by phosphatase treatment include a methyl phosphate group.
  • the primer of the present invention is a single-stranded DNA or single-stranded RNA particularly preferably used in PCR, and is an oligonucleotide or polynucleotide having a structure represented by the above formula (1) in the molecule.
  • the number of base pairs of the primer can be appropriately set according to the sequence of the target DNA or the like, but is generally 20 base pairs or less for oligonucleotides and more than 20 base pairs for polynucleotides.
  • the upper limit of the number of base pairs of the polynucleotide is not particularly limited, but as a commonly used primer, for example, 40 base pairs or less is preferable.
  • the lower limit of the number of base pairs of the oligonucleotide is not particularly limited as long as it can be used as a primer, but for a commonly used primer, for example, 5 base pairs or more is preferable.
  • two or more of the structures represented by the above formula (1) are continuous rather than only one in the sequence.
  • the structure of the formula (1) is only one in the sequence, the formation of the adhesive end cannot be performed unless the replication of DNA by DNA polymerase is stopped at the structural part.
  • two or more structures of the formula (1) are continuous, DNA replication is stochastically more likely to be stopped, and the efficiency of adhesion end formation is increased.
  • the primer of the present invention synthesizes a modified nucleotide having the structure of the above formula (1) (hereinafter, may be referred to as a “nucleotide derivative”), and an unmodified nucleotide is added thereto by a phosphoramidite method or the like. It can be produced by linking by a solid phase synthesis method.
  • the primer synthesis method As an outline of the primer synthesis method, first, the 5'hydroxyl group of the nucleoside is protected, and N, N-bis (diisopropylamino) chlorophosphine is reacted with the 3'hydroxyl group. Next, nitrobenzyl alcohol is reacted to introduce a degradable protecting group. Then, phosphoramidite or the like is reacted, and unmodified nucleotides are ligated by a solid-phase synthesis method to synthesize a primer.
  • a specific method for producing the primers described in the examples will be described in detail.
  • deoxyribonucleoside thymidine in the following skim
  • DMTrCl 4,4'-dimethoxytrityl chloride
  • pyridine 4,4'-dimethoxytrityl chloride group is bonded to the 5'hydroxyl group of ribose
  • N, N-bis (diisopropylamino) chlorophosphine is added to triethylamine (TEA) and tetrahydrofuran (THF) to attach phosphoramidite to the 3'hydroxyl group of deoxyribose (Compound 25).
  • TAA triethylamine
  • THF tetrahydrofuran
  • 4-nitrobenzyl alcohol is added to the reaction mixture, and then 5- (methylthio) -1H-tetrazole is added to give compound 26.
  • a primer is synthesized by solid-phase synthesis of nucleotides so as to have a desired sequence by a conventional method.
  • the device for producing double-stranded DNA of the present invention is a device for having an adhesive end using the primer of the present invention.
  • the method for producing double-stranded DNA of the present invention is a method of using a template DNA containing a target DNA sequence and having an adhesive end using the primer of the present invention.
  • FIG. 1 description will be made with reference to FIG. In this embodiment, a primer having two consecutive structures of the formula (1) is used, but the same method / apparatus is used even when there is only one of the formula (1). can do.
  • the forward primer is complementary to a part of the sequence of the antisense strand of the template DNA and has a structure represented by the formula (1).
  • the reverse primer is complementary to a part of the sequence of the sense strand of the template DNA and has a structure represented by the formula (1).
  • the forward primer and the reverse primer are sequenced so as to sandwich the target DNA sequence to be amplified.
  • the position of the nucleotide having the degradable protecting group of the formula (1) in the primer is 3 of the nucleotide on the most 3'terminal side on the 3'depressed side in the target adhesion terminal sequence ((c) in the figure). 'Design so that the position is complementary to the position adjacent to the side.
  • the nucleotide located on the 3'side of the nucleotides of the structure of the formula (1) is set to the above position.
  • Other reagents include polymerases (such as Taq polymerase), buffers, and dNTPs used for PCR.
  • the sequence of the template DNA is amplified using a PCR device (amplification means) (amplification step).
  • the PCR device performs a polymerase chain reaction (PCR) for a plurality of cycles using the template DNA as a template to generate a forward-side extension strand in which the forward primer is extended and a reverse-side extension strand in which the reverse primer is extended.
  • PCR polymerase chain reaction
  • a double-stranded DNA ((b) in the figure) in which the 3'end is depressed is generated by annealing the extension strand on the reverse side.
  • PCR the sequence of template DNA is amplified by repeating heat denaturation, annealing, and elongation reaction. Although it depends on the PCR conditions, heat denaturation is performed at about 95 ° C. for 1 to 3 minutes, annealing is performed at Tm ⁇ 5 ° C. of the primer, and extension reaction is performed at 1 to 10 minutes.
  • the number of PCR cycles is not particularly limited, but is generally about 24 to 40 cycles.
  • the PCR amplification product contains double-stranded DNA with a depressed 3'end. This is because the degradable protecting group of the formula (1) inhibits the polymerase reaction and stops the reaction when the complementary strand is synthesized using the primer as a template.
  • the predetermined treatment is a treatment for deprotecting R 1, and examples thereof include the above-mentioned light irradiation treatment and reduction treatment.
  • Examples of the light irradiation treatment include a method of irradiating light having a wavelength of 300 to 400 nm for 1 to 30 minutes with a light source device (deprotecting means).
  • a method of treating with a reducing agent such as sodium dithionite (Na 2 S 2 O 4 ) at 70 to 80 ° C. for 1 to 30 minutes can be mentioned.
  • the degrading protecting group of the nucleoside of the primer formula (1) is deprotected, and double-stranded DNA having a 5'protruding end (3' depressed end) can be synthesized.
  • deprotection is performed using a device (deprotection device) that deprotects the degradable protecting group.
  • the adhesive end can be freely designed without using restriction enzymes or the like, DNA having a desired sequence can be freely linked.
  • the sequences of both the target DNA and the vector are designed, a common adhesive terminal is formed between them by deprotection treatment, and ligation is performed to prepare a recombinant DNA, which is cloned, a library is prepared, and a large amount is expressed. It can be used for system construction.
  • a genome build-up reaction can be performed in vitro by linking a plurality of genome sequences having adhesive ends.
  • the genome build-up reaction can be carried out in the cell by introducing the double-stranded DNA into the cell in the blunt-ended state and performing the deprotection treatment in the cell.
  • the present invention will be specifically described based on examples, but these do not limit the object of the present invention. Further, in the following examples, the “%” display is based on mass (mass percent) unless otherwise specified.
  • Chain extension stop caged analog T * (1) Synthesis of oligonucleotides containing a chain extension arrest caged analog T * The oligonucleotides containing a chain extension arrest caged analog T * (Table 1) are nucleic acid automatic synthesizers (NR-2A 7MX, Japan) based on the phosphoramidite method. Synthesized by Techno Service Co., Ltd.). The chain extension arrest caged analog T * amidite compound (Chemical Formula 13) was synthesized according to the previously reported reports (Wu, L. et al., Chem. Eur. J. 2014, 20, 12114-12122).
  • a commercially available amidite reagent 5'-Phosphate-ON Reagent (manufactured by ChemGenes) was used for phosphorylation of the 5'end.
  • the oligonucleotide after synthesis was deprotected according to a conventional method and then purified by reverse phase HPLC [System, LaChrom Elite manufactured by Hitachi High-Tech Science Co., Ltd .; Column, Hydrosphere C18 manufactured by YMC (250 ⁇ 10 mm ID); Eluent A.
  • the table below shows the oligonucleotide sequence containing the synthesized chain extension arrest caged analog T *. p indicates that the hydroxyl group at the 5'end is phosphorylated.
  • FIG. 2 is a diagram showing chromatograms after deprotection (a) and after purification (b) during the synthesis of oligonucleotide pAcGFP_Fw2.
  • the peak around 14.1 minutes shown in the chromatogram (a) before purification is the peak derived from the target product. This was separated and purified (b).
  • the reaction was heated in an Applied Biosystems 2720 thermal cycler at 95 ° C. for 1 minute, 55 ° C. for 30 seconds, and then at 72 ° C. for 10, 30 or 60 minutes.
  • 10 ⁇ L of 2 ⁇ formamide loading solution was added to 10 ⁇ L of the heated reaction solution, heated at 90 ° C. for 3 minutes, and then analyzed by 20% modified PAGE containing 7.5 M urea (FIG. 3).
  • the oligonucleotide chain contained in the gel after electrophoresis was detected by the ChemiDoc XRS + imaging system based on the fluorescence derived from the fluorescein group modified at the 5'end of the primer chain.
  • FIG. 3 is a diagram showing the termination of the chain extension reaction using an oligonucleotide containing a caged analog T * as a template.
  • A is the sequence of the oligonucleotide used.
  • B) to (e) show the results of denaturation PAGE analysis of the chain extension reaction using a commercially available thermostable polymerase, and
  • f) show the results of MALDI-TOF molecular weight analysis of the reaction using Pfu DNA polymerase as a template. ..
  • the lower panel shows the analysis result (control experiment) of the raw material (Primer).
  • the molecular weight analysis of the chain extension product shown in FIG. 3 (f) was performed as follows. An enzymatic reaction using 2T containing Pfu DNA polymerase as a template was prepared under the above conditions, and heated at 95 ° C. for 1 minute, 55 ° C. for 30 seconds, and then at 72 ° C. for 40 minutes. The reaction solution (50 ⁇ L) was extracted with an equal amount mixture of TE saturated phenol and chloroform, alcohol precipitated in the presence of ammonium acetate salt, and DNA was recovered. MALDI-TOF molecular weight analysis was performed using a mass spectrometer ultrafleXtreme (Bruker Daltonics).
  • FIG. 5 is a schematic diagram of the ligation reaction of PCR fragments.
  • the PCR fragments were ligated by the method shown in this figure.
  • the vector side fragment (5.3 kb) was prepared as follows (FIG. 4 (a)).
  • Reaction solution [0.5 ⁇ M pET21d_Fw2, 0.5 ⁇ M pET21d_Rev2, 0.8 ng / ⁇ L pET21d (Novagen), 20 mM Tris-HCl (pH 8.8 at 25 ° C), 10 mM KCl, 10 mM (NH 4 ) 2 SO 4 , 2 mM 4 , 0.1% Triton® X-100, 0.1 mg / mL BSA, 0.2 mM dNTPs, 0.02 U / ⁇ L Pfu DNA polymerase] under the following heating conditions in Applied Biosystems MiniAmp Plus thermal cycler. [(95 ° C, 15 seconds ⁇ 50 ° C, 30 seconds ⁇ 72 ° C, 7.5 minutes) / cycle ⁇ 30 cycles].
  • the insert-side fragment (0.75 kb) was prepared as follows (FIG. 4 (b)).
  • Reaction solution [0.5 ⁇ M pAcGFP1_Fw2, 0.5 ⁇ M pAcGFP1_Rev2, 0.8 ng / ⁇ L pAcGFP1 (Takara), 20 mM Tris-HCl (pH 8.8 at 25 ° C), 10 mM KCl, 10 mM (NH 4 ) 2 SO 4 4 , 0.1% Triton® X-100, 0.1 mg / mL BSA, 0.2 mM dNTPs, 0.02 U / ⁇ L Pfu DNA polymerase] under the following heating conditions in Applied Biosystems MiniAmp Plus thermal cycler. [(95 ° C, 15 seconds ⁇ 55 ° C, 15 seconds ⁇ 72 ° C, 1 minute) / cycle ⁇ 30 cycles].
  • reaction solution 50 ⁇ L after the PCR reaction, add an equal volume mixture of TE saturated phenol (Nacalai Tesque) and chloroform (100 ⁇ L), mix vigorously, and centrifuge (14,000 ⁇ g, 3 minutes) to form an aqueous layer. Was separated. Similarly, the reaction solution was extracted with chloroform (100 ⁇ L), and then 5 ⁇ L of 3M NaOAc (pH 5.2) and 60 ⁇ L of isopropyl alcohol were added to the aqueous layer. After cooling at ⁇ 30 ° C. for 1 hour, the DNA was collected as pellets by centrifugation (20,000 ⁇ g, 20 minutes).
  • the two reaction products were each reacted with the restriction enzyme DpnI (Toyobo) at 37 ° C. for 1 hour (0.8 U / ⁇ L DpnI in 33 mM Tris-acetylate (pH 7.9)). , 10 mM Mg (OAc) 2 , 66 mM KOAc, 0.5 mM DNA plasmid, reaction solution volume 20 ⁇ L). 80 ⁇ L of water was added to the reaction solution, an equal volume mixture of TE saturated phenol and chloroform (100 ⁇ L) was added, and the mixture was vigorously mixed and then centrifuged (14,000 ⁇ g, 3 minutes) to separate the aqueous layer.
  • DpnI Toyobo
  • the reaction solution was extracted with chloroform (100 ⁇ L), and then 10 ⁇ L of 3M NaOAc (pH 5.2) and 110 ⁇ L of isopropyl alcohol were added. After cooling at ⁇ 30 ° C. for 1 hour, the DNA was collected as pellets by centrifugation (20,000 ⁇ g, 20 minutes). DNA pellets are dissolved in water and analyzed by agarose gel electrophoresis (0.8% Agarose S (Wako Pure Chemical Industries) including GelRed (Wako Pure Chemical Industries)), and DNA size markers (Quick-Load Purple 1 kb Plus DNA) are analyzed. The concentration of the target DNA contained was calculated by comparing with the band intensity of Ladder, New England Biolabs [vector DNA fragment (5 ⁇ L), 13 ng / ⁇ L; insert DNA fragment (50 ⁇ L), 23 ng / ⁇ L].
  • PCR reaction solution was analyzed by agarose gel electrophoresis and found to contain 18 of the target ligation reaction products out of 20 clones (PCR primer, 5'TAATACGACTCA CTATAGGG 3', 5'GCTAGTATTTGCTCAGGCGG 3'; colony positive rate 90. %).
  • PCR primer 5'TAATACGACTCA CTATAGGG 3', 5'GCTAGTATTTGCTCAGGCGG 3'; colony positive rate 90. %).
  • PCR primer 5'TAATACGACTCA CTATAGGG 3', 5'GCTAGTATTTGCTCAGGCGG 3'; colony positive rate 90. %).
  • cells containing the ligation reaction product were liquid-cultured and plasmid DNA was extracted.
  • the sequence of the plasmid DNA obtained by the DNA sequencer ABI PRISM 3500xL Genetic Analyzer was analyzed using two types of primer sequences (5'GGTGATCGTGGCGATATAGG 3', 5'GCCAATCCGGATATAGTTCCCT 3'). As a result of analyzing the nucleotide sequences of 4 primer DNA-derived sites, 2 of these overlapping sites, and the range sandwiched between them, all 10 clones contained the sequence as designed, and mutations were observed. Was not done.
  • FIG. 4 is a diagram showing an agarose gel electrophoresis analysis of the PCR reaction. Line1, size marker; lane2, reaction solution is shown.
  • A Preparation of vector side fragment.
  • B Preparation of insert-side fragment.
  • the template used for the preparation of the 0.74 kb fragment is pAcGFP1 plasmid DNA, and the primer sequences are the following two.
  • the underlined portion T ( T ) indicates that the phosphoric acid portion contains a Me or tBu type modifying group.
  • p indicates that the 5'end is phosphorylated.
  • thermostable polymerase Using the commercially available thermostable polymerase described in the figure, PCR reaction was carried out according to the recommended conditions to prepare 1.0 kb fragment and 0.74 kb fragment, respectively. The progress of the reaction was confirmed by agarose gel electrophoresis (1.5% Agarose S (Wako Pure Chemical Industries, Ltd.) including GelRed (Wako Pure Chemical Industries, Ltd.)). After the PCR reaction, 200 ⁇ L of an equal volume mixture of TE saturated phenol (Nacalai Tesque) and chloroform was added to 200 ⁇ L of the reaction solution, mixed vigorously, and then centrifuged (20,000 ⁇ g, 1 minute) to separate the aqueous layer.
  • TE saturated phenol Nacalai Tesque
  • reaction solution was extracted with 200 ⁇ L of chloroform, and then 20 ⁇ L of 3M NaOAc (pH 5.2) and 220 ⁇ L of isopropyl alcohol were added. After cooling at ⁇ 30 ° C. for 1 hour, DNA was recovered by centrifugation (20,000 ⁇ g, 20 minutes).
  • the target DNA product was purified by agarose gel electrophoresis (1.5% Agarose S (Wako Pure Chemical Industries, Ltd.) including GelRed (Wako Pure Chemical Industries, Ltd.)). DNA was extracted from the cut gel pieces using Wizard SV Gel and PCR Clean-Up System (Promega).
  • the 1.0 kb fragment and 0.74 kb fragment prepared in this manner were ligated using Taq DNA ligase, and the efficiency was evaluated by agarose gel electrophoresis.
  • 365 nm light was applied to a DNA solution (5 ⁇ L; 24 nM 1.0 kb fragment, 24 nM 0.74 kb fragment, 1 mM Tris-HCl (pH 8.5)) at 4 mW / cm. Irradiation was performed at an intensity of 2 for 5 minutes.
  • Taq DNA ligase New England Biolabs
  • the composition of the reaction solution is as follows. 2.8 nM 1.0 kb fragment, 2.8 nM 0.74 kb fragment, 1.6 U / ⁇ L Taq DNA ligase, 20 mM Tris-HCl, 25 mM potassium acetate, 10 mM magnesium acetate, 1 mM NAD 1, 10 mM DTT, 0.1% Triton X-100, pH 7.6. Add 80 ⁇ L of water to the reaction solution to make the total volume about 100 ⁇ L, add 100 ⁇ L of an equal volume mixture of TE saturated phenol (Nacalai Tesque) and chloroform, mix vigorously, centrifuge (20,000 ⁇ g, 1 minute), and aqueous layer. Was separated.
  • reaction solution was extracted with 100 ⁇ L of chloroform, and then 10 ⁇ L of 3M NaOAc (pH 5.2), 110 ⁇ L of isopropyl alcohol, and 1 ⁇ L of 20 mg / mL glycogen were added. After cooling at ⁇ 30 ° C. for 15 minutes, DNA was recovered by centrifugation (20,000 ⁇ g, 20 minutes). The recovered DNA product was electrophoresed by agarose gel electrophoresis (1.5% Agarose S (Wako Pure Chemical Industries, Ltd.)). The gel after electrophoresis was stained with an aqueous GelRed solution to visualize the bands (BioRad ChemiDoc XRS + system).
  • the reaction was heated in an Applied Biosystems 2720 thermal cycler at 95 ° C. for 1 minute, 55 ° C. for 30 seconds, and then at 72 ° C. for 30 minutes.
  • 10 ⁇ L of 2 ⁇ formamide loading solution was added to 10 ⁇ L of the heated reaction solution, heated at 90 ° C. for 3 minutes, and then analyzed by 20% modified PAGE containing 7.5 M urea (FIGS. 14 to 17).
  • the oligonucleotide chain contained in the gel after electrophoresis was detected by the ChemiDoc XRS + imaging system based on the fluorescence derived from the fluorescein group modified at the 5'end of the primer chain.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)

Abstract

核酸の増幅に使用されるプライマーであって、下記式(1)で示される構造を有するプライマーである。(ここで、Bは塩基を示し、Rは分解性保護基を示し、Rは水素又はヒドロキシル基を示す。*は隣接するヌクレオチドの糖との結合手を意味する。)。また、式(1)で示される構造を有するフォワードプライマー及びリバースプライマーと、テンプレートDNAを鋳型としてPCRを複数サイクル行って3'末端が陥没した二本鎖DNAを生成するPCR装置と、Rを脱保護して3'末端が突出した接着末端を形成する光照射手段と、を備える二本鎖DNAの製造装置である。

Description

プライマー及びこれを用いた二本鎖DNAの製造装置並びに二本鎖DNAの製造方法
 本発明は、プライマー及びこれを用いた二本鎖DNAの製造装置並びに二本鎖DNAの製造方法に関する。
 分子生物学などの分野では、遺伝子組み換えや形質転換などを行うために、標的DNAをホストに組み込んだベクターが用いられている。一般に、標的DNAは、量が少ない場合はポリメラーゼ連鎖反応(PCR)で増幅して使用される。PCRでは、標的DNA配列を含むテンプレートDNAを使用し、これに相補的に結合するプライマーを用いて熱変性とアニーリングを複数サイクル繰り返すことでテンプレートDNAを増幅している。
 PCRで増幅されたテンプレートDNAの増幅産物は、そのままでは平滑末端であり、これをプラスミドDNAなどのホストDNAと結合(ライゲーション)させるための処理をする必要がある。一般に、そのような処理として、特定の配列を切断する制限酵素を使用するが、この方法では、結合できるDNAが制限酵素の切断部位の配列に依存するため、汎用性に乏しいという問題がある。
 制限酵素を用いない方法として、増幅産物の3’末端及び5’末端を接着末端(粘着末端、突出末端などともいう)とし、ホスト側も同様に接着末端を形成して両者をライゲーションしてベクターを構築する技術がある。例えば、近年では、Gibson assembly法、In-Fusion法、SLiCE法などが知られている。これらの方法では、いずれも二本鎖DNA断片末端に15bp程度の相同配列を持たせ、二本鎖中の片側の鎖をエキソヌクレアーゼ活性で消化し、接着末端を生じさせたのちに連結する。なお、Gibson assembly法ではin vitroでTaq DNA ligaseを用いて連結し、In-Fusion法では大腸菌内の修復システムを利用して連結する。
 これらの方法では、酵素であるエキソヌクレアーゼを使用するため、コストがかかるほか、反応条件等によって部位特異性に劣ることがあり、定量的な接着末端形成が困難であるため、連結反応の効率が低いという問題があった。このため、酵素を使用しないシームレスクローニング法が求められていた。
 そこで、化学的手法により接着末端を有するDNAを調製する方法が開発され、そのためのPCR用のプライマーとして、特許文献1に記載されたものが知られている。この文献のプライマーは、非相補DNA部分の塩基配列中の3’末端に相当する塩基が保護基で修飾されている。この保護基は、DNAポリメラーゼによるDNA複製の進行を停止させる機能を有しており、光照射処理やアルカリ処理などによって被修飾塩基から脱離しうる。また、本文献では、保護基(置換基)を生体分子に導入するための置換基導入剤を用いて塩基に保護基をプライマーの塩基に導入している。
国際公開第2009/113709号(請求項1、請求項2など)
 特許文献1では、保護基の部分でDNA複製の進行が停止するが、塩基の部分で保護基によりポリメラーゼ活性を阻害するため、停止効率が低く、その結果、完全に伸長したものができてしまうことがあった。また、例えばDNAでは塩基はアデニン、グアニン、シトシン、チミンの4種類あるが、特許文献1では塩基に保護基を導入しているため、塩基の種類に応じた方法で保護基を導入する必要があり、プライマーの製造に手間やコストがかかっていた。
 本発明の目的は、停止効率が高く、かつ安価に製造することが可能なプライマーを提供することにある。また、本発明の他の目的は、このようなプライマーを用いた、接着末端を有する二本鎖DNAの製造装置及び二本鎖DNAの製造方法を提供することにある。
 本発明者らは、上記問題を解決すべく鋭意研究を重ねた。その結果、ヌクレオシドの糖の部分に分解性保護基を導入したプライマーを開発した。そして、その保護基を分解することで接着末端を有する二本鎖DNAを作製できることを見出し、本発明を完成させた。
 すなわち、本発明は、核酸の増幅に使用されるプライマーであって、下記式(1)で示される構造を有することを特徴とするプライマーである。
Figure JPOXMLDOC01-appb-C000007
(ここで、Bは塩基を示し、Rは分解性保護基を示し、Rは水素又はヒドロキシル基を示す。*は隣接するヌクレオチドの糖との結合手を意味する。)
 この場合において、前記Rが下記式(2A)で示される光分解性保護基であることが好ましい。
Figure JPOXMLDOC01-appb-C000008
(ここで、Aは炭素数1~3のアルキレン基を示し、炭素数1~20の分岐鎖を有していてもよい。*はリン酸の酸素(O)との結合手を意味する。)
 さらにこの場合において、前記Rが下記式(4A)で示される光分解性保護基であることが好ましい。
Figure JPOXMLDOC01-appb-C000009
(ここで、Rは炭素数1~20のアルキル基を示す。)
 上記の場合において、前記Rがtert-ブチル基又はアダマンチル基であることがより好ましい。特に、Rがtert-ブチル基であることが好適である。
 さらに、前記Rが下記式(3A)で示される2-ニトロベンジル基であることが好ましい。
Figure JPOXMLDOC01-appb-C000010
 あるいはまた、前記Rが下記式(2B)で示される還元剤分解性保護基であることが好ましい。
Figure JPOXMLDOC01-appb-C000011
(ここで、Aは炭素数1~3のアルキレン基を示し、炭素数1~20の分岐鎖を有していてもよい。*はリン酸の酸素(O)との結合手を意味する。)
 この場合において、前記Rが下記式(3B)で示される4-ニトロベンジル基であることが好ましい。
Figure JPOXMLDOC01-appb-C000012
 前記式(1)で示される構造が配列中に2つ以上連続することが好ましい。
 また、本発明は、上記のいずれかに記載したプライマーを用いて接着末端を有する二本鎖DNAを製造するための二本鎖DNAの製造装置であって、鋳型となるテンプレートDNAのアンチセンス鎖の一部の配列と相補的であり、かつ前記式(1)で示される構造を有するフォワードプライマーと、前記テンプレートDNAのセンス鎖の一部の配列と相補的であり、かつ前記式(1)で示される構造を有するリバースプライマーと、前記テンプレートDNAを鋳型としてポリメラーゼ連鎖反応(PCR)を複数サイクル行い、前記フォワードプライマーが伸長したフォワード側伸長鎖と、前記リバースプライマーが伸長したリバース側伸長鎖とを生成し、前記フォワード側伸長鎖と前記リバース側伸長鎖とをアニーリングして3’末端が陥没した二本鎖DNAを生成する増幅手段と、前記Rを脱保護する脱保護手段と、を備えることを特徴とする二本鎖DNAの製造装置である。
 さらに、本発明は、上記のいずれかに記載したプライマーを用いて接着末端を有する二本鎖DNAを製造するための二本鎖DNAの製造方法であって、鋳型となるテンプレートDNAのアンチセンス鎖の一部の配列と相補的であり、かつ前記式(1)で示される構造を有するフォワードプライマーと、前記テンプレートDNAのセンス鎖の一部の配列と相補的であり、かつ前記式(1)で示される構造を有するリバースプライマーと、を準備する準備工程と、前記テンプレートDNAを鋳型としてポリメラーゼ連鎖反応(PCR)を複数サイクル行い、前記フォワードプライマーが伸長したフォワード側伸長鎖と、前記リバースプライマーが伸長したリバース側伸長鎖とを生成し、前記フォワード側伸長鎖と前記リバース側伸長鎖とをアニーリングして3’末端が陥没した二本鎖DNAを生成する増幅工程と、前記Rを脱保護する脱保護工程と、を備えることを特徴とする二本鎖DNAの製造方法である。
 この場合において、前記Rが前記式(2A)で示される光分解性保護基であり、脱保護工程は光照射により前記Rを脱保護することが好ましい。
 あるいは、前記Rが前記式(2B)で示される還元剤分解性保護基であり、脱保護工程は還元剤により前記Rを脱保護することが好ましい。
 また、前記プライマーは、前記式(1)で示される構造が配列中に2つ以上連続することが好ましい。
 本発明によれば、脱保護効率が高く、かつ安価に製造することが可能なプライマーを提供することが可能となる。また、本発明によれば、このようなプライマーを用いた、接着末端を有する二本鎖DNAの製造装置及び二本鎖DNAの製造方法を提供することが可能となる。
接着末端を有する二本鎖DNAの製造方法及び製造装置を示す模式図である。 オリゴヌクレオチドpAcGFP_Fw2合成時における、脱保護後(a)と精製後(b)のクロマトグラムである。 鎖伸長停止ケージドアナログT*を含むオリゴヌクレオチドを鋳型にした鎖伸長反応の停止を示す図である。 PCR反応のアガロースゲル電気泳動分析を示す図である。 PCR断片の連結反応の模式図である。 T**を含むオリゴヌクレオチドを用いた接着末端の作成実験を示す図である。 Naを用いた1Tの脱保護反応の実験結果を示す図である。 Naを用いた2Tの脱保護反応の実験結果を示す図である。 リン酸修飾基中の置換基Rをより嵩高くした実験の概要を示す図である。 修飾オリゴヌクレオチドの熱サイクル条件における安定性試験の結果を示す図である。 修飾プライマーがPCR条件において安定(分解耐性)であることを示す実験の結果を示す図である。 tBuタイプ修飾プライマーの脱保護反応の逆相HPLC分析の実験結果を示す図である。 PCR産物の試験管内での連結反応(Taq DNAリガーゼ)の実験悔過を示す図である。 鎖伸長停止ケージドアナログ(配列TT、tBuタイプ)を含むオリゴヌクレオチドを鋳型にした鎖伸長反応の停止を示す図である。 鎖伸長停止ケージドアナログ(配列TT、アダマンチルタイプ)を含むオリゴヌクレオチドを鋳型にした鎖伸長反応の停止を示す図である。 鎖伸長停止ケージドアナログ(配列AA及びTA、tBuタイプ)を含むオリゴヌクレオチドを鋳型にした鎖伸長反応の停止を示す図である。 鎖伸長停止ケージドアナログ(配列CC及びGC、tBuタイプ)を含むオリゴヌクレオチドを鋳型にした鎖伸長反応の停止を示す図である。
1.プライマー
 以下、本発明のプライマーについて説明する。本発明のプライマーは、核酸の増幅に使用されるプライマーであって、下記式(1)で示される構造を有する。
Figure JPOXMLDOC01-appb-C000013
(ここで、Bは塩基を示し、Rは分解性保護基を示し、Rは水素又はヒドロキシル基を示す。*は隣接するヌクレオチドの糖との結合手を意味する。)。なお、結合手*のうち、式(1)の3’側の結合手は、3’側において隣接するヌクレオチドの糖の5’炭素に結合し、5’側 の結合手は、5’側において隣接するヌクレオチドの糖の3’炭素に結合する。また、DNAプライマーの場合は、Rは水素、RNAプライマーの場合は、Rはヒドロキシル基である。
 Bは塩基であり、具体的には、DNAプライマーの場合はアデニン、グアニン、シトシン、チミンから選択され、RNAプライマーの場合はアデニン、グアニン、シトシン、ウラシルから選択される。
 Rの分解性保護基とは、何らかの処理により分解する保護基(置換基)を意味する。ここでいう処理としては、光照射処理、還元処理、アルカリ処理、酸処理、酸化処理、脱シリル化処理、熱処理、エステラーゼ処理、ホスファターゼ処理などを挙げることができる。ポリメラーゼは核酸のリン酸基の負電荷をより強く認識しているため、特許文献1のように塩基に保護基を導入するよりも、式(1)のようにリン酸基を保護基でマスクするほうが、ポリメラーゼの停止効率をより高めることができると推測される。
(1)光分解性保護基
 処理が光照射である場合、Rが下記式(2A)で示される光分解性保護基であることが好ましい。
Figure JPOXMLDOC01-appb-C000014
(ここで、Aは炭素数1~3のアルキレン基を示し、炭素数1~3の分岐鎖、あるいは炭素数1~20の分岐鎖を有していてもよい。*はリン酸の酸素(O)との結合手を意味する。)
 炭素数1~20のアルキレン基としては、メチレン基、エチレン基、プロピレン基、tert-ブチル基、sec-ブチル基、シクロヘキシル基、アダマンチル基などを挙げることができる。
 Rとしては、下記式(4A)で示される光分解性保護基であることが好ましい。
Figure JPOXMLDOC01-appb-C000015
(ここで、Rは炭素数1~20のアルキル基を示す。)
 特に、Rは、tert-ブチル基やアダマンチル基のような嵩高いものが好ましい。後述する実施例で示すように、Rが嵩高いほど、修飾部位の化学的安定性と複製反応の阻害効果が高い。したがって、Rは炭素数が3以上であり、4以上であることが好ましく、7以上であることがより好ましく、10以上であることが特に好ましい。実施例に記載の置換基(Rがメチル基、tert-ブチル基、アダマンチル基)では、化学的安定性の低い順に、メチル基<tert-ブチル基<アダマンチル基となる。
 Rとしては、下記式(3A)で示される2-ニトロベンジル基を挙げることができる。
Figure JPOXMLDOC01-appb-C000016
(2)還元剤分解性保護基
 処理が還元処理の場合、Rが下記式(2B)で示される還元剤分解性保護基であることが好ましい。
Figure JPOXMLDOC01-appb-C000017
(ここで、Aは炭素数1~3のアルキレン基を示し、炭素数1~20の分岐鎖を有していてもよい。*はリン酸の酸素(O)との結合手を意味する。)
 炭素数1~20のアルキレン基としては、メチレン基、エチレン基、プロピレン基、tert-ブチル基、sec-ブチル基、シクロヘキシル基、アダマンチル基などを挙げることができる。
 Rとしては、下記式(3B)で示される4-ニトロベンジル基を挙げることができる。
Figure JPOXMLDOC01-appb-C000018
(3)その他の分解性保護基
 アルカリ処理により被修飾塩基から脱離し得る分解性保護基としては、イソブチリル基、ベンゾイル基、アセトキシメチル基などを挙げることができる。酸処理により被修飾塩基から脱離し得る分解性保護基としては、トリチル基を挙げることができる。酸化処理により被修飾塩基から脱離し得る分解性保護基としては、アリルオキシメチル基、ジメトキシベンジルオキシメチル基、トリメトキシベンジルオキシメチル基などを挙げることができる。脱シリル化処理により被修飾塩基から脱離し得る分解性保護基としては、t-ブチルジメトキシシリルオキシメチル基、t-ブチルジフェニルシリルオキシメチル基などを挙げることができる。熱処理により被修飾塩基から脱離し得る分解性保護基としては、イソシアネート基を挙げることができる。エステラーゼ処理により被修飾塩基から脱離し得る分解性保護基としては、アセトキシメチル基を挙げることができる。ホスファターゼ処理により被修飾塩基から脱離し得る分解性保護基としては、リン酸メチル基を挙げることができる。
 本発明のプライマーは、特にPCRで好適に使用される一本鎖DNA又は一本鎖RNAであり、上記式(1)で示される構造を分子内に有するオリゴヌクレオチド又はポリヌクレオチドである。プライマーの塩基対の数は、標的DNAなどの配列等に応じて適宜設定することができるが、一般にオリゴヌクレオチドでは例えば20塩基対以下、ポリヌクレオチドでは例えば20塩基対超である。ポリヌクレオチドの塩基対の数の上限としては特に制限はないが、一般的に使用されるプライマーとしては例えば40塩基対以下が好ましい。また、オリゴヌクレオチドの塩基対の数の下限としては、プライマーとして使用できる長さであれば特に制限はないが、一般的に使用されるプライマーとしては例えば5塩基対以上が好ましい。
 プライマーにおいては、前記式(1)で示される構造が配列中に1つのみ存在するよりも、この構造が2つ以上連続することが好ましい。式(1)の構造が配列中に1つのみの場合は、その構造部分でDNAポリメラーゼによるDNAの複製が停止しなかった場合は接着末端の形成ができなくなる。しかしながら、式(1)の構造が2つ以上連続することで、DNAの複製が確率的により停止しやすくなり、接着末端形成の効率が高くなる。
2.プライマーの製造方法
 本発明のプライマーは、上記式(1)の構造を有する修飾ヌクレオチド(以下、「ヌクレオチド誘導体」ということがある)を合成し、これに非修飾のヌクレオチドをホスホロアミダイト法などの固相合成法で連結することで製造することができる。
 プライマーの合成方法の概要としては、まずヌクレオシドの5’ヒドロキシル基を保護し、3’ヒドロキシル基にN,N-ビス(ジイソプロピルアミノ)クロロホスフィンを反応させる。次に、ニトロベンジルアルコールを反応させて分解性保護基を導入する。その後、ホスホロアミダイトなどを反応させ、固相合成法で非修飾のヌクレオチドを連結させてプライマーを合成する。以下、実施例に掲載したプライマーの具体的な製造方法について詳細に説明する。
(a)還元剤分解性保護基を有するヌクレオシド誘導体(※式(1)において、Rが式(2B)、Rが水素の化合物)及びプライマーの合成
Figure JPOXMLDOC01-appb-C000019
 上記の合成スキ-ムに沿って説明する。以下で説明する合成スキ-ムにおいて、数字は化合物の番号を表す。まず、デオキシリボヌクレオシド(下記スキ-ムではチミジン)を出発物質として用意する。これに4,4’-ジメトキシトリチルクロリド(DMTrCl)、ピリジンを加え、リボースの5’ヒドロキシル基に4,4’-ジメトキシトリチルクロリド基を結合させる(化合物24)。次に、N,N-ビス(ジイソプロピルアミノ)クロロホスフィンを、トリエチルアミン(TEA)、テトラヒドロフラン(THF)に添加し、デオキシリボースの3’ヒドロキシル基にホスホロアミダイトを結合させる(化合物25)。次に、4-ニトロベンジルアルコールを反応混合物に加え、次いで5-(メチルチオ)-1H-テトラゾールを添加して化合物26を得る。その後は常法により、所望の配列となるようにヌクレオチドを固相合成してプライマーを合成する。
3.接着末端を有する二本鎖DNAの製造方法及び製造装置
 つぎに、接着末端を有する二本鎖DNAの製造方法及び製造装置について説明する。本発明の二本鎖DNAの製造装置は、本発明のプライマーを用いて接着末端を有するための装置である。また、本発明の二本鎖DNAの製造方法は、標的DNA配列を含むテンプレートDNAを使用し、本発明のプライマーを用いて接着末端を有する方法である。以下、図1を参照して説明する。なお、本実施形態では、プライマーにおいて、式(1)の構造が連続して2つ存在するものを使用しているが、式(1)が1つのみの場合も同様の方法・装置を使用することができる。
 まず、試薬としてフォワードプライマーとリバースプライマーを含むPCR増幅用プライマーセットを準備する(準備工程)。フォワードプライマーは、テンプレートDNAのアンチセンス鎖の一部の配列と相補的であり、かつ式(1)で示される構造を有する。また、リバースプライマーは、テンプレートDNAのセンス鎖の一部の配列と相補的であり、かつ式(1)で示される構造を有する。
 図の(a)に示すように、フォワードプライマーとリバースプライマーは、増幅したい標的DNA配列を挟むように配列を決定する。また、プライマーにおける式(1)の分解性保護基を有するヌクレオチドの位置は、目的とする接着末端の配列(図の(c))において、3’陥没側における最も3’末端側のヌクレオチドの3’側に隣接する位置に相補的な位置となるように設計する。式(1)の構造が2つ以上連続している場合は、式(1)の構造のヌクレオチドのうち最も3’側に位置するヌクレオチドが上記の位置となるようにする。その他の試薬としては、PCRに使用するポリメラーゼ(Taqポリメラーゼなど)、バッファー、dNTPなどである。
 次に、PCR装置(増幅手段)を用いてテンプレートDNAの配列を増幅する(増幅工程)。PCR装置は、テンプレートDNAを鋳型としてポリメラーゼ連鎖反応(PCR)を複数サイクル行い、フォワードプライマーが伸長したフォワード側伸長鎖と、リバースプライマーが伸長したリバース側伸長鎖とを生成し、フォワード側伸長鎖とリバース側伸長鎖とをアニーリングして3’末端が陥没した二本鎖DNA(図の(b))を生成する。 
 PCRでは、熱変性、アニーリング、伸長反応を繰り返して、テンプレートDNAの配列を増幅する。PCRの条件にもよるが、熱変性は約95℃、1~3分間、アニーリングはプライマーのTm±5℃、伸長反応は1~10分間で行う。PCRのサイクル数は特に制限はないが、一般に24~40サイクル程度である。
 図のように、PCR増幅産物には3’末端が陥没した二本鎖DNAが含まれる。これは、プライマーを鋳型として相補鎖が合成される際に、式(1)の分解性保護基がポリメラーゼ反応を阻害し、反応を停止させるためである。
 その後、図の(c)に示すように、所定の処理によりRを脱保護し、5’末端が突出した接着末端を形成する(脱保護工程)。所定の処理は、Rを脱保護するための処理であり、上記の光照射処理、還元処理などを挙げることができる。
 以下、脱保護メカニズムについて説明する。下記式に示すように、所定の処理を施すと、式(1)の分解性保護基Rがヌクレオチドのリン酸から脱離する。
Figure JPOXMLDOC01-appb-C000020
 光照射処理としては、例えば、光源装置(脱保護手段)により300~400nmの波長の光を1~30分間照射する方法を挙げることができる。また、還元処理としては、例えば、亜ジチオン酸ナトリウム(Na)などの還元剤を用い、例えば70~80℃、1~30分間処理する方法を挙げることができる。これにより、プライマーの式(1)のヌクレオシドの分解性保護基が脱保護され、5’突出末端(3’陥没末端)を有する二本鎖DNAを合成することができる。その他の処理についても同様に、分解性保護基を脱保護する装置(脱保護装置)を使用して脱保護を行う。
 本発明では、制限酵素などによらずに自由自在に接着末端を設計することができるため、所望の配列を有するDNAを自由に連結することができる。例えば、標的DNAとベクターの両方の配列を設計し、脱保護処理により両者に共通の接着末端を形成させてライゲーションを行って組換えDNAを調製し、これをクローニングやライブラリーの作成、大量発現系の構築などに使用することができる。また、接着末端を有する複数のゲノム配列を連結することで、試験管内でゲノムビルドアップ反応を行うことができる。あるいは、平滑末端の状態で細胞内に二本鎖DNAを導入し、細胞内で脱保護処理を行うことで、細胞内でゲノムビルドアップ反応を行うこともできる。
 以下、本発明を実施例に基づいて具体的に説明するが、これらは本発明の目的を限定するものではない。また、以下の実施例において「%」表示は特に規定しない限り質量基準(質量パ-セント)である。
1.鎖伸長停止ケージドアナログT*
(1)鎖伸長停止ケージドアナログT*を含むオリゴヌクレオチドの合成
 鎖伸長停止ケージドアナログT*を含むオリゴヌクレオチド(表1)は、ホスホロアミダイト法に基づき核酸自動合成機(NR-2A 7MX、日本テクノサービス社製)により合成した。鎖伸長停止ケージドアナログT*のアミダイト化合物(化13)は、既報(Wu,L.et al.,Chem.Eur.J.2014,20,12114-12122)に従い合成した。5’末端のリン酸化には、市販のアミダイト試薬5’-Phosphate-ON Reagent(ChemGenes社製)を用いた。合成後のオリゴヌクレオチドは定法に従い脱保護したのち、逆相HPLCにより精製した[システム,日立ハイテクサイエンス社製 LaChrom Elite; カラム,YMC社製Hydrosphere C18(250×10mm I.D.);溶離液A,5%アセトニトリルを含む50mM triethylammonium acetate(pH 7.0);溶離液B,アセトニトリル;グラジエント条件、0~60% 溶離液B/20分;溶離液量,3mL/分;波長260nmの吸光度により検出](図2)。
Figure JPOXMLDOC01-appb-C000021
 下記表に、合成した鎖伸長停止ケージドアナログT*を含むオリゴヌクレオチド配列を示す。pは5’末端の水酸基がリン酸化されていることを示す。
Figure JPOXMLDOC01-appb-T000022
 図2は、オリゴヌクレオチドpAcGFP_Fw2合成時における、脱保護後(a)と精製後(b)のクロマトグラムを示す図である。精製前のクロマトグラム(a)に示す14.1分付近のピークが目的物に由来するピークである。これを分取して精製した(b)。
(2)鎖伸長停止ケージドアナログT*を含むオリゴヌクレオチドを鋳型にした複製反応
 Q5(登録商標) High-Fidelity DNA polymerase, Deep Vent(登録商標) DNA polymerase, Phusion(登録商標) High-Fidelity DNA polymeraseはNew England Biolabs社から購入した。Pfu DNA polymeraseはプロメガ社から購入した。酵素反応の反応液[1μM Primer(5’ Fluorescein-ACCGAGCTCGAATTCGCC 3’),1μM Template(0T,1T又は2T,表1),0.2mM dNTPs,0.02 units/μL polymeraseを含む]は各酵素に添付の緩衝液を用い、推奨条件に従い作成した。反応液をアプライドバイオシステムズ 2720サーマルサイクラーにて95℃で1分、55℃で30秒、次いで72℃で10,30又は60分間加熱した。加熱後の反応液10μLに2×ホルムアミドローディング溶液10μLを加え、90℃で3分間加熱した後、7.5M尿素を含む20%変性PAGEにより解析した(図3)。泳動後のゲルに含まれるオリゴヌクレオチド鎖をプライマー鎖の5’末に修飾したフルオレセイン基由来の蛍光に基づきChemiDoc XRS+イメージングシステムにて検出した。
 図3は、鎖伸長停止ケージドアナログT*を含むオリゴヌクレオチドを鋳型にした鎖伸長反応の停止を示す図である。(a)は用いたオリゴヌクレオチドの配列。(b)~(e)は市販の耐熱性ポリメラーゼを用いた鎖伸長反応の変性PAGE解析結果、(f)はPfu DNA polymeraseを用い、2Tを鋳型にした反応のMALDI-TOF分子量解析結果を示す。下パネルは原料(Primer)の解析結果(コントロール実験)を示す。
 図3(f)に示した鎖伸長産物の分子量解析は次のとおり行った。前述の条件にてPfu DNA polymeraseを含む2Tを鋳型にした酵素反応を作成し、95℃で1分、55℃で30秒、次いで72℃で40分間加熱した。反応液(50μL)をTE飽和フェノールとクロロホルムの等量混合液で抽出し、酢酸アンモニウム塩存在下アルコール沈殿し、DNAを回収した。質量分析計ultrafleXtreme(Bruker Daltonics)を用い、MALDI-TOF分子量解析を行った。
(3)鎖伸長停止による接着末端形成を利用したクローニング反応
 図5はPCR断片の連結反応の模式図である。この図に示す方法でPCR断片の連結を行った。まず、ベクター側断片(5.3kb)は以下のようにして調製した(図4(a))。反応液[0.5μM pET21d_Fw2, 0.5μM pET21d_Rev2, 0.8ng/μL pET21d(Novagen),20mM Tris-HCl(pH8.8 at 25℃),10mM KCl,10mM(NHSO,2mM MgSO,0.1% Triton(登録商標) X-100, 0.1mg/mL BSA,0.2mM dNTPs,0.02U/μL Pfu DNA polymerase]をアプライドバイオシステムズ MiniAmp Plusサーマルサイクラーにて以下の加熱条件に付した[(95℃,15秒→50℃,30秒→72℃,7.5分間)/サイクル×30サイクル]。
 インサート側断片(0.75kb)は以下のようにして調製した(図4(b))。反応液[0.5μM pAcGFP1_Fw2, 0.5μM pAcGFP1_Rev2, 0.8ng/μL pAcGFP1(Takara), 20mM Tris-HCl(pH8.8 at 25℃),10mM KCl,10mM(NHSO, 2mM MgSO, 0.1% Triton(登録商標) X-100, 0.1mg/mL BSA, 0.2mM dNTPs, 0.02U/μL Pfu DNA polymerase]をアプライドバイオシステムズ MiniAmp Plusサーマルサイクラーにて以下の加熱条件に付した[(95℃,15秒→55℃,15秒→72℃,1分間)/サイクル×30サイクル]。
 PCR反応後の反応液(50μL)にそれぞれTE飽和フェノール(ナカライテスク)とクロロホルムの等量混合液(100μL)を加え、激しく混和したのち遠心(14,000×g,3分間)し,水層を分離した。同様にクロロホルム(100μL)で反応液を抽出したのち、水層に3M NaOAc(pH5.2)5μLとイソプロピルアルコール60μLを加えた。-30℃で1時間冷却した後、遠心(20,000×g,20分間)し、DNAをペレットとして回収した。PCR反応の鋳型プラスミドDNAを分解するため、2種の反応産物をそれぞれ制限酵素DpnI(Toyobo)と37℃で1時間反応させた(0.8U/μL DpnI in 33mM Tris-acetate(pH7.9),10mM Mg(OAc), 66mM KOAc,0.5mM dithiothreitol,反応液量20μL)。反応液に水80μLを添加し、TE飽和フェノールとクロロホルムの等量混合液(100μL)を加え、激しく混和したのち遠心(14,000×g,3分間)し、水層を分離した。同様にクロロホルム(100μL)で反応液を抽出したのち、3M NaOAc(pH5.2)10μLとイソプロピルアルコール110μLを加えた。-30℃で1時間冷却した後、遠心(20,000×g,20分間)し、DNAをペレットとして回収した。DNAペレットを水に溶解しアガロースゲル電気泳動(GelRed(和光純薬工業)を含む0.8% Agarose S(和光純薬工業))により分析し、DNAサイズマーカー(Quick-Load Purple 1 kb Plus DNA Ladder、New England Biolabs)のバンド強度と比較することで含まれる目的DNAの濃度を算出した[ベクターDNA断片(5μL)、13ng/μL;インサートDNA断片(50μL),23ng/μL]。
 べクターDNA断片(26.5ng)とインサート断片(26.5ng)の混合液5μLを96穴マルチウェルプレートのウェルに加え、光照射装置MAX-305(朝日分光)により波長365nmの光を約4mW/cmで10分間照射した。同溶液を大腸菌コンピテントセル溶液25μL(NEB 5-alpha Competent E.coli(High Efficiency)、New England Biolabs)に添加し形質転換した。これをアンピシリンナトリウム(50μg/mL)を含むLB寒天培地に塗布し37℃で一晩培養した。生じたコロニー476個から20個を選択しコロニーPCRを行い、ベクターへの目的インサートの挿入の有無を判別した。PCR反応液をアガロースゲル電気泳動により解析し、20クローンのうち目的連結反応産物は18個含まれることが分かった(PCRプライマー, 5’ TAATACGACTCA CTATAGGG 3’, 5’ GCTAGTTATTGCTCAGCGG 3’;コロニー陽性率90%)。連結反応産物10クローンについて、これを含む菌体を液体培養し、プラスミドDNAを抽出した。2種のプライマー配列(5’ GGTGATGTCGGCGATATAGG 3’, 5’ GCCAATCCGGATATAGTTCCT 3’)を用い、DNAシーケンサーABI PRISM 3500xL Genetic Analyzerにより得られたプラスミドDNAの配列を解析した。4か所のプライマーDNA由来部位、これらのうちの2か所のオーバーラップ部位、及びこれらに挟まれた範囲の塩基配列を解析した結果、10クローンすべてで設計どおりの配列を含み、変異は観察されなかった。
 図4は、PCR反応のアガロースゲル電気泳動分析を示す図である。Lane1,サイズマーカー;lane2,反応液を示す。(a)ベクター側断片の調製。(b)インサート側断片の調製である。
2.還元条件で脱保護されるアナログ(T**)
(1)還元条件で脱保護されるアナログ(T**)の合成
 以下に還元条件で脱保護されるアナログ(還元脱保護アナログ)の合成スキームを示す。以下、この合成スキームに従って、還元脱保護アナログの合成手順を説明する。
Figure JPOXMLDOC01-appb-C000023
 3-O-[2-(4-ニトロベンジルオキシ)(ジイソプロピルアミノ)ホスファニル]-5-O-(4,4’-ジメトキシトリチル)-2-デオキシ-チミジン(化合物26)の合成
 THF(7mL)中の化合物24(0.50g、1.32mmol)及びEtN(200μL、1.45mmol)の混合物に、室温でN,N-ビス(ジイソプロピルアミノ)クロロホスフィン(0.39g、1.45mmol)を加えた。反応が完了するまで、生じた混合物を室温で25分間撹拌した(化合物25)。次の工程を精製せずに続けた。4-ニトロベンジルアルコール(0.22g、1.45mmol)を反応混合物に加え、次いで5-(メチルチオ)-1H-テトラゾール(0.17g、1.45mmol)を加えた。反応は室温で20分後に完了した。反応混合物をEtOAcで希釈し、飽和NaHCO、HO、及びブラインで洗浄した。蒸発後、混合物を中性フラッシュシリカゲルクロマトグラフィー(ヘキサン中2%トリエチルアミン/EtOAc=2:1~1:1)で精製して化合物26(0.46g、0.56mmol、42%)を得た。
(2)オリゴヌクレオチドの合成
 合成した切断アナログT**のアミダイトは終濃度50 mMのアセトニトリル溶液とし、ホスホロアミダイト法に基づきDNA合成機を用いてDNAオリゴマーを合成した。脱保護は定法に従って行い、逆相HPLC [日立ハイテクサイエンス社製 LaChrom Elite;カラム,YMC社製Hydrosphere C18(250×10mm)]により精製し、MALDI-TOF/MS(Bruker)を用いて構造を確認した。合成したDNAの配列を以下の表に示す。
Figure JPOXMLDOC01-appb-T000024
(3)プライマー伸長実験
 Q5 High-Fidelity DNA polymeraseはNew England Biolabs社から購入した。Pfu DNA polymeraseはプロメガ社から購入した。酵素反応の反応液[1μM Primer (5’ Fluorescein-ACCGAGCTCGAATTCGCC 3’),1μM Template(0T,1T又は2T,表2),0.2mM dNTPs,0.02units/μL polymeraseを含む]は各酵素に添付の緩衝液を用い、推奨条件に従い作成した。反応液をアプライドバイオシステムズ2720サーマルサイクラーにて95℃で1分、55℃で30秒、次いで72℃で10、30又は60分間加熱した。加熱後の反応液9μLに2×ホルムアミドローディング溶液9μLを加え、90℃で3分間加熱した後、7.5M尿素を含む20%変性PAGEにより解析した(図6)。泳動後のゲルに含まれるオリゴヌクレオチド鎖をプライマー鎖の5’末に修飾したフルオレセイン基由来の蛍光に基づきChemiDoc XRS+イメージングシステムにて検出した。
(4)T**を1つ含むオリゴヌクレオチド(1T)の脱保護反応
 オリゴヌクレオチド(5’-ACGACTCACT**ATAGGGCGAATTCGAGCTCGGT-3’,10μM)を20mM Tris-HCl(pH7.4)に溶解し、Naを終濃度1mMとなるように加え、室温で30分間静置した。その後、脱保護反応の進行を逆相HPLC[日立ハイテクサイエンス社製 LaChrom Elite;カラム,YMC社製Hydrosphere C18 (250×10mm)]により解析した(図7)。
(5)T**を2つ含むオリゴヌクレオチド(2T)の脱保護反応
 オリゴヌクレオチド(5’-ACGACTCACT**T**TAGGGCGAATTCGAGCTCGGT-3’,10μM)を20mM Tris-HCl(pH7.4)に溶解し、Naを終濃度10mMとなるように加え、室温で30分間静置した。その後、脱保護反応の進行を逆相HPLC[日立ハイテクサイエンス社製 LaChrom Elite;カラム,YMC社製Hydrosphere C18(250×10mm)]により解析した(図8)。
3.リン酸修飾基中の置換基Rをより嵩高くした実験
 以下、PCR停止プライマーにおいてリン酸修飾基中の置換基Rをより嵩高くしたとき、修飾部位の化学的安定性及び複製反応阻害効果を評価した。図9は、この実験の概要を示す図である。
(1)アミダイト試薬 (dT,R=Me,tBu,adamantyl)の合成
 置換基Rをより嵩高くし、複製反応阻害効果、化学的安定性向上を目指した。
(1-1)メチル型dTホスホロアミダイトの合成
Figure JPOXMLDOC01-appb-C000025
参照)Chem.Eur.J.2014,20,12114-12122
 5’-DMTr-チミジン(343mg,0.63mg)の懸濁液に光保護アミダイト試薬(300mg,0.75mmol)と1H-テトラゾール(53mg,0.75mmol)をCHCl(1.7mL)中、アルゴン下、0℃で添加し、室温で4時間撹拌した。この混合物をシリカゲルカラム(3%TEAを含むCHCl/AcOEt=3/1)に直接アプライして粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフィー(3%TEAを含むHex/AcOEt=3/1)で精製し、Meアナログアミダイト(309mg、58%)を得た。
 31P-NMR(159MHz,CDCl3):δ 148.8,147.8,147.7;HR-ESI-MS(m/z)calcd.863.3392[M+Na]、found 863.3415。
(1-2)アダマンチル型dTホスホロアミダイトの合成
Figure JPOXMLDOC01-appb-C000026
 CHCl(4mL)中の5’-DMTr-チミジン(258mg,0.47mmol)の溶液にDIPEA(107μL,0.61mmol)とビス(ジイソプロピルアミノ)-Cl-ホスフィン(163mg,0.61mmol)をアルゴン下、0℃で加え、室温で2時間撹拌した。次いで、上記反応混合物に2-ニトロ-α-アダマンチルベンジルアルコール(150mg、0.52mmol)と1H-テトラゾール(50mg、0.71mmol)を加え、室温で2時間撹拌した。反応混合物に1H-テトラゾール(50mg,0.71mmol)を加え、更に1時間撹拌した。HOを加えた後、反応混合物をAcOEtで抽出し、ブラインで洗浄し、NaSO上で乾燥し、蒸発させた。シリカゲルカラムクロマトグラフィー(0.5% TEAを含むHex/AcOEt=1/1)で粗生成物を精製し、Adアナログアミダイト(169mg、37%)を得た。
 31P-NMR(159MHz,CDCl3):δ 153.1,151.9,150.2,148.1;HR-ESI-MS(m/z)calcd.983.4331[M+Na]、found 983.4336。
(1-3)tBu置換アナログの4種類の塩基(A,G,C,T)のアミダイト試薬合成スキーム(まとめ)
 以下に、4種類の塩基を用いた場合におけるアミダイト試薬の合成スキームの概要を示す。
Figure JPOXMLDOC01-appb-C000027
(1-4)Pac-dAホスホロアミダイトの合成
Figure JPOXMLDOC01-appb-C000028
 5’-DMTr-Pac-dA(2.0g,2.9mmol)の懸濁液に光保護アミダイト試薬(2.6g,5.8mmol)と5(メチルチオ)-1H-テトラゾール(1.0g,8.7mmol)をCHCl(7.5mL)中でアルゴン下、0℃で加え、室温で6時間撹拌した。溶液をAcOEt(200mL)に注ぎ、水(200mL)、飽和炭酸水素ナトリウム水(200 mL)、食塩水(200 mL)で洗浄した。硫酸ナトリウム上で有機相を乾燥し、濾過し、シリカゲルカラムクロマトグラフィー(Hex/AcOEt=2/1、1% TEA含有)で精製し、t-Bu dTアナログアミダイト(1.1g、37%)を得た。
 HR-ESI-MS(m/z)calcd.1048.4350[M+Na]、found 1048.4437。
(1-5)dTホスホロアミダイトの合成
Figure JPOXMLDOC01-appb-C000029
 5’-DMTr-Pac-dA(1.5g,2.8mmol)の懸濁液に光保護アミダイト試薬(2.4g,5.5mmol)と5-(メチルチオ)-1H-テトラゾール(0.64g,5.5mmol)をCHCl(10mL)中にアルゴン下、0℃で添加し、室温で7時間撹拌した。溶液をAcOEt(200mL)に注ぎ、水(200mL)、飽和炭酸水素ナトリウム水(200mL)、食塩水(200mL)で洗浄した。有機相を硫酸ナトリウム上で乾燥し、濾過し、シリカゲルカラムクロマトグラフィー(Hex/AcOEt=2/1、1% TEAを含む)で精製し、t-Bu dAアナログアミダイト(2.0g、81%)を得た。
 HR-ESI-MS(m/z)calcd.905.2267[M+Na]、found 905.3978。
(1-6)Pac-dGホスホロアミダイトの合成
Figure JPOXMLDOC01-appb-C000030
 5’-DMTr-Pac-dG(2.0g,2.8mmol)の懸濁液に光保護アミダイト試薬(2.5g,5.7mmol)と5-(メチルチオ)-1H-テトラゾール(0.99g,8.5mmol)をCHCl(7.5mL)中でアルゴン下、0℃で加え、室温で6時間撹拌した。溶液をAcOEt(200mL)に注ぎ、水(200mL)、飽和炭酸水素ナトリウム水(200mL)、食塩水(200mL)で洗浄した。有機相を硫酸ナトリウム上で乾燥し、濾過し、シリカゲルカラムクロマトグラフィー(Hex/AcOEt=2/1で1% TEAを含む、AcOEt/MeOH=40/1)で精製し、t-Bu dGアナログアミダイト(1.2g,41%)を得た。
 HR-ESI-MS (m/z)calcd.1143.5678[M+TEA]、found 1143.5867。
(1-7)Ac-dCホスホロアミダイトの合成
Figure JPOXMLDOC01-appb-C000031
 5’-DMTr-Ac-dC(1.8g,3.2mmol)の懸濁液に光保護アミダイト試薬(2.8g,6.3mmol)と5(メチルチオ)-1H-テトラゾール(0.73mg,6.3mmol)をCHCl(8.0mL)中にアルゴン下、0℃で加え、室温で6時間撹拌した。溶液をAcOEt(200mL)に注ぎ、水(200mL)、飽和炭酸水素ナトリウム水(200mL)、食塩水(200mL)で洗浄した。有機相を硫酸ナトリウム上で乾燥し、濾過し、シリカゲルカラムクロマトグラフィー(Hex/AcOEt=1/1、1% TEA含有)で精製し、t-Bu dCアナログアミダイト(2.1g、74%)を得た。
 HR-ESI-MS(m/z)calcd.1011.5355 [M+TEA]、found 1011.5503。
(2)修飾オリゴヌクレオチドの熱サイクル条件(PCR条件)における安定性(分解耐性)試験
(反応条件)
 10μM oligo(Me1T or tBu1T) in 20mM Tris-HCl,10mM(NHSO,10mM KCl,2mM MgSO,pH8.8.本組成の溶液を熱サイクル条件[(95℃,1分→50℃,30秒→72℃,3分)×30cycles]に付したのち、逆相HPLCにて分析した。
(分析条件)
 システム;日立ハイテクサイエンス社製LaChrom Elite
 カラム;YMC社製Hydrosphere C18(250×4.6mm)
 移動相;A液,5%アセトニトリルを含む50mM triethylammonium acetate(TEAA, pH7.0)
     B液,アセトニトリル
 (B液含量を20分かけて0%から60%へと増加させた(linear gradient))
 移動相流量;1mL/分
 検出波長;260nm
(結果)
 オリゴヌクレオチドMe1Tを熱サイクルに付した後には、約50%の基質において修飾基の脱離が見られた(図10の(d):観察されたピークが修飾を含まない同配列オリゴヌクレオチドの溶出時間と一致することを確認した)。それに対し、tBu1Tの場合は熱サイクルに付しても保護基の脱離は観察されなかった(図10の(e))。したがって、Me,tBuタイプ修飾の安定性を比較した結果、後者の優位性が示された。
(3)修飾プライマーがPCR条件において安定(分解耐性)であることを示す実験(tBuアナログ導入数1,2,3の比較)
(反応条件)
 10μM oligo(tBu1T,tBu2T or tBu3T) in 20 mM Tris-HCl,10mM (NHSO,10mM KCl,2mM MgSO,pH8.8。本組成の溶液を熱サイクル条件[(95℃,1min→50℃,30sec→72℃,3min)×30cycles]に付したのち、逆相HPLCにて分析した。
(分析条件)
 システム;日立ハイテクサイエンス社製LaChrom Elite
 カラム;YMC社製Hydrosphere C18(250×4.6mm)
 移動相;A液,5%アセトニトリルを含む50mM triethylammonium acetate(TEAA,pH7.0)
     B液,アセトニトリル
 (B液含量を20分かけて0%から60%へと増加させた(linear gradient))
 移動相流量;1mL/分
 検出波長;260nm
(結果)
 図11に示すように、修飾の導入数を2個、3個に増加させても本条件では保護基の脱離は見られなかった。
(4)tBuタイプ修飾プライマーの脱保護反応の逆相HPLC分析
(脱保護反応条件)
 光照射(図12の(b));10μM oligo,10mM Tris-HCl(pH8.5)
 溶液に対し365nm光(4mW/cm)を10分間照射
 還元反応(図12の(c));5μM oligo,10mM Na,20mM Tris-HCl(pH8.5)
 溶液を25℃で30分間インキュベート
(分析条件)
 システム;日立ハイテクサイエンス社製LaChrom Elite
 カラム;YMC社製Hydrosphere C18(250×4.6mm)
 移動相;A液,5%アセトニトリルを含む50mM triethylammonium acetate(TEAA,pH7.0)
     B液,アセトニトリル
 (B液含量を20分かけて0%から60%へと増加させた(linear gradient))
 移動相流量;1mL/分
 検出波長;260nm
 以下の還元条件でも同様に脱保護が可能であることを確認済みである。
 ・10μM oligo,10mM B(OH),50mM NaOH,30% EtOH/water;25℃,2hours
 ・10μM oligo,1.5mM TiCl,20mM citrate buffer(pH6.0);25℃,2hours
 図12に示すように、365nm光照射、及び亜ジチオン酸ナトリウムによる還元反応の両者で定量的な反応進行を確認した。
(5)PCR産物の試験管内での連結反応(Taq DNAリガーゼ)
 図13中に記載の熱耐性ポリメラーゼを使用し、PCR反応により二本鎖DNA断片を調製した。1.0kb断片の調製に用いた鋳型はpET21プラスミドDNA、プライマー配列は以下の2本である。
 下線部T()はリン酸部にMe、tBu型修飾基を含むことを示す。pは5’末端がリン酸化されていることを示す。
 Fw(21-nt),5’ CGCCGAGACAGAACTTAATGG 3’
 Rev(38-nt),5’ pAATCTCCTTCTTTAAGTTAAACAAAATTATTTCTAGAG 3’
 0.74kb断片の調製に用いた鋳型はpAcGFP1プラスミドDNA、プライマー配列は以下の2本である。
 下線部T()はリン酸部にMe、tBu型修飾基を含むことを示す。pは5’末端がリン酸化されていることを示す。
 Fw(35-nt),5’ pAAAGAAGGAGATTAACCATGGTGAGCAAGGGCGCC 3’
 Rev(34-nt),5’ GCAACCAAGCTTCTCACTTGTACAGCTCATCCAT 3’
 図中に記載の市販の耐熱性ポリメラーゼを使用し、推奨条件に従いPCR反応を実施し、1.0kb断片及び0.74kb断片をそれぞれ調製した。反応の進行はアガロースゲル電気泳動(GelRed(和光純薬工業)を含む1.5% Agarose S(和光純薬工業))にて確認した。PCR反応後、反応液200μLにTE飽和フェノール(ナカライテスク)とクロロホルムの等量混合液200μLを加え、激しく混和したのち遠心(20,000×g,1分間)、水層を分離した。同様にクロロホルム200μLで反応液を抽出したのち,3M NaOAc(pH5.2)20μLとイソプロピルアルコール220μLを加えた。-30℃で1時間冷却した後、遠心(20,000×g,20分間)することでDNAを回収した。目的とするDNA産物をアガロースゲル電気泳動(GelRed(和光純薬工業)を含む1.5% Agarose S(和光純薬工業))により精製した。切り出したゲル片からWizard SV Gel and PCR Clean-Up System(プロメガ)を用いてDNAを抽出した。
 このようにして調製した1.0kb断片と0.74kb断片をTaq DNAリガーゼを用いて連結し、その効率をアガロースゲル電気泳動で評価した。最初にリン酸部の保護基を除去するために、DNA溶液(5μL;24nM 1.0kb断片,24nM 0.74kb断片,1mM Tris-HCl(pH8.5))に365-nm光を4mW/cmの強度で5分間照射した。次いで、この2つのDNA断片を含む溶液にTaq DNAリガーゼ(New England Biolabs)を加え、37℃で2時間インキュベートした。反応液組成は以下のとおりである。2.8nM 1.0kb断片,2.8nM 0.74kb断片,1.6U/μL Taq DNAリガーゼ,20mM Tris-HCl,25mM potassium acetate,10mM magnesium acetate,1mM NAD 1, 10mM DTT, 0.1% Triton X-100,pH7.6.反応液に水80μLを加え、全量を約100μLとし、TE飽和フェノール(ナカライテスク)とクロロホルムの等量混合液100μLを加え、激しく混和したのち遠心(20,000×g,1分間)、水層を分離した。同様にクロロホルム100μLで反応液を抽出したのち、3M NaOAc(pH5.2)10μLとイソプロピルアルコール110μL,20mg/mL グリコーゲン 1μLを加えた。-30℃で15分間冷却した後、遠心(20,000×g,20分間)することでDNAを回収した。回収したDNA産物をアガロースゲル電気泳動(1.5% Agarose S(和光純薬工業))により泳動した。泳動後のゲルをGelRed水溶液で染色し、バンドを可視化した(BioRad ChemiDoc XRS+システム)。
 図に示すように、Me,tBuプライマーの比較を行い、後者でより高い連結効率が得られることを確認した。
(6)鎖伸長停止ケージドアナログを含むオリゴヌクレオチドを鋳型にした複製反応
 上記「(2)鎖伸長停止ケージドアナログT*を含むオリゴヌクレオチドを鋳型にした複製反応」と同様に、複製反応の実験を行った。
 酵素反応の反応液[1μM Primer(5’ Fluorescein-ACCGAGCTCGAATTCGCC 3’),1μM Template(各図に配列及び構造記載),0.2mM dNTPs,0.02 units/μL polymeraseを含む]は各酵素に添付の緩衝液を用い、推奨条件に従い作成した。反応液をアプライドバイオシステムズ 2720サーマルサイクラーにて95℃で1分、55℃で30秒、次いで72℃で30分間加熱した。加熱後の反応液10μLに2×ホルムアミドローディング溶液10μLを加え、90℃で3分間加熱した後、7.5M尿素を含む20%変性PAGEにより解析した(図14~図17)。泳動後のゲルに含まれるオリゴヌクレオチド鎖をプライマー鎖の5’末に修飾したフルオレセイン基由来の蛍光に基づきChemiDoc XRS+イメージングシステムにて検出した。

Claims (13)

  1.  核酸の増幅に使用されるプライマーであって、下記式(1)で示される構造を有することを特徴とするプライマー。
    Figure JPOXMLDOC01-appb-C000001
    (ここで、Bは塩基を示し、Rは分解性保護基を示し、Rは水素又はヒドロキシル基を示す。*は隣接するヌクレオチドの糖との結合手を意味する。)
  2.  前記Rが下記式(2A)で示される光分解性保護基であることを特徴とする請求項1に記載のプライマー。
    Figure JPOXMLDOC01-appb-C000002
    (ここで、Aは炭素数1~3のアルキレン基を示し、炭素数1~20の分岐鎖を有していてもよい。*はリン酸の酸素(O)との結合手を意味する。)
  3.  前記Rが下記式(4A)で示される光分解性保護基であることを特徴とする請求項2に記載のプライマー。
    Figure JPOXMLDOC01-appb-C000003
    (ここで、Rは炭素数1~20のアルキル基を示す。)
  4.  前記Rがtert-ブチル基又はアダマンチル基であることを特徴とする請求項3に記載のプライマー。
  5.  前記Rが下記式(3A)で示される2-ニトロベンジル基であることを特徴とする請求項2に記載のプライマー。
    Figure JPOXMLDOC01-appb-C000004
  6.  前記Rが下記式(2B)で示される還元剤分解性保護基であることを特徴とする請求項1に記載のプライマー。
    Figure JPOXMLDOC01-appb-C000005
    (ここで、Aは炭素数1~3のアルキレン基を示し、炭素数1~20の分岐鎖を有していてもよい。*はリン酸の酸素(O)との結合手を意味する。)
  7.  前記Rが下記式(3B)で示される4-ニトロベンジル基であることを特徴とする請求項6に記載のプライマー。
    Figure JPOXMLDOC01-appb-C000006
  8.  前記式(1)で示される構造が配列中に2つ以上連続することを特徴とする請求項1に記載のプライマー。
  9.  請求項1~8のいずれかに記載したプライマーを用いて接着末端を有する二本鎖DNAを製造するための二本鎖DNAの製造装置であって、
     鋳型となるテンプレートDNAのアンチセンス鎖の一部の配列と相補的であり、かつ前記式(1)で示される構造を有するフォワードプライマーと、
     前記テンプレートDNAのセンス鎖の一部の配列と相補的であり、かつ前記式(1)で示される構造を有するリバースプライマーと、
     前記テンプレートDNAを鋳型としてポリメラーゼ連鎖反応(PCR)を複数サイクル行い、前記フォワードプライマーが伸長したフォワード側伸長鎖と、前記リバースプライマーが伸長したリバース側伸長鎖とを生成し、前記フォワード側伸長鎖と前記リバース側伸長鎖とをアニーリングして3’末端が陥没した二本鎖DNAを生成する増幅手段と、
     前記Rを脱保護する脱保護手段と、
     を備えることを特徴とする二本鎖DNAの製造装置。
  10.  請求項1~8のいずれかに記載したプライマーを用いて接着末端を有する二本鎖DNAを製造するための二本鎖DNAの製造方法であって、
     鋳型となるテンプレートDNAのアンチセンス鎖の一部の配列と相補的であり、かつ前記式(1)で示される構造を有するフォワードプライマーと、前記テンプレートDNAのセンス鎖の一部の配列と相補的であり、かつ前記式(1)で示される構造を有するリバースプライマーと、を準備する準備工程と、
     前記テンプレートDNAを鋳型としてポリメラーゼ連鎖反応(PCR)を複数サイクル行い、前記フォワードプライマーが伸長したフォワード側伸長鎖と、前記リバースプライマーが伸長したリバース側伸長鎖とを生成し、前記フォワード側伸長鎖と前記リバース側伸長鎖とをアニーリングして3’末端が陥没した二本鎖DNAを生成する増幅工程と、
     前記Rを脱保護する脱保護工程と、
     を備えることを特徴とする二本鎖DNAの製造方法。
  11.  前記Rが前記式(2A)で示される光分解性保護基であり、脱保護工程は光照射により前記Rを脱保護することを特徴とする請求項10に記載の二本鎖DNAの製造方法。
  12.  前記Rが前記式(2B)で示される還元剤分解性保護基であり、脱保護工程は還元剤により前記Rを脱保護することを特徴とする請求項10に記載の二本鎖DNAの製造方法。
  13.  前記プライマーは、前記式(1)で示される構造が配列中に2つ以上連続することを特徴とする請求項10に記載の二本鎖DNAの製造方法。
PCT/JP2020/029442 2019-07-31 2020-07-31 プライマー及びこれを用いた二本鎖dnaの製造装置並びに二本鎖dnaの製造方法 WO2021020562A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/631,407 US20220282294A1 (en) 2019-07-31 2020-07-31 Primer, Device for Producing Double-Stranded DNA Using Primer, and Method for Producing Double-Stranded DNA Using Primer
CN202080054777.XA CN114302965A (zh) 2019-07-31 2020-07-31 引物和使用了该引物的双链dna的制造装置以及双链dna的制造方法
EP20846477.6A EP4006135A4 (en) 2019-07-31 2020-07-31 Primer, double-stranded DNA production device using the same, and method of double-stranded DNA production
JP2021535463A JP7551134B2 (ja) 2019-07-31 2020-07-31 プライマー及びこれを用いた二本鎖dnaの製造装置並びに二本鎖dnaの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019140852 2019-07-31
JP2019-140852 2019-07-31

Publications (1)

Publication Number Publication Date
WO2021020562A1 true WO2021020562A1 (ja) 2021-02-04

Family

ID=74228877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/029442 WO2021020562A1 (ja) 2019-07-31 2020-07-31 プライマー及びこれを用いた二本鎖dnaの製造装置並びに二本鎖dnaの製造方法

Country Status (5)

Country Link
US (1) US20220282294A1 (ja)
EP (1) EP4006135A4 (ja)
JP (1) JP7551134B2 (ja)
CN (1) CN114302965A (ja)
WO (1) WO2021020562A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023282245A1 (ja) 2021-07-05 2023-01-12 国立研究開発法人科学技術振興機構 ヌクレオチド類の精製方法及びヌクレオチド類の精製装置並びに疎水性試薬及び疎水性基質
WO2023113038A1 (ja) * 2021-12-17 2023-06-22 リードファーマ株式会社 オリゴヌクレオチドの製造方法
WO2024185697A1 (ja) * 2023-03-03 2024-09-12 国立大学法人東海国立大学機構 ポリヌクレオチド連結産物の製造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009113709A1 (ja) 2008-03-11 2009-09-17 国立大学法人東京大学 粘着末端を有するdna断片の調製方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2004205118B2 (en) * 1999-03-19 2006-11-09 Takara Bio Inc. Method for amplifying nucleic acid sequence
CN101631796B (zh) * 2007-03-09 2013-08-07 独立行政法人理化学研究所 具有由单核苷或单核苷酸衍生的结构的化合物、核酸、标记物以及核酸检测方法和试剂盒
JP5299964B2 (ja) * 2009-03-11 2013-09-25 独立行政法人産業技術総合研究所 Dna3’末端の修飾基除去用酵素試薬
WO2015125845A1 (ja) * 2014-02-20 2015-08-27 塩野義製薬株式会社 含窒素非芳香族複素環を含む核酸のリン酸部位修飾

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009113709A1 (ja) 2008-03-11 2009-09-17 国立大学法人東京大学 粘着末端を有するdna断片の調製方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
CHEM. EUR. J, vol. 20, 2014, pages 12114 - 12122
HIROTATO MURASE, KOSUTO NAKAMOTO, NAOTO ABE, KAORU ONDA, RYUSUKE FUKUI, FUMITAKA HASHIYA, YASUAKI KIMURA, HIROSHI ABE: "1E6-59 Development of new DNA assembly method for the genome synthesis", PROCEEDINGS OF THE 100TH SPRING ANNUAL MEETING OF THE CHEMICAL SOCIETY OF JAPAN (CSJ); MARCH 22-25, 2020, vol. 100, 5 March 2020 (2020-03-05) - 25 March 2020 (2020-03-25), JP, pages 1 - 59, XP009533951 *
MAIER, T. ET AL.: "Nucleotides: Part LXXV New Types of Fluorescence Labeling of 2'- deoxycytidine", HELVETICA CHIMICA ACTA, vol. 92, 2009, pages 2722 - 2736, XP055789444 *
SANEYOSHI HISAO, IKETANI KOICHI, KONDO KAZUHIKO, SANEYOSHI TAKEO, OKAMOTO ITARU, ONO AKIRA: "Synthesis and Characterization of Cell-Permeable Oligonucleotides Bearing Reduction-Activated Protecting Groups on the Internucleotide LinKages", BIOCONJUGATE CHEMISTRY, vol. 27, no. 9, 2016, pages 2149 - 2156, XP055789345 *
See also references of EP4006135A4
WU, L. ET AL., CHEM. EUR. J., vol. 20, 2014, pages 12114 - 12122
WU, L. ET AL.: "Synthesis of Site-Specifically Phosphate-Caged siRNAs and Evaluation of Their RNAi Activity and Stability", CHEM. EUR. J., vol. 20, 2014, pages 12114 - 12122, XP055410614, DOI: 10.1002/chem.201403430 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023282245A1 (ja) 2021-07-05 2023-01-12 国立研究開発法人科学技術振興機構 ヌクレオチド類の精製方法及びヌクレオチド類の精製装置並びに疎水性試薬及び疎水性基質
WO2023113038A1 (ja) * 2021-12-17 2023-06-22 リードファーマ株式会社 オリゴヌクレオチドの製造方法
WO2024185697A1 (ja) * 2023-03-03 2024-09-12 国立大学法人東海国立大学機構 ポリヌクレオチド連結産物の製造方法

Also Published As

Publication number Publication date
JPWO2021020562A1 (ja) 2021-02-04
EP4006135A1 (en) 2022-06-01
CN114302965A (zh) 2022-04-08
JP7551134B2 (ja) 2024-09-17
EP4006135A4 (en) 2022-10-26
US20220282294A1 (en) 2022-09-08

Similar Documents

Publication Publication Date Title
WO2021020562A1 (ja) プライマー及びこれを用いた二本鎖dnaの製造装置並びに二本鎖dnaの製造方法
JP7082174B2 (ja) 5’キャップ付rnaを合成するための組成物および方法
EP1218391B1 (en) Compounds for protecting hydroxyls and methods for their use
KR20220140140A (ko) 캡핑된 올리고뉴클레오티드 프라이머 및 이의 용도
EP0977769B1 (en) A process for the synthesis of modified p-chiral nucleotide analogues
Tomikawa et al. Synthetic Nucleosides and Nucleotides. 40. Selective Inhibition of Eukaryotic DNA Polymerase α by 9-(β-D-Arabinofuranosyl)-2-(p-n-butylanilino) adenine 5′-Triphosphate (BuAaraATP) and Its 2′-Up Azido Analog: Synthesis and Enzymatic Evaluations
US11110114B2 (en) Dinucleotides
EP4110914A1 (en) Method and products for producing single stranded dna polynucleotides
US5864031A (en) Process for preparing 5-dithio-modified oligonucleotides
JP2000515382A (ja) 標的核酸配列の増幅方法
US11104700B2 (en) Oligonucleotides
EP3921440B1 (en) Method and products for producing functionalised single stranded oligonucleotides
WO2005070946A1 (ja) リボ核酸化合物及びオリゴ核酸化合物の液相合成法
CN114174509B (zh) 引物和使用了该引物的双链dna的制造装置以及双链dna的制造方法
JP4665758B2 (ja) チオヌクレオシド−s−ニトロシル誘導体
JP6261027B2 (ja) 2’−o−カルバモイル修飾ヌクレオシド三リン酸
WO2019150564A1 (ja) スルホンアミド骨格をもつオリゴヌクレオチドを鋳型として用いたdna複製法
Iacucci Synthesis of a Carbazole Nucleoside for Incorporation into Oligonucleotides to Study Z-DNA structures & Study of Phosphorothioate Structures in Human DNA
Liao et al. Publication Note
WO2022175685A1 (en) Modified guanines
JPH08245665A (ja) 新規フォスファイト化合物及びそれを用いたキラルフォスファイト化合物の立体選択的製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20846477

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021535463

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020846477

Country of ref document: EP

Effective date: 20220228